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Abstract
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1 Introduction

Edge modification problems have long been a subject of investigation in graph algorithms,
resulting in a vast body of literature dedicated to exploring their computational complexity
(refer, for instance, to Burzyn et al. [4] and to Natanzon et al. [17] for comprehensive surveys).
One specific category within this realm is the family of edge completion problems, which
can be succinctly described as follows: Given a graph G = (V, E) and a graph family G, the
objective is to determine whether it is possible to augment G with a set E′ ⊆ V × V of edges
such that G′ = (V, E∪E′) ∈ G. In such cases, we say that G becomes a member of G by adding
the edges in E′. Edge completion problems are frequently known to be NP-hard, thereby
inspiring numerous studies focusing on parameterized complexity. For a comprehensive
examination of parameterized algorithms addressing edge completion problems, we point the
reader to the exhaustive survey by Crespelle et al. [7].
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46:2 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

(a) (b) (c)

Figure 1 (a) A digraph G with 2k + 1 = 7 sources and 1 sink; G has a unique planar embedding
up to the choice of the external face; (b) A completion of G to an st-planar graph obtained by
adding 2k = 6 edges; (c) An upward planar drawing of the completion of G.

This paper focuses on the investigation of an edge completion problem specifically applied
to directed graphs (digraphs for short). More precisely, let G = (V, E) be a digraph. A vertex
of G with no incoming edges is a source of G, while a vertex without outgoing edges is a sink
of G. A digraph G is an st-planar graph if it admits a planar embedding such that: (1) it
contains no directed cycle; (2) it contains a single source vertex s and a single sink vertex t;
(3) s and t both belong to the external face of the planar embedding.

Upward planarity is a rather natural and well-studied notion of planarity for directed
graphs (see, e.g., [5, 6, 8, 10, 13, 18]). In particular, a planar digraph is upward if it
admits a planar drawing where all edges are oriented upward. A well-known result in graph
drawing states that a digraph G is upward if and only if G is a subgraph of an st-planar
graph [8, 10]1. However, since testing for upward planarity is an NP-complete problem
already for biconnected graphs [13], determining whether a biconnected graph is a subgraph
of an st-planar graph is also computationally challenging. On the other hand, checking
whether a digraph is st-planar can be done efficiently in polynomial time. This observation
motivates for the investigation of the following problem.

st-Planar Edge Completion (st-PEC)
Input: A biconnected digraph G

Parameter: k ∈ N
Question: Is it possible to add at most k edges to G such that the resulting graph is an
st-planar graph?

In this paper, we present a fixed-parameter tractable algorithm for the st-Planar Edge
Completion problem. To help understanding the combinatorial and algorithmic challenges
behind the problem, we make the observation that the parameter k provides an upper bound
on the number of sources and sinks in the input digraph G. Since an edge can remove the
presence of at most one source and one sink, if the total number of sources and sinks in
G exceeds 2k + 2, we can promptly reject the instance. Conversely, a positive answer to
st-Planar Edge Completion implies that G is upward planar. In this respect, it is worth

1 From the proof in Lemma 4.1 of [10], one can in fact observe that a digraph is upward planar if and
only if it is a subgraph of an st-planar graph defined over the same set of vertices.



L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:3

(a) (b) (c)

Figure 2 (a) A biconnected digraph G with 4 sources and 4 sinks; (b) With the given embedding,
6 edges have to be added to complete G to an st-planar graph; (c) With a different embedding,
adding 3 edges is sufficient.

mentioning that Chaplick et al. [5] have previously demonstrated that testing a digraph
for upward planarity is fixed-parameter tractable when parameterized by the number of its
sources. However, for every k ≥ 1, there are upward planar digraphs with at most 2k + 1
sources that cannot be augmented to an st-planar graph by adding k edges; refer to Figure 1
for an illustration. Furthermore, while an upward planarity test halts upon finding an upward
planar embedding, not all upward planar embeddings of the same digraph can lead to an
st-planar graph after the addition of k edges. Figure 2 demonstrates an upward planar
digraph along with two of its upward planar embeddings: the embedding in Figure 2a requires
6 edges to be augmented into an st-planar digraph, whereas the embedding in Figure 2c can
be augmented with 3 edges.

In order to overcome the above technical challenges, our result is based on a structural
decomposition of the digraph into its triconnected components using SPQR-trees (similarly
as done in [5]), as well as on novel insights regarding the combinatorial properties of upward
planar digraphs. Since the proof is rather technical, after giving preliminaries and basic
notation in Section 2, we present an overview of the approach in Section 3. Next, the FPT
algorithm is described in full detail in Section 4. We conclude in Section 5. For space reasons,
the proof of statements marked with a “⋆” are omitted and can be found in the full version
of the paper [16].

2 Preliminaries

In this section, we provide basic definitions and tools that will be used throughout the paper.

Planar drawings and embeddings. A planar drawing of a graph G maps the vertices of G

to points of the plane and the edges of G to Jordan arcs such that no two arcs share a point
except at common end-vertices. A planar drawing partitions the plane into topologically
connected regions called faces, one of which is unbounded and called the external face, in
contrast with all other faces which are inner faces. For a digraph G, a planar drawing is called
upward if each edge oriented from a vertex u to a vertex v is represented by a Jordan arc
monotonically increasing from the point representing u to the point representing v. A graph
(digraph) is planar (upward planar) if it admits a planar drawing (upward planar drawing).
A planar embedding (upward planar embedding) E(G) of a planar graph (upward planar
digraph) G represents an equivalence class of planar drawings (upward planar drawings)
with the same inner faces and the same external face, up to a homeomorphism of the plane.
Graph G is plane if it comes with a fixed planar embedding E(G).

ISAAC 2023
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SPQR-trees. We recall the definition of SPQR-tree, introduced in [8], which represents
the decomposition of a biconnected graph G into its triconnected components [15]. Each
triconnected component corresponds to a non-leaf node ν of T ; the triconnected component
itself is called the skeleton of ν and is denoted as skel(ν). Node ν can be: (i) an R-node, if
skel(ν) is a triconnected graph; (ii) an S-node, if skel(ν) is a simple cycle of length at least
three; (iii) a P-node, if skel(ν) is a bundle of at least three parallel edges. A degree-1 node
of T is a Q-node and represents a single edge of G. A real edge (resp. virtual edge) in skel(ν)
corresponds to a Q-node (resp., to an S-, P-, or R-node) adjacent to ν in T . Neither two S-
nor two P-nodes are adjacent in T . The SPQR-tree of a biconnected graph can be computed
in linear time [8, 14]. Let e be a designated edge of G, called the reference edge of G, let ρ

be the Q-node of T corresponding to e, and let T be rooted at ρ. For any P-, S-, or R-node
ν of T , skel(ν) has a virtual edge, called reference edge of ν and denoted as eν , associated
with a virtual edge in the skeleton of its parent. The end-vertices of the reference edge of ν

are called the poles of ν. For every node ν ̸= ρ, the pertinent graph Gν of ν is the subgraph
of G whose edges correspond to the Q-nodes in the subtree of T rooted at ν. Without loss of
generality, we shall consider SQPR-trees where every S-node has exactly two children (see,
e.g., [5, 9, 12]); this lifts the condition that two S-nodes cannot be adjacent in T .

Angles in upward drawings. Let G = (V, E) be a digraph. For each edge (u, v) ∈ E, we
write uv if (u, v) is oriented from u to v in G, and we write vu otherwise. A vertex v is a
switch of G, if it is either a source or a sink, and it is a non-switch otherwise. Recall that a
digraph is upward planar if and only if it is a subgraph of an st-planar graph [8]. Hence, being
upward planar is a necessary condition for YES-instances of st-Planar Edge Completion.
Consider now a biconnected plane digraph G. An angle is an incidence between a vertex
v and a face f of G. Let α be one such angle, and consider the two edges incident to v

that belong to the boundary of f . If such edges are one incoming and one outgoing, α is
a non-switch angle, while if the edges are both incoming or both outgoing, α is a switch
angle. Note that a switch angle in a face f can be made by two edges that are incident to
a non-switch vertex v: it is enough that the edges of f incident to v are both incoming or
both outgoing. In this case, v is a local switch for face f . An angle assignment is a labeling
λ of the angles of G with labels {−1, 0, +1} (see, e.g., [1, 2, 3, 11]). In particular, non-switch
angles can only receive the label 0, while switch angles can be labeled as either −1 or +1.
The planar embedding of G can be realized as an upward drawing if and only if there is an
angle assignment such that: (i) each switch vertex has exactly one angle labeled +1; (ii) each
non-switch vertex has exactly two angles labeled as 0, while all the others are switch angles
labeled −1; (iii) the difference between the number of angles labeled +1 and the number of
angles labeled −1 along the boundary of each inner face is −2; (iv) the difference between
the number of angles labeled +1 and the number of angles labeled −1 along the boundary of
the external face is +2. Observe that property (ii) implies that each non-switch vertex forms
exactly two non-switch angles. An angle assignment satisfying the above properties is called
upward. The restriction of an upward angle assignment to the angles of a single face f is an
upward angle assignment for f .

3 Overview of the Approach

Let G be a biconnected digraph. Since testing for planarity can be done in linear time, we
shall assume that G is planar. We begin by explaining two key ingredients for our algorithm,
namely, the use of SPQR-trees to encode all the planar embeddings of G, and the use of
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upward angle assignments to incrementally saturate G. The main crux of our algorithm
lies in blending these two ingredients together to design a dynamic program that solves the
problem in FPT time.

Let T be a rooted SPQR-tree of a planar graph G with reference edge e. The planar
embeddings of G in which the edge e lies on the boundary of the external face can be obtained
as follows (see, e.g., [8]). For a P- or R-node ν, denote by skel−(ν) the skeleton of ν without
its reference edge. If ν is a P-node, the embeddings of skel(ν) are the different permutations
of the edges of skel−(ν). If ν is an R-node, skel(ν) has two possible embeddings, obtained by
flipping skel−(ν) at its poles. No operations are needed at S- and Q-nodes.

Consider now an upward planar drawing Γ of G and hence assume that G is plane. Let λ

be the upward angle assignment induced by Γ. Precisely, the switch angles that are larger
(smaller) than π in Γ are labeled as +1 (−1), while the non-switch angles are labeled as 0.
Let v be a source (sink) of G and let f be the face of G in which v makes its +1 angle. Let
u be a vertex of f different from v. We say that adding uv (vu) to G saturates v, and that
uv (vu) is a saturating edge. Namely, v becomes a non-switch vertex in G′ = (V, E ∪ {uv}).
Notably, f is the only face in which an edge saturating v can be added: one easily verifies
that choosing any other face would lead to a non-upward angle assignment.

Based on the previous reasoning, at high-level, the algorithm will exploit a bottom-up
traversal of the SPQR-tree T to explore the planar embeddings of G. For each visited node,
it will keep track of the information related to the minimum number of edges required to
saturate all switches that lie in the inner faces of the corresponding pertinent graph. The
interface of a candidate solution is encoded in terms of “signatures” which, informally, are
strings containing all switches along the boundary of the external face of the pertinent graph
that do not yet have any angle labeled as +1 and all vertices that must instead contribute
with a −1 angle along the boundary. A running time bounded by a function of the budget k

is obtained by several crucial insights about how a bounded number of switches in the graph
affects the possible signatures and limits the relevant embeddings to be considered.

4 An FPT Algorithm for st-Planar Edge Completion

In this section, we describe our FPT algorithm, which leads to the following theorem.

▶ Theorem 1. Let G be an n-vertex biconnected plane digraph. There is an algorithm that
solves st-Planar Edge Completion in 2O(k2) · n2 time.

We begin by describing the records used by our dynamic program (Section 4.1), which
are used to encode the angles along the boundary of the external face of a pertinent graph.
Next, we describe the algorithm (Section 4.2), which constructs such records while traversing
bottom-up the SPQR-tree of the input graph.

4.1 Setting up the Records for Dynamic Programming
Signatures. We begin with some notation and definitions. Let G be a plane digraph. Let
Πuv be a simple undirected path of G from a vertex u to a vertex v. The signature of Πuv

is a string Σuv computed as follows. Consider a walk along Πuv from u to v. For each
encountered vertex w distinct from u and v, look at the two edges incident to w in Πuv. If the
two edges are one incoming and one outgoing, we do not append any symbol to Σuv. If the
two edges are both outgoing (incoming) and w is a switch of G, we append the symbol σ (τ).
If the two edges are both outgoing (incoming) and w is not a switch of G – hence, it is a
local switch for some face f –, we append the symbol σℓ (τℓ). Observe that, if Πuv is a single

ISAAC 2023
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u

v Σuv = τσℓ

Σvu = στ

τ

σℓ τ

σ

Figure 3 The signatures of two paths Πuv (brown background) and Πvu (purple background).

edge connecting u to v, then Σuv = ∅. At high level, the idea is that when walking along
a piece of the boundary of some face f of G, non-switch angles are ignored as their only
possible value in an angle assignment is 0. On the other hand, the symbols σℓ and τℓ will
encode switch-angles whose only possible value is −1 (else the corresponding vertex would
be a switch of G). Finally, the symbols σ and τ will point to switch angles that may be
assigned either −1 or +1. Refer to Figure 3 for an illustration.

A signature is short if it contains at most 4k + 2 symbols. Let Σ∗ be the set of short
signatures; we observe the following.

▶ Observation 2. The cardinality of Σ∗ is 2O(k).

Half-boundaries. Let G be a biconnected planar digraph, and let T be the SPQR-tree
of G rooted at a Q-node representing an arbitrary edge e of G. For each node ν of T , we
recall that Gν is the pertinent graph, and we denote by u, v the poles of ν (omitting the
dependency on ν for simplicity). Assuming that Gν comes with a fixed planar embedding, let
f be the external face of Gν . The half-boundary Buv of ν is the path containing the vertices
of f encountered in a clockwise walk of the face from u to v. The half-boundary Bvu of ν is
defined analogously walking from v to u. A vertex w on the boundary of f is bifacial if it
belongs to both Buv and Bvu (which implies that w is a cutvertex of Gν and hence ν is an
S-node). For each of the two half-boundaries we can define the two corresponding signatures
Σuv and Σvu. We will assume that for each symbol of Σuv and Σvu we have a pointer to
the corresponding vertex. Let B be one of the two half-boundaries of ν and let Σ be its
signature. Let B′ be a path contained in B (possibly B = B′). The restriction of Σ to B′,
denoted as Σ[B′], is the substring of Σ containing the symbols whose corresponding vertices
belong to B′. The next lemma shows that working with short signatures is not restrictive.

▶ Lemma 3. Let G be a biconnected upward planar digraph with a fixed upward planar
embedding E(G). Let T be the SPQR-tree of G rooted at a Q-node representing an arbitrary
edge e of G. Let ν be a node of T . For any fixed k, if G can be augmented to an st-planar
graph by adding at most k saturating edges, then the signatures Σuv and Σvu of the two
half-boundaries Buv and Bvu of ν are both short.

Proof. Let Γ be an upward planar drawing of G whose corresponding upward planar
embedding is E(G), and consider the subdrawing Γ′ induced by Gν . Let λ be the upward
angle assignment induced by Γ′, and let f be the external face of Gν . We know that f

contains at most 2k + 2 switches, otherwise k saturating edges would not suffice to turn G

into an st-planar graph. Hence, λ can label +1 at most 2k + 2 angles along the boundary of
f . Also, since λ obeys to property (iv) of an upward angle assignment, it labels −1 at most
2k angles. Therefore, Σuv and Σvu can each contain at most 4k + 2 symbols. ◀
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Internal assignments. An angle of Gν is internal if it is defined in an inner face of Gν . An
internal assignment of Gν is an angle assignment λ that labels all the internal angles of Gν

and that respects properties (i)–(iii) for upward angle assignments (but ignoring property
(iv)). A switch vertex of G is called active with respect to λ if none if its internal angles (if
any) received value +1. The cost of an internal assignment λ of Gν is the minimum number
of saturating edges needed to saturate all switches of Gν that are not active with respect to λ.

Partial solutions. We are now ready to define the table used by our dynamic program. A
tuple ⟨Σ1, Σ2, b1, b2⟩, such that Σ1, Σ2 is a pair of short signatures and b1, b2 is a pair of
flags, is called a candidate tuple in the following. Given a node ν and a candidate tuple
⟨Σ1, Σ2, b1, b2⟩, the function X(ν, Σ1, Σ2, bu, bv) returns the minimum cost of an internal
assignment λ of Gν such that: (1) Σ1 and Σ2 are the signatures of its two half-boundaries
Buv and Bvu, respectively, (2) the flag bu is true if and only if u is an active switch with
respect to λ, (3) the flag bv is true if and only if v is an active switch with respect to λ. The
set of partial solutions for ν is given by the restriction of X to the single node ν. Also, a pair
of signatures is empty if both its signatures are empty (i.e., they do not contain any symbol).

4.2 Description of the Algorithm
The function X is computed by traversing T bottom-up. For each node ν of T , we initialize
X(ν, Σ1, Σ2, b1, b2) = +∞ for each candidate tuple ⟨Σ1, Σ2, b1, b2⟩. We only ensure that
X(ν, Σ1, Σ2, b1, b2) is computed precisely if the value is at most k; for any value larger than k

we assume that X(ν, Σ1, Σ2, b1, b2) = +∞ is the correct setting, since we are only interested
in the solutions that add at most k edges.

If ν is a leaf node, then it is a Q-node and Gν is a single edge. In this case, either u is
the source and v is the sink of Gν , or vice-versa. Then we set X(ν, ∅, ∅, true, true) = 0.

The lemma below deals with the case in which ν is an S-node. Since S-nodes have exactly
two children and are not used to describe the planar embeddings of G, the routine of the
algorithm at S-nodes is relatively simple. Next, we will consider P-nodes and R-nodes, which
require more involved arguments.

▶ Lemma 4. Let ν be an S-node of T . The set of partial solutions of ν can computed in
2O(k) time.

Proof. Let µ1 and µ2 be the two children of ν. In order to compute the partial solutions for
ν, we check whether pairs of internal assignments of Gµ1 and Gµ2 can be combined together.
Let ⟨Σ1,1, Σ1,2, b1,1, b1,2⟩ and ⟨Σ2,1, Σ2,2, b2,1, b2,2⟩ be a pair of candidate tuples. Also, let
C = X(µ1, Σ1,1, Σ1,2, b1,1, b1,2) + X(µ2, Σ2,1, Σ2,2, b2,1, b2,2).

We first verify that C ≤ k, and that b1,2 ∨ b2,1 = true. The first condition guarantees
that we have not exceeded our budget k of saturating edges, while the second condition
guarantees that the pole shared by µ1 and µ2 does not receive the value +1 twice in the
final internal assignment of Gν . If both conditions are satisfied, then we proceed as detailed
below, otherwise, we discard the pair of candidate tuples.

Denote by u and w the poles of µ1, and by w and v the poles of µ2. Observe that
Buv corresponds to the union of Buw and Bwv (vertex w is hence bifacial). Based on this
observation, we show how to compute Σ1 for Buv, the computation of Σ2 can be performed
analogously. We initially set Σ1 = Σ1,1. Consider the two edges incident to w along Buv. If
one edge is incoming and the other is outgoing, then we do not append any symbol. If both
edges are incoming or both outgoing, we check whether one of b1,2 and b2,1 is false. If so, we
append the symbol σℓ if w is a source of G, or the symbol τℓ otherwise. If none of b1,2 and

ISAAC 2023
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Figure 4 Illustration for Lemma 5.

b2,1 is false, we append the symbol σ if w is a source of G, or the symbol τ otherwise. Next,
we concatenate the signature Σ2,1. Once both Σ1 and Σ2 have been computed, we verify
that each of them is short (a necessary condition by Lemma 3), otherwise we discard the
candidate tuples. Finally, we set X(ν, Σ1, Σ2, b1,1, b2,2) = C.

By Observation 2, we have 2O(k) possible pairs of signatures to consider, and performing
the above operations takes O(k) time for each pair. ◀

The next tools will be useful for the remaining lemmas. The next result is based on the
fact that face boundaries containing long sequences of non-switch vertices are irrelevant for
the sake of computing the least number of saturating edges; see Figure 4 for an illustration.

▶ Lemma 5 (⋆). Let f be an inner face of G with nf vertices, and let λf be an upward angle
assignment for f with h switch-angles. The minimum number of edges that saturate all switch
vertices of G forming an angle labeled +1 in f can be computed in O(2O(h2) + nf ) time.

▶ Lemma 6. Let ν be a node of T and let µ be a child of ν. Suppose that Gν is plane and a
half-boundary B of ν contains a half-boundary B′ of µ (B and B′ may possibly coincide).
Given an internal assignment λ of Gν and the signature of B′, the restriction of the signature
of B to B′ can be computed in O(k) time.

Proof. Let Σ′ be the signature of B′, we compute the desired signature Σ as follows. If Σ′

does not contain any symbol in {σ, τ} whose corresponding vertex is bifacial, then Σ = Σ′.
Otherwise we initialize Σ = Σ′ and proceed as follows. For each σ or τ whose corresponding
vertex w is bifacial and incident to an inner face f of Gν , we verify whether λ has labeled +1
the angle that w makes in f . If so, we replace the symbol σ or τ with σℓ or τℓ, respectively.
By construction, Σ is the restriction of the signature of B to B′. ◀

The next result will be used to bound the number of interesting children of a P-node.

▶ Lemma 7 (⋆). Let ν be a P-node of T with poles u, v. Suppose that Gν is plane, and let
µ and µ′ be two children of ν none of which is a Q-node, and whose corresponding edges
of skel(ν)− are consecutive in the permutation fixed by the planar embedding of Gν . Also,
suppose that for both µ and µ′ it holds that the pair of signatures of its two half-boundaries
is empty. Let G′ be the digraph obtained from G by removing all vertices of Gµ′ except the
poles u, v. Then G is a YES-instance of st-PEC if and only if G′ is a YES-instance.

We are now ready to deal with P- and R-nodes.

▶ Lemma 8. Let ν be a P-node of T . The set of partial solutions of ν can be computed in
2O(k2) · n time.
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Figure 5 Illustration for the proof of (a) Lemma 8 and (b) Lemma 9.

Proof. Let u and v be the poles of ν, and let µ1, µ2, . . . , µh be the h ≥ 2 children of ν. In
order to compute the partial solutions for ν, similarly as for S-nodes, we check whether sets
of internal assignments of Gµ1 , Gµ2 , . . . , Gµh

can be combined together. For each child µi,
let ⟨Σ1,i, Σ2,i, b1,i, b2,i⟩ be a candidate tuple. Let C =

∑h
i=1 X(µi, Σ1,i, Σ2,i, b1,i, b2,i).

We first verify that C ≤ k, and that at most one flag b1,i is true, as well as at most one
flag b2,i is true. The first condition guarantees that we have not exceeded our budget k,
while the second condition guarantees that the poles u, v shared by the children of ν do not
receive the value +1 twice in the final internal assignment. If both conditions are satisfied,
then we proceed as detailed below, otherwise we discard the set of candidate tuples.

Observe that h might be unbounded with respect to k, thus we cannot afford to enumerate
all possible permutations of the edges of skel−(ν). To overcome this issue, we make the
following crucial observations. First, we know that G contains at most 2k + 2 switches,
otherwise we can safely reject the instance. Consequently, at most 2k + 2 children of ν may
contain switches different from u and v in their pertinent graphs. Second, consider now a
permutation of the edges of skel−(ν) and the corresponding planar embedding of Gν . Up
to a relabeling of the children, we shall assume that the half-boundary Bvu of µi and the
half-boundary Buv of µi+1 form a face fi of Gν , for i = 1, . . . , h − 1, and that the external
face f0 of Gν consists of Buv of µ1 and Bvu of µh; see Figure 5a. Observe now that each
of u and v can contribute at most one angle labeled +1 and at most two angles labeled 0;
all other angles at u and v must be labeled −1. Hence, besides the at most six faces in
which u or v contribute an angle labeled +1 or 0, all other faces are such that they either
contain an angle labeled +1, or all their angles (except those formed by u and v) are labeled
0. Therefore, the number of faces whose half-boundaries have non-empty signatures is at
most t = 2(2k + 2) + 6 = 4k + 10 (a switch vertex may be bifacial and hence belong to two
half-boundaries). Putting all together, if there exist more than t pairs that are not empty,
then we can safely discard the set of candidate tuples.

Based on the previous observations, we will now assume to have at least h − t empty
pairs. Furthermore, if h > 2t + 2, at least two children are such that Lemma 7 holds for them.
Consequently, removing all empty pairs except t + 1 preserves the existence of a solution (if
any). Therefore, we shall further assume that we have h ∈ O(t) ∈ O(k) pairs of signatures,
and we can now enumerate all possible permutations of such pairs, and hence all possible
putative planar embeddings described by skel−(ν).

Consider now a fixed permutation. Following the same notation as before, assume that
the half-boundary Bvu of µi and the half-boundary Buv of µi+1 form a face fi of Gν , for
i = 1, . . . , h. We call such faces active. If all values b1,i are true and u is a switch, we guess
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whether u has an angle labeled +1 in some active face fi or not. In the former case, we set
flag b1 to false and also guess which active face the angle belongs to, in the latter case we set
b1 to true. We do the same for v and flag b2.

Next, consider a non-empty signature containing a symbol σ or τ . Let w be the vertex
corresponding to that symbol. If w is not bifacial, the active face in which it forms the +1
angle is unique, otherwise we must guess in which of the two active faces sharing w the +1
angle is assigned to. After doing this procedure for all such symbols, we have exhaustively
branched over the 2O(k) angle assignments for the active faces. For each such angle assignment
we can check, in O(k) time, whether it is an upward assignment for each active face. If not,
we discard the angle assignment, otherwise we now have an internal assignment λ of Gν .

Next, for each active face fi, we can apply Lemma 5 to compute the minimum number ci

of saturating edges needed to saturate all switches in fi. Let C +
∑h

i=1 ci be the cost of the
internal assignment λ. If it is larger than k, the angle assignment is discarded.

We are now ready to construct the signatures Σ1 and Σ2 of the half-boundaries Buv

and Bvu of ν. Since the half-boundary Buv of ν coincides with Buv of µ1 (as fixed by
the permutation at hand), we can invoke Lemma 6 by using λ and Σ1,1 as arguments.
Similarly, the signature Σ2 is computed invoking Lemma 6 with arguments λ and Σ2,h.
Observe that both Σ1 and Σ2 are short, because Σ1,1 and Σ2,h are short. Then we set
X(Σ1, Σ2, b1, b2) = min{X(Σ1, Σ2, b1, b2), C +

∑h
i=1 ci}; taking the minimum is needed

because different permutations, as well as different angle assignments of the same permutation,
may yield the same pair of signatures and flags but different costs.

Putting all together, it suffices to first branch over sets of candidate tuples of size h ∈ O(k),
for each set we branch over kO(k) permutations, and for each permutation we further branch
over the 2O(k) possible angle assignments of the active faces. Computing the cost of an
internal assignment takes 2O(k2) · n time by using Lemma 5. ◀

▶ Lemma 9. Let ν be an R-node of T . The set of partial solutions of ν can be computed in
2O(k2) · n time.

Proof. Let u and v be the poles of ν, and let µ1, µ2, . . . , µh be the h ≥ 2 children of ν. For each
child µi, let ⟨Σ1,i, Σ2,i, b1,i, b2,i⟩ be a candidate tuple. Let C =

∑h
i=1 X(µi, Σ1,i, Σ2,i, b1,i, b2,i).

We first verify that C ≤ k, in order to avoid exceeding the budget. Next, we check the
consistency of the flags. Recall that the vertices of skel(ν) are the poles of the children of ν.
Namely, for each vertex w of skel(ν), we verify that at most one flag corresponding to it is
false. If these conditions are met we proceed as detailed below, otherwise we discard the set
of candidate tuples.

We now make important observations concerning the number of interesting children of ν.
As in the proof of Lemma 8, we can observe that at most 2k + 2 children of ν may contain
switches different from u and v in their pertinent graphs. Now consider a child µ of ν that
does not contain switches in its pertinent graph Gµ, and let uµ and vµ be its poles. If G

admits a solution, one immediately verifies that Gµ is st-planar and its two switches are uµ

and vµ. Consequently, in any solution, the two signatures Σuµvµ and Σvµuµ must be empty.
Based on this property, it suffices to consider sets of pairs of signatures in which at most
2k + 2 pairs are not empty.

Next, following the lines of the proof of Lemma 8, consider a non-empty signature
containing a symbol σ or τ . Let w be the vertex corresponding to that symbol. If w is
not bifacial, the face in which it forms the +1 angle is unique, otherwise we must guess in
which of the two faces sharing w the +1 angle is assigned to. This is however not enough
for R-nodes. Namely, observe that each face f∗ of skel(ν)− corresponds to a face f of Gν
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whose boundary is formed by one half-boundary for each child of ν represented by an edge
of f∗ (which can be a real edge or a virtual edge); see Figure 5b. We call such faces active
in the following. Moreover, the only angles that are not yet defined are those made by the
vertices of skel(ν) that are switches and whose corresponding flags are all true. For these
vertices we shall guess in which active face they make their +1 angle. Clearly, any such a
vertex w belongs to multiple active faces (possibly including the external face). On the other
hand, for an active face to be able to absorb a +1 angle, it must contain at least three angles
labeled −1. Since we have at most 2k + 2 non-empty pairs, there are at most 4k + 4 active
faces formed by non-empty signatures. For the other active faces, the only source of −1
angles are the vertices of skel(ν). Consequently, if w is incident to more than 4k + 5 active
faces in which the number of angles labeled −1 is larger than 2, we can safely discard the
set of candidate tuples. Putting all together, for each vertex w we can branch over its O(k)
interesting active faces to decide in which of them it will make its +1 angle. This procedure
leads to 2O(k) angle assignments for the active faces. For each such angle assignment we can
check, in O(k) time, whether it is an upward assignment for each of the active faces. If not,
we discard the angle assignment, otherwise we now have an internal assignment λ of Gν .

Next, for each active face fi, we can apply Lemma 5 to compute the minimum number ci

of saturating edges needed to saturate all switches in fi. Let C +
∑h

i=1 ci be the cost of the
internal assignment. If it is larger than k, the angle assignment is discarded.

We are now ready to construct the signatures Σ1 and Σ2 of the half-boundaries Buv and
Bvu of ν. Observe that the embedding of skel(ν) if fixed up to a flipping operation, which
corresponds to inverting the two signatures. Therefore, we construct Σ1 and Σ2 as follows.
Let Σ′

i, for i = 1, . . . , r be the r ≥ 1 signatures of the half-boundaries of the children of ν

that form the half-boundary Buv of ν, in the order they are encountered from u to v. Also
let wi, i = 1, . . . , r − 1 be the vertices of skel(ν) that belong to Buv. We initialize Σ1 with
the signature obtained by invoking Lemma 6 with arguments λ and Σ′

1. For vertex w1, we
distinguish whether it is a switch of G or not. In the former case, we concatenate the symbol
σ (τ) if none of its angles in Gν is labeled as +1, otherwise we concatenate σℓ (τℓ). In the
latter case, consider the two edges incident to w1 along Buv. If one edge is incoming and the
other is outgoing, then we do not append any symbol. If both edges are outgoing (incoming),
we append σℓ (τℓ). We then repeat the procedure for the remaining signatures and vertices.
The signature Σ2 is computed analogously. Once both Σ1 and Σ2 have been computed,
we verify that each of them is short (a necessary condition by Lemma 3), otherwise we
reject the set of candidate tuples. Concerning the flags, b1 (b2) is true if and only if all
flags corresponding to u (v) are true and none of its angles in the active faces is labeled +1
according to λ. Finally we set X(Σ1, Σ2, b1, b2) = min{X(Σ1, Σ2, b1, b2), C +

∑h
i=1 ci}, as

well as X(Σ2, Σ1, b2, b1) = min{X(Σ2, Σ1, b2, b1), C +
∑h

i=1 ci}.
Putting all together, it suffices to first branch over sets of candidate tuples of size

h ∈ O(k), for each set we branch over the 2O(k) possible angle assignments of the active faces.
Computing the cost of an internal assignment takes 2O(k2) · n time by using Lemma 5. ◀

It remains to deal with the root ρ of T . Recall that Gρ = G, and that ρ is a Q-node.

▶ Lemma 10 (⋆). Let G be an n-vertex biconnected digraph, let e be an edge of G, and
let k ∈ N. There exists an algorithm that decides, in O(2O(k2) · n) time, whether G can be
augmented to an st-planar graph with e on its external face by adding at most k edges.

Proof sketch. By using Lemmas 4, 8, and 9 we can traverse T bottom up until reaching
the root ρ, which is the Q-node of T representing e. Following a similar procedure as for P-
and R-nodes, we examine the two faces containing edge e on their boundaries and branch
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over possible angle assignments. This eventually leads to an upward angle assignment of
the whole graph G such that all switches, except one source and one sink in the external
face, can be saturated with at most k edges (which implies that G is a positive instance),
otherwise G is rejected. ◀

The proof of Theorem 1 follows by applying Lemma 10 for each of the O(n) edges of G.

5 Discussion and Open Problems

We showed that st-PEC can be solved in 2O(k2) · n2 time for biconnected digraphs. It is
worth remarking that, while in principle the st-PEC problem needs not to be restricted to
biconnected digraphs (for which it is already NP-hard), considering simply connected graphs
would make the proof of our result more technical but not more interesting. In fact, one can
simply decompose the graph into its biconnected components through a block-cutvertex tree
and work with similar boundary conditions as those we already considered. More interestingly,
we ask whether st-PEC belongs to the FPL (fixed parameter linear) class. On a similar
note, improving the exponential function (or proving that it is asymptotically optimal under
standard assumptions) would also be interesting. Lastly, it remains open whether st-PEC
admits a kernel of polynomial size.
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