
An Approximation Algorithm for
Two-Edge-Connected Subgraph Problem via
Triangle-Free Two-Edge-Cover
Yusuke Kobayashi #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Takashi Noguchi #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
The 2-Edge-Connected Spanning Subgraph problem (2-ECSS) is one of the most fundamental and
well-studied problems in the context of network design. We are given an undirected graph G, and
the objective is to find a 2-edge-connected spanning subgraph H of G with the minimum number of
edges. For this problem, a lot of approximation algorithms have been proposed in the literature. In
particular, very recently, Garg, Grandoni, and Ameli gave an approximation algorithm for 2-ECSS
with a factor of 1.326, which is the best approximation ratio. In this paper, under the assumption
that a maximum triangle-free 2-matching can be found in polynomial time in a graph, we give a
(1.3 + ε)-approximation algorithm for 2-ECSS, where ε is an arbitrarily small positive fixed constant.
Note that a complicated polynomial-time algorithm for finding a maximum triangle-free 2-matching
is announced by Hartvigsen in his PhD thesis, but it has not been peer-reviewed or checked in any
other way. In our algorithm, we compute a minimum triangle-free 2-edge-cover in G with the aid of
the algorithm for finding a maximum triangle-free 2-matching. Then, with the obtained triangle-free
2-edge-cover, we apply the arguments by Garg, Grandoni, and Ameli.
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1 Introduction

In the field of survivable network design, a basic problem is to construct a network with
minimum cost that satisfies a certain connectivity constraint. A seminal result by Jain [13]
provides a 2-approximation algorithm for a wide class of survivable network design problems.
For specific problems among them, a lot of better approximation algorithms have been
investigated in the literature.

In this paper, we study the 2-Edge-Connected Spanning Subgraph problem (2-ECSS),
which is one of the most fundamental and well-studied problems in this context. In 2-ECSS,
we are given an undirected graph G = (V, E), and the objective is to find a 2-edge-connected
spanning subgraph H of G with the minimum number of edges. It was shown in [4, 5]
that 2-ECSS does not admit a PTAS unless P = NP. Khuller and Vishkin [14] gave a
3/2-approximation algorithm for this problem, which was the starting point of the study of
approximation algorithms for 2-ECSS. Cheriyan, Sebő, and Szigeti [1] improved this ratio to
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17/12. Later, Hunkenschröder, Vempala, and Vetta [12] gave a 4/3-approximation algorithm,
which rectifies flaws in [22]. By a completely different approach, Sebő and Vygen [19] achieved
approximation ratio and integrality gap of 4/3. Very recently, Garg, Grandoni, and Ameli [8]
improved this ratio to 1.326 by introducing powerful reduction steps and developing the
techniques in [12].

The contribution of this paper is to present a (1.3 + ε)-approximation algorithm for
2-ECSS for any ε > 0 under the assumption that a maximum 2-matching containing no cycle
of length at most 3 (called a maximum triangle-free 2-matching) can be found in polynomial
time in a graph.

▶ Theorem 1. Assume that there exists a polynomial-time algorithm for finding a maximum
2-matching that contains no cycle of length at most 3 in a graph. Then, for any constant
ε > 0, there is a polynomial-time (1.3 + ε)-approximation algorithm for 2-ECSS.

Note that a complicated polynomial-time algorithm for finding a maximum triangle-free 2-
matching is announced by Hartvigsen [10], which indicates that the assumption in Theorem 1
holds. However, since this result has not been peer-reviewed or checked in any other way, we
have retained the assumption in Theorem 1.

Our algorithm and its analysis are heavily dependent on the well-developed arguments
by Garg, Grandoni, and Ameli [8]. In our algorithm, we first apply the reduction steps
given in [8]. Then, instead of a minimum 2-edge-cover, we compute a minimum triangle-free
2-edge-cover in the graph, which is the key ingredient in our algorithm. We show that this can
be done in polynomial time with the aid of a polynomial algorithm for finding a maximum
triangle-free 2-matching. Finally, we convert the obtained triangle-free 2-edge-cover into a
spanning 2-edge-connected subgraph by using the arguments in [8].

Our main technical contribution is to point out the utility of a maximum triangle-free
2-matching in the arguments by Garg, Grandoni, and Ameli [8].

Related Work

A natural extension of 2-ECSS is the k-Edge-Connected Spanning Subgraph problem (k-
ECSS), which is to find a k-edge-connected spanning subgraph of the input graph with
the minimum number of edges. For k-ECSS, several approximation algorithms have been
proposed, in which approximation factors depend on k [2, 6, 7]. We can also consider the
weighted variant of 2-ECSS, in which the objective is to find a 2-edge-connected spanning
subgraph with the minimum total weight in a given edge-weighted graph. The result of
Jain [13] leads to a 2-approximation algorithm for the weighted 2-ECSS, and it is still the
best known approximation ratio. For the case when all the edge weights are 0 or 1, which
is called the forest augmentation problem, Grandoni, Ameli, and Traub [9] recently gave a
1.9973-approximation algorithm. Furthermore, for the tree augmentation problem, which is
the case when 0-weight edges are connected, the approximation ratio was improved to 1.5 + ε

for any ε > 0 in a series of works by Traub and Zenklusen [20, 21]. See references in [8, 9]
for more related work on survivable network design problems.

It is well-known that a 2-matching of maximum size can be found in polynomial-time
by using a matching algorithm; see e.g., [18, Section 30]. As a variant of this problem,
the problem of finding a maximum 2-matching that contains no cycle of length at most k,
which is called the C≤k-free 2-matching problem, has been actively studied. Hartvigsen [10]
announced a polynomial-time algorithm for the C≤3-free 2-matching problem (also called
the triangle-free 2-matching problem), and Papadimitriou showed the NP-hardness for k ≥ 5
(see [3]). The polynomial solvability of the C≤4-free 2-matching problem has been open
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for more than 40 years. The edge weighted variant of the C≤3-free 2-matching problem is
also a relevant open problem in this area, and some positive results are known for special
cases [11, 15, 16, 17]. See references in [16] for more related work on the C≤k-free 2-matching
problem.

2 Preliminaries

Throughout the paper, we only consider simple undirected graphs, i.e., every graph has
neither self-loops nor parallel edges.1 A graph G = (V, E) is said to be 2-edge-connected
if G \ {e} is connected for every e ∈ E, and it is called 2-vertex-connected if G \ {v} is
connected for every v ∈ V and |V | ≥ 3. For a subgraph H of G, its vertex set and edge set
are denoted by V (H) and E(H), respectively. A subgraph H of G = (V, E) is spanning if
V (H) = V (G). In the 2-Edge-Connected Spanning Subgraph problem (2-ECSS), we are
given a graph G = (V, E) and the objective is to find a 2-edge-connected spanning subgraph
H of G with the minimum number of edges (if one exists).

In this paper, a spanning subgraph H is often identified with its edge set E(H). Let
H be a spanning subgraph (or an edge set) of G. A connected component of H which is
2-edge-connected is called a 2EC component of H. A 2EC component of H is called an
i-cycle 2EC component if it is a cycle of length i. In particular, a 3-cycle 2EC component is
called a triangle 2EC component. A maximal 2-edge-connected subgraph B of H is called
a block of H if |V (B)| ≥ 3 and B is not a 2EC component. An edge e ∈ E(H) is called a
bridge of H if H \ {e} has more connected components than H. A block B of H is called a
leaf block if H has exactly one bridge incident to B, and an inner block otherwise.

Let G = (V, E) be a graph. For an edge set F ⊆ E and a vertex v ∈ V , let dF (v) denote
the number of edges in F that are incident to v. An edge set F ⊆ E is called a 2-matching if
dF (v) ≤ 2 for every v ∈ V , and it is called a 2-edge-cover if dF (v) ≥ 2 for every v ∈ V .2

3 Algorithm in Previous Work

Since our algorithm is based on the well-developed 1.326-approximation algorithm given by
Garg, Grandoni, and Ameli [8], we describe some of their results in this section.

3.1 Reduction to Structured Graphs
In the algorithm by Garg, Grandoni, and Ameli [8], they first reduce the problem to the
case when the input graph satisfies some additional conditions, where such a graph is called
a (5/4, ε)-structured graph. In what follows in this paper, let ε > 0 be a sufficiently small
positive fixed constant, which will appear in the approximation factor. In particular, we
suppose that 0 < ε ≤ 1/24, which is used in the argument in [8]. We say that a graph
G = (V, E) is (5/4, ε)-structured if it is 2-vertex-connected, it contains at least 2/ε vertices,
and it does not contain the following structures:

(5/4-contractible subgraph) a 2-edge-connected subgraph C of G such that every
2-edge-connected spanning subgraph of G contains at least 4

5 |E(C)| edges with both
endpoints in V (C);
(irrelevant edge) an edge uv ∈ E such that G \ {u, v} is not connected;

1 It is shown in [12] that this assumption is not essential when we consider 2-ECSS.
2 Such edge sets are sometimes called simple 2-matchings and simple 2-edge-covers in the literature.
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(non-isolating 2-vertex-cut) a vertex set {u, v} ⊆ V of G such that G \ {u, v} has
at least three connected components or has exactly two connected components, both of
which contain at least two vertices.

The following lemma shows that it suffices to consider (5/4, ε)-structured graphs when we
design approximation algorithms.

▶ Lemma 2 (Garg, Grandoni, and Ameli [8, Lemma 2.2]). Let ε be a sufficiently small positive
constant. For α ≥ 5

4 , if there exists a polynomial-time α-approximation algorithm for 2-ECSS
on (5/4, ε)-structured graphs, then there exists a polynomial-time (α + 2ε)-approximation
algorithm for 2-ECSS.

3.2 Semi-Canonical Two-Edge-Cover
A 2-edge-cover H of G (which is identified with a spanning subgraph) is called semi-canonical
if it satisfies the following conditions.

(1) Each 2EC component of H is a cycle or contains at least 7 edges.
(2) Each leaf block contains at least 6 edges and each inner block contains at least 4 edges.
(3) There is no pair of edge sets F ⊆ H and F ′ ⊆ E \H such that |F | = |F ′| ≤ 3, (H \F )∪F ′

is a 2-edge-cover with fewer connected components than H, and F contains an edge in
some triangle 2EC component of H.

(4) There is no pair of edge sets F ⊆ H and F ′ ⊆ E \H such that |F | = |F ′| = 2, (H \F )∪F ′

is a 2-edge-cover with fewer connected components than H, both edges in F ′ connect two
4-cycle 2EC components, say C1 and C2, and F is contained in C1 ∪ C2. In other words,
by removing 2 edges and adding 2 edges, we cannot merge two 4-cycle 2EC components
into a cycle of length 8.

▶ Lemma 3 (Garg, Grandoni, and Ameli [8, Lemma 2.6]). Let ε be a sufficiently small positive
constant. Suppose we are given a semi-canonical 2-edge-cover H of a (5/4, ε)-structured
graph G with b|H| bridges and t|H| edges belonging to triangle 2EC components of H. Then,
in polynomial time, we can compute a 2-edge-connected spanning subgraph S of size at most
( 13

10 + 1
30 t − 1

20 b)|H|.

▶ Remark 4. In the original statement of [8, Lemma 2.6], H is assumed to satisfy a stronger
condition than semi-canonical, called canonical. A 2-edge-cover H is said to be canonical if
it satisfies (1) and (2) in the definition of semi-canonical 2-edge-covers, and also the following
condition: there is no pair of edge sets F ⊆ H and F ′ ⊆ E \ H such that |F | = |F ′| ≤ 3 and
(H \ F ) ∪ F ′ is a 2-edge-cover with fewer connected components than H. However, one can
see that the condition “canonical” can be relaxed to “semi-canonical” by following the proof
of [8, Lemma 2.6]; see the proofs of Lemmas D.3, D.4, and D.11 in [8].

4 Algorithm via Triangle-Free Two-Edge-Cover

The idea of our algorithm is quite simple: we construct a semi-canonical 2-edge-cover H with
no triangle 2EC components and then apply Lemma 3. We say that an edge set F ⊆ E is
triangle-free if there are no triangle 2EC components of F . Note that a triangle-free edge set
F may contain a cycle of length three that is contained in a larger connected component.
In order to construct a semi-canonical triangle-free 2-edge-cover, we use a polynomial-time
algorithm for finding a triangle-free 2-matching given by Hartvigsen [10].

▶ Theorem 5 (Hartvigsen [10, Theorem 3.2 and Proposition 3.4]). For a graph G, we can find
a triangle-free 2-matching in G with maximum cardinality in polynomial time.
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Note again that, since this result has not been published as a journal paper, we have
retained the assumption in Theorem 1.

In Section 4.1, we give an algorithm for finding a minimum triangle-free 2-edge-cover with
the aid of Theorem 5. Then, we transform it into a semi-canonical triangle-free 2-edge-cover
in Section 4.2. Using the obtained 2-edge-cover, we give a proof of Theorem 1 in Section 4.3.

4.1 Minimum Triangle-Free Two-Edge-Cover
As with the relationship between 2-matchings and 2-edge-covers (see e.g. [18, Section 30.14]),
triangle-free 2-matchings and triangle-free 2-edge-covers are closely related to each other,
which can be stated as the following two lemmas.

▶ Lemma 6. Let G = (V, E) be a connected graph such that the minimum degree is at least
two and |V | ≥ 4. Given a triangle-free 2-matching M in G, we can compute a triangle-free
2-edge-cover C of G with size at most 2|V | − |M | in polynomial time.

Proof. Starting with F = M , we perform the following update repeatedly while F is not a
2-edge-cover:

Choose a vertex v ∈ V with dF (v) < 2 and an edge vw ∈ E \ F incident to v.
(i) If F ∪ {vw} contains no triangle 2EC components, then add vw to F .
(ii) Otherwise, F ∪ {vw} contains a triangle 2EC component with vertex set {u, v, w}

for some u ∈ V . In this case, choose an edge e connecting {u, v, w} and V \{u, v, w},
and add both vw and e to F .

If F becomes a 2-edge-cover, then the procedure terminates by returning C = F . It is obvious
that this procedure terminates in polynomial steps and returns a triangle-free 2-edge-cover.

We now analyze the size of the output C. For an edge set F ⊆ E, define g(F ) =∑
v∈V max{2 − dF (v), 0}. Then, in each iteration of the procedure, we observe the following:

in case (i), one edge is added to F and g(F ) decreases by at least one; in case (ii), two edges
are added to F and g(F ) decreases by at least two, because dF (v) = dF (w) = 1 before the
update. With this observation, we see that |C| − |M | ≤ g(M) − g(C) =

∑
v∈V (2 − dM (v)),

where we note that M is a 2-matching and C is a 2-edge-cover. Therefore, it holds that

|C| ≤ |M | +
∑
v∈V

(2 − dM (v)) = |M | + (2|V | − 2|M |) = 2|V | − |M |,

which completes the proof. ◀

▶ Lemma 7. Given a triangle-free 2-edge-cover C in a graph G = (V, E), we can compute a
triangle-free 2-matching M of G with size at least 2|V | − |C| in polynomial time.

Proof. Starting with F = C, we perform the following update repeatedly while F is not a
2-matching:

Choose a vertex v ∈ V with dF (v) > 2 and an edge vw ∈ F incident to v.
(i) If F \ {vw} contains no triangle 2EC components, then remove vw from F .
(ii) If F \ {vw} contains a triangle 2EC component whose vertex set is {v, v1, v2} for

some v1, v2 ∈ V , then remove vv1 from F .
(iii) If neither of the above holds, then F \ {vw} contains a triangle 2EC component

whose vertex set is {w, w1, w2} for some w1, w2 ∈ V . In this case, remove ww1
from F .

ISAAC 2023
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If F becomes a 2-matching, then the procedure terminates by returning M = F . It is obvious
that this procedure terminates in polynomial steps and returns a triangle-free 2-matching.

We now analyze the size of the output M . For an edge set F ⊆ E, define g(F ) =∑
v∈V max{dF (v) − 2, 0}. Then, in each iteration of the procedure, we observe that one edge

is removed from F and g(F ) decreases by at least one, where we note that dF (w) = 3 before
the update in case (iii). With this observation, we see that |C| − |M | ≤ g(C) − g(M) =∑

v∈V (dC(v) − 2), where we note that C is a 2-edge-cover and M is a 2-matching. Therefore,
it holds that

|M | ≥ |C| −
∑
v∈V

(dC(v) − 2) = |C| − (2|C| − 2|V |) = 2|V | − |C|,

which completes the proof. ◀

By using these lemmas and Theorem 5, we can compute a triangle-free 2-edge-cover with
minimum cardinality in polynomial time.

▶ Proposition 8. Suppose that a triangle-free 2-matching M with maximum cardinality in
a graph can be found in polynomial time. Then, for a graph G = (V, E), we can compute
a triangle-free 2-edge-cover C of G with minimum cardinality in polynomial time (if one
exists). Furthermore, |C| = 2|V | − |M |.

Proof. It suffices to consider the case when G is a connected graph such that the minimum
degree is at least two and |V | ≥ 4. Let M be a triangle-free 2-matching in G with maximum
cardinality, which can be computed in polynomial time by the assumption. Then, by Lemma 6,
we can construct a triangle-free 2-edge-cover C of G with size at most 2|V | − |M |.

We now show that G has no triangle-free 2-edge-cover C ′ with |C ′| < 2|V | − |M |. Assume
to the contrary that there exists a triangle-free 2-edge-cover C ′ of size smaller than 2|V |−|M |.
Then, by Lemma 7, we can construct a triangle-free 2-matching M ′ of G with size at least
2|V | − |C ′|. Since |M ′| ≥ 2|V | − |C ′| > 2|V | − (2|V | − |M |) = |M |, this contradicts that
M is a triangle-free 2-matching with maximum cardinality. Therefore, G has no triangle-
free 2-edge-cover of size smaller than 2|V | − |M |, which implies that C is a triangle-free
2-edge-cover with minimum cardinality. ◀

4.2 Semi-Canonical Triangle-Free Two-Edge-Cover
We show the following lemma saying that a triangle-free 2-edge-cover can be transformed
into a semi-canonical triangle-free 2-edge-cover without increasing the size. Although the
proof is almost the same as that of [8, Lemma 2.4], we describe it for completeness.

▶ Lemma 9. Let ε be a sufficiently small positive constant. Given a triangle-free 2-edge-
cover H of a (5/4, ε)-structured graph G = (V, E), in polynomial time, we can compute a
triangle-free 2-edge-cover H ′ of no larger size which is semi-canonical.

Proof. Recall that an edge set is identified with the corresponding spanning subgraph of
G. Starting with H ′ = H, while H ′ is not semi-canonical we apply one of the following
operations in this order of priority. We note that H ′ is always triangle-free during the
procedure, and hence it always satisfies condition (3) in the definition of semi-canonical
2-edge-cover.
(a) If there exists an edge e ∈ H ′ such that H ′ \ {e} is a triangle-free 2-edge-cover, then

remove e from H ′.
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(b) If H ′ does not satisfy condition (4), then we merge two 4-cycle 2EC components into a
cycle of length 8 by removing 2 edges and adding 2 edges. Note that the obtained edge
set is a triangle-free 2-edge-cover that has fewer connected components.

(c) Suppose that condition (1) does not hold, i.e., there exists a 2EC component C of H ′

with fewer than 7 edges that is not a cycle. Since C is 2-edge-connected and not a
cycle, we obtain |E(C)| ≥ |V (C)| + 1. If |V (C)| = 4, then C contains at least 5 edges
and contains a cycle of length 4, which contradicts that (a) is not applied. Therefore,
|V (C)| = 5 and |E(C)| = 6. Since operation (a) is not applied, C is either a bowtie
(i.e., two triangles that share a common vertex) or a K2,3; see figures in the proof of [8,
Lemma 2.4].
(c1) Suppose that C is a bowtie that has two triangles {v1, v2, u} and {v3, v4, u}. If G

contains an edge between {v1, v2} and {v3, v4}, then we can replace C with a cycle of
length 5, which decreases the size of H ′. Otherwise, by the 2-vertex-connectivity of
G, there exists an edge zw ∈ E \ H ′ such that z ∈ V \ V (C) and w ∈ {v1, v2, v3, v4}.
In this case, we replace H ′ with (H ′ \ {uw}) ∪ {zw}. Then, the obtained edge
set is a triangle-free 2-edge-cover with the same size, which has fewer connected
components.

(c2) Suppose that C is a K2,3 with two sides {v1, v2} and {w1, w2, w3}. If every wi has
degree exactly 2, then every feasible 2-edge-connected spanning subgraph contains
all the edges of C, and hence C is a 5

4 -contractible subgraph, which contradicts the
assumption that G is (5/4, ε)-structured. If G contains an edge wiwj for distinct
i, j ∈ {1, 2, 3}, then we can replace C with a cycle of length 5, which decreases
the size of H ′. Otherwise, since some wi has degree at least 3, there exists an
edge wiu ∈ E \ H ′ such that i ∈ {1, 2, 3} and u ∈ V \ V (C). In this case, we
replace H ′ with (H ′ \{v1wi})∪{wiu}. Then, the obtained edge set is a triangle-free
2-edge-cover with the same size, which has fewer connected components.

(d) Suppose that the first half of condition (2) does not hold, i.e., there exists a leaf block
B that has at most 5 edges. Let v1 be the only vertex in B such that all the edges
connecting V (B) and V \ V (B) are incident to v1. Since operation (a) is not applied, we
see that B is a cycle of length at most 5. Let v1, . . . , vℓ be the vertices of B that appear
along the cycle in this order. We consider the following cases separately; see figures in
the proof of [8, Lemma 2.4].
(d1) Suppose that there exists an edge zw ∈ E \ H ′ such that z ∈ V \ V (B) and

w ∈ {v2, vℓ}. In this case, we replace H ′ with (H ′ \ {v1w}) ∪ {zw}.
(d2) Suppose that v2 and vℓ are adjacent only to vertices in V (B) in G, which implies

that ℓ ∈ {4, 5}. If v2vℓ ̸∈ E, then every feasible 2EC spanning subgraph contains
four edges (incident to v2 and vℓ) with both endpoints in V (B), and hence B is
a 5

4 -contractible subgraph, which contradicts the assumption that G is (5/4, ε)-
structured. Thus, v2vℓ ∈ E. Since there exists an edge connecting V \ V (B) and
V (B) \ {v1} by the 2-vertex-connectivity of G, without loss of generality, we may
assume that G has an edge v3z with z ∈ V \ V (B). In this case, we replace H ′

with (H ′ \ {v1vℓ, v2v3}) ∪ {v3z, v2vℓ}.
In both cases, the obtained edge set is a triangle-free 2-edge-cover with the same size.
Furthermore, we see that either (i) the obtained edge set has fewer connected components
or (ii) it has the same number of connected components and fewer bridges.

(e) Suppose that the latter half of condition (2) does not hold, i.e., there exists an inner
block B that has at most 3 edges. Then, B is a triangle. Let {v1, v2, v3} be the vertex set
of B. If there are at least two bridge edges incident to distinct vertices in V (B), say wv1

ISAAC 2023
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and zv2, then edge v1v2 has to be removed by operation (a), which is a contradiction.
Therefore, all the bridge edges in H ′ incident to B are incident to the same vertex
v ∈ V (B). In this case, we apply the same operation as (d).

We can easily see that each operation above can be done in polynomial time. We also see
that each operation decreases the lexicographical ordering of (|H ′|, cc(H ′), br(H ′)), where
cc(H ′) is the number of connected components in H ′ and br(H ′) is the number of bridges in
H ′. This shows that the procedure terminates in polynomial steps. After the procedure, H ′

is a semi-canonical triangle-free 2-edge-cover with |H ′| ≤ |H|, which completes the proof. ◀

4.3 Proof of Theorem 1
By Lemma 2, in order to prove Theorem 1, it suffices to give a 13

10 -approximation algorithm for
2-ECSS in (5/4, ε)-structured graphs for a sufficiently small fixed ε > 0. Let G = (V, E) be a
(5/4, ε)-structured graph. By Proposition 8, we can compute a minimum-size triangle-free
2-edge-cover H of G in polynomial-time. Note that the optimal value OPT of 2-ECSS in
G is at least |H|, because every feasible solution for 2-ECSS is a triangle-free 2-edge-cover.
By Lemma 9, H can be transformed into a semi-canonical triangle-free 2-edge-cover H ′

with |H ′| ≤ |H|. Since H ′ is triangle-free, by applying Lemma 3 with H ′, we obtain a
2-edge-connected spanning subgraph S of size at most ( 13

10 − 1
20 b)|H ′|, where H ′ has b|H ′|

bridges. Therefore, we obtain

|S| ≤
(

13
10 − 1

20b

)
|H ′| ≤ 13

10 |H| ≤ 13
10OPT,

which shows that S is a 13
10 -approximate solution for 2-ECSS in G. This completes the proof

of Theorem 1. ◀

5 Concluding Remarks

In this paper, we have presented a (1.3 + ε)-approximation algorithm (for any ε > 0) for
2-ECSS under the assumption that a maximum triangle-free 2-matching can be found in
polynomial time. If the correctness of Theorem 5 is acknowledged, then our result achieves
the best approximation ratio.

We conclude this paper by showing that the assumption in our main result (Theorem 1)
can be relaxed with the aid of the following proposition.

▶ Proposition 10. Let 0 < α < 1. Given a (1 − α)-approximate solution M ′ of a maximum
triangle-free 2-matching problem in a graph G = (V, E), we can compute a (1+α)-approximate
solution of the minimum triangle-free 2-edge-cover problem in G in polynomial time (if one
exists).

Proof. Let M and C be a maximum triangle-free 2-matching and a minimum 2-edge-cover in
G, respectively. By Proposition 8, it holds that |C| = 2|V |−|M |. Given a (1−α)-approximate
solution M ′ of a maximum triangle-free 2-matching problem, by Lemma 6, we can construct
a triangle-free 2-edge-cover C ′ in G with size at most 2|V | − |M ′|. Then, we have

|C ′| ≤ 2|V | − |M ′| ≤ 2|V | − (1 − α)|M |
= 2|V | − |M | + α|M | ≤ |C| + α|C| = (1 + α)|C|,

where we note that |M | ≤ |V | ≤ |C| as M is a 2-matching and C is a 2-edge-cover. This
shows that C ′ is a (1 + α)-approximate solution of the minimum triangle-free 2-edge-cover
problem. ◀
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By using this proposition instead of Proposition 8, we obtain the following theorem in
the same way as Theorem 1.

▶ Theorem 11. Assume that, for any ε′ > 0, there exists a (1 − ε′)-approximation algorithm
for finding a maximum 2-matching that contains no cycle of length at most 3 in a graph.
Then, for any constant ε > 0, there is a polynomial-time (1.3 + ε)-approximation algorithm
for 2-ECSS.

This theorem suggests that an approximate solution for the maximum triangle-free 2-
matching problem is sufficient for our purpose. Therefore, it will be interesting to give a
simple PTAS for the maximum triangle-free 2-matching problem.
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