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Abstract
We give a new rapid mixing result for a natural random walk on the independent sets of a graph G.
We show that when G has bounded treewidth, this random walk – known as the Glauber dynamics
for the hardcore model – mixes rapidly for all fixed values of the standard parameter λ > 0, giving a
simple alternative to existing sampling algorithms for these structures. We also show rapid mixing for
analogous Markov chains on dominating sets, b-edge covers, b-matchings, maximal independent sets,
and maximal b-matchings. (For b-matchings, maximal independent sets, and maximal b-matchings
we also require bounded degree.) Our results imply simpler alternatives to known algorithms
for the sampling and approximate counting problems in these graphs. We prove our results by
applying a divide-and-conquer framework we developed in a previous paper, as an alternative to
the projection-restriction technique introduced by Jerrum, Son, Tetali, and Vigoda. We extend this
prior framework to handle chains for which the application of that framework is not straightforward,
strengthening existing results by Dyer, Goldberg, and Jerrum and by Heinrich for the Glauber
dynamics on q-colorings of graphs of bounded treewidth and bounded degree.
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1 Introduction

The Glauber dynamics on independent sets in a graph – motivated in part by modeling systems
in statistical physics – is a Markov chain in which one starts at an arbitrary independent set,
then repeatedly chooses a vertex at random and, with probability that depends on a fixed
parameter λ > 0, either removes the vertex from the set (if it is in the set), or adds it to
the set (if it is not in the set and has no neighbor in the set). This chain, which samples
from the hardcore model on independent sets, has seen recent rapid mixing results under
various conditions. In addition to independent sets, similar dynamics have been studied for a
number of other structures – including, for example, q-colorings, matchings, and edge covers
(more generally, b-matchings and b-edge covers).
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1.1 Our contribution
We prove that the hardcore Glauber dynamics mixes rapidly on graphs of bounded treewidth
for all fixed λ > 0, and that the Glauber dynamics on partial q-colorings (for all λ > 0)
of a graph of bounded treewidth, and on q-colorings of a graph of bounded treewidth and
degree, mix rapidly. Marc Heinrich proved the latter result, namely for q-colorings, in a
2020 preprint [10]. Heinrich’s result applies to all graphs of bounded treewidth; however,
for graphs of bounded treewidth and degree, whose degree is less than quadratic in their
treewidth, we improve on Heinrich’s upper bound – provided that q is fixed. We also prove
that the analogous dynamics on the b-edge covers (when b is bounded) and the dominating
sets of a graph of bounded treewidth mix rapidly for all λ > 0. In a similar vein, we prove
that three additional chains – on b-matchings (when λ > 0), on maximal independent sets,
and on maximal b-matchings – mix rapidly in graphs of bounded treewidth and degree.

To prove our results, we apply a framework we introduced in a companion paper [6]
that uses the multicommodity flow technique (essentially the same as the canonical paths
technique) for bounding mixing times. (We previously presented this framework in a preprint
of the present paper [5].) The framework consists of a set of conditions (which we will define
in Section 3.3) that guarantee rapid mixing; these conditions make progress towards unifying
prior work on similar Glauber dynamics with prior work on probabilistic graphical models.
In that paper [6], we also proved that the flip walk on the k-angulations of a convex n-point
set mixes in time quasipolynomial in n for all fixed k ≥ 3, although the special case k = 3
was known already to mix rapidly [15]. Thus our framework applies beyond graphical models
and graph sampling problems.

1.2 Main results
Our main results are the following (see Section 2 for relevant definitions).

▶ Theorem 1. The hardcore Glauber dynamics mixes in time nO(t) on graphs of treewidth t

for all fixed λ > 0.

▶ Theorem 2. The (unbiased) Glauber dynamics on q-colorings (when q ≥ ∆ + 2 is fixed)
mixes in time nO(t) on graphs of treewidth t and bounded degree when q is fixed. The Glauber
dynamics on partial q-colorings (when q ≥ ∆ + 2 is fixed) mixes in time nO(t) on graphs of
treewidth t for all fixed λ > 0.

▶ Theorem 3. The Glauber dynamics on b-edge covers mixes in time nO(t2) on graphs of
treewidth t, for all fixed b ≥ 1 and fixed λ > 0. The Glauber dynamics on dominating sets
mixes in time nO(t) on graphs of treewidth t for all fixed λ > 0. The Glauber dynamics
on b-matchings mixes in time nO(t) on graphs of treewidth t and bounded degree ∆ for all
fixed λ > 0 and fixed b ≥ 1.

▶ Theorem 4. There exist Markov chains on maximal independent sets and maximal b-
matchings, whose stationary distributions are uniform, that mix in time nO(t) on graphs of
treewidth t and bounded degree.

1.3 The framework: recursive flow construction
A multicommodity flow in an undirected graph G = (V, E) with n vertices is a set of n2 flows,
one flow for each ordered pair of vertices (s, t), where each flow sends one unit of a commodity
from s to t. More precisely, take each (undirected) edge in E and make two directed copies,
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one in each direction; let E+ =
⋃

{u,v}∈E{(u, v), (v, u)} denote the set of all these directed
copies. A multicommodity flow is a collection of functions fst : E+ → R≥0 such that each fst

is a valid flow function, with s (respectively t) having net out flow (respectively in flow)
equal to one, and all other vertices having zero net flow. If a multicommodity flow exists in
G with small congestion – i.e. one in which no edge carries too much flow – then the natural
Markov chain whose states are the vertices of G mixes rapidly.

The chains we analyze are natural random walks on a Glauber graph M(G)1 – the graph
whose vertices are the structures over which the random walk is performed, and whose edges
are the pairs of these structures with symmetric distance equal to one. For example, in the
case of independent sets, M(G) has as its vertex set the collection of all independent sets
in G, and as its edge set the collection of all (unordered) pairs of independent sets S, S′ in G

such that S = S′ ∪ {v} for some v ∈ V (G). Thus each of these random walks is performed
on a graph that may be exponentially large with respect to the size of the input graph.
In our previous work [6], we showed that when all of a certain set of conditions hold, we
can construct a multicommodity flow in M(G) with congestion polynomial in n = |V (G)|,
implying that the walk on M(G) mixes rapidly. The conditions specify that M(G) can be
partitioned into a small number of induced subgraphs, all of which are approximately the
same size, with large numbers of edges between pairs of the subgraphs. The conditions require
that each of these induced subgraphs can be decomposed into smaller Glauber graphs that
are similar in structure to M(G). This self similarity allows for the recursive construction of
a multicommodity flow, by assembling flows on smaller Glauber graphs together into a flow
in M(G) with small congestion.

1.4 Projection-restriction and prior work on the hardcore model
Prior work on rapid mixing of Markov chains on subset systems includes the special case
of matroid polytopes. For this case, recent results [2, 1] have partly solved a 30-year-old
conjecture of Mihail and Vazirani [16]. Other prior work uses multicommodity flows (and the
essentially equivalent canonical paths technique) to obtain polynomial mixing upper bounds
on structures of exponential size, including matchings and 0/1 knapsack solutions [17, 9].
Madras and Randall [13] used a decomposition of the hardcore model state space to prove
rapid mixing under different conditions. We also decompose the state space, but our approach
is different and is more similar to Heinrich’s [10] application of the projection-restriction
technique introduced by Jerrum, Son, Tetali, and Vigoda [11]. This technique involves
partitioning the state space of a chain into a collection of sub-state spaces, each of which
internally has a good spectral gap – a property that implies rapid mixing – and all of which
are well connected to one another. Heinrich used the vertex separation properties of bounded-
treewidth graphs to obtain an inductive argument: the resulting sub-spaces are themselves
Cartesian products of chains on smaller graphs, and thus mix rapidly. (See Lemma 16.) We
partition the state space recursively using the same vertex separation properties, and indeed
for the chains on b-matchings and q-colorings in bounded-treewidth, bounded-degree graphs,
combining these properties straightforwardly with the existing spectral projection-restriction
machinery of [11] suffices for rapid mixing. The main contribution in this paper is to extend
the framework to chains for which this application is not straightforward. That is, we give
general conditions for constructing a multicommodity flow in the projection chain with small

1 The chains on maximal independent sets and maximal b-matchings are not strictly Glauber dynamics,
but we will use the same term for the graph, redefining the edge set as pairs connected by the moves we
define in the appendix of the full version.
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congestion, giving a good spectral gap in the projection chain. One may then apply induction
using the spectral machinery of [11] to obtain rapid mixing in the overall chain; alternatively,
one can substitute the flow-based machinery from our companion paper [6] for the spectral
technique.

In the case of independent sets, Jerrum, Son, Tetali, and Vigoda [11] applied their
technique to a special case of the hardcore model, namely regular trees. However, it was not
clear how to generalize this application to bounded-treewidth graphs – since showing the
spectral gap of the projection chain is sufficiently large is not straightforward. Martinelli,
Sinclair, and Weitz [14] showed that the Glauber dynamics on the hardcore model mixes
in O(n log n) time on the complete ∆ − 1-ary tree with n nodes, but they did not address
general trees. Berger, Kenyon, Mossel, and Peres [3] showed rapid mixing for q-colorings
of regular trees with unbounded degree but also did not address general trees. Our first
main technical contribution is to show rapid mixing for general bounded-treewidth graphs
by introducing the hierarchical version of our framework, in which we construct a flow with
small congestion in the projection chain; we show that this construction gives rapid mixing
for dominating sets, partial q-colorings, and b-edge covers in bounded-treewidth graphs. We
solve another problem: the technical theorem in [11] as stated requires each of the state
spaces in the partition to be a Cartesian product of chains on smaller spaces. For four of our
eight chains – those on dominating sets, b-edge covers, maximal b-matchings, and maximal
independent sets – the sub-spaces obtained in the decomposition are not a disjoint union
of Cartesian products but may each be a union of Cartesian products, or may be mutually
intersecting. In some cases, the sub-spaces may even induce disconnected restriction chains.
Our second main contribution is to resolve this problem, using the structure of the state
spaces of Glauber dynamics as graphs. We discuss this in the appendix of the full version.

1.5 Paper organization
In Section 2, we give relevant background. In Section 3, we use the chain on independent
sets to review the “non-hierarchical” version of our framework (the version we gave in our
companion paper) – which works for this chain when treewidth and degree are bounded.
In the appendix of the full version we apply it to q-colorings and to b-edge covers and b-
matchings. To fully prove Theorem 1 and Theorem 3, we need to deal with unbounded-degree
graphs – our first main technical contribution. In Section 4, we modify the framework to do
so, proving Theorem 1 for λ = 1. We defer some details to the appdenix of the full version,
where we also finish the proof of Theorem 2 for λ = 1. We prove the general case λ > 0 of
Theorems 1 and 2 in the appendix of the full version. We finish the proofs of Theorems 3
and 4 in the appendix of the full version: applying the framework to the relevant chains
requires a further refinement of the framework. In all of the above, we prove rapid mixing
but defer derivation of specific upper bounds to the appendix of the full version.

2 Preliminaries

2.1 Glauber dynamics
▶ Definition 5. The hardcore Glauber dynamics on a graph G is the following chain, defined
with respect to a fixed real parameter λ > 0:
1. Let X0 be an arbitrary independent set in G.
2. For t ≥ 0, select a vertex v ∈ V (G) uniformly at random.
3. If v /∈ Xt and Xt ∪ {v} is not a valid independent set, do nothing.



D. Eppstein and D. Frishberg 30:5

4. Otherwise:
Let Xt+1 = Xt ∪ {v} with probability λ/(λ + 1).
Let Xt+1 = Xt \ {v} with probability 1/(λ + 1).

Graph-theoretically, the Glauber dynamics is defined as follows: let the indepdendent set
Glauber graph MIS(G) denote the graph whose vertices are identified with the independent
sets of a given graph G, and whose edges are the pairs of independent sets whose symmetric
difference is one. The hardcore Glauber dynamics is a Markov chain, parameterized by λ > 0,
with state space Ω = V (MIS(G)) and probability matrix P , where for S, S′ ∈ V (M(G)) with
S ̸= S′, P (S, S′) = λ/(∆M(λ + 1)) when |S′ \ S| = 1, and P (S, S′) = 1/(∆M(λ + 1)) when
|S \ S′| = 1. If S = S′, then P (S, S′) = 1 −

∑
S′′ ̸=S P (S, S′′). (Here ∆M is the maximum

degree of the Glauber graph – i.e. the maximum number of neighboring states that a state S

can have.) The Glauber graph has vertex set Ω and adjacency matrix P – up to the addition
of self loops and normalization by degree. (When λ ̸= 1 this graph can still be augmented
with suitable weights so that the walk on the graph is the Glauber dynamics.)

2.2 Mixing time
To generate, approximately uniformly at random, an object of a given class – such as an
independent set in a given graph – one can conduct a random walk on a graph whose vertices
are the objects of interest, and whose edges represent local moves between the objects (or
states). It is known that under certain mild conditions satisfied by as all our chains (see the
appendix of the full version), the walk converges to the uniform distribution in the limit. The
rate of convergence is important: in the case of subset systems such as those we consider, the
walk takes place over an exponentially large number of subsets defined over an underlying
set of size n. If the convergence, or mixing time, of the walk is polynomial in n, then the
random walk is said to be rapidly mixing. The mixing time is denoted τ(ε), where ε denotes
the desired precision of convergence to the uniform distribution, and the value of τ at ε is the
minimum number of steps in the random walk before convergence is guaranteed. Convergence
is measured via the total variation distance [19] between the distribution over states induced
by the walk at a given time step, and the uniform distribution. One can obtain non-uniform
stationary distributions by weighting the graph – see the appendix of the full version. See
Levin, Peres, and Wilmer [12] for a comprehensive treatment of rapid mixing.

A Markov chain, given a starting state S ∈ Ω, induces a probability distribution πt at
each time step t. The Glauber dynamics is known, regardless of starting state, to converge
in the limit to a stationary distribution π∗(S) = λ|S|/Z(M(G)), where the term Z(M(G))
is simply a normalizing value. When λ is unspecified, assume λ = 1 (the uniform case). The
mixing time is defined as follows:

Given an arbitrary ε > 0, the mixing time, τ(ε), of a Markov chain with state space Ω
and stationary distribution π∗ is the minimum time t such that, regardless of starting state,
we always have 1

2
∑

S∈Ω |π(S) − π∗(S)| < ε. Suppose the chain belongs to a family of Markov
chains, the size of whose state space is parameterized by some value n. Here, |Ω| may be
exponential in n. If τ(ε) is bounded by a polynomial function in log(1/ε) and in n, the chain
is said to be rapidly mixing. It is common to omit the parameter ε and assume ε = 1/4.

2.3 Treewidth and vertex separators
▶ Definition 6 ([18]). A tree decomposition of a graph G = (V, E) is a collection of sets
{Xi}, i = 1, . . . , k, called bags, together with a tree T , whose nodes are identified with the
bags {Xi}, such that all of the following hold:

ISAAC 2023
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1. Every vertex in V lies in some bag, i.e.
⋃k

i=1 Xi = V .
2. For every (u, v) ∈ E, the vertices u and v belong to at least one bag Xi together, i.e. for

some i, u ∈ Xi and v ∈ Xi.
3. The collection of all bags containing any given vertex v ∈ V , i.e. {Xi | v ∈ Xi} forms a

(connected) subtree of T .

▶ Definition 7 ([18]). The width of a tree decomposition is one less than the size of the
largest bag in the decomposition. The treewidth of a graph G is the minimum t such that a
tree decomposition of G exists with width t.

Intuitively, treewidth measures how far away a graph is from being a tree. For example,
trees have treewidth one; a graph consisting of a single cycle of size at least three has
treewidth two. Treewidth is of interest in large part because many NP-hard problems become
tractable on graphs of bounded treewidth. For a full definition of treewidth and a survey of
this phenomenon, known as fixed-parameter tractability, see [4].

For our purposes, treewidth is of interest due to its relationship to vertex separators: a
vertex set X ⊆ V in a graph G = (V, E) is called a vertex separator if the deletion of X from V

leaves the induced subgraph on the remaining vertices disconnected. Say that X is a balanced
separator if deleting X partitions V into mutually disconnected subsets A ∪ B = V \ X

such that |V |/3 ≤ |A| ≤ |B| ≤ 2|V |/3. A graph G is recursively s-separable [7] if either (i)
|V (G)| ≤ 1, or (ii) G has a balanced separator X with |X| ≤ s and, after deleting X, the
resulting subsets A and B induce subgraphs of G that are each recursively s-separable.

The following is known and easy to prove [7]:

▶ Lemma 8. Every graph with treewidth t ≥ 1 is recursively s-separable for all s ≥ t + 1.

3 λ = 1: Bounded treewidth and degree

To build up to the proof of Theorem 1, we first show a weaker result: that the unifrom
hardcore Glauber dynamics mixes rapidly in graphs of bounded treewidth and degree. Fully
proving Theorem 1, even in the unbiased case, requires the non-hierarchical framework.
The main technical lemma in this section, Lemma 17, comes from our companion paper.
Our contribution in this paper is the application to independent sets in graphs of bounded
treewidth and degree – which we strengthen to graphs of bounded treewidth in Section 4.

The following is necessary for the Glauber dynamics to sample correctly:

▶ Lemma 9. The independent set Glauber graph is connected.

Proof. Consider the empty independent set ∅. Every independent set S ∈ V (MIS(G)) has a
path of length |S| to ∅, formed by removing each vertex in S in arbitrary order. ◀

3.1 Partitioning the vertices of MIS(G) into classes

The vertices of the Glauber graph MIS(G) are subsets of the vertices of an underlying graph
G. When G has bounded treewidth, we can choose a small separator X that partitions
V (G) \ X into two mutually disconnected vertex subsets, A and B, each of which has at
most 2|V (G)|/3 vertices. Consider the problem of sampling an independent set S from G.
Given a separator X for G, partition the independent sets in G into equivalence classes as
follows:
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X
A

B

v

u

X
A

B

v

u

Figure 1 Two independent sets in a graph G: S (left) and S′ (right), belonging to distinct classes.
S and S′ differ by a move, with the separator X inducing the classes to which the sets belong. S′

results from adding v to S. |S′| < |S|, since S′ excludes those independent sets that contain u.

▶ Definition 10. Let G = (V, E) be a graph. Let MIS(G) be the independent set Glauber
graph we have defined. Let X ⊆ V be a vertex separator for G. Let SIS(G) be the set of
equivalence classes of V (MIS(G)) in which two independent sets S and S′ are in the same
class if S ∩ X = S′ ∩ X. Let T = S ∩ X, and call the corresponding class CIS(T ).

(Technically X is also a parameter for SIS(G) and CIS(T ), but we omit it for ease of notation.)
See Figure 1 for an example of a partitioning.
The Cartesian product of two graphs H and J is the graph whose vertex set is V (H)×V (J)

and whose edges are the pairs ((h1, j1), (h2, j2)) such that either h1 = h2 and (j1, j2) ∈ E(J)
or else (h1, h2) ∈ E(H) and j1 = j2.

Let A and B be the mutually disconnected vertex subsets into which the removal of X

partitions V (G) \ X. Given a fixed independent subset T ⊆ X, identify the independent sets
in CIS(T ) with the pairs of the form (SA, SB), where SA is an independent set in A \ NA(T ),
and SB is an independent set in B \NB(T ), where NA(T ) and NB(T ) denote the union of the
neighborhoods of vertices in T , in A and B respectively. That is, identify each independent
set in CIS(T ) with a pair of an independent set in A that avoids neighbors of vertices in T ,
and a similar independent set in B. Consider the two Glauber graphs MIS(A \ NA(T ))
and MIS(B \ NB(T )), whose vertices are respectively the independent sets in G[A \ NA(T )],
and those in G[B \ NB(T )]. If two independent sets S = (SA, SB) and S′ = (S′

A, S′
B) belong

to the same class, then a move (traversal of an edge in the Glauber graph) exists between S

and S′ in MIS(G) precisely when a move exists between the restrictions of S and S′ to
either MIS(A \ NA(T )) or MIS(B \ NB(T )) (but not both). Therefore, each class induces,
in MIS(G), a subgraph that is isomorphic to a Cartesian product of two smaller Glauber
graphs:

▶ Lemma 11. Given a graph G and a vertex separator X that partitions V (G) into sub-
graphs A and B, for every class T ∈ SIS(G), CIS(T ) ∼= MIS(A \ NA(T ))□MIS(B \ NB(T )).

(Here by the symbol ∼= we denote isomorphism, and we identify the class CIS(T ) with the
subgraph it induces in MIS(G).)

3.2 Rapid mixing for the hardcore Glauber dynamics when G has
bounded treewidth and degree

As described in Section 3.1, we use a small vertex separator X in G to give a decomposition
of MIS(G) into subgraphs, each of which has a Cartesian product structure – in which
both factor graphs in the product are themselves Glauber graphs. Since Cartesian products
preserve flow congestion upper bounds (see Lemma 16), this decomposition provides a crucial
inductive structure. We analyze this structure in this section.

ISAAC 2023
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CIS(T ) CIS(T ′′) CIS(T ′)S

S
′′

wS
′

Figure 2 A schematic view of three classes in the independent set Glauber graph MIS(G). The
large circles denote classes under the partition described in Section 3.1. The curved arrows illustrate
the construction of a flow in MIS(G) from an independent set S ∈ CIS(T ) to another independent set
S′′ ∈ CIS(T ) – and also to an independent set S′ ∈ CIS(T ′). Here, CIS(T ) and CIS(T ′′) are adjacent
classes in MIS(G), connected by a large number of edges, and similarly CIS(T ′) and CIS(T ′′) are
adjacent. In Section 3.2 we formalize this flow.

▶ Lemma 12. Let G be a graph with bounded treewidth t and bounded degree ∆, let MIS(G)
be as we have defined, and let SIS(G) be as in Definition 10 with respect to a small balanced
separator X with |X| ≤ t + 1. Then:
1. The number of classes in SIS(G) is O(1).
2. For every pair of classes CIS(T ), CIS(T ′) ∈ SIS(G), |CIS(T )| = Θ(1)|CIS(T ′)|.
3. Let CIS(T ), CIS(T ′) ∈ SIS(G) be two classes. No independent set S ∈ CIS(T ) has more

than one move to an independent set S′ ∈ CIS(T ′).
4. Let CIS(T ), CIS(T ′) ∈ SIS(G) be two classes. Suppose there exists at least one move between

an independent set in CIS(T ) and an independent set in CIS(T ′). Then there exist at least
Ω(1)|CIS(T )| moves between independent sets in CIS(T ) and independent sets in CIS(T ′).

Proof. Claim 1 follows from the fact that |SIS(G)| ≤ 2|X| ≤ 2t+1 = O(1), where the first
inequality is true because each class is identified with a subset of the vertices in X. The
proofs of claims 2 through 4 are in the appendix of the full version. ◀

We will use Lemma 12 to prove the following, applying the framework from our previous
paper, in Section 3.3:

▶ Lemma 13. Given a graph G with bounded treewidth and degree, the natural random walk
on the independent set Glauber graph MIS(G) has mixing time τ(ε) = O(nc log 1/ε), where
c = O(1).

To prove Theorem 1, however, we need to get rid of the assumption that degree is bounded.
We address this issue in Section 4.

3.3 Abstraction into framework conditions
The observations in Lemma 12 correspond to a set of conditions we gave in our previous
work [6]. These conditions are, given a connected graph M(G), on some set of combinatorial
structures over an underlying graph G with n vertices:
1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).
2. The ratio of the sizes of any two classes in S is Θ(1).
3. Given two classes C(T ), C(T ′) ∈ S, no vertex in C(T ) has more than O(1) edges to vertices

in C(T ′).
4. For every pair of classes that share at least one edge, the number of edges between the

two classes is Θ(1) times the size of each of the two classes.
5. Each class in S is the Cartesian product of two graphs M(G1) and M(G2), each of which

can be recursively partitioned in the same way as M(G).
6. The recursive partitioning mentioned in Condition 5 reaches the base case (graphs with

one or zero vertices) in O(log n) steps.
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Conditions 1 through 4 correspond respectively to Lemma 12; Condition 5 corresponds
to Lemma 11. Condition 6 corresponds to the observation at the end of the proof sketch of
Lemma 13.

We introduce some facts that we previously used to prove that these conditions suffice
for rapid mixing, via expansion, then review a sketch of the proof; we will build on these
techniques in Section 4 (our main contribution) and in the appendices.

The edge expansion (or simply the expansion) of a graph G = (V, E) is the quantity
h(G) := minS⊆V :|S|≤|V |/2

|{(u,v)∈E|u∈S,v /∈S}|
|S| , i.e. the minimum quotient of the number of

edges in the cut by the number of vertices on the smaller side of the cut. The vertex expansion
is the quantity h(G) := minS⊆V :|S|≤|V |/2

|{v∈V \S|∃u∈S,(u,v)∈E}|
|S| , i.e. the minimum quotient

of the number of neighbors of a set S with |S| ≤ |V |/2 that are not in S.
Mixing can be bounded from above via a lower bound on expansion [19] when the degree

of a Glauber graph is small (linear in the case of our chains):

▶ Lemma 14. Given a graph M = (V, E), consider the Markov chain whose state space
is V and whose transitions are of the form P (x, x) = 1/2, P (x, y) = 0∀(x, y) /∈ E , P (x, y) =
1/(2∆)∀(x, y) ∈ E, where ∆ is the maximum degree of M. The mixing time of this Markov
chain is at most

τ(ε) = O

(
∆2

(h(M))2 · ln |V|
ε

)
.

Expansion, in turn, can be bounded from below via an upper bound on the congestion of
a multicommodity flow. Given a multicommodity flow f = {fst|s, t ∈ V × V } in a graph G =
(V, E), define the congestion of f as the quantity ρ = max(u,v)∈E+

∑
s,t∈V ×V fst(u, v), i.e.

the maximum amount of flow sent across an edge.

▶ Lemma 15 ([19]). For every graph G = (V, E) and for every flow function f defined
over G and having congestion ρ, h(G) ≥ 1/(2ρ).

▶ Lemma 16. Given graphs H and J , let G be the Cartesian product H□J . Suppose
multicommodity flows exist in H and J with congestion at most ρH and ρJ respectively. Then
there exists a multicommodity flow in G with congestion at most max{ρH , ρJ}.

We proved Lemma 16 in [6], although an analogous result for expansion is known [8]. We
also proved the following in [6]. We review the lemma and give a modified proof sketch here,
in terms more intuitive for the chains we are analyzing in this paper. We will modify the
technique in Section 4.

▶ Lemma 17. Given a graph M(G) satisfying the conditions in Section 3.3, the expansion
of M(G) is Ω(1/nc), where c = O(1).

Proof Sketch. Partition M(G) into classes as in Definition 10. By Lemma 11, each class
C(T ) ∈ S(G) is isomorphic to the Cartesian product M(A \ NA(T ))□M(B \ NB(T )). We
make an inductive argument, in which the inductive hypothesis assumes that for each such
Cartesian product, the graphs M(A \ NA(T )) and M(B \ NB(T )) have multicommodity
flows fA and fB with congestion ρA ≤ clog |V (G)|−1, ρB ≤ clog |V (G)|−1 respectively, for some
constant c. By Lemma 16, C(T ) then has a flow fT with congestion ρT ≤ clog |V (G)|−1. The
inductive step is to combine the fT flows for all of the classes, giving a flow f in M(G)
with small congestion. We need to route flow between every S, S′ ∈ V (M(G)). If S and S′

belong to the same class C(T ), simply use the same flow that S uses to send its unit to S′

in fT . If S ∈ C(T ) and S′ ∈ C(T ′) ̸= C(T ) belong to different classes, we find a sequence
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of intermediate classes through which to route flow from C(T ) to C(T ′). See Figure 2. We
specified in our companion paper [6] how to route the flow through each intermediate class
so that the congestion across each edges between a pair of classes is at most O(1), then made
use of the existing flows within each class guaranteed by the inductive hypothesis to bound
the resulting amount of flow within each class C(T ). We showed that the latter is at most
O(1) · ρT , giving overall congestion O(1)l, where l is the number of induction levels. Since X

is a balanced separator we have l = O(log n); the lemma now follows from Lemma 14. ◀

The full proof of Lemma 17 is in our companion paper [6]. We will use the phrase “non-
hierarchical framework” to describe this set of conditions – which apply to the chains we
study when the underlying graph G has bounded treewidth and degree. Although Jerrum,
Son, Tetali, and Vigoda [11] did not consider bounded-treewidth graphs generally, these
conditions do allow their projection-restriction technique to be applied. In effect, Lemma 17
and its proof, which we gave in our previous work, characterize a sufficient set of conditions
for applying Jerrum, Son, Tetali, and Vigoda’s technique: specifically, one can, instead of
routing flow internally through each intermediate class, simply treat the construction above
as a flow in the projection graph, concluding that the projection graph has a good spectral
gap – then apply [11]. The first main technical contribution of this paper is in Section 4, in
which we give an alternative set of conditions – which we will call our “hierarchical framework”
– that allows us to handle underlying graphs of unbounded degree (though treewidth still
must be bounded), and to handle chains other than the hardcore model. This will allow us
to complete the proofs of Theorems 1, 2, and 3.

4 λ = 1: Unbounded degree

4.1 Hierarchical framework
We now sketch “hierarchical” framework conditions that guarantee rapid mixing in the case
of unbounded degree (when treewidth is bounded). Several of the chains we consider satisfy
these conditions so long as the treewidth of the underlying graph is bounded. This is the first
main technical contribution in this paper. In the original framework, we assumed that the
classes were approximately the same size. Although all of the graphs to which we apply this
hierarchical framework satisfy this condition in graphs with bounded treewidth and degree,
this is not the case when the degree is unbounded. Fortunately, in the case of independent
sets, partial q-colorings, dominating sets, and b-edge covers, we solve this problem with some
modifications to the framework.

4.2 Independent sets
In the proof of Lemma 17, the assumption that the classes were approximately the same size
allowed every class CIS(T ) to route flow for all pairs of vertices without being too congested,
because CIS(T ) is sufficiently large. Once we discard this assumption, we need to specify
explicitly the path through which a given CIS(T ) routes flow to each CIS(T ′). We construct a
flow in which for every such CIS(T ), CIS(T ′), every intermediate class CIS(T ′′) that handles
flow between sets S ∈ CIS(T ) and S′ ∈ CIS(T ′) is larger than one of CIS(T ) or CIS(T ′). We
then bound the number of pairs of sets, relative to |CIS(T ′′)|, for which CIS(T ′′) carries flow.

To accomplish this, we observe that for any CIS(T ), CIS(T ′) such that there exists one
move between an independent set in CIS(T ′) and an independent set in CIS(T ), either every
independent set in CIS(T ′) has a move to some independent set in CIS(T ), or vice versa.
This move consists of dropping some vertex v from T ′ ⊆ X to obtain T , i.e. T = T ′ \ {v}.
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CIS(T )

CIS(P ) CIS(P ′)

CIS(C) CIS(C ′)

Figure 3 Left: a schematic representation of the classes in the independent set Glauber graph
and edges between them when the degree is unbounded. Right: a class CIS(T ), with two parents,
CIS(P ) and CIS(P ′), and two children, CIS(C) and CIS(C′). (Classes with larger cardinality are drawn
larger.) The parallel edges depict the fact that a child class always has every one of its vertices
adjacent to a vertex in a given parent class, and that the edges between any given pair of classes are
vertex-disjoint.

We call CIS(T ) a parent of CIS(T ′), and CIS(T ′) a child of CIS(T ). See Figure 3. Since the
set of edges connecting vertices in CIS(T ) with vertices in CIS(T ′) forms a matching, this
implies that |CIS(T )| ≥ |CIS(T ′)|. In fact, whenever T ⊆ T ′, we have |CIS(T )| ≥ |CIS(T ′)|.
We route flow between any pair of classes CIS(T ) and CIS(T ′) along a path through a “least
common ancestor”. Since for every class CIS(T ′′) on this path, either |CIS(T ′′)| ≥ |CIS(T )| or
|CIS(T ′′)| ≥ |CIS(T ′)|, we obtain a bound on congestion that we make precise in the appendix
of the full version.

In the proof sketch of Lemma 17 (Section 3.2), for every pair S ∈ C(T ), S′ ∈ C(T ′) ̸= C(T ),
we found a sequence of classes C(T ) = C(T1), C(T2), . . . , C(Tk−1), C(Tk) = C(T ′) through which
to route the S −S′ flow. As discussed in Section 4, when the degree is unbounded, the classes
are no longer nearly the same size – so if this sequence is chosen carelessly, some C(Ti) may
carry flow for too many S − S′ pairs. We therefore choose the sequences carefully: the parent-
child relationships induce a partial order ≺ on the classes with a unique maximal element,
where C(T ) ≻ C(T ′) implies |C(T )| ≥ |C(T ′)|. We choose our sequence so that for some i

with 1 ≤ i ≤ k, |C(T1)| ≤ |C(T2)| ≤ · · · ≤ |C(Ti)| ≥ |C(Ti+1)| ≥ · · · |C(Tk−1)| ≥ |C(Tk)|.

4.3 Hierarchical Framework Conditions
The conditions are as follows. Conditions 2 through 4 are new and concern the partial order
described above; Condition 1 and Conditions 5 through 7 are as in Section 3.3.
1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).
2. There exists a partial order ≺ on the classes in S, such that whenever C(T ), C(T ′) ∈ S

and C(T ) ≻ C(T ′), we have |C(T )| ≥ |C(T ′)|.
3. The partial order ≺ has a unique maximal element.
4. Whenever an edge exists between vertices in C(T ) and C(T ′) with C(T ) ≻ C(T ′), the

number of such edges is |C(T ′)|.
5. For every pair of classes C(T ) and C(T ′) that share an edge, the maximum degree, in

C(T ), of a vertex in C(T ′), is O(1), and the maximum degree, in C(T ′), of a vertex in
C(T ), is O(1).

6. Each class in S is the Cartesian product of two graphs M(G1) and M(G2), each of which
can be recursively partitioned in the same way as M(G).

7. The recursive partitioning mentioned in Condition 6 reaches the base case (graphs with
one or zero vertices) in O(log n) levels of recursion.
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▶ Lemma 18. Given a graph M(G) satisfying the conditions in Section 4.3, the expansion
of M(G) is Ω(1/nc), where c = O(1).

We defer the proof of Lemma 18 to the appendix of the full version.
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