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Abstract
We study temporal analogues of the Unrestricted Vertex Separator problem from the static world.
An (s, z)-temporal separator is a set of vertices whose removal disconnects vertex s from vertex z

for every time step in a temporal graph. The (s, z)-Temporal Separator problem asks to find the
minimum size of an (s, z)-temporal separator for the given temporal graph. The (s, z)-Temporal
Separator problem is known to be N P-hard in general, although some special cases (such as bounded
treewidth) admit efficient algorithms [15].

We introduce a generalization of this problem called the (s, z, t)-Temporal Separator problem,
where the goal is to find a smallest subset of vertices whose removal eliminates all temporal
paths from s to z which take less than t time steps. Let τ denote the number of time steps over
which the temporal graph is defined (we consider discrete time steps). We characterize the set of
parameters τ and t when the problem is N P-hard and when it is polynomial time solvable. Then
we present a τ -approximation algorithm for the (s, z)-Temporal Separator problem and convert
it to a τ2-approximation algorithm for the (s, z, t)-Temporal Separator problem. We also present
an inapproximability lower bound of Ω(ln(n) + ln(τ)) for the (s, z, t)-Temporal Separator problem
assuming that N P ̸⊂ Dtime(nlog log n). Then we consider three special families of graphs: (1) graphs
of branchwidth at most 2, (2) graphs G such that the removal of s and z leaves a tree, and (3) graphs
of bounded pathwidth. We present polynomial-time algorithms to find a minimum (s, z, t)-temporal
separator for (1) and (2). As for (3), we show a polynomial-time reduction from the Discrete Segment
Covering problem with bounded-length segments to the (s, z, t)-Temporal Separator problem where
the temporal graph has bounded pathwidth.
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1 Introduction

Suppose that you have been given the task of deciding how robust a train system of a given
city is with respect to station closures. For instance, is it possible to disconnect the two most
visited places, e.g., the downtown and the beach, by shutting down 5 train stations in the
city? Does an efficient algorithm even exist? If not, what can we say about special classes of
graphs? These are central questions of interest in this work.
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38:2 Temporal Separators with Deadlines

More formally, we model the scenario as a graph problem. An important component
missing from the classical graph theory is the ability of the graph to vary with time. The
trains run on a schedule (or at least they are supposed to – for simplicity, we assume a
perfectly punctual train system). Thus, it is not accurate to say that there is an edge between
station A and station B just because there are tracks connecting them. It would be more
accurate to say that if you arrive at A at some specific time t then you could get to B at
some other time t′ > t, where t is when the train arrives at station A and t′ is the time when
this train reaches station B. In other words, we can consider the edge from A to B as being
present at a particular time (or times) and absent otherwise. This is an important point
for the robustness of train networks, since it could be that due to incompatibility of certain
train schedules the train network could become disconnected by shutting down even fewer
stations than we otherwise would have thought if we didn’t take time schedules into account.

The notion of graphs evolving with time has several formal models in the research
literature [3, 23]. First of all, there is an area of online algorithms [1] where the graph is
revealed piece by piece (thus the only allowable changes are to add objects or relations to
the graph) and we need to make irrevocable decisions towards some optimization goal as the
graph is being revealed. Secondly, streaming and semi-streaming graph algorithms deal with
graphs that are revealed one piece at a time similar to online algorithms, but the emphasis
is on memory-limited algorithms [12, 11]. Thus, in streaming one does not have to make
irrevocable decisions, but instead tries to minimize the memory size necessary to answer
some queries at the end of the stream. Thirdly, there is a notion of dynamic graph algorithms
where the emphasis is on designing efficient data structures to support certain queries when
the graph is updated by either adding or removing vertices or edges [24]. The goal is to
maintain the data structures and answer queries, such as “are nodes u and v connected?”, in
the presence of changes more efficiently than recomputing the answer from scratch on every
query. It is evident that none of these models is a good fit for our question: the train system
is known in advance and it is not frequently updated (some cities that shall remain unnamed
take decades to add a single station to the system). Fortunately, there is yet another model
of graphs changing with time that has recently gotten a lot of attention and it happens to
capture our situation perfectly. The model is called a temporal graph. In this work, we focus
on undirected temporal graphs that have a fixed node set but whose edge sets change in
discrete time units, all of which are known in advance. Other temporal graph models where
changes to nodes are allowed and where time is modelled with the continuous real line have
been considered in the research literature but they are outside of the scope of this work.
We typically use τ to indicate the total number of time steps over which a given temporal
graph is defined. For example, if we model the train system as a temporal graph with one
minute-granularity and the schedule repeats every 24 hours then the temporal graph would
have τ = (24H)× (60M/H) = 1440M time steps in total. For emphasis, when we need to
talk about non-temporal graphs and bring attention to their unchanging nature we shall call
them “static graphs.”

We study temporal analogues of the Unrestricted Vertex Separator problem from the
static world. An (s, z)-temporal separator is a set of vertices whose removal disconnects
vertex s from vertex z for every time step in a temporal graph. The (s, z)-Temporal Separator
problem asks to find the minimum size of an (s, z)-temporal separator for the given temporal
graph. The (s, z)-Temporal Separator problem is known to be NP-hard in general [28],
although some special cases (such as bounded treewidth) admit efficient algorithms [15].
This question can be thought of as a mathematical abstraction of the robustness of the
train network of a city question posed at the beginning of this section. The (s, z)-Temporal
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Separator problem asks you to eliminate all temporal paths between s and z by removing
some nodes. Observe that, practically speaking, in real life, one doesn’t actually have to
eliminate all temporal paths between s and z – one would have to remove only reasonable
temporal paths between s and z. Which paths would be considered unreasonable? We
consider paths taking too much time as unreasonable. For example, if normally it takes 30
minutes to get from downtown to the beach, then eliminating all routes that take at most 4
hours would surely detract most downtown dwellers from visiting the beach. Motivated by
such considerations, we introduce a generalization of the (s, z)-Temporal Separator problem
called (s, z, t)-Temporal Separator problem, where the goal is to find the smallest subset of
vertices whose removal eliminates all temporal paths from s to z which takes less than t

time steps. Observe that setting t = τ captures the (s, z)-Temporal Separator problem as a
special case of the (s, z, t)-Temporal Separator problem. Our results can be summarized as
follows:

In Section 4.1, we present a characterization of parameters t and τ when the problem
is NP-hard. We also present an inapproximability lower bound of Ω(ln(n) + ln(τ)) for the
(s, z, t)-Temporal Separator problem assuming that NP ̸⊂ Dtime(nlog log n). In Section 4.2,
we present a τ -approximation algorithm for the (s, z)-Temporal Separator problem, and we
convert it to a τ2-approximation algorithm for (s, z, t)-Temporal Separator problem.

In Section 5.1, we present a polynomial-time algorithm to find a minimum (s, z, t)-temporal
separator on temporal graphs whose underlying graph (see Section 2) has branchwidth at
most 2. In Section 5.2, we present another polynomial-time algorithm for temporal graphs
whose underlying graph becomes a tree after removal of s and z. In Section 5.3, we show a
polynomial-time reduction from the Discrete Segment Covering problem with bounded-length
segments to the (s, z, t)-Temporal Separator problem where the temporal graph has bounded
pathwidth. Therefore, solving the (s, z, t)-Temporal Separator problem on a temporal graph
whose underlying graph has bounded pathwidth is at least as difficult as solving the Discrete
Segment Covering problem where lengths of all segments are bounded.

2 Preliminaries

Temporal graphs (also known as dynamic, evolving [13], or time-varying [14, 6] graphs) are
graphs whose edges are active at certain points in time. A temporal graph G = (V, E, τ)
contains a set of vertices V , and a set of edges E ⊆ V × V × [τ ] 1. So each edge2. e ∈ E

contains two vertices of V and a time label t ∈ [τ ] indicating a time step at which the edge
is active. A graph G↓ = (V, E′) where E′ contains every edge e that is active at least once
in the temporal graph G is called the underlying graph (alternatively, the footprint) of the
temporal graph G. A static graph representing active edges for a specific time t is called
the layer of the temporal graph at that time and is denoted by Gt. Some other ways of
modelling temporal graphs could be found in [20]. We refer to V (G) and E(G) as the set of
vertices and edges, respectively, of a graph G (either temporal or static). Also for any subset
U ⊆ V (G) we refer to the set of all edges in the subgraph induced by U as E(U), and for
any node v ∈ V we use E(v) to denote the set of all edges incident on v. We also use τ(G)
to refer to the number τ of time labels of the temporal graph G.

1 Notation [n] stands for {1, 2, . . . , n}.
2 We only consider undirected graphs in this work, i.e. no self-loops and (u, v, t) ∈ E if and only if

(v, u, t) ∈ E

ISAAC 2023



38:4 Temporal Separators with Deadlines

A temporal path in a temporal graph is a sequence of edges such that (1) it is a valid path in
the underlying graph, and (2) the corresponding sequence of times when the edges are active is
non-decreasing. Formally, a sequence P = [(u1, v1, t1), (u2, v2, t2), . . . , (uk, vk, tk)] of edges in
a temporal graph G is called an (s, z)-temporal path if s = u1, v1 = u2, . . . , vk−1 = uk, vk = z

and t1 ≤ t2 ≤ · · · ≤ tk. If the sequence of times is in strictly increasing order, the
temporal path is called strict. Travelling time of P , denoted by ttime(P ), is defined as
ttime(P ) = tk − t1 + 1, i.e., the time it takes to travel from s to z. If ttime(P ) ≤ t then we
refer to P as an (s, z, t)-temporal path. A temporal graph G is connected if for any pair of
vertices s, z ∈ V (G) there is at least one temporal path from s to z. A temporal graph G is
continuously connected if for every i ∈ [τ(G)] layer Gi is connected.

We distinguish between three types of temporal paths: (1) shortest (s, z)-temporal path: a
temporal path from s to z that minimizes the number of edges; (2) fastest (s, z)-temporal path:
a temporal path from s to z that minimizes the traveling time; (3) foremost (s, z)-temporal
path: a temporal path from s to z that minimizes the arrival time at destination. Temporal
distance from node s to node z is equal to the traveling time of the fastest (s, z)-temporal
path.

A set S ⊆ V −{s, z} is called a (strict) (s, z)-temporal separator if the removal of vertices
in set S removes all (strict) temporal paths from s to z. The (strict) (s, z)-Temporal Separator
problem asks to find the minimum size of a (strict) (s, z)-temporal separator in a given
temporal graph G. This problem has been studied before (see Section 3). In this work, we
propose a new problem that is based on the notion of (s, z, t)-temporal paths. We define a
set of vertices S to be a (strict) (s, z, t)-temporal separator if every (strict) (s, z, t)-temporal
path contains at least one vertex in S, i.e., removal of S removes all (strict) (s, z, t)-temporal
paths. Thus, the new problem, which we refer to as the (strict) (s, z, t)-Temporal Separator
problem is defined as follows: given a temporal graph G, a pair of vertices s, z ∈ V (G), and
a positive integer t, the goal is to compute the minimum size of a (s, z, t)-temporal separator
in G.

▶ Lemma 1. Given a temporal graph G = (V, E, τ) and two distinct vertices s and z as
well as an integer t, it is decidable in time O(|S||E|) if there is a (s, z, t)-temporal path in G

where S = {t′ | ∃u : (s, u, t′) ∈ E}.

Proof. [25] and [27] present an algorithm that computes fastest paths from a single source s

to all of the vertices in O(|S|(|V |+ |E|)). We could ignore isolated vertices, then we could
compute a fastest path from s to z in G and check if its travelling time is at least t. ◀

Branch decomposition and branchwidth of a graph is defined as follows.

▶ Definition 2 (Branch Decomposition [8]). Given a graph G = (V, E), a branch decomposition
is a pair (T, β), such that

T is a binary tree with |E| leaves, and every inner node of T has two children.
β is a mapping from V (T ) to 2E satisfying the following conditions:

For each leaf v ∈ V (T ), there exists e ∈ E(G) with β(v) = {e}, and there are no
v, u ∈ V (T ), v ̸= u such that β(v) = β(u).
For every inner node v ∈ V (T ) with children vl, vr, β(v) = β(vl) ∪ β(vr);

▶ Definition 3 (Boundary [8]). Given a graph G = (V, E), for every set F ⊆ E, the boundary
∂F = {v|v is incident to edges in F and E\F}.

▶ Definition 4 (Width of a Branch Decomposition [8]). Given a branch decomposition (T, β)
of G = (V, E), the width of this decomposition is max{|∂β(v)| | v ∈ V (T )}.
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The branchwidth bw(G) of G is defined as the minimum width of a branch decomposition
of G [8]. We note that for any fixed k there is a linear time algorithm to check if a graph
has branchwidth k, and if so, the algorithm outputs a branch decomposition of minimum
width [5].

Path decomposition and pathwidth of a graph are defined as follows.

▶ Definition 5 (Path Decomposition [22]). Given a graph G = (V, E), a path decomposition
of G is a pair (P, β), such that

P is a path with nodes a1, . . . am.
β is a mapping from {a1, . . . , am} to 2E satisfying the following conditions:

For e ∈ E(G) there exists ai such that vertices of e appear in β(ai).
For every v ∈ V (G) the set of ai, such that v appears in β(ai), forms a subpath of P .

The width of a decomposition (P, β) is maxa∈V (P ) |β(a)| − 1. The pathwidth of a graph G is
the minimum width of a path decomposition of G.

3 Related Work

Enright et al. in [9] adopt a simple and natural model for time-varying networks which is
given with time-labels on the edges of a graph, while the vertex set remains unchanged. This
formalism originates in the foundational work of Kempe et al. [18]. There has already been
a lot of work on temporal graphs, too much to give a full overview. Thus, in this section, we
focus only on the results most relevant to our work.

The fastest temporal path is computable in polynomial time, see, e.g. [27, 26, 25]. A nice
property of the foremost temporal path is that it can be computed efficiently. In particular,
there is an algorithm that, given a source node s ∈ V and a time tstart, computes for all
w ∈ V \ {s} a foremost (s, w)-temporal path from the time tstart [19]. The running time of
the algorithm is O(nτ3 + |E|). It is worth mentioning that this algorithm takes as input
the whole temporal graph G. Such algorithms are known as offline algorithms in contrast
to online algorithms in which the temporal graph is revealed on the fly. The algorithm is
essentially a temporal translation of the breadth-first search (BFS) algorithm (see e.g. [7]
page 531).

While the Unrestricted Vertex Separator problem is polynomial time solvable in the
static graph world (by reducing to the Maximum Flow problem), the analogous problem
in the temporal graph world, namely, the (s, z)-Temporal Separator problem, was shown
to be NP-hard by Kempe et al. [18]. Zschoche et al. [28] investigate the (s, z)-Temporal
Separator and strict (s, z)-Temporal Separator problems on different types of temporal graphs.
A central contribution in [28] is to prove that both (s, z)−Temporal Separator and Strict
(s, z)-Temporal Separator are NP-hard for all τ ≥ 2 and τ ≥ 5, respectively, strengthening a
result by Kempe et al. [18] (they show NP-hardness of both variants for all τ ≥ 12) [28].

Fluschnik et al. [15] show that (s, z)-Temporal Separator remains NP-hard on many
restricted temporal graph classes: temporal graphs whose underlying graph falls into a class
of graphs containing complete-but-one graphs (that is, complete graphs where exactly one
edge is missing), or line graphs, or temporal graphs where each layer contains only one
edge. In contrast, the problem is tractable if the underlying graph has bounded treewidth,
or if we require each layer to be a unit interval graph and impose suitable restrictions on
how the intervals may change over time, or if one layer contains all others (grounded), or if
all layers are identical (1-periodic or 0-steady), or if the number of periods is at least the
number of vertices. It is not difficult to show that this problem is fixed-parameter tractable
when parameterized by k + l, where k is the solution size and l is the maximum length of a
temporal (s, z)-path.

ISAAC 2023



38:6 Temporal Separators with Deadlines

Lastly, we note that the classical Vertex Separator problem from the static world is
often stated as asking to find a vertex separator such that after its removal the graph is
partitioned into two blocks (one containing s and one containing z) of roughly equal size3.
This “balanced” separator restriction makes the problem NP-hard. The temporal separator
problems considered in this work do not have such a restriction, and as discussed they are
hard problems due to the temporal component. There is a lot of research on the Vertex
Separator problem, but since our versions do not have this “balancedness” restriction, we do
not discuss it in detail. An interested reader is referred to [2] and references therein.

4 Temporal Separators with Deadlines on General Graphs

4.1 Hardness of Exact and Approximate Solutions
Zschoche et al. [28] show that the (s, z)-Temporal Separator problem is NP-hard on a
temporal graph G = (V, E, τ) if τ ≥ 2 (and it is in P if τ = 1). So, it is obvious that the
(s, z, t)-Temporal Separator problem is NP-hard if t ≥ 2. In this section we strengthen this
result by showing that the problem remains NP-hard even when restricted to inputs with
t = 1 and τ ≥ 2.

Reduction from the minimum satisfiability problem with non-negative variables to (s, z, 1)-
Temporal Separator could be made by adding a path from s to z in layer Gi, which contains
all the variables in the i-th clause. So, (s, z, 1)-Temporal Separator on temporal graphs with
a sufficient number of layers is NP-hard. However, it is not easy to establish the complexity
of (s, z, t)-Temporal Separator on temporal graphs with a small number of layers. Here
we aim to show that (s, z, 1)-Temporal Separator remains NP-hard on a temporal graph
G = (V, E, τ) if τ is equal to 2. To do that, we construct a reduction from the Node Multiway
Cut problem. In this problem, one is given a graph G = (V, E) and a set of terminal vertices
Z = {z1, z2, . . . zk}. A multiway cut S ∈ V \Z is a set of vertices whose removal from G

disconnects all pairs of distinct terminals zi and zj . The goal is to find a multiway cut of
minimum cardinality. The Node Multiway Cut problem is NP-hard for k ≥ 3 [16]. For the
proof of the next theorem, please see the full version of the paper [17].

▶ Theorem 6. For every t0 ≥ 1, the (s, z, t)-Temporal Separator problem is NP-hard on a
temporal graph G = (V, E, τ) when restricted to inputs with t = t0 and τ ≥ 2.

Since Strict (s, z)-Temporal Separator is NP-hard on a temporal graph with τ ≥ 5 [28],
it is clear that Strict (s, z, t)-Temporal Separator is NP-hard even when restricted to inputs
with t ≥ 5 and τ ≥ 5. However, by a small change to the reduction presented by Zschoche
et al. [28], which is inspired by [26], we can show that Strict (s, z, t)-Temporal Separator
remains NP-hard even when restricted to inputs with t = 3 and τ = 4. For the proof of the
next theorem, please see the full version of the paper [17].

▶ Theorem 7. Finding a strict (s, z, 3)-temporal separator on a temporal graph G = (V, E, τ)
is NP-hard when restricted to inputs with τ = 4.

Since every temporal path from s to z contains more than two edges, then ∅ is a
strict (s, z, 1)-temporal separator. Since every strict (s, z, 2)-temporal path is of the form
(s, v, t), (v, z, t + 1), the Strict (s, z, 2)-Temporal Separator problem could be solved in

3 That is why earlier we referred to a static world problem of interest as the Unrestricted Vertex Separator
problem to emphasize that there is no balancedness requirement.
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polynomial time easily. The Strict (s, z, t)-Temporal Separator problem on a graph G =
(V, E, τ) with τ = t is the same as the Strict (s, z)-Temporal Separator. Therefore, in case
τ = t = 3 this problem is equivalent to the Strict (s, z)-Temporal Separator problem with
τ = 3. Zschoche et al. [28] present a polynomial time algorithm for finding a minimum
strict (s, z)-temporal separator on a temporal graph G = (V, E, τ) when τ < 5. So, this case
could be solved in polynomial time. Although we know that finding a strict (s, z, t)-temporal
separator on a temporal graph G = (V, E, 3) is polynomial-time solvable with the algorithm
which is presented in [28], we describe another simple algorithm to solve this problem.

In the first step of the algorithm, we check if there is an edge between s and t. If so, it is
clear that there are no separator sets because the direct path using this edge from s to z will
remain with the removal of any node from the graph.

Next, for every temporal path from s to z of length two, such as (s, x, t1), (x, z , t2) with
t2 = t1 + 1, it is clear that we have to remove x if we want to remove this path from the
graph. So, it is clear that x ∈ S.

In the last step, we know that the length of every temporal path in the graph is three.
So, every path from s to z should be of the following form:

(s, x, 1), (x, y, 2), (y, z, 3).

Now, put every node x with existing edge (s, x) into the set X with time label 1. Also, put
every node y that is a neighbor of z into the set Y with time label 3. Now, it is clear that
X ∩ Y = ∅, for otherwise there exists a node u with two existing edges e1 = (s, u, 1) and
e2 = (u, z, 3), while this node should be removed in the previous step. Therefore, every strict
temporal path from s to z should have a corresponding edge (x, y, 2) where x ∈ X and y ∈ Y .
So, we should remove either x or y for every edge (x, y, 2), where x ∈ X and y ∈ Y . In order
to do this we could use any known polynomial time algorithm for the Vertex Cover problem
in bipartite graphs.

In the rest of this section we show Ω(log n + log(τ))-inapproximability (assuming NP ⊂
Dtime(nlog log n)) for the (s, z, t)-Temporal Separator problem. This is proved by a strict
reduction from the Set Cover problem. Recall that in the Set Cover problem, one is given a
collection S of subsets of a universe U that jointly cover the universe. The goal is to find a
minimum size sub-collection of S that covers U .

▶ Theorem 8. For every t > 0 there is a strict polynomial time reduction from the Set Cover
problem to the (s, z, t)−Temporal Separator problem.

Proof. Let (U,S) be an instance of the Set Cover problem, where U = {1, 2, . . . n} is the
universe and S = {S1, S2, . . . , Sm} is a family of sets the union of which covers U . For each
i ∈ U define the family Fi as Fi = {S ∈ S | i ∈ S}, i.e., Fi consists of all sets from S that
contain element i. Let ki = |Fi| and order the elements of each Fi in the order of increasing
indices, i.e., Fi = {Si1 , . . . , Siki

}.
Our reduction outputs a temporal graph f(U,S) = (V ∪ {s, z}, E) where:
the vertex set is V ∪ {s, z} = {vi|i ∈ [m]} ∪ {s, z};
the edge set is the union over i of the sets Ei = {(s, vi1 , i·t), (vi1 , vi2 , i·t), . . . , (viki−1 , viki

, i·
t), (viki

, z, i · t)}.

The main idea behind the proof is to map every element of U to a path from s to z in
f(U,S) bijectively, so by covering an element, we remove the corresponding path in f(U,S)
as well as by removing a path we cover the corresponding element.

We claim that V ′ = {vj1 , . . . , vjℓ
} ⊆ V is a (s, z, t)−temporal separator for f(U,S) if and

only if S ′ = {Sj1 , . . . , Sjℓ
} ⊆ S is a set cover for (U,S).

ISAAC 2023
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vi1 vi2 vij viki vmv1 · · · · · · · · · · · · · · ·

s

z

Figure 1 Layer Gi·t of the temporal graph used in the proof of Theorem 8.

Figure 1 represents the edges in the layer Git, which contain all the edges in Ei. It
illustrates that element i in the universe U corresponds to a path Ei, as well as the element
i is covered by the set Sij ∈ S ′ if and only if a temporal path which is shown in Figure 1 is
removed from the temporal graph by removing the vertex vij

∈ V ′.
→ Suppose for contradiction that S ′ does not cover U . Pick an arbitrary item i ∈ U that is

not covered and consider the following path P = [(s, vi1 , i · t), (vi1 , vi2 , i · t), . . . , (viki−1 , viki
, i ·

t), (viki
, z, i · t)], where the indices are according to the equation for Fi. Since i is not

covered, Fi ∩ S ′ = ∅, so P is present in f(U,S) \ V ′ violating the assumption that V ′ is a
(s, z, t)−temporal separator (note that ttime(P ) = 0).
← Now, suppose for contradiction that V ′ is not a (s, z, t)-temporal separator. Thus,

there is path P from s to z with ttime(P ) < t. From the definition of f(U,S) it is clear
that P should be using edges only from Ej for some j ∈ [n]. Note that there is a unique
(s, z)-temporal path that can be constructed from Ej , namely, P = [(s, vj1 , j · t), (vj1 , vj2 , j ·
t), . . . , (vjkj −1 , vjkj

, j · t), (vjkj
, z, j · t)]. This implies that element j is not covered by S ′, since

otherwise, one of the vji
would be in V ′.

Following the previous claim, every solution in (s, z, t)-Temporal Separator has a corres-
ponding solution in Set Cover, and vice versa. Therefore, an optimal solution in (s, z, t)-
Temporal Separator, has a corresponding optimal solution in Set Cover. As a result

|V ′|
|Vopt| = |S′|

|Sopt| . This implies that the reduction is strict. ◀

Due to the inapproximability of Set Cover (see [10]), we have the following:

▶ Corollary 9. The (s, z, t)-Temporal Separator problem is not approximable to within
(1− ϵ)(log n + log(τ)) in polynomial time for any ε > 0, unless NP ⊂ Dtime(nlog log n).

4.2 Approximation Algorithms
In this section, we present an efficient τ2-approximation for the (s, z, t)-Temporal Separator
problem. We begin by establishing a τ -approximation for the (s, z)-Temporal Separator
problem. The main tool used in this section is the flattening4 of a temporal graph G = (V, E, τ)
with respect to vertices s and z, denoted by F (G, s, z) = (V ′, E′). To ease the notation we
omit the specification of s and z and denote the flattening of G by F (G). The flattening
F (G) is a static directed graph defined as follows: the vertex set V ′ is the union of τ disjoint
sets V1, V2, . . . , Vτ and {s, z}, where each Vi is a disjoint copy of V − {s, z}. Denoting the

4 The concept of flattening is not new, and it is similar to the static expansion of a temporal graph – see,
for example, [19].
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vertices of V by v1, v2, . . . , vn, we have ∀i ∈ [τ ] Vi = {vj,i|vj ∈ V − {s, z}}. The edge set E′

of the flattening F (G) is defined as follows:
For each (vi, vj , t′) ∈ E with vi, vj ̸∈ {s, z} we add edges (vi,t′ , vj,t′) and (vj,t′ , vi,t′) to
E′.
For each vi ∈ V and each time t′ ∈ [τ − 1] we add an edge (vi,t′ , vi,t′+1) to E′.
For each (s, vi, t′) ∈ E we add an edge (s, vi,t′) to E′.
For each (z, vi, t′) we add an edge (vi,t′ , z) to E′.

Clearly, F (G) is defined to express temporal (s, z)-paths in G in terms of (s, z)-paths in
F (G). More specifically, if we have a temporal (s, z) path P in G then there is an analogous
static (s, z) path P ′ in F (G). If P begins with an edge (s, vi, t1) then P ′ begins with an
edge (s, vi,t1). After that if the next edge in P is (vi, vj , t2), we can simulate it in F (G) by
introducing a sequence of edges (vi,t1 , vi,t1+1), (vi,t1+1, vi,t1+2), . . . , (vi,t2−1, vi,t2) followed by
an edge (vi,t2 , vj,t2), and so on until the vertex z is reached. This correspondence works in
reverse as well. If P ′ is a static (s, z) path in F (G) then we can find an equivalent temporal
(s, z) path in G as follows. If the first edge in P ′ is (s, vi,t1) then this corresponds to the
first edge of P being (s, vi, t1). For the following edges of P ′, if the edge is of the form
(vi,t′ , vi,t′+1) then it is simply ignored for the purpose of constructing P (since it corresponds
to the scenario where the agent travelling along the path is simply waiting an extra time
unit at node vi), and if the edge is of the form (vi,t′ , vj,t′) then we add the edge (vi, vj , t′)
to P . This continues until z is reached. Thus, there is a temporal (s, z) path P in G if
and only if there is a static (s, z) path P ′ in F (G). Moreover, if S represents the internal
nodes of the path P then we can find P ′ with internal nodes in

⋃
t′∈[τ ]{vi,t′ : vi ∈ S}. In

the reverse direction, if P ′ uses internal nodes S′ then we can find P with internal nodes in
{vi : ∃t′ vi,t′ ∈ S′}.

Armed with these observations, we show that the sizes of (s, z)-temporal separators in G

and (s, z)-separators (non-temporal) in F (G) are related as follows.

▶ Theorem 10.
1. If S is an (s, z)-temporal separator in G then there is an (s, z)-separator of size at most

τ |S| in F (G).
2. If S′ is an (s, z)-separator in F (G) then there is an (s, z)-temporal separator of size at

most |S′| in G.
The proof of the above theorem, albeit rather simple, appears in the full version of the
paper [17].

▶ Corollary 11. The (s, z)-Temporal Separator problem on a temporal graph G = (V, E, τ)
can be approximated within τ in O((m + nτ)nτ) time, where n = |V | and m = |E|.

Proof. We can use any existing efficient algorithm to solve the (s, z) separator problem on
F (G) and return its answer, which will give τ -approximation by Theorem 10. For example, the
stated runtime is achieved by applying Menger’s theorem and the Ford-Fulkerson algorithm
to compute the maximum number of vertex-disjoint paths in F (G). Then the running time
is O(|E′||V ′|). Observing that |E′| ≤ |E|+ |V |τ and |V ′| ≤ |V |τ , finishes the proof of this
corollary. ◀

Next, we describe how the (s, z, t)-Temporal Separator problem can be approximated
using a slight extension of the above ideas. First, for a temporal graph G = (V, E, τ) and
two integers t1 ≤ t2 we define E[t1 : t2] = {(u, v, t) ∈ E : t1 ≤ t′ ≤ t2}. We also define
G[t1 : t2] = (V, E[t1 : t2], t2), which can be thought of as graph G restricted to time interval
[t1, t2]. The idea behind approximating a minimum (s, z, t)-temporal separator is to combine
(s, z)-temporal separators of F (G[1 : t + 1]), F (G[2 : t + 2]), . . . , F (G[τ − t : τ ]).
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▶ Theorem 12. The (s, z, t)-Temporal Separator problem on a temporal graph G = (V, E, τ)
can be approximated within τ2 in O((m + nτ)nτ2) time, where n = |V | and m = |E|.
Proof. The algorithm has essentially been described prior to the statement of the theorem,
so the running time is clear. It is left to argue that it produces τ2-approximation. This can
be argued similarly to Theorem 10.
1. Let S be a (s, z, t)-temporal separator in G. Then for G[i : i + t] we define Si to consist

of all nodes vj,t′ with vj ∈ S. Since S removes all paths from G of travelling time ≤ t and
G[i : i + t] only has paths of travelling time ≤ t, then Si is a (s, z)-separator in G[i : i + t]
of size |Si| = τ |S|. Thus, if there is an (s, z, t)-temporal separator of size |S| in G then the
combined size of all (s, z, t)-temporal separators of G[1 : t + 1], G[1 : t + 2], . . . , G[τ − t, τ ]
is at most τ2|S|.

2. Let Si be a (s, z)-temporal separator in G[i : i + t]. Define S = {vj : ∃i∃t′ vj,t′ ∈ Si}. It
is easy to see that S is a (s, z, t) temporal separator in G. Paths of travelling time at
most t that begin with an edge (s, vi, t1) are present in G[t1, t1 + t], and so removal of
St1 removes such temporal paths in G[t1, t1 + t]. Since St1 is “projected” onto V and
included in S, these paths are eliminated from G. ◀

5 Temporal Separators with Deadlines on Special Families of Graphs

5.1 Temporal Graphs with Branchwidth at most 2
The graphs with branchwidth 2 are graphs in which each biconnected component is a
series-parallel graph [21]. In this section, we present an efficient algorithm to solve the
(s, z, t)-Temporal Separator problem on temporal graphs whose underlying static graphs have
branchwidth at most 2. In fact, our algorithm works for a more general class of problems,
which we refer to as “restricted path (s, z)-Temporal Separator.” The goal in this more
general problem is to select a set of vertices S such that the removal of S from the given
temporal graph G removes all (s, z) paths in a restricted family of paths. The (s, z, t)-
Temporal Separator problem is seen as a special case of this, where paths are restricted
to have travelling time less than t. Restricted family of paths could be any path family
implicitly defined by a procedure ExistsRestrictedPath(G, s, z) which takes as input a
temporal graph G, a pair of nodes s and z, and returns true if and only if there exists a
restricted temporal path between s and z in G. Due to Lemma 1, we know that such a
procedure exists in the case of temporal paths restricted by travelling time, which is suitable
for the (s, z, t)-Temporal Separator problem.

For the rest of this section, we assume that G is a temporal graph such that bw(G↓) ≤ 2
unless stated otherwise. Furthermore, we assume that G↓ is connected, otherwise, if s and z

belong to different connected components the answer to the problem is trivially ∅, and if they
belong to the same connected component, the problem reduces to analyzing that connected
component alone. We introduce some notation and make several observations about branch
decomposition before we give full details of our algorithm. Recall from Section 2 that branch
decomposition of G of width 2 can be computed in linear time. Thus, we assume that the
algorithm has access to such a decomposition, which we denote by (T, β). We use ρ to denote
the root of T and we define the function top : V (G)→ V (T ) as follows. For v ∈ V (G) we
let top(v) be the furthest node x ∈ V (T ) from the root r which satisfies E(v) ⊆ β(x). We
also use xl to denote the left child of x and xr to denote the right child of x. For a node
x ∈ V (T ) we define Gin

x to be the temporal graph obtained from G by keeping only those
edges (u, v, t) with (u, v) ∈ β(x) and removing all vertices of degree 0. We collect several
useful observations about the introduced notions in the following lemma.
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▶ Lemma 13.
1. If v ∈ ∂β(x) then v ∈ ∂β(xℓ) or v ∈ ∂β(xr).
2. If top(v) = x then v ∈ ∂β(xℓ) and v ∈ ∂β(xr).
3. If v ∈ V (Gin

x ) \ ∂β(x) then all edges incident on v in G are present in Gin
x .

Proof.
1. Since v ∈ ∂β(x) it means that some but not all edges incident on v in G appear in β(x).

Since β(x) = β(xℓ) ∪ β(xr), it implies that some but not all edges incident on v must
appear either in β(xℓ), or β(xr), or both.

2. If top(v) = x then E(v) ⊆ β(x). Suppose for contradiction that v ̸∈ ∂β(xℓ). This can
happen for two reasons: either (1) E(v) ⊆ β(xℓ), or (2) E(v) ∩ β(xℓ) = ∅. In case (1) we
obtain a contradiction with the definition of top(v) since xℓ is further from the root than
x and it still contains all of E(v). In case (2) observe that we must have E(v) ⊆ β(xr),
thus obtaining a contradiction with the definition of top(v) again since xr is further from
the root than x and it still contains all of E(v).

3. Since v ∈ V (Gin
x ) \ ∂β(x) it means that there is at least one edge incident on v in V (Gin

x ).
Since v is not in the boundary of β(x), it means that all edges incident on v in G must
be present in β(x). ◀

Algorithm 1 This algorithm finds a restricted (s, z)−temporal separator in a temporal
graph G with bw(G↓) ≤ 2.

Function RTS(G, s, z):
if ExistsRestrictedPath(G, s, z)=false then

return ∅;
for v ∈ V (G) \ {s, z} do

if ExistsRestrictedPath(G \ {v}, s, z)=false then
return {v};

if top(s) = top(z) then
return RTS(Gin

ρℓ
, s, z) ∪ RTS(Gin

ρr
, s, z);

else if top(s), top(z) are not ancestors of each other then
return ∂β(top(z));

else
/* assume top(z) is ancestor of top(s), otherwise swap s and z */
if z ̸∈ ∂β(top(s)) then

return ∂β(top(s));
else if ∂β(top(s)) = {z} then

return RTS(Gin
top(s), s, z);

else
/* ∂β(top(s)) = {z, q}, ∂β(top(s)ℓ) = {s, z}, ∂β(top(s)r) = {s, q} */
S ← RTS(Gin

top(s)ℓ
, s, z);

if ExistsRestrictedPath(G \ S, s, z) then
return S ∪ {q};

else
return S;

Now, we are ready to describe our algorithm, which is denoted by RTS. The algorithm
starts by checking if there is a restricted temporal path from s to z in G, and if such a
path does not exist then the algorithm immediately returns ∅. Then the algorithm checks if
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there exists a restricted temporal separator of size 1 by testing whether there is a restricted
temporal path in G \ {v} for each v ∈ V (G) \ {s, z}. Then the algorithm computes top(s)
and top(z) and the computation splits into three cases: (1) if top(s) = top(z); (2) if top(s)
and top(z) are not on the same root-to-leaf path in T (i.e., neither one is an ancestor of
another); and (3) if one of top(s), top(z) is an ancestor of another. We shall later see that
case (1) implies that top(s) = top(z) = ρ. In this case, the algorithm invokes itself recursively
on the two subtrees of T – the subtree rooted at the left child of ρ and the subtree rooted at
the right child of ρ. The separators obtained on these two subtrees correspond to separators
of Gin

ρℓ
and Gin

ρr
and their union is returned as the separator for G. In case (2) the algorithm

returns the boundary of β(top(z)) (it could return the boundary of β(top(s)) instead – it
does not make a difference) as the answer. In case (3), we assume without loss of generality
that top(z) is the ancestor of top(s), and handling of this case depends on whether z belongs
to the boundary of β(top(s)) or not. In fact, this case splits into three subcases: (3.1) if
z ̸∈ ∂β(top(s)) then the algorithm immediately returns ∂β(top(s)); (3.2) if ∂β(top(s)) = {z}
then the algorithm invokes itself recursively on Gin

top(s); and (3.3) if ∂β(top(s)) = {z, q} for
some vertex q ̸= s, z then the algorithm first invokes itself recursively on Gin

top(s)ℓ
(assuming

∂β(top(s)ℓ) = {s, z}) and stores the answer in S. If S proves to be a separator in G then
S is returned, otherwise, q is added to S and returned. The pseudocode is presented in
Algorithm 1.

▶ Theorem 14. Algorithm 1 correctly computes a minimum-sized restricted path (s, z)-
temporal separator for a temporal graph G such that bw(G↓) ≤ 2.

Proof. The proof proceeds by the case analysis reflecting the structure of the algorithm.
Clearly, the algorithm correctly identifies when there is a separator of size 0 or 1 since it
performs brute-force checks for these special cases. Assuming that there is no separator of
size ≤ 1, we discuss the correctness for the remaining three cases.
Case (1): top(s) = top(z) = x ∈ V (T ). Observe that Lemma 13, item 1, implies that

s, z ∈ ∂β(xℓ) and s, z ∈ ∂β(xr). Since the branchwidth is 2, it implies that ∂β(xℓ) =
∂β(xr) = {s, z}. In addition, we know that s, z ̸∈ ∂β(x) by the definition of top(). And
since every vertex in ∂β(x) must appear in ∂β(xℓ) or ∂β(xr) (using Lemma 13, item 2),
we conclude that ∂β(x) = ∅. By Lemma 13, item 3, every vertex in Gin

x has all its edges
from G. Therefore Gin

x is disconnected from the rest of G. However, we assume that G

is connected, so we must have Gin
x = G. This is true only when x = ρ. Thus, we must

have in this case that top(s) = top(z) = ρ. Observe that if P is a restricted temporal
path between s and z (that does not have s or z as intermediate nodes) then it cannot
use edges from both β(ρℓ) and β(ρr). Suppose, for contradiction, that P uses both kinds
of edges, then there must be a vertex v on this path incident on e1 and e2 such that
e1 ∈ β(xℓ) and e2 ∈ β(xr). Since β(xℓ), β(xr) partition all the edges, it implies that
e2 ̸∈ β(xℓ). This means that v ∈ ∂β(xℓ) = {s, z}, but v ̸= s, z, giving a contradiction.
Therefore, the minimum size restricted path temporal separator in G is the union of
minimum size restricted path temporal separators in Gin

ρℓ
and Gin

ρr
, which is precisely

what our algorithm outputs.
Case (2): top(s) and top(z) do not lie on the same root-to-leaf path in T . One of the

consequences of Lemma 13, item 3, is that removing ∂β(x) from G separates all vertices
in V (Gin

x ) from the rest of the graph. Therefore, removing ∂β(top(z)) separates all vertices
in Gin

top(z) from the rest of the graph. Observe that z ∈ V (Gin
top(z)) and s ̸∈ V (Gin

top(z))
(by the condition of this case). Therefore removing ∂β(top(z)) separates s from z. We
claim that this is the minimum separator in this case. This is because when this line is
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reached we are guaranteed that there is no separator of size 1, and |∂β(top(z))| ≤ 2 (in
fact, it must be then equal to 2). We only need to be careful that neither z nor s is in
∂β(top(z)), but it is clear from the definition of top() and the case condition.

Case (3): top(z) is an ancestor of top(s) (if top(s) is an ancestor of top(z) then we can
exchange the roles of s and z for the sake of the argument). This case has three subcases.
Subcase (3.1): z ̸∈ ∂β(top(s)). This is similar to case (2) described above. The algorithm

can return ∂β(top(s)) as a minimum size separator.
Subcase (3.2): ∂β(top(s)) = {z}. In this case, the structure of the graph is such that

Gin
top(s) is connected to the rest of the vertices in G via the node z, while vertex s

lies in Gin
top(s). Thus, to separate z from s, it is sufficient to separate them in Gin

top(s),
which is what the algorithm does.

Subcase (3.3): ∂β(top(s)) = {z, q}. By Lemma 13, item 2, it follows that s ∈ ∂β(top(s)ℓ)
and s ∈ ∂β(top(s)r). By Lemma 13, item 1, it follows that z, q ∈ β(top(s)ℓ)∪β(top(s)r).
Since branchwidth is at most 2, we have (without loss of generality) that ∂β(top(s)ℓ) =
{s, z} and ∂β(top(s)r) = {s, q}. By an argument similar to the one in case (1), we
can establish that any restricted (s, z) temporal path (that does not use s or z as
intermediate nodes) must either consist entirely of edges in β(top(s)ℓ) or entirely of
edges in β(top(s)r). Thus, we can compute the two separators and take their union;
however, we can simplify the calculation observing that the only separator we need
to consider for the Gin

top(s)r
is {q}, since Gin

top(s)r
is connected to the rest of G only

through q and s. ◀

▶ Corollary 15. Given a temporal graph G = (V, E, τ) with bw(G↓) ≤ 2, the problem
(s, z, t)-Temporal Separator is solvable in time O(|V ||E||T |) where T = {t(e) : e ∈ E(s)}.

5.2 Temporal Graphs with a “Tree-like” Underlying Graph
In this section, we present a polynomial time greedy algorithm (motivated by the point-cover
interval problem) for computing a path restricted (s, z)-temporal separator (see Section 5.1)
on a temporal graph G such that G↓ \ {s, z} is a tree if the existence of a restricted (s, z)-
temporal path could be checked in polynomial time.

We assume that we are given a temporal graph G such that G↓ \ {s, z} is a tree, which
we denote by T . For a pair of nodes (u, w), we let Pu,w denote the unique shortest path in
T between u and w. For a vertex v ∈ V (T ), we define a removal list of v, denoted by RLv,
to consist of all unordered pairs (u, w) such that v ∈ V (Pu,w) and there exists a restricted
(s, z)-temporal path in G using the edges of Pu,w. For a pair u, w ∈ V (T ), we define two
temporal graphs: (1) G1

u,w is G induced on the edges of E(Pu,w) ∪ {(s, u), (v, z)}, and (2)
G2

u,w is G induced on the edges of E(Pu,w)∪ {(s, v), (u, z)}. The removal lists for all vertices
in V (T ) can be computed efficiently as follows. Initialize all removal lists to be empty.
For each pair of vertices u, w ∈ V (T ) check if there is any restricted (s, z)-temporal path
in G1

u,w or G2
u,w, and if so, then add (u, w) to the removal lists of all nodes in Pu,w. Let

U =
⋃

v∈V (T ) RLv be the set of all pairs of nodes that appear in removal lists. The following
observation is immediate from the definitions and shows that computing a minimum size
restricted path (s, z)-temporal separator reduces to covering U with as few removal lists as
possible.

▶ Observation 16. A set of S is a restricted path (s, z)-temporal separator if and only if⋃
v∈S RLv = U .

A vertex v is called topmost if there exists a pair (u, w) ∈ RLv such that (u, w) ̸∈
RLparent(v). Our greedy algorithm, called GreedyRTS, starts out with an empty solution
S = ∅, and then adds more vertices to S as follows. While there are non-empty removal lists,
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the algorithm selects a topmost vertex v with maximum distance from the root of T , adds v

to the set S, and removes all pairs in RLv from the removing lists of all the other vertices.
The pseudocode is given in Algorithm 2 (in Appendix B).

For the proof of the next theorem, please see the full version of the paper [17].

▶ Theorem 17. Algorithm 2 computes a minimum-sized restricted path (s, z)-temporal
separator in a temporal graph G with G↓ \ {s, z} being a tree.

Based on Lemma 1, the existence of a (s, z, t)-temporal path can be solved in polynomial
time. Thus, the following theorem follows from Theorem 17.

▶ Theorem 18. The (s, z, t)-Temporal Separator problem is solvable in polynomial time on
temporal graphs G where G↓ \ {s, z} is a tree.

5.3 Temporal Graphs with Bounded Pathwidth
In this section, we present a reduction from the Discrete Segment Covering (DISC-SC)
problem to the (s, z, t)-Temporal Separator problem on graphs with bounded pathwidth. In
the DISC-SC problem, we are given a set Γ of n intervals (also called segments), on the
rational line and a set I of unit-intervals on the rational line. We wish to find a subset of
unit intervals A ⊆ I which covers all the segments in Γ. The objective is to minimize the
size of A. An interval I ∈ I covers a segment S ∈ Γ if at least one endpoint S lies in I. A
segment S ∈ Γ is covered by a set of intervals A if there is an interval I ∈ A that covers S.
We refer to the version of DISC-SC where all segments in Γ have length bounded by k as
DISC-SC-k. DISC-SC problem is NP-hard [4]. [4] also shows that the DISC-SC problem
remains NP-hard when the length of all segments in Γ are equal. DISC-SC-1 can be solved
efficiently by a simple greedy algorithm [4]. However, the hardness of DISC-SC-k for general
k > 1 remains open.

The following theorem serves as a warm-up, and it establishes a simple polynomial time
reduction from DISC-SC to the (s, z, t)-Temporal Separator problem. For the proof of the
next theorem, please see the full version of the paper [17].

▶ Theorem 19. There is a polynomial-time reduction from the DISC-SC problem to the
(s, z, t)-Temporal Separator problem.

The issue with the above theorem is that it does not provide any structural guarantees
about the temporal graph G used in the construction. In order to establish a reduction
via a temporal graph G whose underlying graph has bounded pathwidth, we start with a
restricted version of DISC-SC, namely, the DISC-SC-k problem. The following results can
then be established.

▶ Theorem 20. There is a polynomial-time reduction from the DISC-SC-k problem to the
(s, z, t)-Temporal Separator in which the pathwidth of the underlying graph is bounded by
2k + 6.

Proof. Consider an instance (I, Γ) of the Discrete Segment Covering problem such that the
length of all the segments in Γ is at most k. Consider intervals in I = (I1, I2, . . . In) in the
non-decreasing order of their starting times. We choose a special set of intervals SP ∈ I by
the following algorithm.
1. Let SP = I1 and index = 1.
2. Let j be the largest index such that s(Ij) < e(Iindex), if such j exists. Otherwise, let

j = index + 1
3. Put Ij into the set SP , update the integer index equal to j and if j ≤ n repeat the

algorithm from step 2.
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For the proof of the next lemma, please see the full version of the paper [17].

▶ Lemma 21. A p is covered by I if SP covers it.

The main idea of the proof is based on to the following features of the special set SP . Denote
SP = {Im1 , Im2 , . . . Imq}. Based on the selection of interval Imi+1 it is clear that the starting
point of Imi+2 is greater than the ending point of Imi

which implies that s(Imi+2) > s(Imi
)+1.

More generally, we have that e(Imi+2k
) > s(Imi) + k + 1. Therefore, for any segment C ∈ Γ

and for any interval Imi
and Imj

such that s(C) ∈ Imi
and e(C) ∈ Imj

, we could conclude
that j ≤ i + 2k. This feature for SP is the main idea used in constructing an instance of the
(s, z, t)-Temporal Separator problem with low pathwidth.

Now we construct a temporal graph G = (V, E, τ) where τ = |Γ| × t. Let V = {ui|i ∈
[n]} ∪ {vi|i ∈ [n]} ∪ {s, z}. Now, for the i-th segment C ∈ Γ we add a path from s to z at
time i× t. Let ma and mb be the indices of the first intervals in SP which cover points s(C)
and e(C), respectively. Based on the Lemma 21 if ma (or mb) does not exist, then the point
s(C) (respectively, e(C)) will not be covered by any interval in I. Therefore, we could treat
C as a single point e(C) (respectively, s(C)) and continue on with the algorithm. Let ls be
the index of the leftmost interval form I which covers s(C), and let rs be the index of the
rightmost interval from I which covers s(C). It is obvious that s(C) is covered by all of the
intervals between ls and rs in I. Similarly, let le and re be the indices of the leftmost and
the rightmost intervals which cover e(C). If le ≤ rs then consider le = rs + 1 instead. Now,
add the following (s, z, t)-temporal path to the temporal graph G. For simplicity, we denote
i× t by θ.

(s, uls
, θ), (uls

, vls
, θ), (vls

, vls+1, θ), . . . (vrs−1, vrs
, θ)

(vrs
, urs

, θ), (urs
, urs−1, θ), . . . (uma+1, uma

, θ)
(uma

, umb
, θ) (1)

(umb
, umb−1, θ), . . . , (ule+1, ule , θ), (ule , vle , θ)

(vle
, vle

+ 1, θ) . . . (vre−1, vre
, θ), (vre

, ure
, θ), (ure

, z, θ)

Figure 2 (in Appendix A) shows the above path in the graph layer i× t. We claim that there
exists A ⊆ I that covers Γ with |A| ≤ p if and only if there is a (s, z, t)-temporal separator
S ⊆ V such that |S| ≤ p.
→ Suppose that A ⊆ I covers all segments in Γ. Let S = {vi|Ii ∈ A}. It is obvious that

|S| = |A|. Now we prove that S is a (s, z, t)-temporal separator. Suppose that there is a
temporal path P in G, based on the construction of G this temporal path should be of the
form shown in equation 1 for some i ∈ [n]. This implies Ij /∈ A for all j such that ls < j < rs

or le < j < re and results in the i-th segment not being covered by A. So, based on the
contradiction we could conclude that S is a (s, z, t)-temporal separator.
← Suppose that S ⊆ V is a (s, z, t)-temporal separator in a temporal graph G. Let

A = {Ii|ui ∈ S or vi ∈ S}, it is clear that |A| ≤ |S|. Consider the i-th segment C ∈ Γ. There
should be one vertex belonging to the temporal path P which is shown in equation 1 in S

since S is a (s, z, t)-temporal separator. Therefore there is j where ls < j < rs or le < j < re

and either ui or vi belong to S, which implies C ∈ A. Thus, A covers Γ.
Now we prove that the pathwidth of the underlying graph G↓ = (V, E′) of the temporal

graph G(V, E, |Γ| × t) is bounded by 2k + 6. We refer to an edge (uma
, umb

, θ) in a path
that is shown in equation 1 as a crossing edge. Figure 3 (in Appendix A) shows a graph
G′ of which G↓ is a subgraph. Now we give a path decomposition (P, β) for a graph G↓
in which the width of decomposition is at most 2k + 6. Let V (P ) = {a1, a2, . . . , am} and
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E(P ) = {(a1, a2), . . . , (am−1, a(m))}. Let i ∈ [n] and l(i) be the largest integer such that the
starting point of the interval Iml(i) ∈ SP is before the starting point of interval Ii. Now we
define the β(ai) as follows: β(ai) = {ui, vi, ui+1, vi+1, s, z} ∪ {uml

|l ≥ l(i) and l ≤ l(i) + 2k}.

▶ Lemma 22. For any uq and i, j, l such that i < j < l, if uq ∈ β(ai) and uq ∈ β(al), we
have uq ∈ β(aj).

Proof. If Iq /∈ SP then it is clear that uq only appears in β(aq−1) and β(aq). Now suppose
that I1 ∈ SP and q = mp. Since ump

∈ β(ai) we have mp ≤ l(i) + 2k, also l(l) ≤ mp since
mp ∈ β(al). As a result we have mp ≤ l(i) + 2k ≤ l(j) + 2k and l(j) ≤ l(l) ≤ mp which
implies that uq ∈ β(aj). ◀

For any vi ∈ V it is clear that vi just belongs to the two sets β(ai−1) and β(ai). Also,
s and z are present in all the sets. Therefore, by Lemma 1 we could say that the third
property of path decomposition is satisfied. So, it is sufficient to show that for every edge
(u, v) ∈ E(G↓) there exists i ∈ [n] such that {u, v} ⊆ β(ai). If the edges are not crossing
edges, then there are three types of edges (ui, vi), (ui, ui+1), and (vi, vi+1) which satisfy
the condition by the definition of β(ai). If e = (ui, uj) is a crossing edge, then Ii ∈ SP

and Ij ∈ SP , so let mp = i and mq = j. Since this edge corresponds to a segment C such
that s(C) ∈ Imp and e(C) ∈ Imq we could conclude that mq ≤ mp + 2k which implies that
ui, uj ⊆ β(ai). Also, the cardinality of all sets β(ai) is 2k + 7 which implies that the width of
(P, β) is 2k + 6. Therefore the pathwidth of the underlying graph G↓ is at most 2k + 6. ◀

▶ Theorem 23. If the (s, z, t)-Temporal Separator problem on temporal graphs with bounded
pathwidth is solvable in polynomial time then the DISC-SC-k problem is solvable in polynomial
time.

6 Conclusions

In this work, we defined the (s, z, t)-Temporal Separator problem, generalizing the (s, z)-
Temporal Separator problem. We showed that (s, z)-Temporal Separator and (s, z, t)-
Temporal Separator problems could be approximated within τ and τ2 approximation ratio,
respectively, in a graph with lifetime τ . We also presented a lower bound Ω(log(n) + log(τ))
for polynomial time approximability of (s, z, t)-Temporal Separator assuming that NP ̸⊂
Dtime(nlog log n). Then we considered special classes of graphs. We presented two efficient
algorithms: one for temporal graphs G with bw(G↓) ≤ 2 and one for temporal graphs G with
G↓ \ {s, z} being a tree. The question of whether there is a polynomial-time algorithm to
compute a minimum (s, z, t)-temporal separator in a temporal graph of bounded treewidth
remains an interesting open problem. However, we showed a reduction from the DISC-
SC-k problem to (s, z, t)-Temporal Separator when the pathwidth of the underlying graph
is bounded by a constant number. Therefore, designing efficient algorithms for bounded
treewidth graphs encounters serious obstacles, such as making progress on the open problem
of the hardness of DISC-SC-k. Another interesting direction of future research is to consider
temporal separator problems with the additional restriction of “balancedness”, as discussed
at the end of Section 3.
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A Figures
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Figure 2 Demonstration of one step of the reduction in the proof of Theorem 20. The figure
shows the (s, z, t)-temporal path in the layer Gj×t. The time label for all edges is j × t.
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Figure 3 Illustration of the graph G′ which is used to show that the output of the reduction from
Theorem 20 has bounded pathwidth. The underlying graph G↓ is a subgraph of G′.
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B Pseudocode

Algorithm 2 This algorithm computes a minimum sized restricted path (s, z)-temporal
separator in a temporal graph G when G↓ \ {s, z} is a tree T .

Function ComputeRLs(G, s, z):
U ← ∅;
for (u, w) ∈ V (T )× V (T ) do

if ExistsRestrictedPath(G1
u,w, s, z) or

ExistsRestrictedPath(G2
u,w, s, z) then

U ← U ∪ {(u, w)};
for v ∈ V (Pu,w) do

RLv ← RLv ∪ {(u, w)};
Function GreedyRTS(G, s, z, RL,U)):

S ← ∅;
while U ̸= ∅ do

v ← furthest node from the root of T such that ∃(u, w) ∈ RLv \RLparent(v);
S ← S ∪ {v};
U ← U \RLv;
for w ∈ V (T ) do

RLw ← RLw \RLv;
return S;
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