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Abstract
Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks
for a smallest subset of disks that together cover all points of P . The problem is NP-hard. In
this paper, we consider a line-separable unit-disk version of the problem where all disks have the
same radius and their centers are separated from the points of P by a line ℓ. We present an
m2/3n2/32O(log∗(m+n)) + O((n + m) log(n + m)) time algorithm for the problem. This improves
the previously best result of O(nm + n log n) time. Our techniques also solve the line-constrained
version of the problem, where centers of all disks of S are located on a line ℓ while points of P can be
anywhere in the plane. Our algorithm runs in O(m

√
n + (n + m) log(n + m)) time, which improves

the previously best result of O(nm log(m + n)) time. In addition, our results lead to an algorithm
of n10/32O(log∗ n) time for a half-plane coverage problem (given n half-planes and n points, find a
smallest subset of half-planes covering all points); this improves the previously best algorithm of
O(n4 log n) time. Further, if all half-planes are lower ones, our algorithm runs in n4/32O(log∗ n) time
while the previously best algorithm takes O(n2 log n) time.
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1 Introduction

Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks
for a smallest subset of disks such that every point of P is covered by at least one disk in the
subset. The problem is NP-hard, even if all disks have the same radius [15,20]. Polynomial
time approximation algorithms have been proposed for the problem and many of its variants,
e.g., [1, 6, 8, 9, 16,19].

Polynomial time exact algorithms are known for certain special cases. If all points of
P are inside a strip bounded by two parallel lines and the centers of all disks lie outside
the strip, then the problem is solvable in polynomial time [3]. If all disks of S contain the
same point, polynomial time algorithms also exist [12,13]; in particular, applying the result
in [8] (i.e., Corollary 1.7) yields an O(mn2(m + n)) time algorithm. In order to devise an
efficient approximation algorithm for the general coverage problem (without any constraints),
the line-separable version was considered in the literature [3, 7, 11], where disk centers are
separated from the points by a given line ℓ. A polynomial time 4-approximation algorithm is
given in [7]. Ambühl et al. [3] derived an exact algorithm of O(m2n) time. An improved
O(nm + n log n) time algorithm is presented in [11] and another algorithm in [21] runs in
O(n log n + m2 log n) in the worst case.
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51:2 On the Line-Separable Unit-Disk Coverage and Related Problems

ℓ

Figure 1 Illustrating the line-separable unit-
disk case.

`

Figure 2 Illustrating the line-constrained case
(all disks are centred on ℓ).

The line-constrained version of the disk coverage problem has also been studied, where
disk centers are on the x-axis while points of P can be anywhere in the plane. Pedersen and
Wang [21] considered the weighted case in which each disk has a weight and the objective
is to minimize the total weight of the disks in the subset that cover all points. Their
algorithm runs in O((m + n) log(m + n) + κ log m) time, where κ is the number of pairs
of disks that intersect and κ = O(m2) in the worst case. They reduced the runtime to
O((m + n) log(m + n)) for the unit-disk case, where all disks have the same radius, as well
as the L∞ and L1 cases, where the disks are squares and diamonds, respectively [21]. The
1D problem where disks become segments on a line and points are on the same line is also
solvable in O((m + n) log(m + n)) [21]. Other types of line-constrained coverage problems
have also been studied in the literature, e.g., [2, 4, 5, 18].

A related problem is when disks of S are half-planes. For the weighted case, Chan and
Grant [8] proposed an algorithm for the lower-only case where all half-planes are lower ones;
their algorithm runs in O(n4) time when m = n. With the observation that a half-plane may
be considered as a unit disk of infinite radius, the techniques of [21] solve the problem in
O(n2 log n) time. For the general case where both upper and lower half-planes are present,
Har-Peled and Lee [17] solved the problem in O(n5) time. Pedersen and Wang [21] showed
that the problem can be reduced to O(n2) instances of the lower-only case problem and thus
can be solved in O(n4 log n) time. To the best of our knowledge, we are not aware of any
previous work particularly on the unweighted half-plane coverage problem.

1.1 Our result

We assume that ℓ is the x-axis and all disk centers are below or on ℓ while all points of P are
above or on ℓ. We consider the line-separable version of the disk coverage problem with the
following single-intersection condition: For any two disks, their boundaries intersect at most
once in the half-plane above ℓ. Note that this condition is satisfied in both the unit-disk
case (see Fig 1) and the line-constrained case (see Fig. 2; more to explain below). Hence, an
algorithm for this line-separable single-intersection case works for both the unit-disk case and
the line-constrained case. Note that all problems considered in this paper are unweighted
case in the L2 metric.

For the above line-separable single-intersection problem, we give an algorithm of O(m
√

n+
(n + m) log(n + m)) time in Section 3. Based on observations, we find that some disks are
“useless” and thus can be pruned from S. After pruning those useless disks, the remaining
disks have certain property so that we can reduce the problem to the 1D problem, which
can then be easily solved. The overall algorithm is fairly simple conceptually. One challenge,
however, is to show the correctness, namely, to prove why those “useless” disks are indeed
useless. The proof is rather lengthy and technical. The bottleneck of the algorithm is to find
those useless disks, for which we utilize the cuttings [10].
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The line-constrained problem. Observe that the line-constrained problem where all disks
of S are centered on a line ℓ while points of P can be anywhere in the plane is also a special
case of the line-separable single-intersection problem. Indeed, for each point p of P below
ℓ, we could replace p by its symmetric point with respect to ℓ; in this way, we can obtain
a set of points that are all above ℓ. It is not difficult to see that an optimal solution using
this new set of points is also an optimal solution for P . Further, since disks are centered
on ℓ, although their radii may not be equal, boundaries of any two disks intersect at most
once above ℓ. Hence, the problem is an instance of the line-separable single-intersection
case. As such, applying our algorithm in Section 3 solves the line-constrained problem in
O(m

√
n + (n + m) log(n + m)) time; this improves the previous algorithm in [21], which runs

in O(n log n + m2 log m) time in the worst case.

The unit-disk case. To solve the line-separable unit-disk case, the algorithm in Section 3
still works. However, by making use of the property that all disks have the same radius, we
further improve the runtime to m2/3n2/32O(log∗(m+n)) + O((m + n) log(m + n)) in Section 4.
This improves the O(nm + n log n) time algorithm in [11] as well as the O(n log n + m2 log n)
time one in [21]. The main idea of the improvement (over the algorithm in Section 3) is to
explore the duality of certain subproblems in the algorithm (i.e., consider the corresponding
problems on the centers of all unit disks of S and the unit disks centered at the points of
P ). We derive new algorithms for these dual subproblems and then combine them with the
algorithms in Section 3 using recursion (the number of recursions is O(log∗(n + m)) and this
is why there is a factor 2O(log∗(m+n)) in the time complexity).

The half-plane coverage problem. As in [21], our techniques also solve the half-plane
coverage problem. Specifically, for the lower-only case, let ℓ be a horizontal line that is below
all points of P . If we consider each half-plane as a unit disk of infinite radius with center below
ℓ, then the problem becomes an instance of the line-separable unit-disk coverage problem.
Therefore, applying our result leads to an m2/3n2/32O(log∗(m+n)) + O((m + n) log(m + n))
time algorithm. When m = n, this is n4/32O(log∗ n) time, improving the previous algorithm
of O(n2 log n) time [21]. For the general case where both the upper and lower half-plane are
present, using the method in [21] that reduces the problem to O(n2) instances of the lower-
only case, the problem is now solvable in m2/3n8/32log∗(m+n) +O(n2(m+n) log(m+n)) time.
When m = n, this is n10/32O(log∗ n) time, improving the previous algorithm of O(n4 log n)
time [21].

2 Preliminaries

This section introduces some concepts and notations that we will use in the rest of the paper.
We follow the notation defined in Section 1, e.g., P , S, m, n, ℓ. Without loss of generality,

we assume that ℓ is the x-axis and points of P are all above or on ℓ while centers of disks
of S are all below or on ℓ. Under this setting, for each disk s ∈ S, only its portion above ℓ

matters for our coverage problem. Hence, unless otherwise stated, a disk s only refers to its
portion above ℓ. As such, the boundary of s consists of an upper arc, i.e., the boundary arc
of the original disk above ℓ, and a lower segment, i.e., the intersection of s with ℓ. Notice
that s has a single leftmost (resp., rightmost) point, which is the left (resp., right) endpoint
of the lower segment of s.

We assume that each point of P is covered by at least one disk since otherwise there
would be no feasible solution. Our algorithm is able to check whether the assumption is met.
We make a general position assumption that no point of P lies on the boundary of a disk
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and no two points of A have the same x-coordinate, where A is the union of P and the set
of the leftmost and rightmost points of all disks. Degenerated cases can be easily handled by
standard techniques of perturbation, e.g., [14].

For any point p in the plane, we denote its x- and y-coordinates by x(p) and y(p),
respectively. We sort all the points of P in ascending order of their x-coordinates, resulting
in a sorted list p1, p2, · · · , pn. We also sort all disks in ascending order of the x-coordinates
of their leftmost points, resulting in a sorted list s1, s2, · · · , sm. We use S[i, j] to denote the
subset {si, si+1, · · · , sj}; for convenience, S[i, j] = ∅ if i > j. For each disk si, let li and ri

denote its leftmost and rightmost points, respectively.
For any disk s, we use Sl(s) (resp., Sr(s)) to denote the set of disks S whose leftmost points

are to the left (resp., right) of that of s. As such, if the index of s is i, then Sl(s) = S[1, i − 1]
and Sr(s) = S[i + 1, m]. If disk s′ ∈ Sl(s), then we also say that s′ is to the left of s; similarly,
if s′ ∈ Sr(s), then s′ is to the right of s.

For a point pi ∈ P and a disk sk ∈ S, we say that pi is vertically above sk if pi is outside
sk and x(lk) < x(pi) < x(rk).

If S′ is a subset of S that form a coverage of P , then we call S′ a feasible solution. If S′

is a feasible solution of minimum size, then S′ is an optimal solution.

The non-containment property. Suppose a disk si contains another disk sj . Then sj

is redundant for our problem since any point covered by sj is also covered by si. Those
redundant disks can be easily identified and removed from S in O(m log m) time (indeed,
this is a 1D problem by observing that si contains sj if and only if the lower segment of si

contains that of sj). Hence, for solving our problem, we first remove such redundant disks
and work on the remaining disks. For simplicity, from now on we assume that no disk of
S contains another. Therefore, S has the following non-containment property, which our
algorithm relies on.

▶ Observation 1. (Non-Containment Property) For any two disks si, sj ∈ S, x(li) < x(lj)
if and only if x(ri) < x(rj).

Cuttings. One algorithmic tool we use is the cuttings [10]. Let H denote the set of the
upper arcs of all disks of S. Note that |H| = m.

For a parameter r with 1 ≤ r ≤ m, a (1/r)-cutting Ξ of size O(r2) for H is a collection
of O(r2) constant-complexity cells whose union covers the plane such that for any cell σ,
|Hσ| ≤ m/r holds, where Hσ is the subset of arcs of H that intersect the interior of σ (Hσ is
often called the conflict list in the literature). In our algorithm descriptions, we often use Sσ,
defined as the subset of disks whose upper arcs are in Hσ.

Our algorithm actually uses hierarchical cuttings [10]. A cutting Ξ′ c-refines a cutting
Ξ if each cell of Ξ′ is contained in a single cell of Ξ and every cell of Ξ contains at most
c cells of Ξ′. Let Ξ0 denote the cutting whose single cell is the entire plane. We define
cuttings {Ξ0, Ξ1, ..., Ξk}, in which each Ξi, 1 ≤ i ≤ k, is a (1/ρi)-cutting of size O(ρ2i) that
c-refines Ξi−1, for two constants ρ and c. By setting k = ⌈logρ r⌉, the last cutting Ξk is a
(1/r)-cutting. The sequence {Ξ0, Ξ1, ..., Ξk} of cuttings is called a hierarchical (1/r)-cutting
of H. For a cell σ′ of Ξi−1, 1 ≤ i ≤ k, that fully contains cell σ of Ξi, we say that σ′ is the
parent of σ and σ is a child of σ′. Thus the hierarchical (1/r)-cutting can be viewed as a tree
structure with Ξ0 as the root. We often use Ξ to denote the set of all cells in all cuttings Ξi,
0 ≤ i ≤ k.

A hierarchical (1/r)-cutting of H can be computed in O(mr) time, e.g., by the algorithm
in [22], which adapts Chazelle’s algorithm [10] for hyperplanes. The algorithm also produces
the conflict lists Hσ (and thus Sσ) for all cells σ ∈ Ξ, implying that the total size of these
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Figure 3 Illustrating a pseudo-trapezoid.

conflict lists is bounded by O(mr). In particular, each cell of the cutting produced by the
algorithm of [22] is a (possibly unbounded) pseudo-trapezoid that typically has two vertical
line segments as left and right sides, a sub-arc of an arc of H as a top side (resp., bottom
side) (see Fig. 3).

3 The line-separable single-intersection case

In this section, we present our algorithm for the disk coverage problem in the line-separable
single-intersection case. We follow the notation defined in Section 2.

For each disk si ∈ S, we define two indices a(i) and b(i) of points of P (where pa(i) and
pb(i) are not contained in si), which are critical to our algorithm.

▶ Definition 2.
Among all points of P covered by the union of the disks of S[1, i − 1] but not covered by si,
define a(i) to be the largest index of these points; if no such point exists, then let a(i) = 0.
Among all points of P covered by the union of the disks of S[i + 1, m] but not covered by
si, define b(i) to be the smallest index of these points; if no such point exists, then let
b(i) = n + 1.

We now describe our algorithm. Although the algorithm description looks simple, it is
quite challenging to prove the correctness. Due to the space limit, the correctness proof is
in the full version of the paper. The algorithm implementation, which is also not trivial, is
presented in Section 3.1.

Algorithm description. The algorithm has three main steps.

1. We first compute a(i) and b(i) for all disks si ∈ S. We will show in Section 3.1 that this
can be done in O(m

√
n + (n + m) log(n + m)) time using cuttings.

2. For each disk si, if a(i) ≥ b(i), we say that si a prunable disk. Let S∗ denote the subset
of disks of S that are not prunable. We prove in the full version of this paper that S∗

contains an optimal solution for the coverage problem on P and S. This means that it
suffices to work on S∗ and P .

3. We reduce the disk coverage problem on S∗ and P to a 1D coverage problem as follows.
For each point of P , we project it vertically onto ℓ. Let P ′ be the set of all projected
points. For each disk si ∈ S∗, we create a line segment on ℓ whose left endpoint has
x-coordinate equal to x(pa(i)+1) and whose right endpoint has x-coordinate equal to
x(pb(i)−1) (if a(i) + 1 = b(i), then let the x-coordinate of the right endpoint be x(pa(i)+1)).
Let S′ be the set of all segments thus created.

ISAAC 2023
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We solve the following 1D coverage problem: Find a minimum subset of segments of
S′ that together cover all points of P ′. This problem can be easily solved in O((|S′| +
|P ′|) log(|S′| + |P ′|)) time [21],1 which is O((m + n) log(m + n)) since |P ′| = n and
|S′| ≤ m.
Suppose S′

1 is any optimal solution to the above 1D coverage problem. We create a subset
S1 of S∗ as follows. For each segment of S′

1, suppose it is created from a disk si ∈ S∗;
then we add si to S1. We prove in the full version of the paper that S1 is an optimal
solution to the coverage problem for S∗ and P .

We summarize the result in the following theorem.

▶ Theorem 3. Given a set P of n points and a set S of m disks in the plane such that the
disk centers are separated from points of P by a line, and the single-intersection condition is
satisfied, the disk coverage problem for P and S is solvable in O(m

√
n + (n + m) log(n + m))

time.

The unit-disk case. In Section 4, we will reduce the time to m2/3n2/32O(log∗(m+n)) +O((n+
m) log(n + m)) for the unit-disk case. The algorithm is exactly the same as above, except
that we compute a(i)’s and b(i)’s in a more efficient way by utilizing the property that all
disks have the same radius.

3.1 Algorithm implementation
In this section, we show that the first main step of the algorithm can be implemented in
O(m

√
n + (n + m) log(n + m)) time. The goal is to compute a(i) and b(i) for all disks si ∈ S.

We only discuss how to compute a(i) since computing b(i) can be done analogously. To this
end, we start with the following definition.

▶ Definition 4. For each point p ∈ P , define γ(p) as the smallest index k such that the disk
sk covers p.

One reason we introduce γ(p) is due to the following observation.

▶ Observation 5. For any disk si ∈ S and any point p ∈ P that is outside si, there is a disk
in Sl(si) covering p if and only if γ(p) < i.

Our algorithm for computing a(i) relies on γ(p) for all p ∈ P . Therefore, we first present
an algorithm in the following lemma to compute γ(p).

▶ Lemma 6. There is an algorithm that can compute γ(p) for all p ∈ P in O(m
√

n + (m +
n) log(m + n)) time.

Proof. Let H be the set of the upper arcs of all disks. As discussed in Section 2, we compute
a hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H in O(mr) time [10,22], for a parameter r ∈ [1, m]
to be determined later. We follow the notation about cutting as in Section 2, e.g., Ξ, Hσ, Sσ,
etc. Recall that Ξ denotes the set of all cells of all cuttings σi, i = 0, 1, . . . , k. As discussed
in Section 2, the cutting algorithm [10,22] also computes the conflict lists Hσ (and thus Sσ)
for all cells σ ∈ Ξ. Also,

∑
σ∈Ξ |Sσ| = O(mr).

1 The algorithm in [21], which uses dynamic programming, is for the weighted case where each segment
has a weight. Our problem is simpler since it is an unweighted case. We can use a simple greedy
algorithm to solve it.
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For each i with 1 ≤ i ≤ k, for each cell σ ∈ Ξi, let S(σ) be the set of disks that contain
σ but do not contain σ′, where σ′ is the parent cell of σ (which is in Ξi−1). Note that Ξ0
consists of a single cell σ∗ that is the entire plane and thus we simply let S(σ∗) = ∅ as no
disk contains the entire plane.

We can compute S(σ) of all cells σ ∈ Ξ in O(mr) time as follows. For each i with
1 ≤ i ≤ k, for each cell σ′ ∈ Ξi−1, recall that Sσ′ is available from the cutting algorithm. For
each disk s of Sσ′ , for each child cell σ of σ′, we check whether s contains σ; if yes, we add
s to S(σ). As such, since the total size of Sσ of all cells σ of Ξ is O(mr) and each cell has
O(1) children, the total time for computing S(σ) for all cells σ ∈ Ξ is O(mr).

For each cell σ, by slightly abusing the notation, we define γ(σ) as the smallest index
of the disks in S(σ). After S(σ)’s are computed, the indices γ(σ) for all cells σ ∈ Ξ can be
computed in additional O(mr) time.

Next, we run the following point location step for each point p ∈ P to compute γ(p).
Initially, we set γ(p) = m + 1. Starting from the only cell of Ξ0, we locate the cell σi that
contains p in each cutting Ξi. This takes O(log r) time as each cell contains O(1) children
and k = O(log r). For each such cell σi, we update γ(p) = min{γ(p), γ(σi)}. As such, the
point location step on p takes O(log r) time. The total time for all points of P is O(n log r).

In addition, we do the following processing for the cell σk of the last cutting Ξk that
contains each p ∈ P . For each disk sj ∈ Sσk

, we check whether sj contains p. If yes, we
update γ(p) = min{γ(p), j}. After that, γ(p) is correctly computed. As |Sσk

| ≤ m/r, this
additional step for each point p takes O(m/r) time. Therefore, the total time of this step for
all points of P is O(nm/r).

In summary, computing γ(p) for all p ∈ P takes O(mr + n log r + nm/r) time. Setting
r = min{

√
n, m} leads to the lemma. ◀

The following lemma finally computes a(i).

▶ Lemma 7. Computing a(i) for all disks si ∈ S can be done in O(m
√

n+(m+n) log(m+n))
time.

Proof. We first compute γ(p) for all p ∈ P by Lemma 6.
Let H be the set of the upper arcs of all disks. As discussed in Section 2, we compute a

hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H in O(mr) time [10,22], for a parameter r ∈ [1, m]
to be determined later. We follow the notation about cutting as in Section 2, e.g., Ξ, Hσ,
Sσ, etc. Recall that Ξ denotes the set of all cells of all cuttings σi, i = 0, 1, . . . , k.

For each cell σ ∈ Ξ, let P (σ) denote the set of points of P inside σ, i.e., P (σ) = P ∩ σ.
We can compute P (σ) for all cells σ ∈ Ξ in O(n log r) time by the point location step as
discussed in Lemma 6. Note that the total size of P (σ) for all cells σ ∈ Ξ is also O(n log r).
In addition, if we invoke the point location step for points of P following their index order,
then points in each P (σ) can be sorted in their index order and the time is still O(n log r).

We need to perform a pruning procedure for P (σ) of each cell σ ∈ Ξ. Before we describe
it, we first explain the motivation. Our algorithm for computing a(i) needs to solve the
following subproblem. Given a disk si and a cell σ ∈ Ξ such that σ does not intersect si,
the problem is to compute aσ(i), which is defined as the largest index k of a point pk of
P (σ) with γ(pk) < i (if no such k exists, then aσ(i) = 0). In light of Observation 5, aσ(i) is
the largest index k of a point pk of P (σ) such that Sl(si) has a disk covering pk. To solve
the subproblem, consider two points pk and pj in P (σ) with k < j. A key observation is
that if γ(pk) ≥ γ(pj), then aσ(i) ̸= k holds for any such disk si with si ∩ σ = ∅, and thus
pk can simply be ignored. Indeed, assume to the contrary that aσ(i) = k. Then, we have
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γ(pk) < i. Hence, γ(pj) < i. By definition, we can obtain aσ(i) ≥ j > k, which contradicts
with aσ(i) = k. In light of the key observation, to facilitate computing aσ(i) for all such
disks si, we first perform the following pruning procedure.

The algorithm maintains a stack A of points of P (σ). Initially, A = ∅. We process the
points of P (σ) in their index order (recall that they are already sorted). Suppose we are
processing a point p ∈ P (σ). Let p′ be the point at the top of the stack. If A = ∅ or if
γ(p′) < γ(p), then we push p onto A. Otherwise, we pop p′ out of A (we say that p′ is
pruned) and repeat the above. After all points of P (σ) are processed, let P ′(σ) denote the
set of points in the stack. Due to the pruning, points of P ′(σ) are sorted by both their
indices and their γ(·) values. Clearly, the pruning procedure runs in O(|P (σ)|) time.

We use P ′(σ) in the following way. Recall that we wish to compute aσ(i). Let k be the
largest index of pk ∈ P ′(σ) such that γ(pk) < i. Then, the above key observation and our
pruning procedure guarantee that aσ(i) = k. Hence, we could compute aσ(i) by a binary
search on P ′(σ) using i, the index of the disk. However, doing binary search for each disk
would make the total runtime of the algorithm have one more logarithmic factor. To improve
it, we use the following strategy. For each cell σ, suppose S′(σ) is a set of disks si (with
si ∩ σ = ∅) that need to compute aσ(i) with respect to σ (the exact definition of S′(σ) will
be given later). Then, we search P ′(σ) with disks of S′(σ) altogether, by using a procedure
similar to that for merging two sorted lists in merge-sort. In this way, the total time is linear
in |P ′(σ)| + |S′(σ)| (in contrast, the time would be O(|S′(σ)| · log |P ′(σ)|) if we do binary
search for each disk of S′(σ)).

We are now ready to describe our overall algorithm for computing a(i). The above
has computed P (σ) for all cells σ ∈ Ξ, whose total size is O(n log r). We run the pruning
procedure on P (σ) for every cell σ ∈ Ξ to compute P ′(σ); this takes O(n log r) time in total
as

∑
σ∈Ξ |P (σ)| = O(n log r).

For each cell σ ∈ Ξ, we define S′(σ) as the subset of disks that do not intersect σ but
whose upper arcs intersect the parent cell of σ. We can compute S′(σ) for all cells σ ∈ Ξ in
O(mr) time as follows. Initially we set S′(σ) = ∅. Then, for each 0 ≤ i ≤ k − 1, for each cell
σ′ ∈ Ξi, for each disk s ∈ Sσ′ , for each child σ of σ′, if s does not intersect σ, then we add s

to S′(σ). As each cell σ′ has O(1) children and
∑

σ∈Ξ |Sσ| = O(mr), it takes O(mr) time to
compute S′(σ) for all cells σ ∈ Ξ. This also implies

∑
σ∈Ξ |S′(σ)| = O(mr).

Now that we have P ′(σ) and S′(σ) available for all cells σ ∈ Ξ, we compute a(i) for
all disks si as follows. Initially, we set a(i) = 0. Then, for each cell σ, we perform a
search with P ′(σ) and S′(σ) to compute aσ(i) for all disks si ∈ S′(σ) using the procedure
discussed above, which takes O(|P ′(σ)| + |S′(σ)|) time. Then, for each disk si ∈ S′(σ), we
update a(i) = max{a(i), aσ(i)}. Since

∑
σ∈Ξ |P ′(σ)| = O(n log r) and

∑
σ∈Ξ |S(σ)| = O(mr),

processing all cells σ of Ξ as above takes O(mr + n log r) time in total.

Finally, for each cell σ of the last cutting Ξk, we perform the following additional
processing: For each disk si ∈ Sσ, for each point pj ∈ P (σ), if pj is outside si and γ(pj) < i,
then we update a(i) = max{a(i), j}. After that, the values a(i) for all disks si ∈ S are
correctly computed. Since |Sσ| ≤ m/r for each cell σ ∈ Ξk, we spend O(m/r) time on each
point p ∈ P (σ). As

∑
σ∈Ξk

|P (σ)| = n, the total time of the additional processing as above
for all cells σ ∈ Ξk is O(nm/r).

In summary, we can compute a(i) for all disks si ∈ S in O(mr + n log r + nm/r) time in
total. Setting r = min{

√
n, m} leads to the lemma. ◀
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4 The unit-disk case

In this section, we consider the unit-disk case where all disks of S have the same radius. As
remarked right after Theorem 3, our algorithm is the same as described in Section 3, except
that we are able to compute a(i)’s and b(i)’s more efficiently in m2/3n2/32O(log∗(m+n)) +
O((n + m) log(n + m)) time, by exploring the property that all disks have the same radius.
In the following, we only discuss how to compute a(i)’s because the case for b(i)’s is similar.

For each point pi ∈ P , define p̃i as the unit disk centered at pi, and we call p̃i the dual
disk of pi. For each disk si, let s̃i denote the center of si, and we call s̃i the dual point of si.
Let P̃ denote the set of all dual disks and S̃ the set of all dual points. Since all disks of S

have the same radius, we have the following easy observation.

▶ Observation 8. A disk si ∈ S contains a point pj ∈ P if and only if the dual point s̃i is
contained in the dual disk p̃j.

Our new algorithm for computing a(i)’s for the unit-disk case relies on exploring the
“duality” in Observation 8. Recall in Section 3.1 that the algorithm for computing a(i)’s
involves two steps: (1) compute γ(p)’s for all points p ∈ P (i.e., Lemma 6); (2) compute
a(i)’s for all si ∈ P (i.e., Lemma 7). We have new algorithms for both steps in the following
two subsections, respectively.

4.1 Computing γ(p)’s
We first introduce the following definition γ̃(·), which is “dual” to γ(·).

▶ Definition 9. For each dual disk p̃ ∈ P̃ , define γ̃(p̃) as the smallest index k such that p̃

contains the dual point s̃k.

The following observation follows immediately from Observation 8.

▶ Observation 10. For each point pi ∈ P , γ(pi) = γ̃(p̃i).

Observation 10 implies that computing γ(pi) for all points pi ∈ S is equivalent to
computing γ̃(p̃i) for all dual disks p̃i ∈ P̃ . To compute them, we will present two recursive
algorithms and then combine them to obtain our final algorithm. The first algorithm
computes γ(pi)’s using P and S while the second one computes γ̃(p̃i) using P̃ and S̃. The
combined algorithm will run the two algorithms alternatively using recursion.

The first algorithm. This algorithm follows the same framework as that for Lemma 6, but
when processing the cells σ in the last cutting Ξk, instead of brute-force, we form subproblems
and solve them recursively. We follow the notation from Lemma 6.

Let H be the set of the upper arcs of all disks of S. We compute a hierarchical (1/r)-
cutting Ξ0, . . . , Ξk for H in O(mr) time [10, 22], for a parameter r ∈ [1, m] to be determined
later. Let Ξ denote the set of all cells of all cuttings σi, i = 0, 1, . . . , k. As in Lemma 6, we
compute S(σ) and γ(σ) for all cells σ ∈ Ξ, which takes O(mr) time.

Next, we run the point location step for each point p ∈ P as in Lemma 6. Initially, we
set γ(p) = 0. Starting from Ξ0, we locate the cell σi that contains p in each cutting Ξi. For
each σi, we update γ(p) = min{γ(p), γ(σi)}. This point location step can also compute P (σ)
for all cells σ ∈ Ξ, where P (σ) denotes the set of points of P in σ. The total time for the
point locations for all points p ∈ P is O(n log r).
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Finally, we do the following additional processing for the last cutting Ξk. For each cell
σ ∈ Ξk, if |P (σ)| > n/r2, we partition P (σ) into subsets of sizes between n/(2r2) and n/r2,
called standard subsets (if |P (σ)| ≤ n/r2, then P (σ) itself is a standard subset). As Ξk has
O(r2) cells and

∑
σ∈Ξk

|P (σ)| = n, the total number of standard subsets for all cells σ ∈ Ξk is
O(r2). Recall that Sσ is the subset of disks whose upper arcs intersect σ. For each standard
subset P1(σ) of P (σ), we form a subproblem on (P1(σ), Sσ): Compute γσ(p) for all points
p ∈ P1(σ) with respect to disks of Sσ, where γσ(p) is defined to be the smallest index of the
disks of Sσ covering p. After the subproblem is solved, we update γ(p) = min{γ(p), γσ(p)}
for each point p ∈ P1(σ). This will compute γ(p) correctly. Note that there are O(r2)
subproblems in total and in each subproblem |P1(σ)| ≤ n/r2 and |Sσ| ≤ m/r.

If we use T (n, m) to denote the runtime of the entire algorithm on the original problem
(P, S), then we obtain the following recurrence relation:

T (n, m) = O(mr + n log r) + O(r2) · T (n/r2, m/r). (1)

The second algorithm. The second algorithm computes γ̃(p̃) for all dual disks p̃ ∈ P̃ .
Recall that all dual disks have their centers above ℓ. Therefore, each dual disk has a

“lower arc” below ℓ. Let H̃ denote the set of the lower arcs of all dual disks. We compute a
hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H̃ in O(nr) time [10,22], for a parameter r ∈ [1, n]
to be determined later. We use Ξ to denote the set of all cells of all cuttings Ξi, i = 0, 1, . . . , k.
For each cell σ ∈ Ξ, let P̃σ denote the set of dual disks whose lower arcs intersect σ.

For each cell σ ∈ Ξ, let S̃(σ) denote the subset of dual points of S̃ inside σ. For each cell
σ ∈ Ξ, by slightly abusing the notation, let γ̃(σ) denote the minimum index of all points of
S̃(σ). We can compute S̃(σ) as well as γ̃(σ) for all cells σ ∈ Ξ in O(m log r) time by point
locations as in the first algorithm.

We now compute γ̃(p̃)’s. Initially, we set each γ̃(p̃) = m + 1. For each 1 ≤ i ≤ k, for each
cell σ′ ∈ Ξi−1, for each dual disk p̃ ∈ P̃σ′ , for each child σ ∈ Ξi of σ′, if p̃ contains σ, then we
update γ̃(p̃) = min{γ̃(p̃), γ̃(σ)}. Since

∑
σ∈Ξ |P̃σ| = O(nr) and each cell has O(1) children,

the total time of this procedure is O(nr).
Finally, we do the following additional processing for the last cutting Ξk. For each cell

σ ∈ Ξk, as in the first algorithm, if |S̃(σ)| > m/r2, we partition S̃(σ) into standard subsets
of sizes between m/(2r2) and m/r2. The total number of standard subsets is O(r2). For
each standard subset S̃1(σ) of S̃(σ), we form a subproblem on (P̃σ, S̃1(σ)): Compute γ̃σ(p̃)
for all dual disks p̃ ∈ P̃ (σ) with respect to the dual points of S̃1(σ), where γ̃σ(p̃) is the
smallest index of the dual points of S̃1(σ) contained in p̃. After the subproblem is solved,
we update γ̃(p̃) = min{γ̃(p̃), γ̃σ(p̃)} for each p̃ ∈ P̃ (σ). This will compute γ̃(p̃) correctly.
Note that there are O(r2) subproblems in total and in each subproblem |S̃1(σ)| ≤ m/r2 and
|P̃σ| ≤ n/r.

Recall that T (n, m) refers to our problem for computing γ(p)’s on (P, S), which is
equivalent to computing γ̃(p̃)’s on (P̃ , S̃) by Observation 8. Hence, we can also obtain the
following recurrence relation using the second algorithm:

T (n, m) = O(nr + m log r) + O(r2) · T (n/r, m/r2). (2)

Combining the two algorithms. We now combine the two algorithms to compute γ(p)’s for
all p ∈ P .

We first discuss the symmetric case where m = n (if m ̸= n, it is the asymmetric case).
If we apply (1) and then (2) using the same r, we can obtain the following recurrence

T (n, n) = O(nr log r) + O(r4) · T (n/r3, n/r3).
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Setting r = n1/3/ log n leads to the following

T (n, n) = O(n4/3) + O((n/ log3 n)4/3) · T (log3 n, log3 n).

The recurrence solves to T (n, n) = n4/32O(log∗ n).
We next tackle the asymmetric case, by using the above symmetric case result. Depending

on whether m ≥ n, there are two cases.

1. If m ≥ n, depending on whether m < n2, there are two subcases.
a. If m < n2, then set r = m/n so that n/r = m/r2. Applying (2) with r = m/n

and solving each subproblem T (n/r, m/r2) using the symmetric case result give us
T (n, m) = m2/3n2/32O(log∗ m).

b. If m ≥ n2, then applying (2) with r = n gives us T (n, m) = O(n2 + m log n) +
O(n2) · T (1, m/n2). Clearly, we have T (1, m/n2) = O(m/n2). Hence, we obtain
T (m, n) = O(m log n) since m ≥ n2.

Hence in the case where m ≥ n we have T (n, m) = O(m log n) + m2/3n2/32O(log∗ m).
2. If m < n, the analysis is similar (using (1) instead) and we can obtain T (n, m) =

O(n log m) + m2/3n2/32O(log∗ n).

In summary, computing γ(p)’s for all points p ∈ P can be done in O((n + m) log(m +
n)) + m2/3n2/32O(log∗(n+m)) time.

4.2 Computing a(i)’s
With γ(p)’s computed above, we describe our algorithm for computing a(i)’s for all disks
si ∈ S. As in Section 4.1, we first introduce the following definition, which is “dual” to a(i).

▶ Definition 11. For each dual point s̃i ∈ S̃, define ã(i) as the largest index k of the dual
disk p̃k ∈ P̃ such that p̃k contains a dual point s̃j with j < i but does not contain s̃i.

Based on Observation 8, we have the following lemma.

▶ Lemma 12. For each 1 ≤ i ≤ m, a(i) = ã(i).

Proof. Consider the point pk ∈ P with k = a(i). By definition, pk is outside si and S has
a disk sj that covers pk with j < i. Then, by Observation 8, the dual disk p̃k contains
the dual point s̃j but does not contain the dual point s̃i. By definition, it must hold that
ã(i) ≥ k = a(i).

Analogously, we can prove that a(i) ≥ ã(i). ◀

Lemma 12 implies that computing a(i) for all disks si ∈ S is equivalent to computing
ã(i) for all dual points s̃i ∈ S̃. To compute them, as in Section 4.1, we will also present two
recursive algorithms and then combine them. The first algorithm computes a(i)’s using P

and S while the second one computes ã(i)’s using P̃ and S̃. The combined algorithm will
run the two algorithms alternatively using recursion. In what follows, we assume that γ(p)
for all points p ∈ P and γ̃(p̃) for all p̃ ∈ P̃ have been computed.

The first algorithm. The first algorithm follows the framework of Lemma 7 but uses
recursion when we process the last cutting Ξk. Here we only discuss how to perform
additional preprocessing for the cells of the last cutting Ξk; the rest of the algorithm is the
same as before, which takes O(mr + n log r) time in total. We follow the notation in the
proof of Lemma 7.
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For each cell σ ∈ Ξk, if |P (σ)| > n/r2, we partition P (σ) into standard subsets of sizes
between n/(2r2) and n/r2. Recall that Sσ is the subset of disks of S whose upper arcs
intersect σ. For each standard subset P1(σ) of P (σ), we form a subproblem on (P1(σ), Sσ):
Compute aσ(i) for all disks si ∈ S(σ) with respect to points of P1(σ), where aσ(i) is the
largest index k of a point pk ∈ P1(σ) that is outside si but is covered by a disk sj with j < i.
After the subproblem is solved, we update a(i) = max{a(i), aσ(i)} for each disk si ∈ S(σ).
This will compute a(i) correctly. Note that there are O(r2) subproblems in total and in each
subproblem |P1(σ)| ≤ n/r2 and |Sσ| ≤ m/r.

If we use T (n, m) to denote the runtime of the entire algorithm on the original problem
(P, S), then we obtain the following recurrence relation:

T (n, m) = O(mr + n log r) + O(r2) · T (n/r2, m/r). (3)

The second algorithm. The second algorithm computes ã(i) for all dual points s̃i ∈ S.
Recall that all dual disks have their centers above ℓ. Therefore, each dual disk has a

“lower arc” below ℓ. Let H̃ denote the set of lower arcs of all dual disks. We compute a
hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H̃ in O(nr) time [10,22], for a parameter r ∈ [1, n]
to be determined later. We use Ξ to denote the set of cells of all cuttings Ξi, i = 0, 1, . . . , k.
For each cell σ ∈ Ξ, let P̃σ denote the set of dual disks whose lower arcs intersect σ.

For each cell σ ∈ Ξ, let S̃(σ) be the set of dual points of S̃ inside σ. We can compute
S̃(σ) for all cells of Ξ in O(m log r) time using point locations as discussed before. Also,∑

σ∈Ξ |S̃(σ)| = O(m log r). In addition, points in each S̃(σ) can be sorted in their index
order if we invoke the point location step on dual points of S̃ in their index order; the total
time is still O(m log r).

For each cell σ ∈ Ξ, we define P̃ (σ) in the same way as S′(σ) in the proof of Lemma 7.
Specifically, P̃ (σ) is the subset of dual disks of P̃ that do not intersect σ but whose lower
arcs intersect the parent cell of σ. As in Lemma 7, P̃ (σ) for all σ ∈ Ξ can be computed in
O(nr) time and

∑
σ∈Ξ |P̃ (σ)| = O(nr).

Now consider the following problem on S̃(σ) and P̃ (σ). For each dual point s̃i ∈ S̃(σ), we
want to compute ãσ(i), which is the largest index k of a dual disk p̃k ∈ P̃ (σ) that contains
a dual point s̃j with j < i. After solving the problem, we update ã(i) = max{ã(i), ãσ(i)}.
To solve the problem, first notice that p̃k contains a dual point s̃j with j < i if and only if
γ̃(p̃k) < i. Then, consider two dual disks p̃k and p̃j in P̃ (σ) with k < j. A key observation is
that if γ̃(k) ≥ γ̃(j), then ãσ(i) ≥ j holds for any dual point s̃i ∈ S̃(σ) (and thus p̃k can be
ignored; this echoes the key observation in Lemma 7).

Using the key observation, as in the proof of Lemma 7, we run a pruning procedure on
P̃ (σ) to obtain a subset P̃ ′(σ) of dual disks that are sorted both by their indices and their
γ̃(·) values. The pruning procedure takes O(|P̃ (σ)|) time if dual disks of P̃ (σ) are already
sorted by their indices. We can produce the sorted lists of P̃ (σ) for all cells σ ∈ Ξ in O(nr)
time as follows. First, for each dual disk p̃i, we create a list Li that contains all cells σ ∈ Ξ
such that p̃i is in P̃σ. This can be done in O(nr) time by traversing the conflict lists of all
cells. Second, we process the lists L1, L2, . . . , Ln in this order. For each list Li, for each
cell σ ∈ Li, we add p̃i to the rear of a list L(σ) for σ (initially, L(σ) = ∅). Once all lists
L1, L2, . . . , Ln are processed as above, L(σ) contains the sorted list of the dual disks of P̃σ by
their indices. The total time of this sorting algorithm is linear in

∑
σ∈Ξ |P̃σ|, which is O(nr).

After the pruning procedure, we proceed with P̃ (σ) as follows. Suppose k is the largest
index of any dual disk p̃k ∈ P̃ (σ) such that γ̃(p̃k) < i; then we have ãσ(s̃i) = k. As such,
we can scan the two lists P̃ (σ) and S̃(σ) simultaneously (recall that dual points of S̃(σ) are
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also sorted by their indices), which can compute ãσ(s̃i)’s for all dual points s̃i ∈ S̃(σ) in
O(|P̃ (σ)| + |S̃(σ)|) time. As

∑
σ∈Ξ |P̃ (σ)| = O(nr) and

∑
σ∈Ξ |S̃(σ)| = O(m log r), the total

time for doing this for all cells σ ∈ Ξ is O(m log r + nr).
Finally, we do the following additional processing for the last cutting Ξk. For each cell

σ ∈ Ξk, if |S̃(σ)| > m/r2, we partition S̃(σ) into standard subsets of sizes between m/(2r2)
and m/r2. Recall that P̃σ is the subset of dual disks whose lower arcs intersect σ. For each
standard subset S̃1(σ) of S̃(σ), we form a subproblem on (P̃σ, S̃1(σ)): Compute ãσ(i) for all
dual points s̃i ∈ S̃1(σ) with respect to dual disks of P̃σ, where ãσ(i) is the largest index k of
a dual disk p̃k ∈ P̃σ that contains a dual point s̃j with j < i but does not contain s̃i. After
the subproblem is solved, we update ã(i) = max{ã(i), ãσ(i)} for each dual point s̃i ∈ S̃1(σ).
This will compute ã(i) correctly. Note that there are O(r2) subproblems in total and in each
subproblem |P̃σ| ≤ n/r and |S̃1(σ)| ≤ m/r2.

Recall that T (n, m) refers to our problem for computing a(i)’s on (P, S), which is
equivalent to computing ã(i)’s on (P̃ , S̃) by Lemma 12. Hence, we can obtain the following
recurrence relation using the second algorithm:

T (n, m) = O(nr + m log r) + O(r2) · T (n/r, m/r2). (4)

Combining the two algorithms. Following exactly the same approach and the same analysis
as in Section 4.1 and using (3) and (4), we can obtain a combined algorithm that can compute
a(i) for all disks si ∈ S in O((n + m) log(n + m)) + m2/3n2/32O(log∗(n+m)) time.

We summarize our result in the following theorem.

▶ Theorem 13. Given a set P of n points and a set S of m unit disks in the plane such
that the disk centers are separated from points of P by a line, the disk coverage problem for
P and S is solvable in O((n + m) log(n + m)) + m2/3n2/32O(log∗(n+m)) time.
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