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Abstract
Linear programming (LP) problems with gainfree Leontief substitution systems have been intensively
studied in economics and operations research, and include the feasibility problem of a class of Horn
systems, which arises in, e.g., polyhedral combinatorics and logic. This subclass of LP problems
admits a strongly polynomial time algorithm, where devising such an algorithm for general LP
problems is one of the major theoretical open questions in mathematical optimization and computer
science. Recently, much attention has been paid to devising certifying algorithms in software
engineering, since those algorithms enable one to confirm the correctness of outputs of programs
with simple computations. Devising a combinatorial certifying algorithm for the feasibility of the
fundamental class of Horn systems remains open for almost a decade. In this paper, we provide the
first combinatorial (and strongly polynomial time) certifying algorithm for LP problems with gainfree
Leontief substitution systems. As a by-product, we resolve the open question on the feasibility of
the class of Horn systems.
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1 Introduction

In this paper, we focus on linear programming (LP) problems with Leontief substitution
systems. A matrix A is called Leontief if each column of A has at most one positive element.1
A linear system of the form

Ax = b and x ≥ 0 (1)

is called a Leontief substitution system if A is Leontief and b is nonnegative. Leontief
matrices and systems were first studied in 1950s within the context of input-output analysis
in economics (for which Wassily Leontief was awarded the Nobel Prize in economics in 1973;
see, e.g., Leontief [21] and Dantzig [9]), and have attracted much attention in economics
and operations research. There exists a line of research on algorithms for LP problems with

1 Leontief matrices defined in this paper are sometimes called pre-Leontief matrices in the literature.
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Leontief substitution systems; an O(m3n log n) strongly polynomial algorithm for a special
case where A has no more than two nonzero elements in any column [1], an O(m2n) strongly
polynomial algorithm for a special case of gainfree Leontief substitution systems [16], and
a simplex algorithm [4], where m and n respectively denote the number of equations and
variables in (1). The gainfree property will be defined in Section 2; it intuitively says that
the corresponding network, which will also be defined later, has no gain of flow.

We also remark that Leontief substitution systems play an important role in polyhedral
combinatorics and logic. For example, Horn systems are related to Leontief substitution
systems. A matrix A is called Horn if each row of A has at most one positive element,
and a linear system Ay ≤ c with Horn matrix A is called Horn. Thus, Horn matrices are
exactly transposed Leontief matrices, and the feasibility for Horn systems coincides with
that of the dual of LP problems with Leontief substitution systems. The feasibility for
Horn systems was inspired by the Horn Boolean satisfiability (SAT) problem, a well-studied
subclass of SAT in logic and computer science. Horn systems have been intensively studied
in the literature [8, 13, 32] because they have applications in diverse areas such as logic
programs, econometrics, program verification, and lattice optimization. Subclasses of Horn
systems called difference constraint (DC), unit Horn, and unit-positive Horn systems are also
extensively investigated, where a matrix A is difference if it is a {0,±1}-matrix having one
+1 and one -1 in each row [2, 11, 14, 26], unit Horn if it is a Horn {0,±1}-matrix [5, 30], and
unit-positive Horn if it is an integral Horn matrix with the positive elements being one [30,31]2.
We note that unit and unit-positive Horn systems are sometimes called Horn constraint and
extended Horn, respectively. By definition, difference matrices are unit Horn, and unit Horn
matrices are unit-positive Horn. All these matrices are transposed gainfree Leontief matrices,
which will be discussed in the next section. The feasibility problem is combinatorially solvable
in O(mn) for DC systems [2, 11] and O(m2n) for unit and unit-positive Horn systems [5],
where m and n respectively denote the number of variables and inequalities in the system.

In this paper, we study certifying algorithms for LP problems with gainfree Leontief
substitution systems. Recently, much attention has been paid to certifying algorithms in
software engineering; see [22] for a survey. Intuitively, an algorithm is called certifying if it
produces not only an answer but also a certificate with which we can easily confirm that the
answer is correct. For the shortest s-t path problem with positive edge length, the potential
of vertices (i.e., distances from s) is a certificate of a shortest s-t path. Certifying algorithms
have great advantages in practice because many commercial programs are reported to contain
bugs [22]. Certifying algorithms have been proposed for various problems in mathematical
optimization and computer science [3, 6, 7, 10, 12, 17, 20, 23, 24, 27, 29] in the past few decades.

Let us briefly summarize certifying algorithms related to gainfree Leontief substitution
systems. Standard LP solvers output a certificate of the optimality of an optimal solution;
however, no combinatorial and strongly polynomial time algorithm for general LP problems
is known and algorithms that work for special types of LP problems have been extensively
studied. We first note that the well-known Bellman-Ford algorithm for the shortest path
problem allowing negative edge length can be regarded as a certifying algorithm for the
feasibility of DC systems. In fact, the algorithm computes a feasible solution which correspond
to the potential of the associated graph G if it is feasible, and a minimal infeasible subsystem
that corresponds to a negative cycle in G if it is infeasible. This result was extended to the
unit-two-variable-per-inequality (UTVPI) systems, where a system is called unit-two-variable-

2 The unit-positive matrices coincide with the transposes of integral gainfree Leontief matrices considered
in [16], since in [16] any positive element of the matrices is assumed to be one.
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per-inequality if each inequality is of the form ±xi ± xj ≤ c for some integer c. Miné [25]
proposed a certifying algorithm for the feasibility for UTVPI systems by transforming such
systems to DC systems. Therefore, the feasibility for the systems admits combinatorial
O(mn) certifying algorithms. Gupta [15] reported that a combinatorial certifying algorithm
exists for the feasibility for unit Horn systems with nonpositivity constraints on variables,
and mentioned that it is open whether the feasibility problem admits combinatorial certifying
algorithms when the systems are unit Horn (without nonpositivity constraints) and unit-
positive Horn [15]. For LP problems with gainfree Leontief substitution systems, Jeroslow
et al. proposed a combinatorial O(m2n)-time certifying algorithm when it has an optimal
solution [16].

In this paper, we propose a combinatorial O(m3n)-time certifying algorithm for LP
problems with gainfree Leontief substitution systems when the LP problems have no optimal
solution, i.e., when they are unbounded or infeasible. This together with the algorithm
by Jeroslow et al. provides a combinatorial O(m3n)-time fully certifying algorithm for LP
problems with gainfree substitution systems. As a corollary of our result, we resolve the
open problem for the feasibility for unit-positive Horn systems.

Certifying infeasibility draws much attention in, e.g., the field of logic and it was open
how to make existing successive-approximation type combinatorial algorithms (e.g., [5,13,16])
certifying for a fundamental class of unit Horn systems. In those algorithms, the values
of variables are iteratively updated according to the constraints and for DC systems, it is
sufficient to store the previous edge (or constraint) that causes the value update of a variable
to obtain a certificate of infeasibility (i.e., a negative cycle). However, in unit Horn systems,
this is not enough; we have to store all the history of the value updates of the variables
to certify infeasibility. Our algorithm stores in which iteration the values of variables are
updated and how the values can be derived by the given constraints and utilizes these data
to compute a certificate of infeasibility when the system is infeasible.

Our algorithm is based on the directed hypergraph representation of Leontief substitution
systems introduced by Jeroslow et al. [16], and computes a certificate of infeasibility based
on Farkas’ lemma, called a Farkas’ certificate, which was also used by Gupta [15] for unit
Horn systems with nonpositivity constraints. Moreover, our algorithm for the dual feasibility
can be seen as an extension of the Bellman-Ford algorithm for the feasibility for DC systems.
In fact, if a DC system is given, then our algorithm finds a feasible solution if it is feasible,
and a minimal infeasible subsystem that corresponds to a negative cycle in the associated
graph if it is infeasible, which is the same as the Bellman-Ford algorithm.

The rest of the paper is organized as follows. Section 2 formally defines our problem and
introduces the same directed hypergraph representation of Leontief substitution systems as
in [16]. Section 3 provides our main algorithm, i.e., a combinatorial certifying algorithm for
LP problems with gainfree Leontief substitution systems. Section 4 concludes the paper.

2 Preliminaries

Let R, R+, and R++ denote the sets of reals, nonnegative reals, and positive reals, respectively.
For positive integers m and n, a matrix A ∈ Rm×n is called Leontief if each column contains
at most one positive entry. In this paper, it is always assumed that the positive elements of
A are all ones unless otherwise stated, since it is sufficient for our purpose as stated below.
Let A ∈ Rm×n be an m× n matrix, and let b ∈ Rm be a vector of dimension m. A linear
system of the form

Ax = b and x ∈ Rn
+

is called a Leontief substitution system if A is Leontief and b ∈ Rm
+ .

ISAAC 2023
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In this paper, we consider the following linear programming (LP) problem:

minimize cT x

subject to Ax = b

x ∈ Rn
+,

(2)

where the constraint is a Leontief substitution system and c ∈ Rn. As stated above, we
assume throughout the paper that the positive elements of A are all ones unless otherwise
stated, since otherwise it can be obtained by scaling the variables in the LP problem (2).

We particularly focus on the subclass of LP with Leontief substitution systems satisfying
the gainfree property. To define gainfreeness, it is convenient to introduce a directed
hypergraph representation [16] of Leontief substitution systems. This representation is also
used to state our algorithms.

A directed hypergraph H is an ordered pair H = (V, E), where V is a finite set called a
vertex set and E is a set of hyperarcs. A hyperarc E ∈ E is an ordered pair (H(E), T (E)) of
its head and tail sets, where H(E), T (E) ⊆ V and H(E) ∩ T (E) = ∅. In our use, |H(E)| is
always at most one, i.e., |H(E)| ≤ 1. Hence, we denote H(E) by h(E), and when |h(E)| = 1,
we identify h(E) with the unique element in h(E), e.g., if v ∈ h(E), then we write h(E) = v.

Now, we explain how to define an associated directed hypergraph H = (V, E) from a
given LP problem with a Leontief substitution system (2). For a positive integer k, let
[k] = {1, . . . , k}. Let V = {vi | i ∈ [m]}, where vi corresponds to the ith row of A in (2)
for i ∈ [m], and let E = {Ej | j ∈ [n]}, where for each j ∈ [n] a hyperarc Ej is defined as
h(Ej) = vi if Aij = 1 for some i ∈ [m] and h(Ej) = ∅ otherwise (i.e., Aij ≤ 0 for all i ∈ [m]),
and T (Ej) = {vi ∈ V | Aij < 0}. Note that for each j ∈ [n] hyperarc Ej corresponds to
variable xj in (2). We also associate a length function ℓ : E → R to the hyperarc set E ,
where ℓ(Ej) = cj for each Ej ∈ E . Moreover, we associate a positive value to each element
of the tails of the hyperarcs in E , namely, γ :

⋃
j∈[n]({Ej} × T (Ej)) → R++ defined as

γ(Ej , vi) = −Aij (> 0) for each Ej ∈ E and vi ∈ T (Ej). Note that the directed hypergraph
is defined by matrix A and vector c (and b is irrelevant).

▶ Example 1. For the following input data, the associated directed hypergraph is drawn in
Figure 1.

A =


−(1/2) 0 1 1 0

1 −(1/3) 0 0 0
0 1 −9 0 1

−(1/3) −3 −1 0 0

 and c =


−6
5
3
−4
2

 . (3)

A directed path in directed hypergraph H from vertex v1 to vk+1 is defined by a nonempty
sequence v1E1v2E2v3 · · ·Ekvk+1, with no intermediate vertex or hyperarc repeated, such
that vi+1 = h(Ei) and vi ∈ T (Ei) for i = 1, . . . , k. A directed path from vertex v1 to vk+1 is
a directed cycle if v1 = vk+1.

Now, we are ready to define gainfreeness.

▶ Definition 2 (Gainfreeness). Let v1E1v2E2v3 · · ·Ekvk+1 be a directed cycle, where v1 = vk+1.
The gain of this directed cycle is defined by 1/

∏k
i=1 γ(Ei, vi). We term a Leontief substitution

system (and its defining matrix) gainfree if the gain of every directed cycle in the associated
directed hypergraph is at most one.
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Figure 1 The directed hypergraph representation corresponding to the input (3).

From definition, unit and unit-positive Horn matrices are transpose of gainfree Leontief
matrices.

▶ Example 3. In Example 1, the unique directed cycle of the directed hypergraph represent-
ation is v1E1v2E2v3E3v1, where each Ei corresponds to the ith column of A. The gain of
this cycle is 1/(1/2 · 1/3 · 9) = 2/3 ≤ 1. Hence, matrix A in (3) is gainfree.

Now, we recall some notion from LP theory. A vector x ∈ Rn
+ is called a feasible solution

of (2) if it satisfies the constraints in (2). An LP problem is feasible if it has a feasible solution,
and infeasible otherwise. A vector x ∈ Rn

+ is called an optimal solution of (2) if it is feasible
and cT x ≤ cT x′ for any feasible solution x′. When an LP problem has an optimal solution
x, the objective value cT x is called an optimal value. An LP problem is either feasible or
infeasible, and when it is feasible either it has an optimal solution or it is unbounded (i.e.,
its optimal value is not bounded below). Since we consider certifying algorithms, we have to
produce a certificate in each case. To state what constitutes a certificate in each case, we
recall the dual LP problem of (2):

maximize yT b

subject to yT A ≤ cT

y ∈ Rm.

(4)

To contrast, the LP problem (2) is sometimes called the primal LP problem in what follows.
The following duality theorem of LP is well-known.

▶ Theorem 4 (E.g., [28]). For the LP problem (2) and its dual problem (4), exactly one of
the following holds:

(i) both (2) and (4) have feasible solutions whose objective values are the same,
(ii) (2) is infeasible, and (4) feasible and unbounded,
(iii) (2) is feasible and unbounded, and (4) is infeasible;
(iv) both (2) and (4) are infeasible.

We regard a feasible solution as a certificate of feasibility of an LP problem. For
infeasibility we use the following lemma.

▶ Lemma 5 (E.g., [28]). The LP problem (2) is infeasible if and only if

zT A ≤ 0, zT b > 0, and z ∈ Rm (5)

is feasible. Moreover, the dual LP problem (4) is infeasible if and only if

Ar = 0, cT r < 0, and r ∈ Rn
+ (6)

is feasible.

ISAAC 2023
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Now, we define what constitute certificates for the four possible cases in Theorem 4.

(i) Feasible solutions of (2) and (4) whose objective values are the same,
(ii) a feasible solution of (5) (called a Farkas’ certificate of infeasibility of (2)) and a feasible

solution of (4),
(iii) a feasible solution of (2) and a feasible solution of (6) (called a Farkas’ certificate of

infeasibility of (4)),
(iv) a feasible solution of (5) and a feasible solution of (6).

With those certificates, we can confirm the correctness of the output of our certifying
algorithm for solving the LP problem (2) by checking if given vectors satisfy the corresponding
linear systems. We note that for case (ii) (resp., (iii)) a feasible solution of (5) (resp., (6)) is
a direction of unboundedness.

3 Main algorithms

In this section, we provide a combinatorial certifying algorithm for LP problems with gainfree
Leontief substitution systems (2) and show the following theorem. Here, a combinatorial
algorithm consists only of additions, subtractions, multiplications, and comparisons. Recall
that m is the number of constraints and n is the number of variables in (2).

▶ Theorem 6 (Main). The LP problems with gainfree Leontief substitution systems (2) admit
a combinatorial strongly polynomial time certifying algorithm that runs in O(m3n) time.

Our algorithm extends the non-certifying algorithm in [16]. Let us first summarize the
algorithm in [16], which consists of ValueIteration and PrimalRetrieval. ValueIter-
ation determines feasibility of the dual LP problem (4). It starts from a sufficiently large
vector and iteratively compute an upper bound of the value of each variable derived from
the constraints in (4). For an LP problem with a gainfree Leontief substitution system, m

iterations are shown to be sufficient to obtain a feasible solution if the dual LP problem is
feasible. Then, feasibility of the primal LP problem (2) can be determined using the data
computed in ValueIteration, and when both primal and dual LP problems are feasible,
PrimalRetrieval computes a feasible solution of the primal LP problem. This algorithm
outputs feasible solutions of the primal and dual LP problems with the same objective values
as a certificate of primal and dual feasibility for case (i) in Theorem 4 in Section 2.

To make the algorithm in [16] also certifying for primal and dual infeasibility (i.e., for
cases (ii-iv) in Theorem 4), we modify the algorithm and add several subroutines to it. We
first modify ValueIteration to DualFeasibility (Algorithm 2). In DualFeasibility,
when the upper bound y(k) for the dual variables is updated in the kth iteration of the
for-loop starting from line 2, we store (i) variables changed in the iteration in array change(k)

and (ii) vectors r(k) that represents how an upper bound y(k) is derived from the constraint
in (4). This enables us to compute a Farkas’ certificate of dual infeasibility in FarkasCerti-
ficateOfDualInfeasibility (Algorithm 4) when the dual LP problem is infeasible. This
modification also makes our algorithm different from the one in [15]. Since the upper bound
y(m) computed in DualFeasibility contains symbol M as described below, we compute in
DualSolution (Algorithm 3) a feasible solution of the dual LP problem from y(m) when
the dual LP problem is feasible. Intuitively, if we substitute sufficiently large value for M ,
then y(m) becomes a feasible solution. Then PrimalFeasibility (Algorithm 6) determines
the feasibility of the primal LP problem (2) using the same criterion as in (ii) of Theorem
3.6 in [16]. PrimalSolution is almost the same as PrimalRetrieval in [16], however,
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the former computes a primal feasible solution even when the dual LP problem is infeasible
by running DualFeasibility for a feasible dual LP problem where c is set to 0. Finally, in
DualFeasibility we treat M as a symbol representing an “arbitrary large” number so that
we can compute a Farkas’ certificate of primal infeasibility in FarkasCertificateOfPrim-
alInfeasibility (Algorithm 8) by just taking the coefficient of M in y(m). More precisely,
for any real numbers α1, α2, β1, β2 ∈ R, we define α1M + β1 > α2M + β2 if and only if
α1 > α2 or (α1 = α2 and β1 > β2)3. In what follows, we denote by ei (resp., eE) an unit
vector of appropriate size, where its ith element (resp., its element indexed by hyperarc E)
is 1 and all other elements are 0.

For the readability, we first describe a certifying algorithm for the feasibility for the dual
of the LP problems (with gainfree Leontief substitution systems) in Subsection 3.1 and one
for the feasibility for the primal LP problems in Subsection 3.2. A proof of Theorem 6 will
be given in Subsection 3.3. Due to the space limitation, we omit proofs of most results.

3.1 A certifying algorithm for the feasibility for the dual LP problem
In this subsection, we provide a certifying algorithm for the feasibility for the dual (4) of the
LP problem with a gainfree Leontief substitution system. The main algorithm (Algorithm 1)
first calls subroutine DualFeasibility (Algorithm 2), which determines the feasibility of
the dual LP problem (4). If it is feasible, then subroutine DualSolution (Algorithm 3)
is called to compute a feasible solution of the dual LP problem; otherwise, subroutine
FarkasCertificateOfDualInfeasibility (Algorithm 4) is called to compute a Farkas’
certificate of dual infeasibility.

Algorithm 1 A combinatorial certifying algorithm for the feasibility for the dual of the
LP problems with gainfree Leontief substitution systems.

Input: A matrix A and a vector c for the constraint of the dual LP problem (4).
1 (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), nontriv(m), q, VALUE)←DualFeasibility(A, c).
2 if VALUE = true then
3 y∗ ← DualSolution(A, c, y(m)).
4 print “dual-feasible” and return y∗.
5 else
6 r∗ ← FarkasCertificateOfDualInfeasibility(A, c, y(m), r(k)(k =

0, ..., m), change(k)(k = 0, ..., m), p(k)(k = 0, ..., m)).
7 print “dual-infeasible” and return r∗.
8 end

Before going into proofs of correctness of these algorithms, we show an example how
these algorithms work. We only describe how upper bound y(k) and vector r

(k)
v are updated

in each iteration of the for-loop starting from line 2 in DualFeasibility in the example
for readability. Also, we omit the input vector b in the example, since b is irrelevant to
feasibility of the dual LP problem (4).

3 We may regard αM + β as an element (α, β) of R2 equipped with a lexicographical order, i.e., (α1, β1) >
(α2, β2) if and only if α1 > α2 or (α1 = α2 and β1 > β2). This fact was pointed out by a reviewer. We
use notation αM + β, since we substitute some value for M in our algorithm.

ISAAC 2023
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Algorithm 2 DualFeasibility.

Input: A matrix A and a vector c for the constraint of the dual LP problem (4).
1 For each v ∈ V , y(0)(v)←M , r

(0)
v ← 0, change(0)(v)← false, p(0)(v)← ∅,

nontriv(0)(v)← false, and q(v)← 0.
2 for k = 1, . . . , m do
3 for v ∈ V do
4 if y(k−1)(v) > min

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(k−1)(u) | E ∈ E , h(E) = v

}
then

5 Choose an arbitrary
E ∈ argmin

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(k−1)(u) | E ∈ E , h(E) = v

}
.

6 y(k)(v)← ℓ(E) +
∑

u∈T (E) γ(E, u)y(k−1)(u).
7 p(k)(v)← E.
8 r

(k)
v ← eE +

∑
u∈T (E) γ(E, u)r(k−1)

u .
9 change(k)(v)← true.

10 if for every u ∈ T (E) nontriv(k−1)(u) = true (this includes the case that
T (E) = ∅) then

11 nontriv(k)(v)← true and q(v)← k.
12 else
13 nontriv(k)(v)← nontriv(k−1)(v).
14 end
15 else
16 y(k)(v)← y(k−1)(v), p(k)(v)← ∅, r

(k)
v ← r

(k−1)
v , change(k)(v)← false, and

nontriv(k)(v)← nontriv(k−1)(v).
17 end
18 end
19 end
20 if y(m)(v) > min

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u) | E ∈ E , h(E) = v

}
for some

v ∈ V then
21 VALUE← false.
22 else if 0 > ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u) for some E ∈ E with h(E) = ∅ then

23 VALUE← false.
24 else
25 VALUE← true.
26 end
27 return (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), nontriv(m), q, VALUE).

▶ Example 7. For the following matrix A (whose transpose is unit Horn) and vector c

A =


−1 0 1 1 0 0 0
1 −1 0 0 1 0 0
0 1 −1 0 0 1 0
−1 −1 −1 0 0 0 1

 and c =



−1
0
0
0
0
0
0


,
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Algorithm 3 DualSolution.

Input: A matrix A and a vector c for the constraint of the dual LP problem (4), and
an n-dimensional vector y(m) with each entry being a linear function of M .

1 for each E ∈ E do
2 Define two integers α(E) and β(E) such that

α(E)M + β(E) = y(m)(h(E))− ℓ(E)−
∑

u∈T (E) γ(E, u)y(m)(u) , if where we
define y(m)(∅) = 0.

3 end
4 if all E ∈ E satisfy α(E) ≥ 0 then
5 λ← 0.
6 else
7 λ← max

{
β(E)

−α(E) | E ∈ E , α(E) < 0
}

.
8 end
9 Let y∗ be the vector obtained from y(m) by substituting λ for M .

10 return y∗.

y(0) = (M, M, M, M)T and r
(0)
vi = 0 for i = 1, 2, 3, 4.

Iteration 1: y(1) = (0, 0, 0, 0)T and r
(1)
vi = ei+3 (i = 1, 2, 3, 4).

Iteration 2: y(2) = (0,−1, 0, 0)T and r
(2)
v2 = e1 + e4 + e7.

Iteration 3: y(3) = (0,−1,−1, 0)T and r
(3)
v3 = e1 + e2 + e4 + 2e7.

Iteration 4: y(4) = (−1,−1,−1, 0)T and r
(4)
v1 = e1 + e2 + e3 + e4 + 3e7.

Now, the first inequality is violated by y(4) as (−1, 0, 1,−1)y(4) = 0 > −1. Then, by running
FarkasCertificateOfDualInfeasibility, we have r∗ = r

(5)
v2 − r

(2)
v2 = e1 + e2 + e3 + 3e7.

Here, Ar∗ = (0, 0, 0, 0)T and cT r∗ = −1. Hence, r∗ is a Farkas’ certificate of infeasibility of
the dual LP problem (4).

In the remainder of this subsection, we will prove correctness of Algorithm 1. We show
correctness of subroutines DualFeasibility, DualSolution4, and FarkasCertific-
ateOfDualInfeasibility, and show the following proposition.

▶ Proposition 8. Algorithm 1 is a combinatorial strongly polynomial time certifying algorithm
that runs in O(m3n) time for the feasibility for the dual (4) of the LP problem with a gainfree
Leontief substitution system.

To show Proposition 8, we first deal with the case where Algorithm 1 prints “dual-feasible”
(or, equivalently, DualFeasibility returns true) in Lemma 9 below. Then, we deal with the
case where Algorithm 1 prints “dual-infeasible” (or, equivalently, DualFeasibility returns
false) in Lemma 10 below.

▶ Lemma 9. If DualFeasibility returns true, then the dual LP problem (4) is feasible
and DualSolution outputs a feasible solution to it.

Proof. We show that the output y∗ of DualSolution is a feasible solution of the dual LP
problem (4). We divide the proof into cases according to the conditions in the definition of λ

in DualSolution.

4 DualSolution uses a division, however, we can avoid the division by using ValueIteration in [16] to
obtain a feasible dual solution.
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Algorithm 4 FarkasCertificateOfDualInfeasibility.

Input: A matrix A and a vector c for the constraint of the dual LP problem (2),
y(m), and r(k), change(k), and p(k) for k = 0, ..., m.

1 if y(m)(v) > min
{

ℓ(E) +
∑

u∈T (E) γ(E, u)y(m)(u) | E ∈ E , h(E) = v
}

for some
v ∈ V then

2 Choose one v ∈ V such that
y(m)(v) > min

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u) | E ∈ E , h(E) = v

}
.

3 Choose an arbitrary E ∈ E with h(E) = v that minimizes
ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u).

4 wm+1 ← v.
5 r

(m+1)
wm+1 ← eE +

∑
u∈T (E) γ(E, u)r(m)

u .
6 E(m+1) ← E.
7 /* Find a cycle */
8 for k = m + 1, . . . , 2 do
9 Choose an arbitrary u ∈ T (E(k)) such that change(k−1)(u) = true.

10 wk−1 ← u.
11 E(k−1) ← p(k−1)(wk−1).
12 if wk−1 = wq for some q ≥ k then
13 t← q.
14 s← k − 1.
15 Break.
16 end
17 end
18 r∗ ← r

(t)
wt − r

(s)
ws .

19 return r∗.
20 else
21 Choose one E ∈ E with h(E) = ∅ such that 0 > ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u).

22 r∗ ← eE +
∑

u∈T (E) γ(E, u)r(m)
u .

23 return r∗.
24 end

Fix E ∈ E . Note that we have

y(m)(h(E)) ≤ ℓ(E) +
∑

u∈T (E)

γ(E, u)y(m)(u),

since the conditions of “if ” and “else if ” in lines 20 and 22, respectively, are false in
DualFeasibility, where we define y(m)(∅) = 0. Hence, we have α(E)M + β(E) ≤ 0. It
follows that α(E) ≤ 0. If α(E) = 0, then β(E) ≤ 0 and y∗ satisfy the constraint in the dual
LP problem (4) corresponding to E. If α(E) < 0, then y∗ also satisfies the inequality in the
dual LP problem (4) corresponding to E, since λ ≥ β(E)

−α(E) by definition. This completes the
proof. ◀

Next, we treat the case where DualFeasibility returns false and show the following.

▶ Lemma 10. If DualFeasibility returns false, then the dual LP problem (4) is infeas-
ible and FarkasCertificateOfDualInfeasibility returns a Farkas’ certificate of dual
infeasibility.
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The proof of Lemma 10 is the most technical part of our results. Intuitively, when Dual-
Feasibility returns false, we can find a “negative cycle” as in the case of difference constraint
(DC) systems. Here, the gainfree property ensures that such a negative cycle, together with
paths to the tails of hyperarcs in the cycle, corresponds to an infeasible subsystem of (4). The
vectors r

(k)
v store how the negative cycle is derived from constraints in (4) and help to compute

such a subsystem (with multiplicity) in FarkasCertificateOfDualInfeasibility.
We first treat the case where the “if ” condition in line 20 is false and the “else if ”

condition in line 22 is true in DualFeasibility.

▶ Lemma 11. If DualFeasibility returns false as the “if ” condition in line 20 is false
and the “else if ” condition in line 22 is true, then the dual LP problem (4) is infeasible and
FarkasCertificateOfDualInfeasibility returns a Farkas’ certificate of dual infeasibility.

To show this lemma, we need some auxiliary claims, which can be shown by mathematical
induction on k.

▷ Claim 12. In the end of DualFeasibility, for all k ∈ {1, . . . , m} and v ∈ V , y(k)(v)
contains M if and only if nontriv(k)(v) = false. Moreover, if y(k)(v) contains M , the coefficient
of M is positive for all k = 1, . . . , m and v ∈ V .

▷ Claim 13. In the end of DualFeasibility, for all k ∈ {1, . . . , m} and v ∈ V , we have
Ar

(k)
v ≤ ev, r

(k)
v ≥ 0, and cT r

(k)
v equals the constant term of y(k)(v). If nontriv(k)(v) = true,

then Ar
(k)
v = ev and cT r

(k)
v = y(k)(v).

Proof of Lemma 11. We show that r∗ returned by FarkasCertificateOfDualInfeas-
ibility is actually a Farkas’ certificate of dual infeasibility, i.e., (i) r∗ ≥ 0, (ii) Ar∗ = 0, and
(iii) cT r∗ < 0 (see Lemma 5).

For (i), from Claim 13, we have that r∗(= eE +
∑

u∈T (E) γ(E, u)r(m)
u ) is a sum of

nonnegative vectors. Hence, r∗ ≥ 0.
For (ii), observe that to satisfy 0 > ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u), y(m)(u) must not

contain M for each u ∈ T (E), since otherwise the right-hand side of the inequality contains
M with a positive coefficient from Claim 12 and thus greater than zero. Hence, for each
u ∈ T (E) nontriv(m)(u) = true from Claim 12, implying that Ar

(m)
u = eu from Claim 13.

Therefore, we have

Ar∗ = AeE +
∑

u∈T (E)

γ(E, u)Ar(m)
u = −

∑
u∈T (E)

γ(E, u)eu +
∑

u∈T (E)

γ(E, u)eu = 0.

For (iii), for each u ∈ T (E) we have cT r
(m)
u = y(m)(u) from Claim 13 since nontriv(m)(u) =

true as shown above. Hence, we have cT r∗ = cT eE +
∑

u∈T (E) γ(E, u)cT r
(m)
u = ℓ(E) +∑

u∈T (E) γ(E, u)y(m)(u) < 0.

Therefore, r∗ is a Farkas’ certificate of dual infeasibility and by Lemma 5 the dual LP
problem (4) is infeasible. ◀

We then deal with the case where the “if ” condition in line 20 is true in DualFeasibility.

▶ Lemma 14. If DualFeasibility returns false as the “if ” condition in line 20 is true,
then the dual LP problem (4) is infeasible and FarkasCertificateOfDualInfeasibility
returns a Farkas’ certificate of the dual infeasibility.

To show Lemma 14, we need further auxiliary claims.
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▷ Claim 15. In FarkasCertificateOfDualInfeasibility, for each k = m+1, m, . . . , s+1,
there exists u ∈ T (E(k)) such that change(k−1)(u) = true.

Claim 15 implies the following claim.

▷ Claim 16. In FarkasCertificateOfDualInfeasibility, we can always obtain a cycle.

The following claim uses the gainfree property of the LP problem (2).

▷ Claim 17. In the end of FarkasCertificateOfDualInfeasibility, for any s+1 ≤ k ≤ t

and any u ∈ T (E(k)) \ {wk−1}, we have nontriv(k−1)(u) = true.

Now, we are ready to prove Lemma 14.

Proof of Lemma 14. We show that r∗ is actually a Farkas’ certificate of dual infeasibility,
i.e., (i) r∗ ≥ 0, (ii) Ar∗ = 0, and (iii) cT r∗ < 0. Due to page limitation, we only prove (ii).
For (ii), recall that for any s+1 ≤ k ≤ t and any u ∈ T (E(k))\{wk−1}, we have Ar

(k−1)
u = eu

from Claims 13 and 17. Moreover, we have AeE(k) = eh(E(k)) −
∑

u∈T (E(k)) γ(E(k), u)eu.
Hence, for each s + 1 ≤ k ≤ t,

Ar(k)
wk

= A(eE(k) +
∑

u∈T (E(k))

γ(E(k), u)r(k−1)
u )

= eh(E(k)) −
∑

u∈T (E(k))

γ(E(k), u)eu + A(
∑

u∈T (E(k))

γ(E(k), u)r(k−1)
u )

= ewk
+

∑
u∈T (E(k))

γ(E(k), u)(Ar(k−1)
u − eu)

= ewk
+

∑
u∈T (E(k))\{wk−1}

γ(E(k), u)(Ar(k−1)
u − eu)

+ γ(E(k), wk−1)(Ar
(wk−1)
k−1 − ewk−1)

= ewk
+ γ(E(k), wk−1)(Ar

(wk−1)
k−1 − ewk−1).

Namely, we have Ar
(k)
wk − ewk

= γ(E(k), wk−1)(Ar
(wk−1)
k−1 − ewk−1). Therefore, we have

Ar(t)
wt
− ewt

= γ(E(t), wt−1)(Ar(t−1)
wt−1

− ewt−1) = · · · =
t∏

k=s+1
γ(E(k), wk−1)(Ar(s)

ws
− ews

).

Hence, we have

Ar∗ = A(r(t)
wt
− r(s)

ws
)

= ewt +
t∏

k=s+1
γ(E(k), wk−1)(Ar(s)

ws
− ews)−Ar(s)

ws

= ewt +
(

t∏
k=s+1

γ(E(k), wk−1)− 1
)

Ar(s)
ws
−

t∏
k=s+1

γ(E(k), wk−1)ews
.

Now, if nontriv(t)(wt) = true, we can show that nontriv(s)(ws) = true. Hence, Ar
(s)
ws = ews

by Claim 13. Therefore, we have
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ewt
+
(

t∏
k=s+1

γ(E(k), wk−1)− 1
)

Ar(s)
ws
−

t∏
k=s+1

γ(E(k), wk−1)ews

= ewt
+ (

t∏
k=s+1

γ(E(k), wk−1)− 1)ews
−

t∏
k=s+1

γ(E(k), wk−1)ews

= ewt − ews = 0,

where the last equality holds since wt = ws. If nontriv(t)(wt) = false, we can show that∏t
k=s+1 γ(E(k), wk−1) = 1. Therefore, we have

ewt
+
(

t∏
k=s+1

γ(E(k), wk−1)− 1
)

Ar(s)
ws
−

t∏
k=s+1

γ(E(k), wk−1)ews

= ewt − ews = 0.

In either case, we have Ar∗ = 0. ◀

Combining Lemma 11 and Lemma 14, we obtain Lemma 10.
Now, we are ready to show Proposition 8.

Proof of Proposition 8. Note that subroutines DualFeasibility, DualSolution, and
FarkasCertificateOfDualInfeasibility constitute a certifying algorithm for the feasib-
ility for the dual LP problem (4) (Algorithm 1). The correctness of this algorithm follows
from Lemmas 9, 11, and 14.

Now, we analyze the running time of the algorithm. The most time-consuming part
of the algorithm is the for-loop from line 2 to 19 in DualFeasibility. This for-loop
has m iterations, and O(mn) operations for computing r

(k)
v each v ∈ V in each iteration.

Hence, it takes O(m3n) time. Moreover, since in each of the m iterations the numbers glow
O(max(maxi,j(Aij), maxi(bi), maxj(cj)) · n) time, the bit-lengths of the numbers appearing
during the algorithm can be bounded by a polynomial in the size of the input. Hence, the
algorithm is a strongly polynomial time one. ◀

3.2 A certifying algorithm for the feasibility for the primal LP problem
In this subsection, we provide a certifying algorithm for the feasibility for the primal LP
problem (2) with a gainfree Leontief substitution system, using the data computed in Dual-
Feasibility. More precisely, we show that subroutines PrimalFeasibility (Algorithm 6),
PrimalSolution (Algorithm 7), and FarkasCertificateOfPrimalInfeasibility (Al-
gorithm 8), together with DualFeasibility, constitute a certifying algorithm for the
feasibility for the primal LP problem (2) (Algorithm 5). PrimalFeasibility determines
feasibility of the primal LP problem (2) using the same criterion as in (ii) of Theorem
3.6 in [16]. PrimalSolution is similar to PrimalRetrieval in [16]; however, Prim-
alSolution also computes a primal feasible solution when the dual LP problem is infeasible.
FarkasCertificateOfPrimalInfeasibility returns a Farkas’ certificate of the primal
infeasibility, where the gainfree property is again crucial for the correctness.

The following example shows how these algorithms work.

▶ Example 18. Recall Example 7 in Subsection 3.1. In this example, we have nontriv(m)(v) =
true for each v ∈ V and PrimalFeasibility(b, nontriv(m)) = true for any b(≥ 0). Hence,
PrimalSolution is called in Algorithm 5. As the dual LP problem is infeasible, DualFeas-
ibility(A, 0) is called in PrimalSolution and in particular q = (1, 1, 1, 1)T is obtained.
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Algorithm 5 Combinatorial certifying algorithm for the feasibility for the primal LP
problems with gainfree Leontief substitution systems.

Input: A matrix A and vectors b and c for the primal LP problem (2).
1 (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), nontriv(m), q, VALUE)←DualFeasibility(A, c).
2 if PrimalFeasibility(b, nontriv(m)) = true then
3 x∗ ← PrimalSolution(A, b, nontriv(m), p(k)(k = 0, ..., m), q, VALUE).
4 print “primal-feasible” and return x∗.
5 else
6 z∗ ← FarkasCertificateOfPrimalInfeasibility(y(m), nontriv(m)).
7 print “primal-infeasible” and return z∗.
8 end

Then in the while-loop in PrimalSolution variables x∗ and f are updated as follows.
Initially, x∗ = 0 and f = (b1, b2, b3, b4)T . First, we may choose v1 according to q and since
p(1)(v1) = E4, x∗(E4) = b1 and f remains unchanged. Then we may choose v2 and since
p(1)(v2) = E5, x∗(E5) = b2 and f remains unchanged. Then we may choose v3 and since
p(1)(v3) = E6, x∗(E6) = b3 and f remains unchanged. Finally, we choose v4 and since
p(1)(v4) = E7, x∗(E7) = b4. Then we obtain a feasible solution x∗ = (0, 0, 0, b1, b2, b3, b4)T of
the primal LP problem (2).

Algorithm 6 PrimalFeasibility.

Input: A vector b and nontriv(m).
1 if b(v) = 0 for all v with nontriv(m)(v) = false then
2 return true.
3 else
4 return false.
5 end

Now, we show correctness of subroutines PrimalFeasibility, PrimalSolution, and
FarkasCertificateOfPrimalInfeasibility, and show the following proposition.

▶ Proposition 19. Algorithm 5 is a combinatorial strongly polynomial time certifying al-
gorithm that runs in O(m3n) time for the feasibility for the primal LP problem (2) with a
gainfree Leontief substitution system.

To show Proposition 19, we use the following lemmas.

▶ Lemma 20. If PrimalFeasibility returns true, then the primal LP problem (2) is
feasible and PrimalSolution returns a feasible solution of (2).

▶ Lemma 21. If PrimalFeasibility returns false, then the primal LP problem (2) is
infeasible and FarkasCertificateOfPrimalInfeasibility returns a Farkas’ certificate of
the primal infeasibility.

Proof of Proposition 19. Note that subroutines PrimalFeasibility, PrimalSolution,
and FarkasCertificateOfPrimalInfeasibility, together with DualFeasibility, con-
stitute a certifying algorithm for the feasibility for the primal LP problem (2) (Algorithm 5).
Correctness of this algorithm follows from Lemmas 20 and 21.
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Algorithm 7 PrimalSolution.

Input: A matrix A and a vector b for the constraint of the primal LP problem (2),
and nontriv(m), p(k)(k = 0, ..., m), q, VALUE.

1 if VALUE = false then
2 (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), q, VALUE)←DualFeasibility(A, 0).
3 end
4 For each E ∈ E , x∗(E)← 0, Ṽ ← {i ∈ V | nontriv(m)(i) = true}, and for each v ∈ V ,

f(v)← b(v).
5 while Ṽ ̸= ∅ do
6 Choose an arbitrary v ∈ Ṽ with maximum q(v).
7 E ← p(q(v))(v).
8 x∗(E)← f(v).
9 f(u)← f(u) + γ(E, u)x(E) for each u ∈ T (E).

10 Ṽ ← Ṽ \ {v}.
11 end
12 return x∗.

Algorithm 8 FarkasCertificateOfPrimalInfeasibility.

Input: A vector y(m) and nontriv(m).
1 for each v ∈ V do
2 if nontriv(m)(v) = true then
3 z∗(v)← 0.
4 else
5 z∗(v)← the coefficient of M in y(m)(v).
6 end
7 end
8 return z∗.

Now, we analyze the running time of the above algorithm. The most time-consuming part
of is DualFeasibility, which runs in O(m3n) time as shown in the proof of Proposition 8.
This completes the proof. ◀

3.3 Proof of the main theorem (Theorem 6)

Combining the results in Subsections 3.1 and 3.2, we can show our main theorem.

Proof of Theorem 6. From Theorem 4, Algorithms 1 and 5 constitute a certifying algorithm
for solving the LP problem. Correctness and the running time of the algorithm follow from
Propositions 8 and 19. ◀

Finally, the following example shows that gainfreeness is necessary for convergence of
the for-loop from line 2 to 19 in DualFeasibility for a feasible dual LP problem of an LP
problem with a Leontief substitution system.
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▶ Example 22. For the following matrix A (which is Leontief but not gainfree) and vector c

A =
(

1 −1
−(1/2) 1

)
and c =

(
0
0

)
,

it is clear that (0, 0)T is a feasible solution of the dual LP problem (4). However, one
can see that y(0) = (M, M)T , y(1) = ((1/2)M, M)T , y(2) = ((1/2)M, (1/2)M)T , y(3) =
((1/4)M, (1/2)M)T , y(3) = ((1/4)M, (1/4)M)T , and so on, and the for-loop from line 2 to
19 in DualFeasibility does not converge in a finite number of iterations.

4 Conclusion

We proposed a combinatorial strongly polynomial time certifying algorithm for the LP
problems with gainfree Leontief substitution systems. Since the dual LP problems with
gainfree Leontief substitution systems contains the feasibility for unit-positive Horn systems,
we resolved the open questions raised in [15].

An interesting future direction would be to make other non-certifying algorithms certifying.
A candidate would be to extend our result on unit Horn systems to unit q-Horn systems,
introduced in [18]. Unit q-Horn systems include not only unit Horn systems but also unit-
two-variable-per-inequality (UTVPI) systems, and the feasibility for unit q-Horn systems is
solvable in polynomial time [18]. Furthermore, a certifying algorithm for the feasibility for
UTVPI systems is known [25]. Therefore, giving a certifying algorithm for the feasibility for
unit q-Horn systems would be an interesting future work.
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