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Abstract
The 2-opt heuristic is a simple local search heuristic for the Travelling Salesperson Problem (TSP).
Although it usually performs well in practice, its worst-case running time is poor. Attempts to
reconcile this difference have used smoothed analysis, in which adversarial instances are perturbed
probabilistically. We are interested in the classical model of smoothed analysis for the Euclidean
TSP, in which the perturbations are Gaussian. This model was previously used by Manthey &
Veenstra, who obtained smoothed complexity bounds polynomial in n, the dimension d, and the
perturbation strength σ−1. However, their analysis only works for d ≥ 4. The only previous analysis
for d ≤ 3 was performed by Englert, Röglin & Vöcking, who used a different perturbation model
which can be translated to Gaussian perturbations. Their model yields bounds polynomial in
n and σ−d, and super-exponential in d. As the fact that no direct analysis exists for Gaussian
perturbations that yields polynomial bounds for all d is somewhat unsatisfactory, we perform this
missing analysis. Along the way, we improve all existing smoothed complexity bounds for Euclidean
2-opt with Gaussian perturbations.
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1 Introduction

The Travelling Salesperson problem is a standard combinatorial optimization problem, which
has attracted considerable interest from academic, educational and industrial directions. It
can be stated rather compactly: given a Hamiltonian graph G = (V, E) and edge weights
w : E → R, find a minimum weight Hamiltonian cycle (tour) on G.

Despite this apparent simplicity, the TSP is NP-hard [6]. A particularly interesting
variant of the TSP is the Euclidean TSP, in which the n vertices of the graph are identified
with a point cloud in Rd, and the edge weights are the Euclidean distances between these
points. Even this restricted variant is NP-hard [10].

As a consequence of this hardness, practitioners often turn to heuristics. One often-used
heuristic is 2-opt [1]. This heuristic takes as its input a tour T , and finds two sets of two
edges each, {e1, e2} ⊆ T and {f1, f2} ⊈ T , such that exchanging {e1, e2} for {f1, f2} yields
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again a tour T ′, and the total weight of T ′ is strictly less than the total weight of T . This
procedure is repeated with the new tour, and stops once no such edges exist. The resulting
tour is said to be locally optimal.

Englert, Röglin and Vöcking constructed Euclidean TSP instances on which 2-opt can
take exponentially many steps to find a locally optimal tour [4]. Despite this pessimistic
result, 2-opt performs remarkably well in practice, usually requiring time sub-quadratic in n

and obtaining tours which are only a few percent worse than the optimum [1, chapter 8].
To explain this discrepancy, the tools of probabilistic analysis have been employed

[9, 2, 5, 3, 4]. In particular, smoothed analysis, a hybrid framework between worst-case and
average-case analysis, has been successfully used in the analysis of 2-opt [5, 4, 9]. In the
original version of this framework, the instances one considers are initially adversarial, and
then perturbed by Gaussians. The resulting smoothed time complexity is then generally a
function of the instance size n and the standard deviation of the Gaussian perturbations, σ.

Englert et al. obtained smoothed time complexity bounds for 2-opt on Euclidean instances
by considering a more general model, in which the points are chosen in the unit hypercube
according to arbitrary probability densities. The only restrictions to these densities are that
(i) they are independent, and (ii) they are all bounded from above by ϕ. Their results can be
transferred to Gaussian perturbations roughly by setting ϕ = σ−d, which yields a smoothed
complexity that is O(poly(n, σ−d)).

As the exponential dependence on d is somewhat unsatisfactory, Manthey & Veenstra [9]
performed a simpler smoothed analysis yielding bounds polynomial in n, 1/σ, and d. The
analysis they performed is however limited to d ≥ 4. While polynomial bounds for all d can
be obtained by simply taking the result of Englert et al. for d ∈ {2, 3}, no smoothed analysis
that directly uses Gaussian perturbations exists for these cases. We set out to perform this
missing analysis, improving the smoothed complexity bounds for all d ≥ 2 along the way.

Our analysis combines ideas from both Englert et al. and Manthey & Veenstra. From the
former, we borrow the idea of conditioning on the outcomes of some of the distances between
points in an arbitrary 2-change. We can then analyze the 2-change by examining the angles
between certain edges in the 2-change, which are themselves random variables. From the
latter, we borrow the Gaussian perturbation model (originally introduced by Spielman &
Teng for the Simplex Method [11]).

We also note that in addition to improving the results of Manthey & Veenstra, our approach
is significantly simpler than the analysis of Englert et al. The crux of the simplification is
a carefully constructed random experiment to model a single 2-change, which allows us to
bypass the need for the involved convolution integrals used by Englert et al.

We will begin by introducing some definitions and earlier results, before providing basic
probability theoretical results (Section 2) that we will make heavy use of throughout the
paper. We then proceed by analyzing a single 2-change in a similar manner as Englert et al.,
simplifying some of their analysis in the process (Section 3). Next, we prove a first smoothed
complexity bound by examining so-called linked pairs of 2-changes (Section 4), an idea used
by both Englert et al. and Manthey & Veenstra. Finally, we improve on this bound for d ≥ 3
(Section 5), yielding the best known bounds for all dimensions.

2 Preliminaries

2.1 Travelling Salesperson Problem
Let Y ⊆ [−1, 1]d be a point set of size n. The Euclidean Travelling Salesperson Problem
(TSP) asks for a tour that visits each point y ∈ Y exactly once, such that the total length
of the tour is minimized. The length of a tour in this variant of the TSP is the sum of the
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Euclidean distances between consecutive points in the tour. Formally, if the points in Y are
visited in the order T = (yπ(i))n−1

i=0 defined by a permutation π of [n], then the length of the
tour T is

L(T ) =
n−1∑
i=0

∥yπ(i) − yπ(i+1)∥,

where the indices are taken modulo n, and ∥ · ∥ denotes the standard Euclidean norm in Rd.
Since the Euclidean TSP is undirected, the tour T ′ in which the vertices are visited in the
reverse order has the same length as T . We consider these tours to be identical.

2.2 Smoothed Analysis
Smoothed analysis is a framework for the analysis of algorithms, which was introduced in
2004 by Spielman & Teng [11]. The method is particularly suitable to algorithms with a
fragile worst case input [7]. Since its introduction, the method has been applied to a wide
variety of algorithms [8, 12].

Heuristically, one imagines that an adversary chooses an input to the algorithm. The input
is then perturbed in a probabilistic fashion. The hope is that any particularly pathological
instances that the adversary might choose are destroyed by the random perturbation. One
then computes a bound on the expected number of steps that the algorithm performs, where
the expectation is taken with respect to the perturbation.

For our model of a smoothed TSP instance, we allow the adversary to choose a point set
Y ⊆ [−1, 1]d of size n. We then perturb each point yi ∈ Y with an independent d-dimensional
Gaussian random variable gi, i ∈ [n], with mean 0 and standard deviation σ. This yields a
new point set, X = {yi + gi | yi ∈ Y}. We will bound the expected number of steps taken by
the 2-opt heuristic on the TSP instance defined by X , with the expectation taken over this
Gaussian perturbation. We will refer to this quantity as the smoothed complexity of 2-opt.

For the purposes of our analysis, we always assume that σ ≤ 1. This is a mild restriction,
as the bound for σ = 1 also applies to all larger values of σ, and small perturbations are
particularly interesting in smoothed analysis.

For a general outline of the strategy, consider a 2-change where the edges {a, z1} and
{b, z2} are replaced by {a, z2} and {b, z1}. The change in tour length of this 2-change is

∆ = ∥a − z1∥ + ∥b − z2∥ − ∥a − z2∥ − ∥b − z1∥.

Since the locations of the points {a, b, z1, z2} are random variables, so is ∆. We seek to
bound the probability that there exists a 2-change whose improvement is exceedingly small,
enabling us to use a potential argument.

Let ∆min denote the improvement of the least-improving 2-change in the instance. If
P(∆min ≤ ϵ) is suitably small for small ϵ, then each iteration is likely to decrease the tour
length by a large amount. As long as the initial tour has bounded length, this then provides
a limit to the number of iterations that the heuristic can perform, since the tour length is
bounded from below by 0.

2.3 Basic Results
We state some general results that we will need at points throughout the paper.

The next lemma provides a simple framework that we can use to prove smoothed
complexity bounds for 2-opt.

ISAAC 2023
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Let ∆min denote the smallest improvement of any 2-change, and let ∆link
min denote the

smallest improvement of any pair of linked 2-changes (see Section 4 for a definition of linked
pairs).

▶ Lemma 1 ([9, Lemma 2.2]). Suppose that the longest tour has a length of at most L

with probability at least 1 − 1/n!. Let α > 1 be a constant. If for all ϵ > 0 it holds that
P(∆min ∈ (0, ϵ]) = O(Pϵα), then the smoothed complexity of 2-opt is bounded from above by
O(P 1/αL). The same holds if we replace ∆min by ∆link

min, provided that P 1/αL = Ω(n2).

2.4 Probability Theory
We provide some basic probability theoretical results. Throughout the paper, given a random
variable X, we denote its probability density by fX and its cumulative distribution function
by FX . If we furthermore condition on some event Y , we write fX|Y for the conditional
density of X given Y .

2.4.1 Chi Distributions
Suppose we are given two points y1, y2 ∈ Y and perturb both points with independent
Gaussian random variables g1 and g2, resulting in xi = yi + gi, i ∈ [2]. Then the distance
∥x1 − x2∥ between the two perturbed points is distributed according to a noncentral d-
dimensional chi distribution with noncentrality parameter s = ∥y1 − y2∥, which we denote
χs

d. We call χ0
d a central d-dimensional χ distribution.

2.4.2 General Results
In the following, we use the notion of stochastic dominance. Let X and Y be two real-valued
random variables. We say that X stochastically dominates Y if for all x, it holds that
P(X ≥ x) ≥ P(Y ≥ x), and this inequality is strict for some x. We may equivalently say that
the density of X stochastically dominates the density of Y .

To use Lemma 1, we need to limit the probability that any TSP tour in our smoothed
instance is too long. This was previously done by Manthey & Veenstra; we state their result
in Lemma 2.

▶ Lemma 2 ([9, Lemma 2.3]). Let c ≥ 2 be a sufficiently large constant, and let D =
c · (1 + σ

√
n log n). Then P(X ⊈ [−D, D]d) ≤ 1/n!.

The next lemma is a reformulation of another result by Manthey & Veenstra [9]. The
lemma is very useful in conjunction with Lemma 4, as we will have cause to condition on the
outcome of drawing noncentral d-dimensional chi random variables.

▶ Lemma 3 ([9, Lemma 2.8]). The noncentral d-dimensional chi distribution with parameter
µ > 0 and standard deviation σ stochastically dominates the central d-dimensional chi
distribution with the same standard deviation.

The following lemma from Manthey & Veenstra is slightly generalized compared to its
original statement. We do not provide a proof, since the original proof remains valid when
simply replacing the original assumption with ours.

▶ Lemma 4 ([9, Lemma 2.7]). Assume c ∈ R≥0 is a fixed constant and d ∈ N is fixed and
arbitrary with d > c. Let χd denote the d-dimensional chi distribution with variance σ2.
Then∫ ∞

0
χd(x)x−c dx = Θ

(
1

dc/2σc

)
.
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Figure 1 The setting of Theorem 5. As mentioned in the proof of Theorem 5, we may assume
without loss of generality that µ lies on L.

2.4.3 Limiting the Adversary
In our analysis we will closely study the angles between edges in the smoothed TSP instance.
These angles can be initially specified to our detriment by the adversary. However, the power
of the adversary is limited by the strength of the Gaussian perturbations. We quantify the
power of the adversary in Theorem 5. See Figure 1 for a sketch accompanying the theorem.

▶ Theorem 5. Let L be some line in Rd, and let x ∈ L. Let y be a point drawn from a
d-dimensional Gaussian distribution with mean µ ∈ Rd and variance σ2. Let ϕ denote the
angle between L and x − y, and let R = ∥x − y∥ and s = ∥x − µ∥. Let fϕ|R=r denote the
density of ϕ, conditioned on a specific outcome r > 0 for R. Then for all d ≥ 2,

sup
ϕ∈[0,π]

fϕ|R=r(ϕ) = O

(√
d +

√
rs

σ

)
.

Moreover, for d ≥ 3,

sup
ϕ∈(0,π)

fϕ|R=r(ϕ)
sin ϕ

= O

(√
d + rs

σ2
√

d

)
.

Theorem 5 yields the following corollary, which provides information on the angle between
two Gaussian random points in Rd with respect to some third point.

▶ Corollary 6. Let x ∈ Rd. Let y and z be drawn from d-dimensional Gaussian distributions
with arbitrary means and the same variance σ2. Let ϕ denote the angle between y − x and
z − x, and let R = ∥x − y∥ and S = ∥x − z∥. Let fϕ|R=r,S=s denote the density of ϕ

conditioned on some outcome r > 0 for R and s > 0 for S. Then for all d ≥ 2,

sup
ϕ∈[0,π]

fϕ|R=r,S=s(ϕ) = O

(
√

d +
√

min{rr̄, ss̄}
σ

)
,

where r̄ = ∥x − E(y)∥ and s̄ = ∥x − E(z)∥. Moreover, for d ≥ 3,

sup
ϕ∈(0,π)

fϕ|R=r,S=s(ϕ)
sin ϕ

= O

(√
d + min{rr̄, ss̄}

σ2
√

d

)
.

3 Analysis of Single 2-Changes

To improve upon the previous analyses, it pays to examine where the analysis of Euclidean
2-opt with Gaussian perturbations [9] fails for d ∈ {2, 3}. The problem is that in the course
of the proof, Manthey & Veenstra compute∫ ∞

0

1
x2 χd−1(x) dx,

where χd denotes the d-dimensional chi distribution. This integral is finite only when d ≥ 4.

ISAAC 2023
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a

z1

b

z2

A1

A2

R

ϕ1

ϕ2

Figure 2 Labels of points and angles involved in a single 2-change.

This problem does not appear in the results obtained by Englert et al. [4]. They consider a
more general model of smoothed analysis wherein the adversary specifies a probability density
for each point in the TSP instance independently. Since the only information available on
the probability densities is their upper bound, they consider a simplified model of a 2-change
to keep the analysis tractable. The analysis is then translated to their generic model, which
incurs a factor which is super-exponential in d.

Even when one considers d to be a constant as Englert et al. do, the genericity of
their model still comes at a cost when translated to a smoothed analysis with Gaussian
perturbations, eventually yielding a bound which is polynomial in σ−d.

Specifying the perturbations as Gaussian enables us to analyze the true random experiment
modeling a 2-change more closely, as we know the distributions of the distances between
points in the smoothed instance. Combined with Theorem 5, which provides information
on the angles between edges in the instance, we can carry out an analysis that improves on
both Englert et al.’s as well as Manthey & Veenstra’s analysis.

We first set up our model of a 2-change perturbed by Gaussian perturbations. To obtain
a bound for this case, we first formulate a different analysis of single 2-changes. Consider a
2-change involving the points {a, b, z1, z2} ⊆ [−D, D]d, where the edges {a, z1} and {b, z2} are
replaced by {b, z1} and {a, z2}. The improvement to the tour length due to this 2-change is

∆ = ∥a − z1∥ − ∥b − z1∥ + ∥b − z2∥ − ∥a − z2∥.

To analyze ∆, we first define A1 := ∥a − z1∥, A2 := ∥b − z2∥, and R := ∥a − b∥. Moreover,
we identify the angle ϕ1 as the angle between a − z1 and a − b, and restrict it to [0, π]. The
corresponding angle ϕ2 is defined similarly. The restriction of these angles to [0, π] is without
loss of generality; one may readily observe from Figure 2 that flipping the sign of either ϕ1
or ϕ2 does not change the value of ∆.

While Figure 2 may give the impression that we are restricting the analysis to the d = 2
case, the analysis is valid for any d ≥ 2. The two triangles △az1b and △az2b will lie in two
separate planes in general. The distances involved must thus be understood as d-dimensional
Euclidean distances.

With these definitions, we have ∆ = η1 + η2, where for i ∈ [2]

ηi = Ai −
√

A2
i + R2 − 2AiR cos ϕi,

which follows from the Law of Cosines.
Suppose we condition on the events A1 = a1, A2 = a2, and R = r, for some a1, a2, r > 0.

Under these events, η1 and η2 are independent random variables. Moreover, ∆ is completely
fixed by revealing the angles ϕ1 and ϕ2. Since we condition on Ai = ai, we can then bound
the density of ϕi using Corollary 6.
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We can use this independence to obtain bounds for P(∆ ∈ (0, ϵ]) for some small ϵ > 0
under these events, for various orderings of a1, a2 and r. These bounds are given in Lemma 10.

We begin by obtaining a bound to the density of ηi, i ∈ [2], using the fact that all
randomness in ηi is contained in the angle ϕi under the conditioning that Ai = ai and R = r.
We denote by fϕi|R=r,Ai=ai

the density of the angle ϕi, conditioned on R = r and Ai = ai.

▶ Lemma 7. Let i ∈ [2]. The density of ηi = ∥a − zi∥ − ∥b − zi∥, conditioned on Ai = ai

and R = r, is bounded from above by

ai + r

air
·

fϕi|R=r,Ai=ai
(ϕi(η))

| sin ϕi(η)| ,

where ϕi(η) = arccos
(

a2
i +r2−(ai−η)2

2air

)
.

Proof. Let the conditional density of ηi be fηi|R=r,Ai=ai
. Since ϕi is restricted to [0, π] by

assumption, there exists a bijection between ηi and ϕi. To be precise, we have

ϕi(ηi) = arccos
(

a2
i + r2 − (ai − ηi)2

2air

)
.

By standard transformation rules of probability densities, it holds that

fηi|R=r,A=ai
(η) =

∣∣∣∣dϕi(η)
dη

∣∣∣∣fϕi|R=r,Ai=ai
(ϕi(η)).

The derivative is easily evaluated:

dϕi(η)
dη

= −1√
1 −

(
a2

i
+r2−(ai−η)2

2air

) · ai − η

air
= −1

sin ϕ(η) · ai − η

air
.

Finally, we have ai −η ≤ ai +r, which follows from the triangle inequality. This concludes
the proof. ◀

By Corollary 6, we have an upper bound for fϕi|R=r,Ai=ai
. Unfortunately, simply inserting

this upper bound is not enough for us to bound fηi|Ai=ai,R=r, since the density as obtained
from Lemma 7 diverges for ϕ = 0 and ϕ = π. There is however a way to cure this divergence.

We now consider a full 2-change (cf. Figure 2). To analyze the improvement ∆ caused
by this 2-change, we construct a random experiment, conditioned on the outcomes A1 = a1,
A2 = a2, and R = r. We write this random experiment in Algorithm 1, since we will need
to execute different experiments depending on the ordering of the values of a1, a2 and r.
The parameters b1 and b2 of this algorithm will take values in {a1, a2, r}, depending on this
ordering.

The function RandomExpt outlined in Algorithm 1 branches on the outcome of the
variable Zi =

√
bi sin ϕi, i ∈ [2], where bi is some distance; we will choose bi among {r, ai} in

subsequent lemmas.
Note that RandomExpt returns a tuple (i, ϕ), where i ∈ [2]. We call the angle returned by

RandomExpt the good angle. Moreover, we label the event i = 1 as E1, and i = 2 by E2. The
crux of the analysis is now to analyze η1 if E1 occurs, and η2 if E2 occurs, as under Ei the
density of ηi is bounded from above.

ISAAC 2023
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Algorithm 1 The algorithm we use to model a random 2-change with fixed A1 = a1,
A2 = a2, and R = r.

Data: Distances b1, b2 > 0.
Function RandomExpt(b1, b2):

Draw ϕ1 ∼ fϕ|R=r,A1=a1

Draw ϕ2 ∼ fϕ|R=r,A2=a2

if
√

b1 sin ϕ1 >
√

b2 sin ϕ2 then
return (1, ϕ1)

else
return (2, ϕ2)

end

▶ Lemma 8. Let (i, ϕ) = RandomExpt(b1, b2) for some b1, b2 > 0. Let j = 3 − i. The density
of ϕ, conditioned on R = r, A1 = a1, A2 = a2, is then bounded from above by

2Mϕ1Mϕ2

P(Ei)
· arcsin

(
min

{
1,

√
bi

bj
sin ϕ

})
,

where Mϕi
= max0≤ϕ≤π fϕi|R=r,Ai=ai

(ϕ).

Proof. We omit the conditioning on A1 = a1, A2 = a2 and R = r in the following, for the
sake of clarity. We prove only the case i = 1, thus conditioning on E1, as the proof for i = 2
proceeds essentially identically.

Let Xi =
√

bi sin ϕi, i ∈ [2]. The event E1 is then equivalent to X1 > X2. Let Z in turn
denote the random variable given by X1 conditioned on E1. The cumulative distribution
function of Z is equal to

FZ(x) = P(X1 ≤ x | X1 > X2) = P(X1 ≤ x ∧ X1 > X2)
P(E1) .

By the independence of X1 and X2, this is equal to

FZ(x) = 1
P(E1) ·

∫ x

0
fX1(y)

∫ y

0
fX2(z) dz dy.

Computing the density of Z is then simply a matter of differentiation. Since P(E1) does not
depend on x, we obtain

fZ(x) = 1
P(E1) · fX1(x)

∫ x

0
fX2(z) dz.

We next require the density of Xi =
√

bi sin ϕi. Observe that

P(Xi ≤ x) = P
(

ϕi ≤ arcsin(x/
√

bi)
)

+ P
(

ϕi ≥ π − arcsin(x/
√

bi)
)

. (1)

Differentiating this expression to x, we find for x <
√

bi

fXi
(x) = d

dx

(
P
(

ϕi ≤ arcsin(x/
√

bi)
)

+ 1 − P
(

ϕi ≥ π − arcsin(x/
√

bi)
))

= d
dx

(
arcsin

(
x√
bi

))
·
[
fϕi

(
arcsin

(
x√
bi

))
+ fϕi

(
π − arcsin

(
x√
bi

))]
= 1√

bi − x2 ·
[
fϕi

(
arcsin

(
x√
bi

))
+ fϕi

(
π − arcsin

(
x√
bi

))]
,
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and 0 for x ≥
√

bi. Letting Mϕi = max0≤ϕ≤π fϕi|R=r,Ai=ai
(ϕ), which exists by Corollary 6,

we obtain

fXi
(x) ≤ 2Mϕi

·


1√

bi−x2
, if x <

√
bi,

0, otherwise.

Using this density, together with the identity
∫ x

0 (
√

b − y2)−1/2 dy = arcsin(x/
√

b) for
x <

√
b, we obtain

fZ(x) ≤ 2Mϕ1Mϕ2

P(E1) ·
arcsin

(
min

{
1, x√

b2

})
√

b1 − x2

if x <
√

b1, and fZ(x) = 0 otherwise. It remains to convert Z back to ϕ, where ϕ is the
good angle. Since we have conditioned on E1, we know that Z =

√
b1 sin ϕ. Using similar

considerations as used in Equation (1), we have

fZ(x) = 1√
b1 − x2 fϕ(arcsin(x/

√
b1)) + 1√

b1 − x2 fϕ(π − arcsin(x/
√

b1)).

Since this expression holds for all x ∈ (0,
√

b1), and since probability densities are non-negative,
it follows that

fϕ(ϕ) ≤ 2Mϕ1Mϕ2

P(E1) · arcsin
(

min
{

1,

√
b1

b2
sin ϕ

})
,

for all ϕ ∈ (0, π). ◀

For the next part, we apply Lemma 8 to Lemma 7 to bound the density of ηi, given that
Ei occurs.

▶ Lemma 9. Let i ∈ [2] and j = 3 − i. Let fηi|Ei
denote the density of ηi, conditioned on

Ei as well as the outcomes R = r, A1 = a1, and A2 = a2. Then

fηi|Ei
(η) ≤ 1

P(Ei)
· 2πMϕ1Mϕ2

min{a1, r} min{a2, r}
,

where Mϕi
= max0≤ϕ≤π fϕi|R=r,Ai=ai

(ϕ).

Proof. We prove only the case i = 1. From Lemma 7, we know that

fηi|Ei
(η) ≤ ai + r

air
·

fϕi|Ei,A1=a1,A2=a2(ϕ)
sin ϕ

.

Let (i, ϕ) = RandomExpt(b1, b2), for some b1, b2 > 0. We will choose values for b1 and b2
depending on the ordering of a1, a2 and r. Note that we may do this, since we know the
choices of a1, a2 and r before executing RandomExpt.

Since we condition on E1, we know that i = 1, and hence that ϕ1 is the good angle. By
Lemma 8, we can obtain a bound for fϕ|Ei,A1=a1,A2=a2,R=r. We thus find

fη1|E1(η) ≤ 2Mϕ1Mϕ2

P(E1) · a1 + r

a1r
·

arcsin
(

min
{

1,
√

b1
b2

sin ϕ
})

sin ϕ
.
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First, suppose sin ϕ ≥
√

b2/b1. Then the arcsine evaluates to π/2, and so the above is
bounded from above by

π

2

√
b1

b2
.

Second, suppose sin ϕ <
√

b2/b1. Since arcsin(x) ≤ πx/2 for x ∈ (0, 1), this case yields the
same bound, and we obtain

fη1|E1(η) ≤ πMϕ1Mϕ2

P(E1) · a1 + r

a1r
·
√

b1

b2

We now examine the four cases in the lemma statement.
Case 1: a1, a2 ≤ r.

We let b1 = a1 and b2 = a2. Then we have

a1 + r

a1r
·
√

a1

a2
= a1 + r

r
√

a1a2
≤ 2r

r
√

a1a2
= 2

√
a1a2

.

Case 2: a1, a2 ≥ r.
We let b1 = b2 = r, and obtain

a1 + r

a1r
≤ 2a1

a1r
= 2

r
.

Case 3: a1 ≥ r ≥ a2.
We let b1 = r and b2 = a2, which yields

a1 + r

a1r
·
√

r

a2
= a1 + r

√
a2ra1

≤ 2
√

a2r
.

Case 4: a2 ≥ r ≥ a1.
We let b1 = a1 and b2 = r, to find

a1 + r

a1r

√
a1

r
≤

2r
√

a1

a1r
√

r
= 2

√
a1r

.

This final case concludes the proof. ◀

The bound on the density of ηi from Lemma 9 puts us in the position to prove a bound
on the probability that ∆ ∈ (0, ϵ].

▶ Lemma 10. Let ∆ denote the improvement of a 2-change. Then

P(∆ ∈ (0, ϵ] | A1 = a1, A2 = a2, R = r) ≤ πMϕ1Mϕ2ϵ

min{a1, r} min{a2, r}
,

where Mϕi = max0≤ϕ≤π fϕi|R=r,Ai=ai
(ϕ).

Proof. We condition first on E1, and then let an adversary choose an outcome for η2, say,
η2 = t. Then we have ∆ ∈ (0, ϵ] iff η1 ∈ (−t, −t + ϵ], which is an interval of size ϵ.

Since the probability that η1 falls into an interval of size ϵ is at most ϵ · maxη fη1|E1(η), all
we need to conclude the proof for E1 is a bound on fη1|E1(η). This is provided by Lemma 9.

We then repeat the same argument for E2. The result is obtained by applying the Law
of Total Probability. ◀
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4 Linked Pairs of 2-Changes

To obtain bounds on the smoothed complexity of 2-opt, we consider so-called linked pairs
of 2-changes, introduced previously by Englert et al [4]. A pair of 2-changes is said to be
linked if some edge removed from the tour by one 2-change is added to the tour by the other
2-change.

Such linked pairs have been considered in several previous works [4, 9]. In each case, the
distinction has been made between several types of linked pairs. In our analysis, only two of
these types are relevant, and so we will describe only these types for the sake of brevity.

We consider 2-changes which share exactly one edge, and subdivide them into pairs of
type 0 and of type 1. A generic 2-change removes the edges {z1, z2} and {z3, z6} while adding
{z1, z6} and {z2, z3}. The other 2-change removes {z3, z4} and {z5, z6} while adding {z3, z6}
and {z4, z5}. Note that {z3, z6} occurs in both 2-changes.

If |{z1, . . . , z6}| = 6, then we say the linked pair is of type 0.
If |{z1, . . . , z6}| = 5, then we say the linked pair is of type 1.

Type 1 can itself be subdivided into two types, 1a and 1b. We will detail this distinction
in Section 4.2.

Before moving on to analyzing linked pairs, we state a useful lemma that justifies limiting
the discussion to just linked pairs of types 0 and 1.

▶ Lemma 11 ([4, Lemma 9]). In every sequence of t consecutive 2-changes the number of
disjoint pairs of 2-changes of type 0 or type 1 is at least Ω(t) − O(n2).

4.1 Type 0
We begin with type 0, as this is by far the simplest linked pair. For clarity, see Figure 3 (left)
for an illustration of a type 0 linked pair. It should be noted that, while Figure 3 shows a
specific configuration of vertices in two dimensions, the results of this section hold generally;
the analysis does not depend on any point having a particular orientation with respect to its
neighbors. The same holds for the results in Section 4.2.

The improvement of a type 0 linked pair is completely specified by a small number of
random variables. We require five distances between vertices, R1 = ∥z1 −z3∥, A1 = ∥z3 −z6∥,
A2 = ∥z1 − z2∥, R2 = ∥z4 − z6∥ A3 = ∥z4 − z5∥. Additionally, we need the following angles:
1. ϕ1 between z2 − z1 and z3 − z1,
2. ϕ2 between z1 − z3 and z6 − z3,
3. ϕ′

1 between z3 − z6 and z4 − z6,
4. ϕ3 between z6 − z4 and z5 − z4.

Note that, if we condition on A1 = a1, the events ∆1 ∈ (0, ϵ] and ∆2 ∈ (0, ϵ] are
independent. We can then apply Lemma 10, together with several applications of Lemma 4.

▶ Lemma 12. Let ∆link
min denote the minimum improvement of any type 0 pair of linked

2-changes, and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
dD2n6ϵ2

σ4

)
.

4.2 Type 1
As mentioned previously, type 1 linked pairs can be subdivided into two distinct subtypes.
Subtype 1a shares exactly one edge between the two 2-changes, while subtype 1b shares two
edges.
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z1

z2 z3
z4

z5z6

ϕ2 ϕ1 ϕ′
1 ϕ3

z1

z2
z3

z4

z5

ϕ

z1 z2

z3

z4

z5

R

ϕ

Figure 3 Labels of points involved in the three types of pairs of linked 2-changes. Left: type 0.
Center: type 1a. Right: type 1b.

4.2.1 Type 1a
We first consider type 1a. See Figure 3 (center) for a graphical representation of the type, as
well as the labels of the points and edges involved.

Let the 2-change replacing {z1, z2} and {z3, z4} by {z2, z3} and {z1, z4} be called S1, and
the 2-change replacing {z1, z4} and {z3, z5} by {z1, z3} and {z4, z5} be called S2.

We proceed by conditioning on A2 = ∥z3 − z4∥ = a2 and A3 = ∥z4 − z5∥ = a3. Using
Lemma 10, we can then compute the probability that ∆1 ∈ (0, ϵ]. Moreover, the location
of z5 is then still random. Hence, the random variable η = ∥z3 − z5∥ − ∥z4 − z5∥ can be
analyzed independently from ∆1.

For the density of η, we have the following lemma from Englert et al [4].

▶ Lemma 13 ([4, Lemma 15, modified]). Let i ∈ [2], and assume that X ⊆ [−D, D]d. For
a2, a3 ∈ (0, 2

√
dD] and η ∈ (−a2, min{a2, 2a3 − a2}),

fη|A2=a2,A3=a3(η) ≤ Mϕ ·


√

2
a2

2−η2 , if a3 ≥ a2,√
2

(a2+η)(2a3−a2−η , if a3 < a2,

where Mϕ = max0≤ϕ≤π fϕ|A2=a2,A3=a3(ϕ). For η /∈ (−r, min{a2, 2a3 − a2}), the density
vanishes.

Note that the factor Mϕ was not present in the original statement of Lemma 13. This
is because the original statement concerned a simplified random experiment, wherein the
points z5 and z3 are chosen uniformly from a hyperball centered on z4. As such, ϕ is assumed
to be distributed uniformly1. Since we do not analyze a simplified random experiment, we
cannot make this assumption. However, examining the original proof of Lemma 13, this can
be resolved by simply inserting the upper bound of the density of ϕ, conditioned on A2 = a2
and A3 = a3. This bound is provided to us by Corollary 6.

▶ Lemma 14. Let ∆2 be the improvement yielded by S2, and assume that X ⊆ [−D, D]d.
Then

P(∆2 ∈ (0, ϵ] | A2 = a2) = O

((
d1/4

√
D

σ
+
√

d

a2

)
·
√

ϵ

)
.

1 This assumption is only valid for d = 2. To see this, observe that by conditioning on Ai = ai, the
point zi is distributed uniformly on the (d − 1)-sphere with radius ai. For d > 2, the density of ϕ is
thus concentrated near ϕ = π/2. An upper bound for this density can be obtained by setting s = 0
in Theorem 5, yielding O(

√
d). As Englert et al. assume d to be constant, this has no effect on their

eventual result.
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Using Lemmas 4 and 14, we can easily prove the following statement about type 1a pairs
of 2-changes.

▶ Lemma 15. Let ∆link
min denote the minimum improvement of any type 1a pair of 2-changes,

and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
n5d3/4D3/2

σ3 ϵ3/2
)

.

4.2.2 Type 1b
The final type of linked pair we consider is type 1b. See Figure 3 (right) for a graphical
representation.

Let S1 denote the 2-change replacing {z1, z3} and {z2, z4} with {z2, z3} and {z1, z4}, and
let S2 denote the 2-change replacing {z2, z5} and {z1, z4} with {z1, z5} and {z2, z5}. From
Figure 3, it is evident that we can treat ∆1 and η = ∥z2 − z5∥ − ∥z1 − z5∥ as independent
variables, as long as we condition on R = r.

▶ Lemma 16. Let ∆link
min denote the minimum improvement of any type 1b pair of 2-changes,

and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
n5d3/4D3/2

σ3 ϵ3/2
)

.

Lemmas 12, 15, and 16 enable us to prove an upper bound to the smoothed complexity
of 2-opt in the present probabilistic model.

▶ Theorem 17. The expected number of iterations performed by 2-opt for smoothed Euclidean
instances of TSP in d ≥ 2 dimensions is bounded from above by O

(
dD2n4+ 1

3 /σ2
)

.

Proof. We assume for this proof that the entire instance is contained within [−D, D]d, with
D = Θ(1 + σ

√
n log n). This occurs with probability at least 1 − 1/n!. Thus, with probability

at least 1−1/n!, the longest tour in the instance has length at most 2
√

dDn. The assumption
that the entire instance lies within this hypercube enables us to use Lemmas 12, 15, and 16,
which were proved under this assumption.

Let E denote the event that, among all type 0 and type 1 linked pairs of 2-changes, the
pair with the smallest improvement is of type 0, and let Ec denote the event that this pair is
of type 1a or type 1b. Let the random variable T denote the number of iterations taken by
2-opt to reach a local optimum.

We first compute E(T | E). We apply Lemma 1 with α = 2 and β = 2, which is feasible
due to Lemma 12. We then obtain immediately that E(T | E) = O(dD2n4/σ2).

Next, we compute E(T | Ec). In this case, we apply Lemma 1 with α = 3/2 and β = 1
(cf. Lemmas 15 and 16). This yields E(T | Ec) = O(dD2n4+ 1

3 /σ2).
Combining the bounds for E and Ec yields the result. ◀

5 Improving the Analysis for d ≥ 3

The bottleneck in Theorem 17 stems from Lemmas 15 and 16, which bound the probability
that any linked pair of type 1a or type 1b improves the tour by at most ϵ. The probability
given by these lemmas is proportional to ϵ3/2, which yields an extra factor of n1/3 compared
to type 0 linked pairs.
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For d ≥ 3, we can improve this to ϵ2, yielding improved smoothed complexity bounds.
The key to this improvement is to use the second part of Corollary 6 to bound the density of
ηi as in Lemma 7. This immediately yields the following result on ηi = ∥a − zi∥ − ∥b − zi∥.

▶ Lemma 18. Let i ∈ [2], and assume that X ⊆ [−D, D]d. The density of ηi in d ≥ 3
dimensions, conditioned on Ai = ai and R = r, is bounded from above by

O

(
ai + r

air
·
(√

d + D min{r, ai}
σ2

))
.

Proof. We call the desired density fηi|A=ai,R=r. From Lemma 7, we know that

fηi|Ai=ai,R=r(η) ≤ ai + r

air
·

fϕi|Ai=ai,R=r(ϕi(η))
| sin ϕi(η)| .

Since d ≥ 3, we can use the second part of Corollary 6 to obtain the desired bound, making
use of the assumption that all points fall within [−D, D]d. ◀

Lemma 18 enables us to find an improved version of Lemma 10.

▶ Lemma 19. Let ∆ denote the improvement of a 2-change in d ≥ 3 dimensions. Let i ∈ [2],
and assume that X ⊆ [−D, D]d. Then

P(∆ ∈ (0, ϵ] | Ai = ai, R = r) = O

(( √
d

min{ai, r}
+ D

σ2

)
· ϵ

)
.

The following lemma now yields the probability that any linked pair of 2-changes improves
the tour by at most ϵ. We omit the proof, since it follow easily from Lemma 19 along the
same lines as the lemmas in Section 4.

▶ Lemma 20. Let ∆link
min denote the minimum improvement of any linked pair of 2-changes

of type 0 or type 1 for d ≥ 3, and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
D2n6ϵ2

σ4

)
.

We then obtain our result for d ≥ 3.

▶ Theorem 21. The expected number of iterations performed by 2-opt for smoothed Euclidean
instances of TSP in d ≥ 3 dimensions is bounded from above by O

(√
dD2n4/σ2

)
.

6 Discussion

For convenience, we provide comparisons of the previous smoothed complexity bounds with
our bound from Theorem 17 in Tables 1 and 2. These bounds are provided both for small
values of σ and for large values, meaning σ = Ω(1/

√
n log n) and σ = O(1/

√
n log n).

Observe from Tables 1 and 2 that the bound for d = 2 has a worse dependence on n

compared to the bound for d ≥ 3. The technical reasons for this difference can be understood
from Section 5. A more intuitive explanation for the difference is that our analysis benefits
from large angles between edges in the smoothed TSP instance. In d = 2, the density of
these angles is maximal when they are small, while for d ≥ 3 it is maximal when the angles
are large. In effect, this means that the adversary has less power to specify these angles to
our detriment when d ≥ 3.
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Table 1 Previous and current smoothed complexity bounds for Gaussian noise, for σ =
O(1/

√
n log n). Note that for d ≥ 4, the bounds of Englert et al. include a factor cd which is

super-exponential in d.

Englert, Röglin & Vöcking [4] Manthey & Veenstra [9] This paper

d = 2 O
(

n4+ 1
3 /σ5+ 1

3 · log n
σ

)
– O

(
n4+ 1

3 /σ2
)

d = 3 O
(

n4+ 1
3 /σ8 · log n

σ

)
– O

(
n4/σ2)

d ≥ 4 O
(

cd · n4+ 1
3 /σ8d/3

)
O
(√

dn4/σ4) O
(√

dn4/σ2)
Table 2 Previous and current smoothed complexity bounds for Gaussian noise, for σ =

Ω(1/
√

n log n). Note that for d ≥ 4, the bounds of Englert et al. include a factor cd which is
super-exponential in d.

Englert, Röglin & Vöcking [4] Manthey & Veenstra [9] This paper

d = 2 O
(

n7 log3+ 2
3 n
)

– O
(

n5+ 1
3 log n

)
d = 3 O

(
n8+ 1

3 log5 n
)

– O
(
n5 log n

)
d ≥ 4 O

(
cd · n4+ 1+4d

3 log1+ 4d
3 n
)

O
(√

dn6 log2 n
)

O
(√

dn5 log n
)

From these tables, the greatest improvement is made for d = 3, where we improve
by n3+ 1

3 log4 n in the large σ case, and by 3
√

n log(n/σ)/σ6 for small σ. For d = 2, the
improvement is more modest at n1+ 2

3 log2+ 2
3 n for large σ and log(n/σ)/σ3+ 1

3 for small σ.
For d ≥ 4, we improve by n log n for large σ, and by σ−2 for small σ.

Note that we improve upon previous bounds mainly in the dependence on the perturbation
strength. In an intuitive sense, this is most substantial for instances that are weakly perturbed
from the adversarial instance, or in other words, that are close to worst case. In addition,
the small-σ case is considered more interesting for a smoothed analysis, since small σ model
the intuition of smoothed analysis of a small perturbation, while large σ reduce the analysis
basically to an average-case analysis In order to improve the explicit dependence on n, which
is the same as for Manthey & Veenstra [9], we believe new techniques are necessary.

As a final comment, we note that the techniques we employed in Sections 3 and 5 can
also be used to improve and significantly simplify the analysis of the one-step model used by
Englert et al [4]. For d ≥ 3, the improvement amounts to a factor of n1/3ϕ1/6 log(nϕ), while
for d = 2, the improvement is just log(nϕ), where ϕ denotes the upper bound of the density
functions used in the one-step model.
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