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Abstract
We present a near-linear time approximation algorithm for the subtrajectory cluster problem of
c-packed trajectories. Given a trajectory T of complexity n, an approximation factor ε, and a desired
distance d, the problem involves finding m subtrajectories of T such that their pair-wise Fréchet
distance is at most (1 + ε)d. At least one subtrajectory must be of length l or longer. A trajectory
T is c-packed if the intersection of T and any ball B with radius r is at most c · r in length.

Previous results by Gudmundsson and Wong [24] established an Ω(n3) lower bound unless the
Strong Exponential Time Hypothesis fails, and they presented an O(n3 log2 n) time algorithm. We
circumvent this conditional lower bound by studying subtrajectory cluster on c-packed trajectories,
resulting in an algorithm with an O((c2n/ε2) log(c/ε) log(n/ε)) time complexity.
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1 Introduction

With the proliferation of location-aware devices comes an abundance of trajectory data. One
way to process and make sense of many trajectories is to group long and similar subtrajectories.
The analysis of long and similar parts of trajectories can provide insights into behavior and
mobility patterns, such as common routes taken and places visited frequently.

Buchin et al. [8] initialised the study of subtrajectory cluster problems to detect and
extract common movement patterns. The Subtrajectory Cluster (SC) decision problem is
defined as follows. Given one or more trajectories, determine if there exists a cluster of m − 1
non-overlapping subtrajectories and one reference trajectory. The reference trajectory Tr

must be at least of length l, and the Fréchet distances between Tr and the other m − 1
subtrajectories must be at most d. In the case of animals, long and common movement
patterns can indicate movement between grazing spots of sheep or the migration flyway
of seabirds. In the case of humans, common movement on a Monday morning can show
commuting patterns to find the most heavily congested areas.
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34:2 Computing a Subtrajectory Cluster from c-Packed Trajectories

Subtrajectory clustering has attracted research from multiple communities. Gudmundsson
and Wolle [23] used subtrajectory cluster to analyse the common movement patterns of
football players. Buchin et al. [7] applied subtrajectory cluster to map reconstruction by
clustering common movement patterns of vehicles into road segments. Researchers in the
Geographical Information and Data Mining communities also considered the variants and
practical performance of subtrajectory cluster algorithms [11, 29, 21, 22, 26, 1, 17]. In
addition, the potential of SC is examined in a wide range of applications, including sports
player analysis [30] and human movement analysis [10, 25].

Several theoretical studies of the subtrajectory clustering problem focus on improving
the quality of clustering. Agarwal et al. [1] defined a single objective function, the weighted
sum of three quality measures of a clustering. These quality measures include the number of
clusters chosen, the quality of the cluster, and the size of the trajectories excluded from the
clustering. Brüning et al. [6] studied so-called △-coverage, aiming to find a set C of curves
to cover a polygonal curve such that a curve in C is fixed in size, and |C| is minimised.

However, despite considerable attention from multiple communities, there is no subcubic
time algorithm that solves the subtrajectory cluster problem, limiting its usefulness on large
data sets. Buchin et al. [8] solved the subtrajectory cluster problem in O(n5) time when the
similarity measurement of two trajectories is the Fréchet distance, and Gudmundsson and
Wong [24] further improved the runtime with an O(n3 log2 n) time algorithm. In addition,
Gudmundsson and Wong [24] showed that there is no O(n3−δ) algorithm for subtrajectory
cluster for any δ > 0 unless the Strong Exponential Time Hypothesis (SETH) fails.

SC is unlikely to have a strongly subquadratic algorithm even if we allow a small
approximation factor on the Fréchet distances between subtrajectories. Because given two
trajectories T1 and T2, we can structure the SC problem to find two subtrajectories such that
their Fréchet distance is at most (1 + ε)d, and the reference trajectory must be as long as the
maximum of T1 and T2. Solving this instance of SC is equivalent to approximating the Fréchet
distance of T1 and T2, and Bringmann [4] showed that there is no 1.001-approximation with
runtime O(n2−δ) for the continuous Fréchet distance for any δ > 0, unless SETH fails.

Since an exact subcubic and an approximate subquadratic algorithm are unlikely to exist,
we study subtrajectory cluster on a realistic family of trajectories, called c-packed trajectories.
A trajectory T is c-packed if, for any ball B of radius r, the length of T lying inside B is
at most c times r. The packedness value of a trajectory T is the maximum c for which
T is c-packed. Bringmann [4] proved that computing the Fréchet distance has no strong
subquadratic algorithm unless SETH fails, and the notion of c-packedness was introduced
by Driemel et al. [15] to circumvent such conditional lowerbound. Since then, the notion of
c-packedness has gained considerable attention from the theory community [20, 4, 2, 12, 5],
and several real-world data sets have been shown to have low packedness values [19, 15].
In one particular instance, Gudmundsson et al. [19] approximated the packedness values of
several real-world trajectory data sets. In their experiments, several trajectory data sets have
low packedness values, such as the movement patterns of people in Beijing, school buses,
European football players, and trawling bats.

In this paper, given a c-packed trajectory T of complexity n and a desired multiplicative
approximation error ε on the Fréchet distance between subtrajectories, we present an
O((c2n/ε2) log(c/ε) log(n/ε)) time algorithm that solves the SC problem. It is worth noting
that previous papers considering c-packed curves typically replace a factor n with a polynomial
of constant degree in c [13, 18]. We are able to replace a factor of n2 with c2/ε2, bringing
the algorithm’s running time from cubic to near-linear, assuming c ∈ O(1).
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Along the way, we develop a tool for simplifying the free space diagram that may be of
independent interest. To efficiently approximate the Fréchet distance, Driemel et al. [15]
showed that the free space complexity, i.e., the number of non-empty cells, is O(cn/ε) for
two simplified c-packed trajectories (see Section 2 for an overview of the free space, or [3] for
a formal definition). However, simplifying a trajectory by taking shortcuts between vertices
can yield a much shorter trajectory, and the SC problem is sensitive to the length of the
trajectories since the reference trajectory has to have a length at least l. To tackle this
problem, we developed a tool to construct the free space diagram in O((cn/ε) log (cn/ε))
time, preserving the length of two trajectories while benefiting from the O(cn/ε) free space
complexity. Our tool can be of value for problems in which the length of a trajectory is
important, such as subtrajectory cluster [8], partial curve matching [9], and Fréchet distance
with speed limit [27].

In Section 2, we will formally define the subtrajectory cluster problem and outline the
greedy plane sweep algorithms by Buchin et al. [8] and Gudmundsson and Wong [24], which
our approach builds on. In Section 3, we provide a technical overview of our main results. In
Section 4, we will discuss how to simplify the free space diagram to achieve a lower complexity
while preserving trajectory lengths.

In Section 5, we will consider the restricted case when the reference trajectory must
be vertex-to-vertex. In Section 6, we will remove this restriction by considering arbitrary
reference trajectory.

2 Preliminaries

In this section, we will outline the previous algorithms for the subtrajectory cluster problem.
The subtrajectory cluster problem was first introduced by Buchin et al. [8], and later improved
by Gudmundsson and Wong [24]. But instead of looking for a subtrajectory where the Fréchet
distances between the reference trajectory and the subtrajectories are exact, we aim to find
a solution that approximates the Fréchet distance between subtrajectories in the cluster.

▶ Problem 1 ([24]). Given trajectory T of complexity n, a positive integer m, positive real
numbers d, l and ε, decide if there exists a subtrajectory cluster of T such that:

the cluster consists of one reference subtrajectory and m − 1 other subtrajectories of T ,
the reference subtrajectory has Euclidean length at least l,
the Fréchet distance between the reference subtrajectory and any other subtrajectory is at
most (1 + ε)d,
any pair of subtrajectories in the cluster overlap in at most one point.

Buchin et al. [8] solved the exact SC problem by using a plane sweep algorithm on the
free space diagram Fd(T, T ). Let s and t be two points on T , and we denote Tst as the
subtrajectory of T starting from s and ending on t. Let ls and lt be the vertical sweep
lines x = s and x = t on Fd(T, T ), respectively (see Figure 1). An xy-monotone path in
Fd(T, T ), or monotone path for short, is a continuous path that is non-decreasing in both x-
and y-coordinates. To solve SC(m, d, l), the lines ls and lt sweep from left to right while
making sure that ls is to the left of lt, and the reference trajectory Tst is at least l long, i.e.,
t − s ≥ l. In each interval [ls, lt], they compute the maximum number of monotone paths in
Fd(T, T ) starting at ls and ending at lt.

Let p and q be two points on T , and let (s, p) and (t, q) be two coordinates on Fd(T, T ).
As we only consider monotone paths starting from ls and ending on lt, we call the monotone
path from (s, p) to (t, q) the pq monotone path. First, a monotone path pq must traverse only

ISAAC 2023
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Figure 1 The free space diagram Fd(T, T ), and interval [ls, lt] defined by two points s and t on T .
If there exists a monotone path (marked in brown) from (s, p) to (t, q) through the free space, then
the Fréchet distance between subtrajectories Tst and Tpq is at most d.

the free space. Second, two monotone paths pq and ab must not overlap along the y-interval
in more than a single point. Third, the y-coordinates of any pq monotone path cannot
overlap the [s, t] interval in more than a single point. We obtain the following subproblem.

▶ Subproblem 2 ([24]). Given a trajectory T of complexity n, a positive integer m, a positive
real value d, and a reference subtrajectory of T starting at s and ending at t, let ls and lt be
two vertical lines in Fd(T, T ) representing the points s and t. Decide if there exist:

m − 1 distinct paths starting at ls and ending at lt, such that
the y-coordinate of any two monotone paths overlap in at most one point, and
the y-coordinate of any monotone path overlaps the y-interval from s to t in at most one
point.

To look for a set {p1q1, p2q2, ..., pm−1qm−1} of monotone paths, both algorithms use a
greedy approach. First, set p1 to be the lowest feasible point on ls, and compute p1q1 by
searching for a lowest monotone path through the free space. Inductively, with pi−1qi−1
computed, set pi to the lowest feasible point on ls that is on or above qi−1, and do the same.
If a search from pi leads to a dead end, we simply set pi to the next lowest feasible point on
ls, and search again.

The sweeplines stop at all O(n3) critical points, and for each critical point there is
a [ls, lt] interval to consider. Buchin et al. [8] solved each instance in O(nm) ⊆ O(n2)
time. Gudmundsson and Wong [24] improved the efficiency by connecting the critical points
efficiently in a tree-like data structure which allows them to reuse computed monotone paths
from previous interval instances. They showed that, in their construction, there are at most
O(n3 log n) edges, and each edge takes at most O(log n) time to add, remove, or access. This
brings down the complexity of the algorithm from O(n5) to O(n3 log2 n) time.

3 Technical Overview

Our technical overview is divided into three parts. In Sections 3.1, 3.2, and 3.3, we summarise
the main result of Sections 4, 5, and 6 respectively.
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3.1 Computing the Free Space Diagram
Our algorithm constructs a simplified free space diagram that preserves trajectory lengths.
The size (in terms of Euclidean length) of the simplified free space diagram is the same as the
size of the unsimplified free space diagram. The only difference between the two diagrams is
that approximate distances are used in the simplified diagram. In particular, we define a
function that uniformly maps a trajectory to its simplification, and we calculate the distance
between the mapped simplification points instead of points on the original trajectory. We
prove that the complexity of the simplified free space diagram will be at most O(cn/ε), and
that the trajectory lengths in the diagram are preserved. Next, we build the simplified free
space diagram. We use an algorithm by Conradi and Driemel [13] to query pairs of nearby
segments. Finally, we construct a data structure on the free space diagram so that we can
access the closest non-empty cells below, above, to the left, and to the right in constant time.
Putting this all together, we obtain Theorem 1. For a full proof, see Section 4.

▶ Theorem 1. Given a pair of trajectories, one can construct a simplified free space diagram
in O((cn/ε) log (cn/ε)) time, so that the simplified free space has complexity O(cn/ε), it
approximates the Fréchet distance to within a factor of (1 + ε), and it preserves the trajectory
lengths of the original trajectory.

3.2 Reference trajectory is vertex-to-vertex
Next, we focus on the special case where the reference trajectory is vertex-to-vertex. Three
data structures are used in the vertex-to-vertex subtrajectory cluster algorithm of Gud-
mundsson and Wong [24] – a directed graph, a range tree, and a link-cut tree. For an overview
of these data structures, see the full version. Originally, the number of leaves per range tree
is O(n), and the directed graph has complexity O(n2). We use the c-packedness property
to prove that, in our simplified free space diagram, the number of leaves per range tree
is O(c/ε), and the directed graph has complexity O((cn/ε) log(c/ε)). The link-cut tree data
structure can be used without modification. Putting this all together, we obtain Theorem 2.
Recall that m is the desired number of subtrajectories in the cluster. For a full proof, see
Section 5.

▶ Theorem 2. There is an O(nm log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is vertex-to-vertex.

3.3 Reference trajectory is arbitrary
Finally, we tackle the general case where the reference trajectory is arbitrary. The main
obstacle in the general case is that there are Θ(n3) internal critical points that correspond
to potential starting and ending positions of the reference trajectory. In fact, Gudmundsson
and Wong [24] show that, for general (not c-packed) curves, these internal critical points
are essentially unavoidable. They use the Θ(n3) internal critical points to show that under
the Strong Exponential Time Hypothesis (SETH), there is no O(n3−δ) time algorithm for
subtrajectory cluster for any δ > 0.

Our main lemma in this section is to bound the number of internal critical points for
subtrajectory cluster on c-packed trajectories. The lemma uses the c-packedness property in
two different ways. First, the c-packedness property bounds the complexity of the simplified
free space diagram to linear. This replaces one of the factors of n with c/ε. Second, the
c-packedness property is used to prove that in any horizontal strip, only a constant number
of cells have free space. This replaces another factor of n with c/ε, resulting in O(c2n/ε2)

ISAAC 2023



34:6 Computing a Subtrajectory Cluster from c-Packed Trajectories

internal critical points. Finally, we prove that the interval management data structure can
be used in the same way as in Gudmundsson and Wong’s algorithm [24]. Putting this all
together, we obtain Theorem 3. For a full proof, see Section 6.

▶ Theorem 3. There is an O((c2n/ε2) log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is arbitrary.

4 Computing the Free Space Diagram

In this section, we will explain the process of constructing a simplified free space diagram
for two c-packed polygonal curves P and Q. The free space Dd(P, Q) describes all pairs of
points, one on P , one on Q, whose distance is at most d [3]. With slight abuse of notation,
we parameterise the polygonal curve P such that P (x) is a point on P , where x ∈ [0, ∥P∥].
Formally,

Dd(P, Q) = {(x, y) ∈ [0, ∥P∥] × [0, ∥Q∥] | dist(P (x), Q(y)) ≤ d}.

To circumvent the quadratic free space complexity, Driemel et al. [15] showed that the
free space complexity of two simplified c-packed curves is O(cn/ε). Given a c-packed curve
P = p1p2...pn, we simplify P into its εd-simplification P ′ = q1q2...qk as follows. Let B(a, r)
be the ball centered at a with radius r. First, set q1 = p1. With qi defined, traverse P from
qi until a vertex v is outside B(qi, εd), or v is the last vertex of P , and set qi+1 = v. Continue
until all vertices of P are exhausted. Driemel et al. [15] showed that the εd-simplification of
a c-packed curve is at most 6c-packed [15, Lemma 4.3], and the Fréchet distance between P

and P ′ is at most (1 + ε)d. A simplified curve has the useful property that every segment
but the last is at least εd long. We assume for simplicity that the last one is at least εd long
as well, since otherwise one can backtrack and modify the simplified curve such that each
segment is at least εd/2 long, and our arguments can be extended to such case.

▶ Observation 4. One can simplify a polygonal curve P into its εd-simplification P ′ such
that the Fréchet distance between P and P ′ is at most (1 + ε)d, and each segment in P ′ is at
least εd long.

Simplifying two c-packed curves can reduce the free space complexity, but using the plane-
sweep algorithm to solve the SC problem on the resulting free space diagram is unfortunately
infeasible. This is because the total length of the simplified trajectories can be much shorter,
making it impossible to slide a window of width l on the free space diagram F(1+ε)d(P ′, Q′).
To address this issue, we developed a tool that enables the construction of a free space
diagram that maintains the original curve length, while also benefiting from the reduced free
space complexity.

4.1 Simplifying the Free Space
In this section, we introduce a method that simplifies the free space. We show that we
can construct the simplified free space D′

(1+ε̂)d(P, Q), where ε̂ is at most 8ε, such that the
complexity of the simplified free space is at most O(cn/ε̂). In addition, D′

(1+ε̂)d(P, Q) contains
Dd(P, Q) as a subset, but it is not bigger than the free space of P and Q if we approximate
their Fréchet distance, i.e., D′

(1+ε̂)d(P, Q) ⊆ D(1+ε̂)d(P, Q).
We will first define a function that uniformly maps parts of the polygonal curve P to

segments of P ′ in Definition 5, using which we will formally define the simplified free space
in Definition 6. We will then formally prove the set inclusions mentioned above in Lemma 7.



J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:7

▶ Definition 5. Let simpl(P, εd) be the εd-simplification of a polygonal curve P . Let Puv be
the subcurve of P from point u to v that are simplified into the segment (u, v) ∈ simpl(P, εd).
Let w be the first intersection point of Puv and the boundary of the ball B(u, εd) along Puv,
and let u′ be the intersection of (u, v) and the boundary of the ball B(u, εd). Define the
mapping fP,εd : P → simpl(P, εd) such that fP,εd maps [u, w) to [u, u′) uniformly, and [w, v]
to [u′, v] uniformly (see Figure 2).

u
v

u′

w

εd

u w

u′

v

v

fp,εd(x)

Puw

Pwv

Figure 2 A figure showcasing the function in Definition 5. The point u′ is the intersection of the
segment (u, v) and the ball B(u, εd), and the point w is the intersection of subtrajectory Puv and
B(u, εd). The function fP,εd uniformly maps Puw (red) to (u, u′) (orange), not including u′ and w.
The function fP,εd uniformly maps Pwv (blue) to (u′, v) (light blue).

▶ Definition 6. Define the simplified free space of P and Q with respect to the Fréchet
distance d > 0, and a parameter ε > 0 as

D′
(1+ε)d(P, Q)={(x, y) ∈ [0, ∥P∥] × [0, ∥Q∥] | dist(fP,εd(P (x)), fQ,εd(Q(y))) ≤ (1 + ε)d}.

Similarly, let F ′
(1+ε)d(P, Q) be the simplified free space diagram.

▶ Lemma 7. Let Dd(P, Q) be the free space of curves P and Q with respect to the Fréchet
distance d, and let D′

(1+ε)d(P, Q) be their simplified free space with an approximation error
ε > 0. Then Dd(P, Q) ⊆ D′

(1+4ε)d(P, Q) ⊆ D(1+8ε)d(P, Q).

Proof. With slight abuse of notation, let x = P (x), and y = Q(y), for x ∈ [0, ∥P∥], and
y ∈ [0, ∥Q∥]. Let x′ = fP,εd(x), and let y′ = fQ,εd(y). Observe that dist(x, x′) ≤ 2εd for all
x ∈ P because if x is within the ball B(u, εd), then x is at most 2εd apart from x′. If x is
outside B(u, εd), it is at most εd apart from x′, due to the simplification.

Dd(P, Q) ⊆ D′
(1+4ε)d(P, Q). If a point (x, y) ∈ Dd(P, Q) is white, then dist(x, y) ≤ d. By

the triangle inequality, dist(x′, y′) ≤ dist(x′, x)+dist(y′, y)+dist(x, y) ≤ 2εd+2εd+d =
(1 + 4ε)d, hence (x′, y′) must also be white.
D′

(1+4ε)d(P, Q) ⊆ D(1+8ε)d(P, Q). Similarly, if a point (x′, y′) ∈ D′
(1+4ε)d(P, Q) is white,

then (x, y) ∈ D(1+8ε)d(P, Q) must also be white, because dist(x, y) ≤ dist(x′, x) +
dist(y′, y) + dist(x′, y′) ≤ 2εd + 2εd + (1 + 4ε)d = (1 + 8ε)d. ◀

Similar to how we defined the (u, v) cell, let the (Puv, Qab) cells be the cells in the free
space diagram defined by the subcurves Puv and Qab. We show that we can compute the
intersection of the simplified free space with (Puv, Qab) cells in constant time. Please see the
full version for a proof of below lemma.

ISAAC 2023
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▶ Lemma 8. Given vertices u, v on P and a, b on Q, one can construct the cells in
F ′

(1+ε)d(P, Q) defined by Puv and Qab in constant time.

The complexity of the simplified free space D′
(1+ε̂)d(P, Q) is O(cn/ε̂) if P and Q are c-

packed. Assuming that Puv and Qab are simplified into segments (u, v) ∈ P ′ and (a, b) ∈ Q′,
respectively, the simplified free space intersects (Puv, Qab) cells if and only if the distance
between (u, v) and (a, b) is at most (1 + ε̂)d. The rest follows by modifying the proof of [15,
Lemma 4.4].

▶ Corollary 9. Let P and Q be two c-packed curves with complexity n, and let ε̂ be a constant
times a parameter ε > 0. The complexity of the simplified free space D′

(1+ε̂)d(P, Q) is O(cn/ε).

4.2 Compute the Non-empty Cells
To take advantage of the near-linear complexity of the simplified free space, we use an
algorithm by Conradi and Driemel [13] to efficiently compute the non-empty cells without
inspecting all pairs of segments.

▶ Fact 10 ([13, Lemma 59]). Given two c-packed curves P and Q in R2, a parameter d ≥ 0,
and let P ′ and Q′ be their εd-simplifications. In O((cn/ε) log(cn/ε)) time, one can find all
pairs of segments (u, v) ∈ P ′ and (a, b) ∈ Q′ such that the distance between (u, v) and (a, b)
is at most d.

To construct the simplified free space diagram efficiently, we first observe the following.

▶ Observation 11. If segments (u, v) ∈ P ′ and (a, b) ∈ Q′ are more than (1 + 2ε)d apart,
then Puv and Qab are more than d apart.

The above observation enables us to determine if (Puv, Qab) cells are empty by determining
if (u, v) and (a, b) are near.

4.3 Constructing the Simplified Free Space Diagram
Given two c-packed polygonal curves P and Q, we will use the results from previous
subsections to construct the simplified free space diagram using the below steps. In Lemma 8,
we showed that if Puv and Qab are simplified into segments (u, v) ∈ P ′ and (a, b) ∈ Q′,
respectively, we can compute (Puv, Qab) cells in constant time. Such aggregation of (Puv, Qab)
cells is an aggregated non-empty cell, and we will treat them as one cell for simplicity.

1. Simplify P and Q into their εd-simplifications P ′ and Q′.
2. Find all pairs of nearby segments from P ′ and Q′ that are at most (1 + ε̂)d apart using

Fact 10.
3. For each pair of nearby segments (u, v) ∈ P ′ and (a, b) ∈ Q′, compute the (Puv, Qab) cells

using Lemma 8.
4. Sort all non-empty cells horizontally and vertically.
5. Connect non-empty cells in a graph fashion such that a non-empty cell is connected to

the first non-empty cells to its top, bottom, left, and right.

Given two polygonal curves P and Q of complexity n, simplifying them (step 1) takes O(n)
time. By Fact 10, step 2 takes O((cn/ε) log(cn/ε)) time. Computing a cell in F ′

(1+ε̂)d(P, Q)
takes O(1) time by Lemma 8. F ′

(1+ε̂)d(P, Q) has at most O(cn/ε) non-empty cells, which
takes O(cn/ε) time to compute in step 3; sorting them in step 4 takes O((cn/ε) log(cn/ε))
time. Connecting each cell to at most four other cells takes O(cn/ε) time in step 5. Putting
this together, we obtain Lemma 12, and we summarise our result in Theorem 1.
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Figure 3 The non-empty cells are connected horizontally and vertically to skip empty cells.

▶ Lemma 12. Let P and Q be two c-packed curves of complexities n. Let ε > 0 and d > 0
be two parameters, and let ε̂ ≤ 8 · ε. One can construct and connect O(cn/ε) aggregated
non-empty cells of the simplified free space diagram F ′

(1+ε̂)d(P, Q) in O((cn/ε) log (cn/ε))
time such that Dd(P, Q) ⊆ D′

(1+ε̂)d(P, Q) ⊆ D(1+ε̂)d(P, Q). Given an aggregated non-empty
cell C, one can access the first aggregated non-empty cells below, above, to the left, and to
the right of C in O(1) time.

▶ Theorem 1. Given a pair of trajectories, one can construct a simplified free space diagram
in O((cn/ε) log (cn/ε)) time, so that the simplified free space has complexity O(cn/ε), it
approximates the Fréchet distance to within a factor of (1 + ε), and it preserves the trajectory
lengths of the original trajectory.

5 Reference trajectory is vertex-to-vertex

Throughout the rest of the paper we assume that the free space diagram is the simplified
free space diagram F ′

(1+ε)d in Lemma 12. Next, we will use the algorithm by Gudmundsson
and Wong [24] to determine whether there is a solution to SC(T, m, l, (1 + ε)d) where T is a
c-packed trajectory, and the reference subtrajectory Tst is vertex-to-vertex, i.e., both s and t

must be an endpoint of some segment of T .
Three data structures are used in the vertex-to-vertex subtrajectory cluster algorithm of

Gudmundsson and Wong [24] – a directed graph, a range tree, and a link-cut tree. For an
overview of these data structures, see the full version. In Section 5.1, we show that the number
of leaves per range tree is O(c/ε), and the directed graph has complexity O((cn/ε) log(c/ε)).
In Section 5.2, we show that the link-cut tree data structure can be used without modification.

5.1 Using a Directed Graph to Store Candidate Monotone Paths
To show that the range tree has at most O(c/ε) leaves, it suffices to show that there exist
at most O(c/ε) critical points on each horizontal or vertical boundary of the simplified free
space diagram.

▶ Lemma 13. In the simplified free space diagram F ′
(1+ε̂)d(T, T ), let H be a horizontal (resp.

vertical) strip that is at least εd wide on its y-span (resp. x-span). The intersection of H

and the simplified free space D′
(1+ε̂)d(T, T ) exists in at most O(c/ε) aggregated cells.
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Proof. Let T ′ be the εd-simplification of T , and let Tuv simplifies into segment (u, v) ∈ T ′.
Let u′ ⊆ (u, v) be a small part that is at least εd long. Let Su′ = u′ ⊕ B(0, (1 + ε̂)d).

Using similar construction, and arguments of [15, Lemma 4.4], one can prove that
at most O(c/ε) segments in T ′ intersects Su′ . Based on the construction of the sim-
plified free space D′

(1+ε̂)d(T, T ), a point (x, y) ∈ D′
(1+ε̂)d(T, T ) is white if and only if

dist(fT,ε̂d(T (x)), fT,ε̂d(T (y))) ≤ (1 + ε̂)d. As such, at most O(c/ε) aggregated cells have
simplified free space intersecting H. ◀

Next, bound the construction time and space complexity of the directed graph in [24].

▶ Lemma 14. Given a c-packed trajectory T of complexity n, constructing G for the simplified
free space diagram F ′

(1+ε̂)d(T, T ) takes O((cn/ε) log (n/ε)) time. G has O(cn/ε) nodes and
O((cn/ε) log (c/ε)) edges.

Proof. Let nk be the number of non-empty aggregated cells in the jth row in F ′
(1+ε̂)d(T, T ).

Construction of the range tree for the top (resp. right) boundary of a row (resp. column)
takes O(nk log nk) time [14]. For all pi, finding qi takes O(nk log nk) time

and recall that there are O(cn/ε) critical points in F ′
(1+ε̂)d(T, T ). The total construction

time is as follows.
n+1∑
j=0

nk log nk ≤ log
(cn

ε

) n+1∑
j=0

nk = log
(cn

ε

)
O

(cn

ε

)
∈ O

((cn

ε

)
log

(n

ε

))
By Corollary 9, the simplified free space diagram has O(cn/ε) non-empty aggregated

cells, therefore G has O(cn/ε) nodes. In a range tree, given a continuous interval [qk, qi],
one can find O(log n) nodes such that these nodes include [qk, qi] in their canonical subset,
where n is the total number of items in the leaves [14]. There are at most O(c/ε) nodes on a
horizontal or vertical boundary by Lemma 13, and each critical point pi on a vertical (resp.
horizontal) cell boundary connects to O(log(c/ε)) nodes, therefore the total number of edges
is O((cn/ε) log(c/ε)). ◀

5.2 Storing and Reusing Pre-computed Paths
A link-cut tree [28] maintains a forest that allows the link/cut operations of subtrees in
O(log n) amortised time. In addition, a link-cut tree allows finding the root of a node in
O(log n) amortised time. The algorithm by Gudmundsson and Wong [24] used a link-cut
tree to store and re-use monotone paths. Consider when a sweepline, either ls or lt, stops at
a new critical point p. Instead of recomputing the monotone paths, they need only to add p

to the existing link-cut tree they maintained in the previous instances.
With graph G defined, we can analyse the total running time of the algorithm by

Gudmundsson and Wong [24] on the simplified free space diagram. The key to observe the
running time is that in their algorithm, if an edge leads to a dead-end, it is marked and will
not be used in future searches. Furthermore, inserting or removing an edge takes O(log n)
amortised time in a link-cut tree.

▶ Theorem 2. There is an O(nm log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is vertex-to-vertex.

Proof. Construction of the simplified free space diagram takes O((cn/ε) log (cn/ε)) time by
Theorem 1. Construction of G takes O((cn/ε) log (n/ε)) time by Lemma 14. The graph G has
at most O(nm log(c/ε)) edges, see the full version. Gudmundsson and Wong [24] showed that
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an edge is added to and removed from the link-cut tree at most once, and adding/removing
an edge from the link-cut tree takes O(log(n/ε)) time since the maximum number of nodes
in the link-cut tree is upperbounded by the number of nodes in G. Therefore maintaining
the link-cut tree takes O(nm log(c/ε) log(n/ε)) time. ◀

6 Reference trajectory is arbitrary

Our results in this section rely heavily on the work of Gudmundsson and Wong [24]. Due to
space constraints, we can only highlight important parts of their algorithm, and the analysis
of our improvements.

When the reference trajectory is arbitrary, a monotone path can start and finish at
arbitrary positions in the non-empty cells. Therefore, in addition to the critical points in the
free space diagram and the greedy critical points, Gudmundsson and Wong defined three
new types of internal critical points [24, Definition 25]. An internal critical point must lie in
the interior of a non-empty cell, and lie on the boundary of the free space. They made the
following distinction (see Figure 4).

1. End-of-cell critical point: the leftmost and rightmost white point of a non-empty cell.
2. Propagated critical point: a point on the boundary of the free space that shares a

y-coordinate with a critical point.
3. l-apart critical points: two points on the boundaries of free space that are a distance of l

apart horizontally.

l

Figure 4 The three types of internal critical points are illustrated using a cross in the left, middle,
and right figures, respectively. From left to right, they are the end-of-cell critical points (left),
propagated critical points (middle) and l-apart critical points (right).

There could be an infinite number of l-apart critical points in a pair of non-empty cells.
However, if this is the case, we can simply perturb the input by a miniscule amount so that
there are no longer an infinite number of l-apart critical points. See the full version for an
example and a figure. Therefore, for the rest of the paper, we can assume that there are at
most a constant number of l-apart critical points per pair of cells.

We will first bound the number of internal critical points and the time it takes to compute
them. One can compute the end-of-cell and l-apart critical points in linear time with respect
to the number of non-empty cells since there are at most a constant number of them per
pair of cells. In Lemma 13, we showed that in a narrow horizontal strip, only a small
number of cells intersect free space. An output-sensitive query algorithm would be efficient
to find the non-empty cells that a critical point p propagates to. Therefore, we can use
an interval tree [14] to store the y-spans of all non-empty cells in a row, and query the
intersecting intervals of y(p) in logarithmic time. We formalise the above arguments in the
below Lemma 15.
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▶ Lemma 15. Assume that there is a constant number of l-apart critical points per pair of
cells, it takes O(cn log(n/ε) + c2n/ε2) time to compute O(c2n/ε2) internal critical points in
the simplified free space diagram F ′

(1+ε̂)d(T, T ).

Proof. There are O(cn/ε) non-empty aggregated cells in F ′
(1+ε̂)d(T, T ), or non-empty cells for

short, and O(cn/ε) end-of-cell critical points in F ′
(1+ε̂)d(T, T ). Each critical point propagates

O(c/ε) times by Lemma 13, therefore there are O(c2n/ε2) propagated critical points. We
can charge a cell with a constant number of l-apart critical points. Therefore, there are at
most O(cn/ε) l-apart critical points. In total, there are O(c2n/ε2) internal critical points.

One can compute the end-of-cell critical points by iterating through the free space diagram
in O(cn/ε) time. To compute the l-apart critical points, we can start from the first non-empty
cell C in a row and find the first cell that is l-apart from C, and solve a constant number of
quadratic equations. We can then slide this l-apart line and do the same for all pairs of cells
that are l-apart in all rows in O(cn/ε) time in total.

To compute the propagated critical points, we construct an interval tree [14] for each row
in F ′

(1+ε̂)d(T, T ) to store the maximum and minimum y-coordinates of the free space in the
non-empty cells. Let ni be the number of non-empty cells in the ith row. We can sum the
construction time of the interval trees.

n∑
i=1

ni log ni ≤ cn

ε
log

(cn

ε

)
∈ O

((cn

ε

)
log

(cn

ε

))
Given a critical point p in the ith row, one can query the interval tree in O(log ni + c/ε) ∈

O(log n + c/ε) time to compute the propagated critical points from p using Lemma 13
and [14]. With O(cn/ε) critical points, computing the propagated critical points takes
O(cn log(n)/ε + c2n/ε2) time. ◀

With the additional internal critical points, the number of reference trajectories and the
number of greedy critical points increases. We can use the algorithm in the previous section,
and obtain the following result.

▶ Lemma 16. There is an O((c2mn/ε2) log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is arbitrary.

Proof. See the full version. ◀

6.1 Improve Further with an Interval Management Data Structure
The bottleneck in the above Lemma 16 is operating the outgoing edges of the O(c2mn/ε2)
greedy critical points, which are generated from O(c2n/ε2) propagated critical points. To
avoid computing the greedy critical points, Gudmundsson and Wong [24] used a dynamic
monotonic interval data structure [16] to store overlapping monotonic intervals that represent
the y-spans of monotone paths between ls and lt. Instead of searching for a set of monotone
paths between each window greedily, they showed that one can update and query the interval
data structure to retrieve m − 1 non-overlapping intervals, all in O(log n) amortised time.

▶ Theorem 3. There is an O((c2n/ε2) log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is arbitrary.

Proof. Constructing the simplified free space diagram takes O((cn/ε) log (cn/ε)) time by
Theorem 1. Computing and sorting the internal critical points takes O((c2n/ε2) log(n/ε))
time by Lemma 15. There are O((c2n/ε2) log(c/ε)) edges in total by Lemma 13, and each
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edge takes O(log(n/ε)) time to insert or remove since there are at most O(c2n/ε2) nodes
in the link-cut tree. In total, we spend O((c2n/ε2) log(c/ε) log(n/ε)) time to maintain the
edges in G.

Each internal critical point is treated as an event, and maintaining the interval data
structure takes O(log n) amortised time per event point (see [24, Theorem 2]), and thus
O((c2n/ε2) log n) in total. The overall complexity is dominated by maintaining the edges. ◀

7 Conclusion

We presented an algorithm that solves the subtrajectory cluster problem on c-packed
trajectories T with an approximation error on the Fréchet distance, achieving an
O((c2n/ε2) log(c/ε) log(n/ε)) time complexity. Our algorithm builds upon the near-optimal
algorithm proposed by Gudmundsson and Wong [24], but with significant improvements. By
carefully analysing the properties of c-packed trajectories, we have shown that important
parameters such as the number of propagated critical points are significantly lower than the
theoretical O(n) upperbound for realistic trajectories. As a result, our algorithm improves
upon the near-optimal algorithm by replacing a factor of n2 with c2/ε2, leading to more
efficient subtrajectory cluster of realistic trajectories.
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