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Abstract
Let G be an unlabeled planar and simple n-vertex graph. Unlabeled graphs are graphs where the
label-information is either not given or lost during the construction of data-structures. We present a
succinct encoding of G that provides induced-minor operations, i.e., edge contractions and vertex
deletions. Any sequence of such operations is processed in O(n) time in the word-RAM model. At
all times the encoding provides constant time (per element output) neighborhood access and degree
queries. Optional hash tables extend the encoding with constant expected time adjacency queries
and edge-deletion (thus, all minor operations are supported) such that any number of edge deletions
are computed in O(n) expected time. Constructing the encoding requires O(n) bits and O(n) time.
The encoding requires H(n) + o(n) bits of space with H(n) being the entropy of encoding a planar
graph with n vertices. Our data structure is based on the recent result of Holm et al. [ESA 2017]
who presented a linear time contraction data structure that allows to maintain parallel edges and
works for labeled graphs, but uses Θ(n log n) bits of space. We combine the techniques used by Holm
et al. with novel ideas and the succinct encoding of Blelloch and Farzan [CPM 2010] for arbitrary
separable graphs. Our result partially answers the question raised by Blelloch and Farzan whether
their encoding can be modified to allow modifications of the graph.
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1 Introduction

Graphs are used to model systems as entities and relationships between these entities. Many
graphs that arise in real-world application are very large. This has given rise to an area of
research with the aim of reducing the required space [1, 7, 8, 12, 14, 19]. Practical examples
include large road-networks [26] or social-network graphs [10]. This has spawned research
inquiries into compact representation of graphs, especially those that posses certain structural
properties. The arguably most well-known such structural property is planarity. A graph is
planar if it can be drawn in the plane without crossings. In this work we consider the problem
of maintaining a succinct encoding of a given graph under edge contractions and vertex
deletions, referred to as induced-minor operations. An edge contraction in a graph G = (V, E)
consists of removing an edge {u, v} ∈ E from the graph and merging its endpoints to a new
vertex x. Edge contractions are a vital technique in a multitude of algorithms, prominent
examples include computing minimum cuts [20], practical treewidth computations [27] and
maximum matchings [6]. At the end of the paper we extend our result from induced-minor
operations to support all minor operations, which in addition to edge contractions and vertex
deletions includes edge deletions. We work on unlabeled graphs, meaning that labels are
either not given or lost when constructing our data structure.
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44:2 Succinct Planar Encoding with Minor Operations

Related Work. For encoding planar graphs without regards to providing fast access opera-
tions, Keeler et al. [21] showed an O(n) bits representation. For a compression within the
information theoretic lower bound refer to He et al. [13]. Due to Munro and Raman [24] there
exists an encoding using O(n) bits that allows constant-time queries which has subsequently
been improved by Chiang et al. [5]. We build on the succinct representation due to Blelloch
and Farzan, which allows encoding arbitrary separable graphs and subsequently allows
constant-time queries [3], which builds on the work of Blanford et al. [2]. Recently it was
shown that the encoding of Blelloch and Farzan can be constructed using O(n) bits in O(n)
time [17]. Our work can be thought of as extending the encoding of Blelloch and Farzan
to allow contraction operations. For edge contractions in planar graphs without regard to
space-usage, Klein and Mozes [22] presented an algorithm that runs in O(log n) time per
contraction. Their work is based on techniques by Brodal and Fagerberg [4]. For edge and
vertex deletions Holm and Rotenberg showed a data structure that provides any number
of such deletions in O(n) time [16]. The state-of-the-art by Holm et al. [15] provides edge
contractions in O(n) time total. Their data structure allows constant time (per element
output) neighborhood and degree queries and maintains parallel edges that occur due to
merges, while also allowing to view the graph as “simple”, i.e., skipping parallel edges
when querying the neighborhoods. Using optional hashing techniques they provide expected
constant time adjacency queries. Their data structure is based on the well-known notion of
r-divisions [9, 11, 23], a technique we use as well. The data structure of Holm et al. uses
Θ(n log n) bits to store mappings and initially applies graph transformations that increase
the number of vertices by a constant factor, making it not succinct, neither for unlabeled
nor labeled graphs. Even assuming these steps could trivially be adapted to use o(n) bits
when encoding unlabeled graphs, they additionally construct a lookup table for storing small
graphs such that each index encoding a graph with k vertices uses H(k) + Θ(H(k)) bits of
space, with H(k) the entropy of encoding planar graphs with k vertices. They then encode
graphs of at least n total vertices using such indices, i.e., they use H(n) + Θ(H(n)) bits for
storing all such small graph, i.e., their data structure is not succinct.

Our result. Let G be an unlabeled planar and simple graph with n vertices. We present
a succinct encoding of G that is able to process edge contractions and vertex deletions in
O(n) time for any number of such modifications. At all times, the data structure allows
constant time (per element output) neighborhood and degree queries. Using optional hashing
techniques, we provide constant expected time adjacency queries and can process any number
of edge deletions in O(n) expected time. This partially answers a question posed by Blelloch
and Farzan if their encoding for arbitrary separable graphs can be extended to allow graph
modifications [3]. Our data structure maintains the running time of the state-of-the-art
solution by Holm et al. [15] for labeled planar graphs, while using significantly less space.
The data structure of Holm et al. requires the input graph to be transformed by replacing
each vertex with degree larger than a constant by a cycle-gadget, which increases the number
of vertices by a linear factor1. Such a transformation is not necessary using our techniques,
but our data structure only works for unlabeled graphs, and we are not able to maintain
parallel edges that occur due to contractions, i.e., our graph is at all times simple. In the
next section we present our main result in an intuitive fashion. Our new result is based on
several previous data structures (Section 3) and on a table-lookup technique (Section 4).
In Section 5, we describe and extend a succinct encoding technique due to Blelloch and

1 Outlined in Appendix A.1 in the full version of their paper found on arXiv.
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Farzan [3]. One of our challenges was to extend mappings used by Blelloch and Farzan
to be semi-dynamic. Interestingly, for this we repurpose a graph data structure of Holm
et al. [15] and use it to construct dynamic mappings between vertex labels. The dynamic
mappings are described in Section 6, which we use in Section 7 to combine the results of all
the previous sections to achieve our dynamic encoding. We end this publication by extending
our encoding to provide vertex and edge deletions as well as adjacency and degree queries.
All proofs can be found in the full version of this paper.

2 A succinct graph encoding for edge contractions

We now give an overview of our new data structure for succinctly encoding a simple un-
labeled planar graph G = (V, E) with n vertices and maintaining this encoding under edge
contractions while allowing neighborhood and degree queries in constant time per element
output. Vertex deletions and edge deletions are discussed in Section 7. Note that while we
work with unlabeled graphs, internally we assume vertices are labeled as consecutive integers
from 1 to n. The intuitive idea is to construct a set X ⊂ V of boundary vertices such that
G[V \ X] (the vertex-induced graph on V \ X) contains multiple connected components
C1, . . . , Ck of “small” size at most r (which is defined later) with k = O(n/r), and X of size
O(n/

√
r). Based on this, we distinguish edges of three types: edges between vertices of X

(called boundary edges) edges between vertices of one Ci (called simple edges) and edges
between a vertex of X and a vertex of some Ci (called mixed edges). For each Ci denote
with Pi the graph induced by all simple edges between vertices of Ci and all mixed edges
with one endpoint in Ci. The set of all these Pi is known as an r-division, and each Pi is
called a piece. Note that an r-division has some additional characteristics which are defined
more precisely later, one such key characteristics that each Pi contains only O(

√
r) boundary

vertices, and therefore is of size O(|Ci| +
√

r) = O(r). Note that each boundary vertex is
contained in multiple pieces. Assume that there is a data structure that is able to easily
contract any number of edges in graphs of size O(r) in time O(r). As long as contractions are
only carried out between simple edges, we would be able to easily construct a data structure
that results in O(n) runtime for any number of contractions by simply constructing this
data structure for each piece individually. Problems occur when contracting boundary or
mixed edges because contractions are no longer able to be carried out locally in a single
piece as they affect vertices in multiple pieces. For example, when contracting a boundary
edge {u, v} this affects every Pi with i ∈ {1, . . . , k} that contains at least one of u and v. To
provide such contractions we construct a data structure sketched in the following. Note that
we distinguish between vertex merges of two vertices u, v and edge contractions between an
edge {u, v}, with the latter being analogous to the first with the distinction that u must be
adjacent to v.

For edges between vertices of the boundary X we construct a boundary graph F = G[X],
which at all times contains all boundary edges, including edges that occur due to contractions.
A key invariant that we uphold is that the “status” of a vertex, i.e., if it is a boundary or a
non-boundary vertex, never changes due to contractions. If a vertex is a boundary vertex
initially, it will be handled internally as a boundary vertex even when it no longer is incident
to boundary edges due to contractions. For non-boundary vertices we ensure that these
vertices are never incident to boundary edges. For each u ∈ X we maintain a mapping
containing all i with u ∈ V (Pi), i.e., the pieces that contains u. Now, when we contract a
boundary edge {u, v} we firstly merge v to u in all Pi that contain both u and v. For any
u ∈ V we denote with N(u) the neighborhood of u. We process the aforementioned merge by

ISAAC 2023



44:4 Succinct Planar Encoding with Minor Operations

setting N(u) := (N(u) ∪ N(v)) \ {u, v} in Pi and removing v from Pi. In all Pi that contain
only v, we simply relabel v to be u. In all Pi that do not contain v (but can contain u) we
do not have to make modifications. Finally, {u, v} is contracted in the boundary graph F as
well. To maintain F we can use a “slow” data structure, as F is small.

To contract a mixed edge {u, v} with u ∈ X we know there is only one Pi that contains
v, where we execute the contraction. This might result in u now being adjacent to some
x ∈ X ∩ V (Pi), for which we add the respective edge {u, x} to F . It helps to achieve our
runtime goal of O(n) for processing any number of edge contractions if we do not add this
edge {u, x} to all other pieces that contain both u and x. We therefore maintain a second
invariant: that edges between boundary vertices are only contained in the boundary graph
(for now ignoring the specifics of how this is maintained).

To handle contractions inside pieces, intuitively we build the same data structure we
outlined here to one more time, splitting each piece in tiny pieces of size at most r′, specified
later. We can categorize all graphs of size at most r′ by a lookup table, which allows us to
encode every such tiny piece as an index into the lookup table (Section 4). For each graph
of the lookup table we pre-compute all possible vertex merges. We then contract edges in
constant time by simply retrieving (the index of) the contracted graph from the lookup table.
Such a framework was previously used by Holm et al. [15] to maintain a planar graph under
contractions, but with a space usage of Θ(n log n) bits.

To output the neighborhood of a vertex we distinguish between two cases. First, to
output the neighborhood of a vertex u that is not a boundary vertex, we can simply output
the neighborhood in the only Pi that contains u. For a boundary vertex u we first output
the neighborhood of u in F , which are all neighbors being boundary vertices, and then do
the same for each piece Pi that contains neighbors of u.

To achieve a succinct data structure we build on a succinct encoding due to Blelloch
and Farzan [3], outlined in Section 5. They construct an r-division for the input graph,
and for each piece Pi of the r-division construct another r′-division. Each piece Pi,j of this
r′-division is categorized by a succinct index in a lookup table. They use succinct dictionaries
to translate information between the two levels. These translation data structures and the
lookup table can be realized with o(n) bits. We use the encoding of Blelloch and Farzan,
but enhance it with dynamic qualities (Section 5 and Section 6). This (partially) answers
the question posed by Blelloch and Farzan [3], if modifications of the succinctly encoded
graph are possible. A key notion is that most of the novel “building blocks” handle the small
number of boundary vertices, so non-space efficient data structures are used.

▶ Theorem 1. Let H(n) be the entropy of encoding a planar graph with n vertices and
G an unlabeled simple n-vertex planar graph. There exists an encoding of G that provides
induced-minor operations (i.e., vertex deletions and edge contractions) with these properties:
The encoding requires O(n) time to execute any number of induced-minor operations and
provides neighborhood and degree operations in constant time (per element output). The
encoding requires H(n) + o(n) bits can be initialized in O(n) time and O(n) bits.

Using optional hashing techniques adapted from the data structure of Holm et al. [15,
Lemma 5.15] we provide edge deletion and adjacency queries.

▶ Corollary 2. The encoding of Theorem 1 can be extended to provide expected O(1) time
adjacency queries and process any number of minor operations in expected O(n) time.
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3 Preliminaries

We denote by [k] = {1, . . . , k}, with k any integer. Our model of computation is the word-
RAM with a word length of w = Ω(log n) bits. We work with simple unlabeled graphs.
In the following let G = (V, E). We use G[V ′] with V ′ ⊆ V to denote the vertex induced
subgraph on V ′ of G. We also write V (G) for the vertices V of G and E(G) for E. A
merge of a pair of two vertices u, v ∈ V means replacing both vertices u, v with a vertex
x with N(x) = N(u) ∪ N(v) \ {u, v}. In our data structures we merge u and v by setting
N(u) := N(u) ∪ N(v) \ {u, v} and removing v from V , i.e., x is either u or v. We then
say that v is merged to u. Note that merging u to v is a different operation. Merging two
adjacent vertices u, v is called contracting the edge {u, v}. We denote by n the number of
vertices of the graph G under consideration. In this work we use nG to denote the number
of vertices of a given graph G. If the graph is clear from the context we simply write n.

Planar graph. A graph is planar exactly if it can be drawn in the plane such that no two
edges cross. The family of planar graphs is closed under taking minors. Any simple planar
graph G has O(n) edges. We only work with simple graphs and from this point onward
assume all (planar) graphs are simple. An operation that modifies a planar graph under
consideration is planarity preserving if afterwards the graph is still planar. For brevity’s sake,
we assume all merges discussed in our work are planarity preserving unless stated otherwise.
We denote with H(·) the entropy to encode a planar graph, a function dependent on the
number of vertices of the graph under consideration. It is known that H(n) = Θ(n) [28].

We assume w.l.o.g. that all input graphs for our data structure are connected. If this is
not the case, we add a dummy vertex and connect it to an arbitrary vertex in each connected
component. After our encoding of Theorem 1 is constructed, we can simply ignore the dummy
vertex and all its incident edges during any output of the provided operations. As we require
this modification to be space-efficient, concretely that it only uses O(n) bits of additional
space during the construction and runs in O(n) time, we provide an explicit lemma for this
modification. Note that a succinct encoding of a planar graph with this additional dummy
vertex requires only a constant number of additional bits, as H(n + 1) = H(n) + O(1).

▶ Lemma 3. Let G be a simple planar graph. We can add a dummy vertex vd to V and all
edges {vd, u} to E with u being one vertex in each connected component of G using O(n) bits
in O(n) time.

Graph divisions. Let G = (V, E) be a planar graph and r some integer. An r-division
R = {P1, . . . , Pk} of G is a division of G into k = O(n/r) edge-disjoint connected subgraphs
called pieces. Each piece has O(r) vertices. For each P ∈ R there exists a set of boundary
vertices δP ⊂ V (P ) such that u ∈ δP if and only if u is incident to an edge {u, v} ∈ E with
v /∈ V (P ). For each P it holds that |δP | = O(

√
r). We denote with δR =

⋃
P ∈R δP the set

of boundary vertices of R. For any r-division R we denote by k the number of pieces, and
assume they are numbered from [k] as R = P1, . . . , Pk. We use a subscript numbering to
distinguish between multiple r-divisions as follows: we use the same subscript numbering to
refer to the number of parts of the r-division, i.e., we use ki when talking about an r-division
Ri for some integer i. Linear time algorithms for computing r-divisions exists [11, 23]. Note
that an r-division requires each piece to be connected, and our encoding in some sense
maintains a dynamic r-division. Due to modifications, pieces may become disconnected. We
do not require each piece to be connected once the encoding is constructed, this abuses the
definition of r-divisions without consequence.
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Forbidden-vertex graph data structure. We use a so-called forbidden-vertex graph data
structure that is initialized for a simple planar graph G = (V, E) and any set B ⊆ V of
forbidden vertices. It allows modifications of G in the form of edge insertions and deletions,
and in the form of vertex merges while maintaining two invariants: no edges between vertices
of B exist and G is simple and planar. This data structure was described by Holm et al. [15]
as a building block for their contraction data structure. We slightly modify their data
structure and change some notation to match our use-cases. We use this data structure
(among other things) for maintaining edges between so-called boundary vertices, as sketched
in Section 2. We refer to this data structure as forbidden-vertex graph data structure.

For each vertex and edge managed by the data structure we can access and modify
auxiliary data, which takes constant time per word written or read, if a reference to the
vertex or edge is given. When merging two vertices u, v some edge {u, x} might be removed
and inserted again as {v, x}. We view this as the same edge, but with different endpoints.
Meaning, auxiliary data of {u, x} is now stored at {v, x}. If {v, x} already existed before the
merge, we can decide what to do with the data of the discarded parallel edge. Self-loops and
forbidden edges that would occur due to a merge are output during the merge operation. All
operations are only permitted if they preserve planarity. In the following we more precisely
define the available modifications:

Merge. Given are two vertices u, v with u ̸= v. Merge v to u by setting N(u) :=
N(u)∪N(v)\{u, v} and removing v and all incident edges from V . Returns a reference to
u and reports and discards all parallel edges during the merge, and reports all non-parallel
edges inserted to N(u) during the merge. Edges that would occur between vertices of B

are discarded.
Insert. Given are two vertices u, v with u ̸= v and {u, v} /∈ E. Insert the edge e = {u, v}
into E, unless both u, v ∈ B.
Delete. Let {u, v} be a given edge. Remove the edge {u, v} from E.

▶ Lemma 4 ([15]). Let G = (V, E) be a simple planar graph and B ⊆ V . A forbidden
vertex graph data structure can be initialized for G and B in O(n log n) time. It provides
constant time (per element output) neighborhood and adjacency queries and access to the
label mappings. Edge insertion/deletion takes O(log n) time. Any number of free-assignment
vertex merges are executed in O(n log2 n) time. The data structure uses O(n log n) bits.

To achieve the runtime outlined in Lemma 4 for vertex merges, each merge of two vertices
u, v ∈ V is processed by merging the vertex with the lowest degree to the vertex with the
highest degree, i.e., we can not freely choose which vertex is merged. A simple mapping
using standard data structures allows us to label the vertex x ∈ {u, v} that remains after the
merge either u or v. The details of this are found in full version of our paper. We refer to a
merge of two vertices where we are able to freely decide the labeling of the remaining vertex
after the merge as free-assignment merge. We henceforth assume that all merges of the data
structure are free assignment merges. The following lemma summarizes this.

▶ Lemma 5. Let G = (V, E) be a simple planar graph and B ⊆ V managed by the forbidden-
vertex graph data structure of Lemma 4. Using O(n) additional time for initialization and
O(n log n) bits we are able to process any number of free-assignment merges in O(n log2 n)
time on G.

Indexable dictionaries. We use a data structure called indexable dictionary (ID), initialized
for a universe U of consecutive integers and a set S ⊆ U and supports membership, rank
and select queries. A rank query for some x ∈ U returns |{y ∈ S : y < x}|. A select query
for some integer i returns the value of x ∈ U such that x is stored at rank i.
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▶ Lemma 6 ([25]). Let s ≤ u be two integers. Given a set S of size s, which is a subset
of a universe U = [u], there is a succinct indexable dictionary (ID) on S that requires
log

(
u
s

)
+ o(s) + O(log log u) bits and supports rank/select on elements of S in constant time.

We use IDs with u = n and s = O(n/Λ(n)) for some function Λ(n) = ω(1), then each ID
requires o(n) bits. IDs can be can be constructed in O(u) time using O(u) bits [25].

4 Table lookup for small planar graphs

In this section we present our table lookup data structure for small graphs. Given an integer ℓ

the table lists for every positive integer ℓ′ ≤ ℓ every possible planar graph with at most ℓ′

vertices. Such a lookup table was used by Blelloch and Farzan [3] as a building block for
succinctly encoding planar and other separable graphs, which we outline Section 5. For every
graph G encoded by the table, they provide adjacency queries and neighborhood iteration
in constant time (per element). The table can be realized using O(2poly(ℓ)) bits and time,
including the data structures needed to provide the queries. To distinguish between all planar
graphs with ℓ′ vertices we requires H(ℓ′) + O(1) bits. This corresponds to an index into the
computed table. The table contains 2H(ℓ) entries. Everything mentioned so far was shown by
Blelloch and Farzan. In the following we introduce additional operations and extensions of
this lookup table. These modifications increase the size of the table by a negligible amount
of bits while maintaining the same (asymptotical) runtime for constructing the table. We
show that our modifications increase the size of each index encoding a graph with ℓ′ vertices
by o(ℓ′) bits, which is negligible for our use case.

Range filtered neighborhood iteration: Takes as input an index i into the lookup table,
three vertices u, a, b ∈ V , with G = (V, E) being the graph encoded at index i and
u ̸= a ̸= b. Provides an iterator over all neighbors v of u with a ≤ v ≤ b.
Batch edge deletion: Takes as input an index i into the lookup table, three vertices
u, a, b ∈ V with G = (V, E) the graph encoded at index i. Returns the index j encoding
the graph G′ = (V, E \ X) with X = {{u, v} : v ∈ N(u) and a ≤ v ≤ b}.
Label-preserving merge: Takes as input an index i into the lookup table and two vertices
u, v ∈ V , with G = (V, E) being the graph encoded at index i. Returns the index j

encoding the graph G′ obtained from G by setting N(u) := N(u) ∪ N(v) \ {u, v} and
deleting v. Only allowed when preserving planarity.

All these operations can easily be pre-computed for one entry of the table in time
O(poly(ℓ)) using the same amount of bits. The sum of computations over every entry of
the table is O(2poly(ℓ)). As a note on the label-preserving merge operation, vis-à-vis keeping
the vertex v, but marking it deleted, consider the following example. We want to merge the
vertices u and v in some graph G = (V, E) encoded by the table with ℓ′ vertices. If we would
simply merge them, the vertex v no longer exists. In particular, the vertex set after the
merge is V ′ = V \ {v}. As the vertex set for each graph encoded by the table is consecutively
numbered from [ℓ′], graphs with vertex set V ′ are possibly not encoded by the table. To
remedy this, we simply keep the vertex v in the graph but mark it deleted. It remains to
show how to handle ’mark v as deleted’. To each graph encoded by the table we add a
dummy vertex called deleted. The table lists every possible planar graph with at most ℓ + 1
vertices, where the vertex with the largest label is our dummy vertex deleted. To mark v

as deleted during the label preserving merge, we set N(deleted) := N(deleted) ∪ {v} (and
N(v) := {deleted}). We are now able to check if a vertex is deleted, by checking if it is
adjacent to deleted. When we later encode a graph G = (V, E) via an index into this lookup
table, we encode it as the graph G′ = (V ∪ {deleted}, E), i.e., with no vertices marked as
deleted initially.

ISAAC 2023



44:8 Succinct Planar Encoding with Minor Operations

It remains to observe how one additional extra vertex increases the size of the table. The
size of each entry encoded by the table stays asymptotically the same, and is thus of no
concern to us. The number of entries in the table is O(2H(ℓ+1)), and therefore each index
into the lookup table encoding a graph with ℓ′ vertices requires H(ℓ′ + 1) + O(1) bits to
be stored. As H(ℓ′ + 1) = Θ(ℓ′ + 1) [28] it holds that H(ℓ′ + 1) = H(ℓ′) + O(1), which is
negligible for our purpose. Therefore, our table uses 2poly(ℓ) bits, which is asymptotically
the same as the original table of Blelloch and Farzan. Each index of the table uses only a
constant number of additional bits over the theoretical lower bound. Note that indices into
the original unmodified table of Blelloch and Farzan also require this additional O(1) bits.
We introduce some further modifications that increase the additional space per index storing
a graph with r′ vertices by o(r′) bits, which is fine for our use-case.

When we later use the table lookup to contract edges, we do so by effectively replacing
an unlabeled graph with a different unlabeled one. Without care, this can break internal
labeling structures, e.g., a vertex in a graph encoded by the lookup table has an internal
label of 5, and after replacing the graph it now has a label of 7. Section 6 and Section 7
show how additionally maintain a dynamic label mapping structure for “important” vertices,
i.e., boundary vertices as described in Section 2. For this we require the graph encoded
by the table to be partially labeled. Concretely this means that the labels remain correct
for boundary vertices when replacing one graph with a different one. We store all possible
labels for boundary vertices, of which there are b = O(

√
ℓ) many. In detail, when encoding a

single graph G with ℓ vertices, we do not store a single unlabeled representative of G in the
table (i.e., a graph isomorphic to all labeled versions of G), but all graphs such that ℓ − b

vertices are unlabeled, e.g., have an arbitrary internal label, and b vertices have all possible
labelings in the range 0, . . . , ℓ. This increases the size of the table by a negligible factor,
outined now. Due to the partial labeling we require, the number of bits needed to store an
index into the table increases by O(log(

(
ℓ
b

)
)) = O(log(

(
ℓ√
ℓ

)
)) = o(ℓ), and thus is negligible for

our use-case. Later, when we modify a graph Gi encoded as an index i of lookup table (e.g.,
contract edges), we replace the index i with the index j such that the graph Gj encoded by
j represents the modified graph with the additional characteristic that all boundary vertices
of Gj have the same label in Gi. the labeling for the non-boundary vertices changes due to
this, but what we maintain is that a non-boundary vertex remains mapped to non-boundary
vertex, and that all boundary vertices maintain their same labeling, which is all that we
require for our data-structure. This is expressed via a set of invariants defined in Section 6
and Section 7.

▶ Lemma 7. Let ℓ be a positive integer. There exists a table that encodes all planar graphs
with vertex set {1, . . . , ℓ′} for all integers ℓ′ ≤ ℓ with the following properties. For every
graph encoded by the table, (range filtered) neighborhood iteration, adjacency queries and
label-preserving merge operations and batch edge deletion are provided in constant time (per
element). The table can be constructed in O(2poly(ℓ)) time using O(2poly(ℓ)) bits. Every index
of the table referencing a graph with ℓ′ vertices requires H(ℓ′) + o(ℓ′) bits.

5 Succinct encoding of planar graphs

We now describe the succinct encoding of unlabeled planar (and other separable) graphs
due to Blelloch and Farzan [3]. We use their data structure as a basis for our encoding.
Our result effectively extend their encoding with (induced-) minor operations. For this
we need to give a technical overview of their encoding. Let G = (V, E) be an unlabeled
planar graph, R = {P1, . . . , Pk} an r-division with r = log4 n, and for each Pi with i ∈ [k],
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let Ri = {Pi,1, . . . , Pi,k} be an r′-division of Pi with r′ = log4 log4 n. 2 The encoding assigns
three integer labels to each vertex u ∈ V . A label in the entire graph (called global label) a
label in each piece Pi ∈ R (called a mini label) and a label in each piece Pi,j ∈ Ri (called a
micro label). We refer to G with the newly assigned labels as the global graph, each labeled
Pi ∈ R as a mini graph, and each labeled Pi,j ∈ Ri as a micro graph. Note that boundary
vertices of δR receive multiple mini labels, and analogous boundary vertices of δRi receive
multiple micro labels. We refer to the boundary vertices of δR with their assigned global
labels as δG, and the set of boundary vertices of δRi with their assigned mini labels in Pi as
δPi. For a given boundary vertex u identified by its global label, we refer to all occurrences
u′ (as a mini label) of u in a mini graph Pi as duplicates, and the same for boundary vertices
of mini graphs Pi in regard to their occurrences in micro graphs. We refer to the set of (mini
labels of) duplicate vertices in a mini graph Pi as ∆Pi, and analogous the set of (micro labels
of) duplicate vertices in a micro graph Pi,j as ∆Pi,j . Global labels are consecutive integers
assigned first to all non-boundary vertices and then to boundary vertices, i.e., all boundary
vertices have larger labels than non-boundary vertices. Analogous for mini labels in mini
graphs. Micro labels are assigned arbitrarily. For operations vertices are identified by their
respective label. E.g., a neighborhood query of a vertex u ∈ V takes the global label of u as
an input and outputs the global labels of all v ∈ N(u), analogous for queries in a mini or
micro graph. Micro graphs are encoded as an index into a lookup table T , listing all planar
graphs of at most r′ vertices. Technically this is realized by an array with one entry for
each micro graph, which can be indexed by (i, j) when retrieving the entry for micro graph
Pi,j . For our use case we replace the table of Blelloch and Farzan with the table described
in Section 4, which provides additional operations. We now describe operations that the
encoding provides, which are used by Blelloch and Farzan in their original publication, but
are not defined outside of 1. All mappings are implemented using IDs (Lemma 6) over the
universe [n] combined with standard data structures such as lists and pointers. Let u ∈ V

be a vertex identified by its global label. For each such u, the encoding provides a mapping
to access a list ϕ(u) that contains tuples (i, u′) with i the index of a mini graph Pi that
contains mini label u′ of u. The lists are sorted in increasing order by i. Note that if u is a
non-boundary vertex the mapping contains only a single tuple. For each such tuple (i, u′) we
can access a mapping ϕ−1

i (u′) = u. For vertices u′ in each mini graph Pi (identified by their
mini label) analogous mappings ϕi(u′) containing tuples (j, u′′) with j the index of a micro
graph Pi,j that contains micro label u′′ of u′, and the analogous mappings ϕ−1

i,j (u′′) = u′ are
provided. We refer to all these mappings as static translation mappings.

Recall that Blelloch and Farzan assign micro labels in an arbitrary fashion. We instead
assign the labels according to a coloring we define in the following. Let Pi,j be the micro
graph we want to label. We first assign labels to vertices that are neither a boundary vertex of
δR nor of δRi, which we assign the color simple. Then we assign labels to vertices that are
in the boundary δR, but not in δRi, which we assign the color global-boundary. Then to
vertices that are not in the boundary δR, but in the boundary δRi, colored mini-boundary,
and finally to vertices in both the boundary δR and in δRi, colored double-boundary.
Consequently, for any four vertices of Pi,j it holds that a < b < c < d if a is colored simple, b

is colored global-boundary, c is colored mini-boundary and d is colored double-boundary.
For each mini graph we store the lowest labeled vertex of each color, which uses negligible
space of O((n/ log4 log4 n) log log4 log4 n) = o(n) bits overall.

2 Blelloch and Farzan use r′ = log n/ log log n in their publication, but make it clear that there is a large
degree in freedom as long as the choice is of size o(log n).
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Combined with our novel way of assigning micro labels to vertices of micro graphs, the
range-filtered neighborhood operation provided by our table allows us to implement the
color-filtered neighborhood operation that outputs all neighbors x of a vertex u (in a micro
graph Pi,j) such that all x are colored with c ∈ {simple, global-boundary, mini-boundary,

double-boundary}. The operation runs in constant time (per element output). Using the
label preserving merge operation of the lookup table we can easily provide such merges for
every micro graph. Analogous for the vertex and edge deletion operation.

For a given unlabeled planar graph G we refer to the encoding described in this section
as basic encoding of G. Kammer and Meintrup [17] have shown that the encoding can be
constructed in O(n) time using O(n) bits. Our modifications have negligible impact on the
runtime and space usage of the construction. This results in the following theorem.

▶ Theorem 8. Let G be an unlabeled planar graph and H(n) the entropy of encoding a
planar graph with n vertices. There exists a basic encoding of G into a global graph, mini
graphs and micro graphs that uses H(n) + o(n) bits total. The basic encoding provides static
translation mappings for the global graph, each mini graph and each micro graph. For each
micro graph the encoding provides degree, adjacency, (color-filtered) neighborhood, (batch)
edge/vertex deletion and label-preserving merge operations in O(1) time. The basic encoding
can be constructed in O(n) time using O(n) bits.

6 Dynamic mapping data structures

For this section assume a planar graph G is given via the basic encoding of Theorem 8. We
now describe a set of dynamic mapping structures, for which we outline the use-case in the
following. We already mentioned in Section 2 that a vertex that is initially a boundary
vertex (globally or/and in mini graphs) will never become a non-boundary vertex, and a
non-boundary vertex will never become a boundary vertex due to any of our edge contractions.
We construct dynamic variants of the static translation mappings for boundary vertices
(in the global or in mini graphs). We ensure that the static translation mappings remain
valid for all non-boundary vertices. Later these mappings are concretely constructed for the
vertices of the initial graph (i.e., before any contractions are processed) and are maintained
for all of these vertices throughout. Concretely this means that the sets for which we define
mappings and data structures never change after initialization. Recall from Section 2 that
when contracting an edge {u, v} ∈ E we effectively forward the contraction operation to
mini graphs that contain mini labels u′ and v′ of u and v respectively, and then forward the
contraction to micro graphs in an analogous way. For our solution we require that these
cascading merge operations are handled independently without interfering with each other.

Consider for example the case where we contract an edge {u, v} ∈ E with u being a
boundary vertex and v a non-boundary vertex. In this case we want to contract v to u

(technical reasons for this are outlined in the next section). To fulfill this contraction, we
forward a request to the mini graph Pi to merge the vertices u′ and v′, the respective
mini labels of u and v in Pi. In the case that v′ is a boundary vertex in Pi, but u′ is a
non-boundary vertex in Pi, we want to merge u′ to v′, which is in conflict with our desire
to merge v to u in the global graph. The idea is to support free-assignment merges, whose
realization is described in the next paragraph. This sort of conflict only pertains to vertices
u that are part of the boundary δG (thus, a duplicate ∆Pi in Pi) and/or have a mini label
u′ in some Pi that is part of the boundary δPi, i.e., we need to provide free-assignment
merges for vertices of δPi ∪ ∆Pi. We construct a dynamic mapping that allows us to decide,
when merging two vertices u′, v′ ∈ δPi ∪ ∆Pi, if the vertex that remains after the merge is
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labeled u′ or v′. This is realized by assigning each such vertex an external mini label and
an internal mini label. Effectively we have no free choice on which internal mini label the
vertex has after a merge, but we are free to assign a new external label. We construct a
mapping internali : δPi ∪ ∆Pi → δPi ∪ ∆Pi that maps a given external label of a vertex
of δPi ∪ ∆Pi to its internal label, and a mapping externali : δPi ∪ ∆Pi → δPi ∪ ∆Pi that
maps a given internal label of a vertex δPi ∪ ∆Pi to its external label. For all other vertices
of Pi we ensure that the external and internal mini labels are identical, and therefore do not
need to construct any mapping. This is explicitly defined in Invariant 2 later in this section.

▶ Lemma 9. All mappings internali and externali can be constructed in O(n) time using
o(n) bits of space. They provide read/write access in O(1) time.

We also have the need for a dynamic version of the static translation mappings ϕ and ϕi

for boundary vertices δG in the global graph and boundary vertices δPi in mini graphs, and
the mappings ϕ−1

i and ϕ−1
i,j for the duplicate vertices ∆Pi in mini graphs and ∆Pi,j micro

graphs, outlined in the following paragraphs. Initially these are equal to the static mappings.
We first describe the dynamic versions of the mappings ϕ−1

i and ϕ−1
i,j , which we refer to as

Φ−1
i and Φ−1

i,j respectively. Afterwards we describe the dynamic versions of the mappings
ϕ and ϕi, referred to as Φ and Φi. To give an intuition for the use-case of these mappings,
consider a contraction of an edge e = {u, v} ∈ E with u, v ∈ δG. We contract this edge by
first merging all u′ and v′ in the mini graphs Pi that contain both the duplicate u′ of u and
v′ of v. In all Pi that contain only a duplicate of v′ of v we need to know that the global
label of v′ is now (i.e., after the contraction) u instead of v, for which we use the described
mappings. In all other mini graphs no changes need to be made.

▶ Lemma 10. All mappings Φ−1
i : ∆Pi → δG and Φ−1

i,j : ∆Pi,j → δPi can be constructed in
O(n) time using o(n) bits of space. They provide read/write access in O(1) time.

We now describe the dynamic mappings Φ and Φi. As mentioned, we initially require all
mappings Φ(u) to be equal to ϕ(u) for u ∈ δG and analogously all mappings Φi(u′) to be
initially equal to ϕi(u′) for u′ ∈ δPi for all mini graphs Pi. To represent these mappings we
construct a graph H that contains all boundary vertices u ∈ δG and, for each mini graph
Pi, a vertex pi, with edges {u, pi} added to H exactly if u has a duplicate u′ in Pi. Note
that the existance of a duplicate u′ in Pi means that u′ has a non-boundary neighbor in Pi

(initially). At each such edge we store the tuple (i, u′). We construct H using the forbidden
vertex graph data structure of Lemma 4. The tuples stored at the incident edges of a vertex
u ∈ δG in H are exactly the set ϕ(u). Note that H is a minor of G and therefore planar. We
can provide for all u ∈ δG: iteration over all elements Φ(u) (by iterating over N(u) in H),
insertion and removal of elements in Φi(u) (by inserting or removing edges in H), the merge
of two sets Φ(u) and Φ(v) for some v ∈ δG (by merging u to v or v to u in H). Some other
similar operations are provided, outlined in detail in the next section where we concretely
describe our edge contraction algorithm. For each mini graph Pi the analogous graph Hi

is constructed, which manages the mappings Φi. An important note is that for each tuple
(i, u′) ∈ Φ(u) for u ∈ δG the vertex u′ is the external mini label of some vertex in Pi. As
no external or internal micro labels are defined for micro graphs, each tuple (j, u′′) ∈ Φi(u′)
for all mini graphs Pi contains the concrete micro label u′′ in Pi,j . In the next section we
describe our neighborhood operation, for which we require a special version of the mappings
Φ, which we first motivate with an intuition. To output the neighborhood of a vertex u ∈ δG

we (intuitively) iterate over all (i, u′) ∈ Φ(u) and, for each such (i, u′), iterate (and translate
to global labels) over all neighbors of u′ in Pi. To achieve a runtime of O(|N(u)|) for this
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operation, we require that each tuple (i, u′) “contributes” at least one such neighbor. While
this is true initially, due to edge contractions (and other modifications) the degree of each
such u′ can become 0. To remedy this, we store a special version of the mappings Φ(u) which
we refer to as Φ>0, containing only tuples (i, u′) ∈ Φ(u) such that the degree of u′ is > 0.
We construct the analogous mappings Φ>0

i for all Pi. During contractions, we update the
mappings Φ>0 and Φ>0

i to uphold the aforementioned characteristic, which is formalized in
Invariant 1. How this invariant is upheld, is discussed in the next section. We realize these
mappings exactly as Φ and Φi, respectively, i.e., as graphs H>0 and H>0

i . Initially H>0 = H

and all H>0
i = Hi, by the definition of boundary vertices in r-divisions (Section 3).

▶ Invariant 1 (non-zero-degree invariant). For all u ∈ δG, each entry (i, u′) ∈ Φ>0(u)
guarantees that u′ has degree > 0 in mini graph Pi. For all u′ ∈ δPi over all mini graphs Pi,
each entry (j, u′′) ∈ Φ>0

i (u′) guarantees that u′′ has degree > 0 in micro graph Pi,j.

▶ Lemma 11. Graphs H, H>0 and Hi, H>0
i can be constructed in O(n) time and o(n) bits.

Using all data structures described in this section we uphold invariants below while
running contractions on G – the details on this are described in the next section. For better
readability we slightly abuse the definition of our internal (external) mappings of by
assuming they return the identity function for u′ /∈ δPi ∪ ∆Pi.

▶ Invariant 2 (label-translation invariants).
a. Global to external mini label and vice-versa:

I. For each u ∈ V \ δG and (i, u′) = ϕ(u) it holds that u′ is the external mini label of u

in Pi and ϕ−1(u′) = u.
II. For each u ∈ δG and (i, u′) ∈ Φ(u) (Φ is the dynamic version of ϕ) it holds that u′

is the external mini label of u in Pi and Φ−1(u′) = u.
b. Internal to external mini label and vice-versa:

For each vertex u′ ∈ V (Pi) identified by its external mini label, it holds that u∗ =
internal(u′) is the internal mini label of u′ and external(u∗) = u′.

c. Mini to micro label and vice-versa:
I. For each u′ ∈ V (Pi) \ δPi (identified by its internal mini label) and (j, u′′) = ϕi(u′)

it holds that u′′ is the micro label of u′ in Pi,j and ϕ−1
i,j = u′.

II. For each u∗ ∈ δPi (identified by its internal mini label) and for each (j, u′′) ∈ Φi(u∗)
it holds that u′′ is the micro label of u∗ in Pi,j and Φ−1

i,j (u′′) = u∗.

7 Towards a succinct dynamic encoding

For this section let G = (V, E) be a graph encoded by the basic encoding of Theorem 8. Also,
assume that the mappings of Lemma 9, 10 and 11 are constructed and available. In this
section we describe our solution to support modifications of G. We denote by Ḡ = (V̄ , Ē)
the graph G before any modifications are processed, e.g., contractions of edges. Analogously
we define by P̄i, P̄i,j the initial mini and micro graphs, respectively, with its initial vertices
(as mini/micro labels). As sketched in Section 2 we handle contractions between so-called
boundary edges with a boundary graph F = G[δG] and analogously a mini boundary graph
Fi = Pi[δPi] for each mini graph Pi. These graphs are realized via the forbidden vertex
graph data structure (Lemma 4). For F we use as the set of forbidden vertices the empty
set. For each Fi we use the duplicate vertices ∆Pi of Pi as the set of forbidden vertices.
During initialization edges between forbidden vertices are removed. The forbidden-vertex
graph data structure makes sure that this remains true after initialization. Let {u, v} ∈ E
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be an edge. We say {u, v} is managed by F if {u, v} ∈ E(F ), {u, v} is managed by Fi if
{u′, v′} ∈ E(Fi) with u′ and v′ the mini labels of u and v respectively, and finally we say
{u, v} is managed by Pi,j if it contains the edge {u′′, v′′} with u′′, v′′ being the micro labels
of u and v, respectively. We uphold the following invariant:

▶ Invariant 3 (edge-singleton invariant).
a. An edge {u, v} is managed by F exactly if u, v ∈ δG.
b. An edge {u, v} is managed by Fi exactly if u′, v′ ∈ δPi \ ∆Pi, with u′, v′ the respective

mini labels of u and v in Pi. In this case, no other Fj (j ̸= i) also manages {u, v}.
c. All edges {u, v} not managed by F or some Fi are managed by one micro graph Pi,j.

Our construction of F and each Fi is the first step to achieve this invariant. We now give
an intuition why this invariant is useful. Due to some edge contractions new edges {u, v}
might occur in G between boundary vertices (either global boundary vertices or vertices that
are boundary vertices in a mini graph). We can not afford to add this edge to all mini and
micro graphs that contain mini and micro labels of both u and v, respectively. Instead, we
only add this edge to F or some Fi. Moreover, if edges e ∈ E are managed multiple times,
the runtime of the neighborhood operation can increase.

An important note is that the basic encoding of G does not adhere to the edge-singleton
invariant from the get-go, i.e., edges managed by some F or Fi might be contained in one
or more micro graphs initially. Using the batch edge deletion operation provided for micro
graphs (Theorem 8) we can delete all edges that would initially violate our invariant. If this
violates Invariant 1, we remove the respective entries from Φ>0 (Φ>0

i ). This uses O(n) time.
We refer to the combination of the basic encoding of G, the mappings of Lemma 9,

Lemma 10 and Lemma 11, the boundary graph F and each mini boundary graph Fi as
succinct dynamic encoding of G, summarized in the following corollary.

▶ Corollary 12. The succinct dynamic encoding of G can be constructed in O(n) time using
O(n) bits. After construction the encoding requires H(n) + o(n) bits. The encoding upholds
the label-translation, edge-singleton and non-zero degree invariant.

We now give an intuition how we implement the neighborhood operation for a vertex
u ∈ V identified by its global label. We first output all neighbors of u in F (which is ∅ if u

is not a boundary vertex) and then, for all Pi that contain a mini label u′ of u, compute
all neighbors v′ of u′ in Fi (which is again ∅ if u′ is not a boundary vertex) and output the
respective global label v of v′. We then go to all micro graphs Pi,j that contain a mini label
u′′ of u′, compute all neighbors v′′ of u′′ in Pi,j and output the respective global label v of
v′′. By the edge singleton invariant it is easy to see that each neighbor v of u in G is output
exactly once by this algorithm. Invariant 2 provides the necessary translation operations.
The missing details are discussed in the proof of the following lemma.

▶ Lemma 13. For any u ∈ V the neighborhood operation runs in time O(|N(u)|).

We now focus on our edge-contraction algorithm. For this we introduce one last invariant,
which we call the status invariant. As sketched in Section 2 we require that for every vertex
being a boundary vertex (either globally or in a mini graph) to remain a boundary vertex,
and for every non-boundary vertex to remain a non-boundary vertex. For this we slightly
abuse the definition of boundary vertices. By definition of r-divisions (Section 3) a boundary
vertex u ∈ δG has neighbors in more than one mini graph. Due to contractions (or other
modifications) this might at some point no longer be true. Nonetheless, we still consider such
a vertex to be a boundary vertex. We require that a boundary vertex remains a boundary
vertex, and a non-boundary vertex remains a non-boundary vertex. For this we maintain the
following invariant that depends on our slight abuse of the boundary vertex definition.
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▶ Invariant 4 (status invariant). For every u ∈ V and every u′ ∈ V (Pi) over all mini graphs
Pi, it holds u ∈ δG if and only if u ∈ δḠ as well as u′ ∈ δPi if and only if u′ ∈ δP̄i.

We now give an overview of our edge-contraction algorithm, which we describe in three
levels: vertex merges in micro graphs, vertex merges in mini graphs and edge contractions in
the global graph. We guarantee the four invariants (Invariants 1, 2, 3 and 4) before and after
each edge contraction. Technically, merges are executed in (mini) boundary graph(s) and
micro graphs. Everything else is to maintain the mappings of Section 6. An edge {u, v} ∈ E

is contracted by determining all micro graphs Pi,j that contain (micro labels of) u and v,
all mini boundary graphs F that contain (mini labels of) u and v and check if F contains u

and v. In all structures that contain u and v we merge v to u and update the mappings of
Section 6. To guarantee the invariants we split the responsibilities among the three levels:

Global Graph-Responsibility. Contractions in the global graph maintain Invariant 1
regarding Φ>0, Invariant 2.a., Invariant 3.a and Invariant 4 for all u ∈ V .
Mini Graph-Responsibility. Vertex merges in a mini graph Pi maintain Invariant 1
regarding Φ>0

i , Invariant 2.b-c, Invariant 3.b, and Invariant 4 for all u′ ∈ V (Pi).
Micro Graph-Responsibility. Vertex merges in a micro graph maintain Invariant 3.c.

Our contraction algorithm is built up from bottom-to-top, i.e., we first describe merges
in micro graphs, then mini graphs (and mini boundary graphs) and edge contractions in G

(and merges in F ). To uphold the responsibilities of micro graphs we implement a variant of
the forbidden-vertex graph data structure (Lemma 4) for micro graphs, summed up in the
following lemma. To uphold Invariant 4 we are not allowed to merge a vertex v′′ to a vertex
u′′ in a micro graph Pi,j if v′′ ∈ ∆Pi,j and u′′ /∈ ∆Pi,j , which we formulate explicitly.

▶ Lemma 14. For all micro graphs Pi,j we can provide free assignment merges for each
Pi,j such that no edges {u′′, v′′} exists that should be managed by F or Fi. If such an edge
would occur due to the merge, it is not inserted to Pi,j and instead returned. Computing
any number of such merges among all micro graphs can be done in O(n) total time. The
operation upholds the micro graph-responsibility. Merging a vertex v′′ to a vertex u′′ is not
allowed if v′′ /∈ ∆Pi,j and u′′ ∈ ∆Pi,j. All other (planar preserving) merges are allowed.

We first note, whenever we call the merge operation of Lemma 14 for a micro graph Pi,j

in the next paragraphs, the operation returns edges {u′′, v′′} that should be managed by
Fi or F , but not Pi,j . We then translate {u′′, v′′} to {u′, v′} with u′ and v′ the respective
mini labels of u′′ and v′′. If the edge {u′, v′} should be managed by Fi, we insert it to Fi.
Returned edges that should not be managed by Fi are instead returned after the merge
operation in Pi is executed. This upholds Invariant 3 (restricted to micro and mini graphs).
To uphold Invariant 1 (for mini graphs) we check, after any call to a merge of a vertex v′′ to
u′′ in a micro graph Pi,j if the degree of u′′ changed from 0 to non-zero or vice-versa. If it
does, we must possibly update the mapping Φ>0

i (u′) to either include the tuple (j, u′′) or
remove it, with u′ the mini label of u′′. Note that this is only done in the case that u′ is a
boundary vertex, as otherwise no mapping Φ>0

i (u′) exists.
Let u′, v′ ∈ V (Pi) be two vertices identified by their external mini label. To provide a

merge of u′ and v′ we distinguish between three cases: (M1) u′, v′ /∈ δPi, (M2) u′ ∈ δPi and
v′ /∈ δPi and (M3) u′, v′ ∈ δPi. In Case M1 we determine the micro graph Pi,j that contains
micro labels u′′ and v′′ of u′ and v′, respectively, via the static mappings ϕi(u′) = (j, u′′)
and ϕi(v′) = (j, v′′) as per Invariant 2. In Pi,j we merge v′′ to u′′ exactly if v′ should be
merged to u′, and otherwise merge u′′ to v′′ (Lemma 14). By this congruent choice of merge
we uphold Invariant 2.c without having to modify any mappings. Since the merged vertex
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remains a non-boundary vertex, Invariant 4 is guaranteed. This concludes all responsibilities
of merges in mini graphs. All operations take constant time. Note that all merges of Case
M1 are free-assignment merges.

Denote with u∗ = internal[u′] and v∗ = internal[v′] the internal mini labels of v′ and
u′ respectively. For Case M2 we are forced to merge v∗ to u∗ to uphold Invariant 4, i.e.,
internally this merge is not a free-assignment merge. To execute the merge we determine the
micro graph Pi,j containing the micro label v′′ of v∗ via ϕi(v∗) = (j, v′′). In Pi,j we merge
v′′ to u′′ (Lemma 14) with u′′ the micro label of u∗ in Pi,j .

Note that merging u′′ to v′′ is not allowed. We determine u′′ via an operation we call
micro-label search procedure, which searches for u′′ by iterating over all x′′ ∈ N(v′′) ∩ ∆Pi,j

(the neighbors of v′′ that are duplicates) and testing if Φ−1
i,j (x′′) = u∗. If this is the case, we

have found the duplicate u′′ := x′′ of u∗. Note that this operation can fail, as u′′ and v′′ are
not guaranteed to be adjacent. In this special case, we instead iterate over all x′′ ∈ ∆Pi,j .
A key characteristic to get a good runtime is that the special case only occurs if the edges
{u, v} exists in F , with u and v the global labels of u′ and v′, respectively, which allows us
to upper bound the number of encountered special cases by |E(F )| = O(n/ log2 n) times.

Once the merge is executed in Pi,j we must possibly update the mappings that translate
between the internal and external mini labels. Recall that the mappings internal and
external are only available for vertices of δPi ∪ ∆Pi. In the case that v′ ∈ δPi ∪ ∆Pi we
are able to provide a free assignment merge as follows: if the request was to merge u′ to
v′, we set internal[v′] = u∗ and external[u∗] = v′. Otherwise, no update is necessary. If
v′ /∈ δPi ∪ ∆Pi we are not able to provide a free assignment merge, instead we are forced to
merge v′ to u′. We refer to this situation as the M2 special case. If the merge was called
with the request to merge u′ to v′, and we are in this M2 special case, the operation is not
allowed. In our use case this case never arises. Intuitively, constraints (e.g., Invariant 4) that
force us to contract {u, v} by merging v to u either “line up” with being able (or forced) to
merge of v′ to u′ in Pi, with v′ and u′ the mini labels of v and u in Pi, respectively, or if
they do not line up, we make use of the internal/external mappings.

Finally, we consider Case M3. In this case both u′ and v′ are boundary vertices with
u∗ = internal[u′] and v∗ = internal[v′] being the internal mini labels of v′ and u′

respectively. As sketched in Section 2, our intuition for merging v′ to u′ is that we first
merge all v′′ to u′′ in all micro graphs Pi,j that contain both a duplicate u′′ of u∗ and v′′ of
v∗. Secondly, for all micro graphs Pi,j that contain only a duplicate v′′ of v∗, but not of u∗,
we update the mappings Φ−1

i,j (v′′) := u∗ and insert (i, v′′) to Φi(u∗). Finally, we merge v∗

to u∗ in Fi. To describe the realization technically we introduce some additional notation.
Denote with Zu∗∩v∗

i the set of all triples (j, u′′, v′′) with (j, u′′) ∈ Φi(u∗) and (j, v′′) ∈ Φi(v∗),
with Z

u∗\v∗

i the set of all tuples (j, u′′) with (j, u′′) ∈ Φi(u∗) such that no tuple (j, ·) is
contained in Φi(v∗), and with Zu∗⊕v∗

i all tuples (j, u′′) ∈ Φi(u∗) together with all tuples
(j′, v′′) ∈ Φi(v∗) for which it holds that no tuple (j′, ·) exists in Φi(u∗). To execute a merge
of v∗ to u∗ in Pi, first iterate over all triples (j, u′′, v′′) ∈ Zu∗∩v∗

i and merge v′′ to u′′ in Pi,j ,
then iterate over all tuples (j, v′′) ∈ Z

v∗\u∗

i and update all mappings Φ−1
i,j (v′′) := u∗. Finally,

set Φi(u∗) := Zu∗⊕v∗

i and merge v∗ to u∗ in Fi. In the proof we show how these sets occur
(intuitively) “naturally” via merges in the graph Hi, which manages Φi.

Combining Cases M1, M2 and M3 we show the following lemma.

▶ Lemma 15. All vertex merges in all mini graphs Pi are processed in O(n) time and uphold
their responsibilities. Edges that would occur due to a merge in Pi, but should be managed by
F are returned. All merges excluding the M2 special case are free assignment merges.
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Contracting edges {u, v} in G effectively works exactly as the vertex merges in mini
graphs Pi with the exception that we do not need to maintain the translation between
internal and external labels, and we do not need to provide free assignment merges for any
case. We again distinguish between three cases: (G1) u, v /∈ δG, (G2) u ∈ δG and v /∈ δG

and (G3) u, v ∈ δG. For Case G2 we employ a procedure we call mini-label search procedure,
analogous to the micro-label search procedure for Case M2.

▶ Lemma 16. After O(n) initialization time, any number of edge contractions in G can be
computed in O(n) time and uphold the graph responsibility.

We additionally provide constant time degree queries. Intuitively, we store the degree
for boundary vertices (in G and each Pi) concretely, while for all other vertices Theorem 8
provides us with a degree query.

▶ Lemma 17. After O(n) initialization time the degree of any u ∈ V can be queried in
constant time.

Using the same data structures we use for edge contractions, we can process any number
of vertex deletions in O(n) time. To delete a vertex u we delete all mini labels u′ of u and
all micro labels u′′ of all u′. This mostly works analogously to the contraction algorithm.

▶ Lemma 18. Any number of vertex deletions in G can be processed in O(n) time and uphold
the graph responsibility.

We are now able to proof Theorem 1.

▶ Theorem 1. Let H(n) be the entropy of encoding a planar graph with n vertices and
G an unlabeled simple n-vertex planar graph. There exists an encoding of G that provides
induced-minor operations (i.e., vertex deletions and edge contractions) with these properties:
The encoding requires O(n) time to execute any number of induced-minor operations and
provides neighborhood and degree operations in constant time (per element output). The
encoding requires H(n) + o(n) bits can be initialized in O(n) time and O(n) bits.

Proof. Construct the dynamic encoding due to Corollary 12. Lemma 13 gives us the desired
neighborhood operation and Lemma 17 the desired degree operation, Lemma 16 the desired
contraction operation and Lemma 18 the desired vertex deletions. ◀

Using hash tables to implement the mappings Φ, Φ>0, Φi and Φ>0
i we are able to provide

expected constant time adjacency queries and is able to process any number of edge deletions
in O(n) expected time. Holm et al. used the same argument of replacing a mapping data
structure with a hash table to show Lemma 5.15 in their work [15].

▶ Corollary 2. The encoding of Theorem 1 can be extended to provide expected O(1) time
adjacency queries and process any number of minor operations in expected O(n) time.
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