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Abstract
A beer digraph G is a real-valued weighted directed graph where some of the vertices have beer
stores. A beer path from a vertex u to a vertex v in G is a path in G from u to v that visits at least
one beer store.

In this paper we consider the online shortest beer path query in beer digraphs with bounded
treewidth t. Assume that a tree decomposition of treewidth t on a beer digraph with n vertices
is given. We show that after O(t3n) time preprocessing on the beer digraph, (i) a beer distance
query can be answered in O(t3α(n)) time, where α(n) is the inverse Ackermann function, and (ii) a
shortest beer path can be reported in O(t3α(n)L) time, where L is the number of edges on the path.
In the process we show an improved O(t3α(n)L) time shortest path query algorithm, compared with
the currently best O(t4α(n)L) time algorithm [Chaudhuri & Zaroliagis, 2000].

We also consider queries in a dynamic setting where the weight of an edge in G can change over
time. We show two data structures. Assume t is constant and let β be any constant in (0, 1). The
first data structure uses O(n) preprocessing time, answers a beer distance query in O(α(n)) time
and reports a shortest beer path in O(α(n)L) time. It can be updated in O(nβ) time after an edge
weight change. The second data structure has O(n) preprocessing time, answers a beer distance
query in O(log n) time, reports a shortest beer path in O(log n + L) time, and can be updated in
O(log n) time after an edge weight change.
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1 Introduction

A beer digraph is a real-valued weighted directed graph G = (V (G), E(G)) in which some
of the vertices have beer stores. For any two vertices u, v ∈ V (G), a shortest beer path is a
shortest path from u to v that visits at least one beer store. The beer distance from u to v is
the weight of a shortest beer path from u to v. In this paper, we consider the problem of
shortest beer path and beer distance queries for beer digraphs in both static and dynamic
settings. In the dynamic setting, the weight of an edge in the graph can change.

The shortest path and distance queries are fundamental graph problems. There are
numerous works on the subject in the literature. Thorup and Zwick [22] used the term
“distance oracle” to refer to a compact data structure that can efficiently answer distance query
between any two vertices. Ideally one would like a distance oracle with linear preprocessing
time and space, and constant query time. However, it is well known that there are graphs
for which no distance oracle with o(n2) bits of space and O(1) query time exists. Because of
this, researchers have focused their attention on restricted classes of graphs.

There has been extensive research on the class of planar graphs [5, 8, 9, 10, 11, 13,
18, 19]. We briefly highlight some of the most recent results for planar graphs. In [5],
Charalampopoulos et al. showed a distance oracle with space O(n1+ϵ) and polylogarithmic
query-time for any constant ϵ > 0. Long and Pettie [18] showed (i) an oracle with space
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35:2 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

O(n log2+o(1) n) and query-time O(nϵ) for any constant ϵ > 0, and (ii) an oracle with space
O(n1+o(1)) and query-time no(1). For a comparison of the existing distance oracles for planar
graphs, refer to Table 1 in [18].

For the class of graphs with bounded treewidth, the best shortest path and distance query
structure is attributed to Chaudhuri and Zaroliagis [6]. Let t be the treewidth of the input
graph G and assume that a tree decomposition of G with treewidth t is given. They showed
that after O(t3n) preprocessing, distance queries can be answered in time O(t3α(n)), and
shortest path queries can be answered in time O(t4α(n)L), where L is the number of edges
on the path and α(n) is the inverse Ackermann function.

Not surprisingly, answering shortest path or distance queries efficiently in a dynamic
setting where the graph undergoes changes is hard. Roditty and Zwick [21] showed that
the innocent looking decremental (only edge deletions) or incremental (only edge insertions)
single-source shortest path (SSSP) problem is, in a strong sense, as hard as APSP (all-
pairs shortest path). It is conjectured that APSP has no truly subcubic time (O(n3−ϵ))
solution [23].

The shortest beer path problem is a generalization of the shortest path problem. Bacic
et al. [2] considered the shortest beer path and beer distance queries for undirected outerplanar
graphs with non-negative edge weights. They showed that after O(n) time preprocessing a
beer distance query can be answered in O(α(n)) time, and a shortest beer path query can
be answered in O(L) time. Hanaka et al. [15] considered the shortest beer path and beer
distance queries for graphs with bounded triconnected component size (which they extends
to graphs with bounded treewidth). In this paper we study shortest beer path and beer
distance queries for digraphs with bounded treewidth.

We first show an improved O(t3α(n)L) time shortest path query algorithm, compared
with the O(t4α(n)L) time algorithm in [6]. Pettie [20] proved that for the online MST
(minimum spanning tree) verification problem, answering m queries requires Ω(mα(m, n))
time. Bacic et al. [2] reduced the online MST verification problem to the beer distance query
problem on trees, which implies that answering m beer distance queries on beer trees requires
Ω(mα(m, n)) time. Thus our result of beer distance query in Table 1 is optimal for graphs
with constant treewidth. Note that our shortest beer path and beer distance query structure
answers shortest beer path queries in the same asymptotic time as answering shortest path
queries, and answers beer distance queries in the same asymptotic time as answering distance
queries (see Table 1).

We also consider the shortest beer path and beer distance queries in the dynamic setting
where edge weights can change over time. Edge deletion (setting weight to infinity) and
edge re-insertion are special cases of edge weight change. We do not consider general edge
insertion, since our approach is based on tree decompositions of graphs while general edge
insertion can greatly change the treewidths and break the tree decompositions. For this
dynamic setting we give two dynamic shortest beer path query structures. See Table 2 for a
comparison of the structures.

2 Preliminaries

Let G = (V (G), E(G)) be a weighted beer digraph with n vertices where some of the vertices
have a beer store. The edge weights are specified by a weight function wt : E(G) −→ R. Let
wt(u, v) be the weight of edge ⟨u, v⟩. The weight of a path in G is the sum of the weights of
the edges on the path. For any two vertices u, v ∈ E(G), a shortest path in G from u to v is
a path from u to v with the minimum weight and is denoted as πG(u, v). The distance from
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Table 1 Comparison of shortest path query structures. In the table t is the treewidth, L is
the number of edges on the path, and α(n) is the inverse Ackermann function. Assume a tree
decomposition of treewidth t is given for a bounded treewidth graph. Entries in boldface are new.

Source Graph Preproc. Distance Shortest path Beer dist. Beer path

[6] directed,
bounded
treewidth

O(t3n) O(t3α(n)) O(t4α(n)L) – –

[2] undirected,
outer-
planar

O(n) O(α(n)) O(L) O(α(n)) O(L)

Theorem 9 directed,
bounded
treewidth

O(t3n) O(t3α(n)) O(t3α(n)L) O(t3α(n)) O(t3α(n)L)

Table 2 Comparison of dynamic shortest path query structures on directed graphs with constant
treewidth. β is any constant in (0, 1), and L is the number of edges on the path. Entries in boldface
are new.

Source Preproc. Distance Shortest path Beer dist. Beer path Edge weight
update

[6] O(n) O(α(n)) O(Lα(n)) – – O(nβ)
Theorem 13 O(n) O(α(n)) O(Lα(n)) O(α(n)) O(Lα(n)) O(nβ)
Theorem 23 O(n) O(log n) O(log n + L) O(log n) O(log n + L) O(log n)

u to v in G, denoted as δG(u, v), is the weight of πG(u, v). A shortest beer path in G from u

to v is denoted as πBG(u, v) and the beer distance from u to v in G, denoted as δBG(u, v), is
the weight of πBG(u, v).

Let V1, V2 and U be disjoint subsets of V (G). U is a separator for V1 and V2 if every
path in G from a vertex in V1 (V2) to a vertex in V2 (V1) goes through a vertex in U .

Let X be a subset of V (G) and let G[X] be the subgraph of G induced by X.
A tree decomposition of a graph G (directed or undirected) is a pair (X, T ) in which

T = (I = V (T ), E(T )) is a tree and X = {Xi|i ∈ I} is a family of subsets of V (G) such that:
1.

⋃
i∈I Xi = V (G);

2. for each edge e = (u, v) ∈ E(G) there exists a node i ∈ I such that both u and v belong
to Xi; and

3. for all v ∈ V , the set of nodes {i ∈ I|v ∈ Xi} forms a connected subtree of T .

The set Xi is called the bag of node i. The treewidth of a tree decomposition is
maxi∈I |Xi| − 1. The treewidth of G is the minimum treewidth over all possible tree
decompositions of G.

▶ Theorem 1 ([4]). For every constant t ∈ N , there exists an O(n) time algorithm which
tests whether a given n-vertex graph G has treewidth at most t and if so, outputs a tree-
decomposition (X, T ) of G with treewidth at most t, where |V (T )| = n − t. In O(n) time, the
tree decomposition (X, T ) can be converted into a binary tree decomposition of 2(n − t) nodes
and treewidth t.

For a tree decomposition (X, T ) of G, every edge e = (i, j) ∈ E(T ) corresponds to a
separator of G. Let T1 and T2 be the subtrees of T obtained by removing e from T , then
Xi ∩ Xj separates

⋃
m∈V (T1) Xm − (Xi ∩ Xj) from

⋃
m∈V (T2) Xm − (Xi ∩ Xj).

ISAAC 2023
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3 Shortest path and distance queries

The most efficient algorithms for shortest path and distance queries on digraphs with bounded
treewidth to date are given by Chaudhuri and Zaroliagis [6] (see Table 1). We give some
preliminaries in Section 3.1, before giving an outline of the algorithms in [6] in Section 3.2.
Finally we show how to improve the shortest path query algorithm in Section 3.3.

3.1 Preliminaries
Call (a, b, c) a distance tuple if a, b are symbols and c ∈ R. Define a composition operator ◦
on two distance tuples as (a1, b1, c1) ◦ (a2, b2, c2) = (a1, b2, c1 + c2) if b1 = a2, otherwise it
is undefined. For a set of distance tuples, say M , define minmap(M) to be the operation
on M such that among all distance tuples in M with the same first and second components,
only the distance tuple with the smallest third component is retained.

Let A and B be two sets of distance tuples. Define a composition operator ◦ on A and B

as A ◦ B = minmap{x ◦ y|x ∈ A, y ∈ B}. For a node i ∈ V (T ) where (X, T ) is a tree
decomposition of G, define γ(i) = {(u, v, δG(u, v))|u, v ∈ Xi} to be the set of distance tuples
for pairs of vertices in Xi (u and v can be the same vertex).

▶ Definition 2 ([6]). Let H be a digraph, with V1, V2 and U be a partition of V (H) such that U

is a separator for V1 and V2. Let H1 and H2 be subgraphs of H such that V (H1) = V1 ∪ U

and V (H2) = V2 ∪ U . We say that H ′
1 is a graph obtained by absorbing H2 into H1, if H ′

1
is obtained from H1 by adding edges ⟨u, v⟩, with weight δH2(u, v) or δH(u, v), for each pair
u, v ∈ U . In case multiple edges are created, retain the one with minimum weight.

(a) (b)

V1 V2U

H1 H2

V1 U

H ′
1

Figure 1 (a) Illustrating Definition 2. (b) H ′
1 where the red edges have weights δH2 (·, ·) or δH(·, ·).

Absorption preserves distances in a digraph. Let H, H1, H2 and H ′
1 be as in Definition 2,

then for all x, y ∈ V (H ′
1), δH′

1
(x, y) = δH(x, y).

3.2 Shortest path and distance query algorithms
Let G be a weighted digraph with bounded treewidth t. Here we will briefly present the key
ideas of the algorithms by Chandhuri and Zaroliagis [6]. From Theorem 1, one can obtain
a tree decomposition (X, T ) of G with constant treewidth in O(n) time.1 One can obtain
γ(i) for all nodes i ∈ V (T ) in O(t3n) time by the following lemma. The algorithm uses an
absorption and expansion processes. IntG(u, v) is an intermediate vertex (neither u nor v)
on a shortest path from u to v.

1 The hidden constant of the O(n) time in Theorem 1 is 2O(t3). Recently, Korhonen [17] gave a 2-
approximation algorithm that runs in O(2O(t)n) time, which suffices for our application. Interested
readers are also referred to [12] for an O(t7n log n) time, O(t)-approximation algorithm.
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▶ Lemma 3. Let G be an n-vertex weighted digraph and let (X, T ) be the tree decomposition
of G, of treewidth t. For each pair u, v such that u, v ∈ Xi for some i ∈ V (T ), let Dist(u, v) =
δG(u, v) and IntG(u, v) = x, where x is some intermediate vertex (neither u nor v) on a
shortest path from u to v. If wt(u, v) = δG(u, v), then IntG(u, v) = null. Then in O(t3n)
time, we can either find a negative cycle in G, or compute the values Dist(u, v) and IntG(u, v)
for each such pair u, v.

After using the algorithm in Lemma 3, all γ(i) for i ∈ V (T ) have been computed. One can
define a semigroup (Γ, ◦) where Γ is the set of sets of distance tuples and ◦ is the composition
operator defined on two sets of distance tuples. Label node i ∈ V (T ) with γ(i). For any two
node i, j ∈ V (T ), the composition of the labels along the path in T from i to j, which is
γ(i) ◦ . . . ◦ γ(j), gives the set of distance tuples P (Xi, Xj) = {(a, b, δG(a, b))|a ∈ Xi, b ∈ Xj}.
This is true because each edge along the path from i to j corresponds to a separator of G (see
the text below Theorem 1. Thus for any two vertices u, v ∈ V (G), if u ∈ Xi and v ∈ Xj , then
the composition of the labels along the path in T from i to j gives δG(u, v). The following
theorem is proved in [1] and [7].

▶ Theorem 4 ([1, 7]). Let (S, ◦) be a semigroup such that for q, r ∈ S, q ◦ r can be computed
in O(m) time. Let T be a tree with n nodes where each node is labeled with an element from
the semigroup. After O(mn) time preprocessing, the composition of the labels along any path
in T can be computed in O(mα(n)) time.

Plug in the result in Theorem 4, after O(t3n) time preprocessing, the composition of the
labels along any path in T of (X, T ) can be computed in O(t3α(n)) time. Therefore the
distance between any two vertices in V (G) can be computed in O(t3α(n)) time.

The shortest path query algorithm uses the distance query algorithm. It works recursively
and finds one intermediate vertex on the shortest path at a time. In a recursive step, the
algorithm checks t vertices and for each vertex it makes two distance queries. Since a distance
query is answered in O(t3α(n)) time, an intermediate vertex is found in O(t4α(n)) time. The
shortest path is reported in O(t4α(n)L) time, where L is the number of edges on the path.
In summary:

▶ Theorem 5 ([6]). Let G be an n-vertex weighted digraph of treewidth t and assume a
tree decomposition of G with treewidth t is given. After O(t3n) time preprocessing, distance
queries in G can be answered in time O(t3α(n)), and shortest path queries in G can be
answered in time O(t4α(n)L), where L is the number of edges on the path.

3.3 Our improved shortest path query algorithm
In this section we show how to improve the shortest path query algorithm. The shortest
path query algorithm in Section 3.2 computes an intermediate vertex by checking t vertices
and making O(t) distance queries. However, we can define augmented distance tuples which
contain intermediate vertex information, and define the composition operator ◦ on two
augmented distance tuples such that the composition not only gives distance but also gives
intermediate vertex. Using the augmented distance tuples and the composition operator on
them, we can compute an intermediate vertex by making just one distance query.

An augmented distance tuple (a, b, c, d) has a fourth component d which is the intermediate
vertex information. The composition operator ◦ on two augmented distance tuples is defined
as (a1, b1, c1, d1) ◦ (a2, b2, c2, d2) = (a1, b2, c1 + c2, d′) if b1 = a2, otherwise it is undefined.
When b1 = a2, the fourth component d′ is determined as follows. If a1 = b1 or a2 = b2, then
d′ = d2 or d′ = d1, respectively. Otherwise, a1 ̸= b1 and a2 ≠ b2. Then if a1 ̸= b2,d′ = b1. If
a1 = b2, d′ = null.

ISAAC 2023
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Now we redefine the semigroup (Γ, ◦). An element in the redefined Γ is a set of augmented
distance tuples. Let A and B be two sets of augmented distance tuples. The composition oper-
ator ◦ on A and B is defined as A◦B = minmap{x◦y|x ∈ A, y ∈ B}, where the minmap op-
eration is as defined before. For a node i ∈ V (T ), let γ̄(i) = {(u, v, δG(u, v), IntG(u, v))|u, v ∈
Xi}. The values δG(u, v) and IntG(u, v) have been computed by Lemma 3. Relabel node
i ∈ V (T ) with γ̄(i). The labels are elements in the redefined (Γ, ◦). For any two nodes
i, j ∈ V (T ), the composition of the labels along the path in T from i to j, γ̄(i)◦ . . .◦ γ̄(j), gives
the set of augmented distance tuples P̄ (Xi, Xj) = {(a, b, δG(a, b), IntG(a, b))|a ∈ Xi, b ∈ Xj}.
For any two vertices u, v ∈ V (G), if u ∈ Xi and v ∈ Xj , then the composition of the labels
along the path in T from i to j gives δG(u, v) and IntG(u, v).

The composition of the labels along a path in T gives the claimed set of augmented
distance tuples, since each edge along the path corresponds to a separator of G.

For two labels γ̄(i) and γ̄(j), one can compute γ̄(i) ◦ γ̄(j) in O(t3) time. If we plug in the
data structure in Theorem 4, then after O(t3n) time preprocessing, the composition of the
labels γ̄(·) along any path in T can be computed in O(t3α(n)) time. We have the following
theorem.

▶ Theorem 6. Let G be an n-vertex weighted digraph of treewidth t and assume a tree
decomposition of G with treewidth t is given. After O(t3n) time preprocessing, distance
queries in G can be answered in time O(t3α(n)), and shortest path queries in G can be
answered in time O(t3α(n)L), where L is the number of edges on the path.

4 Shortest beer path and beer distance queries

Throughout this section, let G be a beer digraph. In this section we extend the approach
discussed in Section 3 to shortest beer path and beer distance queries. Given a tree
decomposition (X, T ) of the input digraph G, we apply the absorption and expansion
processes similar to those in Section 3 on (X, T ), which compute information on beer paths
and beer distances. Then we define a semigroup whose elements are sets of augmented
distance tuples and augmented beer distance tuples. Finally we use the data structure
in Theorem 4 to answer shortest beer path and beer distance queries efficiently. Before
describing the algorithms, we give some preliminaries.

4.1 Preliminaries
Let H be a beer digraph. We call a vertex v ∈ V (H) a beer vertex if v has a beer store. Let
u, v ∈ V (H). Recall that we use πBH(u, v) to denote a shortest beer path in H from u to v and
use δBH(u, v) to denote the the weight of πBH(u, v). Let IntBH(u, v) denote an intermediate
vertex (neither u nor v) on πBH(u, v). If wt(u, v) = δBH(u, v), then IntBH(u, v) = null. If
either u or v is a beer vertex, a shortest path from u to v is a shortest beer path from u

to v and we define IntBH(u, v) to be an intermediate vertex (neither u nor v) on πH(u, v).
If neither u nor v is a beer vertex, we define IntBH(u, v) to be a beer vertex that is on
πBH(u, v).

Corresponding to a shortest beer path πBH(u, v), we define a beer edge ⟨u, v⟩B which has
weight δBH(u, v) and the intermediate vertex IntBH(u, v). Note that a beer edge is different
from a normal edge. We extend Definition 2 to beer graphs.

▶ Definition 7. Let H be a beer digraph, possibly with beer edges. Let V1, V2 and U be a
partition of V (H) such that U is a separator for V1 and V2. Let H1 and H2 be subgraphs
of H such that V (H1) = V1 ∪ U and V (H2) = V2 ∪ U . We say that H ′

1 is a beer graph
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obtained by absorbing H2 into H1, if H ′
1 is obtained from H1 by adding edges ⟨u, v⟩, with

weight δH2(u, v) or δH(u, v), and beer edges ⟨u, v⟩B, with weight δBH2(u, v) or δBH(u, v), for
each pair u, v ∈ U . In case multiple edges or multiple beer edges are created, retain the one
with minimum weight.

Absorption preserves distances and beer distances in a beer digraph. Let H, H1, H2 and
H ′

1 be as in Definition 7, then for all x, y ∈ V (H ′
1), δH′

1
(x, y) = δH(x, y) and δBH′

1
(x, y) =

δBH(x, y).
For a node i ∈ V (T ) where (X, T ) is a tree decomposition of G, define γ̄B(i) =

{(u, v, δG(u, v), IntG(u, v))|u, v ∈ Xi} ∪ {(u, v, δBG(u, v), IntBG(u, v))|u, v ∈ Xi} to be the
set of augmented distance tuples and augmented beer distance tuples for pairs of vertices
in Xi.

Given a tree decomposition (X, T ) of treewidth t of G, we use the absorption and
expansion processes with the absorbing procedure defined in Definition 7, to compute γ̄(i)
and γ̄B(i) for all i ∈ V (T ). We have the following lemma.

▶ Lemma 8. Let G be an n-vertex weighted digraph and let (X, T ) be a tree decomposition
of G, of treewidth t. Then in O(t3n) time, we can compute the values δG(u, v), IntG(u, v),
δBG(u, v) and IntBG(u, v) for each pair u, v ∈ Xi for every i ∈ V (T ).

4.2 Defining a semigroup
We first define a composition operator ◦B on augmented distance tuples and augmented beer
distance tuples. When both operands are augmented distance tuples, the operator ◦B equals
the operator ◦ defined in Section 3.1. The operator ◦B is undefined when both operands are
augmented beer distance tuples. It remains to define ◦B between an augmented distance
tuple and an augmented beer distance tuple. Let (a1, b1, c1, d1) be an augmented distance
tuple and let (a2, b2, ĉ2, d̂2) be an augmented beer distance tuple. We only show the definition
of (a1, b1, c1, d1) ◦B (a2, b2, ĉ2, d̂2), since the definition of (a2, b2, ĉ2, d̂2) ◦B (a1, b1, c1, d1) is
symmetric. Define (a1, b1, c1, d1) ◦B (a2, b2, ĉ2, d̂2) = (a1, b2, c1 + ĉ2, d̂) if b1 = a2, otherwise it
is undefined. The tuple (a1, b2, c1 + ĉ2, d̂) is a beer distance tuple. The fourth component d̂

is set as follows. Here we assume that a1, b1 and b2 are all different. The other cases are very
similar. If a1 or b1 is a beer vertex, then d̂ = b1. Otherwise neither a1 nor b1 is a beer vertex.
Then, if a2 or b2 is a beer vertex, d̂ = a2, otherwise d̂ = d̂2. It is not hard to verify that the
setting of d̂ is consistent with the definition of an augmented beer distance tuple. The setting
of d̂ takes constant time in all cases, therefore the composition (a1, b1, c1, d1) ◦B (a2, b2, ĉ2, d̂2)
takes constant time.

Let Â and B̂ be two sets of augmented distance tuples and augmented beer distance
tuples. That is, Â = A1 ∪ A2 and B̂ = B1 ∪ B2 where A1 (B1) is a set of augmented distance
tuples and A2 (B2) is a set of augmented beer distance tuples. Define the composition
operator ◦B on Â and B̂ as Â ◦B B̂ = minmap{x ◦B y|x ∈ Â, y ∈ B̂}, where the minmap is
the operation such that among all distance tuples (or all beer distance tuples) with the same
first and second components, only the distance tuple (or the beer distance tuple) with the
smallest third component is retained. The operation ◦B is associative.

Recall that

γ̄B(i) = {(u, v, δG(u, v), IntG(u, v))|u, v ∈ Xi} ∪ {(u, v, δBG(u, v), IntBG(u, v))|u, v ∈ Xi}

for all i ∈ V (T ) can be computed in O(t3n) time according to Lemma 8. We define a
semigroup (ΓB , ◦B) where ΓB is the set of sets of augmented distance tuples and augmented
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beer distance tuples, ◦B is the composition operator defined on two elements in ΓB . Label each
node i ∈ V (T ) with γ̄B(i). Since the composition ◦B of two tuples takes constant time, the
composition of two labels takes O(t3) time. For any two nodes i, j ∈ V (T ), the composition
of the labels along the path in T from i to j gives the set {(a, b, δG(a, b), IntG(a, b))|a ∈
Xi, b ∈ Xj} ∪ {(a, b, δBG(a, b), IntBG(a, b))|a ∈ Xi, b ∈ Xj}.

Plug in Theorem 4, we have that after O(t3n) time preprocessing, the composition of
the labels along any path in T of (X, T ) can be computed in O(t3α(n)) time. Thus the beer
distance between any two vertices u, v ∈ V (G) and the intermediate vertex IntBG(u, v) can
be computed in O(t3α(n)) time.

The shortest beer path query algorithm is straightforward. If either u or v is a beer
vertex, then we can use the shortest path query algorithm to compute the shortest beer path
from u to v in O(t3α(n)L) time by Theorem 6, where L is the number of edges on the beer
path. If neither u nor v is a beer vertex, we first make a beer distance query from u to v.
The beer distance query returns the intermediate vertex IntBG(u, v), which is a beer vertex.
Then we use the shortest path query algorithm to compute the shortest beer path from u to
IntBG(u, v) and the shortest beer path from IntBG(u, v) to v. The concatenation of the two
paths is a shortest beer path from u to v, which is computed in O(t3α(n)L) time. We have
obtained the following theorem.

▶ Theorem 9. Let G be an n-vertex beer digraph of treewidth t and assume a tree decom-
position of G with treewidth t is given. After O(t3n) time preprocessing on G, beer distance
queries can be answered in time O(t3α(n)), and shortest beer path queries can be answered in
time O(t3α(n)L), where L is the number of edges on the path.

5 A dynamic shortest beer path query structure

In this section we give a dynamic shortest beer path query structure, which is an extension of
the dynamic shortest path query structure in [6]. We give an outline of the dynamic shortest
path query structure in the following. The dynamic shortest beer path query structure is
shown in Section 5.2.

The main technical tool is a graph partitioning algorithm. Let (X, T ) be a binary tree
decomposition of G of treewidth t. One can convert a tree decomposition of treewidth t

into a binary tree decomposition of treewidth t in O(tn) time. Given any integer m, the
graph partitioning algorithm partitions the tree T of (X, T ) in O(n) time into q ≤ 16n/m

node-disjoint subtrees {Ti|1 ≤ i ≤ q} such that Ti has at most m nodes and is connected to
the rest of T via at most three nodes. For each Ti, a subgraph Hi which is the subgraph
of G induced by vertices in

⋃
v∈V (Ti) Xv is created. The subgraph Hi has Ti as its tree

decomposition. A reduced graph H ′ is also created. Let v1, v2 and v3 be the nodes of subtree
Ti via which Ti is connected to the rest of T . The set C(Hi) = Xv1 ∪ Xv2 ∪ Xv3 is called
the cut set of Hi and contains at most 3t vertices. By shrinking each subtree Ti into a node
with C(Hi) as its bag of vertices, one creates a reduced tree T ′ with q ≤ 16n/m nodes. The
reduced graph H ′ has T ′ as its tree decomposition and includes edges in G joining pairs of
vertices in C(Hi), 1 ≤ i ≤ q.

The input graph G is partitioned into edge-disjoint components {Gi|1 ≤ i ≤ q} where
Gi is Hi with edges joining pairs of vertices in C(Hi) deleted. Construct graph G′ from H ′

by adding edges ⟨x, y⟩ weighted δGi
(x, y) for each pair x, y in C(Hi), 1 ≤ i ≤ q. Multiple

edges in G′ are replaced by the edge of minimum weight. Note that G′ is the graph obtained
by absorbing G1, . . . , Gq into the rest of G. It follows that δG′(u, v) = δG(u, v), for any
u, v ∈ V (G′). By setting m = 8

√
n, Hi has at most 8t

√
n vertices and H ′ has at most

3tq ≤ 6t
√

n vertices.



J. Gudmundsson and Y. Sha 35:9

When the shortest path/distance query structures have been built for G′ and Gi, 1 ≤ i ≤ q,
we can compute the shortest path/distance between any two vertices u, v ∈ V (G) by querying
the structures. If u ∈ V (Gi) and v ∈ V (Gj) \ V (Gi) for some i and j, we have

δG(u, v) = min{δGi
(u, x) + δG′(x, y) + δGj

(y, v)|x ∈ C(Gi), y ∈ C(Gj)}. (1)

If u, v ∈ V (Gi) for some i, we have

δG(u, v) = min{δGi
(u, v), min{δGi

(u, x) + δG′(x, y) + δGi
(y, v)|x, y ∈ C(Gi)}}. (2)

Replacing the distances realizing δG(u, v) in Equation (1) or Equation (2) by the corresponding
shortest paths gives the shortest path from u to v.

An edge in E(G) corresponds to an edge in exactly one graph in {Gi|1 ≤ i ≤ q} ∪ G′.
If the weight of the edge is updated and the edge is in G′, one only needs to update the
structure for G′. If the edge is in Gi, one needs to update the structure for Gi. Since an edge
⟨x, y⟩ with weight δGi

(x, y) was added in G′ for each pair x, y ∈ C(Hi), the change of an edge
weight in Gi can incur at most (3t)2 edge weight changes in G′. Thus one needs to update
the structure for G′ for these edge weight updates. To make an edge weight update efficient,
the above procedure of graph partitioning and construction of a reduced graph is repeated
recursively for each of G1, . . . , Gq, G′ until the component subgraphs at the deepest recursion
level have small sizes. A static query structure in Section 3 is built for each component
subgraph at the deepest recursion level. The dynamic data structure can be thought of as a
tree structure where the root is G and every other node is Ḡi or Ḡ′ of its parent Ḡ. A static
query structure is built and associated with each leaf node.

Since the dynamic data structure is built recursively, distance query or shortest path
query is answered by recursively querying lower recursion level structures. Eventually queries
are made and answered at the static query structures at the bottom level. An edge weight
update is accommodated by recursively updating lower level structures. Eventually an update
at a static query structure at the bottom level is accommodated by rebuilding the static
query structure.

Let r−1 denote the number of recursion steps. The dynamic shortest path query structure
is summarized in the following theorem.

▶ Theorem 10 ([6]). Let G be an n-vertex weighted digraph and assume a binary tree
decomposition of G with treewidth t is given. For any positive integer constant r, one can
build a data structure in O(Crtr+3n) time such that the structure answers distance queries
in O(Crt2r+2α(n)) time, answers shortest path queries in O(Crt2r+2α(n)L) time where L

is the number of edges on the shortest path, and accommodates an edge weight update in
O(Crt2r+2n(1/2)r−1) time, where Cr = 3r(r+2).

5.1 On the shortest path query time
We observe that the shortest path query algorithm only needs to compute the shortest path
from u to v after making all the distance queries used to determine the shortest path from u

to v. The shortest path from u to v is computed by making shortest path queries to static
query structures at the bottom level and concatenating the computed shortest subpaths
together, where a shortest subpath is a subpath of the shortest path from u to v. A shortest
path query to a static query structure is answered in O((3r−1t)4α(n)Li) time, where 3r−1t

is the maximum treewidth of a graph at the bottom recursion level and Li is the number of
edges on the computed shortest subpath. Therefore the shortest path from u to v can be
computed in O(

∑
i(3r−1t)4α(n)Li) = O(3rt4α(n)L) time where L is the number of edges
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on the shortest path from u to v, besides the O(Crt2r+2α(n)) time spent on making all the
distance queries. If we use the shortest path query algorithm in Theorem 6 of Section 3.3,
the O(3rt4α(n)L) time is improved to O(3rt3α(n)L) time. We have the following corollary.

▶ Corollary 11. With the static shortest path query structure in Theorem 6, the shortest
path query time in Theorem 10 can be improved to O(Crt2r+2α(n) + 3rt3α(n)L).

5.2 Dynamic shortest beer path and beer distance queries
Equipped with the graph partitioning technique and the shortest beer path query structure
in Theorem 9, we are ready to devise a dynamic shortest beer path and beer distance query
structure, which is an extension of the dynamic shortest path query structure in Theorem 10.
In the following we only focus on the differences.

We use the graph partitioning algorithm to partition the input beer graph G into edge-
disjoint components {Gi|1 ≤ i ≤ q} where q ≤ 2

√
n, the same as was done by the dynamic

shortest path query structure. The reduced graph H ′ is the same as in the dynamic shortest
path query structure. A reduced beer graph G′ is constructed from H ′ by adding edges ⟨x, y⟩
weighted δGi

(x, y) and beer edges ⟨x, y⟩B weighted δBGi
(x, y) for each pair x, y ∈ C(Hi),

1 ≤ i ≤ q. Edges and beer edges are dealt with separately. Multiple edges in G′ are replaced
by the edge of minimum weight, and multiple beer edges in G′ are replaced by the beer edge
of minimum weight. The beer graph G′ is obtained by absorbing G1, . . . , Gq into the rest
of G using the absorption defined in Definition 7. It follows that δG′(u, v) = δG(u, v) and
δBG′(u, v) = δBG(u, v), for any u, v ∈ V (G′).

When the shortest path query structures and the shortest beer path query structures
have been built for G′ and Gi, 1 ≤ i ≤ q, we can compute the shortest beer path or beer
distance between any two vertices u, v ∈ V (G). If u ∈ V (Gi) and v ∈ V (Gj) \ V (Gi) for
some i and j, we have

δBG(u, v) = min{M1, M2, M3}, where (3)
M1 = min{δBGi

(u, x) + δG′(x, y) + δGj
(y, v)|x ∈ C(Gi), y ∈ C(Gj)}, (4)

M2 = min{δGi
(u, x) + δBG′(x, y) + δGj

(y, v)|x ∈ C(Gi), y ∈ C(Gj)}, (5)
M3 = min{δGi

(u, x) + δG′(x, y) + δBGj
(y, v)|x ∈ C(Gi), y ∈ C(Gj)}. (6)

If u, v ∈ V (Gi) for some i, we have

δBG(u, v) = min{M1, M2, M3}, where (7)
M1 = min{δBGi(u, v), min{δBGi(u, x) + δG′(x, y) + δGi

(y, v)|x, y ∈ C(Gi)}}, (8)
M2 = min{δBGi

(u, v), min{δGi
(u, x) + δBG′(x, y) + δGi

(y, v)|x, y ∈ C(Gi)}}, (9)
M3 = min{δBGi

(u, v), min{δGi
(u, x) + δG′(x, y) + δBGi

(y, v)|x, y ∈ C(Gi)}}. (10)

Replacing the beer distances realizing δBG(u, v) in Equation (3) or Equation (7) by the
corresponding shortest beer paths gives the shortest beer path from u to v.

An edge in E(G) corresponds to an edge in exactly one graph in {Gi|1 ≤ i ≤ q} ∪ G′. If
an edge weight is updated and the edge is in G′, one only needs to update the structure for
G′. If the edge is in Gi, one needs to update the structure for Gi and G′. Since an edge
⟨x, y⟩ with weight δGi

(x, y) and a beer edge ⟨x, y⟩B with weight δBGi
(x, y) were added in G′

for each pair x, y ∈ C(Hi), the change of an edge weight in Gi can incur at most 2(3t)2 edge
or beer edge weight changes in G′. The procedure of graph partitioning and construction of
a reduced beer graph is repeated recursively for each of G1, . . . , Gq, G′ until the component
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subgraphs at the deepest recursion level have small sizes. A static shortest beer path query
structure in Theorem 9 and a static shortest path query structure in Section 3 are built for
each component subgraph at the deepest recursion level.

Since the dynamic data structure is built recursively, a beer distance query or a shortest
beer path query is answered by recursively querying lower recursion level structures. Eventu-
ally queries are made and answered at the static query structures at the bottom level. An
edge weight update is accommodated by recursively updating lower level structures. An
update at a static shortest path (or shortest beer path) query structure at the bottom level
is accommodated by rebuilding the static query structure.

Let r − 1 denote the number of recursion steps. We omit the details of calculating the
preprocessing/query/update times of the dynamic data structure, since the calculations
are similar to the calculations for the dynamic shortest path structure in Theorem 10 and
Corollary 11. The dynamic data structure is summarized in the following theorem.

▶ Theorem 12. Let G be an n-vertex beer digraph with treewidth t and assume a binary
tree decomposition of G with treewidth t is given. For any positive integer constant r, after
O(C(r)tr+3n) time preprocessing, beer distance queries can be answered in O(C(r)t2r+2α(n))
time, shortest beer path queries can be answered in O(C(r)t2r+2α(n) + 3rt3α(n)L) time,
where C(r) = 3r(r+3) and L is the number of edges on the shortest beer path. The data
structure updates in O(C(r)t2r+2n(1/2)r−1) time after an edge weight change.2

Combined with Theorem 1, we obtain the following theorem by setting r = 1 − log β.

▶ Theorem 13. Let G be an n-vertex beer digraph with constant treewidth, and let β be any
constant in (0, 1). After O(n) time preprocessing, beer distance queries can be answered in
O(α(n)) time, shortest beer path queries can be answered in O(α(n)L) time where L is the
number of edges on the shortest beer path. Edge weight updates (including edge deletions and
edge re-insertions) can be performed in O(nβ) time.

6 Another dynamic shortest path query structure

In this section we give another dynamic shortest path query structure. The basic structure is
a balanced tree BST (G) which represents a balanced separator decomposition of G. We build
compressed graphs for the associated subgraphs of nodes in BST (G) so that the distances
between vertices in different separators can be quickly computed. Finally, we partition edges
in E(G) among nodes in BST (G) so that edge weight update can be handled efficiently.

We give some preliminaries in Section 6.1, and describe the structure in Section 6.2,
Section 6.3 and Section 6.4.

6.1 Preliminaries
Let (X, T ) be a binary tree decomposition of G. Recall that an edge e = (i, j) in E(T )
corresponds to Xi ∩Xj , which is a separator of G. We can get a decomposition of G alongside
a decomposition of T . Let ϕ denote the separator that an edge e in E(T ) corresponds to. The
removal of e from T divides T into two subtrees T1 and T2, the removal of ϕ from G divides G

into two disjoint subgraphs G[V1] and G[V2]. We add the separator ϕ and the edges in E(G)
between vertices in ϕ and vertices in V1 to G[V1], and get the subgraph G1 = G[V1] ∪ ϕ ∪ E1

2 One can detect whether the edge weight change incurs a negative cycle, by using Lemma 3 at the
partitioned component subgraphs.
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where E1 is the set of edges in E(G) joining vertices in ϕ and vertices in V1. We add the
separator ϕ and the edges in E(G) between vertices in ϕ and vertices in V2 to G[V2], and get
the subgraph G2 = G[V2] ∪ ϕ ∪ E2 where E2 is the set of edges in E(G) joining vertices in ϕ

and vertices in V2. Thus G is divided into G1, G2 and G[ϕ] where G[ϕ] is the subgraph of G

induced by vertices in ϕ. See Figure 2(a). We call G[ϕ] a separator subgraph. We have that
T1 is a tree decomposition of G1 and T2 is a tree decomposition of G2. Note that G1, G2
and G[ϕ] partitions edges in E(G).

If we repeat the division step for T1 and G1, and for T2 and G2 recursively until the
subtrees have O(1) nodes, we obtain a decomposition of G. We use a tree DT to represent
the decomposition. Each node p of DT corresponds to a subtree of T and is associated with
a subgraph of G, denoted as Gp. If p is an internal node of DT , p is also associated with an
edge ep in E(T ) and a separator ϕp which corresponds to ep. Recall that Gp[ϕp] is called a
separator subgraph, and we associate p with Gp[ϕp]. Since the division stops at a leaf node
of DT , a leaf node has no associated separator or separator subgraph.

Let Φ denote the set of separators associated with nodes of DT . The separators of Φ
that separate Gp from the rest of G are called the cut separators of Gp. See Figure 2(b) for
an illustration.

(a) (b)

V1 V2φ

G1 G2

associated separator

separator subgraph

cut separators

associated subgraph

cut separators

CR(Gg)

(c)

Gp

Figure 2 (a) G1 = G[V1] ∪ ϕ ∪ E1 where E1 is the set of edges in E(G) joining vertices in ϕ and
vertices in V1. The blue edges are in E1. G2 = G[V2] ∪ ϕ ∪ E2 where E2 is the set of edges in E(G)
joining vertices in ϕ and vertices in V2. The red edges are in E2. G1, G2 and G[ϕ] partitions edges
in E(G). (b) The cut separators of Gp are in blue. (c) The BST (G) structure.

Constructing a balanced separator decomposition
We give an algorithm that outputs a decomposition of G that will be used in the construction
of the data structure in Section 6.2. The decomposition is the construction of a DT using
balanced separators. A balanced separator corresponds to an edge of a tree decomposition
whose removal partitions the tree decomposition into two subtrees of proportional sizes. The
decomposition fulfills two goals: (1) the height of the DT is O(log n) and (2) any subgraph
associated with a node of DT has constant size separators. If in the decomposition of T we
successively use an edge of a subtree whose removal partitions the subtree into two subtrees
of proportional sizes, we get a balanced decomposition of T which fulfills the first goal.

Guibas et al. [14] showed an algorithm that computes a balanced decomposition of a
binary tree in linear time. They called the balanced decomposition a centroid decomposition.
In their algorithm the binary tree is decomposed by removing a centroid edge which partitions
the binary tree into two subtrees, each of size at least (|T | + 1)/3. A centroid edge is found
by finding a node that is a centroid of the tree. When each of the subtrees is partitioned
similarly and this is repeated recursively until the subtrees are single nodes, we obtain a
balanced binary tree structure which is the balanced decomposition of the binary tree. For
our purpose, we perform a centroid decomposition on T until the subtrees have at most 5
nodes.
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To fulfill the second goal, we modify the centroid decomposition procedure by using the
following step when choosing the edge used to partition a subtree. Edges in E(T ) which are
used for partitioning subtrees are called partition edges. If a subtree is connected to the rest
of T through at most three partition edges, we just choose an centroid edge of the subtree as
the partition edge (used to partition the subtree). If a subtree is connected to the rest of T

through four partition edges, we choose an edge of the subtree whose removal partitions the
subtree into two subtrees, either of which is connected to the rest of T through two of the
four partition edges. Thus in every two levels of recursion, the size of a subtree is reduced by
a factor of at least 1/3.

If we use the above modified centroid decomposition on T to get a decomposition of G,
we get a balanced DT which we call a balanced separator tree of G, denoted as BST (G).

BST (G) is a balanced decomposition of G which meets the two goals. The second goal
is fulfilled since any subgraph associated with a node of BST (G) has at most four cut
separators, due to the fact that any subtree in the modified centroid decomposition on T is
connected to the rest of T through at most four partition edges. The two goals will support
the shortest path and distance queries in Section 6.3. For an internal node of BST (G),
we store with it its associated separator and its separator subgraph. For a leaf node of
BST (G), we store with its associated subgraph. For any node p of BST (G), we store with
it pointers to edges in E(T ) that correspond to the cut separators of Gp. See Figure 2(c) for
an illustration.

Assume that a binary tree decompostion (X, T ) of G with treewidth t is given. The
modified centroid decomposition on T takes O(n) time. Storing the associated separators
and separator subgraphs at internal nodes of BST (G) takes O(t2n) time. The associated
subgraph of a leaf node in BST (G) has O(t) vertices, so storing the associated subgraphs at
leaf nodes of BST (G) takes O(t2n) time. In summary:

▶ Lemma 14. Given a binary tree decomposition (X, T ) of G with treewidth t, we can build
BST (G) in O(t2n) time. The depth of BST (G) is O(log n). The associated subgraph of a
node in BST (G) has at most four cut separators.

6.2 The preprocessing
Given a binary tree decompostion (X, T ) of G, we preprocess T and G to output the following
data structures:
1. The BST (G) with CR(Gg) for each internal node g in BST (G). CR(Gg) is a compressed

representation of g’s associated subgraph Gg, which will be described below.
2. An array Loc[·] for vertices in V (G), where Loc[v] is a leaf node of BST (G) whose

associated subgraph contains vertex v in V (G).
3. An LCA (lowest common ancestor) structure for BST (G).
We have the following definition.

▶ Definition 15. Let BST (G) be the balanced separator tree of G and let p be a node of
BST (G). If p is an internal node g, let CR(Gg) be a clique for Gg with respect to vertices
in ϕg and the cut separators of Gg. The weight of an edge in the clique is the distance in Gg

between the vertices of the edge. We call CR(Gg) the compressed representation of Gg. If p

is a leaf node, we have CR(Gp) = Gp.

Given BST (G), we compute CR(Gg) for each internal node g of BST (G) in a bottom-up
fashion. Let t1 and t2 be g’s children. We take the union of CR(Gt1), CR(Gt2) and g’s
associated separator subgraph Gg[ϕg], run the Floyd-Warshall algorithm on the union graph,
and build a clique on vertices in ϕg and the cut separators of Gg where the weight of an edge
is the distance computed for the vertices of the edge.
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The correctness of the clique construction procedure is supported by the following lemma.

▶ Lemma 16. lemmaCRunion Let g be an internal node of BST (G) and let ϕg be its
associated separator. Let t1 and t2 be g’s children in BST (G). Let Gt1 be t1’s associated
subgraph and let Gt2 be t2’s associated subgraph. The distance between any two vertices in
CR(Gt1) ∪ CR(Gt2) ∪ Gg[ϕg] equals the distance between the two vertices in Gg.

Note that the associated subgraphs of leaf nodes in BST (G) and the separator subgraphs
of internal nodes in BST (G) partition edges in E(G). This property is used for efficiently
updating an edge weight in Section 6.4.

The preprocessing consists of two steps: building the BST (G), and constructing the
CR(Gg) for each internal node g of BST (G). The associated subgraph of an internal node
g in BST (G) has at most four cut separators, each of which contains at most t vertices.
Thus CR(Gg) has O(t) vertices and computing CR(Gg) takes O(t3) time, dominated by the
Floyd-Warshall algorithm. There are O(n) internal nodes, so the second step takes O(t3n)
time. Combined with Lemma 14, we have the following lemma.

▶ Lemma 17. Given a binary tree decomposition (X, T ) of G with treewidth t, we can build
BST (G) and CR(Gg) for each internal node g of BST (G) in O(t3n) time.

The array Loc[·] for vertices in V (G) can be constructed by scanning the associated
subgraphs of leaf nodes of BST (G). There are O(n) leaf nodes. The associated subgraph of
a leaf node has O(t) vertices. Thus Loc[·] can be constructed in O(tn) time.

We can build an LCA structure for BST (G) in O(n) time [3, 16].

▶ Corollary 18. The preprocessing outputs the BST (G) with CR(Gg), Loc[·] and an LCA
structure for BST (G) in O(t3n) time.

6.3 Answering shortest path and distance queries
We describe the distance query algorithm first. Let u and v be any two vertices of G. The
distance query algorithm consists of three steps: (1) find the node s of BST (G) whose
associated separator separates u from v, (2) compute the distances in G between any two
vertices in ϕa, where ϕa is the associated separator of an ancestor node a of s, and (3)
compute the distances in G from u to vertices in ϕs and the distances in G from vertices in
ϕs to v, from which the distance from u to v is computed.

In step 1 we use the array Loc[·] to locate the leaf node l(u) of BST (G) whose associated
subgraph contains u and locate the leaf node l(v) whose associated subgraph contains v. We
use the LCA structure on BST (G) to find the vertex s, which is the lowest common ancestor
of l(u) and l(v) in BST (G).

Step 2 makes use of the compressed representations. Let g be an internal node of BST (G)
and let D(ϕg) denote the distances in G between any two vertices in ϕg. Let r be the root
of BST (G) and let a be an ancestor of s. We compute the distances top-down, for nodes
on the path from r to s. CR(G) at r is a clique containing the distances in G between any
two vertices in ϕr, thus D(ϕr) has already been computed. Next let b be a’s child that is on
the path from r to s and assume we have computed D(ϕr), . . . , D(ϕa) . We can use CR(Gb)
and D(ϕr), . . . , D(ϕa) to compute D(ϕb). The associated subgraph Gb of b is separated from
the rest of G by at most four cut separators, which are among {ϕr, . . . , ϕa}. Recall that we
have stored, with each node p of BST (G), pointers to the cut separators of Gp. If we add to
CR(Gb) edges with weights equal to distances in D(ϕx), where ϕx is a cut separator of Gb,
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the distance between any two vertices in the resulting graph equals the distance in G between
the two vertices. This is because absorption preserves distances in G (see Definition 2).
Thus we can run the Floyd-Warshall algorithm on the resulting graph to compute D(ϕb) in
O(t3) time, recalling that any compressed representation has O(t) vertices. Therefore we
can compute D(ϕr), . . . , D(ϕs) top-down from r to s, where each D(·) is computed in O(t3)
time.

In step 3 we compute the distances in G from u to vertices in ϕs recursively. Computing
the distances in G from vertices in ϕs to v is symmetric so we only discuss the former. Let s1
be the child of s that is on the path from s to l(u). We have computed D(ϕr), . . . , D(ϕq) in
step 2, where q is the parent of s. Let D(u, ϕs) denote the distances in G from u to vertices
in ϕs. We compute D(u, ϕs) at s1 and differentiate between two cases:

Case 1 : ϕs1 separates u from ϕs in Gs1 . See Figure 3(a). For a vertex vs in ϕs, we have

dG(u, vs) = min
vs1 ∈ϕs1

{dG(u, vs1) + dG(vs1 , vs)}. (11)

Let D(u, ϕs1) = {dG(u, vs1)|vs1 ∈ ϕs1} and let D(ϕs1 , ϕs) = {dG(vs1 , vs)|vs1 ∈ ϕs1 , vs ∈ ϕs}.
Given D(ϕr), . . . , D(ϕs), we add edges to CR(Gs1) with weights equal to distances in D(ϕx),
where ϕx is a cut separator of Gs1 . Then we run the Floyd-Warshall algorithm on the
resulting graph to compute D(ϕs1) and D(ϕs1 , ϕs). Thus in this case, computing D(u, ϕs) is
reduced to computing D(u, ϕs1), which is computed recursively at s′ where s′ is the child of
s1 on the path from s to l(u).

φs1 φs

u
vs1

vs
(a)

φs1 φs

(b)

u

Gs1 Gs1

Figure 3 (a) ϕs1 separates u from ϕs in Gs1 . (b) ϕs1 does not separate u from ϕs in Gs1 .

Case 2 : ϕs1 does not separate u from ϕs in Gs1 . See Figure 3(b). For this case, we add
edges to CR(Gs1) with weights equal to distances in D(ϕx), where ϕx is a cut separator of
Gs1 . Then we run the Floyd-Warshall algorithm on the resulting graph to compute D(ϕs1).
We recursively compute D(u, ϕs) at s′, since ϕs is a cut separator of Gs′ .

Recursion stops when we arrive at l(u). Since we have computed D(ϕr), . . . , D(ϕy) where
y is the parent of l(u), we can add edges and run the Floyd-Warshall algorithm to compute
D(u, ϕy) or D(u, ϕs), as desired.

Step 1 takes O(1) time. Step 2 computes D(ϕr), . . . , D(ϕs) top-down from r to s, where
each D(·) is computed in O(t3) time. Since BST (G) has depth O(log n), step 2 takes
O(t3 log n) time. Each recursion step in step 3 takes O(t3) time, dominated by running the
Floyd-Warshall algorithm. The computation at l(u) also takes O(t3) time. Thus step 3 takes
O(t3 log n) time. In summary:

▶ Lemma 19. Let u and v be any two vertices in G. The distance in G from u to v can be
computed in O(t3 log n) time where t is the treewidth of G.

6.3.1 Shortest path query algorithm
To answer shortest path queries efficiently, we add a preprocessing step PathExtract_Pre.
PathExtract_Pre works on BST (G) bottom-up and stores with each internal node g the
complete APSP information when running the Floyd-Warshall algorithm. In analogy to the
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distance query algorithm, the shortest path query algorithm works down the path from the
root to l(u) and retains APSP information when running the Floyd-Warshall algorithm. The
APSP information allows us to extract the shortest path in G between any two vertices in
CR(Ga) where a is an ancestor of l(u), in time linear to the number of edges on the shortest
path. We have the following lemma.

▶ Lemma 20. Let u and v be any two vertices in G. One can preprocess G in O(t3n)
time and with O(t3n) space so that the shortest path in G from u to v can be reported in
O(t3 log n + L) time where L is the number of edges on the shortest path.

6.4 Handling edge weight update
We have the following lemma.

▶ Lemma 21. The query structure can be updated in O(t3 log n) time for an edge weight
update.

Combined with Corollary 18, Lemma 19 and Lemma 20, we obtain the main theorem of
this section.

▶ Theorem 22. Let G be an n-vertex digraph of treewidth t and assume a binary tree
decomposition of G with treewidth t is given. One can preprocess G in O(t3n) time and with
O(t3n) space, so that distance queries can be answered in O(t3 log n) time, and shortest path
queries can be answered in time O(t3 log n + L), where L is the number of edges on the path.
The data structure can be updated in O(t3 log n) time for an edge weight update.

7 A dynamic shortest beer path query structure

We can extend the structure in Section 6 to handle shortest beer paths. The general idea is
to add beer edges and to compute not only APSP, but also APSBP (all pairs shortest beer
path). The query structure is summarized in the following theorem.

▶ Theorem 23. Let G be an n-vertex beer digraph with treewidth t and assume a binary tree
decomposition of G with treewidth t is given. One can preprocess G in O(t3n) time and with
O(t3n) space, so that beer distance queries can be answered in O(t3 log n) time, shortest beer
path queries can be answered in O(t3 log n + L) time where L is the number of edges on the
shortest beer path. The query structure can be updated in O(t3 log n) time for an edge weight
update.
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