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Abstract
We consider the min-max graph balancing problem with strict negative correlation (SNC) constraints.
The graph balancing problem arises as an equivalent formulation of the classic unrelated machine
scheduling problem, where we are given a hypergraph G = (V, E) with vertex-dependent edge
weight function p : E × V 7→ Z≥0 that represents the processing time of the edges (jobs). The SNC
constraints, which are given as edge subsets C1, C2, . . . , Ck, require that the edges in the same subset
cannot be assigned to the same vertex at the same time. Under these constraints, the goal is to
compute an edge orientation (assignment) that minimizes the maximum workload of the vertices.

In this paper, we conduct a general study on the approximability of this problem. First, we show
that, in the presence of SNC constraints, the case with maxe∈E |e| = maxi |Ci| = 2 is the only case
for which approximation solutions can be obtained. Further generalization on either direction, e.g.,
maxe∈E |e| or maxi |Ci|, will directly make computing a feasible solution an NP-complete problem to
solve. Then, we present a 2-approximation algorithm for the case with maxe∈E |e| = maxi |Ci| = 2,
based on a set of structural simplifications and a tailored assignment LP for this problem. We
note that our approach is general and can be applied to similar settings, e.g., scheduling with SNC
constraints to minimize the weighted completion time, to obtain similar approximation guarantees.

Further cases are discussed to describe the landscape of the approximability of this prbolem.
For the case with |V | ≤ 2, which is already known to be NP-hard, we present a fully-polynomial
time approximation scheme (FPTAS). On the other hand, we show that the problem is at least as
hard as vertex cover to approximate when |V | ≥ 3.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Unrelated Scheduling, Graph Balancing, Strict Correlation Constraints

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.50

Funding Shi-Chun Tsai: Supported in part by National Science and Technology Council (NSTC),
Taiwan, under Grants 112-2634-F-A49-001-MBK.
Mong-Jen Kao: Supported in part by National Science and Technology Council (NSTC), Taiwan,
under Grants 111-2221-E-A49-118-MY3, 112-2628-E-A49-017-MY3, and 112-2634-F-A49-001-MBK.

© Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 50; pp. 50:1–50:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qazwexsdc.cs11@nycu.edu.tw
mailto:ariel831025@gmail.com
mailto:andrea.frosini@unifi.it
https://orcid.org/0000-0001-7210-2231
mailto:hsiehsy@ncku.edu.tw
https://orcid.org/0000-0003-4746-3179
mailto:sctsai@nycu.edu.tw
https://orcid.org/0000-0002-0085-0377
mailto:mjkao@nycu.edu.tw
https://orcid.org/0000-0002-7238-3093
https://doi.org/10.4230/LIPIcs.ISAAC.2023.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

1 Introduction

In the min-max graph balancing problem with strict negative correlation (SNC) constraints, we
are given an edge-weighted hypergraph G = (V, E) with edge weight function p : E×V 7→ Z≥0

and a collection of edge subsets C = {C1, C2, . . . , Ck}. An edge orientation (assignment)
is a function σ that maps each edge to one of its endpoints, i.e., σ(e) ∈ e for all e ∈ E,
and the orientation is said to be feasible if, for any 1 ≤ i ≤ k, there exists e, e′ ∈ Ci

such that σ(e) ̸= σ(e′), i.e., not all edges in Ci are assigned to the same vertex. The
workload of a vertex v ∈ V is defined to be the total weight of the edges assigned to it, i.e.,∑

e∈E s.t. σ(e)=v pe,v. The goal of this problem is to compute a feasible edge orientation that
minimizes the maximum workload of the vertices.

The graph balancing problem is an equivalent formulation of the classic unrelated machine
scheduling problem [22], where the edges in E are interpreted as jobs, the vertices V are the
machines, and the weights of edges are the processing times of the jobs. In the following, we
start with an introduction on the unrelated scheduling problem.

Lenstra et al. [22] presented an elegant LP-rounding scheme that exploits the extreme
point structure and obtained a 2-approximation for the unrelated scheduling problem. They
also showed that (1.5 − ϵ)-approximation for any ϵ > 0 is NP-hard to obtain. Since then,
there has been no significant progress on the upper-bound nor lower-bound for this problem,
and closing the gap is known as a major open problems in this field for over 30 years [26, 29].

It is worth noting that, even the strongest LP formulation ever known for this problem,
i.e., the configuration LP [27, 4], has an integrality gap of 2 for this problem [28]. Due to the
above reasons, subsequent research has mostly focused on restricted cases of the problem.

An important subcase that is widely considered in the literature is the restricted assignment
case, which considers the vertex-independent edge weight function p : E 7→ Z≥0. Svensson [27]
showed that the configuration-LP has an integrality gap at most 33/17 ≈ 1.9412 for this
problem. This bound was later improved to 11/6 ≈ 1.833 by Jansen and Rohwedder [21]. In
terms of approximation guarantees, Chakrabarty et al. [9] showed that, when there are only
two different types of edge weights, a (2− δ)-approximation can be obtained for some small
fixed constant δ > 0.

For restricted assignment case without hyperedges, i.e. p : E 7→ Z≥0 and maxe∈E |e| = 2,
Ebenlendr et al. [16] presented a 1.75-approximation algorithm. They also showed that, even
for this case, a (1.5− ϵ)-approximation is still NP-hard to obtain. Moreover, the hardness
result in [16] holds when there are only two different types of edge weights. For this seemingly
simple case, a 1.5-approximation can be obtained [19, 23, 10]. Interestingly, this is the only
nontrivial special case of unrelated scheduling for which the exact approximability is known.

Our motivation for studying the SNC constraints originates from the growing attention
on the pairwise negative correlation between jobs to surpass the long-standing guarantees for
job scheduling to minimize the weighted completion time [3, 5]. In our setting, we consider
the extreme case for which the negative correlation between jobs in the same group is one.

In general, the presence of SNC constraints makes the problem much harder to consider.
Consider the constraint graph GC := (E, C) with the edges in E being the vertices and the
constraints in C being the hyperedges. Even for the case that G is a complete hypergraph, i.e.,
e = V for all e ∈ E, determining whether or not G has a feasible edge orientation is already
equivalent to the problem of determining whether or not GC has a |V |-coloring such that no
constraint in C is monochromatic. As graph coloring is NP-hard, determining the existence
of feasible edge orientation in the presence of SNC constraints is in general NP-hard.
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There are essentially two directions to bypass the inherent hardness of the SNC constraints.
The first one is to assume that a feasible coloring for GC is given in advance, e.g., [7], and the
other is to consider restricted classes of GC for which a feasible orientation is polynomial-time
computable, e.g., [20, 13, 24, 25]. Notably, most of these works assumed restricted assignment
case with complete hypergraph, i.e., p : E 7→ Z≥0 and e = V for all e ∈ E, which is known as
the identical machine scheduling case in the literature, with special constraint graphs with
|Ci| = 2 for all 1 ≤ i ≤ k.

In the following we introduce the above results in more detail. Bodlaender et al. [7]
showed that, when a χ-coloring for the constraint graph GC is given in advance, a (χ + 2)/2-
approximation can be obtained when χ ≤ |V | − 1, and a 3-approximation can be obtained
when χ ≤ |V |/2 + 1. This is achieved by partitioning the vertices into χ groups in a way
such that no SNC constraints exist for each group. Different approximation guarantees are
obtained, based on different heuristics to distribute the number of vertices for each color.

Jansen et al. [20] considered the case for which GC is a complete multipartite graph,
i.e., the edges in E are partitioned into multiple groups, and each vertex must handle
edges that are within the same group. For this case, they provided a polynomial-time
approximation scheme (PTAS). Pikies et al. [25] further considered the unrelated scheduling
case and gave a (1 + ϵ)p-approximation for any ϵ > 0, where p = maxe,v pe,v/ mine,v pe,v is
the maximum ratio between the edge weights. This is done by ignoring the edge weights
and applying the algorithm of Jansen et al. [20]. Surprisingly, this straightforward algorithm
is proven to be tight. They also showed that, even when GC is complete bipartite, an
O(nbp1−c)-approximation is NP-hard to obtain for any b, c > 0.

Das and Wiese [13] considered the case for which GC is a collection of cliques, i.e., none
of the edges from the same clique can be assigned to the same machine. For this case, they
achieved a PTAS for identical machine scheduling. For unrelated machine scheduling, they
proved a (log n)1/4-inapproximability unless NP ⊆ ZPTIME(2(log n)O(1)). For the positive
side, Page and Solis-Oba [24] provided a b-approximation, where b is the number of cliques
in GC . They also gave a b/2-approximation for the restricted case that maxe∈E |e| = 2.

Further related works

A problem directly related to min-max graph balancing is the max-min fair allocation, for
which the goal is to maximize the minimum workload of the machines under the same set
of inputs [6, 4]. For the unrelated scheduling case, i.e., p : E × V 7→ Z≥0, it is known that,
(2− ϵ)-approximation for any ϵ > 0 is NP-hard to obtain [6]. For any ϵ = Ω(log log n/ log n),
Chakrabarty et al. [8] provided an O(nϵ)-approximation in O(n1/ϵ)-time. Furthermore, it is
known that, the integrality gap of configuration LP is Ω(

√
|V |) even when |E| = O(|V |) [4].

For the restricted assignment case, i.e., p : E 7→ Z≥0, it is known that (2 − ϵ)-
approximation is still NP-hard to obtain [6]. Bansal and Sviridenko [4] presented an
O(log log m/ log log log m)-approximation based on rounding the configuration LP. In a
series of follow-up works [17, 2, 12] and a very recent work due to Haxell and Szabó [18], the
integrality gap of configuration LP for this case is narrowed down to 3.534.

The first constant factor approximation for this case was obtained by Annamalai et al. [1],
which introduced the concept of lazy updates on the algorithm of [2] for polynomial-time
termination. The approximation guarantee was further improved to 6 [11, 14] and then
4 [12], by further deriving more structures for the local search algorithm. For the case for
which maxe |e| = 2, a tight 2-approximation can be obtained [8]. Notably, this is also the
only special case for which the exact approximability is known for max-min fair allocation.

ISAAC 2023



50:4 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Our Results and Contributions
In this paper, we study the complexity of unrelated graph balancing problem with SNC
constraints and provide a clear landscape on the approximability of this problem with respect
to different structures of input graphs. In contrast to the previous works, e.g., [20, 25, 13, 24],
which mostly considered SNC constraints with special structures, we always keep SNC
constraints in its most general form and discuss the complexity of the problem.

First, we show that, in the most general setting, either maxe∈E |e| ≥ 3 or maxi |Ci| ≥ 3
directly makes it NP-hard to even determine the existence of a feasible solution for the
input instance. Hence, the case that maxe∈E |e| = maxi |Ci| = 2 is the only case for which
approximation solutions can be obtained in terms of polynomial-time computations.

Even for the case maxe∈E |e| = maxi |Ci| = 2, determining the feasibility of the input
instance is still not a trivial task to accomplish. For this, we provide a characterization of
infeasible instances that can be checked in polynomial-time. This is done by transforming
the problem into an implication graph between the assignments.

Then, we present a 2-approximation algorithm for the case with maxe∈E |e| = maxi |Ci| =
2. Our ingredient for this part is LP-rounding that further exploits the implication between
assignments. We transform the concept into a directed acyclic graph (DAG), for which we
design a specific assignment LP. We provide a threshold-based rounding, which follows the
topological ordering of the DAG. The feasibility of the rounded solution is then ensured by
the DAG structure.

Note that, even when there is no SNC constraint, the ratio of 2 is still the best approxima-
tion guarantee known for the case with maxe∈E |e| = 2. We also remark that, our approach is
general and can be directly applied to similar problems, e.g., scheduling with SNC constraints
to minimize the weighted completion time, to obtain a 2-approximation guarantee.

It is also worth noting that, the techniques by Ebenlendr et al. [16] and Chakra-
barty et al. [8], which are used to obtain approximation results for the restricted assignment
case with no SNC constraints, do not seem to be applicable here. A key step in their rounding
algorithms is to fractionally-round a cycle for G while keeping the remaining assignments
unchanged. With the SNC constraints in place, such a rounding step is not guaranteed.

To compose a complete landscape for this problem, further special cases for G are
discussed. For the case when |V | ≤ 2, we show that a fully polynomial-time approximation
scheme (FPTAS) can be obtained, based on a pseudo-polynomial time dynamic programming
algorithm. Note that this case already contains the partition problem as its special case and
is NP-hard to solve. On the other hand, we show that the problem is at least as hard as
vertex cover to approximate when |V | ≥ 3. Hence, assuming the unique game conjecture,
our approximation result is already tight for this case.

Organization of this Paper

The rest of this paper is organized as follows. In Section 2, we provide the hardness result
when maxe∈E |e| ≥ 3 or maxi |Ci| ≥ 3. In Section 3, we present a characterization for
infeasible instances and our 2-approximation algorithm. We provide our FPTAS for |V | ≤ 2
and the hardness results for |V | ≥ 3 in Section 4.

2 Preliminaries

In the min-max SNC-graph balancing problem, we are given a tuple Ψ = (G = (V, E), p, C),
where G = (V, E) is a hypergraph, p : E × V 7→ Z≥0 is a vertex-dependent edge weight
function, and C = {C1, C2, . . . , Ck} is a collection of edge subsets that is referred to as the
SNC constraints.
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An edge orientation (assignment) is a function σ that maps each edge to one of its
endpoints, i.e., σ(e) ∈ e for all e ∈ E, and the orientation σ is said to be feasible if, for any
1 ≤ i ≤ k, there exists e, e′ ∈ Ci such that σ(e) ̸= σ(e′), i.e., not all edges in Ci are assigned
to the same vertex. The workload of a vertex v ∈ V w.r.t. σ is defined to be the total weight
of the edges assigned to it, i.e.,

∑
e∈E s.t. σ(e)=v pe,v. The goal of this problem is to compute

a feasible edge orientation that minimizes the maximum workload of the vertices.
Let Ψ = (G = (V, E), p, C) be an instance of the min-max SNC-graph balancing. For

any edge orientation σ, we will use σ−1(v) := {e ∈ E | σ(e) = v} for any v ∈ V to denote
the set of edges that are assigned to v.

We say that Ψ is an (α, β)-instance if maxe∈E |e| = α and maxC∈C |C| = β. In the
min-max (α, β)-SNC graph balancing problem, we assume that Ψ is an (α, β)-instance.

Complexity of Min-Max (α, β)-SNC Graph Balancing

In the following, we show that, when max(α, β) ≥ 3, determining whether or not an (α, β)
instance has a feasible solution is already an NP-hard problem. Hence, min-max (2, 2)-SNC
graph balancing is the only case for which an approximation solution can be obtained in
terms of polynomial-time computations.

For this, we consider the cases α ≥ 3 and β ≥ 3 separately and construct NP-hard
reductions for them. We note that, as the weight function p plays no role in determining the
feasibility of the instance, we will omit the construction detail for p.

First, for the case α ≥ 3, we make a reduction from the 3-SAT problem. Let φ =
{c1, c2, . . . , cm} be a set of m clauses over n variables x1, . . . , xn. We construct an instance
Ψ = (G = (V, E), p, C) with maxe∈E |e| ≤ 3 as follows. For each variable xi, we create two
literal vertices vxi

and v¬xi
and an edge exi

= {vxi
, v¬xi

}. Intuitively, this edge is supposed
to be oriented to the negated value of xi in a satisfying assignment, i.e., exi

should be oriented
to v¬xi if xi is true in a satisfying assignment and vice versa.

For each clause cj , we construct a hyperedge ecj which contains the three literal vertices
that cj contains. Furthermore, for each clause cj and each variable, say, xi, that appears in cj ,
we create an SNC constraint Cj,i = {ecj

, exi
}. Intuitively, the hyperedge ecj

for each clause
cj is supposed to be oriented to one of the literals that is true in a satisfying assignment,
and the consistency between the orientations of the variables and clauses is provided by the
SNC constraints we created. We have the following lemma.

▶ Lemma 1. φ is satisfiable if and only if there exists a feasible orientation for Ψ.

For the case β ≥ 3, we make a reduction from 3-uniform hypergraph 2-coloring [15]. We
show that, the problem of computing a feasible orientation for (2, 3)-SNC graph balancing
already contains the 3-uniform hypergraph 2-coloring problem as one of its special cases.

Recall that, in the 3-uniform hypergraph 2-coloring problem, we are given a 3-uniform
hypergraph G = (V, E) and the goal is to decide if there exists a 2-coloring of the vertices in
V such that no edge is monochromatic.

We construct an instance Ψ′ = (G′ = (V ′, E′), p, C′) with maxC∈C′ |C| = 3 as follows.
The vertex set V ′ consists of two vertices v(0), v(1) which correspond to the colors we are
using. For each vertex v ∈ V , we create an edge ev in E′ with end-points v(0), v(1). Note
that this creates multi-edges between v(0) and v(1) in G′. Intuitively, the orientation of ev

corresponds to the color of vertex v in a valid 2-coloring.
For each 3-uniform hyperedge e ∈ E, say, with endpoints u, v, w ∈ V , we create an

SNC constraint Ce := {eu, ev, ew} in C′. Intuitively, the SNC constraint requires that not
all endpoints of e are assigned to the same vertex, and this models the feasibility of the
2-coloring for G. The following lemma establishes the correctness of the reduction.

ISAAC 2023
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▶ Lemma 2. G is 2-colorable if and only if Ψ′ is feasible.

By Lemma 1 and Lemma 2, we obtain the following theorem.

▶ Theorem 3. When max(α, β) ≥ 3, it is NP-hard to determine the feasibility of (α, β)-
instances for the min-max SNC graph balancing problem.

3 Min-Max (2, 2)-SNC Graph Balancing

In this section, we consider the min-max (2, 2)-SNC graph balancing problem. First, we
present a characterization of feasible instances that can be tested in polynomial-time. Then,
we introduce a set of structural properties and modifications on the instance followed with
an assignment LP and obtain a 2-approximation for feasible instances of this problem.

Let Ψ = (G = (V, E), p, C) be an instance of min-max (2, 2)-SNC graph balancing, i.e.,
|e| ≤ 2 for all e ∈ E and |C| = 2 for all C ∈ C. To simply the notation, for any e ∈ E and
any v ∈ e, we will use e \ v to denote the endpoint of e other than v. Furthermore, e \ v is
defined to be ϕ if v is the only endpoint of e, i.e., e is a self-loop.

3.1 The Implication Graph and a Feasibility Characterization
In the following, we first define the concept of implication graph H for Ψ and a set of bad
implications in the implication graph H. Then we show that Ψ is feasible if and only if there
exists no bad implication in H.

Consider any SNC constraint {e, e′} ∈ C. If v is a common endpoint of e and e′, i.e.,
v ∈ e ∩ e′, and if e is already assigned to v, then e′ must not be assigned to v in any feasible
assignment. In other words, e′ must be assigned to e′ \ v. In this scenario, we say that the
assignment of e to v implies the assignment of e′ to e′ \ v.

The above observation defines the directed implication graph H = (VH , EH). The vertex
set VH consists of two types of nodes, namely,

ue,v for each e ∈ E and each v ∈ e, and
ue,ϕ for each e ∈ E with |e| = 1.

Intuitively, we construct H in a way such that, if ue,v is implied by a directed arc in EH ,
then e is supposed to be assigned to v in any feasible assignment. Furthermore, if ue,ϕ is
implied by an arc, then the instance Ψ is infeasible.

The directed arcs in EH are defined as follows. For each SNC constraint {e, e′} ∈ C and
each v ∈ e ∩ e′, we create two arcs: One from ue,v to ue′,e′\v and the other from ue′,v to
ue,e\v. Intuitively, the two arcs indicate that, if one of e or e′ is assigned to v, then the other
edge must be assigned to the vertex other than v.

Following the above concept, we use ue,v
+→ ue′,v′ to denote the scenario where there exists

a path of nonzero length from ue,v to ue′,v′ in H. If both ue,v
+→ ue′,v′ and ue′,v′

+→ ue,v,
then we write ue,v

+↔ ue′,v′ . Intuitively, if ue,v
+↔ ue′,v′ , then there exists a cycle that passes

both ue,v and ue′,v′ . Furthermore, the assignment of any edge on the nodes of this cycle will
uniquely determine the assignments of all the edges on the nodes of the same cycle.

▶ Definition 4 (Bad Implication). The following chains of implications are considered bad.
1. There exists a cycle in H that passes through both ue,v and ue,v′ for some e = {v, v′} ∈ E,

i.e., ue,v
+↔ ue,v′ for some e = {v, v′} ∈ E.

2. ue,ϕ is implied by ue,v for some e = {v} ∈ E, i.e., ue,v
+→ ue,ϕ for some e = {v} ∈ E.
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Clearly, the instance Ψ is infeasible if ue,v and ue,v′ imply each other for some e = {v, v′}
or ue,ϕ is implied by ue,v for some e = {v} ∈ E. The following lemma, on the contrary, shows
that the obvious necessary condition is also sufficient.

▶ Lemma 5. Ψ has a feasible orientation if and only if there is no bad implication in H.

Although Lemma 5 can be proved directly, we chose to prove it in an implicit way. We
show in the following sections that, when there is no bad implication in H, a 2-approximation
for Ψ can be computed based on LP-rounding. This completes the proof of Lemma 5.

We also note that, the existence of bad implications can be tested in polynomial-time by
simple graph traversal in H. We obtain the following theorem.

▶ Theorem 6. The feasibility of Ψ can be tested in polynomial-time.

3.2 Unique Edge Orientation and Strongly Connected Components
In the following, we assume that no bad implication exists in the implication graph H. We
further simplify the structure of H by identifying
1. edges whose orientations can be uniquely determined, and
2. edges whose orientations are implied by each other.

In the former case, the edges will be assigned directly as dedicated workloads that each
vertex in V possesses. The latter case corresponds to strongly connected components (SCCs)
in H to be contracted and treated as a single vertex. When this process ends, we obtain a
simplified implication graph H ′′ = (VH′′ , EH′′), which is directed acyclic, and a dedicated
workload function q : V 7→ Z≥0 of the vertices. In the following we describe the details.

Unique Edge Orientation

Observe that, the assignment of an edge e ∈ E with v ∈ e can be uniquely determined if one
of the following two cases holds.

e = {v}, i.e., e is a self-loop. Then e must be assigned to v.
ue,v′

+→ ue,v, where e = {v, v′}. In this case, it also follows that e must be assigned to v.

In addition, provided that the edge e is to be assigned to v, all the nodes (assignments)
that are further implied by ue,v in H must be realized as well. On the other hand, the
opposite direction of the realized assignments, e.g., ue,e\v, must never be made and should
be removed from the implication graph H.

In the following, we describe a unifying approach to handle the above two cases. We start
with a zero dedicated workload function q ← 0 and repeat the following steps while there
exists some v ∈ e ∈ E such that either |e| = 1 or ue,e\v

+→ ue,v.
Inside the main while loop, we pick one such v ∈ e ∈ E and do the following. Let

A ← {ue,v} ∪
{

ℓ ∈ VH | ue,v
+→ ℓ

}
be the set of nodes (assignments) in H that are implied by ue,v, i.e., the set of nodes reachable
from ue,v. Intuitively, the assignments in A must be realized as well. On the contrary, let

B ←
{

ue′,e′\v′ | ue′,v′ ∈ A
}

be the set of nodes that make the opposite directions of assignments to the nodes in A.
Intuitively, the assignments in B must not be realized.

ISAAC 2023
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Then, we do the following updates. For each node, say, ue′,v′ ∈ A, we assign e′ to v′

and add pe′,v′ to qv′ as dedicated loads of v′ accordingly. Then we remove both A and B

from H and proceed to the next iteration until there exists no v ∈ e ∈ E with |e| = 1 or
ue,e\v

+→ ue,v. In the following, we use Algorithm A to denote the above process.
In the following, we show that, for any e ∈ E and any v ∈ e, the two nodes ue,v and

ue,e\v cannot belong to A at the same time. Hence, the concepts of A and B in Algorithm A
are well-defined. We begin with the following structural lemma for H. Intuitively, it provides
a reversed symmetric property for the conjugating pair of nodes in H in that, whenever
ue,v

+→ ue′,v′ for some ue,v, ue′,v′ ∈ VH , their conjugating partners, ue,e\v and ue′,e′\v′ , must
have a reversed implication relation ue′,e′\v′

+→ ue,e\v.

▶ Lemma 7. Let e, e′ ∈ E with v ∈ e, v′ ∈ e′. If ue,v
+→ ue′,v′ , then ue′,e′\v′

+→ ue,e\v.

Proof. We prove by induction on the length n of the shortest path from ue,v to ue′,v′ . If
n = 1, then by the definition of H, we have {e, e′} ∈ C and v ∈ e∩ e′, and v = e′ \ v′. Hence,
when e′ is assigned to v, e must be assigned to e \ v. Therefore we have ue′,e′\v′

+→ ue,e\v.
Assume that the statement holds when the length of the shortest path from ue,v to ue′,v′

is at most n. Then for the length n + 1, pick an arbitrary intermediate vertex ℓ on the
shortest path from ue,v to ue′,v′ . That is to say, ue,v

+→ ℓ and ℓ
+→ ue′,v′ . It follows that the

lengths of both subpaths is at most n. So by assumption, we have ue′,e′\v′
+→ ℓ′ +→ ue\v,

where ℓ′ is the conjugating pair of ℓ. This proves the lemma. ◀

The following lemma shows that the concepts of A and B in Algorithm A are well-defined.

▶ Lemma 8. For any v ∈ e ∈ E, ue,v ∈ A implies that ue,e\v /∈ A.

Proof. Consider any iteration in Algorithm A. Let (v∗, e∗), where v∗ ∈ e∗ ∈ E, denote
the pair that is selected in the beginning of the iteration such that either |e∗| = 1 or
ue∗,e∗\v∗

+→ ue∗,v∗ .
Assume for contradiction that, for some v ∈ e ∈ E, both ue,v and ue,e\v are in A.

Depending on whether or not e = e∗, we distinguish two cases and show that they both lead
to bad implications in H. Note that this will be a contradiction to our assumption in H.

e = e∗ and v = v∗, i.e., (e, v) is the pair chosen in the beginning of this iteration. In this
case, since ue∗,e∗\v∗ = ue,e\v ∈ A, we have ue∗,v∗

+→ ue∗,e∗\v∗ , which is a bad implication.
Assume that e ̸= e∗. Since both ue,v, ue,e\v ∈ A, it follows that

ue∗,v∗
+→ ue,v and ue∗,v∗

+→ ue,e\v (1)

hold at the same time. By Lemma 7, this implies that

ue,e\v
+→ ue∗,e∗\v∗ and ue,v

+→ ue∗,e∗\v∗ (2)

hold at the same time. We further consider the two subcases for which |e∗| = 1 or not.

If |e∗| ≠ 1, then we have ue∗,e∗\v∗
+→ ue∗,v∗ by the condition we pick at the beginning

of the while loop. Then we have ue,e\v
+→ ue∗,e∗\v∗

+→ ue∗,v∗
+→ ue,v by (1) and (2),

which is bad.
If |e∗| = 1, then ue∗,v∗

+→ ue,v
+→ ue∗,e∗\v∗ is a bad implication since ue∗,e∗\v∗ = ue∗,ϕ.

In all cases, it leads to a bad implication, which is a contradiction to the assumption that Ψ
is a feasible instance. This proves the lemma. ◀
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By Algorithm A, we assume in the following that there are no self-loops in G and for any
e = {v, v′} ∈ E, none of ue,v or ue,v′ imply each other. Furthermore, we have a dedicated
workload function q for the vertices in V .

Handling the Strongly Connected Components

Consider the case that ℓ
+↔ ℓ′ for some ℓ, ℓ′ ∈ VH . Clearly this corresponds to a directed

cycle of implications, say, C, in H and constitutes as part of a strongly connected component
(SCC), say, C ′. It follows that, for any node on the cycle, say ue,v ∈ C, if the orientation of
e is determined, then the orientation of all the remaining edges to which the nodes on the
cycle correspond is also determined.

In fact, it is straightforward to verify that, the orientation of all the edges in the component
C ′ are mutually bound to each other. From this observation, the whole component C ′ can
be treated as a single node in the implication graph H, since the assignments of all the edges
on the nodes of this component are bound together.

In the following we formally define this concept. Let H ′ be the updated implication graph
after Algorithm A is applied and C ′

1, C ′
2, . . . , C ′

k be the SCCs we have in H ′.
Define the contracted implication graph H ′′ = (VH′′ , EH′′) as follows. For each 1 ≤ i ≤ k,

we have a vertex vi in VH′′ that represents the component C ′
i. For any 1 ≤ i, j ≤ k, we draw

an arc (vi, vj) in EH′′ if there is an arc (ℓ, ℓ′) that connects some ℓ ∈ C ′
i to some ℓ′ ∈ C ′

j .
Intuitively, the graph H ′′ is obtained by contracting each SCC in H ′ into a single vertex.

Since there is a one-to-one correspondence between SCCs in H ′ and the vertices in VH′′ , we
will use δ(s) for any s ∈ VH′′ to denote the SCC to which s corresponds in H ′. The following
lemma is straightforward to verify.

▶ Lemma 9. H ′′ is acyclic.

The following structural lemma for SCCs in H ′, obtained from Lemma 7, shows that
SCCs in H ′ also form conjugating pairs, regardless of their sizes.

▶ Lemma 10. For any e, e′ ∈ E with v ∈ e, v′ ∈ e′, if ue,v and ue′,v′ belong to the same
SCC, then ue,e\v and ue′,e′\v′ must belong to the same SCC as well.

ue,v

ue′,v′

δ(s) ++
ue,e\v

ue′,e′\v′

δ(s) ++

Figure 1 An illustration of the definition of conjugating pairs in VH′′ .

Lemma 10 allows the concept of conjugation for SCCs to be defined. Formally, for any
s ∈ VH′′ and any ue,v ∈ δ(s), define s to be the vertex in VH′′ such that δ(s) contains the
node ue,e\v. Note that, by Lemma 10, the vertex s is uniquely defined for each s ∈ VH′′ .
Also see Figure 1 for an illustration.

3.3 A 2-Approximation Algorithm
Let H ′′ = (VH′′ , EH′′) be the simplified implication graph we obtained from Section 3.2.
Note that H ′′ is acyclic by Lemma 9. Now we are ready to describe our assignment LP
LP-(T ) for this problem and our 2-approximation algorithm.
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For each vertex s ∈ VH′′ , we introduce a decision variable xs ∈ {0, 1} to indicate whether
or not the assignments specified in the nodes of the SCC δ(s) should be realized. In this
regard, for any v ∈ V , define ps(v) :=

∑
e∈E s.t. ue,v∈δ(s) pe,v to be the workload vertex

v ∈ V will receive, if the assignments in δ(s) are realized.
Let T ≥ 0 be the target maximum workload of the vertices to be achieved. We have the

following feasibility LP relaxation with respect to the target value T .∑
s∈VH′′

ps(v) · xs + qv ≤ T, ∀v ∈ V, (3a)

xs + xs = 1, ∀s ∈ VH′′ , (3b)

xs ≤ xs′ , ∀(s, s′) ∈ EH′′ , (3c)

xs ≥ 0, ∀s ∈ VH′′ . (3d)

In the above LP formulation, the constraint (3a) models the maximum workload T for
each v ∈ V . The second constraint (3b) states that, for each conjugating pair of SCCs, exactly
one type of orientation is made. The third constraint (3c) models the arc of implication in
H ′′, namely, if (s, s′) ∈ EH′′ and xs is 1, then xs′ must also be 1.

The Algorithm

Our algorithm goes as follows. First, it uses binary search to compute the smallest T0 such
that LP-(T0) is feasible. Let σ̂ be an optimal assignment for Ψ and T̂ be the maximum
workload of σ̂. Then, it follows that T0 must be a lower-bound of T̂ , since σ̂ corresponds to
a set of feasible solution for LP-(T̂ ). Let x∗ be a fractional solution for LP-(T0).

In the following, we describe a procedure that rounds x∗ into an integer solution x̃ such
that the workload of each vertex is at most doubled. Define

S ̸= :=
{

s ∈ VH′′ | x∗
s ̸=

1
2

}
and S= :=

{
s ∈ VH′′ | x∗

s = 1
2

}
.

For any s ∈ S ̸=, define

x̃s :=
{

1, if x∗
s > 1/2,

0, if x∗
s < 1/2.

By constraint (3b), if x∗
s > 1/2 for some s ∈ S ̸=, then it follows that x∗

s < 1/2 and vice versa.
Hence, the above setting of x̃ keeps constraint (3b) satisfied. Furthermore, the workload
each vertex receives is at most doubled since x∗

s is rounded up only when it is at least 1/2.
However, for any component s ∈ S=, we have s ∈ S= as well. Hence, x∗

s and x∗
s cannot

both be rounded up at the same time since constraint (3b) will be violated. To resolve the
rounding problem for components in S=, we use the fact that H ′′ \ S ̸= is still a DAG and
consider the topological order of the components in S=.

Let S := H ′′ \ S ̸=. Repeat the following steps until S becomes empty. In each iteration,
pick a component s ∈ S with zero out-degree. Intuitively, the orientation of s does not affect
the orientation of the remaining components in S. We set x̃s to be 1 and x̃s to be zero. Then
we remove both s and s from S. This process is repeated until S becomes empty.

To obtain an orientation for the edges in E, we make the assignments specified in each
SCC s with x̃s = 1. In particular, for each s ∈ VH′′ with x̃s = 1 and each node, say,
ue,v ∈ δ(s), we assign e to v by setting σ(e) = v. Then we output σ to be the approximate
solution for Ψ.
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The following lemma shows that, in any iteration of the above rounding procedure, if a
component s has zero out-degree, then s must have a zero in-degree. This shows that our
rounding procedure for components in S= is well-defined.

▶ Lemma 11. For any s ∈ VH′′ , if s has zero out-degree, then s must have a zero in-degree.

The following lemma shows that σ is a feasible orientation for Ψ. Note that this also
completes the proof for Lemma 5 and our characterization on the feasibility of (2, 2)-SNC
graph balancing.

▶ Lemma 12. σ is feasible for Ψ.

Proof. As an integer solution for LP-(T ) corresponds naturally to a feasible assignment, it
suffices to show that x̃ is feasible for LP-(T ) for some T .

Clearly x̃ satisfies constraint (3b) and (3d) in LP-(T0). For the constraint (3c), consider
any (s, s′) ∈ EH′′ . Since x∗ is a feasible solution for LP-(T0), we have x∗

s ≤ x∗
s′ . We will

show that x̃s ≤ x̃s′ . Depending on the values of x∗
s and x∗

s′ , we consider the following cases.
If 1/2 < x∗

s ≤ x∗
s′ or x∗

s ≤ x∗
s′ < 1/2, then x̃s = x̃s′ by our rounding scheme.

If x∗
s < 1/2 or 1/2 < x∗

s′ , then x̃s = 0 for the former case or x̃s′ = 1 for the latter case.
In both cases, x̃s ≤ x̃s′ holds.
For the remaining case for which x∗

s = x∗
s′ = 1/2, assume for contradiction that constraint

(3c) is not satisfied, i.e., x̃s = 1 and x̃s′ = 0.
Since x̃s = 1, we know that s′ has already been removed from H ′′ when s is selected to
be rounded up by the algorithm. Since x̃s′ = 0, we know that s′ was removed because its
conjugating pair was selected and removed. But this will be a contradiction to Lemma 11
since the in-degree of s′ was at least 1 at that time. Hence, constraint (3c) also holds.

This proves the feasibility of x̃ for LP-(T ) for some T . ◀

It remains to prove the following theorem.

▶ Theorem 13. σ can be computed in polynomial-time and is a 2-approximation for Ψ.

Proof. It is clear that the computation can be done in polynomial-time. For each vertex
v ∈ V , we know that the workload of v is

∑
e∈σ−1(v)

pe,v =
∑

s∈VH′′

x̃s ·

 ∑
ue,v∈δ(s)

pe,v

 + qv =
∑

s∈VH′′

x̃s ps(v) + qv .

Observe that for any s ∈ VH′′ , x̃s = 1 only when x∗
s ≥ 1/2. Hence we have x̃s ≤ 2 · x∗

s. It
follows that, for each vertex v ∈ V , we have∑

s∈VH′′

x̃s ps(v) + qv ≤
∑

s∈VH′′

2 · x∗
s ps(v) + qv ≤ 2 · T0 ≤ 2 · T̂ ,

where T̂ is the maximum workload of the optimal assignment σ̂ and in the last inequality we
use the fact that T0 is the smallest value such that LP-(T0) is feasible. ◀

Integrality Gap of LP-(T )

In the following we show that the integrality gap of LP-(T ) is 2. This shows that the
approximation ratio we obtained for this problem is tight in terms of the LP we use. Consider
the instance shown in Figure 2 with the weights pe1,a = pe5,b = pe3,a = pe3,b = 1 and all
other 0, and the SNC constraints C = {{e1, e2}, {e2, e3}, {e3, e4}, {e4, e5}}.
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Observe that no matter e3 is oriented to a or b, it always forces e1 or e5 to be oriented
to the same vertex to which e3 is oriented. Hence, the maximum workload of any feasible
orientation is at least 2. On the other hand, consider the simplified implication graph H ′′

of the instance, shown on the r.h.s. of Figure 2. Observe that, by setting xs = 1/2 for all
s ∈ VH′′ , all the constraints of LP-(T ) with T = 1 are satisfied and we obtain a fractional
orientation with maximum workload 1. This shows that the integrality gap is at least 2.

a b

c d

e3

e1e2 e4e5

e1, c

e2, a
e3, b

e4, d

e5, b

e1, a

e2, c
e3, a

e4, b

e5, d

Figure 2 An example which shows that the integrality gap of LP-(T ) is 2. On the right hand
side, we use e, v to denote ue,v for notational simplicity.

Extension to Weighted Completion Time with SNC Constraints.

Our approach for graph balancing with SNC constraints is general and can be applied to
similar settings to obtain similar approximation guarantees. In the following, we sketch how
our algorithm framework can be used to obtain a 2-approximation when the objective is to
minimize the weighted completion time, instead of maximum workload.

In fact, apart from the different objective function we need in the LP formulation, the
remaining parts are exactly the same. We have the following corollary.

▶ Corollary 14. We can compute a 2-approximation for the (2, 2)-SNC graph balancing
problem to minimize the weighted completion time.

4 Min-Max (2, 2)-SNC Graph Balancing on Restricted Graphs

In this section, we present both approximation and hardness results for min-max (2, 2)-SNC
graph balancing on restricted graphs to describe a complete landscape of this problem.

Let Ψ = (G = (V, E), p, C) be an instance of min-max (2, 2)-SNC graph balancing.

▶ Theorem 15. There is an FPTAS for min-max (2, 2)-SNC graph balancing when |V | = 2.
When |V | ≥ 3, this problem is at least as hard as vertex cover to approximate.

Note that, Theorem 15 provides a clear landscape on this problem and shows that,
assuming the unique game conjecture (UGC), the approximation guarantee we obtained in
this work is already tight even when |V | = 3.
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