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Abstract
We study distribution testing in the standard access model and the conditional access model when
the memory available to the testing algorithm is bounded. In both scenarios, we consider the
samples appear in an online fashion. The goal is to test the properties of distribution using an
optimal number of samples subject to a memory constraint on how many samples can be stored at a
given time. First, we provide a trade-off between the sample complexity and the space complexity
for testing identity when the samples are drawn according to the conditional access oracle. We
then show that we can learn a succinct representation of a monotone distribution efficiently with a
memory constraint on the number of samples that are stored that is almost optimal. We also show
that the algorithm for monotone distributions can be extended to a larger class of decomposable
distributions.
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1 Introduction

Sublinear algorithms that analyze massive amounts of data are crucial in many applications
currently. Understanding the underlying probability distribution that generates the data is
important in this regard. In the field of distribution testing, a sub-field of property testing,
the goal is to test whether a given unknown distribution has a property P or is far from
having the property P (where the farness is defined with respect to total variation distance).
Starting from the work of Goldreich and Ron ([19]), a vast literature of work has studied the
problem of testing probability distributions for important properties like identity, closeness,
support size as well as properties relating to the structure of the distribution like monotonicity,
k-modality, and histograms among many others; see Canonne’s survey ([10]) for an overview
of the problems and results.

In the works of Canonne et al ([12]) and Chakraborty et al ([13]), distribution testing
with conditional samples was studied. In this model, the algorithm can choose a subset of
the support, and the samples of the distribution conditioned on this subset are generated.
This allows adaptive sampling from the distribution and can give better sample complexity
for a number of problems. In particular, ([12]) and ([13]) give testers for uniformity and
other problems that use only a constant number of samples.

The natural complexity measure of interest is the number of samples of the underlying
distribution that is necessary to test the property. In many cases, when data is large, it might
be infeasible to store all the samples that are generated. A recent line of work has been to
study the trade-off between the sample complexity and the space complexity of algorithms
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56:2 Testing Properties of Distributions in the Streaming Model

for learning and testing properties of distributions. This model can be equivalently thought
of as a data stream of i.i.d samples from an unknown distribution, with the constraint that
you are allowed to store only a small subset of these samples at any point in time.

In this work, we study distribution testing problems in the standard model, and when
the algorithm is allowed to condition on sets to better understand the trade-off between the
sample complexity and size. In particular, we study identity testing and testing whether
the unknown distribution is monotone. Our work borrows ideas from the recent work of
Diakonikolas et al ([17]) and extends the ideas to these problems.

1.1 Related work
Testing and estimating the properties of discrete distributions is well-studied in property
testing; see ([10]) for a nice survey of recent results. In our work, we study property testing
of discrete distributions under additional memory constraints wherein the algorithm does
not have the resources to store all the samples that it obtains.

This line of work has received a lot of attention in recent times. Chien et al ([14]) propose
a sample-space trade-off for testing any (ϵ, δ)-weakly continuous properties, as defined by
Valiant ([23]). Another work by Diakonikolas et al ([17]) studies the uniformity, identity, and
closeness testing problems and presents trade-offs between the sample complexity and the
space complexity of the tester. They use the idea of a bipartite collision tester where instead
of storing all the samples in the memory, the testing can be done by storing a subset of
samples and counting the collisions between the stored set and the samples that come later.
Another line of work ([1, 2]) focuses on the task of estimating the entropy of distributions
from samples in the streaming model, where space is limited. In particular, ([1]) estimate the
entropy of an unknown distribution D up to ±ϵ using constant space. Berg et al ([7]) study
the uniformity testing problem in a slightly different model where the testing algorithm is
modeled as a finite-state machine.

Property testing with memory constraints has also been studied in the setting of streaming
algorithms as well. Streaming algorithms were first studied in a unified way starting from
the seminal work of Alon et al ([3]) where the authors studied the problem of estimating
frequency moments. There is a vast amount of literature available on streaming algorithms
(see [21, 20]). Bathie et al ([4]) have studied property testing in the streaming model for
testing regular languages. Czumaj et al ([16]) show that every constant-query testable
property on bounded-degree graphs can be tested on a random-order stream with constant
space. Since this line of work is not directly relevant to our work in this paper, we will not
delve deeper into it here.

1.2 Our results
In this work, we study the trade-off between sample complexity and space complexity in both
the standard access model and the conditional access model. In the standard access model,
a set of samples can be drawn independently from an unknown distribution. In the case of
the conditional access model, a subset of the domain is given and samples can be drawn
from an unknown distribution conditioned on the given set. This is similar to a streaming
algorithm where the samples are presented to the algorithm, and the algorithm has a memory
constraint of m bits; i.e., only up to m bits of samples can be stored in memory.

In the standard access model, which we will refer to as SAMP , we have a distribution D

over the support {1, 2, . . . , n} and the element i is sampled with probability D(i). In the
conditional access model, which we will refer to as COND , the algorithm can choose a set
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S ⊆ {1, 2, . . . , n} and will obtain samples from the conditional distribution over the set. I.e.
the sample i ∈ S is returned with probability D(i)/D(S). In this work, we will work with
the case when the conditioning is done on sets of size at most two - we will refer to this
conditional oracle as PCOND ([12]).

Our results are stated below.
We propose a memory-efficient identity testing algorithm in the PCOND model when
the algorithm is restricted by the memory available to store the samples. We adapt
the algorithm of Canonne et al ([12]) and reduce the memory requirement by using
the CountMin sketch ([15]) for storing the frequencies of the samples. The identity
testing algorithm uses O(log2 n log log n/mϵ2) samples from standard access model where
log n

√
log log n

ϵ ≤ m ≤ log2 n
ϵ and an Õ(log4 n/ϵ4) samples from conditional access model

and does the following, if D = D∗, it returns Accept with probability at least 2/3, and if
dT V (D, D∗) ≥ ϵ, it returns Reject with probability at least 2/3. It uses only O(m

ϵ ) bits
of memory.
We also observe that by applying oblivious decomposition [8], performing identity and
closeness testing on monotone distributions over [n] can be reduced to performing the
corresponding tasks on arbitrary distributions over [O(log (nϵ)/ϵ)]. We use the streaming
model based identity tester from ([17]) and obtain an O(log (nϵ) log log (nϵ)/mϵ5) standard
access query identity tester for monotone distributions where log log (nϵ)/ϵ2 ≤ m ≤
(log (nϵ)/ϵ)9/10. Their closeness testing algorithm also implies a closeness tester for
monotone distributions which uses O(log (nϵ)

√
log log (nϵ)/

√
mϵ3) samples from standard

access model, where log log(nϵ) ≤ m ≤ Θ̃(min(log (nϵ)/ϵ, log2/3 (nϵ)/ϵ2)). Both testers
require m bits of memory.
We adapt the idea of the bipartite collision tester ([17]) and give an algorithm that uses
O( n log n

mϵ8 ) samples from SAMP and tests if the distribution is monotone or far from being
monotone. This algorithm requires only O(m) bits of memory for log2 n/ϵ6 ≤ m ≤

√
n/ϵ3.

This upper bound is nearly tight since we observe that the lower bound for uniformity
testing proved by Diakonikolas et al ([17]) applies to our setting as well. In particular, we
show that the “no” distribution that is used in [17] is actually far from monotone, and
hence the lower bound directly applies in our setting as well.
We extend the idea of the previous algorithm for learning and testing a more general
class of distribution called (γ, L)-decomposable distribution, which includes monotone
and k-modal distributions. Our algorithm takes O( nL log (1/ϵ)

mϵ9 ) samples from D and needs
O(m) bits of memory where log n/ϵ4 ≤ m ≤ O(

√
n log n/ϵ3).

2 Notation and Preliminaries

Throughout this paper, we study distributions D that are supported over the set
{1, 2, . . . , n} = [n]. The notion of distance between distributions will be total variation dis-
tance or statistical distance which is defined as follows: for two distributions D1 and D2, the
total variation distance, denoted by dT V (D1, D2) = 1

2 |D1−D2|1 = 1
2

∑
i∈[n] |D1(x)−D2(x)| =

maxS⊆[n]((D1(S) − D2(S)). We will use U to denote the uniform distribution over [n]. We
use |.|1 for the ℓ1 norm, ||.||2 for the ℓ2 norm.

Let D1 and D2 be two distributions over [n], if dT V (D1, D2) ≤ ϵ, for some 0 ≤ ϵ ≤ 1, we
say that D1 is ϵ close to D2. Let D be the set of all probability distributions supported on
[n]. A property P is a subset of D. We say that a distribution D is ϵ far from P, if D is ϵ

far from all the distributions having the property P. I.e. dT V (D, D′) > ϵ for every D′ ∈ P.

ISAAC 2023



56:4 Testing Properties of Distributions in the Streaming Model

We define the probability of self-collision of the distribution D by ||D||2. For a set S of
samples drawn from D, coll(S) defines the pairwise collision count between them. Consider
S1, S2 ⊂ S, the bipartite collision of D with respect to S is defined by coll(S1, S2) is the
number of collision between S1 and S2.

We will be using the count of collisions among sample points to test closeness to uniformity.
The following lemma connects the collision probability and the distance to uniformity.

▶ Lemma 1 ([6]). Let D be a distribution over [n]. If maxx D(x) ≤ (1 + ϵ). minx D(x) then
||D||22 ≤ (1 + ϵ2)/n. If ||D||22 ≤ (1 + ϵ2)/n then dT V (D, U) ≤ ϵ.

One way to test the properties of distributions is to first learn an explicit description of
the distribution. We now define the notion of flattened and reduced distributions that will
be useful towards this end.

▶ Definition 2 (Flattened and reduced distributions). Let D be a distribution over [n], and
there exists a set of partitions of the domain into ℓ disjoint intervals, I = {Ij}ℓ

j=1. The
flattened distribution (Df )I corresponding to D and I is a distribution over [n] defined as

follows : for j ∈ [ℓ] and i ∈ Ij; (Df )I(i) =
∑

t∈Ij
D(t)

|Ij | . A reduced distribution Dr is defined
over [ℓ] such that ∀i ∈ ℓ, Dr(i) = D(Ii).

If a distribution D is ϵ close to its flattened distribution according to some partition {Ij}ℓ
j=1,

we refer D to be (ϵ, ℓ)-flattened. We note that if a distribution is monotonically non-increasing,
then its flattened distribution is also monotonically non-increasing but its reduced distribution
is not necessarily the same.

The following folklore result shows that the empirical distribution is close to the actual
distribution provided sufficient number of samples are taken.

▶ Lemma 3 (Folklore). Given a distribution D supported over [n] and an interval partition
I = {I1, ..., Iℓ}, using S = O( ℓ2

ϵ2 log ℓ) points from SAMP, we can obtain an empirical
distribution D̃ in the following way: ∀Ij ∈ I; D̃(Ij) = occ(S,Ij)

|S| (occ(S, Ij) is the number of
samples from S lies inside Ij) over [ℓ] such that for all interval Ij, with probability at least
2/3, |D(Ij) − D̃(Ij)| ≤ ϵ

ℓ . Moreover, let the flattened distribution of D be (Df )I and the
flattened distribution of D̃ be (D̃f )I , we can say that dT V ((Df )I , (D̃f )I) < ϵ.

While designing a tester for monotonicity, we use the following theorem due to Birge ([8])

▶ Lemma 4 (Oblivious partitioning [8]). Let D be a non-increasing distribution over [n] and
I = {I1, ..., Iℓ} is an interval partitioning of D such that |Ij | = (1 + ϵ)j, for 0 < ϵ < 1, then
I has the following properties,

ℓ = O( 1
ϵ log nϵ)

The flattened distribution corresponding to I, (Df )I is ϵ-close to D, or D is (ϵ, ℓ)-flattened.

Next, we describe a data structure called the CountMin sketch which is used to estimate
the frequencies of elements in a one-pass stream. It was introduced by Cormode et al ([15]).
As we are dealing with a one-pass streaming algorithm with a memory constraint, it would
be important to store samples in less space. CountMin sketch uses hash functions to store
frequencies of the stream elements in sublinear space and returns an estimate of the same.

▶ Definition 5 (CountMin sketch). A CountMin (CM) sketch with parameters (ϵ, δ) is repres-
ented by a two-dimensional array counts with width w and depth d: count[1, 1], ..., count[d, w].
Set w = e

ϵ and d = log 1/δ. Each entry of the array is initially zero. Additionally, d hash
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functions h1, ..., hd : {1, ..., n} → {1, ..., w} chosen uniformly at random from a pairwise-
independent family. The space requirement for the count min sketch is wd words. The sketch
can be queried for the frequency of an element from the universe U of elements, and will
return an estimate of its frequency.

The lemma below captures the fact that the frequency of any element xi can be estimated
from a CountMin sketch.

▶ Lemma 6 ([15]). Let {x1, ..., xS} be a stream of length S and fxi be the actual frequency
of an element xi. Suppose f̃xi

be the stored frequency in count min sketch, then the following
is true with probability at least (1 − δ), fxi

≤ f̃xi
≤ fxi

+ ϵS.

3 Testing identity in the streaming model using PCOND

In this section, we revisit the identity testing problem using PCOND queries: given sample
access and PCOND query access to an unknown distribution D we have to test whether D

is identical to a fully specified distribution D∗ or they are ϵ far from each other. Canonne
et al ([12]) address the problem and propose a PCOND query-based identity tester. In
their algorithm, the domain of D∗ is divided into a set of “buckets” where the points are
having almost the same weights. The algorithm samples Õ(log2 n/poly(ϵ)) points from D

and estimates the weight of each bucket. They prove if D and D∗ are far then there exists
at least one bucket where the weight of D∗ and weight of D̃ will differ. If not, then the
algorithm runs a process called Compare to estimate the ratio of the weight of each pair of
points (y, z) where y is taken from a set of samples drawn from D∗ and z is taken from a
set of samples according to D. The following lemma is used to compare the weights of two
points.

▶ Lemma 7 ([12]). Given as input two disjoint subsets of points X, Y together with parameters
η ∈ (0, 1], K ≥ 1 and δ ∈ (0, 1

2 ] as well as COND query access to a distribution D, there
exists a procedure Compare which estimates the ratio of the weights of two sets and either
outputs a value ρ > 0 or outputs High or Low and satisfies the following:

If D(X)/K ≤ D(Y ) ≤ K · D(X) then with probability at least 1 − δ the procedure outputs
a value ρ ∈ [1 − η, 1 + η]D(Y )/D(X);
If D(Y ) > K · D(X) then with probability at least 1 − δ the procedure outputs either High
or a value ρ ∈ [1 − η, 1 + η]D(Y )/D(X);
If D(Y ) < D(X)/K then with probability at least 1 − δ the procedure outputs either Low
or a value ρ ∈ [1 − η, 1 + η]D(Y )/D(X).

The procedure performs O( K log 1/δ
η2 ) conditional queries on the set X ∪ Y .

However, for storing Õ(log2 n/poly(ϵ)) samples for estimating the weights of the buckets,
an Õ(log3 n/poly(ϵ)) space is required considering each sampled point takes log n bits of
memory. As we are dealing with a memory constraint of m bits, for m < O(log3 n),
implementing the algorithm is not memory efficient. We use the main idea of Canonne et
al ([12]), but instead of storing all samples, we use the CountMin sketch data structure for
storing the frequencies of the elements of the stream. Later, the frequencies are used to
estimate the weight of each bucket. By choosing the parameters of the CountMin sketch
suitably, the total space required for our algorithm is at most O(m/ϵ) bits. The main concept
of our algorithm lies in the theorem below,

▶ Theorem 8 (Testing Identity [12]). There exists an identity tester that uses an Õ(log4 n/ϵ4)
PCOND queries and does the following: for every pair of distributions D, D∗ over [n], where
D∗ is fully specified, the algorithm outputs Accept with probability at least 2/3 if D = D∗

and outputs Reject with probability at least 2/3 if dT V (D, D∗) ≥ ϵ.

ISAAC 2023



56:6 Testing Properties of Distributions in the Streaming Model

Before moving into the algorithm, we define the bucketization technique according to ([12]).
For an explicit distribution D∗, the domain is divided into ℓ buckets B = {B1, ..., Bℓ}, where
each bucket contains a set of points which satisfies Bj = {i ∈ [n] : 2j−1η/n ≤ D∗(i) ≤ 2jη/n}
and B0 = {i ∈ [n] : D∗(i) < η/n}, where η = ϵ/c for c to be a constant. The number of
buckets ℓ = O(⌈log n/η + 1⌉ + 1).

We are now ready to present our PCOND query-based one-pass streaming algorithm for
identity testing. Our algorithm and the correctness borrow from ([12]) with the extra use of
CountMin sketches to improve the trade-off between the sample complexity and the space
used.

Algorithm 1 PCOND Identity Testing Streaming.
Input : SAMP and PCOND access to D, an explicit distribution D∗, parameters

0 < ϵ ≤ 1, η = ϵ/6, ℓ buckets of D∗, space requirement O(m) bits
log n

√
log log n

ϵ ≤ m ≤ log2 n
ϵ

Output : Accept if D = D∗, Reject if dT V (D, D∗) ≥ ϵ

1 Sample S = O( log2 n log log n
mϵ2 ) points {x1, ..., xS} from SAMP

2 for (i = 1 to S) do
3 Estimate the frequency of xi using CountMin sketch ( ϵ

m , 1
100 ) such that

fxi
≤ f̃xi

≤ fxi
+ ϵ

m S

4 Define the frequency of each bucket Bj to be fBj =
∑

xi∈Bj
fxi , such that

fBj
≤ f̃Bj

≤ fBj
+ ϵ

m S2

5 if f̃Bj

S < D∗(Bj) −
√

mϵ
log n or f̃Bj

S > D∗(Bj) +
√

mϵ
log n + log2 n log log n

ϵm2 then
6 Reject and Exit
7 Select s = O(ℓ/ϵ) points {y1, ..., ys} from D∗

8 for each yk ∈ s do
9 Sample s points {z1, ..., zs} from D as a stream

10 for each pair of points (yk, zl) such that D∗(yk)
D∗(zl) ∈ [1/2, 2] do

11 Run Compare (yk, zl, η/4ℓ, 2, 1/10s2))
12 if Compare returns Low or a value smaller than (1 − η/2ℓ) D∗(yk)

D∗(zl) then
13 Reject and Exit

14 Accept

▶ Theorem 9. The algorithm pcond identity testing streaming uses an
O(log2 n log log n/mϵ2) length stream of standard access query points and an Õ(log4 n/ϵ4)
length of conditional stream and does the following, If D = D∗, it returns Accept with
probability at least 2/3, and if dT V (D, D∗) ≥ ϵ, it returns Reject with probability at least
2/3. The memory requirement for the algorithm is O(m

ϵ ) (due to the parameters set in

CountMin sketch) where log n
√

log log n

ϵ ≤ m ≤ log2 n
ϵ .

Proof.

Completeness. Suppose D = D∗. We prove that the algorithm does not return Reject in
Line 6. Let D̃(Bj) be the estimated weight of a bucket Bj where D̃(Bj) = fBj

S for S =
O(log2 n log log n/mϵ2). An additive Chernoff bound [followed by a union bound over the
buckets] shows that with high probability, ∀Bj , |D(Bj) − D̃(Bj)| ≤

√
mϵ

log n . Using Lemma 6,
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with probability at least 99/100, for every element xi in the stream, fxi ≤ f̃xi ≤ fxi + ϵS
m .

Summing over all the elements in a bucket Bj , we get f̃Bj
− ϵ

m S2 ≤ fBj
≤ f̃Bj

. Substituting

D̃(Bj) = fBj

S , we can see that f̃Bj

S − ϵS
m ≤ D̃(Bj) ≤ f̃Bj

S . As D = D∗, D̃(Bj) is a good

estimate of D∗(Bj). Using |D∗(Bj) − D̃(Bj)| ≤
√

mϵ
log n , we get f̃Bj

S − ϵS
m −

√
mϵ

log n ≤ D∗(Bj) ≤
f̃Bj

S +
√

mϵ
log n . This can be written as D∗(Bj) −

√
mϵ

log n ≤ f̃Bj

S ≤ D∗(Bj) +
√

mϵ
log n + log2 n log log n

ϵm2

by replacing S = O(log2 n log log n/mϵ2). Hence, the algorithm will not output Reject with
high probability. As D = D∗, for all pairs (yk, zl) such that D∗(yk)

D∗(zl) ∈ [1/2, 2], it follows from
Lemma 7 that the estimated ratio of weights of each pair (yk, zl) is less than (1 − η/2ℓ) D∗(yk)

D∗(zl)
[for η = ϵ/6] with probability at most 1/10s2. A union bound over all O(s2) pairs proves
that with a probability of at least 9/10 the algorithm outputs Accept .

Soundness. Let dT V (D, D∗) ≥ ϵ. In this case, if one of the estimates of f̃Bj
passes

Line 5, the algorithm outputs Reject . Let’s assume that the estimates are correct with
high probability. The rest of the analysis follows from ([12]), we give a brief outline of
the proof for making it self-contained. Define high-weight and low-weight buckets in the
following way, for η = ϵ/6, as follows: Hj = {x ∈ Bj : D(x) > D∗(x) + η/ℓ|Bj |}, and
Lj = {x ∈ Bj : D(x) ≤ D∗(x) − η/ℓ|Bj |}. It can be shown that at least one point
will occur from the low-weight bucket while sampling s points in Line 7 and at least one
point will come from the high-weight bucket while obtaining s points in Line 9. Using
the definition of high-weight and low-weight buckets, there exists a pair (yk, zl) such that
D(yk) ≤ (1 − η/2ℓ)D∗(yk) and D(zk) > (1 + η/2ℓ)D∗(zk). By Lemma 7, with probability at
least 1 − 1/10s2, Compare will return low or a value at most (1 − η/2ℓ)D∗(yk)

D∗(zl) in Line 12.
Hence, the algorithm outputs Reject with high probability. ◀

We use CountMin sketch with parameters ( ϵ
m , 1

100 ) in our algorithm. Comparing it with (ϵ, δ)
CountMin sketch defined in ([15]), we set the width of the array to be w = em/ϵ and depth
d = log 100. So the space required for the algorithm is w.d words which imply O(m

ϵ ) bits.
For running the Compare procedure, we are not using any extra space for storing samples.
This is because for every element in {y1, ..., ys} we are sampling s length stream {z1, ..., zs}
and running Compare for each pair of points taken from each stream respectively. This leads
to running compare process s2 times. A single run of compare works in the following way in
the streaming settings, for a pair (yk, zl), sample O(log2 n/ϵ2) points from D conditioned
on (yk, zl) and keep two counters for checking the number of times each of them appeared
in the stream. Each round of Compare process requires O(log2 n/ϵ2) length of the stream.
Hence, the total stream length is Õ(log4 n/ϵ4).

4 Testing Monotonicity in the streaming model using SAMP

In this section, we give an algorithm for testing monotonicity in the SAMP model when the
samples are obtained via a one-pass stream. The algorithm of Batu et al ([5]) provides a
sample-efficient algorithm for testing monotonicity, by dividing the support [n] into intervals
which are either low-weight or close to uniform. In our case, we start with the oblivious
decomposition of Birge ([8]) and check if the total weight of the intervals that are far from
uniform is small. To check if an interval is far from uniform, we count the number of collisions
in the sample obtained from the interval. To improve the space complexity of the algorithm,
we modify the part of counting collisions to counting bipartite collisions, like in ([17]). We
now describe the algorithm for testing monotonicity using bipartite collisions. The sample

ISAAC 2023



56:8 Testing Properties of Distributions in the Streaming Model

complexity for this algorithm is worse than the algorithm of Batu et al ([5]), but we will
then show that this can be converted to an algorithm in the one-pass streaming model with
better space complexity.

4.1 Testing Monotonicity using Bipartite Collisions
In this section, we perform the monotonicity testing in a slightly different fashion which
functions as the building block of a streaming-based monotonicity tester. Here, unlike
counting pairwise collisions between the samples, we divide the samples into two sets and
count the bipartite collisions between them. The idea of the bipartite collision tester is
adapted from ([17]). A key Lemma 11 proves how the bipartite collision is used to estimate
the collision probability. Given sample access to an unknown distribution D over [n], first,
we divide the domain according to the oblivious decomposition. We count the bipartite
collisions inside the intervals where enough samples lie. If D is monotone, the total weight of
high collision intervals can not be too high. Prior to describing the algorithm, the lemma
below clarifies the fact “enough samples” and the intervals holding them.

▶ Lemma 10. Let D be a distribution over [n], and I = {I1, ..., Iℓ} be an interval partitions
of [n]. Let J ⊂ I be the set of intervals and for all Ij ∈ J , D(Ij) ≥ ϵ1/ log n, where ϵ1 = ϵ2.
If S = O( n log n

ϵ8 ) samples are drawn according to D, then all Ij ∈ J contain |SIj | ≥ O(|Ij |/ϵ4)
samples.

Proof. Fix an Ij and define a random variable, Xi = 1 if ith sample is in Ij else 0. Let
X =

∑S
i=1 Xi = SIj

. Then the expectation E[X] = |S| · D(Ij) ≥ |S|ϵ1
log n .

By Chernoff bound, we can see that Pr
[
X < (1 − ϵ) |S|ϵ1

log n

]
= Pr

[
X < (1 − ϵ)E[X]

]
≤

e−ϵ2E[X] ≤ e−ϵ2 |S|ϵ2
log n < ϵ2

10 log n .
The last inequality is obtained from the fact that |S| = O(n log n

ϵ8 ) and using n
ϵ4 >

log(10 log n/ϵ2). Applying union bound over all ℓ = O( log n
ϵ1

) partitions, we can conclude that,
[ϵ1 = ϵ2] ∀Ij ; such that D(Ij) ≥ ϵ1

log n with probability at least 9/10, the following happens,
SIj ≥ (1 − ϵ) |S|ϵ1

log n ≥ (1 − ϵ) n
ϵ6 ≥ O(|Ij |/ϵ4) ◀

The main intuition behind our algorithm is counting the bipartite collision between a
set of samples. The next lemma, defines the necessary conditions for estimating collision
probability using bipartite collision count.

▶ Lemma 11. Let D be an unknown distribution over [n] and S be the set of samples drawn
according to SAMP . Let I ⊂ [n] be an interval and SI be the set of points lying in the
interval I. Let SI be divided into two disjoint sets S1 and S2; {S1} ∪ {S2} = {SI} such that
|S1| · |S2| ≥ O(|SI |/ϵ4), then with probability at least 2/3,

||DI ||22 − ϵ2

64|I|
≤ coll(S1, S2)

|S1||S2|
≤ ||DI ||22 + ϵ2

64|I|
.

Proof. Define the random variable Xij = 1 if ith sample in S1 is same as jth sample in S2, 0
otherwise.

X =
∑

(i,j)∈S1×S2

Xij = coll(S1, S2)

E[X] = |S1| · |S2| · ||DI ||22
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Where ||DI ||2 is collision probability. Let Yij = Xij − E[Xij ] = Xij − ||DI ||22.

V ar[
∑

(i,j)∈S1×S2

Xij ] = E
[
(

∑
(i,j)∈S1×S2

Yij)2
]

= E
[ ∑

(i,j)∈S1×S2

Y 2
ij +

∑
(i,j)̸=(k,l);|{i,j,k,l}|=3

YijYkl

]
We calculate the following,

E[Y 2
ij ] = E[X2

ij ] − 2(E[Xij ])2 + (E[Xij ])2

= ||DI ||22 − ||DI ||42
E[YijYkl] = E

[
(Xij − ||DI ||22)(Xkl − ||DI ||22)

]
= E

[
XijXkl

]
− ||DI ||22(E[Xij ] + E[Xkl]) + ||DI ||42

= E
[
XijXkl

]
− ||DI ||42

Now,

V ar[
∑

(i,j)∈S1×S2

Xij ] =
∑

(i,j)∈S1×S2

(||DI ||22 − ||DI ||42)+

∑
(i,j)̸=(k,l);|{i,j,k,l}|=3

(E
[
XijXkl

]
− ||DI ||42)

= |S1|.|S2|(||DI ||22 − ||DI ||42) +
∑

(i,j);(k,j)∈S1×S2;i ̸=k

E
[
XijXkj

]
+

∑
(i,j);(i,l)∈S1×S2;j ̸=l

E
[
XijXil

]
−

∑
(i,j) ̸=(k,l);|{i,j,k,l}|=3

||DI ||42

= |S1|.|S2|(||DI ||22 − ||DI ||42) + |S2|
(

|S1|
2

)
||DI ||33

+ |S1|
(

|S2|
2

)
||DI ||33 −

(
|S2|

(
|S1|
2

)
+ |S1|

(
|S2|
2

))
||DI ||42

≤ |S1||S2|
[
(||DI ||22 − ||DI ||42) + (|S1| + |S2|)(||DI ||33 − ||DI ||42)

]
Applying Chebyshev’s inequality, we get,

Pr[|X − E[X]| >
ϵ2

64|I|
|S1||S2|] ≤ 642V ar[X]|I|2

ϵ4|S1|2|S2|2

≤
|S1||S2|

[
(||DI ||22 − ||DI ||42) + (|S1| + |S2|)(||DI ||33 − ||DI ||42)

]
642|I|2

ϵ4|S1|2|S2|2

≤

[
||DI ||22 − ||DI ||42 + (|S1| + |S2|)(||DI ||32 − ||DI ||42)

]
642|I|2

ϵ4|S1|.|S2|

≤

[
||DI ||22 − ||DI ||42 + (|S1| + |S2|)(||DI ||22 − ||DI ||42)

]
642|I|2

ϵ4|S1|.|S2|

≤
||DI ||22

[
1 − ||DI ||22 + (|S1| + |S2|)(1 − ||DI ||22)

]
642|I|2

ϵ4|S1|.|S2|

≤
||DI ||22

(
1 − ||DI ||22

)(
1 + |S1| + |S2|

)
642|I|2

ϵ4|S1|.|S2|

ISAAC 2023



56:10 Testing Properties of Distributions in the Streaming Model

Where the third inequality uses the fact that ||DI ||3 ≤ ||DI ||2 and the fourth inequality uses
the fact that ||DI ||32 ≤ ||DI ||22 as ||DI ||2 ∈ (0, 1]. To make the probability < 1/3, we have,

|S1|.|S2| ≥ 3 × 642|I|2 1
ϵ4 ||DI ||22

(
1 − ||DI ||22

)(
1 + |S1| + |S2|

)
≥ 3 × 642 |I|2

ϵ4 ||DI ||22
||DI ||22

100

(
|S1| + |S2|

)
≥ 3 × 642 1

100ϵ4

(
|S1| + |S2|

)
≥ O(SI

ϵ4 )

In the second inequality we have used the fact that (1 − ||DI ||22) ≥ 1
100 ||DI ||22 as ||DI ||22 ≤

100
101 < 1. The third inequality is obtained from the fact that ||D||22 ≥ 1

|I| . The final inequality
is obtained from the fact that |SI | = |S1| + |S2|. Therefore, provided |S1|.|S2| ≥ O( |SI |

ϵ4 ),
with probability at least 2/3, ||DI ||22 − ϵ2

64|I| ≤ coll(S1,S2)
|S1||S2| ≤ ||DI ||22 + ϵ2

64|I| . ◀

The bipartite collision-based tester works by verifying the total weight of the intervals
where the conditional distributions are far from uniformity. Let SI be the set of samples
inside an interval I and let it satisfy the condition of Lemma 11. The following lemma shows
that bipartite collision count is used to detect such intervals.

▶ Lemma 12. Let D be an unknown distribution over [n] and I ⊂ [n] is an interval. Let SI

be the set of points lying in the interval I and SI can be divided into two sets S1 and S2 such
that |S1||S2| ≥ O(|SI |/ϵ4), then the following happens with probability at least 2/3

If dT V (DI , UI) > ϵ
4 , then coll(S1,S2)

|S1||S2| > 1
|I| + ϵ2

64|I|

If dT V (DI , UI) ≤ ϵ
4 , then, coll(S1,S2)

|S1||S2| ≤ 1+ϵ2/64
|I| + ϵ2

16

Proof. Let, dT V (DI , UI) > ϵ
4 , squaring both sides, we get (dT V (DI , UI))2 > ϵ2

16 > ϵ2

32 . Using
the fact that dT V (DI , UI) ≤

√
|I| · ||DI − UI ||2, we deduce |I| · ||DI − UI ||22 > ϵ2

32 . Simplifying
the inequality, we get ||DI − UI ||22 > ϵ2

32|I| . Now, we obtain the following inequality by using
||DI − UI ||22 = ||DI ||22 − 1

|I| .

||DI ||22 − 1
|I|

>
ϵ2

32|I|

||DI ||22 >
ϵ2

32|I|
+ 1

|I|

Consider SI is divided into two sets so that |S1| · |S2| ≥ O(|SI |/ϵ4), by Lemma 11 we obtain,

coll(S1, S2)
|S1||S2|

+ ϵ2

64|I|
>

ϵ2

32|I|
+ 1

|I|
coll(S1, S2)

|S1||S2|
>

1
|I|

+ ϵ2

64|I|

Similarly, when dT V (DI , UI) ≤ ϵ
4 , we get ||DI ||22 ≤ ϵ2

16 + 1
|I| . Given SI can be divided into

two sets such that |S1| · |S2| ≥ O(|SI |/ϵ4), by Lemma 11, coll(S1,S2)
|S1|·|S2| ≤ 1+ϵ2/64

|I| + ϵ2

16 . ◀

Now, we present the bipartite collision-based monotonicity tester.
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Algorithm 2 Bipartite Collision Monotonicity.

Input : SAMP access to D, ℓ = O( 1
ϵ1

log (nϵ1 + 1)) oblivious partitions
I = {I1, .., Iℓ} and error parameter ϵ, ϵ1 ∈ (0, 1], where ϵ1 = ϵ2

Output : Accept if D is monotone, Reject if D is not 7ϵ close to monotone
1 Sample T = O( 1

ϵ6 log2 n log log n) points from SAMP
2 Get the empirical distribution D̃ over ℓ

3 Obtain an additional sample S = O( n log n
ϵ8 ) from SAMP

4 Let J be the set of intervals where the number of samples (in each interval Ij) is
|SIj

| ≥ O(|Ij |/ϵ4) and SIj
can be partitioned into two disjoint sets S1 and S2 such

that |S1||S2| ≥ O(|Ij |/ϵ8) and coll(S1,S2)
|S1||S2| ≥ ( 1+ϵ2/64

|Ij | + ϵ2

16 )
5 if

∑
Ij∈J D̃(Ij) > 5ϵ then

6 Reject and Exit
7 Define a flat distribution (D̃f )I over [n]
8 Output Accept if (D̃f )I is 2ϵ-close to a monotone distribution. Otherwise output

Reject

▶ Theorem 13. The algorithm bipartite collision monotonicity uses O(n log n
ϵ8 )

SAMP queries and outputs Accept with probability at least 2/3 if D is a monotone dis-
tribution and outputs Reject with probability at least 2/3 when D is not 7ϵ-close to monotone.

Proof. While sampling O(n log n/ϵ8) points according to D, an application of Chernoff
bound shows that the intervals with D(Ij) ≥ ϵ2/ log n will contain at least SIj

= O(|Ij |/ϵ4)
points. There will be at least one such interval with D(Ij) ≥ ϵ2/ log n as there are O(log n/ϵ2)
partitions.
Completeness. Let D be monotone. By oblivious partitioning with parameter ϵ1 = ϵ2, we
have

∑ℓ
j=1

∑
x∈Ij

|D(x) − D(Ij)
|Ij | | ≤ ϵ1 which implies

∑ℓ
j=1 D(Ij)dT V (DIj , UIj ) ≤ ϵ2. Let J ′

be the set of intervals where for all Ij , dT V (DIj
, UIj

) > ϵ
4 , then

∑
Ij∈J′ D(Ij) ≤ 4ϵ.

Let Ĵ is the set of intervals where |S1||S2| ≥ O(|SIj
|/ϵ4) and dT V (DIj

, UIj
) > ϵ

4 . So,
Ĵ ⊆ J ′. From Lemma 12, we know Ĵ is the set of intervals where coll(S1,S2)

|S1||S2| > 1
|Ij | + ϵ2

64|Ij | .

Let J be the set of intervals where |S1||S2| ≥ O(|SIj |/ϵ4) and coll(S1,S2)
|S1||S2| > 1+ϵ2/64

|Ij | + ϵ2

16 , then
J ⊆ Ĵ ⊆ J ′. We know

∑
Ij∈J′ D(Ij) ≤ 4ϵ. So, we can conclude that

∑
Ij∈J D(Ij) ≤ 4ϵ.

When dT V (DIj
, UIj

) ≤ ϵ
4 , the algorithm does not sum over such D(Ij) even if |S1||S2| ≥

O(|SIj |/ϵ4). This is because by Lemma 12 we know coll(S1,S2)
|S1||S2| ≤ 1+ϵ2/64

|Ij | + ϵ2

16 . As a result,
we can say that when D is monotone

∑
Ij∈J D(Ij) ≤ 4ϵ.

We use the empirical distribution D̃ and deduce that
∑

Ij∈J D̃(Ij) ≤ 5ϵ. Hence, the
algorithm will NOT output Reject in Step 6. We also conclude as D is monotone, the
flattened distribution (D̃f )I is 2ϵ close to monotone and the algorithm will output Accept in
Step 8.
Soundness. We prove the contrapositive of the statement. Let the algorithm outputs
Accept , then we need to prove that D is 7ϵ close to monotone.

As the algorithm accepts,
∑

Ij∈J D̃(Ij) ≤ 5ϵ, for the set of intervals J where |S1||S2| ≥
O(|SIj

|/ϵ4) and coll(S1,S2)
|S1||S2| ≥ ( 1+ϵ2/64

|Ij | + ϵ2

16 ). For all such intervals Ij ∈ J by Lemma 11, we
obtain dT V (DIj

, UIj
) ≥ ϵ

4 .
Now, we calculate the distance between D and the flattened distribution and we get

dT V (D, (Df )I) < 4ϵ
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We also know from Lemma 3, dT V ((Df )I , (D̃f )I) < ϵ. By triangle inequality,
dT V (D, (D̃f )I) < 5ϵ. As the algorithm outputs accept, there exists a monotone distribution
M , such that dT V (D̃f )I , M) ≤ 2ϵ. By triangle inequality, we have dT V (D, M) < 7ϵ. ◀

4.2 Testing Monotonicity in Streaming model
In this section, we present the monotonicity tester in the streaming settings. A set of samples
is drawn according to the standard access model that is revealed online one at a time. The
task is to test whether an unknown distribution is a monotone or ϵ far from monotonicity.
Also, there is a memory bound of m bits. We use the notion of bipartite collision monotonicity
tester 2 discussed in the previous section. For satisfying the memory bound, we store an
optimal number of samples for such intervals and count bipartite collision between the stored
samples and the remaining ones. We present the algorithm below,

Algorithm 3 Streaming Monotonicity.

Input : SAMP access to D, ℓ = O( 1
ϵ1

log (nϵ1 + 1)) oblivious partitions
I = {I1, .., Iℓ} and error parameter ϵ, ϵ1 ∈ (0, 1], where ϵ1 = ϵ2, memory
requirement log2 n/ϵ6 ≤ m ≤

√
n/ϵ3

1 Sample T = Õ( 1
ϵ6 log2 n) points from SAMP

2 Get the empirical distribution D̃ over ℓ

3 Obtain an additional sample S = O( n log n
mϵ8 ) from SAMP

4 For each interval store the first set of S1 = O( mϵ2

log2 n
) samples in memory

5 Let J be the set of intervals, where for the next set of S2 = O( n
mϵ4 ) points, the

following condition is satisfied, coll(S1,S2)
|S1||S2| ≥ ( 1+ϵ2/64

|Ij | + ϵ2

16 )
6 Check if

∑
Ij∈J D̃(Ij) > 5ϵ then

7 Reject and Exit
8 Define a flat distribution (D̃f )I over [n]
9 Output Accept if (D̃f )I is 2ϵ-close to a monotone distribution. Otherwise output

Reject

▶ Theorem 14. The algorithm streaming monotonicity uses O( n log n
mϵ8 ) SAMP queries

and outputs Accept with probability at least 2/3 if D is a monotone distribution and outputs
Reject with probability at least 2/3 when D is not 7ϵ close to monotone. It uses O(m) bits of
memory for log2 n/ϵ6 ≤ m ≤

√
n/ϵ3.

Proof. As there are O( log n
ϵ2 ) partitions, there will be at least one interval with D(Ij) ≥ ϵ2

log n .
An application of Chernoff bound shows that with high probability all such intervals contain
|SIj

| = O(n/mϵ4) points. In the algorithm, we divide SIj
into two sets S1 and S2 such

that for log2 n/ϵ6 ≤ m ≤
√

n/ϵ3, |S1| + |S2| = O(mϵ2/ log2 n) + O(n/mϵ4) = O(n/mϵ4) and
|S1|.|S2| = O(n/ϵ2 log2 n) ≥ O(n/mϵ8) = (1/ϵ4)|SIj

|. (The inequality is obtained by the
fact that m ≥ log2 n/ϵ6). This implies that the condition of Lemma 11 is satisfied by these
intervals and they are eligible for estimating the collision probability using bipartite collision
count. The rest of the analysis follows from Theorem 13.

The algorithm uses O(m) bits of memory for implementation in a single-pass streaming
model. For obtaining the empirical distribution D̃, we will use one counter for each of the
ℓ intervals. When a sample x comes, if x ∈ Ij , the corresponding counter for Ij will be
incremented by 1. In the end, the counters will give the number of samples that fall in
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each of the intervals, and using those values we can explicitly obtain the distribution D̃.
Each counter takes O(log n) bits of memory. There are total ℓ = (log n/ϵ2) counters. So,
the memory requirement for this step is O(log2 n/ϵ2) < m bits. Also, using the distribution
D̃ we can obtain the flattened distribution (D̃f )I without storing it explicitly. Hence, the
Line 9 does not require any extra space for checking whether (D̃f )I is 2ϵ close to monotone
or not. For storing the first set of S1 = O(mϵ2/ log2 n) samples for an interval will take
O(mϵ2/ log n) bits of memory. As we are storing S1 samples for all ℓ = O(log n/ϵ2) intervals,
it will take total O(m) bits of memory. ◀

▶ Remark 15. If the input to the algorithm is a monotone distribution, then the streaming
algorithm computes a distribution over the intervals I such that the flattening is close to
a monotone distribution. Since the number of intervals in the partition is O(log n/ϵ), the
explicit description of the distribution can be succinctly stored.

We would also like to point out that the final step in the algorithm requires testing if
the learnt distribution is close to some monotone distribution, and we have not explicitly
bounded the space required for that.

4.2.1 Lower bound for testing monotonicity
In this section, we prove the lower bound for monotonicity testing problem in the streaming
settings. We start with the discussion of the uniformity testing lower bound by ([17]) in the
streaming model and later we show how the same lower bound is applicable in our case.

▶ Theorem 16 (Uniformity testing lower bound in streaming framework [17]). Let A be an
algorithm which tests if a distribution D is uniform versus ϵ-far from uniform with error
probability 1/3, can access the samples in a single-pass streaming fashion using m bits of
memory and S samples, then S.m = Ω(n/ϵ4). Furthermore, if S < n0.9 and m > S2/n0.9

then S · m = Ω(n log n/ϵ4).

The proof of the above lemma proceeds by choosing a random bit X ∈ {0, 1}, where X = 0
defines a Yes instance (uniform distribution) and X = 1 defines a No instance (ϵ-far from
uniform) and calculating the mutual information between X and the bits stored in the memory
after seeing S samples. In their formulation, the Yes instance is a uniform distribution over
2n and the No instance is obtained by pairing (2i − 1, 2i) indices together and assigning
values by tossing an ϵ-biased coin. In particular, the No distribution is obtained as follows,
pair the indices as {1, 2}, {3, 4}, ..., {2n − 1, 2n}. Pick a bin {2i − 1, 2i} and for each bin a
random bit Yi ∈ {±1} to assign the probabilities as,

(D(2i − 1), D(2i)) =
{

1+ϵ
2n , 1−ϵ

2n if Yi = 1
1−ϵ
2n , 1+ϵ

2n if Yi = −1

It is straightforward that the Yes distribution is a monotone distribution as well. We
show that any distribution D from the No instance set is O(ϵ)-far from monotonicity. We
start by choosing an α ∈ (0, ϵ/4) and defining a set of partitions I = {I1, ..., Iℓ} such that
|Ij | = ⌊(1 + α)j⌋ for 1 ≤ j ≤ ℓ. Let (Df )I be the flattened distribution corresponding to I.
We use the following lemma from ([9]) which reflects the fact if D is far from (Df )I , then D

is also far from being monotone. In particular, we define the lemma as follows,

▶ Lemma 17 ([9]). Let D be a distribution over domain [n] and I = {I1, ..., Iℓ} are the set of
partitions defined obliviously with respect to a parameter α ∈ (0, 1) where ℓ = O( 1

α log nα) and
|Ij | = ⌊(1 + α)j⌋. If D is ϵ-close to monotone non-increasing, then dT V (D, (Df )I) ≤ 2ϵ + α

where (Df )I is the flattened distribution of D with respect to I.
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Let, D be a distribution chosen randomly from the No instance set. We have the following
observation,

▶ Lemma 18. Let I = {I1, ..., Iℓ} be the oblivious partitions of D with parameter α such
that |Ij | = ⌊(1 + α)j⌋.

If |Ij | is odd, then
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | = ϵ
2n (|Ij | − 1

|Ij | ).

If |Ij | is even, then
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | ≥ ϵ
2n (|Ij | − 4

|Ij | ).

Proof. If |Ij | is odd, it will contain k (any positive integer) number of bin where each bin is
of form (2x − 1, 2x) and an extra index i′ which can have the probability weight either 1+ϵ

2n

or 1−ϵ
2n . Let D(i′) = 1+ϵ

2n . In this case, D(Ij) = |Ij |
2n + ϵ

2n .

∑
i∈Ij

|D(i) − D(Ij)
|Ij |

| =
∑
i∈Ij

|D(i) − 1
2n

− ϵ

2n|Ij |
|

= ϵ

2n
(1 − 1

|Ij |
) |Ij | − 1

2 + ϵ

2n
(1 + 1

|Ij |
) |Ij | − 1

2 + ϵ

2n
(1 − 1

|Ij |
)

= ϵ

2n
(|Ij | − 1

|Ij |
)

When D(i′) = 1−ϵ
2n , similar calculation will follow.

If |Ij | is even, there are two possibilities, (i) Ij consists of k (positive integer) bins.
So, there will be equal number of 1+ϵ

2n and 1−ϵ
2n in Ij and D(Ij) = |Ij |

2n . In this case, it is
straightforward to observe that

∑
i∈Ij

|D(i) − D(Ij)
|Ij | | = ϵ|Ij |

2n . Another case is, (ii) Ij contains
bp, ..., bp+k−1 bins completely and i′ ∈ bp−1, and i′′ ∈ bp+k where D(i′) = D(i′′); the case
when D(i′) ̸= D(i′′) will be similar to (i) that we saw earlier. Let D(i′) = D(i′′) = 1+ϵ

2n . In
this case, D(Ij) = |Ij |

2n + ϵ
n .

∑
i∈Ij

|D(i) − D(Ij)
|Ij |

| =
∑
i∈Ij

|D(i) − 1
2n

− ϵ

n|Ij |
|

= ϵ

2n
(1 − 1

|Ij |
) |Ij | − 2

2 + ϵ

2n
(1 + 1

|Ij |
) |Ij | − 2

2 + ϵ

n
(1 − 2

|Ij |
)

= ϵ

2n
(|Ij | − 4

|Ij |
)

Combining (i) and (ii), we say
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | ≥ ϵ
2n (|Ij | − 4

|Ij | ). Similar calculation will
follow when D(i′) = D(i′′) = 1−ϵ

2n . ◀

In our case, we apply oblivious partitions on D (chosen randomly from the No set) with
respect to the parameter α and use the above lemma, to conclude the following,

▶ Lemma 19. Let D be a randomly chosen distribution from the No instance set, then D is
ϵ/4-far from any monotone non-increasing distribution.

Proof. We calculate dT V (D, (Df )I) =
∑ℓ

j=1
∑

i∈Ij
|D(i)− D(Ij)

|Ij | | =
∑

|Ij |is even
∑

i∈Ij
|D(i)−

D(Ij)
|Ij | | +

∑
|Ij |is odd

∑
i∈Ij

|D(i) − D(Ij)
|Ij | |. Each odd length interval contributes

∑
i∈Ij

|D(i) −
D(Ij)

|Ij | | = ϵ
2n (|Ij | − 1

|Ij | ) and each even length interval contributes
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | ≥
ϵ

2n (|Ij | − 4
|Ij | ).
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Hence, simplifying the distance, we get, dT V (D, (Df )I) ≥
∑

|Ij |is even
ϵ

2n (|Ij | − 4
|Ij | ) +∑

|Ij |is odd
ϵ

2n (|Ij |− 1
|Ij | ) ≥ ϵ

2n

∑
Ij∈ℓ |Ij |− ϵ

2n

( ∑
|Ij |is even

4
|Ij | +

∑
|Ij |is odd

1
|Ij |

)
≥ ϵ− ϵ

2n .5ℓ ≥
3ϵ
4 > 2 ϵ

4 + α, for α = ϵ/4. The third inequality is obtained by using the fact that |Ij | ≥ 1 and
the fourth inequality considers ℓ < n/10. Now, by using the contra-positive of the Lemma
17, D is ϵ/4-far from any monotone non-increasing distribution. ◀

Therefore, the uniformity testing lower bound from [17] is applicable in our case for dis-
tinguishing monotone from ϵ/4-far monotone. We formalize this in the theorem below.

▶ Theorem 20. Let A be an algorithm that tests if a distribution D is monotone versus
ϵ/4-far from monotonicity with error probability 1/3, can access the samples in a single-pass
streaming fashion using m bits of memory and S samples, then S.m = Ω(n/ϵ4). Furthermore,
if n0.34/ϵ8/3 + n0.1/ϵ4 ≤ m ≤

√
n/ϵ3, then S.m = Ω(n log n/ϵ4).

We obtain the above theorem as analogous to the Theorem 16 by showing that lower bound for
uniformity implies lower bound for monotonicity in the streaming framework. In particular,
the uniform distribution is monotone non-increasing by default and we show that a randomly
chosen distribution from No instance set is ϵ/4-far from monotone no-increasing. Hence, the
correctness of the above theorem follows directly from the Theorem 16.

4.3 Learning decomposable distributions in the streaming model
The algorithm and analysis from the previous section of monotone distributions extend to a
more general class of structured distributions known as (γ, L)-decomposable distributions
([11, 18]). Formally, the class of (γ, L)-decomposable distributions is defined as follows.

▶ Definition 21 ((γ, L)-decomposable distribution). A class C of distributions is said to be
(γ, L)-decomposable, if for every D ∈ C, there exists an ℓ ≤ L and a partition I = {I1, .., Iℓ}
of [n] into intervals such that for every interval Ij ∈ I one of the following conditions hold.

D(Ij) ≤ γ
L

maxi∈Ij D(i) ≤ (1 + γ)mini∈Ij D(i)

In particular, monotone distributions, k-modal distributions, k-histograms are (γ, L)-
decomposable for suitable values of γ and L. We refer to the appendix for a discussion
regarding the same. We can use the ideas from the previous section and modify the algorithm
of Fischer et al ([18]) to obtain trade-offs between the sample complexity and space complexity
for learning the class of (γ, L)-decomposable distributions. In particular, we have the following
theorem,

▶ Theorem 22. If D is an (ϵ/2000, L)-decomposable distribution, then the algorithm learn-
ing L-decomposable distribution streaming outputs a distribution (D̃f )I such that
dT V (D, (D̃f )I) ≤ ϵ with probability at least 1 − δ. The algorithm requires O(nL log (1/ϵ)

mϵ9 )
samples from D and needs O(m) bits of memory where log n/ϵ4 ≤ m ≤ O(

√
n log n/ϵ3).

5 Conclusion

We give efficient algorithms for testing identity, monotonicity and (γ, L)-decomposability
in the streaming model. For a memory constraint m, the number of samples required is a
function of the support size n and the constraint m. For monotonicity testing, our bounds
are nearly optimal. We note that the trade-off that we achieve, and lower bounds work for
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certain parameters of the value m. Furthermore, we have not tried to tighten the dependence
of the bound on the parameter ϵ. One natural question to ask is if the dependence of sample
complexity on m can be improved, and whether it can work for a larger range of values.
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