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Abstract
We study the following KS2(c) problem: let c ∈ R+ be some constant, and v1, . . . , vm ∈ Rd be
vectors such that ∥vi∥2 ≤ α for any i ∈ [m] and

∑m

i=1⟨vi, x⟩2 = 1 for any x ∈ Rd with ∥x∥ = 1. The
KS2(c) problem asks to find some S ⊂ [m], such that it holds for all x ∈ Rd with ∥x∥ = 1 that∣∣∣∣∣∑

i∈S

⟨vi, x⟩2 − 1
2

∣∣∣∣∣ ≤ c ·
√

α,

or report no if such S doesn’t exist. Based on the work of Marcus et al. [15] and Weaver [20], the
KS2(c) problem can be seen as the algorithmic Kadison-Singer problem with parameter c ∈ R+.

Our first result is a randomised algorithm with one-sided error for the KS2(c) problem such that
(1) our algorithm finds a valid set S ⊂ [m] with probability at least 1 − 2/d, if such S exists, or (2)
reports no with probability 1, if no valid sets exist. The algorithm has running time

O

((
m

n

)
· poly(m, d)

)
for n = O

(
d

ϵ2 log(d) log
(

1
c
√

α

))
,

where ϵ is a parameter which controls the error of the algorithm. This presents the first algorithm
for the Kadison-Singer problem whose running time is quasi-polynomial in m in a certain regime,
although having exponential dependency on d. Moreover, it shows that the algorithmic Kadison-
Singer problem is easier to solve in low dimensions. Our second result is on the computational
complexity of the KS2(c) problem. We show that the KS2

(
1/
(
4
√

2
))

problem is FNP-hard for
general values of d, and solving the KS2

(
1/
(
4
√

2
))

problem is as hard as solving the NAE-3SAT
problem.
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1 Introduction

The Kadison-Singer problem [13] posed in 1959 asks whether every pure state on the (abelian)
von Neumann algebra D of bounded diagonal operators on ℓ2 has a unique extension to
a pure state on B(ℓ2), the von Neumann algebra of all bounded linear operators on the
Hilbert space ℓ2. The statement of the Kadison-Singer problem arises from work on the
foundations of quantum mechanics done by Dirac in 1940s, and has been subsequently shown
to be equivalent to numerous important problems in pure mathematics, applied mathematics,
engineering and computer science [8]. Weaver [20] shows that the Kadison-Singer problem is
equivalent to the following discrepancy question, which is originally posed as a conjecture.
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43:2 Is the Algorithmic Kadison-Singer Problem Hard?

▶ Conjecture 1 (The KS2 Conjecture). There exist universal constants η ≥ 2 and θ > 0 such
that the following holds. Let v1, . . . , vm ∈ Cd satisfy ∥vi∥ ≤ 1 for all i ∈ [m], and suppose∑m

i=1 |⟨u, vi⟩|2 = η for every unit vector u ∈ Cd. Then, there exists a partition S1, S2 of [m]
so that

∑
i∈Sj
|⟨u, vi⟩|2 ≤ η − θ, for every unit vector u ∈ Cd and every j = {1, 2}.

As a major breakthrough in mathematics, Marcus, Spielman and Srivastava [15] prove
that the KS2 conjecture holds, and give an affirmative answer to the Kadison-Singer problem.
Specifically, in this celebrated paper they show that, for any vectors v1, . . . , vm ∈ Cd such
that ∥vi∥2 ≤ α for any i ∈ [m] and

∑m
i=1⟨vi, x⟩2 = 1 for any x ∈ Cd with ∥x∥ = 1, there

is a partition S1, S2 of [m] such that it holds for any x ∈ Cd with ∥x∥ = 1 and j = 1, 2
that

∣∣∣∑i∈Sj
⟨vi, x⟩2 − 1/2

∣∣∣ ≤ 3 ·
√
α. The proof of this result is based on studying interlacing

families of polynomials [14]. While analysing interlacing families of polynomials suffices
to answer the KS2 conjecture and, as a consequence, solve the Kadison-Singer problem,
it is unclear if their existential proof on the partition guaranteed by the KS2 conjecture
can be turned into an efficient algorithmic construction; designing efficient algorithms for
the Kadison-Singer problem is listed as a natural open question in [15]. This question
is particularly interesting in theoretical computer science, since it is directly linked to
constructing unweighted spectral sparsifiers [5] and spectrally thin trees [1], among many
other applications in approximation algorithms. However, there has been little work on
the algorithmic Kadison-Singer problem, and the complexity status of this problem is an
important open question.

To address this question, we study the following KS2 problem with some constant c ∈ R+:

▶ Problem 2 (The KS2(c) problem). Given vectors v1, . . . , vm ∈ Rd such that ∥vi∥2 ≤ α for
any i ∈ [m] and

∑m
i=1⟨vi, x⟩2 = 1 for any x ∈ Rd with ∥x∥ = 1, the KS2(c) problem asks to

find some S ⊂ [m], such that it holds for all x ∈ Rd with ∥x∥ = 1 that∣∣∣∣∣∑
i∈S

⟨vi, x⟩2 −
1
2

∣∣∣∣∣ ≤ c · √α, (1)

or report no if such S doesn’t exist.

Notice that the KS2 conjecture is equivalent to finding some subset S ⊂ [m] as stated
in Problem 2 for some constant c. Here we choose to formulate the discrepancy of any
set S ⊂ [m] in (1) as c ·

√
α for three reasons: first of all, Weaver [20] shows that the

dependency on O(
√
α) in (1) is tight, so the term O(

√
α) is unavoidable when bounding the

discrepancy; secondly, the KS2 conjecture shows that the existence of any universal constant
c in (1) suffices to prove the Kadison-Singer conjecture, and it is proven in [15] that the
KS2 conjecture holds for c = 3; however, studying the tightness of this constant remains an
interesting open question on its own (Problem 8.1, [7]). Finally, as we will show shortly,
the KS2(c) problem belongs to different complexity classes with respect to different values
of c, so introducing this parameter c allows us to better understand the complexity of the
algorithmic Kadison-Singer problem.

1.1 Our Results
Our first result is an algorithm called Randomised-KS({vi}, c, ϵ) for approximately solving
the KS2(c) problem for general values of c. For any constant c, ϵ < 1, and any vectors
v1, . . . , vm ∈ Rd such that ∥vi∥2 ≤ α for all i ∈ [m], we show that (i) if there exists an
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S which satisfies (1), then with probability at least (1 − 2/d) the algorithm returns a set
S′ ⊂ {vi}m

i=1 that satisfies

(1− ϵ)
(1

2 − c
√
α
)
≤
∑
v∈S′

⟨v, x⟩2 ≤ (1 + ϵ)
(1

2 + c
√
α
)

(2)

for all unit vectors x ∈ Rd, and (ii) if no set exists which satisfies (2), then with probability 1
the algorithm returns “no”. Our result is summarised as follows:

▶ Theorem 3. There is an algorithm, Randomised-KS(I, c, ϵ), such that for any instance
I ≜ {vi}m

i=1 of the KS2(c) problem with vi ∈ Rd for d ≥ 3, and for any ϵ ∈ (0, 1), the
following holds:

if there exists a set S ⊂ I such that(
1
2 − c

√
α

)
≤
∑
v∈S

⟨v, x⟩2 ≤
(

1
2 + c

√
α

)

for all unit vectors x ∈ Rd, then with probability at least (1 − 2/d), the Randomised-
KS(I, c, ϵ) algorithm returns a subset S′ ⊂ I which satisfies (2) for all unit vectors
x ∈ Rd.
if there is no set S ⊂ I which satisfies (2), then with probability 1, the Randomised-
KS(I, c, ϵ) algorithm reports that no such set exists.

The algorithm has running time

O

((
m

n

)
· poly(m, d)

)
for n ≜ O

(
d

ϵ2
log(d) max

(
log
(

1
c
√
α

)
, log

(
1

(1/2)− c
√
α

)))
.

▶ Remark 4. Since the most interesting instances of the KS2(c) problem are the cases in
which 1/2 + c

√
α is bounded away from 1, we can assume that c

√
α ≤ 1/2 − σ for some

constant σ which implies that

n = O

(
d

ϵ2
log(d) log

(
1

c
√
α

))
.

Combining this with d =
∑m

i=1 ∥vi∥2 ≤ αm, a constraint due to the isotropic nature of the
input, shows that our algorithm runs in quasi-polynomial time in m when d = O(polylog(m)).

Compared with the state-of-the-art that runs in dO(m1/3α−1/4) time [2], the most appealing
fact of Theorem 3 is that it shows the KS2(c) problem can be approximately solved in quasi-
polynomial time when d = O(poly logm). Moreover, for small values of c where a subset
S ⊂ [m] satisfying (1) isn’t guaranteed to exist, our algorithm, with the same time complexity,
is still able to find an S satisfying (2) with high probability if it exists, or report no with
probability 1 otherwise. These two facts together show that both determining the existence
of a valid subset S and finding such S are computationally much easier in low dimensions,
regardless of the range of c. In addition, our result is much stronger than a random sampling
based algorithm, which only works in the regime of α = O(1/ log d) [19], while our algorithm
works even when there are vectors with much larger norm, e.g., α = Θ(1). On the other
side, like many optimisation problems that involve the dimension of input items in their
formulation (e.g., multi-dimensional packing [10], and vector scheduling [4]), Theorem 3
indicates that the order of d might play a significant role in the hardness of the KS2(c)
problem, and the hard instances of the problem might be in the regime of m = O(d).

ISAAC 2023



43:4 Is the Algorithmic Kadison-Singer Problem Hard?

Inspired by this, we study the computational complexity of the KS2(c) problem for general
values of d, where the number of input vectors satisfies m = O(d). In order to study the
“optimal” partitioning, for a given instance of the problem I = {v1, . . . , vm}, let

W(I) ≜ min
S⊂I

max
x∈Rd

∥x∥=1

∣∣∣∣∣∑
v∈S

⟨v, x⟩2 − 1
2

∣∣∣∣∣ .
Then, we choose c = 1/(4

√
2) and notice that, for any vectors that satisfy the conditions of

the KS2(c) problem, there could be no subset S satisfying (1) for such c. As our second result,
we prove that, for any c ≤ 1/(4

√
2), distinguishing between instances for which W(I) = 0

and those for which W(I) ≥ c ·
√
α is NP-hard. Our result is as follows:

▶ Theorem 5. The KS2
(
1/
(
4
√

2
))

problem is FNP-hard for general values of d. Moreover,
it is NP-hard to distinguish between instances of the KS2(c) problem with W(I) = 0 from
instances with W(I) ≥

(
1/4
√

2
)
·
√
α.

▶ Remark 6. It’s important to note that, when d is constant, the decision problem in
Theorem 5 can be solved in polynomial time. For example, the 1-dimensional problem
is equivalent to the PARTITION problem, in which we are given a set of real numbers
I = {x1, . . . , xm} such that

∑
i xi = 1 and need to determine whether there is a subset

S ⊂ I such that
∑

x∈S x = 1/2. In this setting,

W(I) = min
S⊂I

∣∣∣∣∣
(∑

x∈S

x

)
− 1/2

∣∣∣∣∣ .
There is a well-known FPTAS for PARTITION which can distinguish between instances for
which W(I) = 0 and those for which W(I) ≥ ϵ, for any ϵ > 0. Theorem 5 implies that there
is no such FPTAS for the optimisation version of the KS2(c) problem for general d.

Theorem 5 shows that the isotropic structure of the KS2(c) instance is not sufficient to
make finding a partition easy when compared with similar problems. As such, the design of
a potential polynomial-time algorithm for the Kadison-Singer problem would need to take
some range of c into account and cannot solve the optimisation version of the KS2(c) problem,
otherwise one would end up solving an NP-hard problem. We remark that Theorem 5 shares
the same style as the one for Spencer’s Discrepancy Problem: given any input on N elements,
Charikar et al. [9] shows that it is NP-hard to distinguish between the input with discrepancy
zero and the one with discrepancy Ω(

√
N), although it is known that a solution with O(

√
N)

approximation can be computed efficiently [3].

1.2 Our Techniques
In this subsection we sketch our main techniques used in proving Theorems 3 and 5.

Proof Sketch of Theorem 3. We start by sketching the ideas behind our algorithmic
result. First of all, it is easy to see that we can solve the KS2(c) problem for any c ∈ R+ in
O (2m · poly(m, d)) time, since we only need to enumerate all the 2m subsets S ⊆ I of the
input set I and check if every possible set S satisfies the condition (1). To express all the
subsets of I, we inductively construct level sets {Li}m

i=0 with Li ⊆ 2I as follows:
initially, level i = 0 consists of a single set ∅, and we set L0 = {∅};
based on Li−1 for any 1 ≤ i ≤ m, we define Li by Li ≜ {S, S ∪ {vi} : S ∈ Li−1}.
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It is important to see that, although |Li| could be as high as 2m, there are only m such level
sets Li, which are constructed inductively in an online manner, and it holds for any S ⊆ I
that S ∈ Lm.

The bottleneck for improving the efficiency of this simple enumeration algorithm is the
number of sets in Lm, which could be exponential in m. To overcome this bottleneck, we
introduce the notion of spectral equivalence classes to reduce |Li| for any i ∈ [m]. Informally
speaking, if there are different S1, S2 ∈ Li for any i ∈ [m] such that1

(1− ϵ)
∑
j∈S2

vjv
⊺
j ⪯

∑
j∈S1

vjv
⊺
j ⪯ (1 + ϵ)

∑
j∈S2

vjv
⊺
j

for some small ϵ, then we view S1 and S2 to be “spectrally equivalent” to each other2. It
suffices to use one set to represent all of its spectral equivalences; hence, we only need to
store the subsets which aren’t spectrally equivalent to each other3. Since there is a spectral
sparsifier of any S with O(d log(d)/ϵ2) vectors [11, 17], we can reduce the total number of
stored subsets (i.e., the number of spectral equivalence classes) in Li for any i ∈ [m] to

(
m
n

)
where n = O

(
d log(d)/ϵ2

)
which is no longer exponential in m.

Turning this idea into an algorithm design, we need be careful that the small approximation
error introduced by every constructed spectral sparsifier does not compound as we construct
sparsifiers from one level to another. In order to avoid this, we employ the online vector
sparsification algorithm presented in [11]. This allows us to construct sparsifiers in Li from
the ones in Li−1 and the vector vi. In addition, the construction in each level preserves the
same approximation error as the previous one.

We highlight that the design of our algorithm for solving the KS2(c) problem is entirely
different from the previous work, which is based on analysing the properties of interlacing
polynomials [2]. Moreover, one can view our use of online spectral sparsifiers in constructing
spectral equivalence classes as an encoding strategy to reduce the enumeration space of the
KS2(c) problem. From this aspect, our work sheds light on potential applications of other
tools well-studied in algorithmic spectral graph theory and numerical linear algebra, such as
sparsification and sketching.

Proof Sketch of Theorem 5. Our proof of the FNP-hardness of the KS2
(
1/
(
4
√

2
))

problem
is based on a reduction from the well-known NAE-3SAT problem [12] to a decision version of
the KS2

(
1/
(
4
√

2
))

problem, which asks whether W(I) = 0 or W(I) ≥
(
1/
(
4
√

2
))√

α. Our
overall reduction consists of two steps: we first build a reduction from the NAE-3SAT problem
to the so-called NAE-3SAT-KS problem, and then build a reduction from the NAE-3SAT-KS
problem to the KS2

(
1/
(
4
√

2
))

problem.
To sketch the first reduction, we examine the so-called NAE-3SAT-KS problem, which

can be viewed as a restricted version of the NAE-3SAT problem, and used only as a tool to
build the reduction from the NAE-3SAT problem to the KS2

(
1/
(
4
√

2
))

problem. Informally,
the NAE-3SAT-KS problem consists of the 3SAT Boolean formula ψ, in which the number of
occurrences of both u and ū for every variable u in any ψ is limited with respect to some
additional constraints and any two clauses of ψ share at most one literal; the NAE-3SAT-KS
problem asks if there is a satisfying assignment for ψ such that every clause of ψ has at

1 For any two matrices A and B of the same dimension, we write A ⪯ B if B − A is positive semi-definite.
2 Although this relationship is not symmetric, this informal definition is sufficient for the proof sketch

and is not used directly in our analysis.
3 The list of stored subsets can be thought of as an epsilon cover of all possible subsets.

ISAAC 2023



43:6 Is the Algorithmic Kadison-Singer Problem Hard?

least one true literal and at least one false literal; we refer the reader to Problem 11 in
Section 3 for the formal definition of the NAE-3SAT-KS problem. Based on a reduction from
the NAE-3SAT problem, we show that the NAE-3SAT-KS problem is NP-complete.

For the second and main reduction of our analysis, we build a reduction from the NAE-
3SAT-KS problem to the KS2

(
1/
(
4
√

2
))

problem. Specifically, for an NAE-3SAT-KS instance
ψ of n variables and m clauses, we construct a set A of Θ(n+m) vectors as a KS2

(
1/
(
4
√

2
))

instance, and each v ∈ A has dimension n+m, such that the following properties hold:
every vector v has norm ∥v∥2 ≤ 1/4 and

∑
v∈A vv

⊺ = I;
if ψ is a satisfiable instance of NAE-3SAT-KS, then there is a subset S ⊂ A such that∑

v∈S vv
⊺ = (1/2) · I;

if ψ is not a satisfiable instance of NAE-3SAT-KS, then for any subset S ⊂ A there is
always some y ∈ Rn with ∥y∥ = 1 such that

∣∣∣∑v∈S ⟨v, y⟩
2 − 1/2

∣∣∣ ≥ 1/
(
8
√

2
)
.

The key to proving these properties is the construction of a KS instance I from any formula
ψ, and an analysis of the properties of

∑
v∈S vv

⊺ for any S ⊆ I if ψ is an unsatisfiable
instance of NAE-3SAT-KS. We think that such a reduction from any SAT instance to a KS
instance is quite novel, and might be further employed to sharpen the constant 1/(4

√
2).

1.3 Related Work

There has been little work on the algorithmic Kadison-Singer problem. Anari et al. [2] studies
approximating the largest root of a real rooted polynomial and its applications to interlacing
families, which are the main tool developed in [15] to prove the Kadison-Singer conjecture.
They show that a valid partition promised by Weaver’s KS2 conjecture can be found in
dO(m1/3α−1/4) time, suggesting that exhaustive search of all possibilities is not required for
the algorithmic Kadison-Singer problem. Becchetti et al. [6] studies the algorithmic Kadison-
Singer problem for graphs under some restricted condition. Specifically, they show that, if
G = (V,E) is an n-vertex and ∆-regular graph of ∆ = Ω(n) and the second eigenvalue of the
adjacency matrix of G is at most a sufficient small constant times ∆, then an unweighted
spectral sparsifier of G can be constructed efficiently.

Weaver [21] shows that the BSS-framework for constructing linear-sized spectral sparsifi-
ers [5] can be adapted for the one-sided Kadison-Singer problem, where the term “one-sided”
refers to the fact that the discrepancy of the algorithm’s output can be only upper bounded.

Finally, independent of our work, Spielman and Zhang [18] studies the same complexity
problem as ours. Different from our approach, their analysis starts with the (3, 2-2) Set
Splitting problem, which is a variant of the 2-2 Set Splitting problem. They prove that the
(3, 2-2) Set Splitting problem remains NP-hard even if no pair of sets intersects in more than
one variable. Applying this, they show that the KS2(c) problem is NP-hard for c = 1/4.
While their result is slightly tighter than ours with respect to the value of c, the conclusions
of the two works are essentially the same.

1.4 Notation

Let [m] ≜ {1, . . . ,m}. For any integer j, we define vector 1j , in which 1j(j) = 1 and all of
1j ’s other entries are 0. For any integer d ≥ 1, let 0d×d ∈ Rd×d be the matrix in which every
entry is equal to 0. We call a matrix A positive semi-definite (PSD) if x⊺Ax ≥ 0 holds for
any x ∈ Rd. For any two matrices A and B, we write A ⪯ B if B −A is PSD. The spectral
norm of any matrix A is expressed by ∥A∥.
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L1 L2 L3 L4

. . .

Lm
. . .

Figure 1 The construction of the sets Li in Algorithm 1. Each Li−1 contains sparsifiers
representing the spectral equivalence classes of the vectors {v1, . . . , vi−1}. Then, Li contains either
one or two “children” of each sparsifier in Li−1, where the second child is added with some small
probability which prevents |Lm| from growing exponentially with m. For a particular target subset
S ⊆ {v1, . . . vm}, there is some sequence of constructed sparsifiers which corresponds to the process
of the online algorithm for constructing spectral sparsifiers [11], applied to S.

2 Algorithm Based on Spectral Equivalence Classes

This section discusses in detail the construction of spectral equivalence classes, and its
application in designing a randomised algorithm for the KS2(c) problem. We analyse the
presented algorithm, and prove Theorem 3. All the proofs omitted from this section can be
found in Appendix A.

2.1 Algorithm
Our algorithm consists of m iterations: in iteration i, the algorithm constructs the set Li

of spectral equivalence classes for the subsets S ⊆ {v1, . . . , vi}. For each equivalence class,
Li contains a pair (S,B) where S ⊆ {v1, . . . vi} is a representative set in the equivalence
class and B ∈ Rd×d is a spectral sparsifier representing the equivalence class. Moreover, the
algorithm constructs the representations of spectral equivalence classes in iteration i based
on the ones maintained in iteration i − 1. That is, instead of constructing all the subsets
of {v1, . . . , vi} and grouping them into different spectral equivalence classes, the algorithm
directly constructs the representations of the spectral equivalence classes of {v1, . . . , vi} based
on its constructed equivalence classes of {v1, . . . , vi−1}. This can be achieved by applying an
online algorithm for constructing spectral sparsifiers, since, if we assume that in iteration i−1
every subset S ⊆ {v1, . . . , vi−1} is spectrally equivalent to some (S′, B′) ∈ Li−1 maintained
by the algorithm, then both of S and S ∪ {vi} are spectrally equivalent to S′ and S′ ∪ {vi}
in iteration i as well. As such, in iteration i we only need to ensure that the sets S′ and
S′ ∪ {vi} are still represented by some sparsifiers in Li.

Based on this, we can view all the vectors v1, . . . , vm as arriving online and, starting
with the trivial spectral equivalence class defined by L0 = {(∅,0d×d)}, the algorithm con-
structs the representations of spectral equivalence classes of {v1, . . . vi} in iteration i. Our
algorithm applies the online algorithm for constructing spectral sparsifiers [11] (Lines 13-18
of Algorithm 1) to construct the representations of spectral equivalence classes of {v1, . . . , vi}
based on those of {v1, . . . , vi−1}. Since any subset of {v1, . . . vm} is spectrally equivalent to
some set of vectors with size n where n is nearly linear in d [11], the number of spectral
equivalence classes in any set Li will be at most

(
m
n

)
. See Figure 1 for an illustration of the

construction of the sets Li and Algorithm 1 for the formal description of the algorithm.
▶ Remark 7. The if-condition on Line 10 of Algorithm 1 can be checked in polynomial
time while introducing an arbitrarily small error, by constructing the matrix

∑
v∈S′ vv⊺ and

computing its eigenvalues.

ISAAC 2023
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Algorithm 1 Randomised-KS(I = {vi}m
i=1, c, ϵ), where vi ∈ Rd and ∥vi∥2 ≤ α.

1 µ← ϵ/6
2 λ← min (c

√
α, 1/2− c

√
α)

3 b← 8 log(d)/µ2

4 n← O
(
d log(d) log(1/λ)/µ2)

5 L0 ← {(∅,0d×d)}
6 for i← 1 to m do
7 Li ← ∅
8 for (S,B) ∈ Li−1 and B constructed with at most n vectors do
9 S′ ← S ∪ {vi}

10 if S′ satisfies (2) then
11 return S′

12 end
13 p← min

(
b (1 + µ) v⊺i (B + λI)−1

vi, 1
)

14 if X ≤ p where X ∼ Uniform[0, 1] then
15 B′ ← B + 1

pviv
⊺
i

16 Li ← Li ∪ {(S,B), (S′, B′)}
17 else
18 Li ← Li ∪ {(S′, B)}
19 end
20 end
21 end
22 return Failure

2.2 Analysis
First of all, notice that sparsifying

∑
v∈S vv

⊺ for any S ⊆ I is equivalent to sparsifying the
|S| × d matrix whose rows are defined by all the v ∈ S. Based on this, our proof uses the
result from the online matrix sparsification algorithm [11] as a black box. Specifically, we
apply the following lemma in our analysis, which is a special case of Theorem 2.3 from [11].
Notice that the algorithm described in Lemma 8 below corresponds to the sampling scheme
used in Algorithm 1.

▶ Lemma 8 ([11], Theorem 2.3). Let S be a set of vectors v1, . . . , vm ∈ Rd, and let A =∑
v∈S vv

⊺. With µ, δ ∈ [0, 1], b ≜ 8 log(d)/µ2 and B0 = 0d×d, construct Bi inductively for
i ∈ [m] such that with probability

pi = min
(
b(1 + µ)v⊺i

(
Bi−1 + δ

µ
I

)−1
vi, 1

)
,

we have

Bi = Bi−1 + 1
pi
viv

⊺
i ,

and with probability 1− pi, we have Bi = Bi−1. Then, it holds with probability (1− 1/d) that

(1− µ)A− δI ⪯ Bm ⪯ (1 + µ)A+ δI,

and the number of vectors added to Bm is O
(
d log d log

(
µ∥A∥2/δ

)
/µ2).
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Now, we analyse Algorithm 1. We begin by showing that, for each pair (S,B) constructed
by Algorithm 1, B is a spectral sparsifier of S with high probability.

▶ Lemma 9. Let Li be the set constructed by Algorithm 1 at iteration i. Then, for any
(S⋆, B⋆) ∈ Li, it holds with probability (1− 1/d) that

(1− µ)AS⋆ − δI ⪯ B⋆ ⪯ (1 + µ)AS⋆ + δI

where AS⋆ =
∑

v∈S⋆ vv⊺, and the parameters are set in Algorithm 1 to be µ = ϵ/6 and
δ = µmin(c

√
α, 1/2− c

√
α).

Next we show that any set S ⊂ {v1, . . . , vm} is well approximated by one of the sparsifiers
constructed in Algorithm 1.

▶ Lemma 10. Let I = {vi}m
i=1 be the input to Algorithm 1. Let S ⊆ I be any fixed set,

and A =
∑

v∈S vv
⊺. Then, with probability (1 − 1/d), there is a matrix B constructed by

Algorithm 1 such that

(1− µ)A− δI ⪯ B ⪯ (1 + µ)A+ δI,

where µ = ϵ/6 and δ = µmin(c
√
α, 1/2− c

√
α).

Finally, to prove Theorem 3, we need only apply Lemma 10 for the target set S ⊂ I, and
Lemma 9 for one of the pairs (S′, B) constructed by the algorithm. In particular, we do not
need to take the union bound over all sparsifiers constructed by the algorithm; rather, it is
sufficient that an accurate sparsifier is constructed for one specific target set.

Proof of Theorem 3. We first look at the case in which there is some S ⊂ I, such that for
AS =

∑
i∈S viv

⊺
i it holds that 1/2− c

√
α ≤ x⊺ASx ≤ 1/2 + c

√
α, for all unit vectors x ∈ Rd.

By Lemma 10, with probability greater than or equal to 1 − 1/d, there exists some pair
(S′, B) ∈ Lm such that

(1− µ)AS − δI ⪯ B ⪯ (1 + µ)AS + δI, (3)

where µ = ϵ/6 and δ = µmin(c
√
α, 1/2− c

√
α) ≤ µ. By Lemma 9, with probability 1− 1/d,

we have (1− µ)AS′ − δI ⪯ B ⪯ (1 + µ)AS′ + δI, where S′ is the set constructed alongside
B. Taking the union bound, with probability at least 1− 2/d, we have for any unit vector
x ∈ Rd that

x⊺AS′x ≤ 1 + µ

1− µ

(
1
2 + c

√
α

)
+ 2δ

1− µ x⊺AS′x ≥ 1− µ
1 + µ

(
1
2 − c

√
α

)
− 2δ

1− µ

≤ 1 + 3µ
1− µ

(
1
2 + c

√
α

)
and ≥ 1− 3µ

1− µ

(
1
2 − c

√
α

)
≤ (1 + ϵ)

(
1
2 + c

√
α

)
≥ (1− ϵ)

(
1
2 − c

√
α

)
,

where we use the definition of δ and the fact that ϵ = 6µ ≤ 1. Therefore, the set S′ satisfies
(2) and will be returned by Algorithm 1.

On the other side, notice that, by the condition on Line 10 of Algorithm 1, any set
returned by the algorithm satisfies (2). Therefore, with probability 1 the algorithm will
correctly report that there is no set S ⊂ I satisfying (2) if it is the case.

Finally, we analyse the running time of the algorithm. By Lemma 8, it holds that B is
constructed from O(n) vectors with probability at least 1− 1/d. For this reason, on Line 8
of Algorithm 1 we consider only the sparsifiers of size O(n). The remaining part of the
algorithm contributes only polynomial factors to its running time, so the total running time
of the algorithm is O

((
m
n

)
· poly(m, d)

)
. ◀
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3 FNP-Hardness of KS2
(
1/(4

√
2)
)

This section studies the computational complexity of the KS2(c) problem, and is organised
as follows. In Section 3.1 we introduce the FNP complexity class. We formally define the
NAE-3SAT-KS problem in Section 3.2, and prove that this problem is NP-hard. In Section 3.3,
we build a reduction from the NAE-3SAT-KS problem to the KS2

(
1/
(
4
√

2
))

problem.

3.1 The FNP Complexity Class
In contrast with the complexity classes P and NP, the class FNP is used to study problems
with output which is more complex than simply “yes” or “no”. Formally, given a binary
relation R and an input X, the corresponding function problem is to find Y such that R(X,Y )
holds or report “no” if no such Y exists. For example, we can take X to be an instance
I = {vi}m

i=1 of the KS2(c) problem, and Y ⊆ I to be a candidate solution. Then, the relation
RKS2(c)(I, Y ) holds if and only if Y satisfies (1). Any given binary relation R is in the class
FNP iff there is a deterministic polynomial-time algorithm which can determine whether
R(X,Y ) holds for a given pair (X,Y ) [16]. Notice that every function problem has a natural
corresponding decision problem. Specifically, given a binary relation R and a value of X,
the decision problem asks whether there exists some Y such that R(X,Y ) holds. A function
problem F is FNP-hard if there is a polynomial-time reduction from all problems in FNP
to F . It is known that if the decision problem corresponding to F is NP-hard, then F is
FNP-hard [16], and we will use this fact in our proof of Theorem 5.

3.2 NP-Completeness of NAE-3SAT-KS
In this subsection, we study the following NAE-3SAT-KS problem, and prove that the problem
is NP-complete. We remark that we restrict ourselves to study SAT instances of a specific form
here, as these SAT instances will be employed to prove the NP-hardness of the KS2

(
1/(4
√

2)
)

problem.

▶ Problem 11 (NAE-3SAT-KS). Given a 3SAT instance ψ consisting of a collection C of
clauses over the set U of variables such that
1. every c ∈ C has 3 literals,
2. for every u ∈ U , both of u and ū appear in at most 2 clauses of C,
3. for every u ∈ U , at least one of u or ū appears in exactly 2 clauses of C, and
4. any two clauses share at most one literal and no variable appears twice in the same clause,
the NAE-3SAT-KS problem asks if there is a satisfying assignment for ψ such that every
clause of ψ has at least one true literal and at least one false literal.

Our reduction is from the following well-known NP-complete problem.

▶ Problem 12 (NAE-3SAT, [12]). Given a 3SAT instance ψ that consists of a collection C of
clauses over the set U of variables such that every clause c ∈ C has 3 literals, the NAE-3SAT
problem asks if there is a satisfying assignment for ψ such that every clause of ψ has at least
one true literal and at least one false literal.

▶ Theorem 13. The NAE-3SAT-KS problem is NP-complete.

Proof. Given any NAE-3SAT-KS instance ψ and an assignment to ψ’s variables, it’s straight-
forward to check in polynomial time if this is a satisfying assignment, and every clause of ψ
has at least one true literal and at least one false literal. Hence, the NAE-3SAT-KS problem
is in NP.
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To prove that the NAE-3SAT-KS problem is NP-complete, we build a reduction from the
NAE-3SAT problem to the NAE-3SAT-KS problem. Specifically, for any NAE-3SAT instance
(U,C), where U is the set of variables and C is a collection of clauses, we construct an
NAE-3SAT-KS instance (U ′, C ′) such that (U,C) is satisfiable in NAE-3SAT if and only if
(U ′, C ′) is satisfiable in NAE-3SAT-KS. Our construction of (U ′, C ′) is as follows. Initially, we
set U ′ = U and C ′ = C. Then, for any variable x which appears only once in C, we remove
x from U ′ and the corresponding clause from C ′ since the clause can always be satisfied
by setting x appropriately and so removing the clause does not change the satisfiability
of (U ′, C ′). Then, for every remaining variable x, we replace the instances of x and x̄

with new variables and add additional clauses to ensure that the satisfiability is unchanged.
Specifically, for each x left in U ′ let n1 = |{c ∈ C : x ∈ c}|, n2 = |{c ∈ C : x̄ ∈ c}|, and set
n = n1 + n2. Then, we introduce new variables x1, . . . , xn and replace the instances of x in
C ′ with x1, . . . , xn1 . Similarly, we replace the instances of x̄ with x̄n1+1, . . . , x̄n.

Now, in order to ensure that (U ′, C ′) is satisfiable if and only if (U,C) is satisfiable, we
introduce new clauses to C ′ which have the effect of constraining the variables x1, . . . , xn to
have the same truth value in any satisfying assignment. To achieve this, let n′ ≥ n be an
odd number, and we introduce additional new variables y1, . . . , yn′ and clauses

(ȳi ∨ ȳi+1 ∨ yi+2) for any i ∈ [1, n′], (4)

where the indices are taken modulo n′. We will see that these clauses ensure that the yi

variables must all have the same value in a satisfying assignment. We see this by a simple
case distinction.

Case 1: y1 = y2 in a satisfying assignment. Then, by the first clause in (4) it must be
that y2 = y3 since there must be at least one true literal and one false literal in each
satisfied clause. Proceeding inductively through the clauses in (4), we establish that
y1 = y2 = . . . = yn′ .
Case 2: y1 ̸= y2 in a satisfying assignment. We will show that this leads to a contradiction.
By the last clause in (4), yn′ ̸= y1 since there must be at least one true literal and one
false literal. Again, we proceed inductively from the (n′ − 1)th clause in (4) down to
establish that y1 ̸= y2, y2 ̸= y3, . . . , yn′−1 ̸= yn′ . As such, we have y1 = y3 = . . . = y2i+1
which is a contradition since n′ is odd and we have already established that y1 ̸= yn′ .

As such, we can use the variables y1, . . . , yn′ with the assumption that they have the same
value in any satisfying assignment of (U ′, C ′). It remains to construct clauses to guarantee
that the variables x1, . . . , xn have the same value in any satisfying assignment. We add the
clauses

(xi ∨ x̄i+1 ∨ yi) for any i ∈ [1, n], (5)

where the indices are taken modulo n. We will show that x1 = x2 = . . . = xn in a satisfying
assignment by case distinction.

Case 1: x1 = yi for all i. By the first clause in (5), it must be that x1 = x2 since we
cannot have x1 = x̄2 = yi in a satisfying assignment. Then, proceeding inductively using
each clause in turn we establish that x1 = x2 = . . . = xn.
Case 2: x̄1 = yi for all i. By the last clause in (5), it must be that x̄n = x̄1 since we
cannot have xn = x̄1 = yn in a satisfying assignment. Then, proceeding inductively from
the (n− 1)th clause down, we establish that x̄1 = x̄2 = . . . = x̄n.

Notice that by this construction, each literal xi, x̄i, yi, and ȳi now appears at most twice
in C ′, no two clauses share more than one literal and no literal appears twice in the same
clause. Additionally, every xi and x̄i appears exactly once in the clauses added by (5).
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Since the variable xi also appears exactly once in the clauses corresponding directly to C,
requirement (3) of the NAE-3SAT-KS problem is satisfied. Moreover, we have that (U ′, C ′)
has a satisfying assignment if (U,C) has a satisfying assignment; this follows by setting the
values of x1, . . . , xn in U ′ to the value of their corresponding x ∈ U . On the other hand,
any satisfying assignment of (U ′, C ′) corresponds to a satisfying assignment of (U,C), since
we must have that x1 = . . . = xn and can set the value of x ∈ U to be the same value
to get a satisfying assignment of (U,C). Finally, notice that our new instance (U ′, C ′) of
NAE-3SAT-KS can be constructed in polynomial time in the size of the instance (U,C) of
NAE-3SAT. This completes the proof. ◀

3.3 FNP-Hardness of KS2
(
1/

(
4

√
2
))

We now show that the KS2(c) problem is FNP-hard for any c ≤ 1/(4
√

2), i.e., Theorem 5. At
a high level, our proof is by reduction from the NAE-3SAT-KS problem. Given an instance of
the NAE-3SAT-KS problem, we will construct an instance I of KS2(c) such that
1. if the NAE-3SAT-KS instance is satisfiable, then there is a set S ⊂ I with

∑
v∈S vv

⊺ =
(1/2) · I, and

2. if the NAE-3SAT-KS instance is not satisfiable, then for all sets S ⊂ I we have∥∥∥∥∥∑
v∈S

vv⊺ − 1
2I

∥∥∥∥∥ ≥ 1
4
√

2
·
√
α.

This will establish that the KS2
(
1/
(
4
√

2
))

problem is FNP-complete, and that it is NP-hard
to distinguish between instances of KS2(c) with W(I) = 0 and those for which W(I) ≥(
1/4
√

2
)√

α.

Proof of Theorem 5. We prove that KS2(1/(4
√

2)) is NP-hard by a reduction from the
NAE-3SAT-KS problem to the decision version of the KS2

(
1/
(
4
√

2
))

problem. We are given
an instance (U,C) of the NAE-3SAT-KS problem, and construct an instance of KS2(c). Let
us refer to

the clauses in C as c1, . . . cm;
the variables in U as x1, . . . , xn; we sometimes write xi and x̄i for the un-negated and
negated literals.

Our constructed KS2(c) instance has O(n+m) dimensions. Specifically, there is one di-
mension for each clause in C and one dimension for each variable in U which appears both
negated and un-negated in C. We use dc

j to refer to the dimension corresponding to clause cj ,
and dx

j to refer to the dimension corresponding to variable xj . We add O(m+ n) vectors to
our KS2(c) instance. Conceptually, we add one vector for each clause and 4 vectors for each
literal. We use vc

j to refer to the vector corresponding to clause cj , and vx
j,1 to vx

j,4 or vx̄
j,1 to

vx̄
j,4 to refer to the vectors corresponding to the literal xj or x̄j . For each clause cj , we set
vc

j(dc
j) = 1/2, and set the other entries of vc

j to be 0. Table 1 completes the definition of the
vectors corresponding to literals. For each literal, we define only the value on the dimensions
corresponding to the variable and the clauses containing the literal; all other entries in the
vector are 0. Let A be the set of vectors defined above. Notice that the squared norms of the
vectors in A are bounded above by 1/4 and so α = 1/4 in the constructed KS2(c) instance.

To complete the reduction, we’ll show the following:
1. It holds that

∑
v∈A vv

⊺ = I.
2. If the original NAE-3SAT-KS instance has a satisfying assignment, then there’s a set

S ⊂ A such that
∑

v∈S vv
⊺ = 1

2 · I.
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Table 1 The construction of the vectors in the KS2(c) instance for a literal xi appearing in clause
cj and possibly also in ck. If a literal appears in only one clause, cj , we ignore the middle column
corresponding to ck; i.e., the vectors corresponding to xi are non-zero only on dimensions dc

j and dx
i .

Vector Value on dc
j Value on dc

k Value on dx
i

vx
i,1 1/4 1/4 1/

√
8

vx
i,2 1/4 1/4 −1/

√
8

vx
i,3 1/4 −1/4 1/

√
8

vx
i,4 1/4 −1/4 −1/

√
8

3. Any set S ⊂ A with∥∥∥∥∥∑
v∈S

vv⊺ − 1
2I

∥∥∥∥∥ < 1
8
√

2
= 1

4
√

2
√
α

corresponds to a satisfying assignment of the original NAE-3SAT-KS instance.

Vectors in A are isotropic. Let B =
∑

v∈A vv
⊺. Then, for any variable xi, we have that

B(dx
i , d

x
i ) =

∑
v∈A

v(dx
i )2 =

4∑
j=1

vx
i,j(dx

i )2 +
4∑

j=1
vx̄

i,j(dx
i )2 = 1.

Additionally, for any clause ci we have that

B(dc
i , d

c
i ) =

∑
v∈A

v(dc
i )2 = vc

i (dc
i )2 +

∑
xj∈c

4∑
k=1

vx
j,k(dc

i )2 = 1
4 + 3 · 1

4 = 1.

This demonstrates that the diagonal entries of B are all 1. We now see that the off-diagonal
entries are all 0. First, notice that for any two dimensions relating to variables, dx

i and dx
j ,

we have

B(dx
i , d

x
j ) =

∑
v∈A

v(dx
i )v(dx

j ) = 0,

since there is no vector in A with a non-zero contribution to more than one dimension
corresponding to a variable. Now, let us consider two dimensions corresponding to different
clauses ci and cj . We have

B(dc
i , d

c
j) =

∑
v∈A

v(dc
i )v(dc

j) =
∑

xk∈ci∩cj

4∑
ℓ=1

vx
k,ℓ(dc

i ) · vx
k,ℓ(dc

j) = 0,

where we use the fact that ci and cj share at most one literal. Finally, consider the case
when one dimension corresponds to the clause ci and the other dimension corresponds to
the variable xj . If the variable xj does not appear in ci, then there are no vectors with a
non-zero contribution to the two dimensions and so the entry is 0. Otherwise, we have

B(dc
i , d

x
j ) =

∑
v∈A

v(dc
i )v(dx

j ) =
4∑

k=1
vx

i,k(dc
i )vx

i,k(dx
j ) = 1

4
√

8
+ 1

4
√

8
− 1

4
√

8
− 1

4
√

8
= 0,

where we use the fact that no variable appears twice in the same clause. This completes the
proof that

∑
v∈A vv

⊺ = I.
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If the NAE-3SAT-KS instance is satisfiable, then there is a solution to KS2(1/(4
√

2)).
Given a satisfying assignment to NAE-3SAT-KS, let T ⊂ U be the set of variables which are
set to be True and let F ⊂ U be the set of variables which are set to be False. Recall that
in a satisfying assignment, each clause in C contains either 1 or 2 true literals. Let C ′ ⊂ C
be the set of clauses with exactly 1 true literal in the satisfying assignment. Then, we define
S to be

S ≜ {vx
i,1, v

x
i,2, v

x
i,3, v

x
i,4 : xi ∈ T} ∪ {vx̄

i,1, v
x̄
i,2, v

x̄
i,3, v

x̄
i,4 : xi ∈ F} ∪ {vc

i : ci ∈ C ′},

and we show that
∑

v∈S vv
⊺ = 1

2I. We can repeat the previous calculations, this time setting
B =

∑
v∈S vv

⊺ to show that B = (1/2)I. Specifically, for any variable xi, it holds that
B(dx

i , d
x
i ) = 1

2 since only the vectors corresponding to the negated or un-negated variable
are included. For any clause ci ∈ C ′, we have

B(dc
i , d

c
i ) = vc

i (dc
i )2 +

4∑
k=1

vx
j,k(dc

i )2 = 1/4 + 1/4 = 1/2,

where xj is the literal which is set to be true in the clause ci. Similarly, for any clause in
ci ∈ C \ C ′, we have

B(dc
i , d

c
i ) =

4∑
k=1

vx
j,k(dc

i )2 +
4∑

k=1
vx

ℓ,k(dc
i )2 = 1/4 + 1/4 = 1/2,

where the literals xj and xℓ are set to be true in the clause ci. Then, notice that the
calculations for the off-diagonal entries follow in the same way as before. This completes the
proof that a satisfying assignment for NAE-3SAT-KS implies a solution to the KS2(1/(4

√
2))

problem.

If there is a solution to KS2(c), then the NAE-3SAT-KS instance is satisfiable. We
prove this by a contrapositive argument. That is, we show that for any set S′ which does
not correspond to a satisfying assignment of the NAE-3SAT-KS problem, there must be some
vector y with ∥y∥ = 1 such that∣∣∣∣∣y⊺

(∑
v∈S′

vv⊺

)
y − 1

2

∣∣∣∣∣ ≥ ϵ (6)

for ϵ = 1
8

√
2 . Specifically, we will analyse three cases, and show that

1. if there is some variable xi such that S′ does not contain exactly 4 of the vectors

{vx
i,1, v

x
i,2, v

x
i,3, v

x
i,4, v

x̄
i,1, v

x̄
i,2, v

x̄
i,3, v

x̄
i,4},

then there is a vector y satisfying (6) for ϵ = 1/8;
2. if Case (1) does not apply, then if there is some literal xi such that S′ contains 1, 2, or 3

of the vectors {vx
i,1, v

x
i,2, v

x
i,3, v

x
i,4}, then there is a vector y satisfying (6) for ϵ = 1/(8

√
2);

3. if neither Case (1) nor (2) applies, then if S′ does not correspond to a satisfying assignment
of the original NAE-3SAT-KS instance, there must be a vector y satisfying (6) for ϵ = 1/4.

For the first case, suppose that there is some variable xi such that S′ does not contain
exactly 4 vectors corresponding to the variable xi. Let k ̸= 4 be the number of such vectors,
and let y be the vector with all zeros except for y(dx

i ) = 1. Notice that∣∣∣∣∣y⊺
(∑

v∈S′

vv⊺

)
y − 1

2

∣∣∣∣∣ =

∣∣∣∣∣∑
v∈S′

v(dx
i )2 − 1

2

∣∣∣∣∣ =
∣∣∣∣k8 − 1

2

∣∣∣∣ ≥ 1
8 .
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Table 2 The absolute values of off-diagonal entries in B =
∑

v∈S′ vv⊺, based on which vectors
corresponding to the literal xi are included in S′. We assume xi appears in the clauses cj and ck.

Vectors in S′ |B(dx
i , dc

j)| |B (dx
i , dc

k)| |B(dc
j , dc

k)|

One vector vx
i,ℓ 1/

(
8
√

2
)

1/
(
8
√

2
)

1/16
Vectors vx

i,1 and vx
i,2 0 0 1/8

Vectors vx
i,1 and vx

i,3 1/
(
4
√

2
)

0 0
Vectors vx

i,1 and vx
i,4 0 1/

(
4
√

2
)

0
Vectors vx

i,2 and vx
i,3 0 1/

(
4
√

2
)

0
Vectors vx

i,2 and vx
i,4 1/

(
4
√

2
)

0 0
Vectors vx

i,3 and vx
i,4 0 0 1/8

Three vectors vx
i,ℓ 1/

(
8
√

2
)

1/
(
8
√

2
)

1/16

For the second case, suppose that the set S′ contains 4 vectors for each variable, but
there is some literal xi such that S′ contains some but not all of the vectors corresponding
to xi. By Condition 3 of the NAE-3SAT-KS problem (Problem 11) we can assume that xi

appears in two clauses cj and ck. Otherwise, this is the case for x̄i and S′ contains some, but
not all, of the vectors corresponding to x̄i since it contains exactly 4 vectors corresponding
to the variable xi. Now, we define B =

∑
v∈S′ vv⊺ and we consider the absolute values of

certain off-diagonal entries in B, which are summarised in Table 2. Notice that, regardless of
which vectors corresponding to xi are included, there are two indices d̂1 and d̂2 such that∣∣∣B(d̂1, d̂2)

∣∣∣ ≥ 1
8

√
2 . Using the indices d̂1 and d̂2, define the unit vector

y =
{

1√
2 (1d̂1

+ 1d̂2
) if sgn(B(d̂1, d̂1) +B(d̂2, d̂2)− 1) = sgn(B(d̂1, d̂2))

1√
2 (1d̂1

− 1d̂2
) otherwise

where sgn(·) is the sign function. Then we have∣∣∣∣y⊺By − 1
2

∣∣∣∣ =
∣∣∣∣12(B(d̂1, d̂1) +B(d̂2, d̂2)±B(d̂1, d̂2)±B(d̂2, d̂1)

)
− 1

2

∣∣∣∣
= 1

2

∣∣∣B(d̂1, d̂1) +B(d̂2, d̂2)− 1± 2B(d̂1, d̂2)
∣∣∣

= 1
2

(∣∣∣B(d̂1, d̂1) +B(d̂2, d̂2)− 1
∣∣∣+ 2

∣∣∣B(d̂1, d̂2)
∣∣∣)

≥
∣∣∣B (d̂1, d̂2

)∣∣∣
≥ 1

8
√

2
,

where the third equality follows by the construction of y.
Finally, we consider the third case, in which there are 4 vectors in S′ for each variable,

and all 4 vectors correspond to the same literal. It is clear that such a set S′ corresponds
unambiguously to an assignment for the original variables in the NAE-3SAT-KS instance:
specifically, one can set a variable xi to be True if S′ contains {vx

i,1, v
x
i,2, v

x
i,3, v

x
i,4}, and set

xi to be False if S′ contains {vx̄
i,1, v

x̄
i,2, v

x̄
i,3, v

x̄
i,4}. Then, suppose that there is some clause

cj ∈ C which is not satisfied by this assignment. This implies that either all 12 of the vectors
corresponding to literals in cj are included in S′, or none of the vectors corresponding to
literals in cj are included in S′. In either case, we can set y to be the indicator vector of the
dimension dc

j , and have that
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|y⊺By − 1/2| =

∣∣∣∣∣∑
v∈S′

v(dc
j)2 − 1/2

∣∣∣∣∣ ≥ 1/4

since we can either include vc
j or not in order to set

∑
v∈S′ v(dc

j)2 equal to either 1/4 or 3/4.
This completes the reduction from the NAE-3SAT-KS problem to the decision version

of the KS2(c) problem for c ≤ 1/(4
√

2), which implies that KS2
(
1/
(
4
√

2
))

is FNP-hard.
Furthermore, notice that by the reduction in this proof,

if the NAE-3SAT-KS instance is satisfiable, then the constructed instance I of the KS2(c)
problem satisfies W(I) = 0, and
if the NAE-3SAT-KS instance is not satisfiable, then the constructed instance I of the
KS2(c) problem satisfies W(I) ≥ 1/

(
4
√

2
)
·
√
α.

This shows that distinguishing between instances with W(I) = 0 and W(I) ≥ 1/
(
4
√

2
)
·
√
α

is NP-hard, and completes the proof. ◀

4 Conclusion

This paper studies the algorithms and complexity of the Kadison-Singer problem through the
KS2(c) problem, and presents two results. On one side, we prove that the KS2(c) problem
for any c ∈ R+ can be solved in quasi-polynomial time when d = O(logm), which suggests
that the problem is much easier to solve in low dimensions. The key to our algorithm design
is a novel application of online spectral sparsification subroutines, with which we are able to
efficiently construct representations of all spectral equivalence classes over time and reduce
the enumeration space of the candidate solutions. We expect that our work could motivate
more research on the applications of spectral sparsification and related problems in numerical
linear algebra to the algorithmic Kadison-Singer problem.

On the other side, our NP-hardness result shows that the Kadison-Singer type problem
for arbitrary dimensions can be as hard as solving the SAT problem, and the KS2(c) problem
belongs to different complexity classes for different values of c. Hence, more refined studies
on the classification of its computational complexity would help us better understand the
complexity of the algorithmic Kadison-Singer problem. In our point of view, both directions
left from the paper are very interesting, and we leave these for future work.
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A Omitted Proofs from Section 2

In this section we present the proofs omitted from Section 2.

Proof of Lemma 9. We will show that for any pair (S⋆, B⋆) constructed by Algorithm 1, B⋆

is equivalent to the output of the algorithm described in Lemma 8 when applied to S⋆. We
prove this by induction on i. The base case i = 0 follows immediately from the initialisation
of L0 = {(∅,0d×d)}. For the inductive step we show that the conclusion holds for every
pair in Li, assuming it holds for every pair in Li−1. For each pair (S⋆, B⋆) ∈ Li, the proof
proceeds by a case distinction.
Case 1: (S⋆, B⋆) ∈ Li−1. This case corresponds to the pairs (S,B) added on Line 16 of

Algorithm 1. Accordingly, by the inductive hypothesis, we have that B⋆ is equivalent to
the output of the algorithm described in Lemma 8 applied to S⋆.
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Case 2: (S⋆, B⋆) ̸∈ Li−1. This case covers the pairs involving S′ added on Lines 16 and
18 of Algorithm 1. Let (S,Bi−1) be the pair in Li−1 from which (S⋆, B⋆) is constructed.
Notice that S⋆ = S ∪ {vi}. Then, by the construction of Algorithm 1, with probability
pi, we have

B⋆ = Bi−1 + 1
pi
vivi

⊺

and with probability 1− pi, we have B⋆ = Bi−1, where pi is the probability defined in
Lemma 8. As such, B⋆ is the result of applying an iteration of the algorithm defined in
Lemma 8, for the new vector vi. This maintains that B⋆ is equivalent to the output of
the Lemma 8 algorithm applied to S⋆ and completes the inductive argument. ◀

Proof of Lemma 10. We prove that one of the matrices B constructed by Algorithm 1 is
equivalent to the output of the algorithm defined in Lemma 8 applied to the set S. Although
the matrices constructed in Algorithm 1 are always part of a pair (S′, B), in this proof we
consider only the matrices B, and ignore the sets S′ which are constructed alongside them.

We now inductively define a sequence B0, B1, . . . , Bm, such that Bi is a matrix constructed
by the algorithm in iteration i and Bi ∈ Li corresponds to the output of the Lemma 8
algorithm applied to S ∩ {v1, . . . , vi}. Firstly, let B0 = 0d×d, which is the initial condition
for the algorithm in Lemma 8 and is constructed by Algorithm 1 on Line 5. Then, for the
inductive step, we assume that Bi−1 is the output of the Lemma 8 algorithm applied to
S ∩ {v1, . . . , vi−1} and we define Bi by case distinction.
Case 1: vi ̸∈ S. In this case, we set Bi = Bi−1, and notice that if Bi−1 is in the set Li−1

constructed by Algorithm 1, then Bi must be in the set Li since every matrix B in Li−1 is
included in Li on either Line 16 or Line 18. Since S∩{v1, . . . , vi−1} = S∩{v1, . . . , vi}, we
have that Bi is the output of the algorithm defined in Lemma 8 applied to S∩{v1, . . . , vi}
by the inductive hypothesis.

Case 2: vi ∈ S. In this case, we set Bi to be either Bi−1 or Bi−1 + (1/p)viv
⊺
i , according to

the result of the condition on Line 14 of Algorithm 1. Notice that, since the definition of
p in Algorithm 1 is the same as the definition in Lemma 8, Bi corresponds to the result
of applying an iteration of the algorithm in Lemma 8 with Bi−i and vi. Therefore, by the
induction hypothesis, Bi is equivalent to the output of the Lemma 8 algorithm applied to
S ∩ {v1, . . . , vi}, which completes the inductive construction of B1, . . . , Bm.

Finally, since our defined Bm corresponds to the output of the algorithm in Lemma 8
applied to S, we can apply Lemma 8 to S and Bm which completes the proof. ◀
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