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Abstract
A framework consists of an undirected graph G and a matroid M whose elements correspond to
the vertices of G. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed
parameterized algorithms for computing paths of rank k in frameworks. More precisely, for vertices s

and t of G, and an integer k, they gave FPT algorithms parameterized by k deciding whether there is
an (s, t)-path in G whose vertex set contains a subset of elements of M of rank k. These algorithms
are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and
therefore the existence of a deterministic FPT algorithm for this problem remains open.

We present the first deterministic FPT algorithm that solves the problem in frameworks whose
underlying graph G is planar. While the running time of our algorithm is worse than the running
times of the recent randomized algorithms, our algorithm works on more general classes of matroids.
In particular, this is the first FPT algorithm for the case when matroid M is represented over
rationals.

Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex
technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us
to employ the toolbox of representative sets to design a dynamic programming procedure solving
the problem efficiently on instances of bounded treewidth.
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1 Introduction

A framework is a pair (G, M), where G is a graph and M = (V (G), I) is a matroid on
the vertex set of G. This term appears in the recent monograph of Lovász [39], where
he defines frameworks as graphs with a collection of vectors of Rd labeling their vertices.
Frameworks have appeared in the literature under many different names. For example, they
are mentioned as pregeometric graphs in the influential work of Lovász [37] on representative
families of linear matroids and as matroid graphs in the book of Lovász and Plummer [38].
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32:2 Computing Paths of Large Rank in Planar Frameworks Deterministically

The problem of computing maximum matching in frameworks is closely related to the
matchoid, the matroid parity, and polymatroid matching problems (see [38] for an overview).
More broadly, the problems of finding specific subgraphs of large ranks in frameworks belong
to the wide family of problems about submodular function optimization under combinatorial
constraints [7, 8, 14,41].

Fomin et al. in [15] introduced the following Maximum Rank (s, t)-Path problem. In
this problem, given a framework (G, M), two vertices s and t of G, and an integer k, we seek
for an (s, t)-path in G where the rank function of M evaluates to at least k. We say that
such a path has rank at least k.

Input: A framework (G, M), vertices s and t of G, and an integer k ≥ 0.
Task: Decide whether G contains an (s, t)-path of rank at least k.

Max Rank (s, t)-Path

Max Rank (s, t)-Path encompasses several fundamental and well-studied problems
about paths and cycles in undirected graphs.

Longest path. Of course, when M is a uniform matroid, then a path is of rank at least k if
and only if it contains at least k vertices. In this case, we have the classical Longest Path
problem, where for a graph G and integer k the task is to identify whether G contains a path
with at least k vertices [1].

T -cycle. In this problem, we are given a set T of terminals and the task is to decide whether
there is a cycle through all terminals [5, 25,45]. T -cycle is the special case of Max Rank
(s, t)-Path. Consider the following linear matroid. For every vertex of G not in T we assign
a |T |-dimensional vector whose all entries are zero. To vertices of T we assign vectors forming
an orthonormal basis of R|T |. Then G has a cycle passing through all terminals if and only
if (G, M) has an (s, t)-path of rank |T |, for some {s, t} ∈ E(G).

Maximum Colored Path. In the Maximum Colored (s, t)-Path problem, we are given a
colored graph G, two vertices s and t of G, and an integer k. The task is to decide whether
G has an (s, t)-path containing at least k different colors [6, 15] (see also [9, 10]). Maximum
Colored (s, t)-Path is the special case of Max Rank (s, t)-Path where the matroid M is
a partition matroid. Indeed, in this matroid the ground set V (G) is partitioned into classes
L1, . . . , Lt and a set I is independent if |I ∩ Li| ≤ 1 for every label i ∈ {1, . . . , t}. In this
way, a path of G of rank at least k is a path containing vertices of at least k different (color)
classes among L1, . . . , Lt.

Randomized FPT algorithms for Maximum Rank (s, t)-Path. The parameterized com-
plexity of Maximum Rank (s, t)-Path was unknown until very recently. The first FPT
algorithm for Maximum Rank (s, t)-Path was given in [15]. This algorithm runs in time
2O(k2 log(q+k))nO(1) and works on frameworks with matroids represented in finite fields of
order q. Also, Eiben, Koana, and Wahlström [13], using different techniques, obtained an
FPT algorithm for the same problem that runs in time 2knO(1) on frameworks with matroids
representable over fields of characteristic two. These two algorithms use two different al-
gebraic methods. The algorithm of [15] extends the celebrated algebraic technique based
on cancellation of monomials used by Björklund, Husfeldt, and Taslaman [5] to solve the
T -Cycle problem, while the algorithm of [13] utilizes the toolbox of (constrained) multilin-
ear detection [3, 4, 34,35] combined with determinantal sieving [13]. Both these algorithms
involve polynomial identity testing and invoke the Schwartz-Zippel lemma, and therefore
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are randomized. In fact, because of the crucial use of the Schwartz-Zippel lemma in both
these algorithms, as the authors of [13] state it, “derandomization appears infeasible” for the
algorithms of [15] and [13] for Maximum Rank (s, t)-Path. Therefore, the next challenge is
to obtain derandomized FPT algorithms for this problem.

Our results. Our main result establishes the first deterministic FPT algorithm for Maximum
Rank (s, t)-Path on frameworks of planar graphs and matroids representable over finite
fields or over the field of rationals. We use |G| to denote the number of vertices of a graph G

and ∥M∥ to denote the bit-length of the representation matrix of a linear matroid M .

▶ Theorem 1. There is a deterministic algorithm that, given a framework (G, M), where
G is a planar graph G and M is represented as a matrix over a finite field or over Q, two
vertices s, t ∈ V (G) and an integer k, in time 22O(k log k) · (|G| + ∥M∥)O(1) either returns an
(s, t)-path of G of rank at least k, or determines that G has no such (s, t)-path.

Note that the randomized FPT algorithms of [15] and [13] work for matroids representable
over finite fields or fields of characteristic two. The algorithm of Theorem 1, apart from
being the first deterministic algorithm for Maximum Rank (s, t)-Path, is also the first FPT
algorithm for frameworks whose matroids are not represented over a finite field or a field of
characteristic two, but are represented over Q.

Our techniques. To design the deterministic FPT algorithm of Theorem 1, we follow a
different proof strategy than that of [15] and [13]. Our approach is based on the win/win
arguments of the celebrated irrelevant vertex technique of Robertson and Seymour [42]. The
general scheme of this technique is the following. If the graph satisfies certain combinatorial
properties, then one can identify a vertex of the graph that can be declared irrelevant,
meaning that its deletion results in an equivalent instance of the problem. Therefore, after
deleting this vertex, we can iterate on the (equivalent) reduced instance. Once this reduction
rule can not be further applied, the obtained reduced instance is equivalent to the original
one and also “simpler”. Therefore, one remains to argue that the problem can be solved
efficiently in the reduced equivalent instance. This is a standard technique in parameterized
algorithms design – see, for example, [2, 17, 19, 20, 22–30, 32, 40, 44] (see also [11, Section
7.8]). The standard mesure of complexity of instances for the application of the irrelevant
vertex technique is treewidth. In particular, the strategy is formulated as follows. As long
as the treewidth of the instance is large enough, detect and remove irrelevant vertices. If
the treewidth is small, then solve the problem on this equivalent instance using dynamic
programming.

Our application of the irrelevant vertex technique is inspired by the algorithm of Kawara-
bayashi [25] for T -cycle and extends its methods. In a typical irrelevant-vertex argument,
one has to prove that every solution can “avoid” a vertex that will be declared irrelevant.
For example, in the classical application of Robertson and Seymour [42] for the Disjoint
Paths problem, one should argue that (if the graph has large treewidth) any collection of
disjoint paths between certain terminals can be “rerouted away” from a vertex v and this
vertex should be declared irrelevant. In our case, where we seek an (s, t)-path of large rank
in a framework, this rerouting should guarantee that large rank is preserved. In general,
to deal with such problems on frameworks, one should employ new arguments to adjust
this technique to take into account the structure of the matroid. The way we circumvent
this problem for Maximum Rank (s, t)-Path is to formulate such a rerouting argument
in a “sufficiently insulated” area of the graph where independent sets of the matroid M
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appear in a homogeneous way. Planarity of the input graph allows to find such an area using
the grid-like structure of walls. An overview of this approach is provided in Subsection 1.1.
This application of the irrelevant vertex technique for frameworks is novel and illustrates an
interesting interplay between combinatorial structures and algebraic properties, that may be
of independent interest.

The dynamic programming on graphs of bounded treewidth is pretty standard (see,
e.g., [12]) up to one detail. To encode a partial solution, we keep the information about
vertices forming independent sets of matroid M visited by a partial solution. However, the
number of independent sets of size at most k in M could be of order nk. Thus a naive
encoding of partial solutions would result in blowing-up of the computational complexity. To
avoid this, we store only representative sets (see [18,36]) instead of all possible independent
sets. Both randomized [18] and deterministic [36] constructions of representative sets require
a linear representation of M . This is the reason why Theorem 1 is stated for linear matroids.
We point out that the dynamic programming subroutine for graphs of bounded treewidth is
the only place in the proof of Theorem 1 requiring a representation of M . It is an interesting
open question, whether Maximum Rank (s, t)-Path is FPT when parameterized by k and
the treewidth if the input matroid is given by its independence oracle.

1.1 Overview of the proof of Theorem 1
Our general approach is the following. We show that if the treewidth of the input graph G

is 2O(k log k), then Maximum Rank (s, t)-Path can be solved in FPT time by a dynamic
programming algorithm. Otherwise, if the treewidth is sufficiently large, we give an algorithm
that either finds an (s, t)-path of rank at least k or identifies an irrelevant vertex v, that is,
a vertex whose deletion results in an equivalent instance of the problem. In the latter case,
we delete v and iterate on the reduced instance.

If the treewidth of the input graph is large, i.e., of order 2Ω(k log k), we exploit the grid-
minor theorem of Robertson and Seymour for planar graphs [43] that asserts that a planar
graph either contains (w × w)-grid as a minor or the treewidth is O(w). More precisely, we
have that given a plane embedding of G, we can find a plane h-wall for h = 2Ω(k log k) as
a topological minor or, equivalently, a plane subgraph of G that is a subdivision of such a
wall. To explain our arguments, we need some notions that are informally explained here by
making use of figures. In particular, an example of an h-wall for h = 7 is given in Figure 1.

Figure 1 A 7-wall and its layers.

Note that an h-wall has ⌊h/2⌋ nested cycles, called layers, that are shown in Figure 1
in red and blue. The layer forming the boundary of a wall is called the perimeter of the
wall and is shown in red in the figure. We extend the notions of layers and perimeter for
a subdivided h-wall, that is, the graph obtained from an h-wall by replacing some of its
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edges by paths. The vertices of the initial h-wall, i.e., before replacing edges by paths, are
called the branch vertices of the subdivided h-wall. Given a plane subdivided h-wall W in
G, we call the subgraph of G induced by the vertices on the perimeter and inside the inner
face of the perimeter the compass of W and denote it by compass(W ). Notice that we can
assume that the compass of the subdivided h-wall W in G does not contain the terminal
vertices s and t by switching to a smaller subwall if necessary. Furthermore, we can assume
that compass(W ) is a 2-connected graph as any (s, t)-path can only contain vertices of the
biconnected component of compass(W ) containing W . Also we can assume that G has two
disjoint paths connecting s and t with two distinct vertices on the perimeter of W ; otherwise,
any vertex of compass(W ) outside the perimeter is trivially irrelevant.

Observe that for any nontrivial subwall W ′ of W , compass(W ′) is also 2-connected.
Therefore, for every two distinct vertices x and y on the perimeter of W ′ and any z ∈
V (compass(W ′)), compass(W ′) has internally disjoint (x, z) and (y, z)-paths. In particular,
given a set of vertices S ⊆ V (compass(W ′)) that are independent with respect to M , we can
join any z ∈ S with x and y by disjoint paths. This observation is crucial for us.

s

t

W1 W2

Wk

Figure 2 An (s, t)-path for walls of big rank.

Suppose that there is a packing of k subwalls W1, . . . , Wk in W separated by paths in
W as it is shown in Figure 2 such that the rank r(compass(Wi)) ≥ k for i ∈ {1, . . . , k}.
Then we can choose vertices v1, . . . , vk in compass(W1), . . . , compass(Wk), respectively, in
such a way that {v1, . . . , vk} is an independent set of M . Then by our observation, we can
construct an (s, t)-path in G that goes through v1, . . . , vk as it is shown in the figure in green.
Suppose that this is not the case. Then, by zooming inside the wall, we can assume that
r(compass(W )) < k. Moreover, by recursive zooming, we can find a subwall W ′ of W with
the following structural properties (see Figure 3).

There is a packing of k + 1 subwalls W0, W1, . . . , Wk in W ′ separated by paths in W ′

shown in red in Figure 3 such that r(compass(Wi)) = r(compass(W ′)) for i ∈ {0, . . . , k}.
The packing of W0, W1, . . . , Wk is surrounded by O(k2) “insulation” layers of W ′ shown
in blue.

We claim that vertices of W0 are irrelevant.
To see this, consider an (s, t)-path P of rank at least k in G. We show that if P goes

through a vertex of W0, then the path can be rerouted as it is shown in Figure 3 in green
to avoid W0. Consider an independent set X ⊆ V (P ) of rank k and let u1, . . . , uℓ be the
vertices of X that are not spanned by V (compass(W ′)) in M . Then u1, . . . , uℓ are outside
W ′. We prove that there are two distinct vertices x and y on the inner insulation layer of W ′,

ISAAC 2023
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and an (s, x)-path P1 and an (y, t)-path P2 such that (i) x and y are unique vertices of these
paths in the inner insulation layer, and (ii) u1, . . . , uℓ ∈ V (P1)∪V (P2). The proof that O(k2)
insulation layers are sufficient for rerouting P is non-trivial. In particular, we adapt the
ideas from [25] as well as the structural results of Kleinberg [31]. Further, using the fact that
r(compass(Wi)) = r(compass(W ′)) for i ∈ {1, . . . , k}, we show that for every independent set
I ′ of M consisting of vertices in compass(W ′), one can also find an independent set Ii of M in
compass(Wi) such that |Ii| = |I ′|, for every i ∈ {1, . . . , k}. Therefore, one can select, for every
Wi, a vertex vi ∈ Ii and this choice can be made so that r({v1, . . . , vk}) = r(compass(W ′)).
Then we construct an (x, y)-path Q in the inner part of W ′ such that (i) Q is internally
disjoint with P1 and P2, (ii) Q goes through v1, . . . , vk, and (iii) Q avoids W0. We have
that P ′ = P1QP2 is an (s, t)-path that goes through u1, . . . , uℓ and v1, . . . , vk. Note that,
replacing the vertices of X that are spanned by V (compass(W ′)) by the vertices {v1, . . . , vk},
we obtain the set X ′ = {u1, . . . , uℓ, v1, . . . , vk} and r(X ′) = r(X), and the latter holds since
r({v1, . . . , vk}) = r(compass(W ′)). Therefore r(P ′) ≥ r(X) ≥ k. Since Q avoids W0, P ′ has
the same property.

s

t

u2
u1

P1

x

W0 W1

v1

Q

vk

Wk

y

uℓ
P2

Figure 3 Rerouting an (s, t)-path.

Finally, we note that the algorithm of Kawarabayashi [25] for T -cycle works for general
graphs. The statement of Theorem 1 is limited to planar graphs and planarity is required to
ensure that the rerouting does not decrease the rank of an (s, t)-path. It is quite plausible
that with additional technicalities our method could be lifted when the underlying graph
of the framework is of bounded genus, and more generally, minor-free. However, it is very
unclear, whether rerouting that does not decrease the rank could be achieved for general
graphs. It remains the main obstacle towards pushing the irrelevant vertex technique from
frameworks with planar graphs to frameworks with general graphs.

Organization of the paper. In Section 2 we show how to reduce to instances of bounded
treewidth using the irrelevant vertex technique. Results whose proofs are omitted in this
extended abstract are marked with a star (⋆) and their proofs can be found in the full
version [16]. We also refer to the full version for formal definitions of the aforementioned
notions. We conclude in Section 3 with open questions and possible future research directions.
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2 Rerouting paths and cycles

In this section, our goal is to prove Theorem 1 that we restate here.

▶ Theorem 1. There is a deterministic algorithm that, given a framework (G, M), where
G is a planar graph G and M is represented as a matrix over a finite field or over Q, two
vertices s, t ∈ V (G) and an integer k, in time 22O(k log k) · (|G| + ∥M∥)O(1) either returns an
(s, t)-path of G of rank at least k, or determines that G has no such (s, t)-path.

The algorithm of Theorem 1 consists of two parts. In the first part, we use the irrelevant
vertex technique in order to design an algorithm that removes vertices form the input graph
as long as its treewidth is big enough. In order to do this, we show a combinatorial result
that allows us to argue that, given a planar graph and a wall of it and a vertex set S that
lies outside the wall, if there is a path P that contains S and invades deeply enough inside
the wall, we can find another path P ′ that contains S (with the same endpoints as P ) and
avoids some “central area” of the wall (Lemma 4). Then, we give an algorithm (Lemma 6)
that given a planar graph of “big enough” (as a function of k) treewidth, outputs, in time
22O(k log k) · (|G| + ∥M∥)O(1), either a path of rank at least k or an irrelevant vertex. The
dynamic programming algorithm that solves the problem in graphs of bounded treewidth is
included in the full version of the paper.

2.1 Rerouting paths and cycles
In this subsection, we aim to prove the main combinatorial result (Lemma 4) that allows
us to find an (s, t)-path that contains a given set S and avoids some inner part of a given
wall. Before stating Lemma 4, we state the following result (Lemma 3) that will be an
important tool for the proof of Lemma 4. The proof of Lemma 3 is inspired by the proof
of [25, Lemma 1]. An in-peg of the perimeter of a wall W is a vertex on the perimeter of W

that has degree three in W .

▶ Lemma 3 (⋆). Let G be a planar graph, let k ∈ N, let W be a wall of height at least
2k + 3, and let s, t ∈ V (G) \ V (compass(W )). Also, let E = {e1, . . . , ek, ek+1, ek+2} be a
set of k + 2 edges of G, where, for every i ∈ {1, . . . , k}, ei = {vi, ui}, ek+1 = {vk+1, s},
ek+2 = {vk+2, t}, and let X be the set {vk+1, vk+2} ∪

⋃
i∈{1,...,k}{vi, ui}. If every v ∈ X is

an in-peg of perim(W ), then there is an (s, t)-path in G that contains the edges e1, . . . , ek+2
and its intersection with compass(W (k+1)) is a path of perim(W (k+1)) whose endpoints are
branch vertices of W .

We now prove the following result.

▶ Lemma 4. There is a function h : N → N such that if k, z ∈ N, G is a planar graph,
s, t ∈ V (G), S is a subset of V (G) of size at most k, W is a wall of G of at least h(k) layers
and whose compass is disjoint from S ∪{s, t}, and P is an (s, t)-path of G such that S ⊆ V (P )
and P intersects V (inn(W (h(k)))), then there is an (s, t)-path P̃ of G such that S ⊆ V (P̃ )
and its intersection with compass(W (h(k))) is a path of perim(W (h(k))) whose endpoints are
branch vertices of W . Moreover, h(k) = O(k2).

Proof. We set h(k) := 2k · (k + 2) + 2k + 1. Let W be a wall of at least h(k) layers. For
i ∈ {1, . . . , k + 2}, we use Ci to denote the layer L2k·(i−1)+1 of W . Intuitively, we take C1 to
be the first layer of W and for every i ∈ {2, . . . , k +2}, we take Ci to be the 2k-th consecutive
layer after Ci−1. Also, we use Di to denote the vertex set of compass(W (2k·(i−1)+1)). Keep
in mind that Ci is the perimeter of W (2k·(i−1)+1). For every i ∈ [k + 2], we consider the
collection Fi of paths of G that are subpaths of P that intersect Di only on their endpoints
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and that there is an onto function mapping each vertex u ∈ S ∪ {s, t} to the path in Fi that
contains u. Intuitively, for each u ∈ S ∪ {s, t} we consider the maximal subpath of P that
contains u and intersects Di only on its endpoints and we define Fi to be the collection of
these maximal paths (see Figure 4 for an example).

u1 u2
u3

v1

v2 v3

v4 v5

v6 v7

v8
v9

v10

v11 v12

v13

v14

s

t

C1

C2k+1

C4k+1

Figure 4 An example of an (s, t)-path P containing an independent set S = {u1, u2, u3}. In
this example, F1 is the collection of the four red paths (the ones with endpoints (s, v1), (v4, v5),
(v8, v9), and (v14, t)), F2 is the collection of the four green paths (the ones with endpoints (s, v2),
(v3, v6), (v7, v10), (v13, t)), and F3 is the collection of the two blue paths (the (s, v11)-path and the
(v12, t)-path).

Observe that |F1| ≤ k + 2 (since |S ∪ {s, t}| ≤ k + 2) and |Fk+2| ≥ 2 (since V (P ) ∩
V (inn(W (h(k)))) ̸= ∅ and therefore P intersects at least twice every Ci, i ∈ [k + 2]). For
every i ∈ {1, . . . , k + 2}, we assume that Fi = {Fi,1, . . . , Fi,|Fi|}, where the ordering is given
by traversing P from s to t. For every i ∈ {1, . . . , k + 2}, we set Qi = {Qi,1, . . . , Qi,|Fi|−1},
where, for each j ∈ [|Fi| − 1], Qi,j is the minimal subpath of P that intersects both V (Fi,j)
and V (Fi,j+1). Observe that, for every i ∈ {1, . . . , k + 2}, P is the concatenation of the
paths Fi,1, Qi,1, Fi,2, . . . , Qi,|Fi|−1, Fi,|Fi|. In Figure 4, Q1 = {Q1,1, Q1,2, Q1,3}, where Q1,1
is the (v1, v4)-subpath, Q1,2 is the (v5, v8)-subpath, and Q1,3 is the (v9, v14)-subpath of P ,
Q2 = {Q2,1, Q2,2, Q2,3}, where Q2,1 is the (v2, v3)-subpath, Q2,2 is the (v6, v7)-subpath, and
Q2,3 is the (v10, v13)-subpath of P , and Q3 consists of the (v11, v12)-subpath Q3,1 of P .

It is easy to see that for every i ∈ {1, . . . , k + 1}, |Fi+1| is equal to |Fi| minus the number
of paths in Qi that do not intersect Ci+1 and therefore, |Fi| ≥ |Fi+1|. Therefore, given
that |F1| ≤ k + 2, |Fk+2| ≥ 2, and for every i ∈ {1, . . . , k + 1}, |Fi| ≥ |Fi+1|, there is an
i0 ∈ {1, . . . , k + 1} such that |Fi0 | = |Fi0+1| (if there are many such i0, we pick the minimal
one). This implies that every path in Qi0 intersects Ci0+1.

For each F ∈ Fi0 , we denote by vF and uF the endpoints of F . We define the graph G′

obtained from G after removing the internal vertices of every F ∈ Fi0 (i.e., the vertex set⋃
F ∈Fi0

(V (F ) \ {vF , uF })) and adding the edge {vF , uF } for every F ∈ Fi0 . Observe that
G′ is also planar and contains Di0 as a subgraph. Moreover, notice that, for every F ∈ Fi0 ,
{vF , uF } ∈ V (Ci0) ∪ {s, t}. In Figure 4, |F1| = |F2| and thus G′ is obtained after replacing
each 3-colored path with an edge.

In the rest of the proof we will argue that, in G′, there is an (s, t)-path that contains all
edges {vF , uF }, F ∈ Fi0 , and its intersection with V (compass(W (h(k)))) is the vertex set of
a subdivided edge of W that lies in perim(W (h(k))). Having such a path in hand, we can
replace each edge {vF , uF }, F ∈ Fi0 with the corresponding path F and thus obtain the
path P̃ claimed in the statement of the lemma.

We will denote by C the cycle Ci0 (that is the layer L2k·(i0−1)+1) and by C ′ the layer
L2k·i0 . To get some intuition, recall that Ci0+1 = L2k·i0+1 and therefore C ′ is the layer of W

“preceding” Ci0+1. Since every path in Qi0 intersects Ci0+1, it holds that every path in Qi0

intersects C ′ at least twice. Therefore, if we set Y := V (C) ∩
⋃

F ∈Fi0
{vF , uF } and ℓ := |Y |,

then ℓ ≤ 2k and there are ℓ disjoint paths from Y to C ′ (for an example, see the left part
of Figure 5).
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Recall that perim(W (2k·i0)) = C ′. We set B to be the set of branch vertices of W

that are in V (C ′) and have degree three in W (2k·i0). Also, we set K to be the graph
G′ \ V (inn(W (2k·i0))). The next claim states that there also exist ℓ disjoint paths from Y to
B in K. We omit the proof and we refer the reader to the full version [16].

C

C′

C

C′

s
t

s
t

Figure 5 A visualization of the statement of Claim 5. In both figures, the edges {vF , uF } are
depicted in blue, the black vertices correspond to the set Y and the red vertices correspond to the
set B. In the left figure, we illustrate |Y | disjoint paths from Y to C′, while in the right figure, we
illustrate |Y | disjoint paths from Y to B.

▷ Claim 5 (⋆). There is a set X ⊆ B, a bijection ρ : Y → X, and a collection P = {Pv | v ∈
Y } of pairwise disjoint paths where, for every v ∈ Y , Pv is a (v, ρ(v))-path in K.

Following Claim 5, let X ⊆ B, let a bijection ρ : Y → X, and let a collection P = {Pv |
v ∈ Y } of pairwise disjoint paths such that for every v ∈ Y , Pv is a (v, ρ(v))-path in K.

Now, for each F ∈ Fi0 , we consider the path PF obtained after joining the paths PvF

and PuF
by the edge {vF , uF } (in the case where s, t ∈ {vF , uF }, we just extend the

corresponding path in P by adding the edge {vF , uF }). Let G′′ be the graph obtained
from G′ after contracting each PF , F ∈ Fi0 to an edge ePF

and let E = {ePF
| F ∈ Fi0}.

Then, notice that G′′ contains W (2k·i0) as a subgraph and since h(k) = 2k · (k + 2) + 2k + 1,
the wall W (2k·i0) has at least k + 1 layers and therefore height at least 2k + 3. Therefore,
by Lemma 3, G′′ contains an (s, t)-path that contains all edges in E and its intersection with
compass(W (2k·i0+k+1)) is a path of perim(W (2k·i0+k+1)) whose endpoints are branch vertices
of W .

Thus, using this (s, t)-path in G′′, we can find an (s, t)-path P ⋆ in G that contains
S and its intersection with compass(W (2k·i0+k+1)) is a path of perim(W (2k·i0+k+1)) whose
endpoints, say x and y, are branch vertices of W . Finally, let an (x, y)-path Rx,y in
compass(W (2k·i0+k+1)) whose intersection with compass(W (h(k))) is a path of perim(W (h(k)))
whose endpoints are branch vertices of W . The proof concludes by observing that (P ⋆ \
V (compass(W (2k·i0+k+1))))∪Rx,y is the (s, t)-path claimed in the statement of the lemma. ◀

We stress that, while Lemma 4 deals with the case of “rerouting” an (s, t)-path, we can
apply the same arguments to “reroute” a cycle that contains a fixed set S away from the
inner part of some wall.

2.2 Equivalent instances of small treewidth
In this subsection, we design an algorithm that receives a framework (G, M), where G is a
planar graph of “big enough” treewidth, and two vertices s, t ∈ V (G), and outputs either a
report that G contains an (s, t)-path of rank at least k, or an irrelevant vertex that can be
safely removed. In frameworks, to remove a vertex, one has to remove this vertex from G

and also restrict the matroid.
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Restrictions of matroids. Let M = (V, I) be a matroid and let S ⊆ V . We define the
restriction of M to S, denoted by M |S, to be the matroid on the set S whose independent
sets are the sets in I that are subsets of S. Given a v ∈ V , we denote by M \ v the matroid
M |(V \ {v}).

The goal of this subsection is to prove the following.

▶ Lemma 6. There is a function g : N → N and an algorithm that, given an integer k ∈ N,
a framework (G, M), where M is a matroid for which we can verify independence in time
∥M∥O(1), and G is a planar graph of treewidth at least g(k), and two vertices s, t ∈ V (G),
outputs, in time 22O(k log k) · (|G| + ∥M∥)O(1),

either a report that G contains an (s, t)-path of rank at least k, or
a vertex v ∈ V (G) such that (G, M, k, s, t) and (G\v, M \v, k, s, t) are equivalent instances
of Maximum Rank (s, t)-Path.

Moreover, g(k) = 2O(k log k).

Keep in mind that, if M is represented over a finite field or Q, we can verify independence
in time that is a polynomial in ∥M∥. In order to prove Lemma 6, we need some additional
definitions and results.

Packings of walls. Let G be a planar graph and W be a wall of G. Let z, r ∈ N and let q

be a non-negative odd integer. We say that W admits an (z, r, q)-packing of walls, if W has
height at least h, for some odd h ≥ 2z, and there is a collection W = {W0, W1, . . . , Wr−1}
of subwalls of W , such that for every i ∈ {0, . . . , r − 1}, Wi is a subwall of W of height at
least q such that V (Wi) is a subset of V (W (z+1)), and for every i, j ∈ {0, . . . , r − 1}, with
i ≠ j, V (compass(Wi)) and V (compass(Wj)) are disjoint. We call W an (z, r, q)-packing of
W (see Figure 3 for a visualization of a packing of a wall W ).

▶ Observation 7. Given z, r ∈ N, an odd integer q ∈ N, and a planar graph G, every wall
W of G of height at least 2z + ⌈

√
r⌉ · (q + 1) + 1 admits a (z, r, q)-packing.

Let W be a wall of a planar graph. We use ρ(W ) to denote r(V (compass(W ))).

▶ Lemma 8 (⋆). There is a function f : N4 → N and an algorithm that, given integers
k, z, r, q ∈ N, where q is odd, a framework (G, M), where G is planar and M is a matroid
for which we can verify independence in time ∥M∥O(1), and a wall W of G of height at least
f(k, z, r, q) such that ρ(W ) ≤ k, outputs, in (k + 1) · r · (|G| + ∥M∥)O(1) time, a subwall W ′

of W of height h, for some odd h ∈ N such that h ≥ 2z, and a (z, r, q)-packing W of W ′ such
that for every Wi ∈ W, ρ(Wi) = ρ(W ′). Moreover, f(k, z, r, q) = O(rk/2 · z · q).

We are now ready to prove Lemma 6.

Proof of Lemma 6. We set b = h(k), x = k + 1, z = (k + 1) · b, q = f(k − 1, z, x, 3),
r = ⌈

√
k⌉ · (q + 1) + 3, and g(k) = 36(r + 1). We first assume that G is 2-connected. If G

is not connected, then we break the problem in subproblems, each one corresponding to
a 2-connected component B of G and if the vertices of B are separated from s or t by a
cut-vertex v of G, then we consider the problem where v is set to be s or t, respectively.

Since the treewidth of G is at least g(k) = 36(r + 1), due to [21, Lemma 4.2], G has a
(4r + 1)-wall. We then consider an r-wall W of G such that s, t /∈ V (compass(W )) and an
(1, k, q)-packing W̃ = {W̃1, . . . , W̃k} of W . This (1, k, q)-packing exists because of the fact
that r = ⌈

√
k⌉ · (q + 1) + 3 and due to Observation 7 and we can find it in O(n) time. For

every i ∈ {1, . . . , k}, we set Ki := V (compass(W̃i)). Then, compute the rank of Ki, for each
i ∈ {1, . . . , k}. This can be done in time k · (|G| + ∥M∥)O(1).
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If every Ki has rank at least k, then notice that there is a set S ⊆ V (G) such that
r(S) = k and for every i ∈ {1, . . . , k}, |S ∩ Ki| = 1. To obtain an (s, t)-path P such that
S ⊆ V (P ), we do the following: We first pick two disjoint paths Ps, Pt from the perimeter of
W to s and t respectively (these exist since G is 2-connected). Let D be the perimeter of
W and let s′ and t′ be the endpoints of Ps and Pt in D. Also, let L2 be the second layer of
W . Observe that, since the compass of a wall is a connected graph, there is also a path P

in G such that the endpoints, say x, y, of P are in L2, no internal vertex of P is a vertex
of L2, and S ⊆ V (P ). Finally, observe that there exist two disjoint paths Ps′x, Pt′y in the
closed disk bounded by D and L2 connecting s′ with x and t′ with y, respectively, and that
P := Ps ∪ Ps′x ∪ P ∪ Pt′y ∪ Pt is an (s, t)-path such that S ⊆ V (P ) (see Figure 2).

Suppose now that there is an i ∈ {1, . . . , k} such that the rank of Ki is at most k − 1.
Since the corresponding wall W̃i is of height at least q = f(k − 1, z, x, 3), by Lemma 8, we
can find a subwall W ′ of W̃i of height h, for some odd h ≥ 2z and a (z, k + 1, 3)-packing
W = {W0, W1, . . . , Wk} of W ′, so that for every i ∈ {0, . . . , k}, ρ(Wi) = ρ(W ′). Let v be a
central vertex of W0.

We now prove that (G, M, k, s, t) and (G \ v, M \ v, k, s, t) are equivalent instances
of Maximum Rank (s, t)-Path. We show that if (G, M, k, s, t) is a yes-instance, then
(G\v, M \v, k, s, t) is also a yes-instance, since the other implication is trivial. If (G, M, k, s, t)
is a yes-instance, then there is a set of vertices S = {u1, . . . , uk} ⊆ V (G) and an (s, t)-path P

in G such that r(S) = k and S ⊆ V (P ). The fact that z = (k + 1) · b implies that there is an
i ∈ {1, . . . , k + 1} such that the vertex set V (compass(W ′((i−1)·b+1)) \ V (inn(W ′(i·b)))), which
we denote by Di, does not intersect S. Let Sin be the vertices of S that are contained in
compass(W ′(i·b)) and let Sout be the set S \Sin. We will show that there is a set S′ ∈ I(M \v)
and a path P ′ such that r(Sout ∪ S′) ≥ k, Sout ∪ S′ ⊆ V (P ′) and V (P ′) ⊆ V (G \ v).

We assume that v ∈ V (P ), otherwise we set S′ := Sin and P ′ := P and the lemma follows.
By Lemma 4, there is a path P̃ such that Sout ⊆ V (P̃ ) and V (P̃ ) ∩ V (compass(W ′(i·b))) is
the vertex set of a path P̂ of W ′

0 that lies in perim(W ′(i·b)) and whose endpoints are branch
vertices of W ′(i·b). Let sP̂ and tP̂ be the endpoints of P̂ .

We can assume that ρ(Wi) = ρ(W ′) > 0, for every i ∈ {0, . . . , k}, since otherwise
Sin = ∅ and the claim holds trivially. For every i ∈ {0, . . . , k}, since ρ(Wi) = ρ(W ′) and
Sin is an independent set of M that is a subset of compass(W ′), there is an independent
set Si ⊆ V (compass(Wi)) such that |Si| = |Sin|. Furthermore, because ρ(Wi) = ρ(W ′)
for i ∈ {0, . . . , k}, we can choose a set S′ = {v1, . . . , vk} where vi is a vertex in Si for
i ∈ {1, . . . , k} in such a way that r(S′) = ρ(W ′). Then r(Sout ∪ S′) = |Sout ∪ Sin| ≥ k. Also,
notice that, for every x, y ∈ Lz, there is an (x, y)-path P ⋆ in W (z) \ (V (Lz) \ {x, y}) that
contains S′ and avoids v. It is easy to see that there exist two disjoint paths Q1, Q2 in
compass(W ′(i·b)

0 ) connecting {sP̂ , tP̂ } with {x, y} and that these paths can be picked to be
internally disjoint from P̂ and P ⋆. Thus, if P̃ ′′ is the graph obtained from P̃ ′ after removing
all internal vertices of P̂ , then P̃ ′′ ∪ Q1 ∪ Q2 ∪ P ⋆ is the claimed (s, t)-path that contains
S′ ∪ Sout and avoids v (see Figure 3). ◀

2.3 Proof of Theorem 1
Let (G, M) be a framework, where G is a planar graph and M is a linear matroid given by
its representation over a finite filed or the field of rationals, and let k ∈ N. We set q = g(k),
where g is the function of Lemma 6. Keep in mind that g(k) = 2O(k log k). We describe an
algorithm A that solves Maximum Rank (s, t)-Path.

Our algorithm A first calls the single-exponential time 2-approximation algorithm for
treewidth of Korhonen [33] for G and q which runs in time 2q · n = 22O(k log k) · n and outputs
either a tree decomposition of G of width at most 2q or a report that the treewidth of G is larger
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than q. In the first possible output, we can solve the problem using our dynamic programming
algorithm which runs in time 2qO(1) · (|G| + ∥M∥)O(1) = 22O(k log k) · (|G| + ∥M∥)O(1). In the
second possible output (i.e., where G has treewidth at least q), we apply the algorithm of
Lemma 6 and, in time 22O(k log k) · (|G| + ∥M∥)O(1), we either report a positive answer, or find
a vertex v ∈ V (G) such that (G, M, k, s, t) and (G \ v, M \ v, k, s, t) are equivalent instances
of the problem. If the latter happens, we recursively run A for the framework (G \ v, M \ v).
Observe that the overall running time of A is 22O(k log k) · (|G| + ∥M∥)O(1).

3 Conclusion

In this paper, we provide a deterministic FPT algorithm for Maximum Rank (s, t)-Path
for frameworks (G, M), where G is a planar graph and M is represented over a finite field or
the rationals. Let us conclude by discussing some open research directions.

Since the algorithm of [15] for Maximum Rank (s, t)-Path runs in time
2O(k2 log(k+q))nO(1), a natural question is whether one can drop the double-exponential
dependence on the parameter k on the running time of the algorithm of Theorem 1. The
main bottleneck is the bound the treewidth of a graph that contains no irrelevant vertices.
In particular, our approach to detect irrelevant vertices requires a recursive zooming into a
given wall of the graph in order to find a packing of k + 1-many k-walls with compasses of
specific rank. To perform this zooming, one should ask for the initial wall to be of height
at least kO(k). It is unclear whether we can circumvent this argument and detect irrelevant
vertices if the initial wall has height linear (or even polynomial) in k.

As mentioned in the introduction, the method of [15] gives a randomized algorithm for
the more general problem of Maximum Rank (S, T )-Linkage. In this paper, we focus
on the special case where |S| = |T | = 1 and one could ask whether our techniques can be
applied to solve the general problem of detecting (S, T )-linkages of large rank for frameworks
with planar graphs and matroids represented over finite fields. Such a generalization of our
results does not seem to be trivial and therefore we leave this as an open research direction.

Another natural question to ask is whether our approach can be generalized to obtain
deterministic FPT algorithms for frameworks with more general classes of graphs. While
it seems plausible to extend the applicability of the irrelevant vertex technique arguments
up to graphs that exclude a graph as a minor, such a proof would be highly technical. For
frameworks with general graphs, it is very unclear whether one can achieve rerouting that
does not decrease the rank and therefore allow an irrelevant vertex argument to go through.

Also, in the lines of [15], an interesting open question is whether we can obtain a
deterministic FPT algorithm for Maximum Rank (s, t)-Path for frameworks with matroids
not representable in finite fields of small order or in the field of rationals. For example,
uniform matroids, and more generally transversal matroids, are representable over a finite
field, but the field of representation must be large enough. While the approach of [15] also
gives a randomized FPT algorithm for frameworks of transversal matroids, our dynamic
programming subroutine relies on the efficient computation of representative sets, which
requires a linear representation of the input matroid. We stress that this is the only place in
the proof of Theorem 1 requiring a linear representation of the matroid. Another interesting
open question, is whether Maximum Rank (s, t)-Path is FPT when parameterized by k

and the treewidth if the input matroid is given by its independence oracle.
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