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Abstract
The free space diagram is a popular tool to compute the well-known Fréchet distance. As the Fréchet
distance is used in many different fields, many variants have been established to cover the specific
needs of these applications. Often the question arises whether a certain pattern in the free space
diagram is realizable, i.e., whether there exists a pair of polygonal chains whose free space diagram
corresponds to it. The answer to this question may help in deciding the computational complexity
of these distance measures, as well as allowing to design more efficient algorithms for restricted
input classes that avoid certain free space patterns. Therefore we study the inverse problem: Given
a potential free space diagram, do there exist curves that generate this diagram?

Our problem of interest is closely tied to the classic Distance Geometry problem. We settle
the complexity of Distance Geometry in R>2, showing ∃R-hardness. We use this to show that
for curves in R≥2 the realizability problem is ∃R-complete, both for continuous and for discrete
Fréchet distance. We prove that the continuous case in R1 is only weakly NP-hard, and we provide
a pseudo-polynomial time algorithm and show that it is fixed-parameter tractable. Interestingly, for
the discrete case in R1 we show that the problem becomes solvable in polynomial time.
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1 Introduction

The Fréchet distance is arguably the most popular distance measure for curves in computa-
tional geometry and has been studied extensively in the last years. It has application in various
fields, including geographic data analysis and the comparison of protein chains [25, 26, 35, 28].
For the latter application, typically the well-established variant, the discrete Fréchet distance,
is used. The standard tool for computing the Fréchet distance of two curves is the free space
diagram, which is the cross-product of the parameter spaces of the curves partitioned into
free space and its complement, where free space is the sublevel set of the distance function
for a given ε > 0. For two piecewise linear curves of m and n line segments parameterized
by their natural arc-length parametrization, it is well-known that the free space diagram
consists of mn cells, and the free space in each cell has the shape of a cropped ellipse [5]. The
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3:2 Realizability of Free Spaces of Curves

Fréchet distance is at most ε if and only if there exists a monotone path in the free space
diagram that covers the parameter spaces of both curves. Hence, to compute the Fréchet
distance one searches for such a path in the free space diagram.

For different applications, many variants of the Fréchet distance have been developed,
which are typically also computed using the free space diagram. The discrete Fréchet distance
relies on (a discretization of the free space diagram) the free space matrix: For two discretized
curves given by n and m points, respectively, the n × m free space matrix with entries
ai,j ∈ {0, 1} captures whether two points i, j of different curves lie within ε > 0 distance of
one another, or not. The discrete Fréchet distance of two curves is at most ε iff there exists
a monotone “path” of 1 entries connecting opposing corners in the free space matrix.

Runtimes of the resulting algorithms usually depend on the complexity of the free space
diagram or free space matrix [23, 8, 10]. It is known that neither Fréchet distance nor discrete
Fréchet distance can be computed in subquadratic time unless SETH fails [12, 16, 13].
However, there are several faster algorithms for special curve classes such as [6, 24], which
exploit a special structure of the free space diagram. These complexity bounds always consider
the worst-case complexity of the free space diagram, but not every free space diagram can
be realized by a pair of curves. Also, some variants of the Fréchet distance have proven to be
NP-hard to decide [4, 17], some of which build certain free space diagrams for the reduction.

Here we therefore study the inverse problem: Given a (potential) free space diagram
(free space matrix), do there exist curves (ordered point sets) that generate this free space
diagram or matrix? To our knowledge this free space realizability problem has so far only
been studied for special cases [32, 18, 3]. Understanding it will give structural insights into
free spaces and the computation of the Fréchet distance, in particular for special curve
classes. Note that although we gained a good understanding of the realizability problem
in the settings described below, other settings remain to be investigated further. We are
particularly interested in studying settings where less information is given in the free space
diagram or matrix, e.g. only some cells or only cell boundaries are provided with the input.

Overview. We give results (see Table 1) for both the continuous and the discrete variant
of the problem, with free space diagram and free space matrix inputs, and curves may be
realized in Rd, with d = 1 or d ≥ 2. We show that for curves in R≥2 the realizability problem
is ∃R-complete both for the continuous case (Section 3) and for the discrete case (Section 5).
For the continuous case in R2, algorithms are known only for special cases [32, 18]. For curves
in R1, the problem in the discrete case interestingly becomes solvable in polynomial time
(Section 6), while in the continuous case, it is weakly NP-hard (Section 4) and fixed-parameter
tractable, and we also provide a pseudo-polynomial time algorithm (Section 4).

Table 1 Overview of our and known results.

Input Rd Results

Free Space Diagram

d ≥ 2 ∃R-complete (Theorem 4) Section 3
Algorithms for special cases ([32, 18])
weakly NP-hard (Theorem 7) Section 4

d = 1 FPT O(mn2k) (Theorem 8) Section 4
Pseudo-poly time (Theorem 13) Section 4

Free Space Matrix d ≥ 2 ∃R-complete (Theorem 14) Section 5
d = 1 O(nm2) (Theorem 16) Section 6
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Related problems. The exploration of inverse problems is a recurrent subject in computa-
tional geometry, often applied to recognition and reconstruction problems. Notable examples
are the inverse Voronoi Diagram problem [9] and the visibility graph recognition problem [11].
Our problem of interest can be viewed as a curve embeddability problem given certain
proximity criteria on edge lengths and point-to-point distances between two curves in their
free space diagram. Our results have a significant impact on problems involving distance
constraints on geometric graphs, such as Distance Geometry and Disk Intersection Graphs.

Distance Geometry. Our results closely relate to problems involving distance constraints
on geometric graphs, such as the Distance Geometry problem, which is a classic inverse
problem in computational geometry. It involves embedding an abstract weighted graph in Rd

Euclidean space such that the Euclidean length of each edge corresponds to its weight [33].
This problem is equivalent to Linkage Realizability, where the edges correspond to rigid bars
in a mechanical linkage [33]. While distance geometry was shown to be NP-hard in the 70s,
its membership in NP remained open until Schaefer showed ∃R-completeness in 2012 [34]
for R2. Whether the problem remains ∃R-hard in higher dimensions was posed as an open
problem by Schaefer. To show that the continuous version of the free space realizability
problem in R≥2 is ∃R-hard we reduce from distance geometry, using a gadget from [33].

Unit Sphere Graphs. The sphericity of a graph is the minimum dimension for which
the graph has a unit sphere representation. Unit sphere graph realizability is known to
be ∃R-hard. Havel first introduced the study of sphericity in the context of molecular
conformation [27]. A unit sphere graph is an intersection graph of unit spheres and can be
seen as a complete graph where each edge is marked with a distance constraint ≤ 1 or > 1.
The problem of realizing a free space matrix corresponds to realizing a complete bipartite
graph where each edge is marked with a distance constraint ≤ 1 or > 1 (Section 5). This
defines a class of graphs, as do unit disk graphs. In contrast to a unit disk graph, there are
pairs of vertices (the ones in the same partite set) whose distances are dispensable. A similar
class are visibility graphs, the recognition of which is also known to be ∃R-complete [19].

Bipartite Distance-Constrained Graphs. Modeling distance constraints in general (non-
complete) graphs is useful when data is unavailable between every pair of nodes or due to the
topology of the underlying network. E.g., heteronuclear NMR is used to obtain less cluttered
and less noisy data [30]. This allows the inference of distances between two different types of
atoms, and thus, the distances constraints form a bipartite graph.

2 Preliminaries

Continuous case. Let P = (p0, . . . , pn) and Q = (q0, . . . , qm) be polygonal curves in Rd of
lengths ℓP and ℓQ, continuously parameterized by arc-length, i.e. pi = P (i) and qj = Q(j)
for i ∈ [n], j ∈ [m], where [n] = {1, · · · , n}. Given ε > 0, their free space is defined as
Fε(P, Q) = {(r, t) | ∥P (r)−Q(t)∥ ≤ ε}. The free space diagram puts this information in an
m× n grid: We define Dε(P, Q) as the colored rectangle R = [0, ℓP ]× [0, ℓQ] ⊆ R2, where
a point (p, q) ∈ R is colored white iff (p, q) ∈ Fε(P, Q). The grid X, which is the set of
segments {pi × [0, ℓQ] | i ∈ {0, . . . , n}} ∪ {[0, ℓP ] × qj | j ∈ {0, . . . , m}}, subdivides R into
n×m cells Ci,j . We call a single cell Ci,j empty if Ci,j ∩ Fε = ∅ and full if Ci,j ∩ Fε = Ci,j .
If ∅ ̸= Ci,j ∩ Fε ̸= Ci,j , the cell Ci,j is called partially full. A diagram Dε is called realizable
if there exist curves P, Q such that Dε(P, Q) = Dε. We assume that the exact lengths of

ISAAC 2023



3:4 Realizability of Free Spaces of Curves

all cell boundaries and the equation of each component’s boundary curve are part of the
input. We consider the real RAM computation model throughout the paper. In Figure 1, the
leftmost diagram is not realizable: Upon fixing the placement of segments corresponding to
cell C1,1, we have two options to place the remaining segments such that cell C2,2 is realized.
This either induces components in none of the remaining cells, or in both.

Dε

Q
Q′

P

P ′ε

Dε(P,Q) Dε(P
′, Q′)

Figure 1 Given diagram Dε, there are two ways to place curves P, Q in R2. Neither realizes Dε.

In the following, we denote the ball of radius r centered at a point x ∈ Rd as Br(x) :=
{p ∈ Rd | ∥x − p∥ ≤ r}. The ε-neighborhood of an object X is given by

⋃
x∈X Bε(x). We

denote by sP
i = pi−1pi, i ∈ [n], the line segment connecting consecutive vertices of P , and

define sQ
i analogously. In R1, if two consecutive segments sP

i , sP
i+1 have different orientations

(segments are placed on top of each other), we say the curve folds at the common folding
vertex pi. Else, we say that the curve is straight at pi. It is known that the free space of two
lines has the shape of a cropped ellipse with axis at ±45◦ [5, 31]. For curves in R1, the lines
are necessarily parallel, hence the ellipse degenerates to a slab bounded by lines at ±45◦ [14].

Partially full cells. We now establish a necessary condition for curves P, Q to realize Dε that
is used in Sections 3–4. Partially full cells give us information about the relative placement
of the segments. We use the term relative placement of two segments to mean that we know
the distances between the intersection point of the lines containing the segments and the
segment endpoints. Note that after fixing the position of one segment, this still allows for
two symmetric placements of the second segment.

▶ Lemma 1. Given a partially full free space cell, ε > 0, and four points on the boundary of
the ellipse in the cell, none of which are mirror images of another with respect to the ellipse’s
major and minor axes, we can compute the corresponding segments’ relative placement.

The proof (see Lemma 5.5 in [32]) relies on knowing that a cell is an ellipse at 45◦. Note
that we obtain much less information from full or empty cells, namely only that the segments
do or do not lie within or not within distance ε from each other.

Definitions: Discrete case. For discrete polygonal curves (i.e., point sequences) P, Q with n

and m points, resp., the free space is defined as Fε(P, Q) = {(i, j) ∈ [n]× [m] | ∥pi− qj∥ ≤ ε}.
We define the free space matrix Mε(P, Q) as the n×m matrix featuring entries ai,j ∈ {0, 1},
i ∈ [n], j ∈ [m] where ai,j = 1 if and only if (i, j) ∈ Fε(P, Q). For a given matrix Mε we ask
whether there exist curves P, Q such that Mε = Mε(P, Q).
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3 ∃R-Completeness for Continuous Curves

We first show that given a diagram Dε, the problem of finding two curves in R2 that realize
Dε is ∃R-complete. We then generalize to higher dimensions in Section 3.1. Containment in
∃R is shown by expressing the problem using real inequalities, see Lemma 17, Appendix A.

We reduce from the problem of deciding whether a linkage has a planar realization which
was shown ∃R-hard by Abel et al. [1, 2]. A mechanical linkage is a mechanism made of rigid
bars connected at hinges. The input is a weighted graph G = (V (G), E(G), ℓG), where ℓG is
the weight function, and a function Π: W → R2, where W ⊆ V (G), that represents vertices
whose positions are pinned. A configuration C of a linkage L = (G, Π) is a straight-line
drawing of G where the length of each edge e ∈ E(G) is ℓG(e) and the position of each vertex
w ∈ W is Π(w). The linkage realization problem asks whether a given linkage admits a
configuration. A configuration C is noncrossing if C is a plane drawing. Abel et al. [1, 2]
showed that the linkage realization problem remains hard for a series of restrictions on
the input linkage L. We restate a direct consequence of Theorems 2.2.13 and 2.4.6 in [2].
Although not all conditions in the theorem below are explicitly stated in [2, Theorem 2.2.13],
they can be directly inferred by their construction in [2, Section 2.7].

▶ Theorem 2 (Simplified from [2], Theorems 2.2.13 and 2.4.6). Given a linkage L = (G, Π)
and a combinatorial embedding (clockwise circular order of edges around each vertex) σ of
G, deciding whether there exists a planar realization of L is ∃R-hard even if the following
constraints are enforced:
1. G is connected, and the length of every edge is an integer.
2. A set of edge disjoint subgraphs H of G can be assigned rigid, i.e., each angle between

consecutive incident edges in H is prescribed from {90◦, 180◦, 270◦, 360◦}. Each subgraph
H is a tree, and an edge in E(G) \ E(H) incident to H must be incident to a leaf of H.

3. Only three vertices are pinned (|Π| = 3), all three belong to the same rigid subgraph H

(described in constraint (2)), and they are not collinear.
4. For every noncrossing configuration C of L that satisfies constraints (1–3), holds:

a. C agrees with σ.
b. Angles that are not prescribed by constraint (2) lie strictly between 60◦ and 240◦.
c. The minimum distance of a vertex and a nonincident edge is at least a constant ϕ.

We call a vertex rigid if it is incident to at least two edges of the same rigid subgraph H,
and nonrigid otherwise. By (2), every angle incident to a rigid vertex is prescribed while
no angle in a nonrigid vertex is prescribed (which by (4b) can only vary in the interval
(60◦, 240◦)). Note that distance geometry is equivalent to linkage realization with Π = ∅.
Since (3) makes Π irrelevant, Theorem 2 also implies hardness for distance geometry.

Reduction description. Given L and σ satisfying the constraints in Theorem 2, we construct
an instance Dε as follows. A full example can be seen in Figure 2. The idea is to build a
free space such that realizing curves trace out the linkage, following the given combinatorial
embedding. For this, we first transform G into a tree. The angle constraints in the linkage
can also be enforced in the free space using a specific gadget.

While there is a cycle in G, split one edge in a cycle by placing a new vertex in its
midpoint and performing a vertex split, creating two copies of the new vertex, each attached
to half of the original edge. We end up with a tree T . Let T ′ be the multigraph obtained
by doubling each edge of T . Intuitively, Dε forces the curves P and Q to roughly trace a
planar Eulerian circuit of T ′ using the combinatorial embedding σ. (Up to a reflection and
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3:6 Realizability of Free Spaces of Curves

v v'
v''

(a) (b) (c)

(d)

Figure 2 Example of our reduction from linkage realizability to free space diagram realizability.
(a) An input linkage L = (G, Π) and a subdivision vertex v in a cycle of G. Rigid vertices are
marked with gray angles. (b) Splitting v transforms G into a tree T . (c) The curves P and Q in R2

obtained from T . (d) The obtained free space diagram.

translation since Dε can only specify the relative placement of P and Q.) Q is exactly a
planar Eulerian circuit of T ′ while P traces the same circuit but avoids an ε-neighborhood
of each nonrigid vertex using our angle gadget (described later), which allows these angles
to lie freely between 60◦ and 240◦. Both P and Q trace the “outline” σ counterclockwise.
W.l.o.g. assume ϕ ≥ 6, scaling the linkage by a constant factor if necessary. We chose ε = 1
so that edges of P and Q that correspond to an edge e of G are close to each other and
far from other edges. Since every partially full cell determines the relative position of the
corresponding pair of edges, the four edges (two from P and two from Q) that correspond to
the traversal of e are fixed relative to one another and lie on top of each other. They then
simulate edge e. The angle gadget guarantees flexibility so that the angle between incident
edges can vary accordingly. We add free space components to make the newly introduced
subdivision vertices rigid: Their relative position is locked by Lemma 1 forming a 180◦ angle,
see the four small components on the sides of the free space diagram in Figure 2d.

The angle gadget, see Figure 3, is represented by the 12 free space cells shown in Figure 3(b).
It is located at a small neighborhood of a vertex v of Q; the figure only shows the portion of
the free space relative to this neighborhood. Note that v is a degree-2 copy of a vertex v∗ of
G. For clarity, we refer to all the copies of v∗ in Q with different labels (by construction,
there are deg(v∗) copies of each v∗ ∈ V (G), except for the starting vertex of the Eulerian
circuit, which has an extra copy). Let −→e1 and −→e2 be the two edges of Q incident to v, and
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Q

Q

P

P(a) (b) (c) (d)

ve1
→

e1′→ e1,a
→

e1,b
→

e1,c
→

e1,d
→

e2′→

e2
→

Figure 3 The angle gadget. (a) The 90◦ configuration and (b) its free space diagram. (c) and (d)
show the extremal configurations of the gadget with angles 2 · tan−1(1/2) ≈ 53.13◦ and 270◦, resp.

let ←−e1 and ←−e2 be the corresponding copies going in the opposite direction in Q, respectively.
Locally, P has two edges −→e1

′ and −→e2
′ that overlap with −→e1 and −→e2 , respectively. We enforce

the overlap by making all free space cells relative to −→e1
′ (resp., −→e2

′) empty except for the ones
relative to −→e1 and ←−e1 (resp., −→e2 and ←−e2) which are partially full, containing an upward and
downward 45◦ full strip. The distance between v and the endpoints of −→e1

′ and −→e2
′ closest to

v is 2 by Lemma 1. We place four edges (−−→e1,a,−→e1,b,−→e1,c,−−→e1,d) between −→e1
′ and −→e2

′ of lengths
1, 3, 3, and 1 in this order. Only edges of length 1 have corresponding partially full cells:
C−−→e1,a,−→e1 and C−−→e1,a,←−e1 contain half of a disk of radius 1.

▶ Lemma 3. Given a realization of P and Q, assume that (−−→e1,a,−→e1,b,−→e1,c,−−→e1,d) lie to the
right of (−→e1 ,−→e2). Then, −→e1 and ←−e1 (resp., −→e2 and ←−e2) lie exactly on top of each other, and the
angle to the right of (−→e1 ,−→e2) is strictly between 2 · tan−1(1/2) ≈ 53.13◦ and 270◦.

Proof. The fact that −→e1 and ←−e1 lie exactly on top of each other is a consequence of applying
Lemma 1 to −→e1 and −→e1

′, and to −→e1
′ and ←−e1 . We now focus on the angle constraint. Note

that by Lemma 1, the relative positions of −→e1 and −−→e1,a (resp., −→e2 and −−→e1,d) is fixed. If we fix
the positions of −−→e1,a and −−→e1,d, then the positions of −→e1,b and −→e1,c are completely determined:
There are two points whose distance is 3 from the endpoints of −−→e1,a and −−→e1,d; one of them
causes −→e1,b and −→e1,c to intersect with Q which cannot happen since their free space cells
are empty. If the angle is 2 · tan−1(1/2) or smaller, the common endpoint of −→e1,c and −−→e1,d

would lie in the closed ε-neighborhood of −→e1 and C−→e1,−−→e1,c
would not be empty (Figure 3(c)),

a contradiction. If the angle is 270◦ or greater, a portion of −→e1,b would lie in the closed
ε-neighborhood of −→e1 and C−→e1,−−→e1,b

would not be empty (Figure 3(d)), a contradiction. For all
values in between there is a placement for −→e1,b and −→e1,c away from −→e1 and −→e2 , making the
section of the free space diagram exactly as required. ◀

Using Lemma 3 we can simulate a linkage L subject to the constraints in Theorem 2
using curves given by Dε, obtaining the following theorem.

▶ Lemma 4. It is ∃R-complete to decide if a given free space diagram is realizable in R2.

Proof. The described reduction produces a free space diagram Dε with of size O(|E(G)|2):
Q has length 2|E(G)| and each edge in |E(G)| generates up to 10 segments in P , depending
on whether the endpoints are rigid or not. The runtime is linear in the size of Dε: each row
corresponding to an edge of P has precisely two partially full cells. All other cells are empty.

Given a positive instance of linkage realization, Theorem 2(4) and Lemma 3 guarantee
that we can find a placement of P and Q realizing Dε as described in the reduction. The
other direction is a little more subtle. Dε forces Q to trace σ exactly: using Lemma 1 with
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3:8 Realizability of Free Spaces of Curves

u1

u2

v1

v2

ℓ(uv)

ℓ(uv)+1

1

√

(a) (b)

(c) (d)
P

Q
P

Q

Figure 4 (a) The dimension gadget corresponding to an edge uv with length ℓ(uv). (b) Three
gadgets in R3 corresponding to a degree-3 vertex. The gadget forces all vertices to be in one of two
planes. (c) The realization of an angle gadget after applying the dimension gadget. (d) The free
space and its realization (perturbed for clarity).

transitivity constraints the two edges of Q corresponding to an edge in E(G) to lie exactly
on top of each other, while the angle gadgets force the circular order around each vertex.
By Lemmas 3 and 18, Q traces a noncrossing configuration of L exactly. If there is a valid
placement of P and Q one can find a noncrossing configuration of L obtained by the image of
Q. If such a configuration does not satisfy Theorem 2(4), that would contradict Theorem 2.
Thus the promise in Theorem 2(4) must also be fulfilled by the Fréchet realization instance
and the angles in each angle gadget would indeed be between 60◦ and 240◦. ◀

3.1 Higher Dimensions
In order to show that free space realization is ∃R-hard in higher dimensions, we show that
the realizability of linkages and, thus, distance geometry are also ∃R-hard. Here, the linkage
realization is not required to be injective since we are in R>2, but the reduction will force
crossings to only happen between predictable pairs of edges. This will be important in our
reduction to free space realization since crossings between the curves appear in the free space
diagram. We remark that, although all the ingredients of this proof were already known, the
claim does not appear in the literature to the best of the authors’ knowledge.

▶ Theorem 5. Linkage Realization and Distance Geometry are ∃R-hard in R≥2.

Proof. Recall that linkage realization with no pinned vertices is equivalent to distance
geometry. The main ingredient of this proof is the dimension gadget shown in Figure 4 that
appears in [33]. The gadget is isomorphic to K4 which is globally rigid in R2 [20], meaning
that there is a unique embedding of the gadget in R2, and every realization of the gadget in
R>2 is congruent with the planar realization. Given a linkage L satisfying the constraints
of Theorem 2, replace every edge of G by a copy of the dimension gadget. Note that every
vertex v is now represented by two vertices v1 and v2. We call the resulting linkage L′.
The gadgets force all vertices v1 for all v ∈ V (G) to be in the same (k − 1)-hyperplane,
perpendicular to the edges v1v2. Thus, L′ is realizable in Rd iff L is realizable in R(d−1). ◀

▶ Theorem 6. It is ∃R-complete to decide if a given free space diagram is realizable in R≥2.

Proof. We adapt the dimension gadget to the free space diagram realizability problem. We
first argue for R3. Figure 4(d) shows the adapted gadget and its free space. We use the same
reduction as in Lemma 4, but replacing the edges of Q and the edges of P that overlap edges
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of Q with the modified dimension gadget as follows. Each edge of Q is replaced by a path of
length 7, and each edge of P that lies in the interior of an edge of Q is replaced by a path of
length 10. The free space diagram between the two paths force the path of Q to be embedded
as the dimension gadget. Two-dimension gadgets are neighbors if their corresponding edges
share an endpoint. The cells between these paths and other non-neighbor dimension gadgets
are empty. The two length-ε edges of P in the angle gadget (−−→e1,a and −−→e1,d) induce partially
full cells in the free space of dimension gadget (first and last collumns in the free space
diagram of Figure 4(d)), forcing these edges to be perpendicular to the plane of the dimension
gadget. (See Figure 4(c)) The cells of the two length-3ε edges of P in the angle gadget (−→e1,b

and −→e1,c) remain empty and thus they must be realized far from the dimension gadget. Note
that the ε-neighborhood of v1 and v2 does not intersect P , and that the ε-neighborhood
of the edges of P in the angle gadget still does not intersect Q leaving the dihedral angle
between the planes of the neighbor dimension gadgets to vary as in Lemma 3. Thus the
embedding of P and Q corresponds to a realization of L′.

For dimension d > 3, we recursively apply the dimension gadget construction in the
following way. Note that in the d− 1-dimensional construction each edge of Q overlaps with
at least one edge of P (possibly degenerate to a vertex). We recursively replace each edge of
Q with the dimension gadget construction as normal. We split one edge of P that overlaps
with the edge of Q at its midpoint and insert the length-8 path forming a cross that contains
the midpoints of the edges in the dimension gadget of Q as in Figure 4(d). ◀

4 NP-Hardness and Algorithmic Results for Continuous Curves in R1

We briefly consider the realizability problem for curves in R1. In this case, the curves have
less space to be placed in and hence the free space diagram has limited “configurations”.
Cells are still empty, full or partially full cells, but now free space ellipses degenerate to slabs,
and the white space is bounded by parallel line segments oriented at + or −45◦, see [15, 31].
Here, we present only sketches. For details, we refer to [3]. We note that for curves in 1D
the problem is weakly NP-hard by a reduction from the Partition problem. The reduction
is similar to the hardness of ruler-folding.

▶ Theorem 7. Realizability of continuous curves in R1 is weakly NP-complete.

Next, we sketch an FPT-algorithm for continuous curves in R1. Inspired by computational
origami [22], we observe that a given diagram Dε is realizable iff it can be folded at the
grid lines so that the white space is aligned (overlapping only with other white space) into
a single convex component. In [3], we developed an algorithm to enumerate and check the
different foldings, inspired by the algorithm for simple-foldability in R1 [7]. Our algorithm
runs in exponential time O(mn2k), where k is the total number of (vertical and horizontal)
grid lines of Dε that do not intersect the white space (completely gray or completely white).

▶ Theorem 8. Given an m× n diagram Dε, in O(mn2k) time one can find curves P and Q

in R1, if they exist, such that Dε = Dε(P, Q).

We now describe an algorithm whose input is a diagram Dε where the dimensions of each
cell are integers upper-bounded by W , and that outputs a pair of curves P, Q in R1 such
that Dε = Dε(P, Q) if they exist. Otherwise, it returns false. We use the limited placement
options of curves in R1; the main technical ingredient is the use of dynamic programming to
decide the placement of the portions of P and Q for which we have no explicit information.
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(a) (b)

(c) (d)

ε

ε
ε

Figure 5 Regions defined by curves P (orange) and Q (blue). Certainty regions are green or
pink, subdivision vertices are gray, and uncertainty regions are white (middle) or gray (left/right).

We use the following placement graph1 G: The vertices V (G) are the set of segments in
the bipartite graph between segments of P and Q where an edge (vP

i , vQ
j ) encodes that the

cell Ci,j is partially full. G can be computed in O(mn) time. By Lemma 3.1 in [3], if G has
a single component, we can either compute P and Q, or report that no such curves exist in
R1 in O(mn) time. We now show a key property of G for curves in R1. We say that a curve
in R1 spans a distance w if its image in R1 is an interval of length w. A component of G is a
singleton component if its size is one (i.e., a single vertex).

▶ Lemma 9. If P and Q are two curves in R1, then the placement graph G computed from
Dε(P, Q) has at most two non-singleton components. If either P or Q spans more than 2ε,
then G has at most one non-singleton component.

Proof. Let pℓ and pr be the leftmost and rightmost points of P , respectively. We first prove
the claim when P , without loss of generality, spans more than 2ε. For contradiction assume
there are 2 non-singleton components in G. Every point of Q in [pℓ − ε, pr + ε] has exactly
distance ε to some point in P and thus defines the boundary of a free-space component and
can be assigned an edge of G. By continuity, every maximal subcurve of Q in [pℓ − ε, pr + ε]
corresponds to edges in the same component of G. By transitivity, any two overlapping
subcurves of Q in [pℓ−ε, pr +ε] are also represented in the same component of G as both have
at least one point at distance exactly ε from the same point in P . Thus the two components
in G correspond to nonoverlapping maximal subcurves of Q in [pℓ − ε, pr + ε] and there is no
third subcurve of Q that overlaps the first two. Then, Q is disconnected, a contradiction.

Now, consider the case that both P and Q span less than 2ε. The points in R1 that are
exactly at distance ε from some point in P form the intervals [pℓ−ε, pr−ε] and [pℓ +ε, pr +ε].
The same argument as above shows that the subcurves of Q in each of these intervals define
a single component in G. Thus, there are at most 2 non-singleton components. ◀

Algorithm description. First, we subdivide the two curves based on the orthogonal projec-
tions of the free space’s boundary (see Figure 5). We introduce subdivision vertices so that
each point in the interior of a segment is either:
1. farther than ε from any point in the other curve (an edge whose corresponding row or

column in Dε is completely empty);

1 This is a variation of the placement graph used for the same problem for continuous curves in R2 [32].
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2. within ε distance from every point in the other curve (an edge whose corresponding row
or column in Dε is completely full); or

3. at exactly ε distance from a point of the other curve (an edge covered by the orthogonal
projection of the boundary of the free space).

We partition the segments of both curves based on these three types. Singleton components
of G correspond to segments of types (1) and (2), and vertices of non-singleton components
correspond to segments of type (3). The first correspond to segments of one curve that are
farther than ε from every point in the other curve. The presence of type (2) segments implies
that one of the curves spans less than 2ε. Adding subdivision vertices does not asymptotically
increase the complexity of the problem as each segment is subdivided at most twice.

For each of the two curves, we partition R into up to 5 regions used to embed the segments
of each of the types based on containment in the ε-neighborhoods of the extreme points of
the other curve. Let pℓ and pr be the leftmost and rightmost points of P . We note that we
do not have previous knowledge of the points pℓ and pr but we later describe how to infer
information about these points from Dε. The regions serve as an abstraction that allows
us to divide the problem into subproblems. If the balls Bε(pℓ) and Bε(pr) intersect, we call
the interval [pr − ε, pℓ + ε] the middle uncertainty region (colored white in Figure 5(a) and
(c)). Segments of type (2) must be embedded in this region. The intervals of R1 contained
in a single disk are called left and right certainty regions, respectively [pℓ − ε, pr − ε] and
[pℓ + ε, pr + ε] (colored green or pink in Figure 5(a) and in the bottom curve in (c)). If Bε(pℓ)
and Bε(pr) do not intersect, then we call the interval [pℓ − ε, pr + ε] the middle certainty
region (colored green in the top curve of Figure 5(c)). The segments of type (3) must be
embedded in these regions. In both cases, we call the intervals (−∞, pℓ − ε] and [pr + ε,∞)
the left and right uncertainty regions (colored gray in Figure 5. Note that the figure only
shows a closeup view and the only visible portion of a right uncertainty region is shown for
the bottom curve in (c)). The segments of type (1) must be embedded in these regions.

▶ Lemma 10. Given Dε, in O(nm) time we can partition the segments of Q into the three
types and assign each segment to a region.

Proof. The orthogonal projection of the components can be computed by a traversal of
the free space’s boundary. Thus, we can compute the subdivision vertices in O(nm) time.
The types of all segments can be inferred from Dε in O(nm) time. We can compute G in
O(nm) time. If there are two non-singleton components, we arbitrarily fix the orientation of
one segment and use Lemma 3.1 in [3] to decide the relative placement for their respective
segments. Note that the type of the segments adjacent to a segment in a certainty region
determines which of the components is the left and which is the right certainty region: the
left certainty region is adjacent to segments of type (2) on its right boundary. ◀

We can use Lemma 3.1 in [3] to determine the relative embedding of P and Q in certainty
regions. It remains to determine whether the subcurves in uncertainty regions can be
embedded. We use a dynamic program (DP) to solve the problem in each uncertainty region
separately. We further divide the problem into two cases depending on whether we know
the relative position of the boundaries of the respective region. The input of each DP is a
maximal subcurve of P (resp., Q) in an uncertainty region. The DP computes the possible
placements of the subcurve for a set of boundary constraints. We later describe how to
combine the output of all the DPs into a single solution.

Fixed boundary subproblem. If one of the curves does not have edges of type (2), by
Lemma 3.1 in [3] we know the size of the uncertainty regions. We define DP problems for
each maximal subcurve in an uncertainty region whose value is true iff it is possible to
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realize the subcurve in the region. We define subproblems based on a suffix of the subcurve
and the coordinate of the first point of the suffix (details are left to a full version of this
paper). The recursive definition tries embedding the next edge oriented towards the right or
left, thus each subproblem depends on only two subproblems. The number of subproblems
depends on the number of segments in the subcurve and the size of the uncertainty region.

▶ Lemma 11. One can compute each fixed boundary subproblem defined by a subcurve Q′

with n′ segments, each with an integer length of at most W , and an integer interval [0, r], in
O(n′ ·min(r, n′W )) time.

Proof. Since k ∈ {1, . . . , n′} and s ∈ {0, . . . , r} there are at most O(n′r) subproblems. We
can also upper-bound s by n′W since this is the maximum length of the image of Q′ (which
is necessary in the case when r = ∞). Each subproblem can be computed in O(1) time.
Thus the total runtime is O(n′ ·min(r, n′W )). ◀

Variable boundary subproblem. When both curves have segments of type (2), the size of
the middle uncertainty region of one curve depends on the size of the middle uncertainty
region of the other. We similarly define a DP problem for each maximal subcurve in an
uncertainty region. However, each subproblem is also defined by a suffix of the subcurve, the
coordinate of the first point, and, additionally, the size of the uncertainty region. In this
case, the size of the uncertainty region is upper-bounded by 2ε.

▶ Lemma 12. For variable boundary subproblems, in O(max(n, m) · ε2) time, one can
compute all DP tables and, if there exist P and Q in R1 that realize Dε, find rP and rQ that
are compatible with a solution to all subproblems, where rP and rQ denote the sizes of the
middle uncertainty regions of P and Q respectively.

Proof. There are O(m + n) DP tables since this is the upper bound on the number of
maximal subcurves in the middle uncertainty regions. Each table has O(n′ · ε2) subproblems,
each can be computed in O(1) time, where n′ is the size of the maximal subcurve. Thus,
it takes O(max(n, m) · ε2) to compute all DP tables. For each table, we can keep track in
a separate data structure what values of α have an entry R(i, ., α) = true. Then, given
values for rP and rQ, we can check whether there exist a compatible solution in each table in
O(1) time per table. Thus, we can try all possible rP , rQ ∈ {1, . . . , 2ε} searching for values
compatible with a solution for each DP problem. Then, searching for a set of compatible
solutions takes O(max(n, m) · ε2) time. ◀

▶ Theorem 13. Given an m× n free space diagram Dε, where n ≥ m, every cell has integer
dimensions of at most W , and ε is an integer, we can produce two curves in R1 that realize
Dε or answer false if no such curves exist in time O(max(nε2, n2W )).

5 ∃R-Completeness for Discrete Curves in R2

We now turn to the discrete Fréchet distance, and prove that realizability by curves in R≥2

for a given free space matrix is also ∃R-complete. We reduce from d-Stretchability, which
asks whether there exists an arrangement of hyperplanes in R≥2 that realizes a combinatorial
description. The formal description follows in the next paragraph. We use the machinery
developed by Kang and Müller [29] to show that recognizing a d-sphere graph (generalization
of unit disk graphs in Rd) is ∃R-hard for d ≥ 2. (Although only NP-hardness is claimed
in [29], their proof also extends to ∃R-hardness as noted in their conclusion.) Recall that we
explain in Section 1 that, though they are similar, our problem differs from d-sphericity.
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An instance of d-Stretchability is given by a set S ⊆ {−, +}n of size 1 +
(

n+1
2

)
. An

arrangement of n hyperplanes divides Rd into 1 +
(

n+1
2

)
cells. Each vector in S corresponds

to a cell in a potential arrangement. We denote by vj ∈ S the jth vector in S and by vj [i]
its ith coordinate. Then vj [i] = − (resp., vj [i] = +) if the corresponding cell is below (resp.,
above) the ith hyperplane. Note that (−, . . . ,−) and (+, . . . , +) must be in S, and so we
assume they are respectively v1 and v2. The problem asks whether S is the combinatorial
description of an arrangement of n hyperplanes.

Reduction. Given an instance S of d-Stretchability of n hyperplanes we construct a
2n× |S| free space matrix Mε as follows. We partition P (whose vertices correspond to rows
of Mε) into two subcurves P + = (a1, . . . , an) and P− = (b1, . . . , bn). Informally, ai (resp.,
bi) will be a point in the upper (resp., lower) halfspace of a hyperplane ℓi in the arrangement.
Each column j of Mε (i.e., vertex of Q) represents a vector in vj ∈ S, that is, Mε[i][j] = 0
and Mε[n + i][j] = 1 (resp., Mε[i][j] = 1 and Mε[n + i][j] = 0) if vj [i] = − (resp., vj [i] = +).

▶ Theorem 14. Given a free space matrix Mε, it is ∃R-complete to decide whether there
exists a pair of curves P and Q in R≥2 that realizes Mε.

Proof. Containment in ∃R can be proven by a straightforward reduction to ∃R similar
to the proof of Lemma 17. We now focus on the reduction defined above. It is clear
that it runs in polynomial time. Assume that there exists a pair of curves P and Q that
realizes Mε. Refer to Figure 6(a). We use the labels of point of P defined in the reduction
and assume Q = (q1, . . . , q|S|). Recall that, informally, points q1 and q2 represent vectors
v1 = (−, . . . ,−) and v2 = (+, . . . , +), respectively. Rotate the solution in order to make
the vector −−→q1q2 vertical and pointing upwards. We build a hyperplane arrangement as
follows. For each i ∈ [n], create a hyperplane ℓi bisecting the segment aibi. Now, we argue
that qj , j ∈ {1, . . . , |S|} is in a cell in the produced arrangement with description vj . Let
C1 and C2 be the cells in the arrangements of circles of radius ε containing q1 and q2,
respectively. By definition, if vj [i] = +, then qj must be within ε distance from ai and
farther than ε from bi, that is qj ∈ Bε(ai) \ Bε(bi). Thus, C1 = (

⋂n
i=1 Bε(bi) \

⋃n
i=1 Bε(ai))

and C2 = (
⋂n

i=1 Bε(ai) \
⋃n

i=1 Bε(bi)). Note that every hyperplane ℓi must separate C1 and
C2 by definition. Thus every ℓi intersects the line segment q1q2. We focus on a specific
hyperplane ℓi. Without loss of generality assume vj [i] = +. Then, Bε(ai) \ Bε(bi) is above ℓi

and so is qj . Therefore, the produced hyperplane arrangement realizes S.
Now assume that there exists a hyperplane arrangement realizing S. Refer to Figure 6(b).

For each cell in the arrangement described by vj , choose a point qj in the interior of the
cell. As before, every hyperplane intersects the line segment q1q2, since q1 is below all the
hyperplanes and q2 is above. Let ti be the intersection of ℓi and q1q2. Define the balls
Br(w+

i,r) and Br(w−i,r) respectively above and below ℓi, tangent to ℓi at ti. Note that Br(w+
i,r)

(resp., Br(w−i,r)) equals the upper (resp., lower) halfspace of ℓi when r → ∞. Thus, for
sufficiently large r, Br(w+

i,r) contains all points qj above ℓi and Br(w−i,r) contains all points
qj below ℓi. Let r∗ be a sufficiently large r such that the previous statement is true for all
i ∈ [n]. Scale the entire construction to make r∗ = ε. Then, we can construct P by making
ai = w+

i,ε and bi = w−i,ε. Now, each qj is contained in the appropriate cell of the arrangement
of circles of radius ε centered at points of P . Thus, the constructed P and Q realize Mε. ◀
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Figure 6 Reduction from S = {(−, −, −), (+, +, +), (−, −, +), (−, +, +), (−, +, −), (+, +−),
(+, −, −)}. (a) Transforming a solution to Mε into a line arrangement that realizes S. (b) Trans-
forming a solution to S into curves P and Q that realize Mε. Here squares represent points of P

and circles represent points of Q.

6 A Polynomial Time Algorithm for Discrete Curves in R1

We now turn to realizability for discrete curves in R1 and show that this can be decided in
polynomial time. We lend our main idea from the unit-interval graph recognition (UIGR)
in [21]: given an abstract graph G whose nodes are intervals and two intervals intersect iff
there is an edge between the two corresponding nodes in G, the goal is to find a placement of
intervals in the real line such that the intersections induced by them fulfill G. See Figure 7
for an example. In free space realizability, we derive a unit interval graph G from the free
space matrix Mε. We then adapt the idea in [21] to handle the realizability in our case.

First, we borrow some notations from [21]. For a vertex v ∈ G the neighboring vertices
of v is denoted by N(v). We also define N [v] = N(v) ∪ {v}. Two vertices u and v are
indistinguishable if N [u] = N [v]. In order to recognize a unit-interval graph, Corneil et
al. [21] propose a linear-time algorithm: (i) find the left anchor in G (the left-most interval in
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Figure 7 An abstract graph of intervals and its recognition in R1.

the recognition), (2) perform a BFS search starting at the left anchor to get a partial order of
the intervals, meaning that some groups of intervals are ordered properly, but still intervals
belonging to each group need to be re-ordered, and (3) refine the partial order, i.e., the
intervals within in each group, to get the global order. If the global order exists, return “YES”,
and “NO”, otherwise. To handle (1), they perform a BFS from an arbitrary node in G. Find
a vertex z at the last level Lt of the BFS search such that deg(z) = min{deg(w) : w ∈ Lt}.
In (2), they locally order the vertices in G based upon the level in which they are encountered
along the BFS search from z. Finally in (3), in each level Lk obtained in (2) they sort each
vertex v ∈ Lk in an increasing order of D(v) = |Next(N(v))| − |Prev(N(v))|. Here, Next(v)
is the set of adjacent vertices to v in Lk+1 and Prev(v) is the set of adjacent vertices to v

in Lk−1. Next, for each vertex v in G, they compute α(v) = min{order(u) : u ∈ N [v]} and
ω(v) = max{order(u) : u ∈ N [v]}, where order(u) is the order in which u is encountered on
the line. In the end, if there exists a v for which α(v) ̸= ω(v), “NO” is returned, and “YES”
is returned, otherwise. We modify Step (3) to handle our case.

The problem of realizing Mε is more restrictive than UIGR as follows. Let ε = 1/2.
Similar to the R2 case, we can see the realization of Q = (q1, . . . , qn) as an arrangement of
intervals Bε(qj) partitioning R1. Each row i of Mε describes a “cell” in the arrangement
(which is an interval in R1) where we place a point pi of P . Thus, Mε requires a unit interval
realization of P with not only prescribed adjacencies in G but prescribed cells. Our goal is to
take the partial order that we get from (2), and refine it to be closer to a global order using
information from Mε. In the following, we refer to vertices of G and the interval they refer to
interchangeably, and we call the maximal set of vertices that are pairwise indistinguishable
an equivalence class. See Appendix B for a full algorithmic description.
DiscreteRealizabilityAlgo(Mε) : (1) Construct the unit-interval graph G from Mε. (2)
Choose a left anchor v0 by running a BFS search on G. (3) Perform a BFS on G starting
at v0 to obtain a partial order of the intervals. (4) Refine the partial order by sorting the
intervals at each level of the BFS under the criterion of D(v) = |Next(N(v))| − |Prev(N(v))|.
(5) Refine the partial order D to an order D′: For each row of Mε, place intervals of entry 1
in the equivalence class C towards those intervals that don’t belong to C whose entries are 1
and orders are different than intervals in C. (6) Extend the partial order defined by the BFS
levels and D′ to a global order breaking ties arbitrarily. (7) Verify whether the produced
arrangement is compatible with Mε or not.

▶ Lemma 15. The algorithm returns “YES” if and only if Mε is realizable.

Proof. By Step (7), it is clear that when the algorithm returns “YES” the instance Mε is
realizable. If the algorithm returns “NO”, we show that there are no P and Q realizing Mε.
Note that the constraints in the ordering obtained from Steps (1–4) are the same as for UIGR.
Thus, we must show that if G is not a unit interval graph, then Mε is not realizable. We
show the constrapositive: if Mε is realizable, then G is a unit interval graph. As discussed
before, the realization of Q implies the realization of a unit interval graph G∗ whose intervals
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are Bε(qj), for ε = 1/2. It is clear that G∗ is a supergraph of G since the required cells in
the interval arrangement exist containing points of P . Let qiqj be an edge that exists in
G∗ and not in G such that qi is to the left of qj and with shortest interval Bε(qi) ∩ Bε(qj).
Since qiqj is not in G, Bε(qi) ∩ Bε(qj) contain no points of P and all the cells in this interval
are not necessary. By the assumption that Bε(qi) ∩ Bε(qj) is shortest, there is no point qk

of Q to the right of qj whose interval Bε(qk) intersects Bε(qi) ∩ Bε(qj). Let S be the set
of points including qj and all points qk of Q to the right of qj whose interval Bε(qk) does
not intersect Bε(qj). Move all points in S until the intersection Bε(qi) ∩ Bε(qj) disappears.
By construction, ass cells previously in Bε(qi) ∩ Bε(qj) disappear. We show that no other
cell does, and thus the modified Q is still a solution for Mε. A cell to the left of qj − ε is
not affected since we only move points to the left of qj . A cell to the right of qj + ε would
disappear if Bε(qj) starts to intersect with an interval that it didn’t before. This does not
happen since S contains all such intervals. A cell in Bε(qj) \ Bε(qi) would disappear if an
interval defined by qk ∈ S \ {qj} stopped intersecting another interval. Recall that there
are no intervals whose right endpoint are between qj + ε and qj + ε + |Bε(qi) ∩ Bε(qj)| by
the “shortest” assumption. Then, such cells do not exist. Thus, we produced a solution
to Mε whose interval intersection graph has fewer edges than G∗. Applying this argument
successively we conclude that there exist a solution whose intersection graph is G.

We now show that Step (5) is necessary. Suppose there are four intervals {a, b, c, d} in
row r, Ir = {a, c}, C = {b, c, d}, and C ′ = {c}. Also by assumption a <D b =D c =D d. For
the sake of contradiction, suppose that there exists a positive solution that does not place
the interval c before C\C ′ = {b, d} and after Ir\C = {a}. Placing c before a implies that
c <D a which is a contradiction. Placing c after b implies that the intersection Bε(a) ∩ Bε(c)
is contained in Bε(b). This means that the cell required by Ir = {a, c} does not exist, which
is again a contradiction.

Finally, we analyse Steps (6–7). The only worry is that there might exist two extensions
of the partial order produced in Step (5) such that one is a positive solution and the other
isn’t. Let qi and qj be two incomparable vertices in the partial order. Since Step (5) refines
equivalence classes, qi and qj are also in the same equivalence class C. Then, there exist
no row containing an interval not in C whose entries relative to qi and qj are different. If
there is a row containing only a proper subset of C, the arrangement must contain a cell
in which the proper subset of C intersect and that does not intersect any other interval.
Since intervals in C intersect the same intervals by definition, including intervals that must
be to the left and to the right of intervals in C (note that we add v0 and vf so that every
equivalence class has a predecessor and successor), this cell cannot exist. Then Step (7)
returns “NO”. Else, the columns relative to qi and qj are identical and interchangeable. ◀

The construction of G takes O(k2n) time where k ≤ m is the maximum number of entries
filled with 1 over all rows in Mε, since G might contain n cliques of size k. The other steps
can be implemented in linear time. The full algorithm description is given in Appendix B.

▶ Theorem 16. Given an n×m free space matrix Mε, we can decide whether there exist
curves P and Q in R1 that realize Mε in O(nm + k2n) time, where m ≤ n.

Proof. Correctness is given by Lemma 15. First note that the size of V derived from Mε

is |V | = m, and |E| = O(m2) due to the size of the adjacency matrix we use in Step (1),
however, we need O(k2n) time to add all edges in G due to the size of the clique induced
by the intervals with entry 1 in each row. The size of each clique is at most k2. Thus
|E| = min(m2, k2n). Steps (2–3) takes O(|V |+ |E|) = O

(
m + min(m2, k2n)

)
for performing

the BFS on G. Step (4) takes O(|V |) = O(m) time using a counting sort per level of the
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BFS. Step (5) takes O(mn) time by processing each row of Mε and partitioning the relevant
intervals into their equivalence classes in O(m) time. Step (6) takes O(m) time. In step (7),
the real line can be partitioned into 2m = O(m) cells. Verifying that all n points of P fall into
the induced cell takes O(nm) time. Thus, the algorithm’s total runtime is O(mn + k2n). ◀
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A Omitted Proofs and Details from Section 3

▶ Lemma 17. The problem of finding curves P and Q in R2 that realize an input diagram
Dε is in ∃R.

Proof. We reduce the problem to a system of real polynomial inequalities. The coordinate
of vertices of P and Q are the variables. Each cell represents a constraint: The proof of
Lemma 3.1 [3] gives a quadratic equation relating the endpoints of the corresponding segments.
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Completely full cells require each segment to lie in the intersection of the ε-neighborhood of
the other segment’s endpoints. Completely empty cells require that each segment lies outside
of the other segment’s ε-neighborhood. All constraints can be expressed with a constant
number of quadratic inequalities. ◀

Reduction description. Here, we detail the overview shown in Section 3. Refer to Figure 2.
Note that every edge in Q corresponds to an edge of T . Every edge of T has two correspondents
on Q. Every edge in P either corresponds to an edge of T or is part of an angle gadget. A
free space cell is empty unless it corresponds to a pair of edges of P and Q that (i) correspond
to the same edge, (ii) correspond to adjacent edges and their shared vertex is rigid, (iii)
one is part of an angle gadget and the other corresponds to one of the edges in the angle
represented by the gadget, or (iv) correspond to a pair of edges in T that were the result of
a subdivision of an edge of G. In case (i), the corresponding cell has a ±45◦ slab of width√

2 depending on the direction of the traversal of the edge. In case (ii), if the rigid acute
angle between the corresponding edges of G is 90◦, the corresponding cell has a quarter
of a unit disk centered at the corner that corresponds to the rigid vertex. Else, the rigid
angle is 180◦ the corresponding cell has a right isosceles triangle with two edges of length 1
and whose vertex incident to the right angle is at the corner of the cell that corresponds to
the rigid vertex. In case (iii), as explained in the description of the angle gadget, the cells
corresponding to long edges are empty. The cells between a short edge of P and an edge
of Q incident to the angle will contain half of a unit disk so that the distance between the
half-disk and the corner of the cell that correspond to the nonrigid vertex is 1. Finally, case
(iv) is the same as case (ii) with a rigid angle of 180◦.

▶ Lemma 18. Given a realization of P and Q, the subcurves that correspond to a rigid
subgraph H exactly cover a rigid transformation of H.

Proof. By construction, every pair of edges from P and Q that either correspond to the
same edge of T , or to two adjacent edges of T that in turn correspond to edges in the same
rigid subgraph H, define a partially full cell. Then, the claim follows by Lemma 1. ◀

B Omitted Details from Section 6

The full description of realizability of discrete curves in R1 is presented below:
DiscreteRealizabilityAlgo(Mε) :

Step (1): Construct an abstract unit-interval graph G from Mε whose rows are vertices in
P and columns are vertices in Q: The vertex set of G represents the columns of Mε, i.e., the
interval of length 2ε centered at a point q ∈ Q. For every row (p ∈ P ), the edge set of G is
defined by including a clique between the columns (vertices in Q) that are filled with 1 in
that row. We store the edges of G in an adjacency matrix. In the following we assume G

connected, or else, we treat each component separately.

Step (2): Choose a left anchor as follows. As in [21], we get a set of candidates for left
anchor by running a BFS search on G from an arbitrary vertex. The set contains the vertices
with minimum degree in the deepest level of the BFS. The set of candidates must be in at
most two equivalence classes, or else G is not an interval graph. We augment G by adding a
new vertex v0 connected to each vertex in one of the equivalence classes of candidates. We
choose v0 as a left anchor.

ISAAC 2023



3:20 Realizability of Free Spaces of Curves

Step (3): Perform a BFS on G starting at v0 to obtain a partial order of the vertices.

Step (4): Refine the partial order to get the global order by sorting the intervals at each
level of the BFS under the criterion of |Next(N(v))| − |Prev(N(v))|. We denote the current
partial order as D and use <D, >D and =D to denote whether intervals appear in order,
in reverse order, or are incomparable in D, respectively. By Theorem 2.2 in [21], a pair of
vertices u and v with u =D v are indistinguishable. Thus a set of pairwise incomparable
vertices in this partial order forms an equivalence class. Add a vertex vf to the end of the
order, connecting it to all vertices in the last equivalence class.

Step (5): Further refine the partial order as follows. We refer to such refinement as D′.
For each row r in Mε, let Ir be the set of intervals with entry 1 in r, and let C ′ = C ∩ Ir ̸= ∅
where C is an equivalence class. If there are i ∈ Ir \ C and c′ ∈ C ′ where i <D c′ (resp.,
i >D c′), make c′ <D′ c (resp., c′ >D′ c) for all c ∈ C \ C ′.

Step (6): Extend the partial order defined by the BFS levels and D′ to a global order
breaking ties arbitrarily. Obtain the arrangement of unit intervals based on the global order
and G. This can be done as in Theorem 3.2 in [21].

Step (7): Verify whether the produced arrangement is compatible with Mε. Each row r

specifies the existence of a cell where exactly the intervals with entry 1 intersect. If a cell
specified by a row does not exist in the arrangement, return “NO”. Otherwise, return “YES”.
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