
Clustering What Matters in Constrained Settings
Improved Outlier to Outlier-Free Reductions

Ragesh Jaiswal1 #

CSE, IIT Delhi, India

Amit Kumar #

CSE, IIT Delhi, India

Abstract
Constrained clustering problems generalize classical clustering formulations, e.g., k-median, k-means,
by imposing additional constraints on the feasibility of a clustering. There has been significant
recent progress in obtaining approximation algorithms for these problems, both in the metric and
the Euclidean settings. However, the outlier version of these problems, where the solution is allowed
to leave out m points from the clustering, is not well understood. In this work, we give a general
framework for reducing the outlier version of a constrained k-median or k-means problem to the
corresponding outlier-free version with only (1 + ε)-loss in the approximation ratio. The reduction is
obtained by mapping the original instance of the problem to f(k, m, ε) instances of the outlier-free
version, where f(k, m, ε) =

(
k+m

ε

)O(m). As specific applications, we get the following results:
First FPT (in the parameters k and m) (1 + ε)-approximation algorithm for the outlier version
of capacitated k-median and k-means in Euclidean spaces with hard capacities.
First FPT (in the parameters k and m) (3 + ε) and (9 + ε) approximation algorithms for the
outlier version of capacitated k-median and k-means, respectively, in general metric spaces with
hard capacities.
First FPT (in the parameters k and m) (2 − δ)-approximation algorithm for the outlier version
of the k-median problem under the Ulam metric.

Our work generalizes the results of Bhattacharya et al. and Agrawal et al. to a larger class of
constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can
extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases clustering, constrained, outlier

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.41

Related Version Full Version: https://arxiv.org/abs/2305.00175

Funding Ragesh Jaiswal: The author acknowledges the support from the SERB, MATRICS grant.

1 Introduction

Center-based clustering problems such as k-median and the k-means are important data
processing tasks. Given a metric D on a set of n points X and a parameter k, the goal
here is to partition the set of points into k clusters, say C1, . . . , Ck, and assign the points
in each cluster to a corresponding cluster center, say c1, . . . , ck, respectively, such that the
objective

∑k
i=1
∑

x∈Ci
D(x, ci)z is minimized. Here z is a parameter which is 1 for k-median

and 2 for k-means. The outlier version of these problems is specified by another parameter
m, where a solution is allowed to leave out up to m points from the clusters. Outlier versions
capture settings where the input may contain a few highly erroneous data points. Both the

1 corresponding author

© Ragesh Jaiswal and Amit Kumar;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rjaiswal@cse.iitd.ac.in
https://orcid.org/0009-0002-4475-0922
mailto:amitk@cse.iitd.ac.in
https://orcid.org/0000-0002-3965-6627
https://doi.org/10.4230/LIPIcs.ISAAC.2023.41
https://arxiv.org/abs/2305.00175
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Clustering What Matters in Constrained Settings

outlier and the outlier-free versions have been well-studied in the literature with constant
factor approximations known for both the k-means and the k-median problem [3, 4, 12]. In
addition, fixed-parameter tractable (FPT) (1 + ε)-approximation algorithms are known for
these problems in the Euclidean setting [26, 19, 8]: the running time of such algorithms is
of the form f(k,m, ε) · poly(n, d), where f() is an exponential function of the parameters
k,m, ε and d denotes the dimensionality of the points.

A more recent development in clustering problems has been the notion of constrained
clustering. A constrained clustering problem specifies additional conditions on a feasible
partitioning of the input points into k clusters. For example, the r-gathering problem requires
that each cluster in a feasible partitioning must contain at least r data points. Similarly, the
well-known capacitated clustering problem specifies an upper bound on the size of each cluster.
Constrained clustering formulations can also capture various types of fairness constraints:
each data point has a label assigned to it, and we may require upper or lower bounds
on the number (or fraction) of points with a certain label in each cluster. Table 1 in the
Appendix gives a list of some of these problems. FPT (in the parameter k) constant factor
approximation algorithms are known for a large class of these problems (see Table 2 in the
Appendix).

It is worth noting that constrained clustering problems are distinct from outlier clustering:
the former restricts the set of feasible partitioning of input points, whereas the latter allows us
to reduce the set of points that need to be partitioned into clusters. There has not been much
progress on constrained clustering problems in the outlier setting (also see [25] for unbounded
integrality gap for the natural LP relaxation for the outlier clustering versions). In this
work, we bridge this gap between the outlier and the outlier-free versions of constrained
clustering problems by giving an almost approximation-preserving reduction from the former
to the latter. As long as the parameters of interest (i.e., k,m) are small, the reduction
works in polynomial time. Using our reduction, an FPT α-approximation algorithm for the
outlier-free version of a constrained clustering problem leads to an FPT (α+ε)-approximation
algorithm for the outlier version of the same problem. For general metric spaces, this implies
the first FPT constant-approximation for outlier versions of several constrained clustering
problems; and similarly, we get new FPT (1 + ε)-approximation algorithms for several outlier
constrained clustering problems –see Table 2 in the Appendix for the precise details.

This kind of FPT approximation preserving reduction in the context of Euclidean k-means
was first given by [8] using a sampling-based approach. [20] extended the sampling ideas
of [8] to general metric spaces but did not give an approximation-preserving reduction. [2]
gave a reduction for general metric spaces using a coreset construction. In this work, we use
the sampling-based ideas of [8] to obtain an approximation-preserving reduction from the
outlier version to the outlier-free version with improved parameters over [2]. Moreover, our
reduction works for most known constrained clustering settings as well.

1.1 Preliminaries
We give a general definition of a constrained clustering problem. For a positive integer
k, we shall use [k] to denote the set {1, . . . , k}. Let (X , D) denote the metric space with
distance function D. For a point x and a subset S of points, we shall use D(x, S) to denote
miny∈S D(x, y). The set X contains subsets F and X: here X denotes the set of input points
and F is the set of points where a center can be located. An outlier constrained clustering
problem is specified by the following parameters and functions:

k: the number of clusters.
m: the number of points which can be left out from the clusters.

R. Jaiswal and A. Kumar 41:3

a function check: given a partitioning X0, X1, . . . , Xk of X (here X0 is the
set of outliers) and centers f1, . . . , fk, each lying in the set F , the function
check(X0, X1, . . . , Xk, f1, . . . , fk) outputs 1 iff this is a feasible clustering. For example,
in the r-gathering problem, the check(X0, X1, . . . , Xk, f1, . . . , fk) outputs 1 iff |Xi| ≥ r for
each i ∈ [k]. The check function depends only on the cardinality of the sets X1, . . . , Xk

and the locations f1, . . . , fk. This already captures many of the constrained clustering
problems. Our framework also applies to the more general labelled version (see details
below).
a cost function cost: given a partitioning X0, X1, . . . , Xk of X and centers f1, . . . , fk,

cost(X0, X1, . . . , Xk, f1, . . . , fk) :=
∑
i∈[k]

∑
x∈Xi

Dz(x, fi),

where z is either 1 (the outlier constrained k-median problem) or 2 (the outlier constrained
k-means problem).

Given an instance I = (X,F, k,m, check, cost) of an outlier constrained clustering problem as
above, the goal is to find a partitioning X0, X1, . . . , Xk of X and centers f1, . . . , fk ∈ F such
that |X0| ≤ m, check(X0, X1, . . . , Xk, f1, . . . , fk) is 1 and cost(X0, X1, . . . , Xk, f1, . . . , fk) is
minimized. The outlier-free constrained clustering problem is specified as above, except that
the parameter m is 0. For the sake of brevity, we leave out the parameter m and the set X0
while defining the instance I, and functions check and cost.

We shall also consider a more general class of constrained clustering problems, where each
input point is assigned a label. In other words, an instance I of such a problem is specified
by a tuple (X,F, k,m, σ, check, cost), where σ : X → L for a finite set L. Note that the
check function may depend on the function σ. For example, σ could assign a label “red” or
“blue” to each point in X and the check function would require that each cluster Xi should
have an equal number of red and blue points. In addition to the locations f1, . . . , fk, the
check(X1, . . . , Xk, f1, . . . , fk, σ) function also depends on |σ−1(l) ∩Xj | for each l ∈ L, j ∈ [k],
i.e., the number of points with a particular label in each of the clusters. Indirectly, this also
implies that the check function can impose conditions on the labels of the outliers points. For
example, the colorful k-median problem discussed in [2] has the constraint that mi clients
from the label type i should be designated as outliers, given that every client has a unique
label. Table 1 in the Appendix gives a description of some of these problems.

We shall use the approximate triangle inequality, which states that for z ∈ {1, 2} and any
three points x1, x2, x3 ∈ X ,

Dz(x1, x3) ≤ z (Dz(x1, x2) +Dz(x2, x3)) . (1)

1.2 Our results

Our main result reduces the outlier constrained clustering problem to the outlier-free version.
In our reduction, we shall also use approximation algorithms for the (unconstrained) k-median
and k-means problems. We assume we have a constant factor approximation algorithm for
these problems2: let C denote such an algorithm with running time TC(n) on an input of size
n. Note that C would be an algorithm for the k-means or the k-median problem depending
on whether z = 1 or 2 in the definition of the cost function.

2 Several such constant factor approximation algorithms exist [3, 4, 12].

ISAAC 2023

41:4 Clustering What Matters in Constrained Settings

▶ Theorem 1 (Main Theorem). Consider an instance I = (X,F, k,m, check, cost) of an
outlier constrained clustering problem. Let A be an α-approximation algorithm for the
corresponding outlier-free constrained clustering problem; let TA(n) be the running time of A
on an input of size n. Given a positive ε > 0, there is an α(1 + ε)-approximation algorithm
for I with running time TC(n) + q · TA(n) + O

(
n · (k + mz+1 log m

εz)
)

+ O
(
qm2(k +m)3),

where n is the size of I and q = f(k,m, ε) =
(

k+m
ε

)O(m), and z = 1 or 2 depending on the
cost function (i.e., z = 1 for k-median objection and z = 2 for k-means objective).

The above theorem implies that as long as there is an FPT or polynomial-time approxi-
mation algorithm for the constrained, outlier-free k-median or k-means clustering problem,
there is an FPT approximation algorithm (with almost the same approximation ratio) for the
corresponding outlier version. We prove this result by creating q instances of the outlier-free
version of I and picking the best solution on these instances using the algorithm A. We also
extend the above result to the labelled version:

▶ Theorem 2 (Main Theorem: labelled version). Consider an instance I =
(X,F, k,m, σ, check, cost) of an outlier constrained clustering problem with labels on input
points. Let A be an α-approximation algorithm for the corresponding outlier-free constrained
clustering problem; let TA(n) be the running time of A on an input of size n. Given a
positive ε > 0, there is an α(1 + ε)-approximation algorithm for I with running time
TC(n) + q · TA(n) + O

(
n · (k + mz+1 log m

εz)
)

+ O
(
qℓm2(k +m)3), where n is the size of I,

q = f(k,m, ε) =
(

(k+m)ℓ
ε

)O(m)
with ℓ being the number of distinct labels, and z = 1 or 2

depending on the cost function (i.e., z = 1 for k-median objection and z = 2 for k-means
objective).

The algorithms given in Theorem 1 and Theorem 2 are randomized algorithms that
guarantee the stated approximation factor with high probability. The consequences of our
results for specific constrained clustering problems are summarized in Table 2 in the Appendix.
We give the results of related works [8, 20, 2] in the same table to see the contributions of
this work. Our contributions can be divided into two main categories:
1. Matching the best-known result: This can be further divided into two categories:

a. Matching results of [2]: [2] gives an outlier to outlier-free reduction. We also give
such a reduction using a different technique with better parameters. This means
that we match all the results of [2], which includes problems such as the classical
k-median/means problems, the Matroid k-median problem, the colorful k-median
problem, and k-median in certain special metrics. See rows 2-6 in Table 2 given in the
Appendix.

b. Matching results of [20]: [20] gives FPT approximation algorithms for certain con-
strained problems on which the coreset-based approach of [2] is not known to work. See
the last row of Table 2. [20] gives algorithms for outlier and outlier-free versions with
the same approximation guarantee. Since the best outlier-free approximation is also
from [20], our results currently only match the approximation guarantees of [20]. How-
ever, if there is an improvement in any of these problems, our results will immediately
beat the known outlier results of [20].

2. Best known results: Since our results hold for a larger class of constrained problems than
earlier works, there are certain problems for which our results give the best-known FPT
approximation algorithm. The list includes capacitated k-median/k-means with hard
capacities in general metric and Euclidean spaces. It also includes the k-median problem
in the Ulam metric. A recent development in the Ulam k-median problem [11] has broken

R. Jaiswal and A. Kumar 41:5

the 2-approximation barrier. Our reduction allows us to take this development to the
outlier setting as well. The outlier-free results from which our best results are derived
using our reduction are given in Table 2 (see rows 7-9) given in the Appendix.

1.3 Comparison with earlier work
As discussed earlier, the idea of a reduction from an outlier clustering problem to the
corresponding outlier-free version in the context of the Euclidean k-means problem was
suggested by [8] using a D2-sampling based idea. [20] used the sampling ideas to design
approximation algorithms for the outlier versions of various constrained clustering problems.
However, the approximation guarantee obtained by [20] was limited to (3 + ε) for a large
class of constrained k-median and (9 + ε) for the constrained k-means problems, and it was
not clear how to extend these techniques to get improved guarantees. As a result, their
techniques could not exploit the recent developments by [14] in the design of (1 + 2/e+ ε)
and (1 + 8/e+ ε) FPT approximation algorithms for the classical outlier-free k-median and
k-means problems respectively in general metric spaces. [2] gave an outlier-to-outlier-free
reduction, making it possible to extend the above-mentioned FPT approximation guarantees
for the outlier-free setting to the outlier setting.

The reduction of [2] is based on the coreset construction by [13] using uniform sampling.
A coreset for a dataset is a weighted set of points such that the clustering of the coreset
points with respect to any set of k centers is the same (within a 1 ± ε factor) as that of
the original set points. The coreset construction in [13] starts with a set C of centers that
give constant factor approximation. They consider O(logn) “ring” around these centers,
uniformly sample points from each of these rings, and set the weight of the sampled points
appropriately. The number of sampled points, and hence the size of the coreset, is

(
|C| log n

ε

)2
.

[2] showed that when starting with (k+m) centers that give a constant approximation to the
classical (k +m)-median problem, the coreset obtained as above has the following additional
property: for any set of k centers, the clustering cost of the original set of points excluding m
outliers is same (again, within 1 ± ε factor) as that of the coreset, again allowing for exclusion
of a subset of m points from it. This means that by trying out all m subsets from the
coreset, we ensure that at least one subset acts as a good outlier set. Since the coreset size is(

(k+m) log n
ε

)2
, the number of outlier-free instances that we construct is

(
(k+m) log n

ε

)O(m)
.

Using (logn)O(m) = max{mO(m), nO(1)}, this is of the form f(k,m, ε) · nO(1) for a suitable
function f . At this point, we note the first quantitative difference from our result. In our
algorithm, we save the (logn)O(m) factor, which also means that the number of instances
does not depend on the problem size n. Further, a coreset-based construction restricts the
kind of problems it can be applied to. The coreset property that the cost of original points
is the same as that of the weighted cost of coreset points holds when points are assigned
to the closest center (i.e., the entire weight of the coreset goes to the closest center).3 This
works for the classical unconstrained k-median and k-means problems (as well as the few
other settings considered in [2]). However, for several constrained clustering problems, it
may not hold that every point is assigned to the closest center. There have been some recent
developments [5, 10] in designing coresets for constrained clustering settings. However, they
have not been shown to apply to the outlier setting. Another recent work [22] designs coresets
for the outlier setting, but like [2], it has limited scope and has not been shown to extend for
most constrained settings. Our Dz-sampling-based technique has the advantage that instead
of running the outlier-free algorithm on a coreset as in [2], it works directly with the dataset.

3 The reason is how Haussler’s lemma is applied to bound the cost difference.

ISAAC 2023

41:6 Clustering What Matters in Constrained Settings

That is, we run the outlier-free algorithm on the dataset (after removing outlier candidates).
This also makes our results helpful in weighted settings (e.g., see [11]) where the outlier-free
algorithm is known to work only for unweighted datasets – note a coreset is a weighted set).

Recent independent work. In recent and independent work, [17] design similar approxima-
tion preserving reductions for a restricted class of constrained clustering settings, namely
capacitated clustering and (α, β)-fair clustering. Further, their results are obtained by
extending coreset based ideas of [2].

1.4 Our Techniques
In this section, we give a high-level description of our algorithm. Let I denote an instance of
outlier constrained clustering on a set of points X and O denote an optimal solution to I.
The first observation is that the optimal cost of the outlier-free and unconstrained clustering
with k+m centers on X is a lower bound on the cost of O (Claim 1). 4 Let C denote the set
of these (k+m) centers (we can use any constant factor approximation for the unconstrained
version to find C). The intuition behind choosing C is that the centers in O should be close
to C.

Now we divide the set of m outliers in O into two subsets: those which are far from C

and the remaining ones close to C (“near” outliers). Our first idea is to randomly sample a
subset S of O(m logm) points from X with sampling probability proportional to distance
(or square of distance) from the set C. This sampling ensures that S contains the far outliers
with high probability (Claim 2). We can then iterate over all subsets of S to guess the exact
subset of far outliers. Handling the near outliers is more challenging and forms the heart of
the technical contribution of this paper.

We “assign” each near outlier to its closest point in C – let Xopt
N,j be the set of outliers

assigned to cj . By iterating over all choices, we can guess the cardinality tj of each of the sets
Xopt

N,j . We now set up a suitable minimum cost bipartite b-matching instance which assigns a
set of tj points to each center cj . Let X̂j be the set of points assigned to cj . Our algorithm
uses ∪jX̂j as the set of near outliers. In the analysis, we need to argue that there is a way of
matching the points in Xopt

N,j to X̂j whose total cost (sum of distances or squared distances
between matched points) is small (Lemma 4). The hope is that we can go from the optimal
set of outliers in O to the ones in the algorithm and argue that the increase in cost is small.
Since we are dealing with constrained clustering, we need to ensure that this process does
not change the size of each of the clusters. To achieve this, we need to further modify the
matching between the two sets of outliers (Lemma 5). Finally, with this modified matching,
we are able to argue that the cost of the solution produced by the algorithm is close to that
of the optimal solution. The extension to the labelled version follows along similar lines.

In the remaining paper, we prove our two main results, Theorem 1 and Theorem 2. The
main discussion will be for Theorem 1 since Theorem 2 is an extension of Theorem 1 that
uses the same proof ideas. In the following sections, we give the details of our algorithm
(Section 2) and its analysis (Section 3). In Section 3, we discuss the extension to the labelled
version.

2 Algorithm

In this section, we describe the algorithm for the outlier constrained clustering problem.
Consider an instance I = (X,F, k,m, check, cost) of this problem. Recall that the parameter
z = 1 or 2 depends on whether the cost function is like the k-median or the k-means objective
respectively. In addition, we assume the existence of the following algorithms:

4 This observation was used in both [8] and [2].

R. Jaiswal and A. Kumar 41:7

A constant β-factor algorithm C for the k-median or the k-means problem (depending on
z = 1 or z = 2 respectively): an instance here is specified by a tuple (X ′, F ′, k′) only,
where X ′ is the set of input points, F ′ is the set of potential locations for a center, and
k′ denotes the number of clusters.
An algorithm A for the outlier-free version of this problem. An instance here is given
by a tuple (X ′, F ′, k, check, cost) where the check and the cost functions are the same as
those in I.
An algorithm M for the b-matching problem: an instance of the b-matching problem is
specified by a weighted bi-partite graph G = (L,R = {v1, . . . , vr}, E), with edge e having
weight we; and a tuple (t1, . . . , tr), where ti, i ∈ [r], are non-negative integers. A solution
needs to find a subset of E′ of E such each vertex of L is incident with at most one edge
of E′, and each vertex vj ∈ R is incident with exactly tj edges of E′. The goal is to find
such a set E′ of minimum total weight.

We now define Dz-sampling:

▶ Definition 3. Given sets C and X of points, Dz-sampling from X w.r.t. C samples a
point x ∈ X, where the probability of sampling x is proportional to Dz(x,C).

The algorithm is described in Algorithm 1. It first runs the algorithm C to obtain a set
of (k + m) centers C in line 1.2. In line 1.3, we sample a subset S where each point in S

is sampled independently using Dz-sampling w.r.t. C. Given a subset Y , we say that a
tuple τ = (t1, . . . , tk+m) is valid if tj ≥ 0 for all j ∈ [k + m], and

∑
j tj + |Y | = m. For

each subset Y of size ≤ m of S and for each valid tuple τ , the algorithm constructs a
solution (X(Y,τ)

0 , X
(Y,τ)
1 , . . . , X

(Y,τ)
k), where X(Y,τ)

0 denotes the set of outlier points. This is
done by first computing the set X(Y,τ)

0 , and then using the algorithm A on the remaining
points X \ (X(Y,τ)

0 ∪ Y) (line 1.8). To find the set X(Y,τ)
0 , we construct an instance I(Y,τ) of

b-matching first (line 1.6). This instance is defined as follows: the bipartite graph has the set
of (k+m) centers C on the right side and the set of points X on the left side. The weight of
an edge between a vertex v ∈ C and w ∈ X is equal to Dz(v, w). For each vertex vj ∈ C,
we require that it is matched to exactly tj points of X. We run the algorithm M on this
instance of b-matching (line 1.7). We define X(Y,τ)

0 as the set of points of X matched by this
algorithm. Finally, we output the solution of minimum cost (line 1.10).

Algorithm 1 Algorithm for outlier constrained clustering.

1.1 Input: I := (X,F, k,m, check, cost)
1.2 Execute C on the instance I ′ := (X,F, k +m) to obtain a set C of k +m centers.
1.3 Sample a set S of ⌈ 4βm log m

ε ⌉ points with replacement, each using Dz-sampling from
X w.r.t. C.

1.4 for each subset Y ⊂ S, |Y | ≤ m do
1.5 for each valid tuple τ = (t1, . . . , tk+m) do
1.6 Construct the instance I(Y,τ)

1.7 Run M on I(Y,τ) and let X(Y,τ)
0 be the set of matched points in X.

1.8 Run the algorithm A on the instance (X \ (X(Y,τ)
0 ∪ Y), F, k, check, cost).

1.9 Let (X(Y,τ)
1 , . . . , X

(Y,τ)
k) be the clustering produced by A.

1.10 Let (Y ⋆, τ ⋆) be the pair for which cost(X(Y,τ)
1 , . . . , X

(Y,τ)
k) is minimized.

1.11 Output (X(Y ⋆,τ ⋆)
0 , X

(Y ⋆,τ ⋆)
1 , . . . , X

(Y ⋆,τ ⋆)
k).

ISAAC 2023

41:8 Clustering What Matters in Constrained Settings

3 Analysis

We now analyze Algorithm 1. We refer to the notation used in this algorithm. Let I =
(X,F, k,m, check, cost) be the instance of the outlier constrained clustering problem. Let
opt(I) denote the optimal cost of a solution for the instance I. Assume that the algorithm C
for the unconstrained clustering problem (used in line 1.2) is a β-approximation algorithm.
We overload notation and use costI′(C) to denote the cost of the solution C for the instance
I ′. Observe that the quantity costI′(C) can be computed as follows: each point in X is
assigned to the closest point in C, and then we compute the total cost (which could be the
k-median or the k-means cost based on the value of the parameter z) of this assignment. We
first relate costI′(C) to opt(I).

▷ Claim 1. costI′(C) ≤ β · opt(I).

Proof. Let (X0, X1, ..., Xk) denote the optimal solution for I, where X0 denotes the set of m
outlier points (without loss of generality, we can assume that the number of outlier points in
the optimal solution is exactly m). Let c1, . . . , ck be the centers of the clusters X1, . . . , Xk

respectively. Consider the solution to I ′ consisting of centers C ′ := X0 ∪{c1, . . . , ck}. Clearly,
costI′(C ′) ≤ opt(I) (we have inequality here because the solution X1, . . . , Xk may not be a
Voronoi partition with respect to c1, . . . , ck). Since C is a β-approximation algorithm, we
know that costI′(C) ≤ β · costI′(C ′). Combining these two facts implies the desired result.

◁

We now consider an optimal solution for the instance I: let Xopt
0 , Xopt

1 , . . . , Xopt
k be

the partition of the input points X in this solution, with Xopt
0 being the set of m outliers.

Depending on the distance from C, we divide the set Xopt
0 into two subsets – Xopt

F (“far”
points) and Xopt

N (“near” points) as follows:

Xopt
F :=

{
x ∈ Xopt

0 |Dz(x,C) ≥ ε costI′(C)
2βm

}
, Xopt

N := X \Xopt
F .

Recall that we sample a set S of 4βm log m
ε clients using Dz-sampling with respect to

center set C (line 1.3 in Algorithm 1). Note that the probability of sampling a point x is
given by

Dz(x,C)∑
x′∈X Dz(x,C) = Dz(x,C)

costI′(C) . (2)

We first show that S contains all the points in Xopt
F with high probability.

▷ Claim 2. Pr[Xopt
F ⊆ S] ≥ 1 − 1/m.

Proof. Inequality Equation (2) shows that the probability of sampling a point x ∈ Xopt
F is

Dz(x,C)
costI′ (C) ≥ ε

2βm . So the probability that x is not present in S is at most
(

1 − ε
2βm

) 4βm log m
ε ≤

1
m2 . The desired result now follows from union bound. ◁

For the rest of the analysis, we assume that the event in Claim 2 holds. We now note that
the sum of the cost of assigning Xopt

N to C is at most ε · opt(I).

▷ Claim 3.
∑

x∈Xopt
N
Dz(x,C) ≤ ε

2 · opt(I).

R. Jaiswal and A. Kumar 41:9

Proof. The claim follows from the following sequence of inequalities:∑
x∈Xopt

N

Dz(x,C) <
∑

x∈Xopt
N

ε costI′(C)
2βm ≤

∑
x∈Xopt

N

ε · opt(I)
2m ≤ ε

2 · opt(I),

where the first inequality follows from the definition of Xopt
N and the second inequality follows

from Claim 1. ◁

For every point in Xopt
N , we identify the closest center in C = {c1, . . . , cm+k} (breaking ties

arbitrarily). For each j ∈ [k+m], let Xopt
N,j be the set of points in Xopt

N which are closest to cj .
Let t̂j denote |Xopt

N,j |. Consider an iteration of line 1.7–1.9 where Y = Xopt
F , τ = (t̂1, . . . , t̂k+m).

Observe that τ is valid with respect to Y because
∑

j∈[m+k] |t̂j |+|Y | = m. Let X̂1, . . . , X̂m+k

be the set of points assigned to c1, . . . , cm+k respectively by the algorithm M. Intuitively, we
will like to construct a solution where the set of outliers is given by X̂ := Xopt

F ∪X̂1∪· · ·∪X̂m+k.
We now show that the set X̂ is “close” to Xopt

0 , the set of outliers in the optimal solution. In
order to do this, we set up a bijection µ : Xopt

0 → X̂, where µ restricted to Xopt
F is identity,

and µ restricted to any of the sets Xopt
N,j is a bijection from Xopt

N,j to X̂j . Such a function µ

is possible because for each j ∈ [m + k], |Xopt
N,j | = |X̂j | = t̂j . We now prove this closeness

property.

▶ Lemma 4.
∑

x∈Xopt
0
Dz(x, µ(x)) ≤ ε · z · opt(I).

Proof. We first note a useful property of the solution given by the algorithm M. One of the
possible solutions for the instance I(Y,τ) could have been assigning Xopt

N,j to the center cj .
Since M is an optimal algorithm for b-matching, we get∑

j∈[k+m]

∑
x∈X̂j

Dz(x, cj) ≤
∑

j∈[k+m]

∑
x∈Xopt

N,j

Dz(x, cj) =
∑

x∈Xopt
N

Dz(x,C) ≤ ε

2 · opt(I), (3)

where the last inequality follows from Claim 3. Now,∑
x∈Xopt

0

Dz(x, µ(x)) =
∑

x∈Xopt
N

Dz(x, µ(x)) =
∑

j∈[k+m]

∑
x∈Xopt

N,j

Dz(x, µ(x))

(1)
≤ z ·

∑
j∈[k+m]

∑
x∈Xopt

N,j

(Dz(x, cj) +Dz(cj , µ(x))) , (4)

where the first equality follows from the fact that µ is identity on Xopt
F . Since µ is a bijection

from Xopt
N,j to X̂j , the above can also be written as

z ·
∑

j∈[k+m]

∑
x∈Xopt

N,j

Dz(x, cj) + z ·
∑

j∈[k+m]

∑
x∈X̂j

Dz(x, cj) ≤ z · ε opt(I),

where the last inequality follows from Claim 3 and (3). This proves the desired result. ◀

The mapping µ described above may have the following undesirable property: there could
be a point x ∈ Xopt

0 ∩ X̂ such that µ(x) ̸= x. This could happen if x ∈ Xopt
N,j and x ∈ X̂i

where i ̸= j. We now show that µ can be modified to another bijection µ̂ : Xopt
0 → X̂ which

is identity on Xopt
0 ∩ X̂. Note that the mapping µ̂ is only needed for the analysis of the

algorithm.

ISAAC 2023

41:10 Clustering What Matters in Constrained Settings

▶ Lemma 5. There is a bijection µ̂ : Xopt
0 → X̂ such that µ̂(x) = x for all x ∈ Xopt

0 ∩ X̂ and∑
x∈Xopt

0

Dz(x, µ̂(x)) ≤ mz−1 ε · z · opt(I).

Proof. We construct a directed graph H = (V1, E1) where V1 = Xopt
0 ∪X̂. For every x ∈ Xopt

0 ,
we add the directed arc (x, µ(x)) to E1. Observe that a self loop in H implies that µ(x) = x.
Every vertex in Xopt

0 \ X̂ has 0 in-degree and out-degree 1; whereas a vertex in X̂ \Xopt
0 has

in-degree 1 and 0 out-degree. Vertices in X̂ ∩Xopt
0 have exactly one incoming and outgoing

arc (in case of a self-loop, it counts towards both the in-degree and the out-degree of the
corresponding vertex).

The desired bijection µ̂ is initialized to µ. Let cost(µ̂) denote
∑

x∈Xopt
0
Dz(x, µ̂(x)); define

cost(µ) similarly. It is easy to check H is vertex disjoint union of directed cycles and paths.
In case of a directed cycle C on more than 1 vertex, it must be the case that each of the
vertices in C belong to X̂ ∩Xopt

0 . In this case, we update µ̂ be defining µ̂(x) = x for each
x ∈ C. Clearly this can only decrease cost(µ̂). Let P1, . . . , Pl be the set of directed paths in
H. For each path Pj , we perform the following update: let Pj be a path from aj to bj . We
know that aj ∈ Xopt \ X̂, bj ∈ X̂ \Xopt

0 and each internal vertex of Pj lies in X̂ ∩Xopt
0 . We

update µ̂ as follows; µ̂(aj) = bj and µ̂(v) = v for each internal vertex v of Pj . The overall
increase in cost(µ̂) is equal to

∑
j∈[l]

(
Dz(aj , bj) −

nj∑
i=1

Dz(vi
j , v

i−1
j)

)
, (5)

where aj = v0
j , v

1
j , . . . , v

nj

j = bj denotes the sequence of vertices in Pj . If z = 1, triangle
inequality shows that the above quantity is at most 0. In case z = 2,

D2(aj , bj) ≤ nj

(
nj∑

i=1
D2(vi

j , v
i−1
j)

)
,

and so the quantity in (5) is at most (nj − 1)
∑nj

i=1 D
2(vi

j , v
i−1
j).

It follows that cost(µ̂) ≤ mz−1cost(µ). The desired result now follows from Lemma 4. ◀

We run the algorithm A on the outlier-free constrained clustering instance I ′′ = (X \
X̂, F, k, check, cost) (line 1.8 in Algorithm 1). Let opt(I ′′) be the optimal cost of a solution
for this instance. The following key lemma shows that opt(I ′′) is close to opt(I).

▶ Lemma 6. opt(I ′′) ≤ (1 + ε
1
z (4m+ 1)z−1)opt(I).

Proof. We shall use the solution (Xopt
0 , . . . , Xopt

k) to construct a feasible solution for I ′′. For
each j ∈ [k], let Zj denote Xopt

j ∩ X̂. Let µ̂−1(Zj) denote the pre-image under µ̂ of Zj . Since
Zj ⊆ X̂ \Xopt

0 , µ̂−1(Zj) ⊆ Xopt
0 \ X̂. For each j ∈ [k], define X ′

j := (Xopt
j \ Zj) ∪ µ̂−1(Zj).

▷ Claim 4.
⋃k

j=1 X
′
j = X \ X̂.

Proof. For any j ∈ [k], we have already argued that µ̂−1(Zj) ⊆ Xopt
0 \ X̂ ⊆ X \ X̂. Clearly,

Xopt
j \Zj ⊆ X \X̂. Therefore X ′

j ⊆ X \X̂. Therefore, ∪j∈[k]X
′
j ⊆ X \X̂. Since |X ′

j | = |Xopt
j |,∑

j∈[k]

|X ′
j | = n−m = |X \ X̂|.

This proves the claim. ◁

R. Jaiswal and A. Kumar 41:11

The above claim implies that (X ′
1, . . . , X

′
k) is a partition of X \ X̂. Since |X ′

j | = |Xopt
j | for

all j ∈ [k] and the function check only depends on the cardinality of the sets in the partition,
(X ′

1, . . . , X
′
k) is a feasible partition (under check) of X \ X̂. In the optimal solution for I, let

fopt
1 , . . . , fopt

k be the k centers corresponding to the clusters Xopt
1 , . . . , Xopt

k respectively. Now,

opt(I ′′) ≤ cost(X ′
1, . . . , X

′
k) ≤

∑
j∈[k]

∑
x∈X′

j

Dz(x, fopt
j) (6)

For each j ∈ [k], we estimate the quantity
∑

x∈X′
j
Dz(x, fopt

j). Using the definition of X ′
j

and triangle inequality, this quantity can be expressed as∑
x∈Xopt

j
\Zj

Dz(x, fopt
j) +

∑
x∈µ̂−1(Zj)

Dz(x, fopt
j)

≤
∑

x∈Xopt
j

\Zj

Dz(x, fopt
j) +

∑
x∈µ̂−1(Zj)

(
D(x, µ̂(x)) +D(µ̂(x), fopt

j)
)z (7)

When z = 1, the above is at most (replacing x by µ̂(x) in the second expression on RHS)∑
x∈Xopt

j

D(x, fopt
j) +

∑
x∈Zj

D(x, µ̂(x)).

Using this bound in (6), we see that

opt(I ′′) ≤ opt(I) +
∑

x∈Xopt
0

D(x, µ̂(x)) ≤ (1 + ε)opt(I),

where the last inequality follows from Lemma 5. This proves the desired result for z = 1.
When z = 2, we use the fact that for any two reals a, b,

(a+ b)2 ≤ (1 +
√
ε)a2 + b2

(
1 + 1√

ε

)
.

Using this fact, the expression in the RHS of (7) can be upper bounded by

(1 +
√
ε)
∑

x∈Xopt
j

D2(x, fopt
j) +

(
1 + 1√

ε

) ∑
x∈Zj

D2(x, µ̂(x)).

Substituting this expression in (6) and using Lemma 5, we see that

opt(I ′′) ≤ (1 +
√
ε)opt(I) + 4m

√
εopt(I).

This proves the desired result for z = 2. ◀

The approximation preserving properties of Theorem 1 follow from the above analysis.
For the k-means problem, since the approximation term is (1 +

√
ε(4m+ 1)), we can replace

ε with ε2/(4m+ 1)2 in the algorithm and analysis to obtain a (1 + ε) factor. Let us quickly
check the running time of the algorithm. The algorithm first runs C that takes TC(n) time.
This is followed by Dz-sampling O(mz+1 log m

εz) points, which takes O(n · (k + mz+1 log m
εz))

time. The number of iterations of the for-loops is determined by the number of subsets of
S, which is

∑m
i=0
(|S|

i

)
=
(

m
ε

)O(m), and the number of possibilities for τ , which is at most(2m+k−1
m

)
= (m+ k)O(m). This gives the number of iterations q = f(k,m, ε) =

(
k+m

ε

)O(m).
In every iteration, in addition to running A, we solve a weighted b-matching problem on a
bipartite graph (L∪R,E) where R has (k+m) vertices (corresponding to the k+m centers
in the center set C) and L has at most (k +m) ·m vertices (considering m closest clients for
every center is sufficient which can be found using a pre-processing step). So, every iteration
costs TA(n) +O((k +m)3m2) time. This gives the running time expression in Theorem 1.

ISAAC 2023

41:12 Clustering What Matters in Constrained Settings

Extension to labelled version

In this section, we extend Algorithm 1 to the setting where points in X have labels from a
finite set L and the check() function can also depend on the number of points with a certain
label in a cluster. The overall structure of Algorithm 1 remains unchanged; we just indicate
the changes needed in this algorithm.

Given a non-negative integer p, a label partition of p is defined as a tuple ψ = (q1, . . . , q|L|)
such that

∑
i qi = p. The intuition is that given a set S of size p, q1 points get the first label

in L, q2 points in S get the second label in L, and so on. Now, given a subset Y , define
a valid tuple τ w.r.t. Y as a tuple ((t1, ψ1), . . . , (tk+m, ψk+m)), where (i)

∑
j tj + |Y | = m,

and (ii) ψj is a label partition of tj . As in line 1.5 in Algorithm 1, we iterate over all such
valid tuples. The definition of a solution to the b-matching instance I(Y,τ) changes as follows.
Let ψj = (n1

j , . . . , n
ℓ
j), where ℓ = |L|. Then a solution to I(Y,τ) needs to satisfy the condition

that for each point cj ∈ C and each label l ∈ L, exactly nl
j points in X are matched to

cj . Note that this also implies that exactly tj points are matched to cj . This matching
problem can be easily reduced to weighted bipartite matching by making tj copies of each
point cj , and for each label l, adding edges between nl

j distinct copies of cj to vertices of
label l only. The rest of the details of Algorithm 1 remain unchanged. Note that the running
time of the algorithm changes because we now have to iterate over all partitions of each of
the numbers tj .

The analysis of the algorithm proceeds in an analogous manner as that of Algorithm 1.
We just need to consider the iteration of the algorithm, where we correctly guess the size of
each of the sets Xopt

N,j and the number of points of each label in this set.

References

1 Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Trans. Algorithms,
6(3), July 2010. doi:10.1145/1798596.1798602.

2 Akanksha Agrawal, Tanmay Inamdar, Saket Saurabh, and Jie Xue. Clustering what matters:
Optimal approximation for clustering with outliers, 2023. arXiv:2212.00696.

3 S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means
and euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 61–72, October 2017. doi:10.1109/FOCS.
2017.15.

4 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004. doi:10.1137/S0097539702416402.

5 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On Coresets for Fair Clustering
in Metric and Euclidean Spaces and Their Applications. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ICALP.2021.23.

6 Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms
for clustering. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/
file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf.

https://doi.org/10.1145/1798596.1798602
https://arxiv.org/abs/2212.00696
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.4230/LIPIcs.ICALP.2021.23
https://proceedings.neurips.cc/paper_files/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf

R. Jaiswal and A. Kumar 41:13

7 Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt. On the Cost of Essentially Fair Clusterings. In Dimitris
Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:22, Dagstuhl, Germany, 2019.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.
2019.18.

8 Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. On Sampling Based
Algorithms for k-Means. In Nitin Saxena and Sunil Simon, editors, 40th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2020), volume 182 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–
13:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.FSTTCS.2020.13.

9 Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the con-
strained k-means problem. Theor. Comp. Sys., 62(1):93–115, January 2018. doi:10.1007/
s00224-017-9820-7.

10 V. Braverman, V. Cohen-Addad, H. Jiang, R. Krauthgamer, C. Schwiegelshohn, M. Toftrup,
and X. Wu. The power of uniform sampling for coresets. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 462–473, Los Alamitos, CA,
USA, November 2022. IEEE Computer Society. doi:10.1109/FOCS54457.2022.00051.

11 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Clustering permutations:
New techniques with streaming applications. In Yael Tauman Kalai, editor, 14th Innovations in
Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge,
Massachusetts, USA, volume 251 of LIPIcs, pages 31:1–31:24. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.31.

12 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and System Sciences,
65(1):129–149, 2002. doi:10.1006/jcss.2002.1882.

13 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. doi:10.1137/
070699007.

14 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT Approximations for k-Median and k-Means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.42.

15 Vincent Cohen-Addad and Jason Li. On the Fixed-Parameter Tractability of Capacitated
Clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41:1–
41:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2019.41.

16 Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework
for clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 169–182, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451022.

17 Rajni Dabas, Neelima Gupta, and Tanmay Inamdar. Fpt approximations for capacitated/fair
clustering with outliers, 2023. arXiv:2305.01471.

18 Hu Ding. Faster balanced clusterings in high dimension. Theoretical Computer Science,
842:28–40, 2020. doi:10.1016/j.tcs.2020.07.022.

ISAAC 2023

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.13
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.13
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1109/FOCS54457.2022.00051
https://doi.org/10.4230/LIPIcs.ITCS.2023.31
https://doi.org/10.1006/jcss.2002.1882
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1145/3406325.3451022
https://arxiv.org/abs/2305.01471
https://doi.org/10.1016/j.tcs.2020.07.022

41:14 Clustering What Matters in Constrained Settings

19 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, SCG ’07, pages 11–18, New York, NY, USA, 2007. ACM. doi:10.1145/1247069.
1247072.

20 Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. FPT Approximation for Constrained Metric
k-Median/Means. In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium
on Parameterized and Exact Computation (IPEC 2020), volume 180 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1–14:19, Dagstuhl, Germany, 2020. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.IPEC.2020.14.

21 Mohammadtaghi Hajiaghayi, Wei Hu, Jian Li, Shi Li, and Barna Saha. A constant factor
approximation algorithm for fault-tolerant k-median. ACM Trans. Algorithms, 12(3), April
2016. doi:10.1145/2854153.

22 Lingxiao Huang, Shaofeng H. C. Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for
robust clustering, 2022. arXiv:2210.10394.

23 Tanmay Inamdar and Kasturi Varadarajan. Fault tolerant clustering with outliers. In Evripidis
Bampis and Nicole Megow, editors, Approximation and Online Algorithms, pages 188–201,
Cham, 2020. Springer International Publishing.

24 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1117–1130, USA, 2011.
Society for Industrial and Applied Mathematics.

25 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 646–659, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188882.

26 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes
for clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, February 2010. doi:
10.1145/1667053.1667054.

27 Clemens Rösner and Melanie Schmidt. Privacy Preserving Clustering with Constraints. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 96:1–96:14,
Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ICALP.2018.96.

https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1145/1247069.1247072
https://doi.org/10.4230/LIPIcs.IPEC.2020.14
https://doi.org/10.1145/2854153
https://arxiv.org/abs/2210.10394
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.4230/LIPIcs.ICALP.2018.96
https://doi.org/10.4230/LIPIcs.ICALP.2018.96

R. Jaiswal and A. Kumar 41:15

A Tables

Table 1 The table defines various outlier-free versions of the constrained k-median problem. The
k-means versions are defined similarly using D2 instead of D. We include a few references. The
problems are categorized based on the type of constraints. There are three main types of constraints
(i) size (constraints on the cluster size), (ii) center (constraints on the points a center can service),
and (iii) label (constraints on the label of points in clusters). A constrained problem can have a
combination of these constraint types.

Problem Description

Unconstrained k-median
(Constraint type: unconstrained)

Input: (F,X, k)
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: None, i.e., check(X1, ..., Xk, f1, ..., fk) always equals 1.
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).
(This includes various versions corresponding to specific metrics such as

Ulam metric on permutations, metric spaces with constant doubling dimension etc.)

Fault-tolerant k-median
(Constraint type: unconstrained
but labelled)

[21, 23]

Input: (F,X, k) and a number h(x) ≤ k for every facility x ∈ X

Output: (f1, ..., fk)
Constraints: None.
Objective: Minimise

∑
x∈X

∑h(x)
j=1 D(x, fπx(j)),

where πx(j) is the index of jth nearest center to x in (f1, ..., fk)
(Label: h(x) may be regarded as the label of the client x. So, the number of distinct labels ℓ ≤ k.)

Balanced k-median
(Constraint type: size)

[1, 18]

Input: (F,X, k) and integers (r1, ..., rk), (l1, ..., lk),
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: Xi should have at least ri and at most li clients,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, ri ≤ |Xi| ≤ li .
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).
(Versions corresponding to specific values of ri’s and li’s are known by different names.

The version corresponding to l1 = ... = lk = |X| is called the r-gather problem and
the version where r1 = ... = rk = 0 is called the l-capacity problem.)

Capacitated k-median
(Constraint type: center + size)

[15]

Input: (F,X, k) and with capacity s(f) for every facility f ∈ F

Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The number of clients, Xi, assigned to fi is at most s(fi),

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, |Xi| ≤ s(fi) .
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).

Matroid k-median
(Constraint type: center)

[24, 14]

Input: (F,X, k) and a Matroid on F

Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The number of clients, Xi, assigned to fi is at most s(fi),

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff {f1, ..., fk} is an independent set of the Matroid .
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).

Strongly private k-median
(Constraint type: label + size)

[27]

Input: (F,X, k) and numbers (l1, ..., lw). Each client has a label ∈ {1, ..., w}.
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: Every Xi has at least lj clients with label j,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, j, |Xi ∩ Sj | ≥ lj ,
where Sj is the set of clients with label j .

Objective: Minimise
∑

i

∑
x∈Xi

D(x, fi).
(Labels: The number of distinct labels ℓ = w).

l-diversity k-median
(Constraint type: label + size)

[7]

Input: (F,X, k) and a number l > 1. Each client has one colour from ∈ {1, ..., w}
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The fraction of clients with colour j in every Xi is at least 1/l,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, j, |Xi ∩ Sj | ≤ |Xi|/l,
where Sj is the set of clients with colour j .

Objective: Minimise
∑

i

∑
x∈Xi

D(x, fi).
(Labels: Each colour can be regarded as a label and hence the number of distinct labels ℓ = w).

Fair k-median
(Constraint type: label + size)

[7, 6]

Input: (F,X, k) and fairness values (α1, ..., αw), (β1, ..., βw). Each client has colours from ∈ {1, ..., w}
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The fraction of clients with colour j in every Xi is between αj and βj ,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1
iff ∀i, j, αj |Xi| ≤ |Xi ∩ Sj | ≤ β|Xi|, where Sj is the set of clients with colour j .

Objective: Minimise
∑

i

∑
x∈Xi

D(x, fi).
(There are two versions: (i) each client has a unique label, and (ii) a client can have multiple labels.)
(Labels: For the first version ℓ = w and for the second version ℓ = 2w.)

ISAAC 2023

41:16 Clustering What Matters in Constrained Settings

Table 2 A × means that the techniques are not known to apply to the problem. The new
results that do not follow from the previously known results are shaded . The results that were
not explicitly reported but follow from the techniques in the paper are shaded The techniques
of [2] do not apply to the Ulam k-median problem since the outlier-free algorithm works on
unweighted instances. Note that all the FPT (3 + ε) and (9 + ε) approximations for the outlier-free
versions (leftmost column) in the last row follow from the outlier-free results in [20]. However, the
approximation guarantees in the rightmost column depend on those in the leftmost. This means,
unlike the rigid (3 + ε) and (9 + ε) approximation of [20] in the middle column, the approximation
guarantee in the rightmost column will improve with every improvement in the leftmost.

Problem Outlier-free
Outlier version

[20] [2] This work

Euclidean k-means (i.e., F = Rd, X ⊂ Rd) (1 + ε)
[9] × (1 + ε) (1 + ε)

k-median
(
1 + 2

e + ε
)

[14] (3 + ε)
(
1 + 2

e + ε
) (

1 + 2
e + ε

)
k-means

(
1 + 8

e + ε
)

[14] (9 + ε)
(
1 + 8

e + ε
) (

1 + 8
e + ε

)
k-median/means in metrics:
(i) constant doubling dimension
(ii) metrics induced by graphs of bounded treewidth
(iii) metrics induced by graphs that exclude a fixed
graph as a minor

(1 + ε)
[16]

(3 + ε)
k-median
(9 + ε)
k-means

(1 + ε) (1 + ε)

Matroid k-median (2 + ε)
[14] (3 + ε) (2 + ε) (2 + ε)

Colourful k-median
(
1 + 2

e + ε
)

[14] (3 + ε)
(
1 + 2

e + ε
) (

1 + 2
e + ε

)
Ulam k-median (here F = X) (2 − δ)

[11] (2 + ε) × (2 − δ)

Euclidean Capacitated k-median/means (1 + ε)
[15] × × (1 + ε)

Capacitated k-median
Capacitated k-means

(3 + ε)
(9 + ε)

[15]

×
×

×
×

(3 + ε)
(9 + ε)

Uniform/non-uniform r-gather k-median/means
(uniform implies r1 = r2 = ... = rk)

Uniform/non-uniform l-capacity k-median/means
(uniform implies l1 = l2 = ... = lk)

Uniform/non-uniform balanced k-median/means
(uniform implies r1 = r2 = ... = rk and l1 = l2 = ... = lk)

(3 + ε)
(k-median)

(3 + ε)
(k-median) × (3 + ε)

(k-median)

Uniform/non-uniform fault tolerant k-median/means
(uniform implies same h(x) for every x)

(9 + ε)
(k-means)

(9 + ε)
(k-means) × (9 + ε)

(k-means)

Strongly private k-median/means [20]

l-diversity k-median/means

Fair k-median/means

	1 Introduction
	1.1 Preliminaries
	1.2 Our results
	1.3 Comparison with earlier work
	1.4 Our Techniques

	2 Algorithm
	3 Analysis
	References
	A Tables

