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Abstract
Let F be a family of graphs, and let p, r be nonnegative integers. For a graph G and an integer k, the
pp, r, Fq-Covering problem asks whether there is a set D Ď V pGq of size at most k such that if the
p-th power of G has an induced subgraph isomorphic to a graph in F , then it is at distance at most r

from D. The pp, r, Fq-Packing problem asks whether Gp has k induced subgraphs H1, . . . , Hk such
that each Hi is isomorphic to a graph in F , and for i, j P t1, . . . , ku, the distance between V pHiq

and V pHjq in G is larger than r.
We show that for every fixed nonnegative integers p, r and every fixed nonempty finite family F

of connected graphs, pp, r, Fq-Covering with p ď 2r ` 1 and pp, r, Fq-Packing with p ď 2tr{2u ` 1
admit almost linear kernels on every nowhere dense class of graphs, parameterized by the solution
size k. As corollaries, we prove that Distance-r Vertex Cover, Distance-r Matching, F-Free
Vertex Deletion, and Induced-F-Packing for any fixed finite family F of connected graphs
admit almost linear kernels on every nowhere dense class of graphs. Our results extend the results
for Distance-r Dominating Set by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP
2017), and for Distance-r Independent Set by Pilipczuk and Siebertz (EJC 2021).
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1 Introduction

The Dominating Set problem is one of the classical NP-hard problems which asks whether
a graph G contains a set of at most k vertices whose closed neighborhood contains all the
vertices of G. A natural variant of it is the Distance-r Dominating Set problem which
asks whether G contains a set of at most k vertices such that every vertex of G is at distance
at most r from one of these vertices. Dominating Set has been intensively studied in
the context of fixed-parameter algorithms. In a parameterized problem Π, we are given an
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5:2 Almost Linear Kernels for Generalized Covering and Packing Problems

instance px, kq where k is a parameter, and the central question is whether the parameterized
problem admits an algorithm, called fixed-parameter algorithm, that runs in time fpkq ¨ |x|c
for some computable function f and a constant c. We say that Π is fixed-parameter tractable,
or FPT for short if it admits a fixed-parameter algorithm. It is known that Dominating
Set is W[2]-complete parameterized by k [14, 15], meaning that it is not FPT unless an
unexpected collapse occurs in the parameterized complexity hierarchy. Thus, it is natural
to restrict graph classes and see whether a fixed-parameter algorithm exists. Dominating
Set admits a fixed-parameter algorithm on planar graphs [13, 27], and the project of finding
larger sparse graph classes on which fixed-parameter algorithms for Dominating Set exist
has been studied intensively, see [11, 4, 30, 38, 29, 24, 40].

A kernelization algorithm for a parameterized problem takes an instance px, kq and
outputs an equivalent instance px1, k1q in time polynomial in |x|`k, where |x1|`k1 ď gpkq for
some computable function g. We call the function g the size of the kernel. If g is a polynomial
(resp. linear), then such an algorithm is called a polynomial (resp. linear) kernel. It is well
known that a parameterized decision problem is FPT if and only if it admits a kernelization;
see [16]. Furthermore, with a polynomial kernel, we can compress inputs to instances of
polynomial size, which lead to boost up the running time of exact algorithms solving the
problem, like the brute-force search algorithm. Therefore, it is natural and applicable to
investigate the existence of a polynomial kernel or a linear kernel. In particular, the existence
of linear kernels for Dominating Set on sparse graph classes have been investigated.

One of the first results is a linear kernel for Dominating Set on planar graphs due to
Alber, Fellows, and Niedermeier [3]. It has been generalized to classes of bounded genus
graphs [26], H-minor free graphs [23], and H-topological minor free graphs [24]. Drange
et al. [17] extended the previous results to classes of graphs with bounded expansion for
Distance-r Dominating Set, and Eickmeyer et al. [20] obtained almost linear kernels for
Distance-r Dominating Set on nowhere dense classes of graphs. Classes of graphs with
bounded expansion and nowhere dense classes of graphs were introduced by Nešetřil and
Ossona de Mendez [37], which are defined in terms of shallow minors and capture most of
well-studied sparse graph classes.

Independent Set is another classic NP-hard problem which asks to find a set of k vertices
in a given graph whose pairwise distance is more than 1, and Distance-r Independent
Set is the problem obtained by replacing 1 with r. It is known that Independent Set is
W[1]-complete parameterized by k [15]. The distance variations of Dominating Set and
Independent Set are closely related, in a sense that the size of a distance-2r independent
set is a lower bound for the minimum size of a distance-r dominating set. Dvořák [18]
presented an approximation algorithm for Distance-r Dominating Set, which outputs a
set of size bounded by a function of the 2r-weak coloring number and the maximum size of a
distance-2r independent set. Pilipczuk and Siebertz [39] recently presented an almost linear
kernel for Distance-r Independent Set on nowhere dense classes of graphs.

For a fixed r, both Distance-r Dominating Set and Distance-r Independent Set
can be expressed in first-order logic. Thus, by the meta-theorem of Grohe, Kreutzer, and
Siebertz [29], there are almost-linear-time fixed-parameter tractable on every nowhere dense
class of graphs. Fabiański, Pilipczuk, Siebertz, and Toruńczyk [22] presented linear-time
fixed-parameter algorithms for Distance-r Dominating Set on various graph classes,
including powers of nowhere dense classes and map graphs, and a linear-time fixed-parameter
algorithm for Distance-r Independent Set on every nowhere dense class of graphs.

A natural question is whether there are linear/polynomial kernels for other problems
on classes of graphs with bounded expansion and nowhere dense classes of graphs. Meta-
type kernelization results have been studied for graphs on bounded genus [6], H-minor free
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graphs [25], H-topological minor free graphs [32], classes of graphs with bounded expansion,
and nowhere dense classes of graphs [28]. Note that the last result by Gajarsky et al. [28] is
to obtain kernelizations parameterized by the size of a modulator to constant tree-depth, and
not by the solution size. Currently, limited investigations have been conducted on variations
of Distance-r Dominating Set and Distance-r Independent Set. In this paper, we
consider generic problems to hit finite graphs by the r-th neighborhood of a set of vertices.

Let F be a family of graphs, and let p and r be nonnegative integers. For a graph G,
let Gp be the graph with vertex set V pGq such that distinct vertices v and w are adjacent
in Gp if and only if the distance between v and w in G is at most p, and let Nr

GrDs be the
set of all vertices in G at distance at most r from D in G. For a graph G, a set D Ď V pGq is
a pp, r,Fq-cover of G if there is no set X Ď V pGqzNr

GrDs such that GprXs is isomorphic to
a graph in F . We denote by the γF

p,rpGq the minimum size of a pp, r,Fq-cover of G. For a
graph G and an integer k, the pp, r,Fq-Covering problem asks whether γF

p,rpGq ď k. Note
that Distance-r Dominating Set is equal to p1, r, tK1uq-Covering.

Our main results are the following. For classes of graphs with bounded expansion, we can
obtain linear kernels. Let N be the set of nonnegative integers and R` be the set of positives.

▶ Theorem 1.1. For every nowhere dense class C of graphs, there is gcov : N ˆ N ˆ R` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph
G P C and k P N, either correctly decides that γF

p,rpGq ą k, or outputs a graph G1 with
|V pG1q| ď gcovpr, d, εq ¨ k1`ε such that γF

p,rpGq ď k if and only if γF
p,rpG1q ď k ` 1.

A pp, r,Fq-packing of G is a family of sets A1, . . . , Aℓ Ď V pGq such that each GprAis is
isomorphic to a graph in F , and for all 1 ď i ă j ď ℓ, the distance between Ai and Aj in G

is more than r. We denote by αF
p,rpGq the maximum size of a pp, r,Fq-packing of G. For a

graph G and an integer k, the pp, r,Fq-Packing problem asks whether αF
p,rpGq ě k. Note

that Distance-r Independent Set is equal to p1, r, tK1uq-Packing.

▶ Theorem 1.2. For every nowhere dense class C of graphs, there is gpack : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2tr{2u ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph G P C
and k P N, either correctly decides that αF

p,rpGq “ 0, or correctly decides that αF
p,rpGq ą k,

or outputs a graph G1 with |V pG1q| ď gpackpr, d, εq ¨ k1`ε such that αF
p,rpGq ě k if and only if

αF
p,rpG1q ě k ` 1.

Applications. Our kernels for the covering problems have the following applications. Canales,
Hernández, Martins, and Matos [9] introduced a distance-r vertex cover and a distance-r
guarding set. For a graph G and a positive integer r, a set D Ď V pGq is a distance-r
vertex cover if G´Nr

GrDs has no edge, and a distance-r guarding set if G´Nr´1
G rDs has no

triangle. For a positive integer k, the Distance-r Vertex Cover problem asks whether
a graph G has a distance-r vertex cover of size at most k. Similarly, the Distance-r
Guarding Set problem asks whether a graph G has a distance-r guarding set of size at
most k. Distance-r Vertex Cover and Distance-r Guarding Set for r ě 1 can
be formulated as p1, r, tK2uq-Covering and p1, r ´ 1, tK3uq-Covering, respectively. By
Theorem 1.1, both problems admit almost linear kernels on every nowhere dense class of
graphs, and these kernels also can be translated to fixed-parameter algorithms solving those
problems on every nowhere dense class of graphs.
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5:4 Almost Linear Kernels for Generalized Covering and Packing Problems

For a family F of graphs, a graph G, and an integer k, the F-Free Vertex Deletion
problem asks whether there is a set S of at most k vertices in G such that G ´ S has no
induced subgraph isomorphic to F . If all graphs in F have at most d vertices, then this
problem is related to the d-Hitting Set problem, and has a kernel of size Opkd´1q [1]. Our
results imply that if F is a finite set of connected graphs, then F-Free Vertex Deletion
admits an almost linear kernel on every nowhere dense class of graphs. This can be applied
to Cograph Vertex Deletion [36], to Cluster Vertex Deletion [5, 41], and to
Claw-Free Vertex Deletion [7].

Our kernels for the packing problems have the following applications. A matching of
a graph G is a set M of edges of G such that no two edges in M share an end. For a
positive integer r, a distance-r matching of G is a matching M of G such that for distinct
edges u1u2, v1v2 P M , mintdistGpui, vjq : i, j P r2su ě r. For an integer k, the Distance-r
Matching problem asks whether G has a distance-r matching of size at least k. Distance-1
Matching is nothing but finding a matching of size at least k, so can be solved in polynomial
time [19]. Distance-r Matching for r ě 2 is equal to p1, r ´ 1, tK2uq-Packing. Moser
and Sikdar [35] presented linear kernels for Distance-2 Matching on planar graphs and
graphs of bounded degree, and a cubic kernel for the same problem on graphs of girth at
least 6. Later, Kanj, Pelsmajer, Schaefer, and Xia [31] presented a kernel of size 40k for
Distance-2 Matching on planar graphs. By Theorem 1.2, Distance-r Matching for
every r ě 2 admits an almost linear kernel on every nowhere dense class of graphs.

We can further generalize the matching problem. For a graph H and an integer k, the
H-Matching problem asks whether a graph G has k vertex-disjoint subgraphs isomorphic
to H. For every integer d ě 1, let Pd be a path on d vertices. Dell and Marx [10] presented
a kernel for P3-Matching with Opk2.5q edges, and a unified kernel for Pd-Matching with
Opdd2

d7k3q vertices. They also showed that for every integer d ě 3 and every ε ą 0, under
some complexity hypothesis, Kd-Matching does not have kernels with Opkd´1´εq edges.
By taking F as the set of all graphs on |V pHq| vertices that contain H as a subgraph, we
can formulate H-Matching as p1, 0,Fq-Packing. Generally, we may consider Induced-F-
Packing which asks whether a graph has k vertex-disjoint induced subgraphs each isomorphic
to some graph in F . By Theorem 1.2, Induced-F-Packing for every fixed finite family F
of connected graphs admits almost linear kernel on every nowhere dense class of graphs.

We may formulate pp, r,Fq-Covering and pp, r,Fq-Packing on fixed powers of a given
graph. Formally, for a fixed positive integer t, ppt, rt,Fq-Covering on a graph G is exactly
same as pp, r,Fq-Covering on its t-th power Gt. Therefore, our result provides the existence
of almost linear kernels for both problems on t-th powers Gt of graphs from a nowhere dense
class of graphs, assuming that the original graph G is given. However, if the power Gt is
only given, then we need to find the graph G to apply our kernelization algorithm.

Organization. We organize this paper as follows. In Section 2, we present some terminology
from graph theory, especially lemmas on nowhere dense classes of graphs. In Sections 3
and 4, we present almost linear kernels for pp, r,Fq-Covering and pp, r,Fq-Packing on
every nowhere dense class of graphs, respectively.

2 Preliminaries

In this paper, all graphs are simple and finite and have at least one vertex. For an equivalence
relation „ on a set X, we denote by indexp„q the number of equivalence classes of „ in X.
For every integer n, let rns be the set of positive integers at most n. Throughout this section,



J. Ahn, J. Kim, and O. Kwon 5:5

we let p, r be nonnegative integers, let G be a graph, and let A,B be subsets of V pGq. We
follow the notations from the textbook of Diestel [12]. We denote by distGpv, wq the distance
between vertices v and w in G and by distGpA,Bq be the shortest distance between a vertex
in A and a vertex in B. The p-th power of G, denoted by Gp, is the graph with vertex set
V pGq such that distinct vertices v and w are adjacent in Gp if and only if distGpv, wq ď p.
For a vertex v of G, let Nr

Grvs be the set of vertices of G which are at distance at most r
from v in G, and Nr

Gpvq :“ Nr
Grvsztvu. Let Nr

GrAs :“
Ť

vPA N
r
Grvs and Nr

GpAq :“ Nr
GrAszA.

A set X Ď V pGq is a distance-r independent set in G if the vertices in X are pairwise
at distance larger than r in G. We denote by αrpGq the maximum size of a distance-r
independent in G. A set D Ď V pGq is a distance-r dominating set of G if every vertex of G
lies in Nr

GrDs. We denote by γrpGq the minimum size of a distance-r dominating set of G.

Sparse graphs. A graph H with vertex set tv1, . . . , vnu is an r-shallow minor of G if there
exist pairwise disjoint subsets V1, . . . , Vn of V pGq such that each GrVis has radius at most r
and for all edges vivj P EpHq, distGpVi, Vjq “ 1. A class C of graphs has bounded expansion
if there is f : N Ñ N such that for all r P N, G P C, and an r-shallow minor H of G,
|EpHq|{|V pHq| ď fprq. A class C of graphs is nowhere dense if there is g : N Ñ N such that
for all r P N and G P C, Kgprq is not an r-shallow minor of G.

For vertices v P A and u P V pGqzA, a path P from u to v is A-avoiding if V pP qXA “ tvu.
For a vertex u P V pGqzA, the r-projection of u on A, denoted by MG

r pu,Aq, is the set
of all vertices v P A connected to u by an A-avoiding path of length at most r in G.
The r-projection profile of u on A is a function ρG

r ru,As : A Ñ rrs Y t8u such that for
each vertex v P A, ρG

r ru,Aspvq is 8 if there is no A-avoiding path of length at most r
from u to v, and otherwise the length of a shortest A-avoiding path from u to v. Let
µrpG,Aq :“ |tρG

r ru,As : u P V pGqzAu|. We will use the following lemmas.

▶ Lemma 2.1 (Eickmeyer et al. [20]). For every nowhere dense class C of graphs, there is
fproj : N ˆ R` Ñ N such that for all r P N, ε ą 0, G P C, and X Ď V pGq, µrpG,Xq ď

fprojpr, εq ¨ |X|1`ε.

For t ě 0, a set X Ď V pGq is pr, tq-close if |MG
r pu,Xq| ď t for every u P V pGqzX.

▶ Lemma 2.2 (Eickmeyer et al. [20]). For every nowhere dense class C of graphs, there exist
fcl : N ˆ R` Ñ N and a polynomial-time algorithm that for all r P N, ε ą 0, G P C, and
X Ď V pGq, outputs an pr, fclpr, εq ¨ |X|εq-close set Xcl Ě X of size at most fclpr, εq ¨ |X|1`ε.

For a set X Ď V pGq, an r-path closure of X is a set Xpth Ě X such that for u, v P X, if
distGpu, vq ď r, then distGrXpthspu, vq “ distGpu, vq.

▶ Lemma 2.3 (Eickmeyer et al. [20]). For every nowhere dense class C of graphs, there exist
fpth : N ˆ R` Ñ N and a polynomial-time algorithm that for all r P N, ε ą 0, G P C, and
X Ď V pGq, outputs an r-path closure of X having size at most fpthpr, εq ¨ |X|1`ε.

Drange et al. [17] showed analogues of these three lemmas on classes of graphs with
bounded expansion. By substituting Lemmas 2.1, 2.2, and 2.3 with their analogues, we
can easily obtain linear kernels for pp, r,Fq-Covering and pp, r,Fq-Packing on classes of
graphs with bounded expansion. Thus, we mainly focus on constructing almost linear kernels
for the problems on nowhere dense classes of graphs.

A class C of graphs is uniformly quasi-wide if there exist N : N ˆ N Ñ N and s : N Ñ N
such that for all G P C and A Ď V pGq with |A| ě Npr,mq, there exist sets S Ď V pGq and
B Ď AzS such that |S| ď sprq, |B| ě m, and B is distance-r independent in G´ S.

ISAAC 2023



5:6 Almost Linear Kernels for Generalized Covering and Packing Problems

▶ Theorem 2.4 (Kreutzer, Rabinovich, and Siebertz [33]). Let C be a nowhere dense class of
graphs. For every r ě 0, there are pprq, sprq such that for all G P C, m P N, and A Ď V pGq

with |A| ě mpprq, there are sets S Ď V pGq and B Ď AzS such that |S| ď sprq, |B| ě m,
and B is distance-r independent in G´ S. Moreover, if Kc is not an r-shallow minor of G,
then sprq ď c ¨ r and one can find desired sets S and B in Opr ¨ c ¨ |A|c`6 ¨ |V pGq|2q time.

VC-dimension. A set-system is a family of subsets of a set, called the ground set. Let S be a
set-system with the ground set S. A set S1 Ď S is shattered by S if |tS1 X T : T P Su| “ 2|S1|.
The Vapnik-Chervonenkis dimension, or VC-dimension for short, of S is the largest cardinality
of a shattered subset of S by S. Observe that if a set S1 Ď S is shattered by S, then every
subset of S1 is also shattered by S. In addition, for every S 1 Ď S, the VC-dimension of S 1 is
at most that of S.

▶ Proposition 2.5 (See [34, Proposition 10.3.3]). Let F pX1, . . . , Xdq be a set-theoretic expres-
sion using set variables X1, . . . , Xd and the operations of union, intersection, and difference.
Let S be a set-system with the ground set S, and T :“ tF pS1, . . . , Sdq : S1, . . . , Sd P Su. If S
has VC-dimension c ă 8, then T has VC-dimension Opcd log dq.

A hitting set of S is a set X Ď S such that for every T P S, T XX ‰ H. Let τpSq be the
minimum size of a hitting set of S.

Brönnimann and Goodrich [8] and Even, Rawitz, and Shahar [21] presented polynomial-
time algorithms finding a hitting set X of a nonempty set-system S having VC-dimension at
most c with |X| “ Opc ¨ τpSq ¨ ln τpSqq.

▶ Theorem 2.6 ([8, 21]). There exist a constant Cτ and a polynomial-time algorithm that
for every nonempty set-system S having VC-dimension at most c, outputs a hitting set of S
having size at most Cτ ¨ c ¨ τpSq ¨ ln τpSq ` 1.

The VC-dimension of G is defined by the VC-dimension of tNGrvs : v P V pGqu.

▶ Theorem 2.7 (Adler and Adler [2]). Let C be a nowhere dense class of graphs and ϕpx, yq be
a first-order formula such that for all G P C and vertices v and w of G, G |ù ϕpv, wq if and
only if G |ù ϕpw, vq. For a graph G P C, let Gϕ :“ pV pGq, tvw : G |ù ϕpv, wquq. Then there
exists a nonnegative integer c depending on C and ϕ such that every graph in tGϕ : G P Cu

has VC-dimension at most c.

For every p P N, the property that the distance between two vertices is at most p can be
expressed in a first-order formula, so Theorem 2.7 has the following corollary.

▶ Corollary 2.8. For every nowhere dense class C of graphs, there exists a function fvc :
N Ñ N such that for all p P N and G P C, Gp has VC-dimension at most fvcppq. ◀

3 Kernels for the pp, r, Fq-Covering problems

Let p, r be nonnegative integers with p ď 2r ` 1 and let F be a nonempty finite family of
connected graphs. In this section, we present an almost linear kernel for pp, r,Fq-Covering
on every nowhere dense class of graphs. To do this, we divert to an annotated variant of
pp, r,Fq-Covering. For a graph G and a set A Ď V pGq, a set D Ď V pGq is a pp, r,Fq-cover
of A in G if there is no set X Ď AzNr

GrDs such that GprXs is isomorphic to a graph in F .
We denote by γF

p,rpG,Aq the minimum size of a pp, r,Fq-cover of A in G. For a graph G, a
set A Ď V pGq, and an integer k, the Annotated pp, r,Fq-Covering problem asks whether
γF

p,rpG,Aq ď k.
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We first construct an almost linear kernel for Annotated pp, r,Fq-Covering on every
nowhere dense class of graphs. Every instance of pp, r,Fq-Covering can be seen as an
instance of an annotated variant, so we apply the almost linear kernel to the input instance.
Afterwards, we construct an equivalent instance of pp, r,Fq-Covering by attaching a small
graph, which will be called a pp,Fq-critical graph, to the resulting instance obtained from
the almost linear kernel.

For a graph G and a set A Ď V pGq, a pp, r,Fq-core of A in G is a set Z Ď A such that
every minimum-size pp, r,Fq-cover of Z in G is a pp, r,Fq-cover of A in G. Observe that
γF

p,rpG,Aq “ γF
p,rpG,Zq and A is a pp, r,Fq-core of A in G. We derive an almost linear kernel

for Annotated pp, r,Fq-Covering from Proposition 3.1 saying that we can either confirm
that the given instance is a no-instance, or reduce the size of a pp, r,Fq-core of A in G.

▶ Proposition 3.1. For every nowhere dense class C of graphs, there is fcore : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph
G P C, A Ď V pGq, k P N, and a pp, r,Fq-core Z of A in G with |Z| ą fcorepr, d, εq ¨ k1`ε,
either correctly decides that γF

p,rpG,Aq ą k, or outputs a vertex z P Z such that Zztzu is a
pp, r,Fq-core of A in G.

We will use the following proposition to prove Proposition 3.1.

▶ Proposition 3.2. For every nowhere dense class C of graphs, there is fapx : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N,
and ε ą 0, there is a polynomial-time algorithm that given a graph G P C and A Ď V pGq,
outputs a pp, r,Fq-cover of A in G having size at most fapxpr, d, εq ¨ γF

p,rpG,Aq1`ε.

Proof. Let N :“ tNr
Grvs : v P V pGqu and NA :“ tNr

Grvs : v P Au. By Corollary 2.8, N has
VC-dimension at most fvcprq. Since NA Ď N , NA has VC-dimension at most fvcprq. Let
H0 :“ tNr

GrBs : B Ď A, |B| ď du. Let H1 be the family of sets B Ď A such that GprBs

is isomorphic to a graph in F , and H2 :“ tNr
GrBs : B P H1u. Since N has VC-dimension

at most fvcprq, by Proposition 2.5, H0 has VC-dimension at most Opfvcprq ¨ d log dq. Since
H2 Ď H0, H2 has VC-dimension at most Opfvcprq ¨ d log dq.

Let γ :“ γF
p,rpG,Aq and δ be the VC-dimension of H2. Observe that pp, r,Fq-covers of

A in G correspond to hitting sets of H2, and vice versa. By Theorem 2.6, one can find in
polynomial time a hitting set X of H2 having size at most Cτ ¨ δ ¨ γ ¨ ln γ ` 1. Thus, one can
choose the function fapxpr, d, εq with |X| ď fapxpr, d, εq ¨ γ1`ε. ◀

Proof of Proposition 3.1. The function fcorepr, d, εq will be defined later. At the beginning,
we assume that |Z| ą fcorepr, d, εq ¨ k1`Cε for some constant C, and at the end, we scale ε
accordingly. If Z contains a vertex v such that for every set B Ď Zztvu with |B| ď d ´ 1,
GprB Y tvus is isomorphic to no graph in F , then the statement holds by taking v as z.
Thus, we may assume that for every v P Z, there is a set B Ď Zztvu such that GprB Y tvus

is isomorphic to a graph in F .
By Proposition 3.2, one can find in polynomial time a pp, r,Fq-cover X of Z in G having

size at most fapxpr, d, εq ¨ γF
p,rpG,Zq1`ε. If |X| ą fapxpr, d, εq ¨ k1`ε, then γF

p,rpG,Aq “

γF
p,rpG,Zq ą k. Thus, we may assume that |X| ď fapxpr, d, εq ¨ k1`ε. Let r1 :“ 2pd` 3r. By

Lemma 2.2, one can find in polynomial time an pr1, fclpr
1, εq ¨ |X|εq-close set Xcl Ě X of size

at most fclpr
1, εq ¨ |X|1`ε ď fclpr

1, εq ¨ fapxpr, d, εq1`ε ¨ k1`3ε.
Let „ be an equivalence relation on ZzXcl such that for vertices u, v P ZzXcl, u „ v if

and only if ρG
r1 ru,Xcls “ ρG

r1 rv,Xcls. By Lemma 2.1,

indexp„q ď fprojpr
1, εq ¨ |Xcl|1`ε ď fprojpr

1, εq ¨ fclpr
1, εq1`ε ¨ fapxpr, d, εq1`3ε ¨ k1`7ε.
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Let ppr1q and s :“ spr1q be the constants in Theorem 2.4. Let

ξ :“ 2 ¨ fclpr
1, εq ¨ fapxpr, d, εqε ¨ k2ε ` d2{4 ` s` 1 and m :“ 22d2{2`sd

¨pr`1q
sd

¨ ξ ` 1.

By setting C “ 7 ` 2 ¨ ppr1q, one can choose fcorepr, d, εq with fcorepr, d, εq ¨ k1`Cε ě |Xcl| `

indexp„q ¨mppr1
q. Since |Z| ą fcorepr, d, εq ¨ k1`Cε, we have that |ZzXcl| ą indexp„q ¨mppr1

q.
Thus, by the pigeonhole principle, there is an equivalence class λ of „ with |λ| ą mppr1

q. By
Theorem 2.4, one can find in polynomial time sets S Ď V pGq and L Ď λzS such that |S| ď s,
|L| ě m, and L is distance-r1 independent in G´ S.

We are going to find a desired vertex z from L. To do this, we define the following. For
each i P rds, let Gi be the set of all graphs whose vertex sets are ris. Note that |Gi| “ 2ipi´1q{2

for each i P rds. Let H be the set of functions ρ : S Ñ r2r` 1s Y t8u. Since |S| ď s, we have
that |H| ď p2r ` 2qs. For each i P rds, let Hi be the set of all vectors ph1, . . . , hi, gq of length
i` 1 where hj P H for each j P ris and g P Gi. Let H :“

Ťd
i“1 Hi. Note that

|H| “

d
ÿ

i“1
|Hi| “

d
ÿ

i“1
p|H|i ¨ |Gi|q ď

d
ÿ

i“1
pp2r ` 2qsi ¨ 2ipi´1q{2q ď 2d2

{2`sd ¨ pr ` 1qsd.

Let ℓ :“ |H|. We take an arbitrary ordering σ1, . . . , σℓ of H. For each v P L, let Av :“ H

and xpvq be a zero vector of length ℓ. One can enumerate in polynomial time the sets
B Ď Zztvu of size at most d´ 1 such that GprB Y tvus is isomorphic to a graph in F . For
each such B, we do the following. If there is an index i P rℓs such that the i-th entry of xpvq

is 0 and for σi “ phi
1, . . . , h

i
t, giq P H, there is an isomorphism ϕi : pBzSq Y tvu Ñ rts between

pG ´ SqprpBzSq Y tvus and gi where ϕipvq “ 1 and ρG
2r`1rϕ´1

i pjq, Ss “ hi
j for each j P rts,

then we put B into Av and convert the i-th entry of xpvq to 1. Otherwise, we do nothing for
the chosen B. Since |B| ď d´ 1, one can check in polynomial time whether B satisfies the
conditions. Thus, the resulting Av and xpvq can be computed in polynomial time.

For each v P L, since Zztvu has a subset B such that GprB Y tvus is isomorphic to a
graph in F , Av ‰ H and xpvq has a nonzero entry. For each set B P Av, let B˚ be the
vertex set of the component of pG´ SqprpBzSq Y tvus having v, and Bv :“

Ť

BPAv
B˚.

Since |L| ě m “ 22d2{2`sd
¨pr`1q

sd

¨ ξ ` 1 and ℓ ď 2d2
{2`sd ¨ pr ` 1qsd, by the pigeonhole

principle, L has a subset κ1 such that |κ1| ě ξ ` 1 and xpvq “ xpwq for all v, w P κ1. Let z
be a vertex in κ1 such that distG´SpBz, Xclq ě distG´SpBv, Xclq for every v P κ1.

We show that Zztzu is a pp, r,Fq-core of A in G. To do this, for a minimum-size pp, r,Fq-
cover D of Zztzu in G, we need to show that D is a pp, r,Fq-cover of A in G. Since Z is a
pp, r,Fq-core of A in G, it suffices to show that D is a pp, r,Fq-cover of Z in G.

Suppose for contradiction that D is not a pp, r,Fq-cover of Z in G. Since D is a pp, r,Fq-
cover of Zztzu in G, there is a set Bz Ď ZzpNr

GrDsYtzuq such that GprBz Ytzus is isomorphic
to a graph in F . In particular, there exist a graph H P Gt for some t ď d and an isomorphism
ψz : pBzzSq Y tzu Ñ rts between pG ´ SqprpBzzSq Y tzus and H where ψzpzq “ 1. For
each v P κ1ztzu, there exist Bv P Av and an isomorphism ψv : pBvzSq Y tvu Ñ rts between
pG ´ SqprpBvzSq Y tvus and H where ψvpvq “ 1 and for each j P rts, ρG

2r`1rψ´1
v pjq, Ss “

ρG
2r`1rψ´1

z pjq, Ss. To derive a contradiction, we do the following steps.
(1) Find a set κ3 Ď κ1ztzu such that for each u P κ3, distG´SpBu, Xclq ą r and GprB˚

u Y

pBzzB˚
z qs is isomorphic to GprBz Y tzus.

(2) Show that |D| ě |κ3|.
(3) Construct a pp, r,Fq-cover of Zztzu in G having size less than |D|.
Since D is a minimum-size pp, r,Fq-cover of Zztzu in G, these steps derive a contradiction.
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Let κ1
1 be the set of vertices v P κ1 with distG´SpBv, Xclq ď r and let κ2 :“ κ1zκ1

1.
We can show that |κ1

1| ď |MG
r1 pz,Xclq|. Thus, |κ2| ě ξ ` 1 ´ |MG

r1 pz,Xclq| ě fclpr
1, εq ¨

fapxpr, d, εqε ¨ k2ε ` d2{4 ` s ` 2. Since κ2 is nonempty, by the choice of z, κ2 contains z.
Let B˚

z be the vertex set of the component of pG´ SqprpBzzSq Y tzus having z. Note that
for vertices v, w P κ2, ψ´1

v ˝ ψw is an isomorphism between pG ´ SqprpBwzSq Y twus and
pG ´ SqprpBvzSq Y tvus assigning w to v. Thus, ψ´1

v ˝ ψzpB˚
z q “ B˚

v . The following claim
shows that the isomorphism is indeed an isomorphism between induced subgraphs of Gp.

▷ Claim 1. For vertices v, w P κ2, ψ´1
w ˝ ψv is an isomorphism between GprpBvzSq Y tvus

and GprpBwzSq Y twus.

Proof. It suffices to show that for i, j P rts, ψ´1
v piq is adjacent to ψ´1

v pjq in Gp if and only if
ψ´1

w piq is adjacent to ψ´1
w pjq in Gp. Suppose that ψ´1

v piq is adjacent to ψ´1
v pjq in Gp. Since

ψ´1
w ˝ ψv is an isomorphism between pGzSqprpBvzSq Y tvus and pGzSqprpBwzSq Y twus, we

may assume that ψ´1
v piq and ψ´1

v pjq are nonadjacent in pGzSqprpBvzSq Y tvus. Thus, every
path of length at most p in G between ψ´1

v piq and ψ´1
v pjq has a vertex in S.

We take an arbitrary path Q of G between ψ´1
v piq and ψ´1

v pjq having length at most
p. Let qi and qj be the vertices in V pQq X S such that each of distQpψ´1

v piq, qiq and
distQpψ´1

v pjq, qjq is minimum. Such qi and qj exist, because Q has a vertex in S. Let Qi be
the subpath of Q between ψ´1

v piq and qi, and Qj be the subpath of Q between ψ´1
v pjq and

qj . Note that both Qi and Qj are S-avoiding paths of length at most p ď 2r ` 1.
Since tv, wu Ď κ2 Ď κ1, ρG

2r`1rψ´1
v piq, Ss and ρG

2r`1rψ´1
w piq, Ss are same, and therefore

G has an S-avoiding path Q1
i between ψ´1

w piq and qi whose length is at most that of Qi.
Similarly, G has an S-avoiding path Q1

j between ψ´1
w pjq and qj whose length is at most that

of Qj . By substituting Qi and Qj with Q1
i and Q1

j from Q, respectively, we obtain a walk
of G between ψ´1

w piq and ψ´1
w pjq whose length is at most p. Therefore, ψ´1

w piq is adjacent to
ψ´1

w pjq in Gp. ◁

The following claim shows that except for at most d2{4 vertices in κ2, for every remaining
vertex u P κ2, we can build an isomorphic copy of GprBz Y tzus by substituting B˚

z with B˚
u .

▷ Claim 2. κ2 has at most d2{4 vertices v such that GprB˚
v Y pBzzB˚

z qs is not isomorphic
to GprBz Y tzus.

Proof. For vertices u P κ2ztzu and i P ψzpB˚
z q, since tu, zu Ď κ2 Ď κ1, ρG

2r`1rψ´1
u piq, Ss and

ρG
2r`1rψ´1

z piq, Ss are same. Therefore, for each w P S, ψ´1
u piq is adjacent to w in Gp if and

only if ψ´1
z piq is adjacent to w in Gp. By Claim 1, the restriction of ψ´1

u ˝ ψz on B˚
z is an

isomorphism between GprB˚
z s and GprB˚

u s.
We first show that for all vertices v P κ2, i P ψzpB˚

z q, and w P BzzpB˚
z Y Sq, if ψ´1

z piq is
adjacent to w in Gp, then ψ´1

v piq is adjacent to w in Gp. Suppose that ψ´1
z piq is adjacent to w

in Gp. Let Q1 be a path of G between ψ´1
z piq and w of length at most p. Since pG´SqprB˚

z s

is a component of pG´ SqprpBzzSq Y tzus having z and w R B˚
z , Q1 X S ‰ H.

Let q be the the vertex in V pQ1qXS such that distQ1 pψ´1
z piq, qq is minimum. Such q exists,

because Q1 has a vertex in S. Let Q1
1 be the subpath of Q1 between ψ´1

z piq and q. Note that Q1
1

is an S-avoiding path of length at most p ď 2r`1. Since ρG
2r`1rψ´1

v piq, Ss “ ρG
2r`1rψ´1

z piq, Ss,
there is an S-avoiding path Q1

2 in G between ψ´1
v piq and q having length at most that of Q1

1.
By substituting Q1

1 with Q1
2 from Q1, we obtain a walk of G between ψ´1

v piq and w having
length at most p. Thus, ψ´1

v piq is adjacent to w in Gp. So, there is no pair of i P ψzpB˚
z q

and w P BzzpB˚
z Y Sq so that in Gp, ψ´1

z piq is adjacent to w and ψ´1
u piq is nonadjacent to w.
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We now show that if there exist vertices i P ψzpB˚
z q and w P BzzpB˚

z Y Sq such that
ψ´1

z piq is nonadjacent to w in Gp, then κ2 contains at most one vertex x such that ψ´1
x piq

is adjacent to w in Gp. To prove the claim, it suffices to show this statement, because
|B˚

z | ¨ |BzzpB˚
z Y Sq| ď d2{4.

Suppose for contradiction that there exist vertices i P ψzpB˚
z q, w P BzzpB˚

z Y Sq, and
distinct x, x1 P κ2 such that ψ´1

z piq is nonadjacent to w in Gp and both ψ´1
x piq and ψ´1

x1 piq

are adjacent to w in Gp. Then G has paths R and R1 of length at most p from w to ψ´1
x piq

and ψ´1
x1 piq, respectively. We can verify that R or R1 has a vertex in S, as otherwise L is

not distance-r1 independent in G ´ S. By symmetry, we may assume that R has a vertex
in S. Let t be the vertex in V pRq X S such that distRpψ´1

x piq, tq is minimum. Let R0 be
the subpath of R between ψ´1

x piq and t. Note that R0 is an S-avoiding path of length at
most p ď 2r ` 1. Since ρG

2r`1rψ´1
x piq, Ss “ ρG

2r`1rψ´1
z piq, Ss, G has an S-avoiding path R1

0
between ψ´1

z piq and t having length at most that of R0. By substituting R0 with R1
0 from

R, we obtain a walk of G between ψ´1
z piq and w having length at most p, contradicting the

assumption that ψ´1
z piq is nonadjacent to w in Gp, and this proves the claim. ◁

Since |κ2| ě fclpr
1, εq ¨ fapxpr, d, εqε ¨ k2ε ` d2{4 ` s ` 2, by Claim 2, κ2ztzu has a

subset κ3 of size at least fclpr
1, εq ¨ fapxpr, d, εqε ¨ k2ε ` s` 1 such that for each vertex u P κ3,

GprB˚
u Y pBzzB˚

z qs is isomorphic to GprBz Y tzus, which is isomorphic to a graph in F . This
is the end of the first step.

We now show that |D| ě |κ3|. For each vertex u P κ3, since B˚
u YpBzzB˚

z q Ď Zztzu and D
is a pp, r,Fq-cover of Zztzu in G, there exist vertices xu P B˚

u Y pBzzB˚
z q and du P D with

distGpxu, duq ď r. Observe that xu P ψ´1
u ˝ψzpB˚

z q, because BzzB˚
z Ď Bz Ď ZzpNr

GrDsYtzuq.
Let Pu be an arbitrary path in G between xu and du of length at most r.

▷ Claim 3. For each u P κ3, V pPuq X pS YXclq “ H.

Proof. Let u be a vertex in κ3. Suppose for contradiction that V pPuq X S ‰ H. Let q
be the vertex in V pPuq X S such that distPu

pxu, qq is minimum. Let P1 be the subpath
of Pu between xu and q. Note that P1 is an S-avoiding path of length at most r. Since
tu, zu Ď κ2 Ď κ1, G has an S-avoiding path P2 between ψ´1

z ˝ ψupxuq and q having length
at most that of P1. By substituting P1 with P2 from Pu, we obtain a walk of G between
ψ´1

z ˝ψupxuq P B˚
z Ď Bz Y tzu and du having length at most r, contradicting the assumption

that Bz XNr
GrDs “ H. Hence, V pPuq X S “ H.

Since u R κ1
1 and Bu P Au, we have that

distGzSpxu, Xclq ě distGzSpB˚
u , Xclq ě distGzSpBu, Xclq ą r.

Since Pu is a path of GzS having length at most r, V pPuq XXcl “ H. ◁

We now derive |D| ě |κ3| from the following.

▷ Claim 4. For distinct u, u1 P κ3, the vertices du and du1 are distinct.

As the last step, we now construct a pp, r,Fq-cover of Zztzu in G having size less than |D|.
Let Dsell :“ tdu : u P κ3u, Dbuy :“ MG

r1 pz,XclqYS, and D1 :“ pDzDsellqYDbuy. By Claim 4,

|Dsell| “ |κ3| ě fclpr
1, εq ¨ fapxpr, d, εqε ¨ k2ε ` s` 1,

|Dbuy| ď |MG
r1 pz,Xclq| ` |S| ď fclpr

1, εq ¨ fapxpr, d, εqε ¨ k2ε ` s.

Since Dsell Ď D, we have that |D1| ă |D|. For a contradiction, we show the following claim.
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▷ Claim 5. D1 is a pp, r,Fq-cover of Zztzu in G.

Proof. Suppose not. Then there is a set B1 Ď ZzpNr
GrD1s Y tzuq such that GprB1s is

isomorphic to a graph in F . Since D is a pp, r,Fq-cover of Zztzu in G and DzD1 Ď Dsell,
Dsell contains a vertex du for some u P κ3 with distGpdu, B

1q ď r.
Since pGzSqprB˚

u s is connected and |B˚
u | ď d, GzS has a path Q0 of length at most

ppd´ 1q between u and xu. More specifically, Q0 is a concatenation of paths Q1
0, . . . , Q

t1
0 for

t1 ď d´ 1 such that for each i P rt1s, the length of Qi
0 is at most p and the ends of Qi

0 are in
B˚

u . Since distGpdu, B
1q ď r, G has a path Q1 of length at most r between du and w1 P B1.

Since Xcl is a pp, r,Fq-cover of Z in G, G has a path Q2 of length at most r between w2 P B1

and x P Xcl. Since GprB1s is isomorphic to a connected graph in F and |B1| ď d, G has a
path R of length at most ppd´ 1q between w1 and w2. More specifically, R is a concatenation
of paths R1, . . . , Rt2 for t2 ď d´ 1 such that for each i P rt2s, the length of Ri is at most p
and the ends of Ri are in B1. By concatenating Q0, Pu, Q1, R, and Q2, we obtain a walk
of G between u and x having length at most

|EpQ0q| ` |EpPuq| ` |EpQ1q| ` |EpRq| ` |EpQ2q|
ď ppd´ 1q ` r ` r ` ppd´ 1q ` r “ 2ppd´ 1q ` 3r ď r1.

Let P be a path of G between u and x consisting of edges of the walk. Let b be the vertex in
V pP q X pS YXclq such that distP pu, bq is minimum. Such b exists, because x P Xcl.

We first show that distGpb, B1q ď r. Note that Q0 has no vertex in S. Since u R κ1
1,

distGzSpBu, Xclq ą r. Since p ď 2r ` 1, for some j P rt1s, if Qj
0 has a vertex in Xcl, then

distGzSpBu, Xclq ď distGzSpB˚
u , Xclq ď r, a contradiction. Therefore, Q0 has no vertex in Xcl.

By Claim 3, V pPuq X pS Y Xclq “ H. These imply that b P V pQ1q Y V pRq Y V pQ2q. If
b P V pQ1q Y V pQ2q, then distGpb, B1q ď r clearly. Since p ď 2r ` 1, for some j P rt2s, if
b P Rj , then distGpb, B1q ď r. Therefore, distGpb, B1q ď r.

Since B1 Ď ZzpNr
GrD1s Y tzuq, b is not contained in D1. Since S Ď Dbuy Ď D1, b is

contained in XclzS. Since the subpath of P between u and b is an Xcl-avoiding path of length
at most r1, b is contained in MG

r1 pu,Xclq. Since tu, zu Ď κ2 Ď λ where λ is an equivalence class
of „, MG

r1 pu,Xclq and MG
r1 pz,Xclq are same. Therefore, b P MG

r1 pz,Xclq Ď D1, a contradiction.
◁

Claim 5 contradicts the assumption that D is a minimum-size pp, r,Fq-cover of Zztzu

in G. Thus, Zztzu is a pp, r,Fq-core of A in G. We conclude the proof by scaling ε to
ε{C. ◀

After recursively applying Proposition 3.1, started from A, we may assume that we are
given a small pp, r,Fq-core Z. By taking a p2r ` 1q-path closure Y of some superset of Z
with Lemma 2.3, we can derive an almost linear kernel for Annotated pp, r,Fq-Covering
as follows.

▶ Theorem 3.3. For every nowhere dense class C of graphs, there is fcov : N ˆ N ˆ R` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph G P C,
A Ď V pGq, and k P N, either correctly decides that γF

p,rpG,Aq ą k, or outputs sets Y Ď V pGq

of size at most fcovpr, d, εq ¨ k1`ε and Z Ď AX Y such that γF
p,rpGrY s, Zq “ γF

p,rpG,Aq.

We now convert the resulting instance of Theorem 3.3 to an equivalent instance of
pp, r,Fq-Covering. To do this, we will use the following definition and lemmas. For an
integer q ě 0 and a nonempty family G of graphs, a graph H is pq,Gq-critical if either
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H is a 1-vertex graph and G contains a 1-vertex graph, or
H has at least two vertices, Hq has an induced subgraph isomorphic to a graph in G, and
for every vertex v of H, pH ´ vqq has no induced subgraph isomorphic to a graph in G.

▶ Lemma 3.4. Let G be a nonempty family of graphs. Let F be a graph in G and d be the
order of F . For every positive integer q, there is a pq,Gq-critical graph of order at most
dpdq ` 1q{2. Moreover, if every graph in G has order at most d, then one can construct the
pq,Gq-critical graph in time polynomial in d.

Proof. Let F0 be the q-subdivision of F . Since F has at most dpd´ 1q{2 edges,

|V pF0q| ď d`
dpd´ 1qpq ´ 1q

2 “ d ¨
dq ´ d´ q ` 3

2 ď
dpdq ` 1q

2 .

Let H be a graph which is initially set as F0. Note that Hq has an induced subgraph
isomorphic to F P G. If |V pHq| “ 1, then H is pq,Gq-critical. Otherwise, for each vertex
v of H, we check whether pHzvqq has an induced subgraph isomorphic to a graph in G. If
H has no such vertex, then H is pq,Gq-critical. Otherwise, we set H by Hzv and do the
above process until either |V pHq| “ 1 or H has no such a vertex. It is readily seen that the
resulting graph is pq,Gq-critical graph and has at most dpdq ` 1q{2 vertices. Whole these
processes work in polynomial time when every graph in G has at most d vertices. ◀

The following lemma shows that every vertex of a pq,Gq-critical graph is a pq, tq{2u,Gq-
cover of it.

▶ Lemma 3.5. Let G be a nonempty family of graphs, and q be a positive integer. If H is a
pq,Gq-critical graph and there is a set B Ď V pHq such that HqrBs is isomorphic to a graph
in G, then for every x P V pHq, B contains a vertex in N

tq{2u

H rxs.

Proof. Suppose for contradiction that B contains no vertex in N
tq{2u

H rxs. Since H is pq,Gq-
critical, pHzxqqrBs is isomorphic to no graph in G. Since HqrBs is isomorphic to a graph in
G, B contains distinct vertices v and w such that v and w are adjacent in Hq and every path
of H between v and w having length at most q should contain x. However, since neither v
nor w is in N

tq{2u

H rxs, if H has a path P between v and w having x as an internal vertex,
then the length of P is at least 2tq{2u ` 2 ą q, a contradiction. ◀

To prove Theorem 1.1, we construct an equivalent instance of pp, r,Fq-Covering by
attaching a pp,Fq-critical graph to the resulting instance of Theorem 3.3.

Sketch of the proof of Theorem 1.1. The cases where either r “ 0 or p “ 0 are relatively
easy to deal with. Thus, in this sketch, we assume that both r and p are positive. Let d
be the maximum order of a graph in F . By Lemma 3.4, one can find in polynomial time
a pp,Fq-critical graph H having at most dpdp ` 1q{2 vertices. Let p1 :“ tp{2u and x be a
vertex of H. We construct the graph G1 as follows: take the disjoint union of GrY s and H,
add a new vertex h, and for each vertex v P pY zZq YNp1

H rxs, connect h and v by a path Pv

of length r. We can show that the resulting graph G1 is the desired one by Lemma 3.5. ◀

4 Kernels for the pp, r, Fq-Packing problems

Let p, r be nonnegative integers with p ď r`1 and F be a nonempty finite family of connected
graphs. We present an almost linear kernel for pp, r,Fq-Packing on every nowhere dense
class of graphs. We also divert to the annotated variant of pp, r,Fq-Packing. Although
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the proof scheme is similar to that of the kernel for pp, r,Fq-Covering, we need a more
intricate approximation algorithm, and the key lemma and the main steps of its proof are
quite different from those of pp, r,Fq-Covering.

For a graph G and a set A Ď V pGq, a pp, r,Fq-packing of A in G is a family of subsets of A,
say A1, . . . , Aℓ such that each GprAis is isomorphic to a graph in F , and for all 1 ď i ă j ď ℓ,
distGpAi, Ajq ą r. We denote by αF

p,rpG,Aq the maximum size of a pp, r,Fq-packing of A
in G. For a graph G, a set A Ď V pGq, and an integer k, Annotated pp, r,Fq-Packing asks
whether αF

p,rpG,Aq ě k. We first derive an almost linear kernel for this problem.

▶ Proposition 4.1. For every nowhere dense class C of graphs, there is frd : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2tr{2u ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph G P C,
A Ď V pGq with |A| ą frdpr, d, εq¨k1`ε, and k P N, either correctly decides that αF

p,rpG,Aq ą k,
or outputs a vertex z P A such that αF

p,rpG,Aq ě k if and only if αF
p,rpG,Aztzuq ě k.

▶ Proposition 4.2. For every nowhere dense class C of graphs, there is fdual : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r, r0 P N
with maxtp, r0u ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given
a graph G P C and A Ď V pGq, outputs a pp, r,Fq-cover of A in G having size at most
fdualpr, d, εq ¨ αF

p,r0
pG,Aq1`ε.

Proof of Proposition 4.1. The function frdpr, d, εq will be defined later. At the beginning,
we assume that |A| ą frdpr, d, εq ¨ k1`Cε for some constant C, and at the end, we scale ε
accordingly. We may assume that for every v P A, there is B Ď Aztvu such that GprB Y tvus

is isomorphic to a graph in F . Since p ď 2tr{2u ` 1, by Proposition 4.2, one can find
a pp, tr{2u,Fq-cover X of A in G having size at most fdualptr{2u, d, εq ¨ αF

p,rpG,Aq1`ε in
polynomial time. If |X| ą fdualptr{2u, d, εq ¨ k1`ε, then αF

p,rpG,Aq ą k. Thus, we may
assume that |X| ď fdualptr{2u, d, εq ¨ k1`ε. Let r1 :“ 4pd ` 3r. By Lemma 2.2, one can
find an pr1, fclpr

1, εq ¨ |X|εq-close set Xcl Ě X of size at most fclpr
1, εq ¨ |X|1`ε ď fclpr

1, εq ¨

fdualptr{2u, d, εq1`ε ¨ k1`3ε in polynomial time.
We define an equivalence relation „ on AzXcl such that for u, v P AzXcl, u „ v if and only

if ρG
r1 ru,Xcls “ ρG

r1 rv,Xcls. Then indexp„q ď fprojpr
1, εqfclpr

1, εq1`εfdualptr{2u, d, εq1`3εk1`7ε

by Lemma 2.1. Let ppr1q and s :“ spr1q be the constants in Theorem 2.4. Let

ξ :“ d ¨ pfclpr
1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` d2{4 ` 1q and m :“ 22d2{2

¨pr`2q
sd

¨ ξ ` 1.

By setting C “ 7 ` 2 ¨ ppr1q, one can choose frdpr, d, εq with frdpr, d, εq ¨ k1`Cε ě |Xcl| `

indexp„q ¨ mppr1
q. Since |A| ą frdpr, d, εq ¨ k1`Cε, we have that |AzXcl| ą indexp„q ¨ mppr1

q.
Thus, by the pigeonhole principle, there is an equivalence class λ of „ with |λ| ą mppr1

q. By
Theorem 2.4, one can find in polynomial time sets S Ď V pGq and L Ď λzS such that |S| ď s,
|L| ě m, and L is distance-r1 independent in G´ S.

We are going to find a desired vertex z from L. To do this, we define the following. For
each i P rds, let Gi be the set of all graphs whose vertex sets are ris. Note that |Gi| “ 2ipi´1q{2

for each i P rds. Let H1 be the set of functions ρ : S Ñ rr ` 1s Y t8u. Since |S| ď s, we
have that |H1| ď pr ` 2qs. For each i P rds, let H1

i be the set of all vectors ph1, . . . , hi, gq

of length i ` 1 where hj P H1 for each j P ris and g P Gi. Let H1 :“
Ťd

i“1 H1
i. Similar to

the proof of Proposition 3.1, we can show that |H1| ď 2d2
{2 ¨ pr ` 2qsd. Let ℓ :“ |H1|. We

take an arbitrary ordering σ1, . . . , σℓ of H1. For each v P L, let Av :“ H and xpvq be a zero
vector of length ℓ. One can enumerate in polynomial time the sets B Ď Aztvu of size at most
d ´ 1 such that GprB Y tvus is isomorphic to a graph in F in polynomial time. For each
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such B, we do the following. If there is an index i P rℓs such that the i-th entry of xpvq is 0
and for σi “ phi

1, . . . , h
i
t, giq P H1, there is an isomorphism ϕi : pBzSq Y tvu Ñ rts between

pG´ SqprpBzSq Y tvus and gi where ϕipvq “ 1 and for each j P rts, ρG
r rϕ´1pjq, Ss “ hi

j , then
we put B into Av and convert the i-th entry of xpvq to 1. Otherwise, we do nothing for
the chosen B. Since |B| ď d´ 1, one can check in polynomial time whether B satisfies the
conditions. Thus, the resulting Av and xpvq can be computed in polynomial time.

For each v P L, since Aztvu has a subset B such that GprB Y tvus is isomorphic to a
graph in F , Av ‰ H and xpvq has a nonzero entry. For each B P Av, let B˚ be the vertex
set of the component of pG´SqprpBzSq Y tvus having v. Since |L| ě m “ 22d2{2

¨pr`2q
sd

¨ ξ` 1
and ℓ ď 2d2

{2 ¨ pr` 2qsd, by the pigeonhole principle, L has a subset κ1 such that |κ1| ě ξ` 1
and xpvq “ xpwq for all v, w P κ1. Let z be an arbitrary vertex in κ1.

We show that αF
p,rpG,Aq ě k if and only if αF

p,rpG,Aztzuq ě k. The backward direction
is obvious. Suppose that G has a pp, r,Fq-packing I of A in G having size at least k. We may
assume that z is contained in some Bz P I, because otherwise I is also a pp, r,Fq-packing
of Aztzu. In particular, there exist a graph H P Gt for some t ď d and an isomorphism
ψz : pBzzSq Y tzu Ñ rts between pG´ SqprpBzzSq Y tzus and H where ψzpzq “ 1. To show
that αF

p,rpG,Aztzuq ě k, it suffices to show that there exist a vertex z1 P κ1ztzu and a set
Bz1 Ď Aztzu such that z1 P Bz1 and pIztBzuq Y tBz1 u is a pp, r,Fq-packing of Aztzu in G

having the same size as I.
Suppose for contradiction that no such z1 exists. It means that for each v P κ1ztzu,

if Aztzu has a subset B such that v P B and GprBs is isomorphic to a graph in F , then
IztBzu contains an element B1 with distGpB,B1q ď r, because otherwise we can substitute
Bz with B from I. For each v P κ1ztzu, there exist Bv P Av and an isomorphism ψv :
pBvzSq Y tvu Ñ rts between pG ´ SqprpBvzSq Y tvus and H where ψvpvq “ 1 and for each
j P rts, ρG

r`1rψ´1
v pjq, Ss “ ρG

r`1rψ´1
z pjq, Ss. For each v P κ1ztzu, let fpvq :“ B˚

v Y pBzzB˚
z q.

To derive a contradiction, we do the following steps.
(1) Find a set κ4 Ď κ1ztzu such that for each u P κ4, Gprfpuqs is isomorphic to GprBz Y tzus

and I contains an element Cu with distGpfpuq, Cuq ď r and distGpCu, Sq ą tr{2u.
(2) Show that κ4 contains distinct vertices v and v1 with distG´Spv, v1q ď r1.
Since κ4 Ď L is distance-r1 independent in G´ S, these steps derive a contradiction.

Let B˚
z be the vertex set of the component of pG ´ SqprpBzzSq Y tzus having z. Note

that for vertices v, w P κ1, ψ´1
v ˝ ψw is an isomorphism between pG ´ SqprpBwzSq Y twus

and pG´ SqprpBvzSq Y tvus assigning w to v. Thus, ψ´1
v ˝ ψzpB˚

z q “ B˚
v .

For the first step, we will use the following three claims. The proofs of Claims 6 and 7
are similar to those of Claims 1 and 2, respectively.

▷ Claim 6. For vertices v, w P κ1, ψ´1
w ˝ ψv is an isomorphism between GprpBvzSq Y tvus

and GprpBwzSq Y twus.

▷ Claim 7. κ1 has at most d2{4 vertices v where Gprfpvqs is not isomorphic to GprBzs.

Proof. For vertices u P κ1ztzu and i P ψzpB˚
z q, since tu, zu Ď κ1, ρG

r`1rψ´1
u piq, Ss and

ρG
r`1rψ´1

z piq, Ss are same. Therefore, for each w P S, ψ´1
u piq is adjacent to w in Gp if and

only if ψ´1
z piq is adjacent to w in Gp. By Claim 6, the restriction of ψ´1

u ˝ ψz on B˚
z is an

isomorphism between GprB˚
z s and GprB˚

u s.
We first show that for all vertices v P κ1, i P ψzpB˚

z q, and w P BzzpB˚
z Y Sq, if ψ´1

z piq is
adjacent to w in Gp, then ψ´1

v piq is adjacent to w in Gp. Suppose that ψ´1
z piq is adjacent

to w in Gp. We take an arbitrary path Q1 of G between ψ´1
z piq and w having length at most

p. Since pGzSqprB˚
z s is a component of pGzSqprpBzzSq Y tzus having z and w R B˚

z , Q1 must
have a vertex in S.
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Let q be the the vertex in V pQ1q X S such that distQ1 pψ´1
z piq, qq is minimum. Let Q1

1
be the subpath of Q1 between ψ´1

z piq and q. Note that Q1
1 is an S-avoiding path of length

at most p ď r ` 1. Since ρG
r`1rψ´1

v piq, Ss “ ρG
r`1rψ´1

z piq, Ss, G has an S-avoiding path Q1
2

between ψ´1
v piq and q having length at most that of Q1

1. By substituting Q1
1 with Q1

2 from Q1,
we obtain a walk of G between ψ´1

v piq and w having length at most p. Hence, ψ´1
v piq is

adjacent to w in Gp.
Thus, there is no pair of vertices i P ψzpB˚

z q and w P BzzpB˚
z Y Sq such that ψ´1

z piq is
adjacent to w in Gp and ψ´1

u piq is nonadjacent to w in Gp.
We now show that if there exist vertices i P ψzpB˚

z q and w P BzzpB˚
z Y Sq such that

ψ´1
z piq is nonadjacent to w in Gp, then κ1 contains at most one vertex x such that ψ´1

x piq

is adjacent to w in Gp. To prove the claim, it suffices to show this statement, because
|B˚

z | ¨ |BzzpB˚
z Y Sq| ď d2{4.

Suppose for contradiction that there exist i P ψzpB˚
z q, w P BzzpB˚

z Y Sq, and distinct
x, x1 P κ1 such that ψ´1

z piq is nonadjacent to w in Gp and both ψ´1
x piq and ψ´1

x1 piq are
adjacent to w in Gp. Then G has paths R and R1 of length at most p from w to ψ´1

x piq and
ψ´1

x1 piq, respectively.
We first verify that R or R1 has a vertex in S. Suppose not. Since |B˚

x | ď d, GzS has a
path R1 of length at most ppd´ 1q between x and ψ´1

x piq. Similarly, GzS has a path R1
1 of

length at most ppd ´ 1q between x1 and ψ´1
x1 piq. Since neither R nor R1 has a vertex in S,

by concatenating R1, R, R1, and R1
1, we obtain a walk of GzS of length at most 2pd ď r1

between x and x1, contradicting the assumption that L is distance-r1 independent in GzS.
Hence, R or R1 has a vertex in S. By symmetry, we may assume that R has a vertex in S.

Let t be the vertex in V pRq X S such that distRpψ´1
x piq, tq is minimum. Let R0 be the

subpath of R between ψ´1
x piq and t. Note that R0 is an S-avoiding path of length at most

p ď r ` 1. Since ρG
r`1rψ´1

x piq, Ss “ ρG
r`1rψ´1

z piq, Ss, G has an S-avoiding path R1
0 between

ψ´1
z piq and t having length at most that of R0. By substituting R0 with R1

0 from R, we obtain
a walk of G between ψ´1

z piq and w having length at most p, contradicting the assumption
that ψ´1

z piq is nonadjacent to w in Gp, and this proves the claim. ◁

Since |κ1| ě d ¨ pfclpr
1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` d2{4 ` 1q ` 1, by Claim 7, κ1ztzu

has a subset κ2 of size at least d ¨ pfclpr
1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` 1q such that for each

vertex u P κ2, Gprfpuqs is isomorphic to GprBzs, which is isomorphic to a graph in F .
For each u P κ2, since fpuq Ď Aztzu, by assumption, IztBzu contains an element Cu

with distGpfpuq, Cuq ď r. We take an arbitrary path Pu of G between bu P fpuq and
cu P Cu having length at most r. Since tBz, Cuu Ď I which is a pp, r,Fq-packing of A in G,
distGpBzzB˚

z , Cuq ě distGpBz, Cuq ą r. Thus, bu P fpuqzpBzzB˚
z q “ B˚

u .

▷ Claim 8. For each u P κ2, V pPuq X S “ H.

Proof. Suppose for contradiction that for some u P κ2, V pPuq X S ‰ H. Let q be the vertex
in V pPuq X S such that distPu pbu, qq is minimum. Let P1 be the subpath of Pu between bu

and q. Note that P1 is an S-avoiding path of length at most r. Since tu, zu Ď κ1, G has
an S-avoiding path P2 between ψ´1

z ˝ ψupbuq and q having length at most that of P1. By
substituting P1 with P2 from Pu, we obtain a walk of G between ψ´1

z ˝ ψupbuq P Bz and cu

having length at most r, contradicting the assumption that distGpBz, Cuq ą r. ◁

Since L is distance-r1 independent in G´ S and 2r ď r1, by Claim 8, cu ‰ cu1 for distinct
u, u1 P κ2. Since |κ2| ě d ¨ pfclpr

1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` 1q and every element in I

contains at most d vertices, there is a set κ3 Ď κ2 of size at least fclpr
1, εq ¨ fdualptr{2u, d, εqε ¨

k2ε ` s` 1 such that Cu ‰ Cu1 for all distinct u, u1 P κ3.
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Let κ1
3 be the set of vertices u P κ3 with distGpCu, Sq ď tr{2u. Since I is a pp, r,Fq-packing

of A in G, for all distinct u, u1 P κ3, distGpCu, Cu1 q ą r. Thus, we deduce that |κ1
3| ď |S| ď s.

Let κ4 :“ κ3zκ1
3. Note that |κ4| ě fclpr

1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` 1.
We now show that κ4 contains distinct vertices v and v1 with distG´Spv, v1q ď r1. For

each u P κ4, since GprCus is isomorphic to a graph in F and Xcl is a pp, tr{2u,Fq-cover of A
in G, G has a path Ru of length at most tr{2u between some yu P Cu and xu P Xcl. Since
u R κ1

3, V pRuqXS “ H. Since GprCus is isomorphic to a connected graph in F , G has a path
Qu of length at most ppd´ 1q between cu and yu. More specifically, Qu is a concatenation
of Q1

u, . . . , Q
t1

u for t1 ď d ´ 1 such that for each i P rt1s, the length of Qi
u is at most p and

the ends of Qi
u are in Cu. Since p ď 2tr{2u ` 1, for some j P rt1s, if V pQj

uq X S ‰ H,
then distGpCu, Sq ď tr{2u, contradicting that u R κ1

3. Thus, V pQuq X S “ H. By Claim 8,
V pPuq X S “ H. Since pG ´ SqprB˚

u s is connected and |B˚
u | ď d, G ´ S has a path Ou of

length at most ppd´ 1q between u and bu. By concatenating Ou, Pu, Qu, and Ru, we obtain
a walk of G´ S between u and xu having length at most

|EpOuq| ` |EpPuq| ` |EpQuq| ` |EpRuq| ď ppd´ 1q ` r ` ppd´ 1q ` tr{2u ď tr1{2u.

Let Wu be a path of G ´ S between u and xu consisting of edges of the walk. Let wu be
the vertex in V pWuq X Xcl such that distWu

pu,wuq is minimum. Such wu exists, because
xu P Xcl. Note that the subpath of Wu between u and wu is an Xcl-avoiding path of length
at most tr1{2u. Thus, wu is contained in MG

r1 pu,Xclq. Since tu, zu Ď κ1 Ď λ where λ is an
equivalence class of „, MG

r1 pu,Xclq and MG
r1 pz,Xclq are same. Therefore, wu P MG

r1 pz,Xclq.
Since |κ4| ě fclpr

1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` 1 ě |MG
r1 pz,Xclq| ` 1, by the pigeonhole

principle, there are distinct v, v1 P κ4 with wv “ wv1 . By concatenating Wv and Wv1 , we
obtain a walk of G´S between v and v1 having length at most r1, contradicting the assumption
that L is distance-r1 independent in G´ S. Therefore, there are a vertex z1 P κ1ztzu and a
set Bz1 Ď Aztzu such that z1 P Bz1 and pIztBzuq Y tBz1 u is a pp, r,Fq-packing of Aztzu in G
having the same size as I. We conclude the proof by scaling ε to ε{C. ◀

By recursively applying Proposition 4.1 and taking an pr` 1q-path closure of the resulting
set Z, we can construct an almost linear kernel for Annotated pp, r,Fq-Packing as follows.

▶ Theorem 4.3. For every nowhere dense class C of graphs, there is a function fpck :
N ˆ N ˆ R` Ñ N such that for every nonempty family F of connected graphs with at most d
vertices, p, r P N with p ď 2tr{2u ` 1, and ε ą 0, there is a polynomial-time algorithm that
given a graph G P C, A Ď V pGq, and k P N, either correctly decides that αF

p,rpG,Aq ą k,
or outputs sets Y Ď V pGq of size at most fpckpr, d, εq ¨ k1`ε and Z Ď A X Y such that
αF

p,rpG,Aq ě k if and only if αF
p,rpGrY s, Zq ě k.

To prove Theorem 1.2, we first apply the kernel in Theorem 4.3 and attach a pp,Fq-critical
graph to the resulting instance of this kernel. The way is similar to that of the proof of
Theorem 1.1, but slightly different.

Sketch of the proof of Theorem 1.2. The cases where either r ď 1 or p “ 0 are relatively
easy to deal with. Thus, in this sketch, we assume that r ě 2 and p ě 1. Let d be the
maximum order of a graph in F . By Lemma 3.4, one can find in polynomial time a pp,Fq-
critical graph H having at most dpdp ` 1q{2 vertices. Let p1 :“ tp{2u and x be a vertex
of H. We construct a graph G1 as follows: take the disjoint union of GrY s and H, add a
new vertex h, for each v P Y zZ, connect h and v by a path of length tr{2u, and for each
v P Np1

H rxs, connect h and v by a path of length rr{2s. We can show that the resulting graph
G1 is the desired one by Lemma 3.5. ◀
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