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Abstract
A mixed interval graph is an interval graph that has, for every pair of intersecting intervals, either an
arc (directed arbitrarily) or an (undirected) edge. We are particularly interested in scenarios where
edges and arcs are defined by the geometry of intervals. In a proper coloring of a mixed interval
graph G, an interval u receives a lower (different) color than an interval v if G contains arc (u, v)
(edge {u, v}). Coloring of mixed graphs has applications, for example, in scheduling with precedence
constraints; see a survey by Sotskov [Mathematics, 2020].

For coloring general mixed interval graphs, we present a min{ω(G), λ(G) + 1}-approximation
algorithm, where ω(G) is the size of a largest clique and λ(G) is the length of a longest directed
path in G. For the subclass of bidirectional interval graphs (introduced recently for an application
in graph drawing), we show that optimal coloring is NP-hard. This was known for general mixed
interval graphs.

We introduce a new natural class of mixed interval graphs, which we call containment interval
graphs. In such a graph, there is an arc (u, v) if interval u contains interval v, and there is an edge
{u, v} if u and v overlap. We show that these graphs can be recognized in polynomial time, that
coloring them with the minimum number of colors is NP-hard, and that there is a 2-approximation
algorithm for coloring.
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36:2 Coloring and Recognizing Mixed Interval Graphs

1 Introduction

In a geometric intersection graph, the vertices represent geometric objects, and two vertices
are adjacent if and only if the corresponding objects intersect. For example, interval graphs
are the intersection graphs of intervals on the real line. These graphs are well understood:
interval graphs are chordal and can thus be colored optimally (that is, with the least number
of colors) in polynomial time. In other words, given an interval graph G, its chromatic
number χ(G) can be computed efficiently.

The notion of coloring can be adapted to directed graphs where an arc (u, v) means that
the color of u must be smaller than that of v. Clearly, such a coloring can only exist if the
given graph is acyclic. Given a directed acyclic graph, its chromatic number can be computed
efficiently (via topological sorting).

A generalization of both undirected and directed graphs are mixed graphs that have
edges and arcs. A proper coloring of a mixed graph G with vertex set V (G) is a function
f : V (G) → N such that, for any distinct vertices u and v of G, the following conditions hold:
1. if there is an edge {u, v}, then f(u) ̸= f(v), and
2. if there is an arc (u, v), then f(u) < f(v).
The objective is to minimize the number of colors.

The concept of mixed graphs was introduced by Sotskov and Tanaev [16] and reintroduced
by Hansen, Kuplinsky, and de Werra [9] in the context of proper colorings of mixed graphs.
Properly coloring mixed graphs is NP-hard even for bipartite planar graphs [12] but admits
efficient algorithms for trees [5] and series-parallel graphs [6].

For a mixed interval graph G, the underlying undirected graph of G, denoted by U(G),
has an edge for every edge or arc of G. Note that testing whether a given graph G is a mixed
interval graph means testing whether U(G) is an interval graph, which takes linear time [10].

Motivation. Mixed graphs are graphs where some vertices are connected by (undirected)
edges and others by directed arcs. Such structures are useful for modeling relationships
that involve both directed and undirected connections and find applications in various areas,
including network analysis, transportation planing, job scheduling, and circuit design.

Coloring mixed graphs is relevant in task scheduling problems where tasks have de-
pendencies and resource requirements [18, 3, 15]. In circuit design, coloring mixed graphs
allows us to reduce signal crosstalk or interference. Other applications include modeling of
metabolic pathways in biology [1], process management in operating systems [2], traffic signal
synchronization [13], and timetabling [4]. See the extensive survey by Sotskov [14] for other
applications and relevant problems. Coloring of mixed graphs is a challenging problem, as
many techniques known for solving graph coloring problems fail in the more general setting.

The study of mixed graph coloring for interval graphs was initiated by Zink et al. [19],
motivated by the minimization of the number of additional sub-layers for routing edges in
layered orthogonal graph drawing according to the so-called Sugiyama framework [17]. In a
follow-up paper, Gutowski et al. [8] resolved some of the problems concerning interval graphs
where the subset of arcs and their orientations are given by the geometry of the intersecting
intervals. Driven by the graph drawing application, they focused on the directional variant
where, for every pair of intersecting intervals, there is an edge when one interval is contained
in the other and there is an arc oriented towards the right interval when the intervals overlap.

In this paper we focus on the containment variant where, for any pair of intersecting
intervals, there is an arc oriented towards the smaller interval when one interval is contained
in the other, and an edge when they overlap. This is the only other natural geometric variant
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Table 1 Known and new results concerning subclasses of mixed interval graphs. The time
complexities refer to a given set of n intervals with m pairwise intersections. (We use T, P, and C
as shorthand for Theorem, Proposition, Corollary, respectively.)

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard T7 2ω−1 P6 2ω−1 T2 2 C5 O(nm) T1
directional O(n log n) [8] 1 [8] O(n2) [8]
bidirectional NP-hard T8 2 [8] open
general NP-hard [8] (λ+2)ω/2 P10 (λ+1)ω T9 min{ω, λ+1} T9 O(n+m) [10]

that can be defined for interval graphs, but the containment variant can also be defined for
other geometric intersection graphs, or even for graphs defined by systems of intersecting
sets.

As there are already some effective techniques for the directional variant, our hope was to
use them in the containment variant, or even in more general settings. Quite unexpectedly,
the containment variant for interval graphs turned out to be more difficult than the directional
variant. We have found our techniques for proving lower bounds for the containment variant
of interval graphs to be applicable for the bidirectional variant considered previously [19, 8].
This variant is a generalization of the directional variant mentioned above. Every interval
has an orientation; left-going or right-going. There is an arc between two intervals if and only
if they overlap and their orientations agree. Arcs between left-going intervals are directed as
in the directional variant; the condition for right-going intervals is symmetric. As a result, we
get that minimizing the number of additional sub-layers in layered orthogonal graph drawing
according to the Sugiyama framework is NP-hard.

Our Contribution. In this paper we forward the study of coloring mixed graphs where
edge directions have a geometric meaning. To this end, we introduce a new natural class of
mixed interval graphs, which we call containment interval graphs. In such a graph, there
is an arc (u, v) if interval u contains interval v, and there is an edge {u, v} if u and v

overlap. For a set I of intervals, let C[I] be the containment interval graph induced by I.
We show that these graphs can be recognized in polynomial time (Section 2), that coloring
them optimally is NP-hard (Section 4), and that, for every set I of intervals, it holds that
χ(C[I]) ≤ 2ω(C[I]) − 1, that is, C[I] can be colored with fewer than twice as many colors
as the size of the largest clique in C[I] (Section 3). In other words, containment interval
graphs are χ-bounded. Our constructive proof yields a 2-approximation algorithm for coloring
containment interval graphs.

Then we prove that, for the class of bidirectional interval graphs, optimal coloring is
NP-hard (Section 5). This answers (negatively) an open problem that was asked previously [8].
Our reduction is similar to the one for containment interval graphs, but technically somewhat
more challenging. Finally, we show that, for any mixed interval graph G without directed
cycles, it holds that χ(G) ≤ ω(G) · (λ(G) + 1), where λ(G) denotes the length of a longest
directed path in G (Section 6). Since χ(G) ≥ max{ω(G), λ(G) + 1}, our constructive proof
for the upper bound yields a min{ω(G), λ(G) + 1}-approximation algorithm. The upper
bound is asymptotically tight in the worst case.

Table 1 gives an overview over known and new results concerning the above-mentioned
subclasses of mixed interval graphs. Given a positive integer k, we use [k] as shorthand for
the set {1, 2, . . . , k}. When we visualize a graph coloring corresponding to a set of intervals,
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(c) G3 ∈ B \ D.

Figure 1 Let D, B, and C be the classes of directional, bidirectional, and containment interval
graphs. Clearly, D ⊆ B. The above sets of intervals and the corresponding directed graphs show
that the classes D and B are incomparable with the class C and that D is properly contained in B.

we use horizontal tracks to indicate the color. In Figure 1, we briefly analyze the relationships
between the three classes of geometrically defined mixed interval graphs; directional (D),
bidirectional (B), and containment interval graphs (C).

2 Recognition of Containment Interval Graphs

Booth and Lueker [10] introduced a data structure called PQ-tree to recognize, for a given
undirected graph G, whether G is an interval graph. A PQ-tree is a rooted tree of so-called
P-nodes, where the order of children can be arbitrarily permuted, and Q-nodes, where the
order of children is fixed up to inversion. A specific permutation of all nodes is called a
rotation. One can think of the leaves of a PQ-tree to represent the maximal cliques of G and
a specific rotation to represent an order of the maximal cliques, which implies an interval
representation of G where every vertex is contained in a consecutive sequence of maximal
cliques. (Actually, a PQ-tree can encode all possible interval representations of G.)

Observe that a representation of a containment interval graph is an interval representation.
Hence, if, for a given mixed graph G, a containment representation I exists, then I corresponds
to a rotation of the PQ-tree constructed for the underlying undirected graph U(G) by the
algorithm of Booth and Lueker [10]. Hence, to recognize a containment interval graph G, we
proceed in three phases. First, we compute a PQ-tree T of U(G). Second, we find a rotation
of T corresponding to a containment representation of G. Third, we determine suitable
endpoints for the intervals corresponding to our selected rotation resulting in a containment
representation I of G.

In the second phase, we proceed top-down to fix the permutation of each node of T while
we maintain as invariant that before and after deciding the permutation of a single node, we
can still reach a rotation of T corresponding to a containment representation I (provided G

is a containment interval graph). Depending on the set of maximal cliques (corresponding to
leaves) a vertex v is contained in, we can determine where v is introduced in T (roughly at
the root of the subtree containing all leaves corresponding to v). Intuitively, it is “natural”
for a vertex u introduced further up in the tree to have an arc towards a vertex v introduced
further down in the tree. However, if u and v are connected by an edge, we need to permute
the nodes of the PQ-tree such that both u and v start or end in the same maximal clique.
These restrictions can propagate.

If we end up with a rotation of T , we construct, in the third phase, a corresponding
containment representation if possible. To this end, we determine for every vertex the first
and the last clique it appears in, which groups the left and right endpoint of the intervals.
Within each group, we sort the endpoints according to the constraints implied by the arcs
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and edges where possible. What remains are induced mixed subgraphs of vertices that start
and end in the same cliques and that behave the same with respect to every other vertex (i.e.,
they are all connected to this vertex by an outgoing arc or an incoming arc or an edge). We
can interpret each such subgraph as a partially ordered set for which we need to check whether
it is two-dimensional and find two corresponding linear orders, which gives us an ordering
of their left and their right endpoints. This last part depends on the linear-time algorithm
by McConnell and Spinrad [11] that can construct such two orders for any two-dimensional
poset.

▶ Theorem 1. There is an algorithm that, given a mixed graph G, decides whether G is a
containment interval graph. The algorithm runs in O(nm) time, where n is the number of
vertices of G and m is the total number of edges and arcs of G, and produces a containment
representation of G if G admits one.

The full proof follows the ideas presented above, but has some technical subtleties; see
the full version of this article [7].

3 A 2-Approximation Algorithm for Coloring Containment Interval
Graphs

In this section, we present a 2-approximation algorithm for coloring containment interval
graphs, we detail how to make the algorithm run in O(n log n) time for a set of n intervals,
and we construct a family of sets of intervals that shows that our analysis is tight.

▶ Theorem 2. For any set I of intervals, the containment interval graph C[I] induced by I
admits a proper coloring with at most 2 · ω(C[I]) − 1 colors.

Proof. For simplicity, let G := C[I] and ω := ω(G). We use induction on ω. If ω = 1, then
G has no edges and clearly admits a proper coloring using only one color. So assume that
ω > 1 and that the theorem holds for all graphs with smaller clique number.

Recall that a proper interval graph is an interval graph that has a representation where
no interval is contained in another interval. Let M(I) denote the subset of I consisting of
intervals that are maximal with respect to the containment relation. In particular, C[M(I)]
is a proper interval graph. Observe that

⋃
M(I) =

⋃
I (where we consider the union of

intervals as a subset of the real line). Let R be an inclusion-wise minimal subset of M(I)
such that

⋃
R =

⋃
I. In Figure 2, the intervals in M(I) are marked with crosses and the

set of intervals on the lowest two (gray) lines is one way of choosing R.

▷ Claim 3. C[R] is an undirected linear forest.

Proof. All intervals in M(I) and thus in R are incomparable with respect to the containment
relation, so C[R] has no arcs. Note that C[R] is a proper interval graph, so it contains no
induced K1,3 and no induced cycle with at least four vertices. Thus it suffices to prove that
C[R] is triangle-free. For contradiction, suppose otherwise. Let x, y, z induce a triangle in
C[R], ordered according to their left endpoints. As x, y, z are pairwise overlapping, note that
y ⊆ x ∪ z, and thus

⋃
(R \ {y}) =

⋃
R. This contradicts the minimality of R. ◁

By the claim above, C[R] can be properly colored with colors {1, 2}. Let f1 be such a
coloring. If R = I, we are done (using only ω many colors), so suppose that I \ R ̸= ∅.
Slightly abusing notation, we define G′ := G − R.

▷ Claim 4. The largest clique in G′ has at most ω − 1 vertices.

ISAAC 2023
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1
2
3
4
5

Figure 2 A set of intervals and a coloring produced by the 2-approximation algorithm. The
intervals that lie in M(I) at the top level of the recursion are marked with crosses.

Proof. As G′ is a subgraph of G, each clique in G′ has at most ω vertices. For contradiction,
suppose that there is a set S ⊆ I \ R such that |S| = ω and all intervals in S pairwise
intersect. By the Helly property of intervals,

⋂
S ̸= ∅. Let p ∈

⋂
S. Since

⋃
R =

⋃
I, there

is an interval r ∈ R that contains p. Thus S ∪ {r} is a clique in G with ω + 1 vertices, which
contradicts the definition of ω. ◁

By the inductive assumption, G′ admits a proper coloring f2 using colors [2(ω − 1) − 1].
Finally, we define f : I → [2ω − 1] as follows:

f(x) =
{

f1(x) if x ∈ R,

f2(x) + 2 if x /∈ R.

We claim that f is a proper coloring of G. (For an example, see Figure 2.)
First, note that if x, y ∈ I are distinct and x∩y ̸= ∅, then f(x) ̸= f(y). Indeed, if x, y ∈ R,

then f(x) = f1(x) ̸= f1(y) = f(y). If x, y /∈ R, then f(x) = f2(x) + 2 ̸= f2(y) + 2 = f(y).
Finally, if, say, x ∈ R and y /∈ R, then f(x) ∈ {1, 2} and f(y) ≥ 3.

It remains to argue that the second condition in the definition of a proper coloring holds
as well. For a contradiction, let x and y be distinct intervals and assume that x ⊆ y and
f(y) > f(x). Note that x /∈ M(I) and thus x /∈ R. This implies that f(x) ≥ 3. Since we
assumed that f(y) > f(x), we have that f(y) > 3. Hence, y ̸∈ R. However, by the inductive
assumption, we have that f(x) = f2(x) + 2 > f2(y) + 2 = f(y), which yields the desired
contradiction. This completes the proof. ◀

Observe that the proof of Theorem 2 can be easily transformed into an efficient algorithm,
which yields the following corollary.

▶ Corollary 5. There is a 2-approximation algorithm for coloring interval containment graphs
properly. Given a set of n intervals, the algorithm runs in O(n log n) time.

Proof. For any graph G, we have χ(G) ≥ ω(G). Hence, the approximation factor follows
directly from Theorem 2.

It remains to implement the constructive proof of Theorem 2 efficiently. Let I be the
given set of intervals. For each interval I in I, let rI be the right endpoint of I. We go
through the intervals from left to right in several phases. In each phase, we use two colors,
except possibly in the last phase where we may use only one color. For phase i with i ≥ 1,
we reserve the set colors(i) = {2i − 1, 2i}. We use an augmented balanced binary search
tree T to store the intervals in I. We will query T in two ways. A query of type Q1 in T
with a value x ∈ R ∪ {−∞} will return, among all intervals whose left endpoint is at least x,
one with leftmost left endpoint (and nil if such an interval does not exist). A query of type
Q2 in T with a value y ∈ R will return, among all intervals whose left endpoint is at most y,
one with rightmost right endpoint (and nil if such an interval does not exist). Note that the
two queries are not symmetric.

Algorithm 1 describes our algorithm in pseudocode. Initially, T stores all intervals in I.
The algorithm terminates once T is empty and all intervals are colored.
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Algorithm 1 2-Approximate-Coloring(set I of n intervals).

T .initialize(I)
i = 0
while not T .empty() do

i = i + 1 // start new phase
I = T .Q1(−∞)
c = I.color = 2i − 1 // color I and set current color
T .remove(I)
while not T .empty() do

I ′ = T .Q2(rI)
if I ′ == nil or rI′ ≤ rI then // no interval contains rI

I ′ = T .Q1(rI)
if I ′ == nil then break // finish current phase
I ′.color = c // color I ′ and keep current color

else // I and I ′ overlap
c = I ′.color = colors(i) \ {c} // color I ′ and swap current color

T .remove(I ′)
I = I ′

We start each phase by Q1-querying T with −∞. This yields the leftmost interval I

stored in T . We color I with the smaller color 2i − 1 reserved for the current phase i. Let
the current color c be this color. We remove I from T . Then we Q2-query T with the right
endpoint rI of I and consider the following two possibilities.
Case I: If the Q2-query returns nil or an interval that lies completely to the left of rI , we

Q1-query T with rI for an interval to the right of rI . If such an interval I ′ exists, it must
be disjoint from I, so we color I ′ with the current color c. Otherwise, we start a new
phase.

Case II: If the Q2-query returns an interval I ′ that overlaps with the previous interval I,
we color I ′ with the other color c′ that we reserved for the current phase, that is,
{c′} = colors(i) \ {c}. Then we set the current color c to c′.

In either case, if we do not start a new phase, we remove I ′ from T and proceed with the
next Q2-query as above, with I ′ now playing the role of I.

It remains to implement the balanced binary search tree T . The key of an interval is
its left endpoint. For simplicity, we assume that the intervals are stored in the leaves of T
and that the key of each inner node is the maximum of the keys in its left subtree. This
suffices to answer queries of type Q1. For queries of type Q2, we augment T by storing, with
each node ν, a value max(ν) that we set to the maximum of the right endpoints among all
intervals in the subtree rooted at ν. (We also store a pointer µ(ν) to the interval that yields
the maximum.) In a Q2-query with a value y, we search for the largest key k ≤ y. Let π be
the search path in T , and initialize m with −∞. When traversing π, we inspect each node ν

that hangs off π on the left side. If max(ν) > m, then we set m = max(ν) and ρ = µ(ν).
When we reach a leaf, ρ points to an interval whose right endpoint is maximum among all
intervals whose left endpoint is at most y.

The runtime of O(n log n) is obvious since we insert, query, and delete each interval in
O(log n) time exactly once. ◀

ISAAC 2023
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1
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Figure 3 Instance for the proof of Proposition 6 for n = 3: |In| = 3 ·2n−1 −2 = 10, ω(In) = n = 3,
and χ(In) = 2n − 1 = 5.

▶ Proposition 6. There is an infinite family (In)n≥1 of sets of intervals with |In| = 3·2n−1−2,
χ(C[In]) = 2n − 1, and ω(C[In]) = n.

Proof. The construction is iterative. The family I1 consists of a single interval of unit length.
Now let n > 1 and suppose that we have defined In−1 and want to define In. We

introduce two new intervals ℓn and rn, both of length 3n−1, that overlap slightly. Then
we introduce two copies of In−1. All intervals of one copy are contained in ℓn \ rn, and all
intervals of the other copy are contained in rn \ ℓn.

The number of intervals in In is given by the recursion: f(1) = 1 and f(n) = 2f(n−1)+2,
which solves to f(n) = 3 · 2n−1 − 2. Furthermore, it is straightforward to observe that with
each step of the construction, the size of a largest clique increases by 1.

We claim that, for i ∈ [n], in any proper coloring of C[Ii], the difference between the
largest and the smallest color used is at least 2i − 2. Clearly, the claim holds for i = 1.
Now assume that it holds for i = n − 1. Consider any proper coloring of C[In], and let m be
the minimum color used in this coloring. The colors of ℓn and rn must be different. Without
loss of generality, suppose that the color of rn is larger than the color of ℓn. In particular,
the color of rn is at least m + 1. Now consider the copy of In−1 contained in rn. The color of
each interval in this copy must be larger than the color of rn, so in particular the minimum
color used for this copy of In−1 is at least m + 2. By the inductive assumption, some interval
in this copy of In−1 receives a color that is at least m + 2 + 2(n − 1) − 2 = 2n − 2 + m.
Summing up, the difference between the largest and the smallest color used for C[In] is at
least 2n − 2.

Given that the minimum color is 1, we conclude that χ(C[In]) ≥ 2n − 1.
For the upper bound, we color C[In] as follows. For n = 1, we color the only interval with

color 1. For n > 1, we color ℓn with color 1 and rn with color 2. Next, for each of the two
copies of In−1, we use the proper coloring defined inductively with all colors increased by 2,
see Figure 3. ◀

4 Coloring Containment Interval Graphs Is NP-Hard

In this section we show that it is NP-hard to color a containment interval graph with a given
number of colors.

▶ Theorem 7. Given a set I of intervals and a positive integer k, it is NP-hard to decide
whether k colors suffice to color C[I], that is, whether χ(C[I]) ≤ k.

Proof. We describe a reduction from (exact) 3-Sat, i.e., the satisfiability problem where
every clause contains exactly three literals. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be an instance of
3-Sat where, for each clause Ci (i ∈ [m]), the literals are negated or unnegated variables
from the set {x1, x2, . . . , xn}, and let H = 5(m + 1) be a threshold.

Using φ, we construct in polynomial time a set of intervals (with pairwise distinct
endpoints) such that the corresponding containment interval graph has a proper coloring
with H colors if and only if φ is satisfiable. To this end, we introduce variable gadgets
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1
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5i+3

x true

1
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5i
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x false

Figure 4 Variable gadget for the proof of Theorem 7 in its two states. The blue intervals with
dots extend to the clause gadgets. The topmost blue interval (starting immediately to the right of a
gray interval) indicates that x is part of a clause Cj with j > i; the blue interval (with a small gap)
that starts immediately to the right of a red interval indicates that ¬x is part of the clause Ci.

and clause gadgets, which are sets of intervals representing the variables and clauses of φ,
respectively. Our main building structure used in these gadgets is a Christmas tree, that is,
an ordered set of intervals where each interval contains its successor; see, for example, the set
of red intervals in Figure 4. Clearly, the intervals of a Christmas tree form a totally ordered
clique and any proper coloring needs to observe this order. In Figure 5, Christmas trees
are represented by trapezoids. The height of a Christmas tree is the number of intervals it
consists of.

Let j ∈ [n]. The variable gadget for xj consists of two Christmas trees (formed by the
red and gray intervals in Figure 4) whose longest intervals overlap and, for each tree, of two
additional intervals (green in Figure 4). These green intervals lie immediately to the left
and to the right of the shortest interval in their tree. The right green interval of the red
tree overlaps the left green interval of the gray tree. Figure 4 depicts two representations
of the same gadget for a variable x, each with its own coloring of the intervals (encoded
by the height of the intervals; see the numbers at the right side of the gray box). The left
representation with its coloring corresponds to assigning true to x, the right representation
corresponds to assigning false. The height of the red tree is H − 1 minus the number of
occurrences of literals xj′ and ¬xj′ with j′ < j in φ. The height of the gray tree is that of
the red tree minus the number of occurrences of ¬xj in φ. We say that xj is set to true if
the bottom interval of the gray tree has color 1; otherwise we say that xj is set to false.

For i ∈ [m], the gadget for clause Ci consists of a Christmas tree (light blue in Figure 5)
of height H − (5i + 2) = 5(m − i) + 3. All clause gadgets are placed to the right of all variable
gadgets, in the order C1, . . . , Cm from left to right.

The key idea to transport a Boolean value from a variable gadget to a clause gadget is to
add, for each occurrence of a literal ℓj ∈ {xj , ¬xj} in a clause Ci, an “arm” (blue intervals in
Figures 4 and 5) that ends to the right of the clause gadget (the light blue Christmas tree)
corresponding to Ci and starts immediately to the right of the 5i-th interval of the gray tree
(if ℓj = xj) or of the red tree (if ℓj = ¬xj) corresponding to ℓj . The arm is represented by a
sequence of intervals that are separated by a small gap within each Christmas tree of each
clause gadget passed by the arm (such that, for any two arms, their gaps are disjoint and the
resulting intervals do not contain each other). Assuming that the total number of colors is H,
two intervals of the same arm that are separated by a gap need to get the same color because,
at the gap, H − 2 colors are occupied by other intervals and the one remaining “wrong” color
is blocked due to the green intervals of the variable gadgets; see Figures 4 and 5. The green
intervals are contained by the blue intervals of the arms and need to get color H or H − 1.

If there is a satisfying truth assignment for φ, then there is a proper coloring that colors
the variable gadgets such that they represent this truth assignment. As for every clause Ci,
at least one of its literals in Ci is true, the corresponding arm can use color 5i. Then, the
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1

H

x1 false x2 false x3 true x4 true x5 false

5i

1

H

x1 false x2 false x3 true x5 falsex4 false

5i

Figure 5 Variable gadgets (red and gray) and clause gadgets (blue) for the 3-Sat instance
(¬x2 ∨ ¬x4 ∨ x5) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) with a fulfilling truth assignment (above) and a
non-fulfilling assignment (below). Note that the latter uses one color more (is one level higher).

arms of the other literals that occur in Ci can use colors 5i + 1 and 5i + 2. This allows the
light blue Christmas tree representing clause Ci, which has height H −5i−2 and is contained
in the rightmost interval of each of these arms, to use the colors {5i + 3, 5i + 4, . . . , H}.

Now suppose for a contradiction that there is no satisfying truth assignment for φ, but
that there is a proper coloring with H colors. This coloring assigns a truth value to each
variable gadget (depending on whether the bottommost interval of the red or the gray tree has
color 1). Clearly, there is a clause Ci in φ that is not satisfied by this truth assignment. Hence,
none of the arms connecting the clause gadget of Ci with its three corresponding variable
gadgets can use color 5i. Hence they must use colors 5i+1, 5i+2, and 5i+3 (or higher). This
forces the (blue) Christmas tree representing clause Ci to use colors {5i + 4, . . . , H, H + 1}.

Thus, a proper coloring with H colors exists if and only if φ is satisfiable. ◀

5 Coloring Bidirectional Interval Graphs Is NP-Hard

In this section we show that it is NP-hard to color a bidirectional interval graph with a given
number of colors. For a set I of intervals and a function o that maps every interval in I
to an orientation (left-going or right-going), let B[I, o] be the bidirectional interval graph
induced by I and o.

▶ Theorem 8. Given a set I of intervals with orientations o and a positive integer k, it is
NP-hard to decide whether k colors suffice to color B[I, o], that is, whether χ(B[I, o]) ≤ k.

Proof. We use the same ideas as in the proof of Theorem 7, but now we reduce from
Monotone 3-Sat, the version of 3-Sat where every clause contains only negated or only
unnegated variables as literals. For an overview, see Figures 6 and 7. Let φ = C1∧C2∧· · ·∧Cm

be the given instance of Monotone 3-Sat with variables {x1, x2, . . . , xn}. As before, let
H = 5(m + 1) be the number of colors sufficient for coloring a yes-instance.

We now construct variable and clause gadgets by specifying a set I of intervals with
orientations o. Our intervals have pairwise distinct endpoints. Our main building structures
are left- and right-going staircases. A left-going staircase (gray in Figures 6 and 7) is an
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x true

1

H

5i

5i+3

x false

1

H

5i

5i+3

Figure 6 Variable gadget for the proof of Theorem 8 in its two states. Intervals directions are
indicated by arrow heads. The blue intervals extend (to the right) to the clause gadgets of only
negated variables. The two blue arrow heads starting next to the red intervals indicate that the
clause Ci and a clause Cj with j > i contain the literal ¬x.

x4 true

1

H

x1 true x2 false x3 true

5i

x4 true

1

H

x1 true x3 true

5i

x2 true

Figure 7 Variable gadgets (red and gray) and clause gadgets (light green and light blue) for the
Monotone 3-Sat instance (x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) with a fulfilling
truth assignment (top) and a non-fulfilling assignment (bottom), which use H and H + 1 colors,
respectively. Interval directions are indicated by arrow heads.

ordered set of left-going intervals that share a common point and whose left and right
endpoints are in the order of the set. A right-going staircase is symmetric (red in Figures 6
and 7). Observe that staircases in (bi)directional interval graphs behave like Christmas trees
in containment graphs: they form totally ordered cliques. The height of a staircase is the
number of its intervals. In Figure 7, we draw staircases as parallelograms and we indicate
left- and right-going intervals by arrow heads.

Let i ∈ [m]. If the clause Ci has only negated literals, we again have three “arms” in Ci

starting to the right of the 5i-th interval of the red staircase of the three corresponding
variables; see the blue intervals in Figures 6 and 7. The intervals of these arms are left-going
and they are not split by a gap at the other variable gadgets this time because now we need
to contain the left-going intervals of the staircases to have edges instead of arcs in B[I, o].
The arms end below a left-going light blue staircase (see Figure 7 on the upper right side) of
height 5(m − i) + 3 whose maximum color is H if and only if none of the corresponding arms
gets a color greater than 5i + 2.

Note that we need to avoid arcs between the arms. Therefore, we let every arm have a
gap below each blue staircase that it passes. These gaps do not overlap and their order is
inverse to the order of the left endpoints of the involved intervals. We continue the arm with
a right-going interval (to avoid an arc with the blue staircase and the other arms) ending to
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the right of the blue staircase, where we continue again with a left-going interval. Consider
such an arm with intervals I and I ′ (going in different directions) around a gap. At this gap,
it is important that no color smaller than the color of I is available for I ′, forcing I ′ to also
get the color of I. Hence, we add long left-going intervals blocking every color not occupied
by an arm or the blue staircase; see the orange intervals in Figure 7.

For every clause with only unnegated literals, we use the same construction but mirrored
(connecting to the gray staircases); see the green intervals and light green staircases depicted
in the top left corner of Figure 7.

We now have the same conditions as in the proof of Theorem 7: If there is a satisfying
truth assignment for φ, there is a proper coloring, which colors the variable gadgets such
that they represent this truth assignment. Again, for every i ∈ [m], clause Ci contains at
least one literal set to true. Hence, the corresponding arm can get color 5i, and the other
two arms and the (light blue or light green) staircase of Ci get colors {5i + 1, 5i + 2, . . . , H}.

If there is no satisfying truth assignment for φ, then there is a clause Ci none of whose
arms (as a whole) can get color 5i. If each arm occupies only one layer, then an interval
of the clause gadget of Ci requires color H + 1. If there is an arm occupying more than
one layer, then below a clause gadget of some clause Ci′ , there are two colors blocked by
this arm (at one of its gaps). Then, however, an interval of the clique of size H − 1 at this
gap belonging to the (light blue or light green) staircase of Ci′ , to the other arms, or to the
orange “blocker” intervals requires color H + 1; see Figure 7 for such an example. ◀

6 Coloring General Mixed Interval Graphs

In this section we consider a further generalization of mixed interval graphs. We are dealing
with an interval graph G whose edges can be arbitrarily oriented (or stay undirected). In
other words, the edge directions are not related to the geometry of the intervals.

Observe that a proper coloring of G exists if and only if G does not contain a directed
cycle. Let χ(G) denote the minimum number of colors in a proper coloring of G, if it exists,
or ∞ otherwise. We point out that the existence of a directed cycle can be determined in
polynomial time (using, for example, depth-first search).

Note that clearly we have ω(G) ≤ χ(G). However, there is another parameter that
enforces a large chromatic number even in sparse graphs. A directed path (of length t) in G

is a sequence of vertices ⟨v1, v2, . . . , vt+1⟩, such that, for each i ∈ [t], the arc (vi, vi+1) exists.
Let λ(G) denote the length of a longest directed path in G.

Note that the vertices in a directed path receive pairwise distinct colors in any proper
coloring. Thus we have χ(G) ≥ λ(G) + 1, and consequently χ(G) ≥ max{ω(G), λ(G) + 1}.

▶ Theorem 9. Let G be a mixed interval graph without directed cycles. Then χ(G) ≤
(λ(G) + 1) · ω(G).

Proof. Let V denote the vertex set of G. Let G→ be the graph obtained from G by removing
all edges. Clearly, G→ is a DAG. We partition V into layers L0, L1, . . . as follows. The set L0
consists of the vertices that are sources in G→, i.e., they do not have incoming arcs. Then,
for i = 1, 2, . . ., we iteratively define Li to be the set of sources in G→ \

⋃i−1
j=0 Lj . Note that

λ(G) = max{i : Li ̸= ∅}. For x ∈ V , let ℓ(x) ∈ {0, . . . , λ(G)} denote the unique i such that
x ∈ Li.

Recall that the underlying undirected graph of G, U(G), is an (undirected) interval graph,
and thus χ(U(G)) = ω(U(G)) = ω(G). Let c : V → [ω(U(G))] be an optimal proper coloring
of U(G).
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Figure 8 For any k ≥ 1, the set Ik ∪ I′
k of intervals gives rise to a mixed interval graph Gk with

2k2 vertices, λ(Gk) = k − 1, ω(Gk) = 2k, and χ(Gk) = (k + 1) · k = (λ(Gk) + 2) · ω(Gk)/2.

Now we define a coloring f of G: for x ∈ V , let f(x) = ℓ(x) · ω(G) + c(x). Note that
1 ≤ f(x) ≤ (λ(G) + 1) · ω(G). We claim that f is a proper coloring.

Consider an edge {x, y}. As this is also an edge in U(G), we obtain that c(x) ̸= c(y), and
so f(x) ̸= f(y). Now consider an arc (x, y). Its existence implies that ℓ(x) < ℓ(y), and thus
f(x) < f(y). ◀

For some instances, the above bound is asymptotically tight.

▶ Proposition 10. There is an infinite family (Gk)k≥1 of mixed interval graphs with |V (Gk)| =
2k2, λ(Gk) = k − 1, ω(Gk) = 2k, and χ(Gk) = (k + 1) · k = (λ(Gk) + 2) · ω(Gk)/2.

Proof. Let Ik = Ik,1 ∪ Ik,2 ∪ · · · ∪ Ik,k be a set of k2 intervals defined as follows; see Figure 8
for I4. For i ∈ [k], let Ik,i be a multiset that contains k copies of the interval [6i, 6i + 8].
Similarly, let I ′

k = I ′
k,1 ∪ I ′

k,2 ∪ · · · ∪ I ′
k,k be a set of k2 intervals such that I ′

k is the image
of mirroring Ik at the point x = 6k + 7. Note that, for i ∈ [k − 1], every interval in Ik,i

intersects every interval in Ik,i+1 and every interval in I ′
k,i intersects every interval in I ′

k,i+1.
Additionally, every interval in Ik,k intersects every interval in I ′

k,k.
Let Gk be a mixed interval graph for the set Ik ∪ I ′

k. We direct the edges of Gk as
follows. Let {I, I ′} be a pair of intervals in Ik ∪ I ′

k that intersect each other. If I and I ′ are
copies of the same interval, then {I, I ′} is an edge of Gk. Otherwise, (I, I ′) is an arc of Gk if
{I, I ′} ⊆ Ik and I lies further to the left than I ′, if {I, I ′} ⊆ I ′

k and I lies further to the right
than I ′, or if (I, I ′) ∈ Ik,k × I ′

k,k. It is easy to see that Gk has the desired properties. ◀

Note that the mixed interval graphs that we constructed in the proof above are even
directional interval graphs.

7 Open Problems

The obvious open problems are improvements to the results in Table 1, in particular: Is
there a constant-factor approximation algorithm for coloring general mixed interval graphs?
For applications in graph drawing, a better-than-2 approximation for coloring bidirectional
interval graphs is of particular interest.

Is there a linear-time recognition algorithm for directional or containment interval graphs?
Is there a polynomial-time recognition algorithm for bidirectional interval graphs?

Using a reduction from Max-3-SAT instead of 3-SAT, it may be possible to adjust
our NP-hardness proofs in order to show APX-hardness. To this end, the difference in the
number of colors needed to color a yes-instance and the number of colors needed to color a
no-instance would have to be proportional to the number of clauses that cannot be satisfied.
We were not able to force such a large difference, hence we leave the APX-hardness of (or
the existence of a PTAS for) coloring containment and birectional interval graphs open.
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