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Abstract
Watrous conjectured that the randomized and quantum query complexities of symmetric functions
are polynomially equivalent, which was resolved by Ambainis and Aaronson [1], and was later
improved in [15, 12]. This paper explores a fine-grained version of the Watrous conjecture, including
the randomized and quantum algorithms with success probabilities arbitrarily close to 1/2. Our
contributions include the following:
1. An analysis of the optimal success probability of quantum and randomized query algorithms

of two fundamental partial symmetric Boolean functions given a fixed number of queries. We
prove that for any quantum algorithm computing these two functions using T queries, there
exist randomized algorithms using poly(T ) queries that achieve the same success probability as
the quantum algorithm, even if the success probability is arbitrarily close to 1/2. These two
classes of functions are instrumental in analyzing general symmetric functions.

2. We establish that for any total symmetric Boolean function f , if a quantum algorithm uses T

queries to compute f with success probability 1/2 + β, then there exists a randomized algorithm
using O(T 2) queries to compute f with success probability 1/2 + Ω

(
δβ2) on a 1 − δ fraction of

inputs, where β, δ can be arbitrarily small positive values. As a corollary, we prove a randomized
version of Aaronson-Ambainis Conjecture [1] for total symmetric Boolean functions in the regime
where the success probability of algorithms can be arbitrarily close to 1/2.

3. We present polynomial equivalences for several fundamental complexity measures of partial
symmetric Boolean functions. Specifically, we first prove that for certain partial symmetric
Boolean functions, quantum query complexity is at most quadratic in approximate degree for any
error arbitrarily close to 1/2. Next, we show exact quantum query complexity is at most quadratic
in degree. Additionally, we give the tight bounds of several complexity measures, indicating their
polynomial equivalence. Conversely, we exhibit an exponential separation between randomized
and exact quantum query complexity for certain partial symmetric Boolean functions.
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1 Introduction

Exploring quantum advantages is a key problem in quantum computing. A lot of research
work has revolved around analyzing and characterizing quantum advantages, such as [14, 22,
16, 29, 45]. Query complexity is a complexity model commonly used to describe quantum
advantages. A comprehensive survey on the query complexity can be found in [24]. A series
of works [2, 44, 8, 41] has shown that for partial functions, quantum query complexity could
be exponentially smaller (or even less) than the randomized query complexity, while for total
functions, they are always polynomially related [4]. Although the query complexity model
has demonstrated the powerful ability of a quantum computer to solve certain “structured”
problems more efficiently than a classical computer, such as Simon’s problem [43] and integer
factorization problem [42], there only exist at most quadratic quantum speedups for some
“unstructured” problems, such as black-box search problems [23]. Thus, one natural question
is to explore how much structure is needed for significant quantum speedups [1].

Watrous conjectured that the randomized query complexity and quantum query complexity
of partial symmetric functions are polynomial equivalent [1]. Later, Aaronson and Ambainis [1]
initiated the study of quantum speedup on the quantum query complexity of symmetric
functions, showing that partial functions invariant under full symmetry do not exhibit super-
polynomial quantum speedups, which resolves the Watrous conjecture. Their result was
later improved by Chailloux [15], who achieved a tighter bound and removed a technical
dependence of output symmetry. Recently [12] performed a systematic analysis of functions
symmetric under other group actions and characterized when super-polynomial quantum
speedups are achievable. However, all these results work in the bounded error regime and do
not explicitly consider arbitrary small biases.

In this paper, we propose and investigate a fine-grained version of the Watrous conjecture
concerning the quantum and randomized query complexities of symmetric functions with
an arbitrary error. Before stating the conjecture, we need to introduce two notions which
are essential to this paper. For any Boolean function f and T > 0, let the classical T -bias
δC(f, T ) be the optimal success probability of T -query randomized algorithms minus 1/2
over all possible inputs. The quantum T -bias δQ(f, T ) is defined for quantum algorithms
analogously.

▶ Conjecture 1 (Fine-grained Watrous conjecture). There exists a constant c ≥ 2 satisfying
that for any partial symmetric function f and any T > 0, δC(f, c · T ) ≥ poly

(
δQ(f,T )

T

)
.

The reason for c ≥ 2 is that the n-bit parity function can be exactly computed with
n/2 quantum queries, while any randomized algorithm with less n queries succeeds with
probability 1/2. It is also not hard to see the fine-grained Watrous conjecture implies that
quantum and randomized query complexities of symmetric functions are polynomially related.
Indeed, if δQ(f, T ) is lower bounded by some constant, then δC(f, c · T ) ≥ Ω( 1

poly(T ) ), which
implies the randomized query complexity of f is poly(T ) by error reduction.

1.1 Our Motivation and Contribution
To study the fine-grained Watrous conjecture, we start with the following two fundamental
symmetric Boolean functions, which are also essential to analyze general symmetric functions:

fk
n(x) =

{
0, if |x| ∈ {0, n},
1, if |x| ∈ {k, n− k},
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where 1 ≤ k ≤ n/2 and

fk,l
n (x) =

{
0, if |x| = k,

1, if |x| = l,

where k < l. The famous Deutsch-Jozsa problem [18] and the decision version of the
unstructured search problem [23] can be interpreted as special cases of these two functions.
Fefferman and Kimmel considered the subset-sized checking problem [19, 21], where the n-bit
input string is promised to have either

√
n or 0.99

√
n many marked items, and the goal is to

decide which case. Their result together with [21] proved that it can be served as an oracle
separation between AM and QCMA. On a similar flavour, [5] introduced the approximate
counting problem, where the n-bit input has either ≤ w or ≥ 2w many marked items. Our
function fk,l

n (·) can be seen as a symmetric variant of these two problems1. We study the
tradeoff between the number of queries and the optimal success probabilities in quantum
and randomized settings for both functions with errors close to 1/2.

We further consider the relation between various complexity measures of partial symmetric
Boolean functions. For total Boolean functions, it has been proved that several fundamental
complexity measures are polynomial equivalent (See Table 1 in [4]). Moreover, the tight
bounds on several fundamental complexity measures of total symmetric Boolean functions
have also been obtained [24]. However, the result for partial symmetric Boolean functions
has not been fully characterized.

Our contribution is as follows. For convenience, if f is a symmetric Boolean function,
we denote f(k) = f(x) for any |x| = k. Additionally, we say an n-bit Boolean function
f : D → {0, 1} is even if f(x) = f(n− x) for any x ∈ D, where D ⊆ {0, 1}n.
1. For both randomized setting and quantum setting, we characterize the optimal success

probability of algorithms given the number of queries for the function fk
n (Theorem 3)

and fk,l
n (Theorems 4 and 5). As a corollary, we show for any T -query quantum algorithm

to compute fk
n and fk,l

n , there exist classical randomized algorithms using poly(T ) queries
to simulate the success probability of the quantum algorithm (Corollaries 6 and 7).
Additionally, we characterize the exact quantum query complexity of fk

n (Theorem 8).
2. We establish a relation between the number of queries and the bias of quantum and

randomized algorithms to compute total symmetric Boolean functions, where the bias of
the algorithms can be arbitrarily small (Theorem 9). As a corollary, we prove a weak
version of Conjecture 2: the acceptance probability of a quantum query algorithm to
compute a total symmetric Boolean function can be approximated by a randomized
algorithm with only a polynomial increase in the number of queries, where the bias of
quantum algorithms can be arbitrarily small (Corollary 10).

3. We investigate the relation between different complexity measures of partial symmetric
Boolean functions. Specifically, Theorem 12 shows the relation between the quantum
query complexity and the approximate degree of even partial symmetric Boolean functions
for arbitrarily small bias2. Theorem 13 shows exact quantum query complexity and degree
are quadratically related. Theorem 14 presents tight bounds of block sensitivity, fractional
block sensitivity, quantum query complexity, and approximate degree, where quantum
query complexity and approximate degree are in a bounded-error setting. Corollary 15
shows block sensitivity is an upper bound of quantum query complexity. Since it has

1 Our problem can also be seen as a Gap-Threshold function. Threshold function is defined as fk
n(x) = 1

iff |x| ≥ k.
2 Theorem 12 is also a new result for total symmetric Boolean functions.

ISAAC 2023
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been known that Q(f) ≥ Ω(
√

bs(f)) for any (possibly partial) Boolean function f [11],
quantum query complexity and block sensitivity of partial symmetric Boolean functions
are polynomially related. On the converse, Theorem 16 shows an exponential gap between
the exact quantum query complexity and randomized query complexity for some partial
symmetric Boolean functions, which is different from total symmetric functions.

▶ Conjecture 2 (Aaronson-Ambainis Conjecture [1]). The acceptance probability of a T -query
quantum algorithm to compute a Boolean function can be approximated by a deterministic
algorithm using poly(T, 1/ϵ, 1/δ) queries within an additive error ϵ on a 1 − δ fraction of
inputs.

▶ Theorem 3. For T > 0, the quantum T -bias and classical T -bias of fk
n are

δQ

(
fk

n , T
)

=
{

Θ( k
n · T 2), if T ≤

√
n/k,

Θ (1) , if T >
√
n/k,

δC

(
fk

n , T
)

=


0, if T = 1,
Θ( k

n · T ), if 2 ≤ T ≤ n/k,

Θ(1), if T > n/k.

▶ Theorem 4. For fk,l
n and T > 0, the quantum T -bias is

δQ

(
fk,l

n , T
)

=


Θ
(

min
{

l−k√
(n−k)l

· T, l−k
n · T 2

})
, if T = O

(√
(n−k)l

l−k

)
,

Θ(1), if T = Ω
(√

(n−k)l

l−k

)
.

▶ Theorem 5. If T = O
(

(n−k)l
(l−k)2

)
, the classical T -bias of fk,l

n satisfies that

δC

(
fk,l

n , T
)

= O

(
min

{
l − k√
(n− k)l

·
√
T + T

n
,
l − k

n
· T

})
,

δC

(
fk,l

n , T
)

= Ω
(

max
{

(l − k)2

(n− k)l · T, l − k

n
·
√
T

})
.

If T = Ω
(

(n−k)l
(l−k)2

)
, then δC

(
fk,l

n , T
)

= Θ(1).

▶ Corollary 6. For arbitrarily small bias β > 0, if there exists a quantum algorithm using
T queries to compute fk

n with success probability 1/2 + β, then there also exists a classical
randomized algorithm using O(T 2) queries to compute fk

n with the same success probability.

▶ Corollary 7. For arbitrarily small bias β > 0, if there exists a quantum algorithm using
T queries to compute fk,l

n with success probability 1/2 + β, then there also exist classical
randomized algorithms using T 2 queries to compute fk,l

n with success probability 1/2 + Ω
(
β2)

and using T 4 queries to compute fk,l
n with success probability 1/2 + Ω (β). Thus

δC

(
fk,l

n , T 2) ≥ Ω
(
δQ(fk,l

n , T )2) and δC

(
fk,l

n , T 4) ≥ Ω
(
δQ(fk,l

n , T )
)
.
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▶ Theorem 8. The exact quantum query complexity of fk
n satisfies ⌈ π

2θ ⌉ ≤ QE(fk
n) ≤ ⌈ π

2θ ⌉+2,
where θ = 2 arcsin

√
k/n, whereas the zero-error randomized query complexity of fk

n is n−k+1.

▶ Theorem 9. For any total symmetric Boolean function f and arbitrarily small bias β > 0,
if there exists a quantum algorithm using T queries to compute f with success probability
1/2 + β, then for any δ ∈ (0, 1), there exists a randomized algorithm using O(T 2) queries to
compute f with success probability 1/2 + Ω

(
δβ2) on a 1 − δ fraction of inputs.

▶ Corollary 10. For any total symmetric Boolean function f and arbitrarily small bias β > 0,
if there exists a T -query quantum algorithm to compute f with success probability 1/2 + β,
then for any ϵ ∈ (0, β), δ ∈ (0, 1), there exists a randomized algorithm using O(T 2/(ϵ2δ2))
queries to compute f with success probability 1/2 + (β − ϵ) on a 1 − δ fraction of inputs.

▶ Remark 11. Corollary 10 is a randomized version of Conjecture 2. Moreover, Corollary 10
considers total symmetric Boolean functions, while Conjecture 2 refers to any Boolean
function.

▶ Theorem 12. For any (possibly partial) symmetric Boolean function f satisfying f(x) =
f(n−x) and arbitrarily small β > 0, if T = d̃eg 1

2 −β(f), there exists a quantum query algorithm

using ⌈T/2⌉ queries to compute f with success probability 1/2 + Ω
(
β/

√
T
)

. Namely,

δQ

(
f, d̃eg 1

2 −β(f)
)

= Ω

 β√
d̃eg 1

2 −β(f)

 .

As a corollary, we have Qϵ(f) = O(d̃egϵ(f)2) for any error ϵ arbitrarily close to 1/2.

▶ Theorem 13. For any partial symmetric Boolean function f , we have QE(f) = O(deg(f)2).

▶ Theorem 14. For any partial symmetric Boolean function f , we have

bs(f) = Θ (fbs(f)) =
(

max
k<l:f(k)̸=f(l)

n

l − k

)
,

Q(f) = Θ
(

d̃eg(f)
)

=
(

max
k<l:f(k) ̸=f(l)

√
(n− k)l
l − k

)
.

▶ Corollary 15. For any partial symmetric Boolean function f , we have Q(f) = O (bs(f)).

▶ Theorem 16. There exists a partial symmetric Boolean function f such that QE(f) = Ω(n)
and R(f) = O(1).

1.2 Proof Techniques

In this section, we give a high-level technical overview of our main results (See full version [36]
for the detailed proof).

ISAAC 2023
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1.2.1 Upper and Lower Bounds on Quantum T -bias
We use several methods to show the upper bound on the quantum T -bias of different
symmetric Boolean functions:
1. For fk

n , we show if the number of a quantum algorithm is no more than T queries, then
the bias β of the algorithm is at most O(T 2/ bs(fk

n)), where bs(fk
n) is the block sensitivity

of fk
n . By solving a lower bound of bs(fk

n), we obtain an upper bound on the quantum
T -bias of fk

n (Theorem 3).
2. For fk,l

n , using Paturi’s lower bound technique [35] for the approximate degree of symmetric
Boolean functions, we give the following lower bound:

Qϵ(fk,l
n ) ≥ 1

2 d̃egϵ

(
fk,l

n

)
= Ω

(
max

{
β
√

(n− k) l
l − k

,

√
βn

l − k

})
,

where β = 1/2−ϵ. The quantum T -bias of fk,l
n is derived by this lower bound (Theorem 4).

To obtain the lower bound on the quantum T -bias, we also use diverse ideas to design
T -query quantum algorithms:
1. For fk

n and fk,l
n , we use various variants of amplitude amplification algorithm and analyze

the success probability of algorithms meticulously (Theorems 3 and 4).
2. For even symmetric Boolean functions, we design a novel quantum algorithm by taking

advantage of the Chebyshev expansion and constructing controlled Grover’s diffusion
operations (Theorem 12).

1.2.2 Upper and Lower Bounds on Classical T -bias
For fk

n and fk,l
n , we show the upper bound on the classical T -bias by analyzing the total

variation distance of distributions; for the lower bound, we give sampling algorithms to
estimate Hamming weights of the input and analyze the success probability of the algorithms
also by analyzing the distance between distributions (Theorems 3 and 5).

For the lower bound on the classical T -bias of total symmetric Boolean functions, we
design an innovative randomized algorithm by utilizing the Kravchuk polynomial when the
number of queries is T . The analysis of the algorithm also uses the orthogonality property of
the Kravchuk polynomial (Theorem 9).

1.2.3 The Relation Between Complexity Measures
The key ideas to build the relation between complexity measures of partial symmetric Boolean
functions are as follows:
1. In Theorem 13, we show the relation between the exact quantum query complexity and

the degree by giving the lower bound of the degree and designing a matching exact
quantum algorithm up to a polynomial level. Similar to the proof of Theorem 8, the
exact quantum algorithm makes use of a subroutine to distinguish |x| = k from |x| = l

exactly [25].
2. In Theorem 14, the analysis of block sensitivity and fractional block sensitivity relies

on the symmetry property of the function. Furthermore, we show the quantum query
complexity and the approximate degree of any partial symmetric Boolean function f are
equivalent to a constant factor. While the lower bound is well known (Fact 1), we show
Q(f) ≤ d̃eg(f) by giving a quantum approximate counting algorithm using O(d̃eg(f))
quantum queries.

3. The exponential gap in Theorem 16 is shown by giving a function easy to compute in a
bounded-error case but has a large degree.
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1.3 Related Work

The need for structure in quantum speedups has been studied extensively. Beals, Buhrman,
Cleve, Mosca and de Wolf [9] showed that there exists at most polynomial quantum speedups
for total Boolean functions in the query model. Thus, the exponential speedups may
only occur at partial functions. Furthermore, Aaronson and Ambainis [1] showed that
symmetric functions do not allow super-polynomial quantum speedups, even if the functions
are partial. Chailloux [15] improved this result for a broader class of symmetric functions. Ben-
David, Childs, Gilyén, Kretschmer, Podder and Wang [12] further showed that hypergraph
symmetries in the adjacency matrix model allow at most polynomial separations between
quantum and randomized query complexities. Ben-David [10] proved a classical and quantum
polynomial equivalence for a class of functions satisfying a certain symmetric promise.
Aaronson and Ben-David [3] showed that there exists at most polynomial quantum speedups
to compute an n-bit partial Boolean function if the domain D = poly(n). Nonetheless, all
these results concern the algorithms with a constant probability of success. They do not
cover the query complexity with a subconstant probability of success.

We also survey some results about the optimal success probability of quantum algorithms
when the number of queries is fixed. For the unstructured search problem, Zalka [46] showed
an optimal success probability of a quantum algorithm given the number of queries. For
the collision finding problem, Zhandry [47] gave the upper bound on the success probability
of quantum algorithms when the number of queries is fixed, which matched the algorithm
proposed by Brassard, Høyer and Tapp [13]. Ambainis and Iraids [6] analyzed the optimal
success probability of one-query quantum algorithms to compute EQUALITYn and ANDn

functions. Montanaro, Jozsa, and Mitchison [33] indicated the optimal success probability of
small symmetric Boolean functions when given any number of queries by numerical results.
There is not much study about the optimal success probability with a given number of queries
for symmetric Boolean functions. Our work will fill the gap in this field.

For the complexity measures of a nonconstant n-bit total symmetric Boolean function f ,
it has been known that R(f), D(f), deg(f), s(f), bs(f) are Θ(n), and Q(f) = Θ

(
d̃eg(f)

)
=

Θ
(√

n(n− Γ(f))
)

, where Γ(f) = min {|2k − n+ 1| : f(k) ̸= f(k + 1)} [24]. Sherstov [40]
gave an almost tight characterization of degϵ(f) for specific ϵ ∈ [1/2n, 1/3]. Afterward,
de Wolf [17] obtained the optimal bound. Regarding the complexity measures of partial
symmetric Boolean functions, Aaronson and Ambainis [1] showed for any partial symmetric
Boolean function f , R(f) = O

(
Q(f)2) as mentioned before. Researchers also studied the

exact quantum query complexity for many instances of partial symmetric Boolean functions.
For example, Deutsch and Jozsa [18] studied the first partially symmetric Boolean function.
Afterward, generalized Deutsch-Jozsa problems were studied in [33, 37, 38]. He, Sun, Yang
and Yuan [25] established the asymptotically optimal bound for the exact quantum query
complexity of distinguishing whether |x| = k or l. Qiu and Zheng [37, 39] studied the exact
quantum query complexity of symmetric Boolean functions with degree 1 or 2. Additionally,
several works [7, 20, 31] explored the connections between block sensitivity, fractional block
sensitivity and degree for bounded functions.

In a similar work, Montanaro, Nishimura and Raymond [34] studied the unbounded
error query complexity of Boolean functions in a scenario where it is only required that
the query algorithm succeeds with a probability strictly greater than 1/2. They proved
quantum and classical query complexities are related by a constant factor for any (possibly
partial) Boolean function. Similar results are also known in the communication complexity
model [27, 26]. Compared to the result in [34], we aim to analyze the relation between

ISAAC 2023
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quantum/classical query complexity and bias more precisely. For instance, we show for
any quantum algorithm computing fk

n and fk,l
n using T queries, there exist randomized

algorithms using poly(T ) queries that have the same bias as the quantum algorithm. Such a
conclusion is not implied by [34] since the unbounded error model only requires a strictly
positive bias without quantitative analysis.

1.4 Organization
The remainder of the paper is organized as follows. In Section 2, we review some definitions
and facts. In Section 3, we prove Theorem 9 pertaining to connections between quantum and
randomized algorithms of symmetric Boolean functions in the small-bias regime. In Section 4,
we prove Theorem 12 to show the relation between the quantum query complexity and the
approximate degree for arbitrarily small bias. Finally, a conclusion is made in Section 5.

2 Preliminaries

For an n-bit Boolean function f : D → {0, 1}, if D = {0, 1}n, f is a total function; if
D ⊂ {0, 1}n, f is a partial function. We say f is symmetric if f(x) only depends on |x|,
where |x| is the number of 1’s in x. Correspondingly, we say g : {−1, 1}n → R is symmetric
if g(x) only depends on |x|, where |x| is the number of −1’s in x. Every g : {−1, 1}n → R
can be uniquely expressed as g(x) =

∑
S⊆[n] ĝ(S)xS , where xS =

∏
j∈S xj and ĝ(S) is the

Fourier coefficient of g for any S ⊆ [n]. Let H (n, i, T ) be the hypergeometric distribution
sampling T times from x ∈ {0, 1}n satisfying that |x| = i without replacement. A binomial
distribution with parameters n, p is written as B(n, p).

2.1 Query Models and Complexity Measures
In the classical query model, for an input x ∈ {0, 1}n, we can obtain xi for some i by making
one query. The deterministic query complexity of f , denoted by D(f), is the minimum
number of queries required by a deterministic algorithm to compute f on the worst input.
The randomized query complexity of f , denoted by Rϵ(f), is the minimum number of queries
required by a randomized algorithm to compute f with error ϵ on the worst input. If ϵ = 1/3,
we abbreviate Rϵ(f) to R(f). Moreover, R0(f) is called the zero-error randomized query
complexity of f .

In the quantum query model, a query algorithm can be described as follows: it starts
with a fixed state |ψ0⟩ and then performs the sequence of operations U0, Ox, U1, . . . , Ox, Ut,
where Ui’s are unitary operators not depend on x and the query oracle Ox is defined
as Ox |i⟩ |b⟩ = |i⟩ |xi ⊕ b⟩ for any i ∈ [n] and b ∈ {0, 1}. This leads to the final state
|ψx⟩ = UtOxUt−1 · · ·U1OxU0|ψ0⟩. The output result is obtained by measuring |ψx⟩. The
exact query complexity of f , denoted by QE(f), is the minimum number of queries required
by a quantum algorithm to compute f exactly on the worst input. Such a quantum algorithm
is called an exact quantum algorithm. The quantum query complexity of f , denoted by
Qϵ(f), is the minimum number of queries required by a quantum algorithm to compute f
with ϵ on the worst input. If ϵ = 1/3, we abbreviate Qϵ(f) to Q(f).

Then we overview some notations about complexity measures of Boolean functions. The
degree of f , denoted as deg(f), is the minimum degree of all real multilinear polynomial
representations of f . The approximate degree of f , denoted by d̃egϵ(f), is the minimum
degree among all real multilinear polynomials that approximate f with error ϵ. If ϵ = 1/3,
we abbreviate d̃egϵ(f) as d̃eg(f). The block sensitivity of f on x, denoted as bs(f, x), is the
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maximum number of disjoint sensitive blocks in x. The block sensitivity of f is defined as
bs(f) = maxx bs(f, x). The value of bs(f, x) can be expressed as an integer linear program.
The fractional relaxation of the integer program yields the fractional block sensitivity of f on x,
denoted as fbs(f, x). The fractional block sensitivity of f is defined as fbs(f) = maxx fbs(f, x).

▶ Fact 1 ([9]). If f is a Boolean function, then QE(f) ≥ deg(f)/2 and Qϵ(f) ≥ d̃egϵ(f)/2.

2.2 Orthonormal Polynomials and Fourier Growth
▶ Fact 2 (Corollary 2.3 in [30]). For any 0 ≤ j ≤ T , the Kravchuk polynomial is defined as

Kj(t, T ) =
j∑

i=0

(
t

i

)(
T − t

j − i

)
(−1)i.

Then for any 0 ≤ l,m ≤ T , there exists the following orthogonality property:
T∑

t=0

(
T

t

)
Kl(t, T )Km(t, T ) = 2T

(
T

l

)
δl,m,

where δl,m = 1 if l = m, and δl,m = 0 if l ̸= m.

▶ Fact 3 (Parseval’s identity, Page 84 in [32]). For a function g : [−1, 1] → [−1, 1], if
g(x) =

∑T
i=0 aiTi(x) for any x ∈ [−1, 1], where Ti is the Chebyshev polynomial such that

Ti(cos θ) = cos(iθ), then∫ 1

−1

1√
1 − x2

(g(x))2
dx = πa2

0 + π

2

T∑
i=1

a2
i .

▶ Fact 4 (Theorem 1 in [28]). If symmetric function f : {−1, 1}n → [−1, 1] has degree d,
then ∑

S⊆[n]:|S|=l

|f̂(S)| ≤ dl

l! ,

where f̂(S) is the Fourier coefficients of f for any S ⊆ [n].

3 The Relation Between Quantum and Randomized Algorithms of
Symmetric Boolean Functions for Arbitrarily Small Bias

In this section, we give the proof of Theorem 9. First, we state Lemma 17, which is needed
to prove the theorem. In Lemma 17, since g is a symmetric function, we let ĝ(l) = ĝ(S) for
any |S| = l with a slight abuse of notation, where ĝ(S) is the Fourier coefficients of g for
S ⊆ [n]. Moreover, Kl(t, T ) is the Kravchuk polynomial as Fact 2.

▶ Lemma 17. Given a symmetric function g : {−1, 1}n → [−1, 1] such that deg(g) = d, for
any d ≤ T ≤ n and x ∈ {−1, 1}n, we have

g(x) = Et∼H(n,|x|,T )

d∑
l=0

ĝ(l)
(
n

l

)
Kl(t, T )(

T
l

) ,

Et∼B(T, 1
2 )

(
d∑

l=0
ĝ(l)

(
n

l

)
Kl(t, T )(

T
l

) )2

≤ 2.
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Proof. Since g : {−1, 1}n → [−1, 1] is a symmetric function and deg(g) = d, for any
d ≤ T ≤ n and x ∈ {−1, 1}n, we have

g(x) =
∑

S⊆[n]:|S|≤d

ĝ(S)xS

=
d∑

l=0
ĝ(l)

∑
S⊆[n]:|S|=l

xS

=
d∑

l=0
ĝ(l) 1(

n−l
T −l

) ∑
U⊆[n]:|U |=T

∑
S⊆U :|S|=l

xS

=
d∑

l=0
ĝ(l)

(
n
l

)(
n
T

)(
T
l

) ∑
U⊆[n]:|U |=T

∑
S⊆U :|S|=l

xS

= 1(
n
T

) ∑
U⊆[n]:|U |=T

d∑
l=0

ĝ(l)
(
n

l

)∑
S⊆U :|S|=l xS(

T
l

)
= 1(

n
T

) T∑
t=0

(
|x|
t

)(
n− |x|
T − t

) d∑
l=0

ĝ(l)
(
n

l

)∑l
i=0
(

t
i

)(
T −t
l−i

)
(−1)i(

T
l

)
= Et∼H(n,|x|,T )

d∑
l=0

ĝ(l)
(
n

l

)
Kl(t, T )(

T
l

) .

Let cl = ĝ (l)
(

n
l

)
. By Fact 4, we have |cl| ≤ dl

l! . Then we have

Et∼B(T, 1
2 )

(
d∑

l=0
ĝ(l)

(
n

l

)
Kl(t, T )(

T
l

) )2

= 1
2T

T∑
t=0

(
T

t

)( d∑
l=0

cl
Kl(t, T )(

T
l

) )2

=
d∑

l=0

c2
l(

T
l

)
≤

d∑
l=0

dl

l! · d
l

l! · l!∏l−1
i=0 T − i

≤
d∑

l=0

1
l! · d2l∏l−1

i=0 T − i

≤
d∑

l=0

l−1∏
i=0

d2

T − i

≤
d∑

l=0

(
1
2

)l

≤ 2,

where the second equality comes from the orthogonality property of the Kravchuk polynomial
(Fact 2). ◀

Proof of Theorem 9. For any total symmetric Boolean function f and 0 < β < 1/2, 0 <
δ < 1, let ϵ = 1/2 −β. Suppose there exists a quantum algorithm using T queries to compute
f with success probability 1/2 +β. By Fact 1, we have d̃egϵ(f) ≤ 2T . Let d = d̃egϵ(f). Next,
it suffices to prove there exists a randomized algorithm using O(d2) queries to compute f
with success probability 1/2 + Ω

(
δβ2) on a 1 − δ fraction of inputs.



S. Podder, P. Yao, and Z. Ye 55:11

Since d = d̃egϵ(f), there exists a degree-d symmetric function f ′ : {0, 1}n → [0, 1]
satisfying if f(x) = 0, then f ′(x) ≤ 1/2 − β; if f(x) = 1, then f ′(x) ≥ 1/2 + β. It means
that (1 − 2f(x)) (1 − 2f ′(x)) ≥ 2β. Let h : {0, 1}n → [−1, 1] be defined as h(x) = 1 − 2f ′(x)
and g : {−1, 1}n → [−1, 1] defined as g(1 − 2x) = h(x) for any x ∈ {0, 1}n. Then g is also a
degree-d symmetric function. By Lemma 17, for any d ≤ T ≤ n and x ∈ {−1, 1}n, we have

g(x) = Et∼H(n,|x|,T )

d∑
l=0

ĝ(l)
(
n

l

)
Kl(t, T )(

T
l

) .

Let

At =
d∑

l=0
ĝ (l)

(
n

l

)
Kl(t, T )(

T
l

) . (1)

Then for x ∈ {0, 1}n, we have h(x) = Et∼H(n,|x|,T )At, where |x| is the number of 1’s in x.
For any 0 ≤ t ≤ T , let

A′
t =

min
{
At,

16
δβ

}
, if At ≥ 0,

max
{
At,− 16

δβ

}
, if At < 0.

(2)

Suppose x follows the uniform distribution of {0, 1}n. We give Algorithm 1 to compute
f(x) using T = 2d2 + d queries. The error analysis of Algorithm 1 is as follows. Given

Algorithm 1 A T -query quantum algorithm to compute f(x).

1 Query T distinct bits in x uniformly and denote the number of 1’s by t.
2 Compute the value of At as Equation (1).
3 Output 0 with the probability 1

2 (1 + δβ
16A

′
t) and output 1 with the probability

1
2 (1 − δβ

16A
′
t), where A′

t is defined as Equation (2).

x ∈ {0, 1}n, let h′(x) = Et∼H(n,|x|,T )A
′
t. Then the probability that the algorithm outputs 0

is 1
2

(
1 + δβ

16h
′(x)

)
and the probability that the algorithm outputs 1 is 1

2

(
1 − δβ

16h
′(x)

)
. By

Lemma 17, we have Et∼B(T, 1
2 )A

2
t ≤ 2. Since

∣∣∣Et∼B(T, 1
2 )At

∣∣∣ =

∣∣∣∣∣∣ 1
2n

∑
x∈{0,1}n

Et∼H(n,|x|,T )At

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2n

∑
x∈{0,1}n

h (x)

∣∣∣∣∣∣ ≤ 1, (3)

we have σ2 (At) = EA2
t − (EAt)2 ≤ 2 when t follows the binomial distribution B(T, 1

2 ). By
Chebyshev’s inequality, we have

P (|At − EAt| ≥ 2δ) ≤ 1
δ2 . (4)

By Equation (2), we have

A′
t =


At, if |At| ≤ 16

δβ .

− 16
δβ , if At < − 16

δβ .
16
δβ , if At >

16
δβ .
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Thus if |At| ≤ 16
δβ , then |At − A′

t| = 0; if |At| > 16
δβ , then |At − A′

t| = |At| − 16
δβ . Then we

have

Et|At −A′
t| = Et:|At|≥ 16

δβ

(
|At| − 16

δβ

)
. (5)

By Equation (3), we have |EAt| ≤ 1. Since 0 < δ < 1, 0 < β < 1/2, if |At| > 16
δβ , then

|At − EAt| ≥ |At| − 1 ≥ 15
δβ . Thus, we have

Et:|At|≥ 16
δβ

(
|At| − 16

δβ

)
≤ Et:|At−EAt|≥ 15

δβ

(
|At| − 16

δβ

)
=

∞∑
a=0

E
t: 15·2a

δβ ≤|At−EAt|≤ 15·2a+1
δβ

(
|At| − 16

δβ

)

≤
∞∑

a=0
Et:|At−EAt|≥ 15·2a

δβ

(
15 · 2a+1

δβ
+ 1 − 16

δβ

)

≤
∞∑

a=0
Et:|At−EAt|≥ 15·2a

δβ

16
(
2a+1 − 1

)
δβ

≤
∞∑

a=0

(
δβ

15 · 2a−1

)2
·

16
(
2a+1 − 1

)
δβ

= 64
225δβ ·

∞∑
a=0

2a+1 − 1
4a

≤ δβ,

(6)

where the fourth inequality comes from Equation (4). Combining Equations (5) and (6), we
have

Et∼B(T, 1
2 )|At −A′

t| ≤ δβ. (7)

For x ∈ {0, 1}n, we have h(x) = Et∼H(n,|x|,T )At and h′(x) = Et∼H(n,|x|,T )A
′
t. Then we have

1
2n

∑
x∈{0,1}n

|h(x) − h′(x)| = 1
2n

∑
x∈{0,1}n

Et∼H(n,|x|,T )|At −A′
t| = Et∼B(T, 1

2 )|At −A′
t| ≤ δβ.

by Equation 7. Thus, there are at least 1−δ fractions of inputs x such that |h(x)−h′(x)| ≤ β.
For such x, since h(x)(1 − 2f(x)) ≥ 2β, we have h′(x)(1 − 2f(x)) ≥ β. Therefore, if f(x) = 0,
then h′(x) ≥ β; if f(x) = 1, then h′(x) ≤ −β. Thus, for at least 1 − β fractions of inputs,
the bias of the algorithm is at least β · δβ/16 = δβ2/16. ◀

4 The Relation Between Quantum Query Complexity and
Approximate Degree for Arbitrarily Small Bias

In this section, we give the proof of Theorem 12.

Proof of Theorem 12. Given a (possibly partial) n-bit symmetric Boolean function f :
D → {0, 1}, where D ⊆ {0, 1}n and f(x) = f(n − x) for any x ∈ D. For 0 < ϵ < 1/2, let
T = degϵ(f) and β = 1/2 − ϵ. Same as the proof of Theorem 9, for any function f ′ that
approximates f with error ϵ, we have (1 − 2f(x))(1 − 2f ′(x)) ≥ 2β.

Let g : [−1, 1] → [−1, 1] be defined as g (1 − 2|x|/n) = 1 − 2f(x) for any x ∈ D. Since
f(x) = f(n − x), g is an even function. Assume function h : [−1, 1] → [−1, 1] is the
optimal approximation polynomial of g with degree T . Then g(x)h(x) ≥ 2β and h is also an



S. Podder, P. Yao, and Z. Ye 55:13

even function. Thus, h(x) can be expressed as
∑⌈T/2⌉

i=0 aiT2i(x) for any x ∈ [−1, 1], where
T2i(x) is the Chebyshev polynomial of degree 2i and T2i(cos η) = cos 2iη for any η ∈ [0, π].
Furthermore, we have h(cos η) =

∑⌈T/2⌉
i=0 ai cos 2iη for any η ∈ [0, π]. Let cos ηx = 1 − 2|x|/n.

Then (1 − 2f(x))h (cos ηx) ≥ 2β and

h(cos ηx) =
⌈T/2⌉∑

i=0
ai cos 2iηx

=
∑

i:ai≥0
ai

(
2 cos2 iηx − 1

)
+
∑

i:ai<0
ai

(
1 − 2 sin2 iηx

)

=

 ∑
i:ai≥0

2ai cos2 iηx −
∑

i:ai<0
2ai sin2 iηx

+

 ∑
i:ai<0

ai −
∑

i:ai≥0
ai


= ∆x −M,

(8)

where ∆x = 2
(∑

ai≥0 ai cos2 iηx −
∑

ai<0 ai sin2 iηx

)
and M =

∑⌈T/2⌉
i=0 |ai|. By Fact 3,∑⌈T/2⌉

i=0 a2
i ≤ 2

π

∫ 1
−1

1√
1−x2 dx = 2. Thus,

M ≤
√

2⌈T/2⌉ + 1 ≤
√

2(T + 1). (9)

Let |ψ⟩ = 1√
n

∑
i∈[n] |i⟩ |−⟩. Then ⟨ψ|Ox|ψ⟩ = 1 − 2|x|/n = cos ηx. As a result, there exists

a state |ψ⊥⟩ such that ⟨ψ|ψ⊥⟩ = 0 and Ox |ψ⟩ = cos ηx |ψ⟩ + sin ηx |ψ⊥⟩. For the following
reflection operation

S0 = 2 |ψ⟩ ⟨ψ| − I, S1 = 2Ox |ψ⟩ ⟨ψ|Ox − I = OxS0Ox, (10)

we have

S1S0 |ψ⟩ = cos 2ηx |ψ⟩ + sin 2ηx |ψ⊥⟩ ,
S1S0 |ψ⊥⟩ = − sin 2ηx |ψ⟩ + cos 2ηx |ψ⊥⟩ .

(11)

Let R0 be the corresponding controlled operation of S0, i.e., for any |ϕ⟩,

R0 |ϕ⟩ |+⟩ = |ϕ⟩ |+⟩ , R0 |ϕ⟩ |−⟩ = (S0 |ϕ⟩) |−⟩ . (12)

Let |±i⟩ = |−⟩ · · · |−⟩︸ ︷︷ ︸
i

|+⟩ · · · |+⟩︸ ︷︷ ︸
⌈T/2⌉−i

. If ai ≥ 0, let

P+
i = (|ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|), P−

i = (I − |ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|).

If ai < 0, let

P−
i = (|ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|), P+

i = (I − |ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|).

Let P0 =
∑

i P
+
i , P1 =

∑
i P

−
i . Then P0 + P1 = I. Let αi =

√
|ai|
M . Then

∑
i α

2
i = 1. We

give Algorithm 2 to compute f(x) and analyze the success probability of the algorithm as
follows. Since R0 is the corresponding controlled reflection operation of S0, the final state
after performing Step 2 of Algorithm 2 is

⌈T/2⌉∑
i=0

αi

(OxS0) · · · (OxS0)︸ ︷︷ ︸
i times

|ψ⟩

 |±i⟩ .
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Algorithm 2 A T -query quantum algorithm to compute f(x).

1 Prepare the initial state
∑⌈T/2⌉

i=0 αi |ψ⟩ |±i⟩, which consists of the first qudit and
⌈T/2⌉ ancillary qubits, where αi, |ψ⟩ , |±i⟩ are defined on Page 11.

2 For i = 1 to ⌈T/2⌉, we perform unitary operation (Ox ⊗ I)R0 in the first qudit and
the i-th ancillary qubit, where R0 is given in Equation (12).

3 Perform the project measurement {P0, P1} defined on Page 11 to the final state and
output the measurement result.

If i is even, then(OxS0) · · · (OxS0)︸ ︷︷ ︸
i times

|ψ⟩

 |±i⟩ =

(OxS0OxS0) · · · (OxS0OxS0)︸ ︷︷ ︸
i/2 times

|ψ⟩

 |±i⟩

=

(S1S0) · · · (S1S0)︸ ︷︷ ︸
i/2 times

|ψ⟩

 |±i⟩

=
(
cos iηx |ψ⟩ + sin iηx |ψ⊥⟩

)
|±i⟩ ,

where the second equality comes from S1 = OxS0Ox and the third equality comes from
Equation (11). Similarly, if i is odd, by Equation (11) and S1 = OxS0Ox, we have(OxS0) · · · (OxS0)︸ ︷︷ ︸

i times

|ψ⟩

 |±i⟩ =

(OxS0) · · · (OxS0)︸ ︷︷ ︸
i−1 times

(
cos ηx |ψ⟩ + sin ηx |ψ⊥⟩

) |±i⟩

=

(S1S0) · · · (S1S0)︸ ︷︷ ︸
(i−1)/2

(
cos ηx |ψ⟩ + sin ηx |ψ⊥⟩

) |±i⟩

=
(
cos iηx |ψ⟩ + sin iηx |ψ⊥⟩

)
|±i⟩ .

Thus, after performing Step 2 of Algorithm 2, the final state is

⌈T/2⌉∑
i=0

αi

(
cos iηx |ψ⟩ + sin iηx |ψ⊥⟩

)
|±i⟩ .

By Equation (8), the probability that the measurement result is 0 is

px =
∑

i:ai≥0
α2

i cos2 iηx +
∑

i:ai<0
α2

i sin2 iηx

= 1
M

 ∑
i:ai≥0

ai cos2 iηx −
∑

i:ai<0
ai sin2 iηx


= ∆x

2M

= 1
2 + h(cos ηx)

2M ,

and the probability that the algorithm outputs 1 is 1/2 − h(cos ηx)/(2M). Since (1 −
2f(x))h(cos ηx) ≥ 2β, the probability that the algorithm outputs f(x) is at least 1/2 + β/M .
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By Equation (9), the bias of the algorithm is at least β/M ≥ β/
√

2T + 2. Then we can
amplify the success probability to 1/2 + β by running O(T ) times Algorithm 2 repetitively
(see full version [36] for the detailed proof). Thus, there exists a quantum algorithm using
O(T 2) queries to with success probability 1 − ϵ, which implies Qϵ(f) = O

(
degϵ(f)2). ◀

▶ Remark 18. We conjecture that f(x) = f(n− x) is not a necessary condition. If an n-bit
(possibly partial) symmetric Boolean function f satisfies that f(x) ̸= f(n − x) for some
x ∈ D, we can define a new 2n-bit Boolean function f∗ such that

f∗(x) =
{
f(x), if |x| ≤ n,

f(2n− x), if |x| > n.

Then f∗ satisfies that f∗(x) = f∗(2n− x). Although we can run Algorithm 2 to f∗, we do
not know how to relate d̃egϵ(f∗) and d̃egϵ(f) for any ϵ arbitrarily close to 1/2. Thus, the
query complexity of the algorithm is not promised. We leave this case as an open problem.

5 Conclusion

This paper analyzes the quantum advantage of computing two fundamental partial symmetric
Boolean functions by studying the optimal success probability of T -query quantum and
randomized algorithms. Moreover, we analyze the relation between the number of queries
and the bias of quantum and randomized algorithms to compute total symmetric Boolean
functions when the bias of the algorithms can be arbitrarily small. Furthermore, we show the
relation of several fundamental complexity measures of partial symmetric Boolean functions.
We leave the fine-grained Watrous conjecture as an open problem for further study.

References
1 Scott Aaronson and Andris Ambainis. The need for structure in quantum speedups. Theory

of Computing, 10:133–166, 2014. doi:10.4086/toc.2014.v010a006.
2 Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates

quantum from classical computing. SIAM Journal on Computing, 47(3):982–1038, 2018.
doi:10.1137/15M1050902.

3 Scott Aaronson and Shalev Ben-David. Sculpting quantum speedups. In Proceedings of
the 31st Conference on Computational Complexity, volume 50, pages 26:1–26:28, 2016. doi:
10.4230/LIPIcs.CCC.2016.26.

4 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of Huang’s sensitivity theorem. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1330–1342.
ACM, 2021. doi:10.1145/3406325.3451047.

5 Scott Aaronson, Robin Kothari, William Kretschmer, and Justin Thaler. Quantum lower
bounds for approximate counting via Laurent polynomials. In Proceedings of the 35th Compu-
tational Complexity Conference, pages 7:1–7:47, 2020. doi:10.4230/LIPIcs.CCC.2020.7.

6 Andris Ambainis and Janis Iraids. Optimal one-shot quantum algorithm for EQUALITY and
AND. Baltic Journal of Modern Computing, 4(4), 2016. doi:10.22364/bjmc.2016.4.4.09.

7 Arturs Backurs and Mohammad Bavarian. On the sum of L1 influences. In Proceedings
of the IEEE 29th Conference on Computational Complexity, pages 132–143, 2014. doi:
10.1109/CCC.2014.21.

8 Nikhil Bansal and Makrand Sinha. k-Forrelation optimally separates quantum and classical
query complexity. In Proccedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1303–1316, 2021. doi:10.1145/3406325.3451040.

ISAAC 2023

https://doi.org/10.4086/toc.2014.v010a006
https://doi.org/10.1137/15M1050902
https://doi.org/10.4230/LIPIcs.CCC.2016.26
https://doi.org/10.4230/LIPIcs.CCC.2016.26
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.4230/LIPIcs.CCC.2020.7
https://doi.org/10.22364/bjmc.2016.4.4.09
https://doi.org/10.1109/CCC.2014.21
https://doi.org/10.1109/CCC.2014.21
https://doi.org/10.1145/3406325.3451040


55:16 On the Fine-Grained Query Complexity of Symmetric Functions

9 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.
502097.

10 Shalev Ben-David. The structure of promises in quantum speedups. In Proceedings of the
11th Conference on the Theory of Quantum Computation, Communication and Cryptography,
volume 61, pages 7:1–7:14, 2016. doi:10.4230/LIPIcs.TQC.2016.7.

11 Shalev Ben-David. Lecture 6: The polynomial method. https://cs.uwaterloo.ca/
~s4bendav/CS867QIC890/CS867QIC890W21week4notes.pdf, 2021.

12 Shalev Ben-David, Andrew M. Childs, András Gilyén, William Kretschmer, Supartha Podder,
and Daochen Wang. Symmetries, graph properties, and quantum speedups. In Proceedings of
the 61st IEEE Annual Symposium on Foundations of Computer Science, pages 649–660, 2020.
doi:10.1109/FOCS46700.2020.00066.

13 Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free
functions. In LATIN 1998: Theoretical Informatics, Third Latin American Symposium, volume
1380, pages 163–169, 1998. doi:10.1007/BFb0054319.

14 Sergey Bravyi, David Gosset, Robert König, and Marco Tomamichel. Quantum advantage
with noisy shallow circuits in 3D. In Proccedings of the 60th IEEE Annual Symposium on
Foundations of Computer Science, pages 995–999, 2019. doi:10.1109/FOCS.2019.00064.

15 André Chailloux. A note on the quantum query complexity of permutation symmetric functions.
In Proceedings of the 10th Innovations in Theoretical Computer Science Conference, volume
124, pages 19:1–19:7, 2019. doi:10.4230/LIPIcs.ITCS.2019.19.

16 Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential separations
between learning with and without quantum memory. In Proccedings of the 62nd IEEE
Annual Symposium on Foundations of Computer Science, pages 574–585, 2021. doi:
10.1109/FOCS52979.2021.00063.

17 Ronald de Wolf. A note on quantum algorithms and the minimal degree of ϵ-error polynomials
for symmetric functions. Quantum Information and Computation, 8(10):943–950, 2008.
doi:10.26421/QIC8.10-4.

18 David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 439(1907):553–558, 1992. doi:10.1098/rspa.1992.0167.

19 Bill Fefferman and Shelby Kimmel. Quantum vs. Classical Proofs and Subset Verification. In
Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer
Science, volume 117, pages 22:1–22:23, 2018. doi:10.4230/LIPIcs.MFCS.2018.22.

20 Yuval Filmus, Hamed Hatami, Nathan Keller, and Noam Lifshitz. On the sum of L1 influences
of bounded functions. Israel Journal of Mathematics, 214(1):167–192, 2016. doi:10.1007/
s11856-016-1355-0.

21 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th annual ACM symposium on Theory of computing, pages
59–68, 1986. doi:10.1145/12130.12137.

22 Daniel Grier and Luke Schaeffer. Interactive shallow clifford circuits: quantum advantage
against NC1 and beyond. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 875–888, 2020. doi:10.1145/3357713.3384332.

23 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
28th IEEE Annual Symposium on Theory of Computing, pages 212–219, 1996.

24 Buhrman Harry and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

25 Xiaoyu He, Xiaoming Sun, Guang Yang, and Pei Yuan. Exact quantum query complexity of
weight decision problems. Science China Information Sciences, 66:129503, 2023. Also see
arXiv:1801.05717. doi:10.1007/s11432-021-3468-x.

https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.4230/LIPIcs.TQC.2016.7
https://cs.uwaterloo.ca/~s4bendav/CS867QIC890/CS867QIC890W21week4notes.pdf
https://cs.uwaterloo.ca/~s4bendav/CS867QIC890/CS867QIC890W21week4notes.pdf
https://doi.org/10.1109/FOCS46700.2020.00066
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1109/FOCS.2019.00064
https://doi.org/10.4230/LIPIcs.ITCS.2019.19
https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.26421/QIC8.10-4
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.4230/LIPIcs.MFCS.2018.22
https://doi.org/10.1007/s11856-016-1355-0
https://doi.org/10.1007/s11856-016-1355-0
https://doi.org/10.1145/12130.12137
https://doi.org/10.1145/3357713.3384332
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://arxiv.org/abs/1801.05717
https://arxiv.org/abs/1801.05717
https://doi.org/10.1007/s11432-021-3468-x


S. Podder, P. Yao, and Z. Ye 55:17

26 Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita. Unbounded-
error classical and quantum communication complexity. In Proceedings of the 18th International
Symposium on Algorithms and Computation, ISAAC 2007, volume 4835, pages 100–111, 2007.
doi:10.1007/978-3-540-77120-3_11.

27 Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita. Unbounded-
error one-way classical and quantum communication complexity. In Proceedings of the 34th
International Colloquium on Automata, Languages and Programming, ICALP 2007, volume
4596, pages 110–121, 2007. doi:10.1007/978-3-540-73420-8_12.

28 Siddharth Iyer, Anup Rao, Victor Reis, Thomas Rothvoss, and Amir Yehudayoff. Tight
bounds on the Fourier growth of bounded functions on the hypercube. arXiv preprint, 2021.
arXiv:2107.06309.

29 John Kallaugher. A quantum advantage for a natural streaming problem. In Proccedings of
the 62nd IEEE Annual Symposium on Foundations of Computer Science, pages 897–908, 2021.
doi:10.1109/FOCS52979.2021.00091.

30 Vladimir I. Levenshtein. Krawtchouk polynomials and universal bounds for codes and designs
in Hamming spaces. IEEE Transactions on Information Theory, 41(5):1303–1321, 1995.
doi:10.1109/18.412678.

31 Shachar Lovett and Jiapeng Zhang. Fractional certificates for bounded functions. In Proceedings
of the 14th Innovations in Theoretical Computer Science Conference, volume 251, pages 84:1–
84:13, 2023. doi:10.4230/LIPIcs.ITCS.2023.84.

32 John C. Mason and David C. Handscomb. Chebyshev polynomials. CRC Press, 2002.
33 Ashley Montanaro, Richard Jozsa, and Graeme Mitchison. On exact quantum query complexity.

Algorithmica, 71(4):775–796, 2015. doi:10.1007/s00453-013-9826-8.
34 Ashley Montanaro, Harumichi Nishimura, and Rudy Raymond. Unbounded-error quantum

query complexity. In Proceedings of the 19th International Symposium on Algorithms and Com-
putation, ISAAC 2008, volume 5369, pages 919–930, 2008. doi:10.1007/978-3-540-92182-0_
80.

35 Ramamohan Paturi. On the degree of polynomials that approximate symmetric Boolean
functions (preliminary version). In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, pages 468–474. ACM, 1992. doi:10.1145/129712.129758.

36 Supartha Podder, Penghui Yao, and Zekun Ye. On the fine-grained query complexity of
symmetric functions. arXiv preprint, 2023. arXiv:2309.11279.

37 Daowen Qiu and Shenggen Zheng. Characterizations of symmetrically partial Boolean functions
with exact quantum query complexity. arXiv preprint, 2016. arXiv:1603.06505.

38 Daowen Qiu and Shenggen Zheng. Generalized Deutsch-Jozsa problem and the optimal
quantum algorithm. Physical Review A, 97(6):062331, 2018. doi:10.1103/PhysRevA.97.
062331.

39 Daowen Qiu and Shenggen Zheng. Revisiting Deutsch-Jozsa algorithm. Information and
Computation, 2020(275):104605, 2020. doi:10.1016/j.ic.2020.104605.

40 Alexander A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions.
Computational Complexity, 18(2):219–247, 2009. doi:10.1007/s00037-009-0274-4.

41 Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An optimal separation of
randomized and quantum query complexity. In Proccedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1289–1302, 2021. doi:10.1145/3406325.3451019.

42 Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages
124–134, 1994. doi:10.1109/SFCS.1994.365700.

43 Daniel R. Simon. On the power of quantum computation. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 116–123, 1994. doi:10.1109/SFCS.
1994.365701.

ISAAC 2023

https://doi.org/10.1007/978-3-540-77120-3_11
https://doi.org/10.1007/978-3-540-73420-8_12
https://arxiv.org/abs/2107.06309
https://doi.org/10.1109/FOCS52979.2021.00091
https://doi.org/10.1109/18.412678
https://doi.org/10.4230/LIPIcs.ITCS.2023.84
https://doi.org/10.1007/s00453-013-9826-8
https://doi.org/10.1007/978-3-540-92182-0_80
https://doi.org/10.1007/978-3-540-92182-0_80
https://doi.org/10.1145/129712.129758
https://arxiv.org/abs/2309.11279
https://arxiv.org/abs/1603.06505
https://doi.org/10.1103/PhysRevA.97.062331
https://doi.org/10.1103/PhysRevA.97.062331
https://doi.org/10.1016/j.ic.2020.104605
https://doi.org/10.1007/s00037-009-0274-4
https://doi.org/10.1145/3406325.3451019
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1109/SFCS.1994.365701


55:18 On the Fine-Grained Query Complexity of Symmetric Functions

44 Avishay Tal. Towards optimal separations between quantum and randomized query complexities.
In Proccedings of the 61st Annual Symposium on Foundations of Computer Science, pages
228–239, 2020. doi:10.1109/FOCS46700.2020.00030.

45 Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without structure. In
Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science, pages
69–74, 2022. doi:10.1109/FOCS54457.2022.00014.

46 Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746,
2000. doi:10.1103/PhysRevA.60.2746.

47 Mark Zhandry. A note on the quantum collision and set equality problems. Quantum
Information and Computation, 15(7&8):557–567, 2015. doi:10.26421/QIC15.7-8-2.

https://doi.org/10.1109/FOCS46700.2020.00030
https://doi.org/10.1109/FOCS54457.2022.00014
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.26421/QIC15.7-8-2

	1 Introduction
	1.1 Our Motivation and Contribution
	1.2 Proof Techniques
	1.2.1 Upper and Lower Bounds on Quantum T-bias
	1.2.2 Upper and Lower Bounds on Classical T-bias
	1.2.3 The Relation Between Complexity Measures

	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Query Models and Complexity Measures
	2.2 Orthonormal Polynomials and Fourier Growth

	3 The Relation Between Quantum and Randomized Algorithms of Symmetric Boolean Functions for Arbitrarily Small Bias
	4 The Relation Between Quantum Query Complexity and Approximate Degree for Arbitrarily Small Bias
	5 Conclusion

