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Abstract
Asteroidal Triple (AT) in a graph is an independent set of three vertices such that every pair of them
has a path between them avoiding the neighbourhood of the third. A graph is called AT-free if it
does not contain any asteroidal triple. A connected vertex cover of a graph is a subset of its vertices
which contains at least one endpoint of each edge and induces a connected subgraph. Settling the
complexity of computing a minimum connected vertex cover in an AT-free graph was mentioned as
an open problem in Escoffier et al. [6]. In this paper we answer the question by presenting an exact
polynomial time algorithm for computing a minimum connected vertex cover problem on AT-free
graphs.
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1 Introduction

An Asteroidal Triple (AT) of a graph G = (V, E) is a set of three vertices of V (G) such that
these three vertices are mutually nonadjacent and for any two vertices of this set there exists
a path between these two vertices which avoids the neighborhood of the third vertex. A
graph is called asteroidal triple free (AT-free) if it does not contain any asteroidal triple.

We assume, in the rest of the paper, the graph G is undirected, unweighted and simple
graph. A subset of V (G) is a vertex cover of G if every edge of G has an endpoint in that
subset. The minimum vertex cover problem is to find a vertex cover of minimum cardinality.
A vertex cover which also induces a connected subgraph of G is called a connected vertex
cover. The minimum connected vertex cover problem is to find a vertex cover of minimum
cardinality such that the vertices of the vertex cover induces a connected subgraph. In the
rest of the paper we denote the minimum vertex cover problem by MVC and the minimum
connected vertex cover problem by MCVC.

In this paper we present a polynomial time algorithm for MCVC on connected AT-free
graphs. More precisely we provide an O(n4) algorithm for minimum connected vertex cover in
AT-free graphs. In [3] Broersma et al. presented a polynomial time algorithm for maximum
independent set problem. Our work is inspired by the technique developed in that paper. In
the following we define the problem more formally.

Connected Vertex cover On AT-free graphs
Instance: A connected AT-free graph G = (V, E), |V | = n, |E| = m.
Output: A set S∗ ⊆ V (G) of minimum cardinality such that G[S∗] is connected and S∗

contains at least one end point of every edge in G, i.e. S∗ is a vertex cover.

The MCVC problem is studied in several graph classes, and there exist various algorithms
for this problem in the fields of approximation algorithm, fixed parameter algorithm, and
polynomial time exact algorithm. In the following we discuss some of the known results for
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54:2 Connected Vertex Cover on AT-Free Graphs

this problem. This problem was first introduced by Garey and Johnson [8]. This problem
is known to be NP-hard in planar bipartite graphs of maximum degree 4 [7], in planar
bi-connected graphs of maximum degree 4 [17], in H−free graphs if H contains a cycle
or a claw [16], and in 3-connected graphs [20]. It is APX-complete in bipartite graphs of
maximum degree 4, even if each vertex of one partite set has a degree at most 3 [6].

MCVC is polynomial time solvable in many special graph classes like graphs of maximum
degree 3 [19], (sP1 + P5)−free graphs [11]. Escoffier et al. [6] proved several results regarding
the connected vertex cover problem in special graph classes. They showed this problem is
polynomial time solvable in chordal graphs; in bipartite graphs if each vertex of one partite
set has maximum degree 2 and the vertices of the other partite set have no restriction on
the degree. They proved a PTAS for MCVC in planar graphs. In the same paper, they
provided a 5

3 −approximation algorithm for MCVC on all those graphs for which MVC is
solvable in polynomial time. On the complexity side they proved that MCVC is APX-hard
in bipartite graphs. Note that results of this paper along with the polynomial time algorithm
for independent set problem presented by Broersma et al. in [3], impliy a 5

3 −approximation
algorithm for AT-free graphs. Escoffier et al. in the paper [6], posed the complexity of
MCVC on AT-free graphs as an open problem.

We state known approximation algorithm and FPT algorithm results for MCVC. A
2-approximation algorithm for MCVC is known in general graphs [1, 18] but it is not possible
to approximate MCVC within ratio (10

√
5 − 21) in general graphs unless P = NP [7].

Several results for computing connected vertex cover are known in the field of fixed parameter
algorithms. First result was an algorithm with running time O(6k) [10] which was later
improved to O(2.7060k) [14], where k is the length of a minimum vertex cover in the given
graph and also an algorithm with running time O(2t · t(3t+2)n) where t is the treewidth and
n is the number of vertices in the given graph [15].

Asteroidal triple free graph class contains graph classes like permutation graphs, interval
graphs, trapezoid graphs, and cocomparability graphs [5]. AT-free graphs have many desirable
properties which make them amenable for designing polynomial time algorithms for many
problems which are NP-complete in general graphs. Such problems include minimum feedback
vertex set problem [13], maximum independent set [3], dominating set, total dominating
set [12] and connected dominating set [2], induced disjoint path problem [9]. However, to
the best of our knowledge, the complexity of computing connected vertex cover problem is
unknown in AT-free graphs.

2 Preliminaries

Let G = (V, E) be a simple unweighted graph. We denote the set of vertices by V (G) and
the set of edges by E(G). A graph H = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and
E′ ⊆ E. We denote |V | by n and |E| by m. A subgraph H = (V ′, E′) of G is an induced
subgraph if V ′ ⊆ V and for u, v ∈ V ′, (u, v) ∈ E′ if and only if (u, v) ∈ E. The induced
subgraph on any subset S ⊆ V is denoted by G[S].

The neighbourhood of a vertex v, denoted by N(v), is the set of all vertices that are
adjacent to v. Closed neighbourhood of v is denoted by N [v] = {v} ∪ N(v). The neigh-
bourhood of a set of vertices {v1, v2, . . . , vk} is denoted by N(v1, v2, . . . , vk) =

⋃k
i=1 N(vi)

and the closed neighbourhood is denoted by N [v1, v2, . . . , vk] =
⋃k

i=1 N [vi]. Assume C is a
connected component of G. The set NC(v) where v ∈ V (C), denotes the set of neighbour of
v that are in the component C.

A path is a graph, Y = (V, E), such that V = {y1, y2, . . . , yk} and E =
{y1y2, y2y3, . . . , yk−1yk}. We denote a path by the sequence of its vertices, that is
Y = y1y2 . . . yk. Here y1 and yk are called endpoints of path Y . The number of ver-
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tices present in Y is denoted by |Y |. We denote yiY yj = yiyi+1 . . . yj where 1 ≤ i ≤ j ≤ k.
A path on k vertices is denoted by Yk and the length of the path is denoted by the number
of edges present on the path that is k − 1. The distance between two vertices in a graph
is the length of the shortest path between them. A cycle is a graph, C = (V, E), such that
V (C) = {c1, c2, . . . , cl} and E(C) = {c1c2, . . . , cl−1cl, clc1}. The shortest distance between u

and v is denoted by distC(u, v) where u, v ∈ V (C). The number of vertices present in the
cycle C is denoted by |C|.

A dominating set D of G is a subset of vertices of G such that for every v outside D,
N(v) ∩ D ̸= ϕ. A dominating pair is a pair of vertices such that any path between them is a
dominating set. There is a linear time algorithm to find a dominating pair [4] in AT-free
graphs. We denote a shortest path between a dominating pair by DSP .

This paper is inspired by the technique developed by Broersma et al. in [3]. We use their
method of graph decomposition and supplement it with our new observations for connected
vertex cover in AT-free graphs to derive the results stated in this paper. Let G(V, E) denote
a connected AT-free graph. The components in the graph G\N [x], where x ∈ V , are denoted
by Cx

1 , . . . , Cx
r .

Let x and y be two nonadjacent vertices of the graph. We define an interval to be
I(x, y) ⊆ V (G) in the following :

I(x, y) = {s ∈ V (G) : there is a s, x-path which does not contain any neighbours of y

and there is a s, y-path which does not contain any neighbour of x}.
Assume a connected component C containing vertices x and y. We denote the interval

I(x, y) by IC(x, y) when we consider the induced subgraph on C instead of the whole graph G.

I(x, y)N(x) N(y)x y

Figure 1 An example of interval in an AT-free graph.

Let y ∈ V and the component of G \ N [x] containing y is Cx(y). The component in
G \ N [y] containing x is Cy(x). The vertices in Cx(y) ∩ Cy(x) form a separator of x and y

which is precisely the set I(x, y). Note that Cx(y) ∩ Cy(x) may be empty.
In the following we state the necessary lemma from [3] for our purpose which provide us

with some characterization for I(x, y).
In the following lemma we consider a connected AT-free graph G(V, E). We consider an

interval I(x, y) of G and assume that s ∈ I(x, y). Lemma 1 is obtained using the fact that G

is AT-free.

▶ Lemma 1 (Broersma et al. [3]). The vertices x and y are in different components of
G \ N [s] for each s ∈ I(x, y).

Thus every path between x and y either contains s or some neighbour of s. The next three
lemma states a decomposition of an interval into disjoint intervals and disjoint components.
Lemma 2 states that the intervals I(x, s) and I(s, y) have empty intersection. This implies
that Ps,x∩Ps,y ⊆ N [s], where Ps,x is an arbitrary s, x−path and Ps,y is an arbitrary s, y−path
in G.

▶ Lemma 2 (Broersma et al. [3]). The intervals I(x, s) and I(s, y) have no vertices in
common, that is I(x, s) ∩ I(s, y) = ϕ.

ISAAC 2023
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I(x, y)

Cy(x) Cx(y)N(x) N(y).
.

.
.
.

.x y

Cy
1

Cy
k1

Cx
1

Cx
k2

Figure 2 The component Cy(x) which contains x in G \ N [y].

Lemma 3 states a containment relation among the intervals. More precisely, if s ∈ I(x, y)
then I(x, s) ⊆ I(x, y) and so does I(s, y).

▶ Lemma 3 (Broersma et al. [3]). The intervals I(x, s) and I(s, y) are both contained in
I(x, y), that is I(x, s) ⊆ I(x, y) and I(s, y) ⊆ I(x, y), where s ∈ I(x, y).

Combining Lemma 2 and Lemma 3 we arrive at Lemma 4.

▶ Lemma 4 (Broersma et al. [3]). In the graph G \ N [s] there are components Cs
1 , Cs

2 , . . . , Cs
t

such that I(x, y) \ N [s] = I(x, s) ∪ I(s, y) ∪ (
⋃t

i=1 Cs
i ).

N(x) N(y)

N(s)

I(x, s) I(s, y)
s

I(x, y)

.. .

x y

Cs
1 Cs

k

Figure 3 The interval decomposition.

Similarly the components of G\N [x] can also be decomposed. Consider such a component
containing y, recall that y ∈ Cx(y). The following lemma describes the structure of the graph
induced on Cx(y) \ N [y]. In the following we denote the component of G \ N [y] containing x

by Cy(x).
Consider the graph induced on Cx(y) \ N [y] and let D be a connected component of

that graph. Lemma 5 essentially states that any vertex of D reaches N [x] using at least one
vertex from I(x, y).
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▶ Lemma 5 (Broersma et al. [3]). Let D be a component of the graph Cx(y) \ N [y]. Then
N [D] ∩ (N [x] \ N [y]) = ϕ if and only if D is a component of G \ N [y].

3 Connected Vertex Cover

In the following sections we make some important observations related to the connectivity
constraint of the vertex cover and then we formulate the dynamic programming recurrence
relations.

3.1 Some structural observations
In this section and subsequent sections we assume G(V, E) is a connected AT-free graph.
Let αc be an independent set with maximum cardinality, while ensuring that the subgraph
G[V \ αc] remains connected. The complement of αc forms a connected vertex cover with
the smallest possible size. Observe that αc cannot include a cut vertex. This is because if a
vertex v belongs to αc, none of its neighbors can be in αc. If v is a cut vertex, its neighbors
would be divided into separate components, leading G[V \ αc] to be disconnected. Hence we
have the following observation.

▶ Observation 6. Let αc be an independent set with maximum cardinality, while ensuring
that the subgraph G[V \ αc] remains connected. The set αc does not include any cut vertex
of G.

Let V ′ denote the set of all cut vertices in G. We define some notations that are necessary
in the following set of lemma. Let x be a vertex of G which is not a cut vertex. Let Cx

1 , . . . , Cx
r

be the components of G \ N [x]. Let Zi be those vertices of N(x) which are reachable from
Cx

i in the graph G \ {x}, that is without using the vertex x or vertices from any other
components. In other words let C be the connected component in G[N(x) ∪ V (Cx

i )], then
Zi = V (C) \ V (Cx

i ). Note that G[Zi] may not be connected. Suppose S is a connected vertex
cover of G and let x ∈ V \ V ′ such that x /∈ S. That is N(x) ⊆ S. Let Si = S ∩ (Zi ∪ V (Cx

i )).
Note that Si contains Zi, since Zi ⊆ N(x).

▶ Lemma 7. The graph induced on S ∩ (Zi ∪ V (Cx
i )) is connected.

Proof. Assume for the sake of contradiction, G[S ∩ (Zi ∪ V (Cx
i ))] is not connected and

H1, . . . , Hk are the components of G[S∩(Zi ∪V (Cx
i ))]. Each component Hj has V (Hj)∩Zi ̸=

ϕ, because otherwise Hj is a component of G \ N [x]. Consider two components Hl, Hr.
There is some vertex v ∈ Zi which is adjacent to some vertex of v′ ∈ V (Hl) and there is a
vertex u ∈ Zi which is adjacent to some vertex u′ ∈ V (Hr). Note that, v is not adjacent to u

and v′ is not adjacent to v′ since Hl and Hr are different components. Hence v′, u′, x forms
an AT. The paths leading v′, u′, x to form an AT is as follows. The vertices v′ and u′ are
in same component of G \ N [x] but not adjacent, hence there is a u′, v′ path avoiding the
neighbours of x. The path x, u, u′ avoids the neighbours of v′ and similarly the path x, v, v′

avoids the neighbours of v′. ◀

Also note that the graph S ∩ (Zi ∪ V (Cx
i )) is a vertex cover of the graph G[Zi ∪ V (Cx

i )],
since S is a vertex cover of G.

▶ Lemma 8. Let S∗
i be a minimum connected vertex cover in G[Zi ∪ V (Cx

i )] and let S∗ be a
minimum connected vertex cover in G. Then |S∗

i | ≤ |S∗ ∩ (Zi ∪ V (Cx
i ))|.

Proof. Please find the proof in full version of the paper. ◀

ISAAC 2023
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u

v

u′

v′

Hl

Hr

x

N(x)

Figure 4 Illustrating proof of Lemma 7.

▶ Lemma 9. Let S′
i denote a connected vertex cover in G[Zi ∪ V (Cx

i )] containing Zi. The

graph induced on the set N(x) ∪
(

r⋃
i=1

S′
i

)
is connected.

Proof. Please find the proof in full version of the paper. ◀

3.2 The Dynamic Programming Formulation
The definition of intervals implies that, the set I(x, y) is unique for each pair of non adjacent
vertices x and y. The above property implies that the number of intervals is bounded
by a polynomial in |V (G)|. We shall use these intervals to decompose the AT-free graph
into smaller disjoint graphs. In the following sections, using this broad idea, we frame
the recurrences to find an independent set of maximum size such that its complement is
connected. We begin by a graph modification to incorporate the recurrence relation in terms
of the intervals.

3.2.1 Graph modification
We begin by constructing a modified graph. A result by Corneil et al. [5], ensures that there
exists a dominating pair in every AT-free graph which is pokable, that is we can append
pendant vertices to both of the vertices of the pair maintaining the AT-free property. The
following theorem by Corneil et al. [5] states that the process of composing two AT-free
graphs.

▶ Theorem 10 (The Composition Theorem; Corneil et al. [5]). Given two AT-free graphs G1
and G2, and pokable dominating pairs (x1, y1) and (x2, y2) in G1 and G2, respectively, let G′

be the graph constructed from G1 and G2 by identifying vertices x1 and x2. Then, G′ is an
AT-free graph.

Let p1, . . . , pk be a dominating path where p1 and pk is a pokable dominating pair in G.
An edge is AT-free, hence we append an edge (u, v) to p1, that is v is adjacent to p1 and an
edge (u′, v′) to pk, that is v′ is adjacent to pk. We add edges between v and p2, v′ and pk−1.
We denote this graph by G′. More formally, G′(V, E) where,

V (G′) = V (G) ∪ {u, v, u′, v′}

E(G′) = E(G) ∪ {(u, v), (u′, v′), (v, p1), (v, p2), (v′, pk), (v′, pk−1)}
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G

p2 pk−1p1vu pk v′ u′

Figure 5 Illustrating graph modification.

We denote by αc an independent set such that the remaining set of vertices induces a
connected graph.

▶ Lemma 11. The set αc is a maximum independent set of G such that G[V \ αc] is
connected if and only if αc is a maximum independent set of G′[I(u, u′)] such that G′[V \ αc]
is connected.

Proof. The set I(u, u′) contains all the vertices that has a path to u avoiding the neighbour-
hood of u′ and a path to u′ avoiding the neighbourhood of u in the graph G′. From the
construction of G′, every vertex of V (G) satisfies this property. Hence G and I(u, u′) are the
same. The claim follows since G and I(u, u′) are the same. ◀

Now we define the recurrence relations for dynamic programming on the modified graph.

3.2.2 The dynamic programming

We decompose the graph in such a way that for any two non adjacent vertices x and y

belonging to some connected component C has the property, IC(x, y) = IG(x, y). More
precisely we remove the closed neighbourhood of a vertex to achieve the smaller subgraphs.
From Lemma 1, we can see that the invariant IC(x, y) = IG(x, y) = I(x, y) is maintained
while solving the subproblems. Broadly our approach is to compute minimum connected
vertex cover in smaller connected components and take their disjoint union to obtain a
minimum connected vertex cover of a larger component of which the smaller components are
part. It is sufficient to calculate the minimum connected vertex cover for smaller components
and combine them, which is ensured by Lemma 8 and Lemma 9. We begin by stating a
recurrence for a component. In this recurrence we compute a maximum independent set of
the component, such that the complement of this independent set (w.r.t the component) is
connected. Note that we want the complement to be connected because of our observation in
Lemma 7. The recurrence consists of decomposing a given component into interval and some
connected components whose disjoint union is the given component as claimed in Lemma 2,
Lemma 3 and Lemma 4.

Now we define required notations to state the recurrence formally. Suppose C is a
connected component. Let x be a vertex in V (C) which belongs to the independent set.
Let the components in C \ N [x] be denoted by Cx

1 , . . . , Cx
k if C \ N [x] has k connected

components.

ISAAC 2023
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I(x, y)

Cx
i

N(x) N(y)

.

.

.
.
.

.x y

Dy
1

Dy
t

Cx
1

Cx
k

ZN(x) ZN(y)

Figure 6 Illustrating Lemma 12.

In the following we define some notations which are necessary to state the recurrence.
Consider a component Cx

i in C \ N(x).
Let V ′

Cx
i

be the set of cut vertices of C[V (Cx
i ) ∪ ZN(x)]. We choose y ∈ V (Cx

i ) \ V ′
Cx

i
as a

candidate for the independent set since from Lemma 7 we know that C[(V (Cx
i ) ∪ ZN(x)) \

{y}] is connected.
Let I(x, y) be the interval for vertices x and y.
Let ZN(x) be those vertices of N(x) that are reachable from Cx

i in C[N(x)] without using
x or vertices from any other components.
Let ZN(y) be those vertices of N(y) that are reachable from I(x, y) in C[N(y)] without
using y or vertices from any other components.
Let Dy

1 , . . . , Dy
t be the components of C[Cx

i \ N [y]], and let Hj be those vertices of N(y)
that are reachable from N(y) ∩ N(V (Dy

j )) in C[N(y)] without using y or vertices from
any other components.
We define β(Cx

i , ZN(x)) to be a maximum independent set in Cx
i such that C[ZN(x) ∪

(V (Cx
i ) \ β(Cx

i , ZN(x)))] is connected.
We define γ(I(x, y), ZN(x) ∪ ZN(y)) to be a maximum independent set in I(x, y) such that
G[ZN(x) ∪ ZN(y) ∪ (I(x, y) \ γ(I(x, y), ZN(x) ∪ ZN(y)))] is connected.

▶ Lemma 12. The recurrence for β is as follows.

|β(Cx
i , ZN(x))| = 1 + max

y∈Cx
i

\V ′
Cx

i

|γ(I(x, y), ZN(x) ∪ ZN(y))| +
t∑

j=1
|β(Dy

j , Hj)|


Proof. Please find the proof in the appendix. ◀

Note that if C is the whole graph then x is not a cut vertex of G.
Now we state recurrence for an interval. In this recurrence we compute a maximum

independent set of the interval, such that the complement of this independent set (w.r.t
the interval) is connected. Note that we want the complement to be connected because
of our observation in Lemma 7. The recurrence consists of decomposing a given interval
into disjoint sub intervals and some connected components whose disjoint union is the given
interval as claimed in Lemma 2, Lemma 3 and Lemma 4.
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▶ Observation 13. The graph G[I(x, y) ∪ ZN(x) ∪ ZN(y)] is connected.

Proof. Please find the proof in full version of the paper. ◀

Note that the definitions of x, y, ZN(x), ZN(y) and γ(I(x, y), ZN(x) ∪ZN(y)) remains same
as earlier.
Let V ′

I(x,y) be the set of cut vertices in C[I(x, y) ∪ ZN(x) ∪ ZN(y)]. We choose s ∈
I(x, y) \ V ′

I(x,y) as a candidate for the independent set in I(x, y), since from Lemma 7,
we know that C[(I(x, y) ∪ ZN(x) ∪ ZN(y)) \ {s}] is connected.
Let AN(x) be those vertices of N(x) that are reachable from I(x, s) in C[N(x)] without
using x and any vertex from other components.
Let AN(s) be those vertices of N(s) that are reachable from I(x, s) in C[N(s)] without
using s and any vertex from other components.
Let BN(y) be those vertices of N(y) that are reachable from I(y, s) in C[N(y)] without
using y and any vertex from other components.
Let BN(s) be those vertices of N(s) that are reachable from I(s, y) in C[N(s)] without
using s and any vertex from other components.
Let Y s

1 , . . . , Y s
l are the components of G[I(x, y) \ N [s]], and Hj are those vertices of N(s)

that are reachable from Y s
j is N(s) in G[N(s)] without using the vertex s and vertices

from other components.

We need the following lemma to prove the correctness of the recurrence for the intervals.
Lemma 14 is similar to 7 and Lemma 15 is similar to Lemma 9.

▶ Lemma 14. Let S be a connected vertex cover of G such that x, y /∈ S. Then S ∩ (I(x, y) ∪
ZN(x) ∪ ZN(y)) induces a connected subgraph.

Proof. Please find the proof in full version of the paper. ◀

Let SI(x,s) denote vertices of a connected vertex cover in G[ZN(x) ∪ I(x, s) ∪ AN(s)]
such that (ZN(x) ∪ AN(s)) ⊆ SI(x,s) and let SI(s,y) denote a connected vertex cover in
G[ZN(y) ∪ I(s, y) ∪ BN(s)] such that (ZN(y) ∪ BN(s)) ⊆ SI(s,y). Let Sj denote a connected
vertex cover in G[Hj ∪ V (Y s

j )] containing Hj .

▶ Lemma 15. The graph induced on the set N(s) ∪
(

r⋃
i=1

Si

)
∪ SI(x,s) ∪ SI(s,y) is connected.

Proof. Please find the proof in full version of the paper. ◀

Please see the Figure 7 for clarification of the following lemma. Note that ZN(x) and
AN(x) are same and ZN(y) and BN(y) are same.

▶ Lemma 16. The recurrence for γ is as follows. Let Z = ZN(x) ∪ ZN(y).

|γ(I(x, y), Z)| =

1 + max
s∈I(x,y)\V ′

I(x,y)

(
|γ(I(x, s), AN(x) ∪ AN(s))| + |γ(I(s, y), BN(y) ∪ BN(s))| +

s∑
j=1

|β(Y s
j , Hj)|

)
Proof. Please find the proof in the appendix. ◀

Consider the modified graph G′. Since (p1, p2) and (pk−1, pk) are edges of G (also of
G′), the connected vertex cover must contain at least one endpoint from each of those
edges. The γ(I(u, u′), {v, v′}) is a maximum independent set such that, G′[{v, v′}∪ (I(u, u′)\
γ(I(u, u′), {v, v′})] is connected. Since I(u, u′) is the graph G, G′[V \ γ(I(u, u′), {v, v′})] is
our desired solution from Lemma 11.

ISAAC 2023
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N(x) N(y)N(s)

I(x, s) I(s, y)
s

I(x, y)

.. .

x y

Y s
1 Y s

l

ZN(y)ZN(x)

AN(s) BN(s)

Figure 7 Illustrating Lemma 16.

3.3 Running time analysis
We employ dynamic programming technique to solve the above recurrences to obtain the
minimum connected vertex cover. Let C be a set of components of G as defined below.

C =
⋃

v∈V (G)

{C : C is a component of G \ N [v]}

We prove in the following observation that the components for which we compute β are
precisely the members of C. The proof of the following observation is a repeated application
of Lemma 5.

▶ Observation 17. The non-interval components in the above recurrence relations are
members of C.

Proof. Please find the proof in full version of the paper. ◀

Observation 17 ensures that the number of non-interval components is |C| = O(n2).
Let I denote the set of all possible intervals. The collection I has cardinality at most

n2, that is |I| ≤ n2, since I(x, y) is unique for each pair of non adjacent vertex x and y. We
arrange the list of all intervals and components in the non decreasing order of the number of
vertices. We compute the recurrences for this two lists in the order they are arranged.

First we discuss the complexity to solve the recurrence for intervals. Consider a particular
interval I(x, y). We have to go through all the vertices in that I(x, y) and there is at most
O(n) such vertices and for each vertex there can be at most O(n) components. Note that
these components are smaller than the component that I(x, y) is part of. Hence the solution
for each of the components are already stored in the dynamic programming table. Since
there is at most O(n2) intervals and each can take O(n2) time it takes O(n4) to find the
solutions.

The time complexity to solve the components is calculated similarly and it is also upper
bounded by O(n4). Since all the other computation can be done in time O(n4) the complexity
of our algorithm is O(n4).
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4 Conclusion

In this paper, we present a polynomial time algorithm to compute a minimum connected
vertex cover on AT-free graphs. Note that even though we have considered an unweighted
graph, this algorithm can be modified in such a way that it also works for weighted AT-free
graphs.

It will be interesting to explore the complexity of MCVC for those graph classes where
MVC is solvable in polynomial time.
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