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Abstract
Given an integer k and a graph where every edge is colored either red or blue, the goal of the exact
matching problem is to find a perfect matching with the property that exactly k of its edges are
red. Soon after Papadimitriou and Yannakakis (JACM 1982) introduced the problem, a randomized
polynomial-time algorithm solving the problem was described by Mulmuley et al. (Combinatorica
1987). Despite a lot of effort, it is still not known today whether a deterministic polynomial-time
algorithm exists. This makes the exact matching problem an important candidate to test the
popular conjecture that the complexity classes P and RP are equal. In a recent article (MFCS 2022),
progress was made towards this goal by showing that for bipartite graphs of bounded bipartite
independence number, a polynomial time algorithm exists. In terms of parameterized complexity,
this algorithm was an XP-algorithm parameterized by the bipartite independence number. In this
article, we introduce novel algorithmic techniques that allow us to obtain an FPT-algorithm. If the
input is a general graph we show that one can at least compute a perfect matching M which has the
correct number of red edges modulo 2, in polynomial time. This is motivated by our last result,
in which we prove that an FPT algorithm for general graphs, parameterized by the independence
number, reduces to the problem of finding in polynomial time a perfect matching M with at most k

red edges and the correct number of red edges modulo 2.
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1 Introduction

In the Exact Matching Problem (denoted from now on by EM), we are given a graph G

together with a fixed coloring of its edges in two colors (red and blue). The question is,
for a given integer k, to decide whether there exists a perfect matching M of G with the
additional property that exactly k of the edges of the perfect matching M are red. Clearly,
if we have the special case that all edges of the graph are red and k = |V (G)|/2 then this
problem is simply to decide whether there exists a perfect matching in the graph, which is
well-known to be decidable in polynomial time [7]. However, when the coloring of the edges
is heterogeneous, the problem difficulty seems to increase significantly (see below).
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Papadimitriou and Yannakakis [28] initially introduced EM in 1982 and conjectured it
to be NP-hard. However, a randomized polynomial-time algorithm solving the problem
was described by Mulmuley, Vazirani and Vazirani in 1987 in the course of their celebrated
isolation lemma [26]. Given standard complexity theoretic hypotheses, this makes it unlikely
for EM to be NP-hard. Despite the existence of a polynomial-time randomized algorithm, as
of today it is still not known whether EM can also be solved in deterministic polynomial
time. The algorithm of Mulmuley et al. uses polynomial identity testing and is based on
the Schwartz-Zippel Lemma [29,35], which has resisted all attempts of derandomization so
far. Indeed, EM is one of the few natural problems which has a randomized polynomial-time
algorithm (i.e. it is contained in the complexity class RP) but for which it is not known
whether it admits a deterministic polynomial-time algorithm (i.e. it is contained in P). It is
a major open conjecture that RP=P, and so EM becomes a natural candidate to test this
hypothesis.

For this reason, EM has been cited in several papers as an open problem. This includes
recent breakthrough papers such as the seminal work on the parallel computation complexity
of the matching problem [31], works on planarizing gadgets for perfect matchings [17],
works on budgeted, color bounded, or constrained matching problems [3,22,24,25,30], on
multicriteria optimization problems [16] and on matroid intersection problems [5]. It is further
known that several different problems relate directly or indirectly to EM. The following is a
non-exhaustive list of examples: EM is polynomial-time equivalent to the DNA sequencing
problem [4]. EM is equivalent to a variant of the problem of finding a solution of a binary
linear equation system with small Hamming weight [2]. EM can be reduced to a special case
of the recoverable robust assignment problem [12].

Previous work. Progress in finding deterministic algorithms for EM (and therefore finding
positive evidence for the conjecture P=RP) has only been made for restricted graph classes:
It is known that EM can be solved in determinisitic polynomial time for planar and more
generally K3,3-minor free graphs [34], as well as graphs of bounded genus [13]. These works
use Pfaffian orientations to derandomize the algebraic technique from [26]. EM can also be
solved for graphs of bounded treewidth using a dynamic programming approach [8,32]. In
contrast to these classes of sparse graphs, EM on dense graphs seems to be even harder:
Already solving the problem on complete graphs and complete bipartite graphs is highly
nontrivial. In fact, at least 4 articles just dealing with this special case have appeared
in the literature [14, 18, 21, 33]. Recent work [9] made a step forward by showing how to
solve EM on graphs of constant independence number, where the independence number of
a graph G is defined as the largest number α such that G contains an independent set of
size α, and bipartite graphs of constant bipartite independence number, where the bipartite
independence number of a bipartite graph G equipped with a bipartition of its vertices is
defined as the largest number β such that G contains a balanced independent set of size 2β,
i.e., an independent set using exactly β vertices from both color classes. This generalizes
previous results for complete and complete bipartite graphs which correspond to the special
cases α = 1 and β = 0. The authors presented an XP-algorithm, i.e. an algorithm running in
time O(nf(α)), for the problem. The existence of an FPT algorithm, i.e. an algorithm with
running time f(α)nO(1), was left as an open question. The authors also conjectured that
counting perfect matching is #P-hard for this class of graphs. This conjecture was later
proven in [11] already for α = 2 or β = 3. As a consequence, the Pfaffian derandomization
technique is unlikely to work for this class of graphs, because this technique implicitly
counts the number of perfect matchings. This makes the graph class of graphs of bounded
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independence number a promising frontier to push the limits of deterministic techniques. To
the best of our knowledge, these are the only results from the last 40 years showing that EM
can be solved in deterministic poly-time for restricted graph classes.

Apart from restricted graph classes, one can also consider parameterized algorithms for
EM, using the natural parameter k. Note that an XP-algorithm in this case is trivial to
obtain using brute-force guessing (guess the red edges that go in a solution and complete
the perfect matching using only blue edges). An FPT algorithm would, however, be highly
desirable as it is likely provide a lot of insight into EM. The only progress towards that goal
can be found in [8] where some color coding tools were developed but only applied to the
almost trivial case of bounded circumference graphs.

Another direction of progress towards solving EM is the study of relaxed versions of
it. A first such relaxation would be to lift the requirement for a perfect matching. In [34],
however, it was shown that there is a simple deterministic polynomial time algorithm such
that given a “Yes” instance of EM, computes an almost perfect matching (i.e. of size at least
n
2 − 1) containing k red edges. This result is as close to optimal as possible for this type
of relaxation. The study of the other type of relaxation, i.e. relaxing the color constraints,
was only recently initiated in [8]. It was shown that there is a deterministic polynomial time
algorithm which given a “Yes”-instance of EM outputs a perfect matching with k′ red edges,
such that k/2 ≤ k′ ≤ 3k/2.

Exact matchings modulo 2. A crucial tool in this paper is to consider matchings with k′ red
edges, where k′ ≡2 k, that is, matchings of the correct parity. Let r(M) denote the number
of red edges in a matching M . We define the Correct Parity Matching Problem (CPM),
where given a red-blue edge-colored graph and an integer k, the goal is to find a perfect
matching M such that r(M) ≡2 k. Note that parity problems (and more general congruency-
constrained problems) have been studied in the context of other graph algorithms [19,27],
but are not well studied for the perfect matching problem. A more challenging version of the
problem, Bounded Correct Parity Matching (BCPM), requires finding a perfect matching M

such that r(M) ≡2 k and r(M) ≤ k. In [20] the complexity of the EM problem was even
further highlighted by showing that the Exact Matching polytope has exponential extension
complexity even when restricted to the bipartite case and to the parity constraint (i.e. CPM
in bipartite graphs has exponential extension complexity).

Our results. From now on, when we say that an algorithm has polynomial running time, we
mean a deterministic algorithm, whose running time is bounded by poly(n), even if α, β, k

are not bounded by a constant. We show in this paper how BCPM can be used to solve EM.
Precisely, our results are the following:

We show that EM reduces to BCPM in FPT time parameterized by α in the following
sense: There exists an algorithm, which performs a single oracle call to BCPM, and solves
EM on general graphs, in running time f(α)nO(1). (The result holds analogously for the
bipartite independence number β). Without access to the BCPM oracle, the algorithm
outputs a perfect matching with either k − 1 or k red edges or deduces that the answer
of the given EM-instance is “No” (Section 3).
CPM can be solved in polynomial time for all graphs (Section 4). This insight is based
on a deep result by Lovász [23].
On bipartite graphs, the more difficult problem BCPM can be solved in polynomial time
(Theorem 17). As a consequence, there is an FPT algorithm parameterized by β which
solves EM on bipartite graphs (Theorem 2).

ISAAC 2023
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Due to space restrictions, proofs of statements marked ⋆ can be found in the extended
version of this paper [10].

2 Preliminaries

All graphs considered are simple. For G = (V, E), we let V (G) := V and E(G) := E. We
always use the letter n to denote the number of vertices of a graph G, i.e. n = |V (G)|. An
edge-colored graph is a tuple (G, col), where col : E → {red, blue} prescribes a color to each
edge. An instance of EM is a tuple (G, col, k). Given an instance of EM and a perfect
matching (abbreviated PM) M , we define edge weights wM : E → N as follows: We have
wM (e) = 0 if e is a blue edge, wM (e) = +1 if e is a red non-matching edge and wM (e) = −1
if e is a red matching edge. The weight function wM plays a critical role in many arguments
in this paper. When the PM M can be deduced from context, we may write w instead of
wM . In this case, the weight of edge e is wM (e). For G′ a subgraph of G, we define R(G′)
(resp. B(G′)) to be the set of red (resp. blue) edges in G′, r(G′) := |R(G′)| to be the number
of red edges of G′ and wM (G′) to be the sum of the weights of edges in G′. If C is a set of
vertex-disjoint cycles, then we define wM (C) =

∑
C∈C wM (C).

We say that a set of disjoint cycles or paths is M -alternating if for any two adjacent
edges in the set, one of them is in M and the other is not. Undirected cycles are considered
to have an arbitrary orientation. For a cycle C and u, v ∈ C, C[u, v] is defined as the path
from u to v along C (in the fixed but arbitrarily chosen orientation). The term Ram(r, s)
refers to the Ramsey number, i.e. every graph on Ram(r, s) vertices contains either a clique
of size r or an independent set of size s. For simplicity we will use the following upper bound:
Ram(s + 1, s + 1) < 4s [15].

3 Reducing EM to BCPM in FPT time

The goal of this section is to prove our two main theorems:

▶ Theorem 1. EM can be reduced to BCPM in FPT time parameterized by the independence
number of the graph.

▶ Theorem 2. There exists an FPT algorithm for EM on bipartite graphs parameterized by
the bipartite independence number of the graph.

We will first introduce the algorithm and then prove Theorem 1 in Section 3.4 and
Theorem 2 in Section 3.5. Finally, in Section 3.6 we will discuss the case where a BCPM
oracle can not be used.

3.1 Tools from Prior Work
The algorithm we develop to prove Theorems 1 and 2 will rely on many of the tools developed
in [9] and [8]. We start with the two main propositions that we aim to use. The setting of
both propositions is the same: We are given some PM M explicitly, and we know that there
is another PM M ′ which we know exists, but we do not know explicitly. We are given the
PM M and the number r(M ′) as input and would like to find either M ′ itself, or at least
another PM M ′′ with r(M ′′) = r(M ′).

▶ Proposition 3 (from [9]). Let M and M ′ be two PMs in G such that |B(M∆M ′)| ≤ L or
|R(M∆M ′)| ≤ L, for L ≥ 1. Then there exists a deterministic algorithm running in time
nO(L) such that given M and r(M ′), it outputs a PM M ′′ with r(M ′′) = r(M ′).
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▶ Proposition 4 (adapted from [8]). (⋆) Given a graph G = (V, E) with edge colors red and
blue, let M and M ′ be two PMs in G such that |E(M∆M ′)| ≤ L, for L ≥ 1. Then there
exists an algorithm running in time f(L)nO(1) (for f(L) = LO(L)) such that given M and
r(M ′), it outputs a PM M ′′ with r(M ′′) = r(M ′).

The algorithm from Proposition 4 is faster (FPT instead of XP when parameterized by
L), but it requires more assumptions on M ′. The algorithm from Proposition 3 works by
guessing which L edges are in R(M∆M ′) (respectively B(M∆M ′)) and then checks if the
red (blue) edges can be completed to a PM by using only blue (red) edges. The algorithm
from Proposition 4 works using color-coding technique (see [6, Chapter 5] for more details
on color coding).

In [9] the authors show that for graphs of small independence number, one could use
Proposition 3 to get an XP algorithm (parameterized by the independence number) by
bounding either the number of red edges or the number of blue edges in the symmetric
difference with a target matching M ′. Our aim is to show that we can use the stronger
Proposition 4 from [8] to get an FPT algorithm, which would require that we bound both
color classes (i.e. the entire symmetric difference). This turns out to be much more difficult
to achieve and requires novel algorithmic techniques that we describe in the next section.
Our algorithm does, however, start by bounding one of the color classes before bounding the
second. For that we simply rely on the tools developed in [9] to avoid starting from scratch.
Due to the technicality of some of the used tools, some readers might want to skip the details
of the tools from previous work and jump ahead to the next section, only coming back to
these definitions and lemmas when needed.

A crucial concept to understand the tools from prior work is a property of the weight
function w = wM as defined in Section 2. Let M and M ′ be two perfect matchings. It
is well-known that the symmetric difference C := M∆M ′ is a set of edges that forms a
vertex-disjoint union of M -alternating cycles. An easy observation is now that wM (C) counts
the difference of red edges between M and M ′, that is, we have r(M ′) = r(M) + wM (C).
This follows directly from the definition of wM . The second crucial concept is the concept of
a skip.

v1

v′1 v2
v′2

e1 e2

Figure 1 A skip formed by two non-matching edges e1 and e2 (in black). Matching edges are
normal lines, non-matching edges are dashed. The bold lines represent subpaths.

▶ Definition 5 (from [9]). Let M be a PM and C an M -alternating cycle. A skip S is a set of
two non-matching edges e1 := (v1, v2) and e2 := (v′

1, v′
2) with e1, e2 /∈ C and v1, v′

1, v2, v′
2 ∈ C

(appearing in this order along C) such that C ′ = e1 ∪ e2 ∪ C \ (C[v1, v′
1] ∪ C[v2, v′

2]) is an
M -alternating cycle, |C| − |C ′| > 0 and |wM (S)| ≤ 4 where wM (S) := wM (C ′)− wM (C) is
called the weight of the skip.

Let M, C, S, C ′ be as above. We say that using the skip S is the action of replacing
the alternating cycle C by the alternating cycle C ′. If furthermore M ′ is another PM
and C ∈ M∆M ′, then we say that using S also modifies M ′ the following way: We let
M ′

new = M ′∆C∆C ′ = M∆(((M∆M ′) \ C) ∪ C ′). In other words, M ′
new is the matching

which has the same symmetric difference from M as M ′, except that C was replaced by C ′.
It is an easy observation that M ′

new is again a PM and r(M ′
new) = r(M ′) + w(S). This means

ISAAC 2023
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that using a positive skip (i.e. a skip of strictly positive weight) increases the cycle weight,
using a negative skip decreases it and using a 0-skip (i.e. a skip of weight 0) does not change
the cycle weight. Using a skip always results in a cycle of smaller cardinality. If P ⊆ C is a
path and C[v1, v′

2] ⊆ P , then we say that P contains the skip S. Two skips {(v1, v2), (v′
1, v′

2)}
and {(u1, u2), (u′

1, u′
2)} are called disjoint if they are contained in disjoint paths along the

cycle. Note that two disjoint skips can be used independently. Finally, observe that iterating
over all skips of a given alternating cycle C can be done in polynomial time by trying all
possible combinations of two chords from the cycle C and checking whether they form a skip.
This means that if a skip with certain properties is shown to exist, it can also be found in
polynomial time.

▶ Definition 6 (from [9]). Let M be a PM and C a set of disjoint M -alternating cycles. A
0-skip set with respect to C is a set of disjoint skips on cycles of C such that the total weight
of the skips is 0.

▶ Definition 7 (from [9]). Let M be a PM and C a set of disjoint M -alternating cycles. A
0-skip-cycle set with respect to C is a set of disjoint skips on cycles of C and/or cycles from
C, such that the total weight of the skips minus the total weight of the cycles is 0.

We say that using a skip-cycle set S means to change C by removing all cycles in S from C
and by using all skips in S (i.e. for every S ∈ S that is a skip, locate the corresponding cycle
C ∈ C with S in C and use S on C). A perfect matching M ′

new is defined in an analogous
way as M ′

new is defined for using a single skip (i.e., such that M ′
new = M∆Cnew). If S was a

0-skip-cycle set, then we have r(M ′
new) = r(M ′). Using a 0-skip-cycle set always decreases the

total size of C. In this paper, it will be a common strategy to locate 0-skip-cycle sets contained
in the symmetric difference M∆M ′ of two PMs. If we manage to find such a 0-skip-cycle
set, then using it on M∆M ′ will produce a new PM M ′

new such that r(M ′
new) = r(M ′), but

|M∆M ′
new| < |M∆M ′|. Hence we make progress in the sense that we reduce the symmetric

difference M∆M ′ while maintaining r(M ′).
The following lemmas are taken and adapted from [9]. They show that under certain

assumptions 0-skip sets or 0-skip-cycle sets always exist. They are adapted to also include
a proof that the desired objects can be found in polynomial time. We leave their adapted
proofs to the appendix.

▶ Lemma 8 (adapted from [9]). (⋆) Let M be a PM and P an M-alternating path with
wM (P ) ≥ 2t · 4α (resp. wM (P ) ≤ −2t · 4α), for t ≥ 1, then P contains at least t disjoint
negative (resp. positive) skips. If P and M are given, then we can also find t such skips in
polynomial time.

▶ Lemma 9 (adapted from [9]). (⋆) Let t ≥ 8 · 4α and t′ = 4t2. Let M be a PM and C a
set of disjoint M-alternating cycles and C ∈ C such that |wM (C)| ≤ t′ and |wM (C)| ≥ 2t′,
then C contains a 0-skip-cycle set. If C, M are given, we can also find a 0-skip-cycle set in
polynomial time.

▶ Lemma 10 (adapted from [9]). (⋆) Let t ≥ 3. Let M be a PM and C a set of disjoint
M-alternating cycles such that |wM (C)| ≤ t, |wM (C)| ≤ 2t for all C ∈ C and |C| ≥ 10t3,
then C contains a 0-skip-cycle set. If C, M are given, we can also find a 0-skip-cycle set in
polynomial time.

▶ Lemma 11 (adapted from [9]). (⋆) Let t ≥ 8 · 4α. Let M be a PM and C a set of disjoint
M-alternating cycles such that |C| ≤ 10t3, |wM (C)| ≤ 2t for all C ∈ C and C contains at
least 1000t6 blue edges and 1000t6 red edges, then C contains a 0-skip set. If C, M are given,
then we can also find a 0-skip set in polynomial time.
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3.2 The Main Algorithm

The aim of this section is to present the algorithm which reduces EM to BCPM in time
f(α)nO(1). We first sketch the idea of the algorithm: We assume that the algorithm receives
two PMs M and M ′ as input, such that r(M) < k < r(M ′) and such that both M and M ′

already have the correct parity, i.e. r(M) ≡2 r(M ′) ≡2 k. We will later show how this can
be done with an oracle call to BCPM. But even in the case where the BCPM oracle can not
be used and M, M ′ are just some arbitrary PMs with r(M) < k < r(M ′), our algorithm
still computes something meaningful: We show that in this case a PM with k or k − 1 red
edges will be output, or it will be deduced that the given EM-instance has answer “No”. This
variant of the algorithm is further discussed in Section 3.6.

Our algorithm modifies the PMs M and M ′ many times. But the invariant is maintained
that during the whole execution of the algorithm, both the PMs M and M ′ will never change
their parity. The basic idea of the algorithm is to have many iterations, where in each
iteration either M is modified such that r(M) increases by 2, or M ′ is modified such that
r(M ′) decreases by two. Clearly, if we can do such a modification in every iteration, we will
eventually arrive at a PM with k red edges. One might ask why we consider modifications of
the kind +2 and −2, instead of the kind +1 and −1. The reason for this is that a change
of ±1 might not always be possible, even in complete graphs. To see this, consider the
smallest possible modification of a PM. It consists in taking its symmetric difference with an
alternating cycle of length four. Such a cycle may add or remove up to two red edges from
the matching and it is possible that we only find such cycles adding or removing exactly
two red edges. On the converse, if all small cycles add or remove one red edge, we can still
achieve a change of two by simply considering two such cycles.

However, reality is more complicated and even a ±2 modification might not always be
possible. The first hurdle is that such a modification might not be possible if r(M)≪ r(M ′).
To combat this hurdle, the algorithm splits into three phases, where in the first phase the
PMs M, M ′ are modified such that they keep their parity and after their modification we
have that r(M), r(M ′) are close to k. Details for phase 1 will be provided in Lemma 12. In
the second phase, we will do many iterations, such that in each iteration the algorithm tries
to (i) increase r(M) by 2, or (ii) decrease r(M ′) by 2, or (iii) strictly decrease the cardinality
of the symmetric difference |E(M∆M ′)|. Finally, it can still happen that neither (i), (ii), or
(iii) are possible. However, we prove a key lemma which states that in this situation (and if
the given EM-instance is a “Yes” instance), we can use color coding techniques to find a PM
M∗ in time f(α)nO(1) which is a solution to EM, i.e. r(M∗) = k. The algorithm then enters
phase 3, where it either finds M∗ or deduces that the given EM-instance is a “No”-instance.
We now provide the formal description of the algorithm:

Input: A red-blue edge-colored graph (G, col), a nonnegative integer k. Two PMs M and
M ′ with r(M) < k < r(M ′).

Phase 1: Find two PMs Mnew and M ′
new such that

k − 8 · 4α ≤ r(Mnew) ≤ k ≤ r(M ′
new) ≤ k + 8 · 4α,

and such that the parity is maintained, i.e. r(Mnew) ≡2 r(M) and r(M ′
new) ≡2 r(M ′).

Set M ←Mnew and M ′ ←M ′
new. If this step fails, output “EM-instance has no solution”.

Phase 2: If either M or M ′ is a solution matching we are done. Otherwise repeat the
following three steps until either M or M ′ is a solution matching or until every step
(i),(ii), and (iii) fails in the same iteration:

ISAAC 2023
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(i) Invoke the algorithm of Proposition 3 with respect to the matching M and L = 2 in
order to try to find a PM Mnew with r(Mnew) = r(M) + 2. If such a PM is found, let
M ←Mnew, otherwise do not modify M and consider step (i) as failed.

(ii) Invoke the algorithm of Proposition 3 with respect to the matching M ′ and L = 2 in
order to try to find a PM M ′

new with r(M ′
new) = r(M ′)− 2. If such a PM is found, let

M ′ ←M ′
new, otherwise do not modify M ′ and consider step (ii) as failed.

(iii) Invoke the algorithms of Lemma 9, Lemma 10 or Lemma 11 (with t = 256 · 42α), to
try to find a 0-skip or a 0-skip-cycle set in M∆M ′. If such an object is found, then
use it (i.e. change M ′ accordingly) to reduce |E(M∆M ′)|. Otherwise do not modify
M, M ′ and consider step (iii) as failed.

Phase 3: If either M or M ′ is a solution matching we are done. Otherwise invoke the
algorithm of Proposition 4 with L = 2αO(1) (for appropriately large constants) on the
matching M to try to find a PM M∗ with r(M∗) = k. If such a PM M∗ is found, then
output it. Otherwise output “EM-instance has no solution”.

This completes the description of the algorithm. The remainder of this section is dedicated
to its proof. First, we prove that phase 1 can be completed correctly in polynomial time
(Lemma 12). It is not so difficult to prove that phase 2 requires only polynomial time (as
there are at most n2 iterations). Finally, we prove in our main lemma (Lemma 15) that if
steps (i),(ii),(iii) all fail simultaneously, then phase 3 is guaranteed to succeed. This is the
most difficult lemma to prove. In Section 3.4 we summarize the proof and explain how to
obtain the two initial matchings M and M ′ required as input for phase 1.

Finally, we describe the modifications necessary for bipartite graphs (Section 3.5) and for
cases where the BCPM oracle is not available (Section 3.6).

3.3 Proof of the main lemmas
The following lemmas help us prove the correctness and polynomial running time of the
algorithm.

▶ Lemma 12. Given a “Yes” instance of EM and two PMs M and M ′ with r(M) ≤ k ≤
r(M ′), there exists a deterministic polynomial time algorithm that outputs two PMs M1 and
M2 with r(M1) ≡2 r(M), r(M2) ≡2 r(M ′) and k− 8 · 4α ≤ r(M1) ≤ k ≤ r(M2) ≤ k + 8 · 4α.

Proof. As long as r(M) < k − 8 · 4α we will consider two cases:
All cycles C ∈ M∆M ′ have weight wM (C) ≤ 4 · 4α. In this case M∆M ′ must contain
at least two strictly positive cycles C1 and C2. If wM (C1) ≡2 0 then we replace M by
M∆C1 and iterate (note that r(M) < r(M∆C1) ≤ k and r(M∆C1) ≡2 r(M)). The case
wM (C2) ≡2 0 is similar. Otherwise we replace M by M∆(C ∪ C ′) and iterate (note that
r(M) < r(M∆(C ∪ C ′)) ≤ k and r(M∆(C ∪ C ′)) ≡2 r(M)).
There exists C ∈M∆M ′ with wM (C) > 4 · 4α. Observe that C ∈M ′∆M and wM ′(C) =
−wM (C) ≤ −4 · 4α. By Lemma 8 applied to M ′ and wM ′ , we have that C contains two
positive skips (with respect to M ′ and wM ′). If any of the skips has even weight, we use
it to increase the weight of wM ′(C) and iterate (note that r(M) increases since using a
skip in M ′∆M modifies M). Otherwise we use both skips. In either case, r(M) increases
and its parity is preserved. Note that r(M) can increase by at most 8 given that a skip
must have weight at most 4 by definition.

In both cases r(M) increases after every iteration. So there can be at most O(n) iterations,
each running in polynomial time, until k − 8 · 4α ≤ r(M) ≤ k. Now we apply a similar
procedure to decrease r(M ′). As long as r(M ′) > k + 8 · 4α we will consider two cases:
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All cycles in M ′∆M have weight wM ′ more than −4 · 4α. In this case M ′∆M must
contain at least two strictly negative cycles C1 and C2. If wM ′(C1) ≡2 0 then we replace
M ′ by M ′∆C1 and iterate (note that k ≤ r(M ′∆C1) < r(M ′) and r(M ′∆C1) ≡2 r(M ′)).
The case wM ′(C2) ≡2 0 is similar. Otherwise we replace M ′ by M ′∆(C ∪C ′) and iterate
(note that k ≤ r(M∆(C ∪ C ′)) < r(M ′) and r(M∆(C ∪ C ′)) ≡2 r(M ′)).
There exists C ∈ M ′∆M with wM ′(C) < −4 · 4α. Observe that C ∈ M∆M ′ with
wM (C) = −wM ′(C) ≥ 4 · 4α. By Lemma 8 applied to M and wM , C contains two
negative skips (with respect to M and wM ). If any of the skips has even weight, we use
it to reduce wM (C) and iterate (note that r(M ′) decreases since using a skip in M∆M ′

modifies M ′). Otherwise we use both skips. In either case, r(M ′) decreases and its parity
is preserved. Note that r(M ′) can decrease by at most 8 given that a skip must have
weight at least −4 by definition.

In both cases r(M ′) decreases after every iteration. So there can be at most O(n) iterations,
each running in polynomial time, until k ≤ r(M ′) ≤ k + 8 · 4α. Finally the algorithm
terminates by outputting M1 := M and M2 := M ′. ◀

▶ Lemma 13. Let M be a PM and C a set of disjoint M -alternating cycles with the following
properties:
C does not contain monochromatic cycles.
|E(C)| ≥ 2t3.
|R(C)| ≤ t (resp. |B(C)| ≤ t).

Then C contains a blue (resp. red) M -alternating path of length at least t.

Proof. We will consider the case when |R(C)| ≤ t. The case |B(C)| ≤ t is proven similarly
by swapping the two colors. First observe that if C contains at most t red edges and no
monochromatic cycles, then |C| ≤ t. So by the pigeonhole principle, C must contain a cycle
C with |E(C)| ≥ 2t2. Consider the set of maximal blue subpaths of C and let pB be the
number of these paths. As every such path is accompanied by a red edge, we have pB ≤ t.
Finally, C has at least 2t2− t blue edges, so by the pigeonhole principle one of the blue paths
must have length at least (2t2 − t)/t ≥ t. ◀

The above lemma simply shows that if only one color class is bounded, there must be
long monochromatic paths of the other color. The next lemma shows that the existence of
long monochromatic paths in turn implies the existence of small cycles.

▶ Lemma 14. Let M be a PM and C an M-alternating cycle. Let P ⊆ C be a blue (resp.
red) M -alternating path of length at least 6 Ram(Ram(4, α + 1), α + 1), starting with a non-
matching edge and not containing 0-skips. Then there must be two edges e1 := (b1, b2) and
e2 := (w1, w2) with endpoints on P , at least one of which must be red (resp. blue), such that
C ′ = e1 ∪ e2 ∪ C[b1, w1] ∪ C[b2, w2] is an M-alternating cycle with 0 < wM (C ′) ≤ 2 (resp.
−2 ≤ wM (C ′) < 0) and containing a number of red (resp. blue) edges equal to the absolute
value of its weight.

Proof. We will only deal with the case when P is blue, the other case is treated similarly
(by switching the roles of the two colors in the proof). We assume that P has an arbitrary
orientation which is used to define the start and end vertices of subpaths of P . First, we divide
P into a set of consecutive paths P of length 6 each, starting with the first non-matching
edge. Let P1 be the set of paths formed by the first 3 edges of each path in P. The set of
start vertices of paths in P1 has size at least Ram(Ram(4, α + 1), α + 1) so it must contain
a clique Q of size Ram(4, α + 1). Let P2 be the set of paths in P1 with start vertices in Q.
The set of end vertices of paths in P2 must contain a clique Q′ of size 4 (see Figure 2). Let
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P3 := {P1, P2, P3, P4} be the set of paths in P1 with end vertices in Q′. Let si and ti be the
start and end vertices of path Pi for i ∈ {1, 2, 3, 4}. Observe that any two distinct paths
Pi, Pj ∈ P3 have their endpoints connected by the edges (si, sj) and (ti, tj) and a skip is
created this way. If both edges were blue, we would get a 0-skip (since the whole path P has
only blue edges). Letting i = 2, j = 3, we see that one of the edges (s2, s3) or (t2, t3) must
be red. Suppose (s2, s3) is red. Observe that (t1, t2)∪ (s2, s3)∪C[t1, s2]∪C[t2, s3] is a cycle
of weight +1 or +2 (depending on whether (t1, t2) is red or blue, since all other edges are
blue) and containing at most 2 red edges. Similarly, suppose (t2, t3) is red. Observe that
(t2, t3) ∪ (s3, s4) ∪ C[t2, s3] ∪ C[t3, s4] is a cycle of weight +1 or +2 (depending on whether
(s3, s4) is red or blue) and the number of red (resp. blue) edges it contains is equal to the
absolute value of its weight. ◀

Q s1
s2
s3
s4

t1

t2
t3
t4

Q′
s2

t2 s3
t3

t1

s1

s4

t4

Figure 2 Left: The set of paths P2, of size Ram(4, α + 1), and the cliques Q and Q′. Right:
The paths from P3 along the blue path P and the vertices si, tj . Matching edges are normal lines,
non-matching edges are dashed. The bold lines between ti and si+1 represent subpaths. Observe
that {(s2, s3), (t2, t3)} forms a skip and (t1, t2) ∪ (s2, s3) ∪ C[t1, s2] ∪ C[t2, s3] is an alternating cycle.

Finally, we are ready to prove our main lemma. Roughly speaking, it states that if all
steps (i),(ii) and (iii) in phase two of the algorithm fail, then phase 3 is guaranteed to succeed.
More specifically, it states that if we cannot make small progress towards a solution then
we are ready to apply Proposition 4 and find one in FPT time. Small progress here means
either getting the number of red edges in M or M ′ closer to k, or making their symmetric
difference smaller.

▶ Lemma 15. Let M and M ′ be two PMs with the following properties:
(a) r(M) < k − 1, r(M ′) > k.
(b) |wM (M∆M ′)| ≤ t for t = 256 · 42α.
(c) There is no PM M1 such that r(M1) = r(M) + 2 and |R(M∆M1)| = 2.
(d) There is no PM M ′

1 such that r(M ′
1) = r(M ′)− 2 and |B(M ′∆M ′

1)| = 2.
(e) M∆M ′ does not contain any 0-skip.
(f) The algorithms of Lemma 9, Lemma 10 and Lemma 11 all fail to find a 0-skip-cycle set

in M∆M ′.
If there is at least one PM with k red edges, then there exists a PM M∗ such that r(M∗) = k

and |E(M∆M∗)| = 2αO(1) .
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Proof. We start by giving a high level overview and the intuition behind the proof. First we
note that properties (a) and (b) will be guaranteed after phase 1 of the algorithm and they
state that both M and M ′ are close to k in terms of number of red edges. Second, properties
(c) and (d) state that our algorithm is unable to make small progress in terms of getting
the number of red edges in M or M ′ closer to k. Finally properties (e) and (f) state that
our algorithm is unable to make small progress in term of making the symmetric difference
between M and M ′ smaller.

Our final goal is to bound the symmetric difference between M and some solution M∗.
We will do that by contradiction to one of the given properties. Observe that if the conditions
for Lemma 14 are met, i.e. there is a long blue only M -alternating path, then the lemma
guarantees that small progress towards getting the number of red edges closer to k is possible.
The same holds for long red only M ′-alternating paths. Note, however, that we might need
to apply the lemma twice in order to ensure that the progress is in increments or decrements
of two, thus contradicting either property (c) or (d). This way we can bound the length
of blue only M -alternating paths. Then if red only M -alternating paths are also bounded,
Lemma 13 implies that either both colors are bounded, in which case we are done, or none of
them is. In the latter case, we use the machinery developed in [9] (see Section 3.1) to reach
the contradiction (remember that the goal there was to bound one color class), and this
requires properties (a) and (b) to hold. The same holds if blue only M ′-alternating paths
are bounded.

The only remaining obstacles are long red only M -alternating or blue only M ′-alternating
paths. To deal with that, we try to reduce the symmetric difference between M and M ′ such
that long monochromatic M -alternating paths are also M ′-alternating (and the contradiction
above can again be reached) since the two matchings do not differ by that many edges.
Bounding the symmetric difference between M and M ′ relies on a contradiction to properties
(e) or (f). It follows the same steps as bounding the symmetric difference between M

and M∗, but with the added benefit that paths in this symmetric difference are both M

and M ′-alternating, which avoids the problem of long red only M -alternating or blue only
M ′-alternating paths.

To summarise, we start by bounding |E(M∆M ′)| (first bounding one color class, then
the second). Then we are able to bound |E(M∆M∗)| (again one color class at a time).

Detailed proof. We will start by showing that one color class of M∆M ′ must be bounded.
This allows us to then bound |E(M∆M ′)|. We then consider the solution matching M∗

that minimizes |E(M∆M∗)| and start by bounding the number of blue edges in M∆M∗.
Finally, we also show that the number of red edges in M∆M∗ is bounded, thus bounding
|E(M∆M∗)|.

Bounding one color class of M∆M ′. Since we failed to reduce |E(M∆M ′)| using the
algorithm of Lemma 9, the weight of all cycles in M∆M ′ must be bounded: |w(C)| ≤ 2t for
all C ∈ M∆M ′. Since we failed to reduce |E(M∆M ′)| using the algorithm of Lemma 10,
the number of cycles in M∆M ′ must be bounded: |M∆M ′| ≤ 10t3. Finally, since we
failed to reduce |E(M∆M ′)| using the algorithm of Lemma 11, |B(M∆M ′)| or |R(M∆M ′)|
must be bounded (by 1000t6). Let t′ = max(1000t6, 20 Ram(Ram(4, α + 1), α + 1)) (note
that 1000t6 = 2O(α), Ram(4, α + 1) = αO(1) and Ram(Ram(4, α + 1), α + 1)) = 2αO(1) so
t′ = 2αO(1)).
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Bounding |E(M∆M ′)|. First, we show that property (c) implies that there is no blue
M -alternating path of length at least t′ in the graph. Suppose such a path exists. Divide the
path into two blue paths P1 and P2 of length at least t′/2 each. From Lemma 14 applied to
each of the paths P1 and P2, we get that there exists two disjoint M -alternating cycles C1
and C2 with 0 < wM (C1) ≤ 2, 0 < wM (C2) ≤ 2 and each containing a number of red edges
equal to the absolute value of their weight. If C1 contains two red edges, let M1 := M∆C1.
Otherwise if C2 contains two red edges, let M1 := M∆C2. Finally, if both C1 and C2
contain only one red edge, let M1 := M∆(C1 ∪ C2). Observe that |R(M∆M1)| = 2 and
r(M1) = r(M) + 2, contradicting property (c).

Next we show that property (d) implies that there is no red M ′-alternating path of length
at least t′ in the graph. Divide the path into two red paths P1 and P2 of length at least
t′/2 each. From Lemma 14 applied to each of the paths P1 and P2, we get that there exists
two disjoint M -alternating (with respect to M ′) cycles C1 and C2 with −2 ≤ wM ′(C1) < 0,
−2 ≤ wM ′(C2) < 0 and and each containing a number of blue edges equal to the absolute
value of their weight. If C1 contains two blue edges, let M ′

1 := M ′∆C1. Otherwise if C2
contains two blue edges, let M ′

1 := M ′∆C2. Finally, if both C1 and C2 contain only one blue
edge, let M ′

1 := M ′∆(C1 ∪ C2). Observe that |B(M ′∆M ′
1)| = 2 and r(M ′

1) = r(M ′) − 2,
contradicting property (d).

Suppose |R(M∆M ′)| ≥ 2t′3. Then by the previous paragraph |B(M∆M ′)| ≤ t′. Note
that M∆M ′ contains no monochromatic cyle, as this would be a 0-skip cycle set, therefore
by Lemma 13, M ′∆M contains a red M ′-alternating path of length at least t′. But this
contradicts property (c). Now suppose |B(M∆M ′)| ≥ 2t′3. Then |R(M∆M ′)| ≤ t′ and by
Lemma 13, M∆M ′ contains a blue M -alternating path of length at least t′, contradicting
property (c). So we get |E(M∆M ′)| = |B(M∆M ′)|+ |B(M∆M ′)| ≤ 4t′3.

Bounding |B(M∆M∗)|. Now let M∗ among all those PMs with k red edges be the
one which minimizes |E(M∆M∗)|. Note that |wM (M∆M∗)| ≤ |wM (M∆M ′)| ≤ t. Since
|E(M∆M∗)| is minimal, M∆M∗ cannot contain a 0-skip-cycle set. By Lemma 9, the
weight of all cycles in M∆M∗ must be bounded: |w(C)| ≤ 2t for all C ∈ M∆M∗. By
Lemma 10, the number of cycles in M∆M∗ must be bounded: |M∆M∗| ≤ 10t3. Finally,
by Lemma 11, |B(M∆M∗)| or |R(M∆M∗)| must be bounded (by 1000t6 ≤ t′). Suppose
|B(M∆M∗)| > 2t′3. So |R(M∆M∗)| ≤ t′ and by Lemma 13, M∆M∗ contains a blue
M -alternating path of length t′, contradicting property (c). So |B(M∆M∗)| ≤ 2t′3.

Bounding |E(M∆M∗)|. Let t′′ = 4t′4. Suppose |R(M∆M∗)| > 2t′′3, by Lemma 13
M∗∆M contains a red path P with |P | ≥ t′′. Observe that M ′∆M∗ = (M∆M∗)∆(M∆M ′)
and P ⊆M∆M∗ so

P ∩ (M ′∆M∗) = P\(P ∩ (M∆M ′)).

We have |P ∩ (M∆M ′)| ≤ |E(M∆M ′)| < 4t′3, so if all paths in P ∩ (M ′∆M∗) have length
at most t′ then |P | < 4t′4, a contradiction. So there must be a path P ′ ⊆ P ∩ (M ′∆M∗) of
length at least t′. Note that P ′ is a red M ′-alternating path, contradicting property (d). So
we have |E(M∆M∗)| ≤ 4t′′3 = t′′O(1) = t′O(1) = 2αO(1) . ◀

3.4 Main theorem for general graphs
Proof of Theorem 1. Suppose we have a polynomial time oracle for BCPM. We start by
solving CPM on the given instance. This can be done in polynomial time (as we prove later
in Theorem 19) and will give us a PM Mp with r(Mp) ≡2 k. If r(Mp) ≥ k, let M ′ := Mp
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and use an oracle call to BCPM to get M with r(M) ≡2 k and r(M) ≤ k. Otherwise,
if r(Mp) ≥ k, let M := Mp and use an oracle call to BCPM to get M ′ with r(M ′) ≡2 k

and r(M ′) ≥ k (this can simply be done by swapping the red and blue colors and using
k′ = n/2− k as parameter for the BCPM oracle). In both cases, we obtain PMs M, M ′ such
that r(M) ≡2 k ≡2 r(M ′) and r(M) ≤ k ≤ r(M ′).

Note that if this step fails (in the sense that the CPM or BCPM call returns “false”),
then the EM instance has no solution. Otherwise we apply the algorithm of Section 3.2 on
the EM-instance with M and M ′ as input. Our goal now is to prove that if the EM-instance
is a “YES” instance, then the following must be true:
(a) Phase 1 runs in polynomial time and outputs two PMs M and M ′ such that k− 8 · 4α ≤

r(M) ≤ k ≤ r(M ′) ≤ k + 8 · 4α, r(M) ≡2 r(M ′) ≡2 k.
(b) Phase 2 runs in polynomial time and either outputs a PM with k red edges (and the

algorithm terminates) or a PM M such that there exists a PM M∗ with r(M∗) = k and
|E(M∆M∗)| ≤ 2αO(1) (for appropriately large constants).

(c) If the algorithm did not terminate in Phase 2, then Phase 3 runs in time f(α)nO(1) and
outputs a PM with k red edges.

It is easy to see that if all the above items hold, then the algorithm runs in time f(α)nO(1)

and always outputs a PM with k red edges if one exists. Note that (a) and (c) follow directly
from Lemma 12 and Proposition 4 respectively.

To prove (b) first observe that as long as r(M) ̸= k and r(M ′) ̸= k, all steps in phase
2 maintain the following invariants: r(M) ≤ k ≤ r(M ′) and r(M) ≡2 r(M ′) ≡2 k. To see
this, note that r(M) and r(M ′) can only change by 2 every step and they start with the
same parity as k. So in order for r(M) to go above k or r(M ′) to go below k they would
need to pass by k, at which point the algorithm terminates. Also observe that if any of
the steps does not fail, then either r(M ′)− r(M) decreases or |E(M∆M ′)| decreases while
r(M ′)− r(M) remains unchanged. So if we consider as a measure of progress r(M ′)− r(M)
and |E(M∆M ′)| ordered lexicographically (where progress is towards smaller values of the
measure), then we always make progress (i.e. the measure strictly decreases). Note that
r(M ′) − r(M) ≤ n and is always non-negative and the same holds for |E(M∆M ′)|. So
the algorithm can perform at most n2 iterations in phase 2. Since every iteration runs in
polynomial time (this is true for steps (i) and (ii) by Proposition 3 and for step (iii) by
Lemma 9, Lemma 10 and Lemma 11), we get that phase 2 runs in polynomial time. Now
observe that the algorithm only terminates in phase 2 if either M or M ′ is a solution (i.e.
it has k red edges). So it remains to show that if the algorithm does not terminate in this
phase then there exists a PM M∗ with r(M∗) = k and |E(M∆M∗)| ≤ 2αO(1) . Observe that
in case of non-termination, all the conditions of Lemma 15 are met:
(a) r(M) < k − 1, r(M ′) > k: follows from the invariants and M , M ′ not being solutions.
(b) |wM (M∆M ′)| ≤ 256 · 42α: follows from r(M ′)− r(M) ≤ 16 · 4α.
(c) There is no PM M1 such that r(M1) = r(M) + 2 and |R(M∆M1)| = 2: follows from the

failure of (i).
(d) There is no PM M ′

1 such that r(M ′
1) = r(M ′)− 2 and |B(M ′∆M ′

1)| = 2: follows from
the failure of (ii).

(e) M∆M ′ does not contain any 0-skip: follows from the failure of (iii).
(f) The algorithms of Lemma 9, Lemma 10 and Lemma 11 all fail to find a 0-skip-cycle set

in M∆M ′: follows from the failure of (iii).
So by Lemma 15 we get the desired result. ◀

ISAAC 2023



28:14 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

3.5 Main theorem for bipartite graphs
In order to prove the main theorem for the bipartite case (Theorem 2), we start by proving
a similar result to the main theorem on general graph that is adapted to bipartite graphs,
i.e., we use the bipartite independence number of the graph (the proof can be found in the
extended version [10]).

▶ Lemma 16. (⋆) EM on bipartite graphs can be reduced to BCPM on bipartite graphs in
FPT time parameterized by the bipartite independence number of the graph.

It remains to show that there is a deterministic polynomial time algorithm for BCPM on
bipartite graphs. This result can be derived from the more general result of [1] on network
matrices, as noted in [20], even for the more general weighted version of the problem. To
make it more accessible, we reprove it using a standard dynamic programming techniques.
The high level approach, as briefly described in [20], is the following: start by computing a
minimum weight perfect matching, in our case a perfect matching with minimum number of
red edges, and if the number of red edges is even then find a minimum odd weight alternating
cycle and output the symmetric difference. We could not find formal proof of correctness and
running time for this algorithm in the literature, therefore we provide one in the extended
version of this paper [10].

▶ Theorem 17. (⋆) There is a deterministic polynomial time algorithm for BCPM on
bipartite graphs.

3.6 Main theorem without oracle access
Although an FPT algorithm parameterized by the independence number for general graphs
still requires an algorithm for BCPM, the following theorem shows that without relying on
BCPM the algorithm developed in this section can still output a PM that is very close to
optimal, i.e. it contains either k or k− 1 red edges (the proof is similar to that of Theorem 1
and left for the extended version [10]).

▶ Theorem 18. (⋆) There exists an algorithm such that given a “Yes” instance of EM, it
outputs a perfect matching with either k − 1 or k red edges in time f(α)nO(1).

This strengthens the results of [8] by reducing the constraint violation to at most one red
edge at the expense of an FPT (parameterized by the independence number) instead of a
polynomial running time.

4 Correct Parity Matching for General Graphs

While solving BCPM for general graphs remains an open problem, in this section we present
a solution to the easier problem of CPM which is only concerned with the parity of the
number of red edges.

▶ Theorem 19. (⋆) There is a deterministic polynomial time algorithm for CPM.

We will establish Theorem 19 as a consequence of a deep result by Lovász [23] on the
linear hull of perfect matchings of a graph. We first need to introduce some notation which
we adopt from [23]. Let a (not necessarily bipartite) graph G = (V, E) and a field F be given,
and let us denote by M the set of perfect matchings of G. Then the linear hull of perfect
matchings linF(M) is the linear subspace of FE , generated by the characteristic vectors of
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perfect matchings in G. Concretely, linF(M) is the linear span of {1M |M ∈M}, where for
every perfect matching M the vector 1M ∈ FE is defined by 1M (e) = 1 for every e ∈M and
1M (e) = 0 for every e ∈ E \M .

We will make use of the following result of Lovász [23].

▶ Theorem 20 ( [23]). For every finite field F there is a deterministic polynomial-time
algorithm that, given as input a graph G, returns a linear basis of linF(M).

The importance of this result by Lovász for solving the CPM is explained through the
following lemma. As usual, for two vectors x, y ∈ FE we denote by ⟨x, y⟩ :=

∑
e∈E xeye ∈ F

their scalar product.

▶ Lemma 21. Let G = (V, E) be a graph equipped with a coloring of its edges with colors
red and blue. Let F2 denote the 2-element field and let {x1, . . . , xd} ⊂ FE

2 be a linear basis of
linF2(M). Let r ∈ FE

2 be defined by re := 1 for all red edges e ∈ E and re = 0 for all blue
edges e ∈ E. Then the following two statements are equivalent:
1. There exists a perfect matching M in G containing an odd number of red edges.
2. There exists i ∈ {1, . . . , d} such that ⟨xi, r⟩ = 1.

Proof. Suppose first that there exists a perfect matching M in G containing an odd number
of red edges. Then the incidence vector 1M ∈ linF2(M) can be represented as a linear
combination of the basis elements x1, . . . , xd, in other words, there exists I ⊆ {1, . . . , d} such
that

1M =
∑
i∈I

xi.

Taking scalar products with r we get

⟨1M , r⟩ =
∑
i∈I

⟨xi, r⟩.

Note that the scalar product on the left hand side equals the number of red edges in M

taken modulo 2, and hence it equals 1. But then at least one of the scalar products on the
right hand side must also be non-zero, i.e., there exists i ∈ I with ⟨xi, r⟩ = 1, as desired.

Conversely, suppose there exists i ∈ {1, . . . , d} such that ⟨xi, r⟩ = 1. Then by virtue
of linF2(M) being spanned by the characteristic vectors of perfect matchings in M , there
exists a list of perfect matchings M1, . . . , Mt in G such that xi =

∑t
j=1 1Mj

. Using the same
argument as above, i.e., by taking scalar products with r and using that ⟨xi, r⟩ = 1, we find
that there must exist j ∈ {1, . . . , t} with ⟨1Mj

, r⟩ = 1, which means that Mj is a perfect
matching of G with an odd number of red edges. This concludes the proof. ◀

We may now deduce the following.

▶ Corollary 22. There exists a deterministic polynomial-time algorithm, that, given as input
a red-blue edge-colored graph G = (V, E) and a number k ∈ Z, decides whether or not G

contains a perfect matching M with r(M) ≡2 k.

Proof. Suppose first that k is odd. We use Theorem 20 to compute in deterministic
polynomial time a linear basis x1, . . . , xd of linF2(M). Note that since linF2(M) is a subspace
of FE

2 , its dimension satisfies d ≤ |E|. Next we generate the incidence vector r of red edges as
in the previous lemma, and compute the scalar products ⟨xi, r⟩ for i = 1, . . . , d in polynomial
time. If at least one of these products equals 1, we return that a perfect matching M

with r(M) ≡2 k exists, and otherwise we return that such a matching does not exist. The
correctness of this output follows by Lemma 21.
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Next suppose k is even. Let G′ be the red, blue-edge colored graph which is obtained as
the disjoint union of G with its given edge-coloring and a disjoint new edge of color red. The
perfect matchings of G′ are exactly the perfect matchings of G together with the additional
new red edge, and hence G contains a perfect matching M with r(M) ≡2 k if and only if G′

contains a perfect matching with and odd number of red edges. Thus we can decide whether
such a matching exists by invoking the algorithm from the case k = 1 described above with
G′ as the input. ◀

It is now easy to use the above decision-version of the CPM to solve the CPM itself by a
standard edge-deletion procedure.

Proof of Theorem 19. Let G = (V, E) be the input graph with a given red, blue-edge
coloring, and let further k ∈ Z be given. We use Corollary 22 to decide if G contains a perfect
matching M with r(M) ≡2 k. If it does not, then the algorithm stops with this conclusion.
Otherwise, we search through the edges e ∈ E one by one, and for each such edge test (again
using Corollary 22) whether G− e contains a perfect matching M with r(M) ≡2 k.

Suppose first we find an edge e ∈ E such that G− e contains a perfect matching M with
r(M) ≡2 k. In this case we make a recursive call of the algorithm to G− e, which will return
a perfect matching with the correct parity in G− e. We can then return this matching, as it
is also a perfect matching in G with the correct parity of red edges.

Otherwise, we find that there exists no e ∈ E such that G− e contains a perfect matching
M with r(M) ≡2 k. But as we know that G does contain a perfect matching M with
r(M) ≡2 k, this means that all edges of G are contained in M , and hence we may return the
set of edges of G and thereby find a solution to the CPM. ◀

5 Conclusion and Open Problems

So far, EM has only been solved for very sparse graphs (i.e. bounded tree-width and bounded
genus graphs) and very dense graphs (i.e. bounded independence number graphs). The
techniques used are quite different between these two cases. Especially in the case of dense
graphs, many previous works considered only complete (bipartite) graphs without much
progress. Only recently, the results were extended to the case of bounded independence
number, leading to XP algorithms parameterized by α or β. Looking for FPT algorithms
was the natural next step. In this paper, we could resolve the bipartite case fully, while the
non-bipartite case could only be resolved partially. However, our results in the non-bipartite
case still yield the following two non-trivial, independent insights: (i) To obtain an FPT
algorithm parameterized by α it suffices to solve BCPM (Theorem 1) and the easier problem
CPM can always be solved (Theorem 19). (ii) An FPT algorithm parameterized by α can
w.l.o.g. assume to start with a PM with k − 1 red edges (Theorem 18).

We hope that these insights can be the starting point for future work to obtain an
FPT algorithm parameterized by α, or, even better, an FPT algorithm parameterized by
k. The latter would be considered quite a breakthrough as it is likely to require a lot of
deep understanding of the structure and patterns behind EM, given the difficulty of making
progress towards it.
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