
Regularization of Low Error PCPs and an
Application to MCSP
Shuichi Hirahara #

National Institute of Informatics, Tokyo, Japan

Dana Moshkovitz #

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
In a regular PCP the verifier queries each proof symbol in the same number of tests. This number
is called the degree of the proof, and it is at least 1/(sq) where s is the soundness error and q is
the number of queries. It is incredibly useful to have regularity and reduced degree in PCP. There
is an expander-based transformation by Papadimitriou and Yannakakis that transforms any PCP
with a constant number of queries and constant soundness error to a regular PCP with constant
degree. There are also transformations for low error projection and unique PCPs. Other PCPs are
constructed especially to be regular. In this work we show how to regularize and reduce degree of
PCPs with a possibly large number of queries and low soundness error.

As an application, we prove NP-hardness of an unweighted variant of the collective minimum
monotone satisfying assignment problem, which was introduced by Hirahara (FOCS’22) to prove
NP-hardness of MCSP∗ (the partial function variant of the Minimum Circuit Size Problem) under
randomized reductions. We present a simplified proof and sufficient conditions under which MCSP∗ is
NP-hard under the standard notion of reduction: MCSP∗ is NP-hard under deterministic polynomial-
time many-one reductions if there exists a function in E that satisfies certain direct sum properties.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases PCP theorem, regularization, Minimum Circuit Size Problem

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.39

Funding Shuichi Hirahara: Supported by JST, PRESTO Grant Number JPMJPR2024, Japan.
Dana Moshkovitz: Supported by the National Science Foundation under grants number 2200956 and
2312573.

Acknowledgements We are thankful to Dean Doron for discussions about explicit construction of
dispersers.

1 Introduction

1.1 Regularization of Low Error PCPs
In a Probabilistically Checkable Proof (PCP) the verifier uses randomness to pick a small
number of queries to its proof. A correct proof is typically accepted, whereas a proof of
an incorrect statement is typically rejected. PCPs found many surprising applications over
the years in areas like hardness of approximation [14, 15], cryptography [30], complexity
theoretic lower bounds [49, 2, 9], quantum computation [25] and metric embeddings [29].

It is often desirable, both for the construction of PCPs and for their applications, that the
PCP is regular1, that is, the verifier queries each proof symbol on the same number of tests.
This number is called the degree. Some PCPs are naturally regular or can be made regular

1 We remark that regular PCPs were called smooth PCPs in a few forks following the definition of smooth
locally decodable codes [27]. In PCP the term “smooth PCP” was also used with a completely different
meaning [21]. Hence, we will use the term “regularity” and not “smoothness”.

© Shuichi Hirahara and Dana Moshkovitz;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s_hirahara@nii.ac.jp
mailto:danama@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2023.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Regularization of Low Error PCPs and an Application to MCSP

with some effort (see, e.g., [38] that constructed a regular PCP from scratch). In contrast,
other constructions are inherently non regular, typically because the proof consists of different
parts with different roles. Most constructions, and especially algebraic constructions, do
not naturally have small degree. We focus on regularization and degree reduction, i.e., on
transformations that take any PCP verifier and create a similar PCP verifier that is regular
and has small degree.

Note that for a regular PCP with degree d, number of queries q and soundness error
s we have s > 1/(dq). The reason is that fraction 1/(dq) of the randomness strings have
disjoint queries. Since each verifier test is satisfiable on its own, it is always possible to satisfy
fraction 1/(dq) of the tests. Thus, the degree has to be at least 1/(sq). As q is typically
constant or only slightly super-constant, one desires d that is about 1/s.

For soundness error s close to 1 and a small number of queries q, Papadimitriou and
Yannakakis [37] showed how to regularize the query graph and make the degree constant.
This was extended to the case of low soundness error and unique or projection games (q = 2)
that is especially important for hardness of approximation [28, 34, 11].

We regularize and decrease degree of PCPs of low soundness error s and a general number
q of queries:

▶ Theorem 1 (Regularization and degree reduction). Let V be a PCP verifier that uses r

random bits to make q queries to a proof over alphabet Σ and has completeness error c and
soundness error s, where s ≤ min{1/(eq), 1/ |Σ|a} for e the basis of the natural logarithm
and a constant 0 < a ≤ 1. Then V can be efficiently transformed into a new PCP verifier V ′

whose query graph is bi-regular and where proof symbols have degree d = qpoly(1/s). The
verifier V ′ uses r + O(log(1/s)) random bits to make poly(q) queries to a proof over alphabet
Σ. It has completeness error c and soundness error O(sΩ(1)).

We can apply our theorem to the PCPs with the lowest error known today:
For a large constant number of queries:

▶ Corollary 2 (follows from [10, 12] and Theorem 1). For any β > 0, for any s ≥ 2−(log n)1−β ,
for every L ∈ NP, there exists a regular PCP verifier V for L that uses r random bits to
make q queries to a proof over alphabet Σ and has perfect completeness and soundness error
s, where r = O(log n), |Σ| = poly(1/s), and q = poly(1/β). The degree is d = poly(1/s).

For a super-constant number of queries:

▶ Corollary 3 (follows from [12] and Theorem 1). For every L ∈ NP, there exists a regular
PCP verifier V for L that uses r random bits to make q queries to a proof over alphabet
Σ and has perfect completeness and soundness error s, where r = O(log n), s = 1/poly(n),
|Σ| = n1/(log log n)O(1) , and q = (log log n)O(1). The degree is d = poly(n).

1.2 Regularization Technique
Next we describe the Papadimitriou–Yannakakis transformation and subsequent work, as
well as explain the difficulty with a larger number of queries and low soundness error. The
idea of Papadimitriou and Yannakakis was to replace each proof symbol with several “copies”
of the symbol depending on the symbol’s original degree. Whenever the verifier wishes to
query the symbol, it queries one of the copies instead, so all copies have low degree. The
verifier also checks equality between copies by placing an expander of low degree on the set of
copies, and picking a random edge from the expander. Overall, the verifier makes an original
test with probability 1

2 and an equality check with probability 1
2 .

S. Hirahara and D. Moshkovitz 39:3

This construction is only for the case of large soundness error s > 1
2 , because half of

the tests can be satisfied even in the soundness case. Why is this construction only for a
small number of queries? Because for an original test all q copies queried must be consistent
with some global proof π. For the Papadimitrious–Yannakakis verifier this happens if the
soundness error is sufficiently larger than 1 − 1

q , so we can tolerate a union bound over the q

queries.
To allow for lower soundness error one can combine equality tests with original tests,

however the natural way to do it requires poly(q, 1/s) queries in order to ensure that except
with probability s the labels to every copy queried are consistent with the majority alphabet
symbol for the query. Unfortunately, 1/s is large when the soundness error s small. In
particular, 1/s is often much larger than the number of queries q, so one would get a PCP
with a much worse number of queries than the number of queries one started with.

An exception is known for “robust” PCPs2, for which an increase in the number of queries
as described above is acceptable, since robust PCPs can always be converted to PCPs with
two queries [11]. Indeed, the transformation outlined above, combining the original test
with equality tests is equivalent to the regularization and degree reduction of [34]. Alas, the
robust PCPs of lowest error [34, 13] have alphabet size exp(1/s) instead of poly(1/s). In
particular, to keep the alphabet size polynomial in n for a robust PCP the soundness error
has to be at least logarithmically small in n.

We show how to regularize and reduce the degree of general, non robust, PCPs while
maintaining poly(q) queries and O(sΩ(1)) soundness error. The degree becomes poly(q, 1/s)
(recall that degree 1/(qs) is needed).

Our construction is similar in spirit to what was described above: we introduce copies
for each of the original proof symbols. For each original query the verifier makes queries
to several of its copies, checking equality on the copies as well as checking the original test.
Surprisingly, we show that only poly(q) queries chosen according to a disperser suffice. Our
main insight is that since the soundness error s of the original PCP is small, it suffices to have
a list decoding of size about q

√
1/s for each one of the q queries. There is only probability

about (q
√

s)q = s that q copies of an original proof symbol all fall outside the list decoding.

1.3 An Application to MCSP
We expect that our regularization would have many applications in future. Here, we present
a specific application of regularization to the Minimum Circuit Size Problem (MCSP) [26].

MCSP is the decision problem that asks to decide whether there exists a circuit of size
s that computes a given function f : {0, 1}n → {0, 1}, given the truth table of f and a size
parameter s ∈ N. It is easy to see that MCSP ∈ NP, but it is a long-standing open question
whether MCSP is NP-hard. In fact, Levin [32] delayed his publication on the theory of
NP-completeness because he hoped to prove NP-hardness of MCSP. In his seminal paper [32],
he proved NP-completeness of DNF-MCSP∗, i.e, the partial function variant of the Minimum
DNF Formula Size Problem. In addition to its historical aspect, MCSP has connections
to many areas of theoretical computer science, including learning theory [7], average-case
complexity [17], circuit complexity [26, 36, 8], and cryptography [42, 33]. Recently, NP-
hardness of the partial function variant of MCSP, denoted by MCSP∗, was resolved under
randomized polynomial-time reductions [18]. Here, MCSP∗ is the problem of deciding if there
exists a circuit of size s that computes a given partial function f on input x ∈ f−1({0, 1}),
given the truth table of f : {0, 1}n → {0, 1, ∗} and s ∈ N as input.

2 In a robust PCP [5], in the soundness case, only s fraction of tests are even s-close (in Hamming
distance) to satisfying. This notion is equivalent to projection PCP [11].

ISAAC 2023

39:4 Regularization of Low Error PCPs and an Application to MCSP

The starting point of the NP-hardness reduction of [18] is the problem called Collective
Minimum Monotone Satisfying Assignment Problem (CMMSA). The input of CMMSA
consists of a collection of monotone formulas of size ∆ over n variables, where ∆ ≪ n, and
the task is decide whether there exists an assignment for the n variables with small weight
that satisfies as many formulas as possible. In [18], the weighted version of CMMSA in which
each variable has its own weight is shown to be NP-hard to approximate within a factor of
∆Ω(1) using low-error PCP systems. The reason why variables are assigned weights comes
from the fact that low-error PCP systems may not be regular. Using our regularization for
low-error PCPs, we prove NP-hardness of the unweighted version of CMMSA. This enables
us to present a simpler proof of NP-hardness of MCSP∗.

Using the simplified proof, we investigate whether MCSP∗ is NP-hard under the standard
notion of reduction. The NP-hardness of MCSP∗ shown in [18] differs from the standard
notion of NP-hardness in that the reduction is randomized. The usage of randomized
reductions is in some sense necessary because of the connection to a circuit lower bound
for explicit functions: A line of work [26, 20, 19, 41] shows that NP-hardness of MCSP∗

under deterministic reductions implies breakthrough separations, such as EXP ̸= ZPP or
EXP ̸⊆ P/poly. Thus, proving NP-hardness of MCSP∗ under deterministic reductions is at
least as difficult as the central open problems in complexity theory. In fact, the hardness of
certain variants of MCSP under deterministic reductions characterizes some circuit lower
bounds for explicit functions [1].

We present sufficient conditions under which the reduction of [18] can be derandomized:
MCSP∗ is NP-hard under deterministic polynomial-time many-one reductions if there exists
a family f =

{
fk,n : {0, 1}k × {0, 1}n → {0, 1}

}
k,n∈N ∈ E = DTIME[2O(n)] of functions with

certain “direct sum” properties. Roughly speaking, for some parameter σ ≥ 2Ω(n), we require
that (i) fk,n(i, -) can be computed by a circuit of size σ for every i ∈ {0, 1}k, and that (ii)
for any set B ⊆ {0, 1}k, the size of any circuit that computes fk,n(i, -) for every i ∈ B on
average is at least ≳ |B| · σ. Although the actual assumption is somewhat stronger, it can be
shown that a random function satisfies the direct sum properties with high probability. The
original proof of [18] heavily relies on Kolmogorov complexity, and it is unclear what property
of random functions is used. Our contribution is to identify the direct sum properties that
are sufficient for the proof to go through, by giving a simplified proof that does not rely on
Kolmogorov complexity.

We mention that, in general, any randomized polynomial-time reduction for a problem
in NP can be derandomized to a deterministic polynomial-time nonadaptive reduction that
makes several queries, under the assumption that E = DTIME[2O(n)] cannot be computed
by non-deterministic circuits of size 2Ω(n). This follows from the theory of pseudorandom
generators secure against non-deterministic circuits [31, 43]. We also mention that Ilango [22]
showed that MCSP∗ is hard under the Exponential-Time Hypothesis, which provides an
exponential-time reduction from SAT to MCSP∗. Here, we aim at obtaining NP-hardness of
MCSP∗ under deterministic polynomial-time many-one reductions.

2 Regularization and Degree Reduction For General PCPs

2.1 Preliminaries
2.1.1 Expanders and Dispersers
We will use an explicit construction of expanders obtained by powering an explicit constant
degree expander. For a constant degree expander one can use the construction of [39] based
on the zig zag product. The same paper discusses powering as well. The parameters one can
get are given in this lemma (for a proof see the appendix of [34]):

S. Hirahara and D. Moshkovitz 39:5

▶ Lemma 4 (Explicit construction of expanders). There is a constant α < 1 and a function
∆ : N → N+ with ∆(D) = Θ(D), such that given two natural numbers n and D, one can
find in time polynomial in n and in D an undirected (multi-)graph G = (V, E) with |V | = n,
which is ∆(D)-regular and whose adjacency matrix has second largest eigenvalue (in absolute
value) λ ≤ (∆(D))α.

We will use expander random walk as a hitter (see, e.g., Theorem 4.7 in [47]):

▶ Lemma 5 (Expander random walk hitting property). Let G = (V, E) be a ∆-regular undirected
(multi-)graph, whose adjacency matrix has second largest eigenvalue (in absolute value) λ∆.
Then, for any set B ⊆ V of fraction µ = |B| / |V |, the probability that a random walk
v1, . . . , vt in G satisfies vi ∈ B for i = 1, . . . , t is at most (µ + λ)t.

Lemma 4 and Lemma 5 give an explicit construction of a disperser:

▶ Definition 6 (Disperser/hitter). A (δ, ε)-disperser graph is a bi-regular bipartite graph
G = (U, V, E) such that for every set B ⊆ V of fraction at most ε, for at most δ fraction of
the u ∈ U it holds that all of u’s neighbors in G are in B.

▶ Corollary 7 (Explicit disperser). For any q ≥ 1 and 0 < ε < 1, for any N ≥ (1/ε)q+1

there is an explicit construction of a (eεq, ε)-disperser G = ([N], [M], E) with N -degree q and
M -degree q · poly(1/εq).

Proof. Let G = ([M], E) for M = N/∆q be an explicit expander of degree ∆ = poly(1/ε) and
second eigenvalue (ε/q)∆ as given by Lemma 4. Let N correspond to length q walks in G. In
the disperser each walk is connected to the q vertices it contains. Let B ⊆ [M] of fraction ε. By
Lemma 5, the fraction of walks that fall completely in B is (ε+ε/q)q = εq(1+1/q)q ≤ eεq. ◀

2.1.2 PCP Verifiers and Their Parameters
▶ Definition 8 (PCP verifier). A PCP verifier for a language L is a procedure that on input
x uses r bits of randomness to make q queries to a proof π of length m over alphabet Σ. The
verifier satisfies the following:

Completeness: If x ∈ L then there exists π that the verifier accepts with probability at
least c.
Soundness: If x /∈ L then for all π the verifier accepts with probability at most s.

Typically, if n is the input size one considers r that is logarithmic in n, so the answers to
all the 2r tests would make an NP witness if x ∈ L. The number of queries is typically a
constant independent of n or slightly super constant; ideally q = 2. We have s ≥ 1/ |Σ|q,
since a random proof would satisfy at least this fraction of verifier tests. Thus, |Σ| is ideally
close to 1/s1/q. The completeness c is often 1. The soundness error s is as small as possible.
Sometimes one considers a constant s < 1, and sometimes sub-constant s is desired. Note that
s ≥ 2−r. Ideally one could hope for s that is exponentially small in r and polynomially small
in n. However, it is currently a known open problem (“The Sliding Scale Conjecture” [4])
whether polynomially small error can be achieved simultaneously with constant number
of queries. The state-of-the-art PCP with soundness error s = 1/n has q = poly(log log n)
queries [12].

▶ Definition 9. The query graph QV of a PCP verifier V that uses r random bits to make q

queries to a proof of length m is the bipartite graph that has the 2r randomness strings of the
verifier on one side and the m proof symbols of the proof π on the other side. Connect each
randomness string to the q queries the verifier makes on this randomness string.

ISAAC 2023

39:6 Regularization of Low Error PCPs and an Application to MCSP

2.2 Our Regularization and Its Analysis
Assume a PCP verifier V that uses r random bits to make q queries to a proof π over alphabet
Σ and has completeness c and soundness s, where s ≤ 1/(eq), 1/ |Σ|a for a constant 0 < a ≤ 1
(e is the basis of the natural logarithm). We will construct a new, similar, PCP verifier V ′

with a bi-regular query graph of small degree as specified in Theorem 1.
Let A = 1/s. First, duplicate each of the 2r tests A times, so each of the degrees is at

least A. This causes r to grow to r + O(log(1/s)) and does not change the other parameters.
For l = A, A + 1, . . . , 2r · A consider an explicit disperser Gl = ([l], [ml], El) as guaranteed
by Corollary 7 for N = l vertices, [l]-degree q′ = ⌈6q/a⌉, and ε = s1/(2q). Note that ml < l.
If V queries the i’th symbol in the proof in d(i) verifier tests, then replace the i’th symbol
with md(i) new symbols symbol(i, j), 1 ≤ j ≤ md(i) that are supposed to be copies of the i’th
symbol. That is, in the proof for V ′ in the completeness case all those copies are assigned
the same label from Σ as the one assigned to the i’th symbol in the completeness proof of V .

The verifier V ′ picks a uniformly random test of the verifier V . For every symbol i that
the test queries, if the test is the t’th test on which the i’th symbol is queried (1 ≤ t ≤ d(i)),
the verifier V ′ queries instead the q′ copies of the i’th symbol that correspond to the Gd(i)
neighborhood of t. The verifier V ′ checks equality between the copies in addition to the
original test. Overall the number of queries that V ′ makes is O(q2), and the degree of every
proof symbol is the same poly(q, 1/s). This step does not change the number of random bits
the verifier uses. The alphabet of the proof is the same as the alphabet of the proof of V .
The completeness error c of V ′ is the same as the completeness error c of V .

It remains to prove soundness. Suppose that we have a proof for V ′ that V ′ accepts with
probability larger than 2

√
s.

Let L = 1/ε and assume for simplicity that L is a natural number (otherwise, round it).
For every original proof symbol i, consider the L labels from the alphabet Σ that repeat in
the proof of V ′ in the largest number of copies symbol(i, j). We call a label from Σ “bad” for
i if it is not one of those L. We call a copy “bad” for i if its label is bad for i. Note that a
bad label repeats in at most ε fraction of copies.

For any original query i, consider a uniform choice of a V test among the d(i) tests
that query it, as well as the q′ corresponding queries of V ′ to copies symbol(i, j). By the
disperser property, for every bad label σ ∈ Σ for i, the probability that V ′ accepts and
queries copies labeled σ is at most eεq′ ≤ es3/a ≤ s/(q |Σ|), where the last inequality used
the low soundness error of V . Consider a uniform test of V ′, which induces a uniform test of
V that makes q original queries. By a union bound over the q queries and |Σ| possible bad
labels for them, the probability that V ′ accepts yet for one of the q queries it queries a bad
copy is at most s.

Hence, with probability larger than 2
√

s − s ≥
√

s over a choice of a uniform V ′ test, the
verifier accepts and for none of the q original queries it queries a bad copy. Consider the
following proof for V : for every proof symbol pick uniformly at random one of its L labels.
The probability that this assignment is accepted is larger than

√
s · (1/L)q = s.

3 Application: NP-Hardness of Partial MCSP

As an application, we simplify the proof of NP-hardness of MCSP∗ and present two sufficient
conditions under which the randomized reductions of [18] can be derandomized. The first
sufficient condition is that E cannot be computed by 2cn-time algorithms with 2n − 2n/2 bits
of advice for a sufficiently large constant c. This condition is essentially equivalent to the
statement that there exists a polynomial-time algorithm that, on input 1N , outputs a string

S. Hirahara and D. Moshkovitz 39:7

of length N whose time-bounded Kolmogorov complexity is at least N −
√

N [40].3 The
second sufficient condition is weaker and is that there exists a function in E that satisfies
“direct sum” properties.

To define the direct sum properties formally, we introduce the notion of oracle-sum
circuit, which generalizes a standard circuit. An oracle-sum circuit consists of a pair (C, D)
of an oracle circuit C and a circuit D. The oracle-sum circuit computes a function f such
that f(x) = CD(x), i.e., the function computed by the D-oracle circuit C. Abusing the
notation, we identify (C, D) with the function computed by (C, D). The size of an oracle-sum
circuit is measured by |C| + |D|, where |C| and |D| denote the number of wires in C and D,
respectively. Note that it is possible to simulate an oracle-sum circuit (C, D) by a circuit
of size O(|C| · |D|) by having |C| copies of the circuit D. The main difference between an
oracle-sum circuit and a standard circuit lies in how we measure their size.

For a function f : {0, 1}n → {0, 1}, let fm : ({0, 1}n)m → {0, 1}m denote the m-wise
direct product of fi, i.e., the function defined as fm(x1, . . . , xm) := (f(x1), . . . , f(xm)). We
now provide the formal definition of direct sum properties.

▶ Definition 10. For a function σ : N2 → N, a family f =
{

fk,n :{0, 1}k ×{0, 1}n →{0, 1}
}

k,n∈N
of functions is said to have σ-direct sum properties if the following hold for some constant
δ > 0 and all sufficiently large constant c.
1. For every B ⊆ {0, 1}k, there exists a circuit C of size |B| · σ(k, n) such that C computes

the m-wise direct product of fi for every i ∈ B, i.e., (fm
i | i ∈ B), where m := nc. Here,

fi(x) := fk,n(i, x).
2. For every B ⊆ {0, 1}k and every oracle-sum circuit C of size at most |B| · σ(k, n) · n−1/c,

there exists i ∈ B such that Prx∼{0,1}n [C(i, x) = fi(x)] ≤ 1 − δ.
Roughly speaking, a function with σ-direct sum properties satisfies that the circuit complexity
of computing (fi | i ∈ B) is approximately equal to σ · |B| for every B ⊆ {0, 1}k. Definition 10
is stronger than this in the following respects: (i) Item 1 states that for every i ∈ B, not
only each fi is computable by a circuit of size σ, but also the m-wise direct product of fi is
computable by a circuit of size σ. In particular, computing fm

i is as easy as computing fi,
which means that the strong direct sum property for fi fails to hold. (ii) Item 2 is a strong
direct sum property for (fi | i ∈ B), and states that oracle-sum circuits of size ≲ |B| · σ

cannot compute (fi | i ∈ B) on average.
The formal definition of MCSP∗ is as follows.

▶ Definition 11. For a partial function f : {0, 1}n → {0, 1, ∗}, let CC∗(f) denote the
minimum number of the wires in a circuit C such that C(x) = f(x) for every x ∈ {0, 1}n.
Partial MCSP (MCSP∗) is defined as the language that consists of (f, s) such that CC∗(f) ≤ s,
where f is encoded as a binary string of length 2Θ(n).

We now state the main result of this section.

▶ Theorem 12. Assume that either
1. for every constant c > 0, there exists a language in E \ i.o.DTIME[2cn]/(2n − 2n/2), or
2. there exists a family f = {fk,n}k≤n functions computable in time 2O(n) with σ-direct sum

properties, where σ(k, n) ≥ 2γn for some constant γ > 0.
Then, MCSP∗ is NP-hard under deterministic polynomial-time many-one reductions.

We first show that the first condition implies the second condition in Theorem 12. Item 1
of Definition 10 follows from Uhlig’s theorem:

3 We mention that this can be optimized to N − N1−ϵ for any constant ϵ > 0.

ISAAC 2023

39:8 Regularization of Low Error PCPs and an Application to MCSP

▶ Lemma 13 ([45, 46]; see also [48]). Let r : N → N be a function such that r(n) = 2o(n/ log n).
Then, for all large n ∈ N, for any function f : {0, 1}n → {0, 1}, there exists a circuit of size
O(2n/n) that computes fr(n) : ({0, 1}n)r(n) → {0, 1}r(n).

▶ Proposition 14. There exists a constant c > 0 such that if f : {0, 1}k × {0, 1}n → {0, 1}
cannot be computed by any algorithm running in time 2cn with 2n+k − 2n−1 bits of advice,
then f satisfies the σ-direct sum property for σ = Θ(2n/n).

Proof. To see the first property of Definition 10, for each i ∈ B, by Lemma 13, there exists a
circuit Ci of size O(2n/n) that computes the m-wise direct product fm

i of fi. By combining
the circuits (Ci | i ∈ B) for all i ∈ B, we obtain a circuit of size |B| · O(2n/n) that computes
fm

i for every i ∈ B.
Let Kt(x) denote the t-time bounded Kolmogorov complexity of x, i.e., the length of

a shortest program that prints x in time t. Then, the assumption implies that K2cn(f) ≥
2n+k − 2n−1.

To see the second property, we first claim that for every B ⊆ [n], the time-bounded
Kolmogorov complexity of fB := (fi | i ∈ B) is at least |B| · 2n−2. Since f can be described
by a description for (fi | i ∈ B), the set B, and (fi | i ∈ {0, 1}k \ B), we have

2n+k − 2n−1 ≤ Kt(f) ≤ Kt′
(fB) + |B| · O(k) + (2k − |B|) · 2n

for some t, t′ ≤ 2O(n). It follows that Kt(fB) ≥ |B| · (2n − 2n−1 − O(k)) ≥ |B| · 2n−2.
We now claim that any small oracle-sum circuit fails to approximate (fi | i ∈ B). Let C

be an oracle-sum circuit of size s such that Prx∼{0,1}n [C(i, x) = fi(x)] ≥ 1 − δ for every
i ∈ B. For each i ∈ B, the set of inputs x such that C(i, x) ̸= fi(x) can be described by
log

∑
k≤δ2n

(2n

k

)
≤ H2(δ)2n ≤ 2n−3 bits, where the last inequality holds for a sufficiently

small constant δ > 0. Since C can be described by O(s log s) bits, (fi | i ∈ B) can be
described by O(s log s) + |B| · 2n−3. Thus, we obtain |B| · 2n−3 ≤ O(s log s), which implies
s ≥ Ω(|B| · 2n/n). ◀

Since a random function has high Kolmogorov complexity, the proof of Proposition 14 also
shows that a random function satisfies Θ(2n/n)-direct sum properties with high probability.

3.1 Collective Minimum Monotone Satisfying Assignment Problem
In [18], Collective Minimum Monotone Satisfying Assignment (CMMSA) was introduced
and shown to be NP-hard to approximate. Using the regularization for low-error PCPs, we
show that the same hardness of approximation can be proved for the unweighted version of
CMMSA.

For an assignment α : [n] → {0, 1}, let w(α) denote the Hamming weight
∑n

i=1 α(i) of α.
For a formula φ, let φ(α) ∈ {0, 1} denote the output of φ when the variables are assigned
by α.

▶ Definition 15 ([18]). The Collective Minimum Satisfying Assignment problem (CMMSA)
with gap g ∈ N and soundness ϵ > 0 is the following problem. The input consists of
a collection Φ = {φ1, . . . , φm} of monotone formulas over the set [n] of variables and a
threshold parameter s ∈ N. The task is to distinguish the following two cases.
Yes: There exists an assignment α : [n] → {0, 1} such that

w(α) ≤ s and Pr
φ∼Φ

[φ(α) = 1] = 1.

S. Hirahara and D. Moshkovitz 39:9

No: For every assignment α : [n] → {0, 1}, if w(α) ≤ g · s, then

Pr
φ∼Φ

[φ(α) = 1] < ϵ.

The degree of Φ is defined to be maxφ∈Φ |φ|, where |φ| denotes the number of the literals in
the formula φ. The size of an instance of CMMSA is measured by the number n of input
variables.

▶ Theorem 16. For any constant β > 0, there exists a constant α > 0 such that for every
parameter ∆: N → N such that ω(1) ≤ ∆(n) ≤ 2(log n)1−β for all large n ∈ N, it is NP-hard
under polynomial-time many-one reductions to compute CMMSA with gap ∆(n)α, degree
∆(n), and soundness ∆(n)−α on a collection Φ of monotone DNF formulas over n variables.

The proof of Theorem 16 is essentially the same with [18], except that we use the
regularized PCP system of Corollary 2.

Proof of Theorem 16. The PCP theorem of Corollary 2 can be stated in terms of MaxCSP
as follows: Let Ψ = {C1, . . . , Cm} be the set of constraints over n variables on the alphabet
Σ. Here, for any internal randomness j ∈ {0, 1}O(log n) of a PCP verifier, there is a constraint
Cj . Each constraint Cj depends on D = O(1/β) variables. The size of the alphabet Σ is at
most poly(1/δ), where δ is the soundness error. Let C−1

j (1) denote the set of assignments to
the variables in Cj that cause Cj to accept. Here, an assignment r to the variables in Cj is a
function r : dom(r) → Σ, where dom(r) ⊆ [n] denotes the set of variables in Cj .

Given the MaxCSP instance Ψ over Σ, we reduce it to an instance (Φ, s) of CMMSA as
follows: Each variable of Φ is indexed by (x, a) ∈ [n] × Σ and is denoted by Lx,a. Informally,
Lx,a = 1 indicates that the variable x in the original CSP instance Ψ is assigned to a ∈ Σ.
For each j ∈ [m], construct a monotone DNF formula φj defined as

φj(L) :=
∨

r∈C−1
j

(1)

∧
x∈dom(r)

Lx,r(x).

The threshold s is defined to be n.
We prove the correctness of the reduction. Assume that the CSP instance Ψ is satisfied by

an assignment α : [n] → Σ. Then, we set Lx,α(x) := 1 and Lx,y := 0 for every y ∈ Σ \ {α(x)}.
The weight of the assignment L : [n] × Σ → {0, 1} is w(L) = n. By the perfect completeness,
we have Cj(α) = 1 for every j ∈ [m]; thus, α satisfies every formula in Φ. It follows that
(Φ, s) is a Yes instance of CMMSA.

Next, assume that any assignment to Ψ can satisfy at most a δ-fraction of constraints in
Ψ. Assume that there exists an assignment L : [n] × Σ → {0, 1} such that w(L) = g · n and

Pr
j∼[m]

[φj(L) = 1] ≥ ϵ, (1)

where ϵ > 0 is a parameter to be chosen later. We claim that g must be large. For each
variable x ∈ [n] of Ψ, let A(x) := {a ∈ Σ | Lx,a = 1}. Since gn = w(L) =

∑
x∈[n] |A(x)|,

we have Ex∼[n] [|A(x)|] = g. We say that x ∈ [n] is bad if |A(x)| ≥ 2gD/ϵ. By Markov’s
inequality, the probability that x is bad is at most ϵ/2D. Since the PCP system is bi-regular,
the uniform distribution x ∼ [n] is identical to the following distribution: First choose
j ∼ [m], and then choose x uniformly at random from the variables in Cj . We say that Cj is
bad if Cj contains some bad variable x. Thus, the probability, over j ∼ [m], that Cj is bad
is at most ϵ/2. Combining this with Equation (1), we obtain that

Pr
C∼Ψ

[
∃r ∈ C−1(1), ∀x ∈ dom(r), |A(x)| ≤ 2gD

ϵ
and r(x) ∈ A(x)

]
≥ ϵ − ϵ

2 = ϵ

2 .

ISAAC 2023

39:10 Regularization of Low Error PCPs and an Application to MCSP

Now, we construct a random assignment α : [n] → Σ as follows: For each x ∈ [n], pick
a ∼ A(x) ⊆ Σ uniformly and randomly and define α(x) := a. Under the event that
r ∈ C−1(1), |A(x)| ≤ 2gD

ϵ , and r(x) ∈ A(x) for every x ∈ dom(r), we have C(α) = 1 if

α(x) = r(x) for every x ∈ dom(r), which happens with probability at least
(

ϵ
2gD

)D

. It
follows that

δ ≥ Pr
C∼Ψ

α

[C(α) = 1] ≥ ϵ

2 ·
(

ϵ

2gD

)D

,

which implies that g ≥ Ω
(

ϵ2 · δ− 1
D

)
≥ Ω

(
δ− 1

2D

)
, where the last inequality holds by setting

ϵ := δ
1

4D . The number of the literals in φj ∈ Φ is at most |C−1
j (1)| · D ≤ |Σ|D · D ≤ δ−O(D).

Given a parameter ∆, we choose δ := ∆−Ω(1/D) so that the degree of Φ is at most ∆.
Then, the gap g is at least Ω

(
δ− 1

2D

)
≥ ∆Ω(1/D2). Moreover, the soundness ϵ is at least

δ
1

4D ≥ ∆−Ω(1/D2). ◀

3.2 Technical Tools
We review the three technical tools used in [18]. The first tool is a secret sharing scheme.

▶ Definition 17 (Secret Sharing Scheme [3]). A secret sharing scheme for A ⊆ 2[n] is a pair
(Share, Rec) of a randomized algorithm Share and a deterministic algorithm Rec with the
following properties:
Correctness: For every authorized set T ∈ A and for every bit b ∈ {0, 1}, the output of

Share(b) is a sequence (s1, . . . , sn) of n strings that satisfies Rec(T, sT) = b with probability
1 over the internal randomness of Share(b).

Privacy: For every unauthorized set T ̸∈ A and for every random variable b on {0, 1}, the
random variables b and Share(b)T are statistically independent.

For a monotone formula φ, let Aφ denote the access structure such that T ∈ Aφ if and
only if the indicator function of T ⊆ [n] satisfies φ.

▶ Lemma 18 ([24, 6]). Let A = {Aφ}φ be the family of access structures Aφ represented by
monotone formulas φ. Then, there exists a pair of a randomized polynomial-time algorithm
Share and a deterministic polynomial-time algorithm Rec such that for every monotone
formula φ, the pair (Share(φ, -), Rec(φ, -)) is a secret sharing scheme for the access structure
Aφ. Moreover, the length |si| of each share si is at most the number |φ| of the literals in the
formula φ.

The second tool is the Nisan–Wigderson pseudorandom generator construction.

▶ Proposition 19 ([35, 44]). For any sufficiently large parameters ℓ, m, ρ ∈ N with m ≤ 2ℓ,
there exists a “design” S1, . . . , Sm ⊆ [d] such that for every i ∈ [m],
1. |Si| = ℓ, d = O(exp(ℓ/ρ) · ℓ2/ρ), and
2. |Si ∩ Sj | ≤ ρ for every j ∈ [m] \ {i}
Moreover, such a family can be constructed in time poly(2d, m).

▶ Definition 20 (The Nisan–Wigderson pseudorandom generator construction [35]). Let S =
(S1, . . . , Sm) be a family of ℓ-sized subsets of [d]. For a function f : {0, 1}ℓ → {0, 1}, we
define a function

NWS : {0, 1}2ℓ

× {0, 1}d → {0, 1}m

S. Hirahara and D. Moshkovitz 39:11

as

NWS(f ; z) := (f(zS1), . . . , f(zSm)) ∈ {0, 1}m,

where zSi ∈ {0, 1}ℓ denotes the string obtained by concatenating all the bits of z ∈ {0, 1}d

indexed by Si ⊆ [d].

The third tool is a derandomized version of Yao’s XOR lemma.

▶ Lemma 21 ([23, 16]; see also [18]). For any constant γ > 0, there exist a constant c ∈ N and
a procedure Amp that takes a function f : {0, 1}n → {0, 1} and parameters ϵ, δ ∈ (0, 1/2) as
input, and returns a function Ampf = Ampf

ϵ,δ : {0, 1}cn → {0, 1} that satisfies the following
properties:
1. For every circuit D that computes Ampf on a (1/2 + ϵ)-fraction of inputs, there exists

an oracle circuit C of size 2γn · poly(1/ϵδ) such that CD computes f on a (1 − δ)-fraction
of inputs.

2. There is a nonadaptive f-oracle circuit of size poly(n/ϵδ) and depth O(log(n/ϵδ)) that
computes Ampf by making O(1/ϵδ) queries to f .

3. Ampf can be computed in time poly(2n, n/ϵδ) given the truth table of f and the parameters
as input.

3.3 Proof of NP-hardness of MCSP∗

We are ready to present a proof of Theorem 12. As shown in Proposition 14, the first
condition is stronger than the second condition. Thus, it suffices to show NP-hardness of
MCSP∗ under the second condition that there exists a family F = {Fk,n}k≤n of functions
with σ-direct sum properties, where σ(k, n) ≥ 2γn. Let δ > 0 be the constant of Definition 10.

We present a reduction from CMMSA with degree ∆ and soundness ϵ0 to MCSP∗, where
∆ := (log n)1/2 and ϵ0 < 1/4. Let (Φ, θ) be an instance of CMMSA, where Φ = {φ1, . . . , φν}
is a degree-∆ collection of monotone formulas over the set [n] of input variables. For each
j ∈ [ν], let Vj denote the set

{
vj

1, · · · , vj
m

}
⊆ [n] of the variables of φj . Here, m ≤ ∆ is the

number of variables on which φj depends for every j ∈ [ν]. We may assume without loss of
generality that m does not depend on j and n is a power of 2.

Let Amp be the hardness amplification procedure of Lemma 21 for ϵ := ϵ0/2∆m, and let
c ≥ 1 be the constant of Lemma 21. Let λ = nO(1) be a sufficiently large parameter. We
define ℓ := c log λ.

Let f := Flog n,log λ : {0, 1}log n × {0, 1}log λ → {0, 1}, where we identify {0, 1}log n with
[n]. For each k ∈ [n], let fk : {0, 1}log λ → {0, 1} be the function such that fk(x) = f(k, x)
for every x ∈ {0, 1}log λ. Let f̂k := Ampfk : {0, 1}ℓ → {0, 1} denote the hardness-amplified
version of the function fk.

We construct a partial function

g : {0, 1}O(log ν) × {0, 1}d × ({0, 1}∆)m → {0, 1, ∗},

which is the output of the reduction, as follows. Let S = (S1, . . . , Sm∆) be the collection
of ℓ-sized subsets of [d] from Proposition 19, where d = O(ℓ) and ρ := γ log λ. Let Si :=
(S(i−1)∆+1, . . . , S(i−1)∆+∆) for every i ∈ [m]. g takes x = (j, z, ξ1, . . . , ξm) ∈ {0, 1}O(log ν) ×
{0, 1}d × ({0, 1}∆)m as input. Define si := ξi ⊕ NWSi

(
f̂vj

i
; z

)
for every i ∈ [m], where

⊕ denotes the bit-wise XOR. Then, we check if (s1, . . . , sm) can be obtained by running
Share(φj , b) for some secret b ∈ {0, 1} and some internal randomness of Share. (Here, Share

ISAAC 2023

39:12 Regularization of Low Error PCPs and an Application to MCSP

is the randomized algorithm of Lemma 18.) If not, we define g(x) := ∗; otherwise, we define
g(x) := b. Observe that |x| = O(log ν + d + ∆m) = O(log n + ∆2) = O(log n).

We prove the correctness of the reduction that maps (Φ, θ) to an instance (g, 2θσ) of
MCSP∗ in the following two claims.

▷ Claim 22. If (Φ, θ) is a Yes instance of CMMSA, then CC∗(g) ≤ θσ + poly(n log λ/ϵδ),
where σ := σ(log n, log λ).

Since poly(n log λ/ϵδ) ≤ 2γ log λ ≤ σ for a sufficiently large λ, it follows that CC∗(g) ≤ 2θσ

in the Yes case.

Proof of Claim 22. Let α : [n] → {0, 1} be an assignment of weight θ that satisfies every
formula in Φ. Define T := α−1(1). We construct a circuit C that computes the partial
function g. Let x = (j, z, ξ1, . . . , ξm) be an input to C. First, for each k ∈ T , the circuit
C computes strings (yk

1 , . . . , yk
∆) ∈

(
{0, 1}ℓ

)∆ such that if there exists i ∈ [m] such that
k = vj

i , then yk
p = zS(i−1)∆+p

for every p ∈ [∆]. Then, for each k ∈ T , the circuit C computes
(f̂k(yk

1), . . . , f̂k(yk
∆)) from (yk

1 , . . . , yk
∆). By Lemma 21, each f̂k(yk

p) can be computed by
O(1/ϵδ) nonadaptive queries to f ; thus, the tuple

(
f̂k(yk

p)
∣∣∣ p ∈ [∆]

)
can be computed by

O(∆/ϵδ) nonadaptive queries to fk. By the direct sum property of F , the nonadaptive
queries to fk for every k ∈ T can be simulated by a circuit of size |T | · σ ≤ θ · σ. Finally,
C computes si := (f̂k(yk

1), . . . , f̂k(yk
∆)) ⊕ ξi for every k and i such that k = vj

i . Then, C

outputs b = Rec(φj , Vj ∩ T, sVj∩T). Overall, the size of the circuit is

θ · σ + poly(n∆ log λ/ϵδ). ◁

Let η > 0 be a constant such that CMMSA is NP-hard to approximate to within a factor
of 4(log λ)η. For a No instance (Φ, θ) of CMMSA, we claim that CC∗(g) is large.

▷ Claim 23. Assume that

Pr
j∼[ν]

[φj(α) = 1] ≤ ϵ0

for every assignment α of weight 4θ · (log λ)η. Then,

CC∗(g) > 2θσ.

Proof of Claim 23. Let C be an arbitrary circuit of size 2θσ. We prove that C cannot compute
g on average with respect to some distribution.

We say that C knows k ∈ [n] if there exists an oracle circuit S of size t such that SC

computes fk on a (1 − δ)-fraction of inputs, where t := 2γ log λ · poly(m∆/ϵδ). Let B be the
set of k ∈ [n] such that C knows k.

For every j ∈ [ν] and every i ∈ {0, . . . , m}, we consider the hybrid distribution Hj
i

defined by the following sampling procedure: Choose a secret b ∼ {0, 1} randomly. Let
(s1, . . . , sm) := Share(φj , b). Define

x :=
(
j, z, Y1, . . . , Yi, Y ′

i+1, . . . , Y ′
m

)
,

where Ya := NWSa

(
f̂vj

a
; z

)
⊕ sa for every a ∈ [m] and Y ′

a := Ya if vj
a ∈ B and Y ′

a ∼ {0, 1}∆

otherwise. Output (x, b).
Fix any j ∈ [ν] and i ∈ [m]. We claim that∣∣∣∣∣ Pr
(x,b)∼Hj

i−1

[C(x) = b] − Pr
(x,b)∼Hj

i

[C(x) = b]

∣∣∣∣∣ ≤ ϵ∆. (2)

S. Hirahara and D. Moshkovitz 39:13

Assume, towards a contradiction, that this does not hold. The only difference between
Hj

i−1 and Hj
i is that the i-th coordinate is Y ′

i in the former and is Yi in the latter. Let
k := vj

i . If k ∈ B, it is evident that the two distributions are identical, in which case we
are done. Thus, assume k ̸∈ B. In this case, Y ′

i is the uniform distribution. We use a
standard security proof of the Nisan–Wigderson generator to construct a C-oracle circuit SC

of size t that computes fk, which contradicts k ̸∈ B. Specifically, we use a hybrid argument
in which each bit of Yi is replaced with Y ′

i . Then, there exists a bit position a of Yi that
can be distinguished from the uniform distribution. We fix z[m∆]\Sa

, b, the randomness
of Share(φj , b) so that the distinguishing probability is preserved. Since |zSa

∩ zSa′ | ≤ ρ

for every a′ ̸= a, given zSa
, one can compute

(
f̂k(zSa′)

∣∣∣ a′ ∈ [m∆] \ {a}
)

using a circuit
of size O(m∆2ρρ) ≤ λγ · poly(m∆). By Yao’s next bit predictor, we obtain a C-oracle
circuit that computes f̂k(zSa) on a (1/2 + ϵ)-fraction of inputs. By Lemma 21, we obtain
a C-oracle circuit SC that computes fk on a (1 − δ)-fraction of inputs. The size of S is at
most λγ · poly(m∆/ϵδ) ≤ t, which implies k ∈ B. However, this contradicts k ̸∈ B.

It follows from Equation (2) that∣∣∣∣∣ Pr
(x,b)∼Hj

0

[C(x) = b] − Pr
(x,b)∼Hj

m

[C(x) = b]

∣∣∣∣∣ ≤ ϵ∆m.

Observe that g(x) = b for every (x, b) in the support of Hj
m. Thus, we have

Pr
(x,b)∼Hj

m

[C(x) = b] = Pr
(x,b)∼Hj

m

[C(x) = g(x)]

Let α : [n] → {0, 1} be a function such that α(k) = 1 iff k ∈ B. In the distribution of
(x, b) ∼ Hj

0 , only the shares in B are included in x. Thus, if φj(α) = 0, then by the privacy
of the secret sharing scheme, b and x are statistically independent, in which case we have

Pr
(x,b)∼Hj

0

[C(x) = b] = 1
2 .

We claim that the size of B is small. In order to use the direct sum property of F , we
construct a small oracle-sum circuit (S, C) that approximates fk for every k ∈ B. For each
k ∈ B, let Sk be the oracle circuit Sk of size t such that SC

k computes fk on a (1 − δ)-fraction
of inputs. We define an oracle circuit SC as follows: Given k ∈ B and x ∈ {0, 1}n as
input, the circuit outputs SC

k (x). The size of S is at most (1 + o(1)) · |B| · t. The size of
the oracle-sum circuit (C, S) is at most |S| + |C|. By the direct sum property of F , we
obtain |B| · σ · (log λ)−η ≤ |S| + |C| ≤ (1 + o(1)) · |B| · t + |C|. Since t ≪ σ · (log λ)−η,
we obtain |B| ≤ (1 + o(1)) · |C| · (log λ)η/σ ≤ θ · 4(log λ)η. By the assumption, we have
Prj [φj(α) = 1] ≤ ϵ0.

Choose j ∼ [ν] randomly. Then, we obtain

Pr
j∼[ν],(x,b)∼Hj

m

[C(x) = g(x)] ≤ Pr
j

[φj(α) = 1] + Pr
j,(x,b)

[C(x) = g(x) | φj(α) = 0]

≤ ϵ0 + 1
2 + ϵ∆m ≤ 1

2 + 2ϵ0 < 1. ◁

4 Open Problems

Can we show NP-hardness of MCSP∗ under circuit lower bound assumptions, such as
the assumption that E cannot be computed by non-deterministic circuits of size 2ϵn for
some constant ϵ > 0? Using a pseudorandom generator secure against non-deterministic

ISAAC 2023

39:14 Regularization of Low Error PCPs and an Application to MCSP

algorithms [31, 43], one can generate, in time poly(N), functions f1, . . . , fN : {0, 1}k ×
{0, 1}n → {0, 1} such that fi satisfies the Θ(2n/n)-direct sum properties for most i ∈ [N],
where N = 2O(n+k). However, it remains open whether a single function f with direct sum
properties can be obtained.

It is interesting to see whether there exists any candidate for a function with σ-direct sum
properties, where 2Ω(n) ≤ σ ≪ 2n/n. In this regime, Uhlig’s theorem (Lemma 13) cannot be
used, so new insights would be required to answer this question.

The original motivation of the regularization was to show NP-hardness of learning sparse
parities by small programs, which was raised as an open problem in [18]. Unfortunately, it
turned out that regularization is not sufficient for resolving this question. It remains open
whether learning sparse parities by small programs is NP-hard.

References
1 E. Allender and S. Hirahara. New Insights on the (Non-)Hardness of Circuit Minimization

and Related Problems. TOCT, 11(4):27:1–27:27, 2019. doi:10.1145/3349616.
2 J. Alman and L. Chen. Efficient construction of rigid matrices using an NP oracle. In Proc.

60th IEEE Symp. on Foundations of Computer Science, pages 1034–1055, 2019.
3 A. Beimel. Secret-Sharing Schemes: A Survey. In The Third International Workshop on

Coding and Cryptology (IWCC), pages 11–46, 2011. doi:10.1007/978-3-642-20901-7_2.
4 M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs

and applications to approximations. In Proc. 25th ACM Symp. on Theory of Computing, pages
294–304, 1993.

5 E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4):889–974, 2006.

6 J. C. Benaloh and J. Leichter. Generalized Secret Sharing and Monotone Functions. In
Proceedings of the International Cryptology Conference (CRYPTO), pages 27–35, 1988. doi:
10.1007/0-387-34799-2_3.

7 M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Learning Algorithms from
Natural Proofs. In Proceedings of the Conference on Computational Complexity (CCC), pages
10:1–10:24, 2016. doi:10.4230/LIPIcs.CCC.2016.10.

8 L. Chen, S. Hirahara, I. C. Oliveira, J. Pich, N. Rajgopal, and R. Santhanam. Beyond Natural
Proofs: Hardness Magnification and Locality. In Proceedings of the Innovations in Theoretical
Computer Science Conference (ITCS), pages 70:1–70:48, 2020. doi:10.4230/LIPIcs.ITCS.
2020.70.

9 J. Cook and D. Moshkovitz. Tighter MA/1 circuit lower bounds from verifier efficient PCPs
for PSPACE. Technical Report TR22-014, ECCC, 2022.

10 I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP: Toward
a polynomially-small error-probability. Computational Complexity, 20(3):413–504, 2011.

11 I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs. In
Proc. 50th IEEE Symp. on Foundations of Computer Science, pages 472–481, 2009.

12 I. Dinur, P. Harsha, and G. Kindler. Polynomially low error pcps with polyloglog n queries via
modular composition. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proc. 47th ACM
Symp. on Theory of Computing, pages 267–276. ACM, 2015.

13 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proc. 46th ACM Symp.
on Theory of Computing, 2014.

14 U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

15 J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.
16 A. Healy, S. P. Vadhan, and E. Viola. Using Nondeterminism to Amplify Hardness. SIAM J.

Comput., 35(4):903–931, 2006. doi:10.1137/S0097539705447281.

https://doi.org/10.1145/3349616
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1137/S0097539705447281

S. Hirahara and D. Moshkovitz 39:15

17 S. Hirahara. Non-Black-Box Worst-Case to Average-Case Reductions within NP. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018. doi:
10.1109/FOCS.2018.00032.

18 S. Hirahara. NP-Hardness of Learning Programs and Partial MCSP. In Proceedings of
the Symposium on Foundations of Computer Science (FOCS), pages 968–979, 2022. doi:
10.1109/FOCS54457.2022.00095.

19 S. Hirahara and O. Watanabe. Limits of Minimum Circuit Size Problem as Oracle. In
Proceedings of the Conference on Computational Complexity (CCC), pages 18:1–18:20, 2016.
doi:10.4230/LIPIcs.CCC.2016.18.

20 J. M. Hitchcock and A. Pavan. On the NP-Completeness of the Minimum Circuit Size Problem.
In Proceedings of the Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), pages 236–245, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.236.

21 J. Holmerin and S. Khot. A new PCP outer verifier with applications to homogeneous linear
equations and max-bisection. In Proc. 36th ACM Symp. on Theory of Computing, pages 11–20,
2004.

22 R. Ilango. Constant Depth Formula and Partial Function Versions of MCSP are Hard. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 424–433,
2020. doi:10.1109/FOCS46700.2020.00047.

23 R. Impagliazzo and A. Wigderson. P = BPP if E Requires Exponential Circuits: Derandomizing
the XOR Lemma. In Proceedings of the Symposium on the Theory of Computing (STOC),
pages 220–229, 1997. doi:10.1145/258533.258590.

24 M. Ito, A. Saito, and T. Nishizeki. Multiple Assignment Scheme for Sharing Secret. J. Cryptol.,
6(1):15–20, 1993. doi:10.1007/BF02620229.

25 Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen. MIP* = RE. Submitted, 2020.
26 V. Kabanets and J. Cai. Circuit minimization problem. In Proceedings of the Symposium on

Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.335314.
27 J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting

codes. In Proc. 32nd ACM Symp. on Theory of Computing, pages 80–86, 2000.
28 S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon. Journal

of Computer and System Sciences, 74(3):335–349, 2008.
29 S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems

and embeddability of negative type metrics into l1. In Proc. 46th IEEE Symp. on Foundations
of Computer Science, pages 53–62, 2005.

30 J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract. In
Proc. 24th ACM Symp. on Theory of Computing, pages 723–732, 1992.

31 A. R. Klivans and D. van Melkebeek. Graph Nonisomorphism Has Subexponential Size Proofs
Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput., 31(5):1501–1526, 2002.
doi:10.1137/S0097539700389652.

32 L. A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii, 9(3):115–
116, 1973.

33 Y. Liu and R. Pass. On One-way Functions and Kolmogorov Complexity. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.
doi:10.1109/FOCS46700.2020.00118.

34 D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal of the ACM,
57(5), 2010.

35 N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1.

36 I. C. Oliveira and R. Santhanam. Hardness Magnification for Natural Problems. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 65–76, 2018.

37 C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.

38 O. Paradise. Smooth and strong pcps. Comput. Complex., 30(1):1, 2021.

ISAAC 2023

https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.4230/LIPIcs.CCC.2016.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/BF02620229
https://doi.org/10.1145/335305.335314
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1016/S0022-0000(05)80043-1

39:16 Regularization of Low Error PCPs and an Application to MCSP

39 O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors. Annals of Mathematics, 155(1):157–187, 2002.

40 H. Ren, R. Santhanam, and Z. Wang. On the Range Avoidance Problem for Circuits. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 640–650,
2022. doi:10.1109/FOCS54457.2022.00067.

41 M. Saks and R. Santhanam. Circuit Lower Bounds from NP-Hardness of MCSP Under
Turing Reductions. In Proceedings of the Computational Complexity Conference (CCC), pages
26:1–26:13, 2020. doi:10.4230/LIPIcs.CCC.2020.26.

42 R. Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In Proceedings of
the Innovations in Theoretical Computer Science Conference (ITCS), pages 68:1–68:26, 2020.
doi:10.4230/LIPIcs.ITCS.2020.68.

43 R. Shaltiel and C. Umans. Pseudorandomness for Approximate Counting and Sampling.
Computational Complexity, 15(4):298–341, 2006. doi:10.1007/s00037-007-0218-9.

44 L. Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, 2001. doi:
10.1145/502090.502099.

45 D. Uhlig. On the synthesis of self-correcting schemes from functional elements with a small
number of reliable elements. Mathematical Notes of the Academy of Sciences of the USSR,
15(6):558–562, 1974.

46 D. Uhlig. Networks Computing Boolean Functions for Multiple Input Values. In Poceedings of
the London Mathematical Society Symposium on Boolean Function Complexity, pages 165–173,
USA, 1992. Cambridge University Press.

47 S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

48 I. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http://ls2-www.
cs.uni-dortmund.de/monographs/bluebook/.

49 R. Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42:231–240, 2010.

https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1007/s00037-007-0218-9
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/

	1 Introduction
	1.1 Regularization of Low Error PCPs
	1.2 Regularization Technique
	1.3 An Application to MCSP

	2 Regularization and Degree Reduction For General PCPs
	2.1 Preliminaries
	2.1.1 Expanders and Dispersers
	2.1.2 PCP Verifiers and Their Parameters

	2.2 Our Regularization and Its Analysis

	3 Application: NP-Hardness of Partial MCSP
	3.1 Collective Minimum Monotone Satisfying Assignment Problem
	3.2 Technical Tools
	3.3 Proof of NP-hardness of MCSP*

	4 Open Problems

