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Abstract
In this paper we propose a notion of pattern avoidance in binary trees that generalizes the avoidance
of contiguous tree patterns studied by Rowland and non-contiguous tree patterns studied by Dairyko,
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achieved by applying the recent Hartung–Hoang–Mütze–Williams generation framework, by encoding
binary trees via permutations. In particular, we establish a one-to-one correspondence between tree
patterns and certain mesh permutation patterns. We also conduct a systematic investigation of all
tree patterns on at most 5 vertices, and we establish bijections between pattern-avoiding binary
trees and other combinatorial objects, in particular pattern-avoiding lattice paths and set partitions.
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1 Introduction

Pattern avoidance is a central theme in combinatorics and discrete mathematics. For
example, in Ramsey theory one investigates how order arises in large unordered structures
such as graphs, hypergraphs, or subsets of the integers. The concept also arises naturally
in algorithmic applications. For example, Knuth [28] showed that the integer sequences
that are sortable by one pass through a stack are precisely 231-avoiding permutations.
Pattern-avoiding permutations are a particularly important and heavily studied strand of
research, one that comes with its own associated conference “Permutation Patterns”, held
annually since 2003. While it may seem that pattern-avoiding permutations are somewhat
limited in scope, via suitable bijections they actually encode many objects studied in other
branches of combinatorics. Pattern avoidance has also been studied directly in these other
classes of objects, such as trees [38, 13, 12, 11, 15, 37, 6, 1, 16], set partitions [29, 24, 25,
26, 18, 22, 32, 33, 39, 19, 23, 17, 8], lattice paths [40, 5, 2, 4], heaps [30], matchings [7],
and rectangulations [34]. In this work, we focus on binary trees, a class of objects that is
fundamental within computer science, and also a classical Catalan family.
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Figure 1 Illustration of different notions of pattern containment in binary trees. Contiguous
edges are drawn solid, whereas non-contiguous edges are drawn dotted.

So far, two different notions of pattern avoidance in binary trees have been studied in the
literature. We consider a binary tree T , which serves as the host tree, and another binary
tree P , which serves as the pattern tree. Rowland [38] considered a contiguous notion of
pattern containment, where T contains P if P is present as an induced subtree of T ; see
Figure 1 (a). He devised an algorithm to compute the generating function for the number of
n-vertex binary trees that avoid P , and he showed that this generating function is always
algebraic. Dairyko, Pudwell, Tyner, and Wynn [11] considered a non-contiguous notion of
pattern containment, where T contains P if P is present as a “minor” of T ; see Figure 1 (b).
They discovered the remarkable phenomenon that for any two distinct k-vertex pattern
trees P and P ′, the number of n-vertex host trees that avoid P is the same as the number
of trees that avoid P ′, i.e., P and P ′ are Wilf-equivalent patterns. They also obtain the
corresponding generating function (which is independent of P , but only depends on k and n).

In this paper, we consider mixed tree patterns, which generalize both of the two afore-
mentioned types of tree patterns, by specifying separately for each edge of P whether it is
considered contiguous or non-contiguous, i.e., whether its end vertices in the occurrence of
the pattern must be in a parent-child or ancestor-descendant relationship (in the correct
direction left/right), respectively; see Figure 1 (c). Observe that the notions of tree patterns
considered in [38] and [11] are the tree analogues of consecutive [14] and classical permutation
patterns, respectively. Our new notion of mixed patterns is the tree analogue of vincular
permutation patterns [3], which generalize classical and consecutive permutation patterns.
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1.1 The Lucas–Roelants van Baronaigien–Ruskey algorithm

One of the goals in this paper is to generate different classes of binary trees, i.e., we seek
an algorithm that visits every tree from the class exactly once. Our starting point is a
classical result due to Lucas, Roelants van Baronaigien, and Ruskey [31], which asserts that
all n-vertex binary trees can be generated by tree rotations, i.e., every tree is obtained from
its predecessor by a single tree rotation operation; see Figures 2 and 3.
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Figure 2 Rotation in binary trees.

The algorithm is an instance of a combinatorial Gray code [41, 35], which is a listing of objects
such that any two consecutive objects differ in a “small local” change. The aforementioned
Gray code algorithm for binary trees can be implemented in time O(1) per generated tree.

Williams [42] discovered a stunningly simple description of the Lucas–Roelants van
Baronaigien–Ruskey Gray code for binary trees via the following greedy algorithm, which is
based on labeling the vertices with 1, . . . , n according to the search tree property: Start with
the right path, and then repeatedly perform a tree rotation with the largest possible vertex
that creates a previously unvisited tree.
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Figure 3 The Lucas–Roelants van Baronaigien–Ruskey algorithm to generate all binary trees
with n = 4 vertices by tree rotations. The vertices are labeled with 1, 2, 3, 4 according to the search
tree property.

1.2 Our results

It is well known that binary trees are in bijection with 231-avoiding permutations. Our
first result generalizes this bijection, by establishing a one-to-one correspondence between
mixed binary tree patterns and mesh permutation patterns, a generalization of classical
permutation patterns due to Brändén and Claesson [9]. Specifically, we show that n-vertex
binary trees that avoid a particular (mixed) tree pattern P are in bijection with 231-avoiding
permutations that avoid a corresponding mesh pattern σ(P ) (see Theorem 2 below).
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This bijection enables us to apply the Hartung–Hoang–Mütze–Williams generation frame-
work [21], which is based on permutations. We thus obtain algorithms for efficiently generating
different classes of pattern-avoiding binary trees, which work under some mild conditions
on the tree pattern(s). These algorithms are all based on a simple greedy algorithm, which
generalizes Williams’ algorithm for the Lucas–Roelants van Baronaigien–Ruskey Gray code of
binary trees (see Algorithm S, Algorithm H, and Theorems 3 and 4, respectively). Specifically,
instead of tree rotations our algorithms use a more general operation that we refer to as
a slide. We implemented our generation algorithm in C++, and we made it available for
download and experimentation on the Combinatorial Object Server [10].

For our new notion of mixed tree patterns, we conduct a systematic investigation of all tree
patterns on up to 5 vertices. This gives rise to many counting sequences, some already present
in the OEIS [36] and some new to it, giving rise to several interesting conjectures. In this
work we establish most of these as theorems, by proving bijections between different classes of
pattern-avoiding binary trees and other combinatorial objects, in particular pattern-avoiding
lattice paths (Section 6 and [20, Sec. 7.2.4]) and set partitions ([20, Thm. 15]).

1.3 Outline of this paper
In Section 2 we introduce notations that will be used throughout the paper. In Section 3
we establish a bijection between binary trees patterns and mesh patterns. In Section 4 we
present our algorithms for generating pattern-avoiding binary trees. In Section 5 we report
on our computational results for all small tree patterns. In Section 6 we prove bijections
between pattern-avoiding binary trees and Motzkin paths. Some open problems are discussed
in Section 7. Due to space constraints, this extended abstract omits proofs, and several
further results, illustrations and tables; see [20].

2 Preliminaries

In this section we introduce a few general definitions related to binary trees, and we define
our notion of pattern avoidance for those objects.

2.1 Binary tree notions

T

L(6) = L(T ) = T (5) R(6) = R(T ) = T (9)

r(T ) = 6

p(2) = 5

τ(T ) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1

cR(4) = ε

cR(2) = 4

βR(6) = 3
B−

R(6) = {6, 9}

cL(2) = 1

Figure 4 Definitions related to binary trees.
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We consider binary trees whose vertex set is a set of consecutive integers {i, i + 1, . . . , j}.
In particular, we write Tn for the set of binary trees with the vertex set [n] := {1, 2, . . . , n}.
The vertex labels of each tree are defined uniquely by the search tree property, i.e., for any
vertex i, all its left descendants are smaller than i and all its right descendants are greater
than i. The special empty tree with n = 0 vertices is denoted by ε, so T0 = {ε}. The
following definitions are illustrated in Figure 4. For any binary tree T , we denote the root
of T by r(T ). For any vertex i of T , its left and right child are denoted by cL(i) and cR(i),
respectively, and its parent is denoted by p(i). If i does not have a left child, a right child or
a parent, then we define cL(i) := ε, cR(i) := ε, or p(i) := ε, respectively. Furthermore, we
write T (i) for the subtree of T rooted at i. Also, we define L(i) := T (cL(i)) if cL(i) ̸= ε and
L(i) := ε otherwise, and R(i) := T (cR(i)) if cR(i) ̸= ε and R(i) := ε otherwise. The subtrees
rooted at the left and right child of the root are denoted by L(T ) and R(T ), respectively, i.e.,
we have L(T ) = L(r(T )), and similarly R(T ) = R(r(T )). A left path is a binary tree in which
no vertex has a right child. A left branch in a binary tree is a subtree that is isomorphic to a
left path. The notions right path and right branch are defined analogously, by interchanging
left and right.

We associate T ∈ Tn with a permutation τ(T ) of [n] defined by

τ(T ) :=
(
r(T ), τ(L(T )), τ(R(T ))

)
, (1)

where the base case of the empty tree ε is defined to be the empty permutation τ(ε) := ε.
In words, τ(T ) is the sequence of vertex labels obtained from a preorder traversal of T , i.e.,
we first record the label of the root and then recursively record labels of its left subtree
followed by labels of its right subtree. Note that the right path T ∈ Tn satisfies τ(T ) = idn,
the identity permutation.

For any vertex i we let βR(i) denote the number of vertices on the right branch starting
at i, with the special case βR(ε) := 0. We also define B−

R (i) := {cj−1
R (i) | j = 1, . . . , βR(i)−1}

as the corresponding sets of vertices on this branch except the last one.

2.2 Pattern-avoiding binary trees
Our notion of pattern avoidance in binary trees generalizes the two distinct notions considered
in [38] and [11] (recall Figure 1). This definition is illustrated in Figure 5. A tree pattern
is a pair (P, e) where P ∈ Tk and e : [k] \ r(P ) → {0, 1}. For any vertex i ∈ [k] \ r(P ),
a value e(i) = 0 is interpreted as the edge leading from i to its parent p(i) being non-
contiguous, whereas a value e(i) = 1 is interpreted as this edge being contiguous. In our
figures, edges (i, p(i)) in P with e(i) = 1 are drawn solid, and edges with e(i) = 0 are drawn
dotted. Formally, a tree T ∈ Tn contains the pattern (P, e) if there is an injective mapping
f : [k]→ [n] satisfying the following conditions:

(i) For every edge (i, p(i)) of P with e(i) = 1, we have that f(i) is a child of f(p(i))
in T . Specifically, if i = cL(p(i)) then f(i) is the left child of f(p(i)), i.e., we have
f(i) = cL(f(p(i))), whereas if i = cR(p(i)) then f(i) is the right child of f(p(i)), i.e.,
we have f(i) = cR(f(p(i))).

(ii) For every edge (i, p(i)) of P with e(i) = 0, we have that f(i) is a descendant of f(p(i))
in T . Specifically, if i = cL(p(i)), then f(i) is a left descendant of f(p(i)), i.e., we have
f(i) ∈ L(f(p(i))), whereas if i = cR(p(i)), then f(i) is a right descendant of f(p(i)),
i.e., we have f(i) ∈ R(f(p(i))).

We can retrieve the notions of contiguous and non-contiguous pattern containment used
in [38] and [11] as special cases by defining e(i) := 1 for all i ∈ [k] \ r(P ), or e(i) := 0 for all
i ∈ [k] \ r(P ), respectively.

ISAAC 2023
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tree pattern host tree
P T

e(i) = 1
i = cL(p(i)) i = cR(p(i))

e(i) = 0

p(i) f(p(i))

f(i) = cL(f(p(i)))

p(i) f(p(i))

f(i) = cR(f(p(i)))

p(i) f(p(i))

f(i) ∈ L(f(p(i)))

P T

P T

p(i) f(p(i))

P T

i = cL(p(i)) i = cR(p(i))
f(i) ∈ R(f(p(i)))

f

f f

f

Figure 5 Illustration of our notion of pattern containment in binary trees.

If T does not contain (P, e), then we say that T avoids (P, e). Furthermore, we define
the set of binary trees with n vertices that avoid the pattern (P, e) as

Tn(P, e) := {T ∈ Tn | T avoids (P, e)}.

For avoiding multiple patterns (P1, e1), . . . , (Pℓ, eℓ) simultaneously, we define

Tn

(
(P1, e1), . . . , (Pℓ, eℓ)

)
:=

⋂ℓ

i=1
Tn(Pi, ei).

1

(P, e)

6

5

2

3

4

7

8

9

e(5) = 1

e(2) = 0

e(1) = 1 e(4) = 1

e(3) = 0

e(9) = 1

e(8) = 0

e(7) = 1

τ(P ) = 652143879
e = (e(5), e(2), e(1), e(4), e(3),

(P, e) = (652143879, 10110011)

e(8), e(7), e(9)) = 10110011

Figure 6 Compact encoding of binary tree patterns.

We often write a tree pattern (P, e), P ∈ Tk, in compact form as a
pair

(
τ(P ), (e(τ2), . . . , e(τk))

)
where τ(P ) = (τ1, τ2, . . . , τk); see Figure 6. In words, the

tree P is specified by the preorder permutation τ(P ), and the function e is specified by the
sequence of values for all vertices except the root in the preorder sequence, i.e., this sequence
has length k − 1.

For any tree pattern (P, e), we write µ(P, e) for the pattern obtained by mirroring the tree,
i.e., by changing left and right. Note that the mirroring operation changes the vertex labels so
that the search tree property is maintained, specifically the vertex i becomes n+1−i. Trivially,
we have Tn(µ(P, e)) = µ(Tn(P, e)), in particular (P, e) and µ(P, e) are Wilf-equivalent.
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3 Encoding binary trees by permutations

In this section we establish that avoiding a tree pattern in binary trees is equivalent to
avoiding a corresponding mesh pattern in 231-avoiding permutations (Theorem 2 below).

3.1 Pattern-avoiding permutations
We write Sn for the set of all permutations of [n]. Given two permutations π ∈ Sn

and τ ∈ Sk, we say that π contains τ as a pattern if there is a sequence of indices ν1 <

· · · < νk, such that π(ν1), . . . , π(νk) are in the same relative order as τ = τ(1), . . . , τ(k). If
π does not contain τ , then we say that π avoids τ . We write Sn(τ) for the permutations
from Sn that avoid the pattern τ . More generally, for multiple patterns τ1, . . . , τℓ we
define Sn(τ1, . . . , τℓ) :=

⋂ℓ
i=1 Sn(τi), i.e., this is the set of permutations of length n that

avoid each of the patterns τ1, . . . , τℓ. It is well known that preorder traversals of binary trees
are in bijection with 231-avoiding permutations (see, e.g. [27]).

▶ Lemma 1. The mapping τ : Tn → Sn(231) defined in (1) is a bijection.

3.2 Mesh patterns

σ = (τ, C)

π = 673498125 contains σ

R0,1τ = 3241

C = {(0, 1), (1, 2), (3, 2)}

R1,2 R3,2

Figure 7 Illustration of mesh pattern containment.

Mesh patterns were introduced by Brändén and Claesson [9], and they generalize classical
permutation patterns discussed in the previous section. We recap the required definitions; see
Figure 7. The grid representation of a permutation π ∈ Sn is defined as G(π) := {(i, π(i)) |
i ∈ [n]}. Graphically, this is the permutation matrix corresponding to π.

A mesh pattern is a pair σ := (τ, C), where τ ∈ Sk and C ⊆ {0, . . . , k}×{0, . . . , k}. In our
figures, we depict σ by the grid representation of τ , and we shade all unit squares [i, i + 1]×
[j, j + 1] for which (i, j) ∈ C. A permutation π ∈ Sn contains the mesh pattern σ = (τ, C),
if there is a sequence of indices ν1 < · · · < νk such that the following two conditions hold:

(i) The entries of π(ν1), . . . , π(νk) are in the same relative order as τ = τ(1), . . . , τ(k).
(ii) We let λ1 < · · · < λk be the values π(ν1), . . . , π(νk) sorted in increasing order. For all

pairs (i, j) ∈ C, we require that G(π) ∩ Ri,j = ∅, where Ri,j is the rectangular open
set defined as Ri,j := (νi, νi+1) × (λj , λj+1), using the sentinel values ν0 := λ0 := 0
and νk+1 = λk+1 := n + 1.

ISAAC 2023
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The first condition requires a match of the classical pattern τ in π. The second condition
requires that G(π) has no point in any of the regions Ri,j that correspond to the shaded
cells C of the pattern. Thus, the classical pattern τ ∈ Sk is the mesh pattern (τ, ∅).

3.3 From binary tree patterns to mesh patterns
In the following, for a given tree pattern (P, e), P ∈ Tk, we construct a permutation mesh
pattern σ(P, e) = (τ(P ), C), consisting of the permutation τ(P ) obtained by a preorder
traversal of the tree P and a set of shaded cells C. These definitions are illustrated in
Figures 8 and 9. We consider the inverse permutation of τ(P ) ∈ Sk, which we abbreviate
to ρ := τ(P )−1 ∈ Sk. The permutation ρ gives the position of each vertex in the preorder
traversal τ(P ) of P . Recall the definition of the set B−

R (i) given in Section 2.1. For any
vertex i ∈ [k] we define

Ci :=
{

(ρ(i)− 1, j) | j ∈ B−
R (i)

}
, (2a)

and for any i ∈ [k] \ r(P ) we define

C ′
i :=

∅ if e(i) = 0,{(
ρ(i)− 1, min P (i)− 1

)
,

(
ρ(i)− 1, max P (i)

)}
if e(i) = 1.

(2b)

Then the mesh pattern σ(P, e) corresponding to the tree pattern (P, e) is defined as

σ(P, e) :=
(

τ(P ),
⋃

i∈[k]
Ci ∪

⋃
i∈[k]\r(P )

C ′
i

)
. (2c)

In words, for every pair of vertices (not necessarily distinct and not necessarily forming an
edge) except the last vertex on a maximal right branch we shade the cell directly left of the
smaller vertex and directly above the larger vertex, and for every edge (i, p(i)) with e(i) = 1
we shade two additional cells to the left and bottom/top of the submatrix corresponding to
the subtree P (i).

(ρ(i), i)

i

(P, e)

σ(P, e) = (τ(P ), C)

(ρ(i)− 1, j), j ∈ B−
R(i)

(ρ(i)− 1,minP (i)− 1)

P (i)

(ρ(i)− 1,maxP (i))

p(i)

B−
R(i)

Ci

C ′
i

Figure 8 Schematic illustration of the definition of the mesh pattern σ(P, e) for a tree pattern (P, e).
The edges of the tree P can be contiguous or non-contiguous, and are therefore drawn half solid
and half dotted. In the tree shown in the figure, i is the right child of p(i), but it might also be the
left child of p(i) (faint lines). On the right, the shaded cells belong to the mesh pattern, and the
hatched region corresponds to the submatrix given by the subtree P (i).



P. Gregor, T. Mütze, and Namrata 33:9

2

7

1

3

5

4

6

8

9

13

11

10

122

1 7

3 8
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13
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(P, e)

σ(P, e) = (τ(P ), C)

τ(P ) = (2, 1, 7, 3, 5, 4, 6, 8, 9, 13, 11, 10, 12)

C = {(0, 2), (0, 7), (0, 8), (0, 9), (2, 2), (2, 7), (2, 8), (2, 9), (2, 13),

Ci

C ′
i

(3, 2), (3, 3), (3, 5), (3, 6), (4, 5), (7, 7), (7, 8), (7, 9), (7, 13)

(8, 8), (8, 9), (8, 13), (10, 9), (10, 11), (10, 12)}

Figure 9 Specific example of the mesh pattern σ(P, e) corresponding to a tree pattern (P, e).

The following generalization of Lemma 1 is the main result of this section. Our theorem
also generalizes Theorem 12 from [37], which is obtained as the special case when all edges
of P are non-contiguous, i.e., e(i) = 0 for all i ∈ [k] \ r(P ).

▶ Theorem 2. For any tree pattern (P, e), P ∈ Tk, consider the mesh pattern σ(P, e) =
(τ(P ), C) defined in (2). Then the mapping τ : Tn(P, e)→ Sn(231, σ(P, e)) is a bijection.

This theorem extends naturally to avoiding multiple tree patterns (P1, e1), . . . , (Pℓ, eℓ),
i.e., τ : Tn((P1, e1), . . . , (Pℓ, eℓ))→ Sn(231, σ(P1, e1), . . . , σ(Pℓ, eℓ)) is a bijection. The proof
of Theorem 2 can be found in [20].

4 Generating pattern-avoiding binary trees

In this section we apply the Hartung–Hoang–Mütze–Williams generation framework to
pattern-avoiding binary trees. The main results are simple and efficient algorithms (Al-
gorithm S and Algorithm H) to generate different classes of pattern-avoiding binary trees,
subject to some mild constraints on the tree pattern(s) that are inherited from applying the
framework (Theorems 3 and 4, respectively).

4.1 Tree rotations and slides
A natural and well-studied operation on binary trees are tree rotations; see Figure 2. We
consider a tree T ∈ Tn and one of its edges (i, j) with j = cR(i), and we let Y be the left
subtree of j, i.e., Y := L(j). A rotation of the edge (i, j) yields the tree obtained by the
following modifications: The child i of p(i) is replaced by j (unless p(i) = ε in T ), i becomes

ISAAC 2023
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the left child of j, and Y becomes the right subtree of i. We denote this operation by j△, and
we refer to it as up-rotation of j, indicating that the vertex j moves up. The operation j△
is well-defined if and only if j is not the root and p(j) < j, or equivalently j = cR(p(j)).
The inverse operation is denoted by j▽, and we refer to it as down-rotation of j, indicating
that the vertex j moves down. The operation j▽ is well-defined if and only if j has a left
child (which must be smaller), i.e., cL(j) ̸= ε. An up-slide or down-slide of j by d steps is a
sequence of d up- or down-rotations of j, respectively, which we write as (j△)d and (j▽)d.

4.2 A simple greedy algorithm

We use the following simple greedy algorithm to generate a set of binary trees Ln ⊆ Tn. We
say that a slide is minimal (w.r.t. Ln), if every slide of the same vertex in the same direction
by fewer steps creates a binary tree that is not in Ln.

Algorithm S (Greedy slides). This algorithm attempts to greedily generate a set of
binary trees Ln ⊆ Tn using minimal slides starting from an initial binary tree T0 ∈ Ln.
S1. [Initialize] Visit the initial tree T0.
S2. [Slide] Generate an unvisited binary tree from Ln by performing a minimal slide of

the largest possible vertex in the most recently visited binary tree. If no such slide
exists, or the direction of the slide is ambiguous, then terminate. Otherwise visit this
binary tree and repeat S2.

To illustrate the algorithm, consider the example in Figure 10. Suppose we choose the
right path T1 shown in the figure as initial tree for the algorithm, i.e., T0 := T1. In the first
iteration, Algorithm S performs an up-slide of the vertex 4 by three steps to obtain T2. This
up-slide is minimal, as an up-slide of 4 in T1 by one or two steps creates the forbidden tree
pattern (P, e). Note that any tree created from T2 by a down-slide of 4 either contains the
forbidden pattern or has been visited before. Consequently, the algorithm applies an up-slide
of 3 by two steps, yielding T3. After five more slides, the algorithm terminates with T8, and
at this point it has visited all eight trees in T4(P, e).

Now consider the example in Figure 11, where the algorithm terminates after having
visited six different trees from T4(P, e). However, the set T4(P, e) contains two more trees
that are not visited by the algorithm.

(P, e) =

(4△)3
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1 3
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T1 T2 T3 T4 T5 T6 T7 T8

Figure 10 Run of Algorithm S that visits all binary trees in the set T4(P, e). Below each tree T

is the corresponding permutation τ(T ).
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(P, e) =

4△
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Figure 11 Run of Algorithm S that does not visit all binary trees in the set T4(P, e).

We now formulate simple sufficient conditions on the tree pattern (P, e) ensuring that
Algorithm S successfully visits all trees in Tn(P, e). Specifically, we say that a tree pat-
tern (P, e), P ∈ Tk, is friendly, if it satisfies the following three conditions; see Figure 12:

r(P )

k

B−
R(r(P ))

cL(k) ̸= ε

p(k)

Figure 12 Definition of friendly tree patterns.

(i) We have p(k) ̸= ε and cL(k) ̸= ε, i.e., the largest vertex k is neither the root nor a leaf
in P .

(ii) For every j ∈ B−
R (r(P )) \ r(P ) we have e(j) = 0, i.e., the edges on the right branch

starting at the root, except possibly the last one, are all non-contiguous.
(iii) If e(k) = 1, then we have e(cL(k)) = 0, i.e., if the edge from k to its parent is contiguous,

then the edge to its left child must be non-contiguous.
Note that for non-contiguous tree patterns, i.e., e(i) = 0 for all i ∈ [k] \ r(P ), conditions (ii)
and (iii) are always satisfied. The following is our main result of this section.

▶ Theorem 3. Let (P1, e1), . . . , (Pℓ, eℓ) be friendly tree patterns. Then Algorithm S initialized
with the tree τ−1(idn) visits every binary tree from Tn((P1, e1), . . . , (Pℓ, eℓ)) exactly once.

Recall that τ−1(idn) is the right path, i.e., the tree that corresponds to the identity
permutation. Note that by condition (i) in the definition of friendly tree pattern, we have
τ−1(idn) ∈ Tn((P1, e1), . . . , (Pℓ, eℓ)). Theorem 3 can be proved by applying the Hartung–
Hoang–Mütze–Williams generation framework [21]; see [20] for details. In particular, our
notion of friendly tree patterns is inherited from the notion of tame mesh permutation
patterns used in [21, Thm. 15].

4.3 Efficient implementation

We now describe an efficient implementation of Algorithm S. In particular, this implementation
is history-free, i.e., it does not require to store all previously visited binary trees, but only
maintains the current tree in memory. Algorithm H is a straightforward translation of the
history-free Algorithm M presented in [34] from permutations to binary trees.

ISAAC 2023
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Algorithm H (History-free minimal slides). For friendly tree pat-
terns (P1, e1), . . . , (Pℓ, eℓ), this algorithm generates all binary trees from Tn that
avoid (P1, e1), . . . , (Pℓ, eℓ), i.e., the set Ln := Tn((P1, e1), . . . , (Pℓ, eℓ)) ⊆ Tn by minimal
slides in the same order as Algorithm S. It maintains the current tree in the variable T ,
and auxiliary arrays o = (o1, . . . , on) and s = (s1, . . . , sn).
H1. [Initialize] Set T ← τ−1(idn), and oj ← △, sj ← j for j = 1, . . . , n.
H2. [Visit] Visit the current binary tree T .
H3. [Select vertex] Set j ← sn, and terminate if j = 1.
H4. [Slide] In the current binary tree T , perform a slide of the vertex j that is minimal

w.r.t. Ln, where the slide direction is up if oj = △ and down if oj = ▽.
H5. [Update o and s] Set sn ← n. If oj = △ and j is either the root or its parent is larger

than j set oj = ▽, or if oj = ▽ and j has no left child set oj = △, and in both cases
set sj ← sj−1 and sj−1 = j − 1. Go back to H2.

The two auxiliary arrays used by Algorithm H store the following information. The
direction in which vertex j slides in the next step is maintained in the variable oj . Furthermore,
the array s is used to determine the vertex that slides in the next step. Specifically, the
vertex j that slides in the next steps is retrieved from the last entry of the array s in step H3,
by the instruction j ← sn. The running time per iteration of the algorithm is governed by the
time it takes to compute a minimal slide in step H4. This boils down to testing containment
of the tree patterns (Pi, ei), i ∈ [ℓ], in T .

▶ Theorem 4. Let (P1, e1), . . . , (Pℓ, eℓ) be friendly tree patterns with Pi ∈ Tki for i ∈ [ℓ].
Then Algorithm H visits every binary tree from Tn((P1, e1), . . . , (Pℓ, eℓ)) exactly once, in the
same order as Algorithm S, in time O(n2 ∑ℓ

i=1 k2
i ) per binary tree.

See [20] for a proof of Theorem 4.

5 Tree patterns on at most 5 vertices

We conducted systematic computer experiments with all tree patterns (P, e) on k = 3, 4, 5
vertices; see Tables 1, 2 and 3, respectively. Specifically, we computed the corresponding
counting sequences |Tn(P, e)| for n = 1, . . . , 12, and searched for matches within the OEIS [36].
There are three new counting sequences denoted by NewA, NewB, and NewC, which we added
to the OEIS using the sequence numbers A365508, A365509, and A365510, respectively. All
those counts were computed using Algorithm H for friendly tree patterns, and via brute-force
methods for non-friendly tree patterns. As mirrored tree patterns are Wilf-equivalent, our
tables only contain the lexicographically smaller of any such pair of mirrored trees, using the
compact encoding described in Section 2.2.

It turns out that for some edges (i, p(i)) in a tree pattern (P, e), it is irrelevant whether
the edge is considered contiguous (e(i) = 1) or non-contiguous (e(i) = 0). We have a theorem
([20, Thm. 11]) that describes these situations, and this theorem is used heavily in our tables,
where those “don’t care” values of e are denoted by the hyphen -. The statement and proof
of this theorem are slightly technical, and so we omit it in this extended abstract.

https://oeis.org/A365508
https://oeis.org/A365509
https://oeis.org/A365510


P. Gregor, T. Mütze, and Namrata 33:13

Table 1 Tree patterns with 3 vertices. See Section 5 for explanations.

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
123 0- 1 2 4 8 16 32 64 128 256 512 1024 2048 . . . A000079

1- 1 2 4 9 21 51 127 323 835 2188 5798 15511 . . . A001006
132 -- 0-, -0 1 2 4 8 16 32 64 128 256 512 1024 2048 . . . A000079
213 -- 1 2 4 8 16 32 64 128 256 512 1024 2048 . . . A000079

Table 2 Tree patterns with 4 vertices.

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
1234 00- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519

01- 1 2 5 13 35 96 267 750 2123 6046 17303 49721 . . . A005773
10- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242
11- 1 2 5 13 36 104 309 939 2905 9118 28964 92940 . . . A036765

1243 0-- 00-, 0-0 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
1-- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

1324 0-- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
1-- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

1423 0--, -0- 0--, -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
11- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

1432 -0- -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
-1- 01- 1 2 5 13 35 96 267 750 2123 6046 17303 49721 . . . A005773

2134 -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
-1- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

2143 -0- -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
-1- -10 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

Table 3 Tree patterns with 5 vertices.

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
12345 000- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051

001- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
010- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
011- 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 . . . A159772
100- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
101- 1 2 5 14 41 124 383 1202 3819 12255 39651 129190 . . . NewB→A365509
110- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768
111- 1 2 5 14 41 125 393 1265 4147 13798 46476 158170 . . . A036766

12354 00-- 000-, 00-0 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

12435 00-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

12534 00--, 0-0- 00--, 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
011- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10--, 1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
111- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

12543 0-0- 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1- 001- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
101- 1 2 5 14 41 124 383 1202 3819 12255 39651 129190 . . . NewB→A365509
111- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

13245 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
1-0- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
1-1- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768
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P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
13254 0-0- 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051

0-1- 0-10 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
1-0- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
1-1- 1 2 5 14 41 124 385 1220 3929 12822 42309 140922 . . . A159771

14235 00-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

14325 00-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

15234 0-0-, -00- 0-0-, -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1-, -01- 0-1-, -01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
110- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
111- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

15243 -0--, 0-0- -0--, 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
011- 011- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
110- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
111- 1 2 5 14 41 124 385 1220 3929 12822 42309 140922 . . . A159771

15324 -0-- -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
11-- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

15423 -0-- -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
-10- 010- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
111- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

15432 -00- -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-01- -01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
-10- 010- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
-11- 011- 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 . . . A159772

21345 -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
-10- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
-11- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

21354 -0-- -00-, -0-0 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-10- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
-11- 1 2 5 14 41 124 384 1212 3885 12613 41389 137055 . . . A159773

21435 -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-1-- 1 2 5 14 41 124 385 1220 3929 12822 42309 140922 . . . A159771

21534 -0-- -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-10- -10- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
-11- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

21543 -00- -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-01- -01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
-10- -10- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
-11- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

31245 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-1- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

31254 0-0- 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1-, 1-0- 0-10, 1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-1- 1-10 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

32145 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1-, 1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-1- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

6 Bijections between binary trees and Motzkin paths

In this section, we present bijections between pattern-avoiding binary trees and different types
of Motzkin paths. For more bijections with other combinatorial objects, see [20]. Specifically,
we consider lattice paths with steps U := (1, 1), D := (1,−1), F := (1, 0), and Dh := (1,−h)
for h ≥ 2. An n-step Motzkin path starts at (0, 0), ends at (n, 0), uses only steps U, D or F,
and it never goes below the x-axis. We write Mn for the set of all n-step Motzkin paths
(OEIS A001006). An n-step Motzkin left factor starts at (0, 0), uses n many steps U, D or F,
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and it never goes below the x-axis. We write Ln for the set of all n-step Motzkin left factors
(OEIS A005773). An n-step Motzkin path with catastrophes [4] starts at (0, 0), ends at (n, 0),
uses only steps U, D, F, or Dh for h ≥ 2, such that all Dh-steps end on the x-axis, and it never
goes below the x-axis (OEIS A054391). We write Cn for the set of all n-step Motzkin paths
with catastrophes.

6.1 Bijection between Tn(123, 1-) and Motzkin paths Mn

This bijection is illustrated in Figure 13 (a). Consider a tree T ∈ Tn(P, e) where (P, e) :=
(123, 1-). Due to the forbidden pattern (P, e), every maximal right branch in T consists of
one or two vertices, but not more. We map T to an n-step Motzkin path f(T ) as follows.
Every maximal right branch in T consisting of one vertex i creates an F-step at position i

in f(T ). Every maximal right branch in T consisting of two vertices i and j, where j = cR(i),
creates a pair of U-step and D-step at the same height at positions i and j in f(T ), respectively.
It is easy to verify that f is indeed a bijection between Tn(P, e) and Mn.

Rowland [38] described a bijection between Tn(123, 1-) and Mn that is different from f .

6.2 Bijection between Tn(1432, -1-) and Motzkin left factors Ln−1

This bijection is illustrated in Figure 13 (b), and it uses as a building block the bijection f

defined in the previous section. Instead of (1432, -1-), we consider the mirrored tree pat-
tern (P, e) := µ(1432, -1-) = (4123, -1-) for convenience. Consider a tree T ∈ Tn(P, e).
We define b := βR(r(T )) and ri := ci−1

R (r(T )) for i = 1, . . . , b, i.e., we consider the right
branch (r1, . . . , rb) starting from the root of T . Due to the forbidden tree pattern (P, e), each
subtree L(ri) for i = 1, . . . , b is (123, 1-)-avoiding. Using the bijection f described in the
previous section, we can thus map each subtree L(ri) to a Motzkin path f(L(ri)). Therefore,
we map T to an (n− 1)-step Motzkin left factor g(T ) by combining the subpaths f(L(ri)),
separating them by in total b − 1 many U-steps, one between every two consecutive sub-
paths f(L(ri)) and f(L(ri+1)). To make the proof work, the subpaths f(L(ri)) can be
combined in increasing order from left to right on g(T ), i.e., for i = 1, . . . , b, or in decreasing
order, i.e., for i = b, b− 1, . . . , 1, and for reasons that will become clear in the next section
we combine them in decreasing order, i.e.,

g(T ) := f(L(rb)), U, f(L(rb−1)), . . . , U, f(L(r1)). (3)

The mapping g is clearly a bijection between Tn(P, e) and Ln−1.

6.3 Bijection between Tn(21543, -01-) and Motzkin paths with
catastrophes Cn

This bijection is illustrated in Figure 13 (c), and it uses as a building block the bijection g

defined in the previous section. Instead of (21543, -01-), we consider the mirrored tree
pattern (P, e) := µ(21543, -01-) = (41235, 01--) for convenience. Consider a tree T ∈ Tn(P, e)
and the rightmost leaf in T , and partition the path from the root of T to that leaf into a
sequence of maximal right branches B1, . . . , Bℓ. For i = 1, . . . , ℓ, we let Ti be the subtree
of T that consists of Bi plus the left subtrees of all vertices on Bi except the last one. Note
that T1, . . . , Tℓ form a partition of T . Furthermore, T avoiding (P, e) is equivalent to each
of the Ti, i = 1, . . . , ℓ, avoiding (4123, 01-). Using the bijection g described in the previous
section, we can thus map each subtree Ti to a Motzkin left factor g(Ti), and by appending one
additional appropriate step F, D or Dh for h ≥ 2 we obtain a Motzkin path g′(Ti). Note that
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Figure 13 Bijections between pattern-avoiding binary trees and different types of Motzkin paths.
Edges (i, p(i)) in the tree patterns that can be contiguous or non-contiguous (giving the same
pattern-avoiding trees) are drawn as a double line that is half solid and half dotted.

the rightmost leaf of Ti has no left child, and thus the definition (3) yields that g′(Ti) touches
the x-axis only at the first point and last point, but at no intermediate (integer) points.
Therefore, we map T to an n-step Motzkin path with catastrophes h(T ) by concatenating
the Motzkin subpaths g′(Ti) for i = 1, . . . , ℓ, i.e., h(T ) := g′(T1), g′(T2), . . . , g′(Tℓ). It can be
readily checked that h is a bijection between Tn(P, e) and Cn.

7 Open Problems

Are there elegant bijections between pattern-avoiding binary trees and other interesting
combinatorial objects such as Motzkin paths with 2-colored F-steps at odd heights
(OEIS A176677), or so-called skew Motzkin paths (OEIS A025242)?
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For purely contiguous or non-contiguous tree patterns (P, e), there are recursions to derive
the generating function for |Tn(P, e)|; see [38] and [11]. For our more general mixed tree
patterns, these methods seem to fail. Is there is an algorithm to compute those more
general generating functions, and what are their properties? Furthermore, can the set of
pattern-avoiding trees for such pure (non-friendly) patterns be generated efficiently?
In addition to contiguous and non-contiguous edges (i, p(i)) of a binary tree pattern,
which we encode by e(i) = 1 and e(i) = 0, there is another very natural notion of
pattern containment that is intermediate between those two, which we may encode
by setting e(i) := 1/2. Specifically, for such an edge with e(i) = 1/2 in the pattern
tree P , we require from the injection f described in Section 2.2 that f(i) is a descendant
of f(p(i)) along a left or right branch in the host tree T . Specifically, if i = cL(p(i)), then
f(i) = cj

L(f(p(i))) for some j > 0, whereas if i = cR(p(i)), then f(i) = cj
R(f(p(i))) for

some j > 0. Theorem 2 can be generalized to also capture this new notion, by modifying
the definition (2b) in the natural way to

C ′
i :=


∅ if e(i) = 0,{

(ρ(i)− 1, min P (i)− 1)} if e(i) = 1/2 and i = cL(p(i)),{
(ρ(i)− 1, max P (i))

}
if e(i) = 1/2 and i = cR(p(i)),{(

ρ(i)− 1, min P (i)− 1
)
,

(
ρ(i)− 1, max P (i)

)}
if e(i) = 1.

The notion of friendly tree pattern can be generalized by modifying condition (iii) in
Section 4.2 as follows: (iii’) If e(k) ∈ {1, 1/2}, then we have e(cL(k)) ∈ {0, 1/2}. It is
worthwhile to investigate this new notion of pattern containment/avoidance and its
interplay with the other two notions. Our computer experiments show that there are
patterns with edges e(i) = 1/2 that give rise to counting sequences that are distinct from
the ones obtained from patterns with edges e(i) = 1 (contiguous) and e(i) = 0 (non-
contiguous). The corresponding functionality has already been built into our generation
tool [10].
This intermediate notion of pattern-avoidance in binary trees has interesting applications
in the context of pattern-avoidance in rectangulations, a line of inquiry that was initiated
in [34].
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