
Geometric TSP on Sets
Henk Alkema #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
In One-of-a-Set TSP, also known as the Generalised TSP, the input is a collection P :=
{P1, ..., Pr} of sets in a metric space and the goal is to compute a minimum-length tour that visits
one element from each set.

In the Euclidean variant of this problem, each Pi is a set of points in Rd that is contained in
a given hypercube Hi. We investigate how the complexity of Euclidean One-of-a-Set TSP
depends on λ, the ply of the set H := {H1, ..., Hr} of hypercubes (The ply is the smallest λ such
that every point in Rd is in at most λ of the hypercubes). Furthermore, we show that the problem
can be solved in 2O(λ1/dn1−1/d) time, where n :=

∑r

i=1 |Pi| is the total number of points. Finally,
we show that the problem cannot be solved in 2o(n) time when λ = Θ(n), unless the Exponential
Time Hypothesis (ETH) fails.

In Rectilinear One-of-a-Cube TSP, the input is a set H of hypercubes in Rd and the goal
is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the
problem can be solved in 2O(λ1/dn1−1/d log n) time, where n is the number of hypercubes.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases Euclidean TSP, TSP on Sets, Rectilinear TSP, TSP on Neighbourhoods

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.6

Funding The work in this paper is supported by the Dutch Research Council (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

In the Traveling Salesman Problem we are given an edge-weighted complete graph
and the goal is to compute a tour, i.e., a simple cycle visiting all nodes, of minimum total
weight. The Traveling Salesman Problem is among the most famous problems in
computer science and combinatorial optimization. One variation is the Euclidean TSP.
In Euclidean TSP the input is a set P of n points in Rd, and the goal is to compute a
minimum-length tour visiting each point. This problem was proven to be np-hard in the
1970s [6, 15]. However, unlike the general (metric) version, Euclidean TSP in the plane can
be solved in subexponential time, i.e., in time 2o(n). Both Kann [10] and Hwang et al. [8] have
given algorithms with nO(

√
n) running time. Smith and Wormald [16] gave a subexponential

algorithm that works in any (fixed) dimension d, taking nO(n1−1/d) time. Recently De Berg et
al. [3] improved this to 2O(n1−1/d), which is tight up to constant factors in the exponent,
under the Exponential-Time Hypothesis (ETH) [9].

Meanwhile, generalised versions of the Traveling Salesman Problem have also been
studied. One popular example is the One-of-a-Set TSP, also known as Generalised
TSP or Group TSP. Here, the n nodes of the graph are partitioned into sets Vi and the goal
is to compute a tour of minimal weight visiting at least (or exactly) one node of every set.
The One-of-a-Set TSP has been studied extensively, see for example the survey by Gutin
and Punnen [7]. In 2008, Dror and Orlin showed that even if the vertices and their distances
correspond to locations in Rd and their Euclidean distances, and every set Vi contains only
two vertices, the problem is still APX-hard, i.e., there exists no PTAS unless P = NP [5].

© Henk Alkema and Mark de Berg;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.y.alkema@tue.nl
mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0001-5770-3784
https://doi.org/10.4230/LIPIcs.ISAAC.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Geometric TSP on Sets

One generalisation of Euclidean TSP is TSP with Neighbourhoods. Here, we are
given a set of neighbourhoods in Rd – the shape of these neighbourhoods depends on the
variant studied – and the goal is to find a shortest Euclidean tour visiting all neighbourhoods.
As it is a generalised version of an APX-hard problem it is APX-hard itself [4]. Since then,
many variants which place restrictions on the shape of the neighbourhoods have been shown to
have a PTAS. This includes disjoint fat convex regions [4], pairwise-disjoint connected regions
of any shape [14], arbitrary disjoint fat regions [13], and weakly disjoint neighbourhoods [2].

In this paper, we focus on two geometric variations of One-of-a-Set TSP. For the first
variation, Euclidean One-of-a-Set TSP, most research has been focused on the so-called
grid cluster variant, introduced by Bhattacharya et al. [1]. In this variant, a partition is
specified by the cells of the integer 1 × 1 grid (on the Euclidean plane); from every non-empty
cell, exactly one point needs to be visited. Khachay and Neznakhina showed that a PTAS
exists if there are many (O(log n)) or few (n − O(log n)) non-empty cells [11], and that if the
grid has fixed height or width, a solution can be found in polynomial time [12].

For the second variation, Rectilinear One-of-a-Cube TSP, instead of discrete sets Vi

we are given a set of (hyper)cubes Hi. The goal is to find the shortest rectilinear tour which
visits at least one point of every Hi. Thus this is a variant of TSP with Neighbourhoods
where the neighborhoods are hypercubes.

Our contribution. We investigate the complexity of Euclidean One-of-a-Set TSP and
Rectilinear One-of-a-Cube TSP. For Euclidean One-of-a-Set TSP, let H be a set
of hypercubes H1, ..., Hr. Let P be a family of sets of points P1, ..., Pr with Pi ⊂ Hi and
|Pi| ≤ k for all i. We will use P to denote ∪iPi. Our objective is to find a shortest tour
T = (p1, ..., pn) such that for every Pi there exists a p ∈ Pi such that p ∈ T . Let λ be the
ply of the given hypercubes, i.e., the smallest number such that every point in Rd is in at
most λ of the hypercubes.

Intuitively, one would expect that the complexity of Euclidean One-of-a-Set TSP
depends on how well separated the sets Pi are. To formalize this intuition, we investigate
the dependency of its complexity on the ply of H. We present an algorithm that runs in
2O(λ1/dn1−1/d) time, which is based on a recent algorithm by De Berg et al. [3]. Note that for
λ = 1 this matches the ETH-tight running time for Euclidean TSP. For λ = n, however, the
running time becomes 2O(n), so it is no longer sub-exponential. We show this is unavoidable
(assuming ETH) by proving that Euclidean One-of-a-Set TSP in R2 cannot be solved
in 2o(n) for λ = n. Finally, we show that we instead of using the ply of a set of hypercubes
covering the Pi, one can use the ply of a set of more generic objects covering the Pi.

For Rectilinear One-of-a-Cube TSP, let H be a set {H1, ..., Hn} of hypercubes in
Rd. Let λ be the ply of these hypercubes. Our objective is to find a shortest rectilinear tour
T = (p1, ..., pn) such that for every Hi there exists a p ∈ Hi such that p ∈ T . For this case
we present an algorithm running in 2O(λ1/dn1−1/d) log n time.

2 A subexponential algorithm for Euclidean One-of-a-Set TSP

We start by giving an overview of our algorithm. The problem it solves is the more generic
Euclidean One-of-a-Set Path Cover problem. In this problem, we are given a collection
of point sets Pi and a set of boundary points B, where |B| ≥ 2 is even. The goal is for every
possible matching on B to find the shortest collection of paths that (i) have the so-called
Packing Property, (ii) adhere to the matching and (iii) visit one point of every Pi. The
Packing Property, which is known to hold for the set of edges of an optimal TSP tour,
intuitively states that an optimal tour cannot contain many long edges close together; the
precise definition is not important for this paper. Note that this property also holds for an

H. Alkema and M. de Berg 6:3

(a) (b) (c) (d) (e)

Figure 1 An example of the Euclidean One-of-a-Set TSP algorithm. (a) The given problem.
In red and blue, the four boundary points, and the corresponding matching we will be using. In
black, the five given point sets (circles, disks, squares, filled squares, and crosses). (b) We find a
good separator σ, and guess how it is crossed. (c) The resulting subproblem for the points inside σ,
and one possible matching. Note that the circle inside σ has been removed, as we guessed we visit a
circle outside σ. (d) The answer after combining two answers of the subproblems. (e) Note that not
every combination of matchings leads to a valid answer.

optimal Euclidean One-of-a-Set TSP tour Topt, as it is obviously also an optimal tour
for the Euclidean TSP instance obtained by taking only a single point from each Pi into
account, namely the point visited by Topt.

Our algorithm broadly works in the following way; see Figure 1. We define a separator to
be the boundary of an axis-aligned hypercube. First, we find a separator σ that is crossed
only a few times by the optimal collection of paths, and splits only few of the point sets Pi.
Then, we “guess” how the solution crosses σ, by iterating over all possibilities. By doing so,
we create two subproblems: one for the points inside σ, and one for the points outside σ.
However, these two subproblems are not completely independent yet: first, for every point set
Pi which contains at least one point inside σ and one outside σ, we need to “guess” on which
side of σ we visit a point of Pi. After solving all versions of both subproblems recursively, the
so-called rank-based approach is used to efficiently find the correct combination of matchings
on both sides resulting in the shortest overall valid answer.

A good separator. Our algorithm will need a so-called distance-based separator, similar to
the distance-based separator introduced by De Berg et al. [3]. The properties they proved
for their separator are not quite sufficient for us, though, so below we present a stronger
version of their separator result. Before we can state our result, we need to introduce some
terminology and notation from their paper. We denote the region of all points in Rd inside
or on a separator σ by σin, and the region of all points in Rd strictly outside σ by σout. The
size of a separator σ, denoted by size(σ), is defined to be its edge length. For a separator σ

and a scaling factor t > 0, we define tσ to be the separator obtained by scaling σ by a factor
t with respect to its center. In other words, tσ is the separator whose center is the same as
the center of σ and with size(tσ) = t · size(σ). Note that a separator σ induces a partition of
the given point set P into two subsets, namely P ∩ σin and P ∩ σout. A separator is balanced
with respect to a set Q ⊆ P if max(|Q ∩ σin|, |Q ∩ σout|) ≤ 4d

4d+1 n. If a separator is balanced
with respect to P itself, we call it a balanced separator.

Our separator is chosen such that there are only few points close to it. To quantify this,
let the relative distance from a point p to σ, denoted by rdist(p, σ), be defined as follows:

rdist(p, σ) := d∞(p, σ)/size(σ),

where d∞(p, σ) denotes the shortest ℓ∞-distance between p and any point on σ. Recall that σ

is the boundary of a hypercube; hence, all points in the interior of σin have a nonzero relative
distance to σ. Note that if t is the scaling factor such that p ∈ tσ, then rdist(p, σ) = |1 − t|/2.
For integers i define

ISAAC 2023

6:4 Geometric TSP on Sets

P (i, σ) := {p ∈ P : rdist(p, σ) ≤ 2i/n1/d}.

Note that the smaller i is, the closer to σ the points in P (i, σ) are required to be. De Berg et
al. choose σ such that the size of the sets P (i, σ) decrease rapidly as i decreases. Our
generalised theorem also allows for some control over the number of Pi which are split by σ,
i.e., the Pi of which at least one point of Pi is in σin and at least one point of Pi is in σout.

▶ Theorem 1. Let P = {P1, ..., Pr} be a collection of point sets in Rd, and let Q ⊆ P . Let n

be the total number of points in P . Then there is a separator σ that is balanced with respect
to Q and such that

|P (i, σ)| =
{

O((3/2)in1−1/d) for all i < 0
O(4in1−1/d) for all i ≥ 0.

Furthermore, σ splits at most λ1/dn1−1/d of the point sets Pi. Moreover, such a separator
can be found in O(nd+1) time.

Proof. The proof is analogous to the proof of Theorem 1 and Corollary 3 in the paper by
De Berg et al. [3], with one major difference. Instead of the weight function wp(t), we use
the weight function

w∗
p(t) :=

1{tσ∗ intersects Hi(p)}
size(Hi(p))

+ wp(t),

where σ∗ is the smallest balanced separator, which we assume w.l.o.g. has size 1 (as in the
original proof), i(p) denotes the i such that p ∈ Pi, and 1{bool} denotes the indicator function,
which is 1 if bool is true, and 0 otherwise. Since

∫ 3
0 wp(t) = O(1), we have

∫ 3
0 w∗

p(t) = O(1)
as well, because

∫ 3
0 1{tσ∗ intersects Hi(p)} ≤ size(Hi(p)). Hence, we can find a t∗ such that∑

p w∗
p(t∗) = O(n). Therefore, we can use this t∗ to prove the bounds on |P (i, σ)| analogously

to the original proofs.
It remains to prove the bound on the number of Pi split by t∗σ∗. We get∑

i

1{t∗σ∗ intersects Hi}
size(Hi)

≤
∑

p

1{t∗σ∗ intersects Hi(p)}
size(Hi(p))

<
∑

p

w∗
p(t) = O(n).

Therefore, for any L, at most O(nL) different Hi of size at most L intersect tσ∗. Furthermore,
an Hi of size at least L intersecting σ covers at least Ld−1 of the (d − 1)-dimensional volume
of σ, which is 2d = O(1). (Recall that σ is defined as the boundary of a hypercube, which
is a (d − 1)-dimensional object, and that we consider d to be fixed.) See Figure 2. Since
the Hi have a ply of λ, there can be at most λ/Ld−1 of these. Hence, for any L, at most
O(nL + λ/Ld−1) hypercubes intersect σ. Specifically, by taking L = λ1/dn−1/d, we conclude
that σ intersects O(λ1/dn1−1/d) of the Hi. Finally, we note that the number of Pi split by σ

is bounded by the number of Hi intersected by σ, finishing our proof. ◀

We will now use this distance-based separator theorem to present an efficient algorithm for
Euclidean One-of-a-Set TSP.

Let S(P) := {pq : (p, q) ∈ P × P} be the set of all line segments defined by P . Since we
wish to guess how σ is crossed by the optimal answer, and we know that the edges of the
answer have the packing property, we are interested in the following set:

C(σ, P) := {S ⊆ S(P) : S has the packing property and all segments in S cross σ}.

H. Alkema and M. de Berg 6:5

p

σ

x

Figure 2 Example for the proof of Theorem 1. The point p is at distance x from σ. Hence, any
square H (in blue) that contains both p and a point outside σ covers at least x of the total length of
the edges of σ. For arbitrary d, any d-dimensional hypercube H that contains both p and a point
outside σ covers at least xd−1 of the (d − 1)-dimensional volume of σ. (Recall that σ is defined to be
the (d − 1)-dimensional boundary of a hypercube, so σ does not include the region enclosed by it.)

Our main separator theorem, presented next, states that we can find a separator σ that is
balanced, splits few Pi, and is such that the sets in C(σ, P), as well as the collection C(σ, P)
itself, are small. Since the packing property is hard to test, we will not enumerate C(σ, P)
but a slightly larger collection of candidate sets, which we denote by C′(σ, P).

▶ Theorem 2. Let P = {P1, ..., Pr} be a family of point sets in Rd, and let H = {H1, ..., Hr}
be a set of hypercubes such that Pi ⊂ Hi for every i. Let Q ⊆ P , where P = P1 ∪ · · · ∪ Pr.
Then there exists a separator σ with the following properties:
1. σ is balanced with respect to Q.
2. Each candidate set S ∈ C′(σ, P) contains O(n1−1/d) segments.
3. C(σ, P) ⊆ C′(σ, P) and |C′(σ, P)| = 2O(n1−1/d).
4. σ splits O(λ 1

d n1−1/d) of the sets Pi, where λ is the ply of H.
Moreover, σ and the collection C′(σ, P) can be computed in 2O(n1−1/d) time.

Proof. The separator chosen is the one found by applying Theorem 1. Hence, the proof of
properties 1-3 is analogous to that of the original paper by De Berg et al. Property 4 is
directly implied by Theorem 1, as well. ◀

The algorithm. Our adapted algorithm contains four changes compared to the original:
We choose our separator σ using Theorem 2 instead of the equivalent from the original
paper. Note that this does not impact the running time.
Candidate sets of which the endpoints of the edges contain more than one point of any
set Pi can be ignored. Note that this can be easily checked.
When “guessing” the correct candidate set, for every point set Pi split by σ we also guess
whether a point of Pi in σin or a point in σout is used. If we guess that we will visit a
point in Pi ∩ σin, then we can ignore the points in Pi ∩ σout for the recursive call outside
σ, and vice versa. Note that for every Pi that contains a boundary point this choice (if
applicable) is implied by the location of the boundary point. Furthermore, once we have
chosen a point from a set Pi as one of our boundary points, then we can remove all other
points from Pi from further consideration. This way, the subproblems generated remain
independent, while ensuring that exactly one point of every Pi is visited.
In the initial call, the original algorithm turns the problem into a Euclidean Path
Cover problem by duplicating point p1 and taking the boundary set B = (p1, p′

1). In
other words, it simply searches for a path from p1 to p1 through all other points. In
our case, we guess which p in P1 is used in the optimal tour. Then, we remove all other
points in P1 and duplicate p as in the original algorithm.

This brings us to our main theorem for this section.

ISAAC 2023

6:6 Geometric TSP on Sets

Figure 3 On the left, an example of a point set whose hypercubes generate a high ply. The
pattern can be repeated to get a ply of Θ(n). However, the separator we find will not split Θ(n)
point sets. On the right, the same point set covered by α-fat objects. Here, we have a ply of only 1.

▶ Theorem 3. Let P = {P1, .., Pr} be a collection of point set in Rd with n points in total.
Let H1, ..., Hr be hypercubes with ply λ such that Pi ⊂ Hi for all i. Then Euclidean
One-of-a-Set TSP on P can be solved in 2O(λ

1
d n1−1/d) time.

For the full proof, see Appendix A. It follows the proof of the original algorithm [3] almost
verbatim; the main difference is that we need to take the dependency on λ into account.

An improved analysis of the running time. So far, we have used the ply of hypercubes
covering the point sets to bound the running time of our algorithm. (Note that the algorithm
itself does not use the hypercubes, we only used their ply in the analysis to quantify how
separated the sets are.) However, in some cases, these hypercubes can have a high ply, even
though they are still fairly well separable. Thus the analysis may be overly pessimistic. We
show that this is indeed the case by replacing the hypercubes by so-called α-fat objects,
whose ply can be much smaller than the ply of the hypercubes. let 0 < α < 1 be arbitrary
but fixed. We say a connected closed set of points O ⊆ Rd is an α-fat object if and only if
for every ball B ⊂ Rd whose center lies in O we have that (i) O fully lies in B or (ii) at least
a fraction α of the volume of B is covered by O. See Figure 3 for an example showing how
α-fat objects can have significantly lower ply than hypercubes.

It remains to show that with this new λ our running time of 2O(λ1/dn1−1/d) is still accurate.
Note that we use the fact that the objects containing the sets Pi are hypercubes only once,
namely during the proof of Theorem 1, where we bound the number of Hi split by σ to
2O(λ1/dn1−1/d). We will now prove that a similar bound holds for arbitrary α-fat objects.

Before we define the size of an α-fat object, we need the following observation.

▶ Observation 4. Let α > 0 be arbitrary but fixed. Let O be an α-fat object. Let B be the
bounding box of O, i.e., the smallest box such that O lies fully in B. Then the dimensions of
B are within a constant factor of each other.

Proof. Let α, O and B be as defined above. Let s be the largest dimension of B. W.l.o.g.,
s = 1. Let p be a point in O. W.l.o.g., p is the origin. Note that O fully lies in [−1, 1]d.
Let B be the ball of radius 1/3 centered at the origin. Note that B does not fully cover
O (in fact, any radius strictly smaller than 1/2 suffices). Hence, since O is an α-fat object,
at least αcd/3d of B (and therefore [−1, 1]d) is covered by O, where cd is the volume of a
d-dimensional ball with radius 1. Since for any dimension x of B, the volume of O inside
[−1, 1]d can be bounded by x, we get that x ≥ αcd/3d = O(1), as required. ◀

We now define the size of an α-fat object O to be the largest dimension of its bounding box.
We will now show that these objects have all required properties.

▶ Lemma 5. Let P = {P1, ..., Pr} be a collection of point sets in Rd, and let Q ⊆ P . Let n

be the total number of points in P. Let σ be the separator found when applying Theorem 1
with α-fat objects instead of hypercubes. Then σ splits O(λ1/dn1−1/d) point sets Pi.

H. Alkema and M. de Berg 6:7

p

σ

q

Figure 4 The dotted lines denote the square annulus A of all points with an rdist of at most
2j/n1/d to σ. In blue, the object Oi crossing σ. It has at least one of (i) a point p in σin but not in
A, or (ii) a point q in σout but not in A. Therefore, if we draw a ball (in red) the width of A centered
at a point where Oi coincides with σ, this circle does not fully contain Oi. Hence, the volume of Oi

inside the ball (light blue), and therefore inside A, is at least α times the volume of the ball.

Proof. First, we note that the logic showing that w∗
p(t) = O(1) still holds for α-fat objects.

Furthermore, analogously to the original proof of Theorem 1, there are O(λ1/dn1−1/d) objects
of size at most λ1/dn−1/d intersected by σ. It remains to prove that σ splits O(λ1/dn1−1/d)
point sets whose objects have size larger than λ1/dn−1/d. Note that it is sufficient to prove
that O(λ1/dn−1/d) objects of size larger than O(λ1/dn−1/d) intersect σ.

Let Oi be an object of size strictly larger than λ1/dn−1/d intersected by σ. Then Oi must
contain a point at a distance more than cα,dλ1/dn−1/d from σ for some constant cα,d: this
distance is clearly nonzero, as Oi has a positive volume, and since α and d are fixed, the
problem scales linearly.

For brevity, we write x := cα,dλ1/dn−1/d. Let B be the ball with radius x and centered at
an intersection point of Oi and σ. Now, B does not fully cover O. Therefore, O covers at least
a fraction α of B. Let A be the square annulus defined by {p ∈ Rd : rdist(p, σ) ≤ x}. Note
that B fully in A. See Figure 4 for an example. Since B is d-dimensional, every Oi covers
Θ(xd) of the volume of A. Now, the total volume of A is smaller than 2d · (1+2x)d−12x, since
each of the 2d facets of σ contributes (1 + 2x)d−12x to the annulus. (This is a conservative
estimate since we ignore overlap between the contributions of the facets.) Since x < 1, this
can be further bounded by 3d+2dx. Furthermore, the volume of a d-dimensional ball with
radius x is cdxd for some constant cd. Therefore, the maximum number of Oi intersected by
σ of size strictly larger than λ1/dn−1/d is bounded by

λ
3d+2dx

αcdxd
= O(λx1−d) = O(λ · λ(1−d)/dn−(1−d)/d) = O(λ1/dn1−1/d),

as we wanted to prove. ◀

We thus obtain the following theorem.

▶ Theorem 6. Let α > 0 be arbitrary but fixed. Let P = {P1, .., Pr} be a collection of point
set in Rd with n points in total. Suppose there exist O1, ..., Or be α-fat objects with ply λ

such that Pi ⊂ Oi for all i. Then Euclidean One-of-a-Set TSP on P can be solved in
2O(λ

1
d n1−1/d) time.

A lower bound on the running time when λ = Θ(n). In this section we show that for
λ = Θ(n), the problem cannot be solved in subexponential time.

▶ Theorem 7. Euclidean One-of-a-Set TSP in R2 cannot be solved in 2o(n) time, unless
ETH fails.

ISAAC 2023

6:8 Geometric TSP on Sets

t1

f1

t2

f2

tn

fn

set forming gadget for (x1 ∨ x2 ∨ ¬xn)

set forming gadget for (¬x2 ∨ ¬x3 ∨ x5)

(100m, 100m)(0, 100m)

(0, 0) (100m, 0)

Figure 5 An example for the proof of Theorem 7. Not to scale. The points inside the small pink
disks (which are the points pi and qi as defined in the text) must all be visited. The sets indicated
by the green ellipses ensure that for each i at least one of ti and fi is visited. The sets indicated
by the blue regions correspond to the clauses. The pink and green sets imply a lower bound on
the length of the shortest tour. If this bound is tight, the shortest tour visits exactly one of each
pair (ti, fi). Note that each such tour maps directly to an assignment of True and False to the
variables. If an assignment of True and False to the variables satisfying all clauses exists, then the
corresponding tour indeed visits all sets at least once.

Proof. The ETH states that 3-SAT cannot be solved in 2o(n) time [9]. We will prove
Theorem 7 by showing that if Euclidean One-of-a-Set TSP can be solved in 2o(n) with
d = 2 and λ = Θ(n), then 3-SAT can be solved in 2o(n) time as well.

Let F be a 3-SAT formula containing clauses C1, ..., Cn over variables x1, ..., xm. Note that
m = O(n). We define p1 = (0, 0), p2 = (0, 100m), p3 = (100m, 100m), and p4 = (100m, 0).
Furthermore, let qi = (50m − 2i, 0) for all i = 0, ..., m, let ti = (50m − 2i + 1, −1) and let
fi = (50m − 2i + 1, 1) for all i = 1, ..., m. See Figure 5 for an example. Now, let P be the
family containing the following point sets:

For all 0 ≤ i ≤ 3, one point set containing only pi.
For all 1 ≤ i ≤ m, one point set containing ti and fi. This is the gadget representing the
variable xi.
For all 1 ≤ i ≤ n, one point set representing the clause Ci. Specifically, this point set
should contain tj iff Ci contains the literal xj , and should contain fj iff Cj contains the
literal ¬xj . Note that each of these point sets contains three elements, and that each
point in a clause gadget coincides with a point from a variable gadget.

Now we claim that F is satisfiable if and only if P admits a shortest tour of length exactly
L := (398 + 2

√
2)m. Note that if this claim indeed holds, we are done; if we can solve

Euclidean One-of-a-Set TSP in 2o(n) time, then the shortest tour on P can be found in
2o(n+m) = 2o(n) time, and therefore we answer whether F is satisfiable in 2o(n) time.

Note that if a shortest tour of length L exists, F is satisfiable. To satisfy F , simply set xi

to True if ti is visited in the shortest tour, and set it to False otherwise. Since the shortest
tour visits every point set corresponding to a clause, all clauses are indeed satisfied.

Next, we check that if F is satisfiable, a shortest tour of length L exists. We simply do
the reverse: let x1, ..., xm satisfy F . Then note that the tour passing through ti if xi is True
and through fi otherwise indeed has the required length. Finally, we still have to show the
shortest tour can never be shorter than L. It is easy to see that the shortest tour must visit
qm, p1, p2, p3, p4, q0 consecutively in that order, giving a length of 398m. Connecting q0 to qm

while passing through at least one of every pair (ti, fi) and through every qi inbetween takes a
total length of at least 2

√
2m. Therefore, the shortest tour has length at least (398 + 2

√
2)m.

H. Alkema and M. de Berg 6:9

In conclusion, F is satisfiable if and only if the shortest tour on P has length L. Therefore,
if Euclidean One-of-a-Set TSP can be solved in subexponential time when λ = Θ(n),
then so can 3-SAT. Hence, unless ETH fails, Euclidean One-of-a-Set TSP cannot be
solved in subexponential time. ◀

3 Rectlinear One-of-a-Cube TSP

We continue with Rectilinear One-of-a-Cube TSP. Recall that for this setting, H :=
{H1, ..., Hn} is a set of hypercubes, and λ is the ply of H, i.e., the smallest number such that
every point in Rd is in at most λ of the hypercubes. We now want to find a minimum-length
rectilinear tour visiting all of the hypercubes Hi.

The algorithm works using the same divide-and-conquer approach as the Euclidean
One-of-a-Set TSP algorithm; see the beginning of Section 2 for a more detailed description.

Properties of an optimal tour. We start by limiting the set of points and edges we need to
consider. We show that there is an optimal tour using only edges from a specific set, and
that these edges have the packing property.

First, we introduce some terminology. An edge is defined as a rectilinear line segment.
A link between two points is any shortest path formed by at most d edges of different
orientations (which always exists). We define, with slight abuse of notation, |pq| to be the
L1-distance between points p and q. Note that this is also the length of a link between p

and q. A tour is a sequence of links, where the endpoint of each link in the sequence is the
starting point of the next one, and the endpoint of the last link is the startpoint of the first
link. Note that the fact that we see the tour as a sequence (and not as a cycle) implies that
tours have a starting point and a direction – this is solely for the purpose of the analysis.

Let qi denote the i’th coordinate of a point q. Define C to be the set of 2dn corners of
the cubes in the input set H. Let G be the generalised Hanan grid induced by the set C

which is defined as the grid formed by drawing all axis-aligned lines through every point in
the point set C∗ := {p ∈ Rd : ∀1 ≤ i ≤ d : ∃c ∈ C : pi = ci}. In other words, the lines of the
grid G are the intersections of d − 1 differently oriented hyperplanes each containing the
facet of one of the hypercubes.

▶ Lemma 8. There exists a shortest tour on H which lies fully on G.

For the full proof, see Appendix B. Intuitively, this can be done by taking any shortest tour
T and “shifting” it onto the grid, bit by bit.

Given a tour T , we can reorder the hypercubes in H such that Hi is the i’th hypercube
visited by T ; ties can be broken in any way. Define pi to be the first point where Hi is
visited by T . Define P (T) := {p1, ..., pn}; we call the points in P (T) the entry points of T .
Note that the length of a shortest tour T that visits the points pi in the given order equals∑

1≤i≤n |pipi+1|, where we define pn+1 := p1. (Recall that |pq| denotes the L1-distance
from p to q.) We say a tour T is a canonical tour on H if it has the following properties:
1. T is a shortest tour on H
2. T lies fully on G

3. Each pair of consecutive entry points in P (T) is connected by a link, that is, the portion of
T connecting consecutive entry points consist of at most d edges of different orientations.

▶ Observation 9. For every H, a canonical tour on H exists.

ISAAC 2023

6:10 Geometric TSP on Sets

σ

H1

H2

Figure 6 An example of odrdist. Given an Hi, in every direction ej the four distances between
one of the sides of Hi perpendicular to ej and one of the sides of σ perpendicular to ej are measured.
The shortest of all the measured distances, scaled such that size(σ) = 1, defines the odrdist between
the two. Note how H1, in red, intersects σ and H2, in blue, seems far away from σ. Yet, the odrdist

of H1, denoted by the red arrow, is larger than that of H2, denoted by the blue arrow.

Proof. By Lemma 8 there exists a shortest tour T which lies fully on G, satisfying the first
two properties. Now, we can create a new tour T ′ by creating a link between every two
consecutive pi in P (T). Since T ′ is a shortest tour on a set of points on T , it must be
a shortest tour itself as well. Furthermore, since T ′ visits all pi in P (T), it visits all Hi.
Finally, since T lies on the generalised Hanan grid G, so do the points pi. Furthermore, note
that a link between two points on G lies on G itself. We conclude that T ′ has the required
properties. ◀

▶ Lemma 10. The edges of a canonical tour have the Packing Property.

For the full proof, see Appendix C. Intuitively, suppose we have two long edges in the same
direction (e.g. left to right) and close to each other. We can then replace these edges by two
new edges – one connecting the two starting points of the removed edges and one connecting
the end points – whose total length is shorter.

A good separator. As mentioned, our algorithm will be a divide-and-conquer algorithm,
based on separators. Thus we need a good separator for tours on hypercubes. Our separator
will again be based in the distance-based separator from [3]. It will not be sufficient to work
with a distance-based separator on the corners of the hypercubes. Instead, we want to have
only a few Hi with a facet close to one of the parallel facets of σ, measured in the dimension
perpendicular to these facets. To be precise, for a hypercube H, let center(H) be its center
and size(H) its edge length. Let the one-dimensional distance from a hypercube H to a
separator σ, denoted by oddist(H, σ) be defined as the minimum distance between any pair
of parallel hyperplanes h, h′ such that h contains a facet of H and h′ contains a facet of σ.
The one-dimensional relative distance from H to σ, denoted by odrdist(H, σ) is now defined
as odrdist(H, σ)/size(σ). See Figure 6 for an example. For integers j define

Pj(σ) := {H ∈ H : 0 < odrdist(H, σ) ≤ 2j/n1/d}.

We can now prove the following theorem.

H. Alkema and M. de Berg 6:11

▶ Theorem 11. Let H be a set of n hypercubes in Rd and let I ⊆ H. Then there is a
separator σ that is balanced with respect to the corner points of I, and such that

|Pj(σ)| =
{

O((3/2)jn1−1/d) for all j < 0
O(4jn1−1/d) for all 0 ≤ j < ∞.

Furthermore, at most O(λ1/dn1−1/d) elements of H intersect σ. Moreover, such a separator
can be found in O(nd+1) time.

Proof. Let C be the set of corner points of the hypercubes in I. Let σ∗ be a smallest
separator such that |σ∗

in ∩ C| ≥ (4n)/(4d + 1). As in the original proof, one can argue that
for all 1 ≤ t ≤ 3, the separator tσ∗ is balanced w.r.t. C. Assume w.l.o.g. that size(σ∗) = 1.
Define jH(t) to be the integer such that

2jH (t)−1/n1/d < odrdist(H, tσ∗) ≤ 2jH (t)/n1/d,

where jH(t) = ∞ if odrdist(H, tσ∗) = 0. We define the weight function as

wH(t) := 1{H intersects tσ∗}
size(H) +


n1/d

(3/2)ji
H

(t) if ji
H(t) < 0

n1/d

4ji
H

(t) otherwise 0 ≤ ji
H(t) < ∞

undefined otherwise.

(Recall that 1{bool} denotes the indicator function, which is 1 if bool is true, and 0 otherwise.)
Now, for every H ∈ H we have

∫ 3
1 wH(t)dt = O(1), since the second part of wH(t) can be

expressed as the maximum of 2d different versions of the weight function wp(t) of the original
proof. Since H can obviously intersect tσ only during an interval of t of size size(H), we get
that

∫ 3
1 wH(t)dt = O(1).

Therefore, we can find a t∗ such that
∑

H wH(t∗) = O(n). We claim that t∗σ∗ has the
desired properties. We have already shown that it is balanced w.r.t. the corner points of I.

Let 1 ≤ i ≤ d, and let j < 0. Then each element in P i
j (σ) contributes at least wi

H(t∗) ≤
n1/d

(3/2)j to the total weight. Therefore, there are at most O(n/ n1/d

(3/2)j) = O(n1−1/d(3/2)j) such
elements, as required. The case for 0 ≤ j < ∞ can be proven analogously.

Finally, we note that at most O(2dλ/(λ1/dn−1/d)d−1) = O(λ1/dn1−1/d) of the Hi of size
at least λ1/dn−1/d can intersect σ (otherwise, somewhere, λ + 1 would overlap). Furthermore,
there are O(n

1/(λ1/dn−1/d)) = O(λ1/dn1−1/d) of the Hi of size at most λ1/dn−1/d that intersect
σ, as they all contribute weight at least 1/(λ1/dn−1/d). Therefore, there are O(λ1/dn1−1/d)
hypercubes intersecting σ.

As in the original proof, we can argue that we can compute t∗σ∗ quickly by truncating
wi

H(t). ◀

This brings us to the candidate sets. Instead of guessing how we cross the separators
precisely, guessing where we cross the separators will suffice. For simplicity, we consider the
boundary points created this way to be infinitely small hypercubes.

▶ Theorem 12. Let H = {H1, ..., Hn} be a set of n hypercubes in Rd and let I ⊆ H. Then
there is a separator σ and a collection C ′(σ, H) of candidate point sets such that
1. σ is balanced with respect to the corner points of I
2. Each candidate set X ∈ C ′(σ, H) contains O(n1−1/d) points.
3. There exists a shortest tour T and an X ∈ C ′(σ, H) such that X is the set of locations

where T crosses σ, and |C ′(σ, H)| ≤ 2O(n1−1/d log n)

4. σ splits O(λ1/dn1−1/d) of the Hi, where λ is the ply of H.

ISAAC 2023

6:12 Geometric TSP on Sets

Moreover, σ and C ′(σ, H) can be calculated in 2O(n1−1/d log n) time.

Proof. Let σ be the separator given by Theorem 11. Then σ has properties 1 and 4. W.l.o.g.,
we assume that size(σ) = 1 and σ is centered at the origin. From now on, we will only
consider edges that cross σ once and lie on the Hanan grid G. Any set S ∈ C ′(σ, H) we
return can be divided into two subsets:

Sshort := {s ∈ S : length(s) ≤ 1/n1/d}
Slong := {s ∈ S : length(s) > 1/n1/d}

(The original proof uses three subsets: Sshort, Smid and Slong. However, since we have an
extra factor log n in the exponent, we can merge Sshort with part of Smid, and merge the rest
of Smid with Slong.) We start with Sshort. Let us take a look at a single facet of σ. We will
now show that we can cross this facet in only a limited number of ways. First, we note that
for the corresponding i, we have |P i

0(σ)| = O(n1−1/d). Let e be an arbitrary edge of our tour
crossing σ through this face. Now, by property (3) of a canonical tour, the pj and pj+1 that
are connected by e must both have a distance at most 1/n1/d to σ in the i’th coordinate.
Therefore, the same holds of the odrdistances of the corresponding Hj . Furthermore, note
that if we charge every edge e crossing σ through our facet to the two hypercubes of the
corresponding pj and pj+1, no hypercube is charged more than twice. Hence, the number
of short edges crossing σ through this facet is bounded by the number of hypercubes with
odrdistance at most 1/n1/d to σ, of which there are O(n1−1/d). As there are O(nd−1)
possible locations for these edges to cross σ, there are (nd−1)O(n1−1/d) = 2O(n1−1/d log n)

possible combinations for every face. Finally, since there are O(d) facets, the total amount
of possible combinations is 2O(n1−1/d log n).

We continue to Slong, the set of edges longer than 1/n1/d. Let us take a look at those
edges which cross some arbitrary facet of σ. Using the same logic as in the original paper, by
using Lemma 10, we can see that there are (2n1/d)d−1 = O(n1−1/d) of these edges at most.
Analogously, there are at most O(n1−1/d) edges of which at least 1/(2n1/d) is inside σ. Since
there are O(nd−1) options for every edge, there are (nd−1)O(n1−1/d) = 2O(n1−1/d log n) options
for every face, and just as many for every σ. ◀

The algorithm. Our algorithm contains the following changes compared to the original:
We choose our separator σ using Theorem 11 instead of the equivalent from the original
paper, and use Theorem 12 to obtain the candidate sets of crossing points.
Instead of choosing already existing points as boundary points, we create new boundary
points as explained above. To ensure that the recursion ends, we bruteforce the solution
if n is smaller than some arbitrarily large but fixed N , instead of recurring until n = 1.
All Hi visited by one of the new boundary points are removed from both subproblems.
For every Hi split by σ but not visited by one of the new boundary points, we need to
“guess” whether it is visited inside or outside σ.
For the initial call, we guess p1 and pn of the final tour, and connect them with a link -
there are O(n2d) viable combinations of points on the generalised Hanan grid. We remove
all Hi we already visit by doing so, and then run the algorithm on the remaining Hi and
the boundary set B = {p1, pn}.

Since there are O(λ1/d) hypercubes Hi split by σ, there are 2O(λ1/dn1−1/d log n) · 2O(λ1/d) =
2O(λ1/dn1−1/d log n) subproblems generated in total, leading to the following theorem. (For
the full proof, see Appendix D, where we show how to analyze the dependency on λ, and
deal with the larger amount of candidate sets and the creation of extra boundary points.)

▶ Theorem 13. Then Rectilinear One-of-a-Cube TSP on hypercubes with ply λ can be
solved in 2O(λ

1
d n1−1/d log n) time.

H. Alkema and M. de Berg 6:13

References

1 Binay Bhattacharya, Ante Ćustić, Akbar Rafiey, Arash Rafiey, and Vladyslav Sokol. Approx-
imation algorithms for generalized mst and TSP in grid clusters. In Zaixin Lu, Donghyun Kim,
Weili Wu, Wei Li, and Ding-Zhu Du, editors, Combinatorial Optimization and Applications,
pages 110–125, Cham, 2015. Springer International Publishing.

2 T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 754–765. SIAM,
2016. doi:10.1137/1.9781611974331.ch54.

3 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An ETH-tight
exact algorithm for euclidean TSP. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pages 450–461, 2018. doi:10.1109/FOCS.2018.00050.

4 Mark de Berg, Joachim Gudmundsson, Matthew J. Katz, Christos Levcopoulos, Mark H.
Overmars, and A. Frank van der Stappen. TSP with neighborhoods of varying size. Journal
of Algorithms, 57(1):22–36, 2005. doi:10.1016/j.jalgor.2005.01.010.

5 Moshe Dror and James B. Orlin. Combinatorial optimization with explicit delineation of the
ground set by a collection of subsets. SIAM Journal on Discrete Mathematics, 21(4):1019–1034,
2008. doi:10.1137/050636589.

6 M. R. Garey, Ronald L. Graham, and David S. Johnson. Some NP-complete geometric
problems. In STOC, pages 10–22. ACM, 1976.

7 Gregory Gutin and Abraham P. Punnen. The Traveling Salesman Problem and Its Variations.
Springer, 2006.

8 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

9 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

10 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

11 Michael Khachay and Katherine Neznakhina. Approximation algorithms for generalized TSP
in grid clusters. CEUR Workshop Proceedings, 1623:39–48, 2016.

12 Michael Khachay and Katherine Neznakhina. Complexity and approximability of the euclidean
generalized traveling salesman problem in grid clusters. Annals of Mathematics and Artificial
Intelligence, 88(1):53–69, 2020. doi:10.1007/s10472-019-09626-w.

13 Joseph S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, pages 11–18, 2007.

14 Joseph S.B. Mitchell. A constant-factor approximation algorithm for TSP with pairwise-disjoint
connected neighborhoods in the plane. In Proceedings of the Twenty-Sixth Annual Symposium
on Computational Geometry, pages 183–191, 2010. doi:10.1145/1810959.1810992.

15 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor.
Comput. Sci., 4(3):237–244, 1977.

16 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications. In
FOCS, pages 232–243. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743449.

A Running time of the One-of-a-Set TSP algorithm

To prove the running time of the One-of-a-Set TSP algorithm, we can follow the proof of
the running time of the the original algorithm [3] almost verbatim. We only need to take
the dependency on λ into account at the right places. Define T (n, b) to be the running time
of the algorithm when run on an input containing n points of which b are boundary points.
Let nS,in, nS,out, bS,in and bS,out denote the numbers of points and boundary points in the
subproblems generated.

ISAAC 2023

https://doi.org/10.1137/1.9781611974331.ch54
https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.1016/j.jalgor.2005.01.010
https://doi.org/10.1137/050636589
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/s10472-019-09626-w
https://doi.org/10.1145/1810959.1810992
https://doi.org/10.1109/SFCS.1998.743449

6:14 Geometric TSP on Sets

As far as the candidate sets are concerned, we can restrict our attention to candidate
sets S ∈ C′(σ, P) that contain at most one edge incident to any given point in B, and at
most two edges incident to any given point in P \ B. Define C′′(σ, P) to be the family of
candidate sets gained from restricting C′(σ, P) this way. Furthermore, given a candidate set
and a boundary set, for every point set split by σ we need to choose whether to use a point
in σin or σout. Let I(σ, P) be the set of 2m possible combinations of choices, where m is the
number of point sets split by σ. Clearly, if one of the points of a Pi is in B, no choice needs
to be made. Define C∗(σ, P) ⊆ C′′(σ, P) × I(σ, P) to be the set of combinations of candidate
sets and splitting choices restricted this way.

We get:

T (n, b) ≤


c0 if n ≤ 1∑

S∈C∗(σP ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

We prove by induction that T (n, b) ≤ eλ
1
d (d1n1−1/d+d2b) for some constants d1 and d2 and for

all 1 ≤ b ≤ n. This clearly holds for b, n ≤ 1, so by induction, for each S we have

ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out)

≤ ec3(n1−1/d+b) + eλ
1
d (d1n

1−1/d

S,in
+d2bS,in) + eλ

1
d (d1n

1−1/d

S,out
+d2bS,out).

Let c2, c4 and c5 be the constants from part (2), (3) and (4) of Theorem 2. For any
S ∈ C∗(σB , P), we have bS,in ≤ δb + c2n1−1/d and bS,out ≤ δb + c2n1−1/d; similarly, for any
S ∈ C∗(σP , P), we have nS,in ≤ δn and nS,out ≤ δn. In the remaining cases, we can just use
the trivial bounds bS,. ≤ b + c2n1−1/d and nS,. ≤ n. Since |C∗(σ, P)| ≤ ec4λ

1
d n1−1/d , we get

the following:

T (n, b) ≤


c0 if n ≤ 1∑

S∈C∗(σP ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

T (n, b) ≤


c0 if n ≤ 1
ec4λ

1
d n1−1/d

(
ec3(n1−1/d+b) + 2eλ

1
d (d1(δn)1−1/d+d2(b+c2n1−1/d))

)
if b ≤ γn1−1/d

ec4λ
1
d n1−1/d

(
ec3(n1−1/d+b) + 2eλ

1
d (d1n1−1/d+d2(δb+c2n1−1/d))

)
if b > γn1−1/d.

For simplicity, let λ′ := λ
1
d , and Let c := max{c0, c2, c3, c4}. We get

T (n, b) ≤


c if n ≤ 1
ecλ′n1−1/d+c(n1−1/d+b)+1+λ′(d1(δn)1−1/d+d2(b+cn1−1/d)) if b ≤ γn1−1/d

ecλ′n1−1/d+c(n1−1/d+b)+1+λ′(d1n1−1/d+d2(δb+cn1−1/d)) if b > γn1−1/d.

T (n, b) ≤


c if n ≤ 1
eλ′((2c+cd2+d1δ1−1/d)n1−1/d+(d2+2c)b) if b ≤ γn1−1/d

eλ′((2c+cd2+d1)n1−1/d+(d2δ+2c)b) if b > γn1−1/d.

Now, for the case b > γn1−1/d, we have

eλ′((2c+cd2+d1)n1−1/d+(d2δ+2c)b) ≤ eλ′(d1n1−1/d+d2b)

H. Alkema and M. de Berg 6:15

if and only if

(2c + cd2)n1−1/d + (d2(δ − 1) + 2c)b ≤ (2c + d2(c − γ(1 − δ)) + 2cγ)n1−1/d ≤ 0.

We choose γ = 2c
1−δ and d2 = 2 + 2γ, satisfying the equation.

For the case b ≤ γn1−1/d, we have

eλ′((2c+cd2+d1δ1−1/d)n1−1/d+(d2+2c)b) ≤ eλ′(d1n1−1/d+d2b)

if and only if

(2c + cd2 + d1(δ1−1/d − 1))n1−1/d + 2cb ≤ (2c + cd2 + d1(δ1−1/d − 1) + 2cγ)n1−1/d ≤ 0.

We choose d1 = 4c(1+γ)
1−δ1−1/d , satisfying the equation.

Finally, we note that d1 and d2 are indeed (nonnegative) constants, as they only depend
on c, γ and δ, which in turn only depend on d.

B Proof of Lemma 8

Let T be any shortest tour with a minimal number of edges on the given hypercubes
H1, ..., Hn. Note that because T has a minimal number of edges, no edges have length 0.
Recall that pi denotes the i’th coordinate of p. For simplicity, let us call the first coordinate
the x-coordinate, and let us call those edges whose endpoints have different x-coordinates
horizontal. For every Hi, let xi1 and xi2 denote the x-coordinates of the corner points of Hi.
We will now show that we can change T into a shortest tour of which all x-coordinates of the
endpoints of the edges used are in the set XH := {xij |i ∈ {1, ..., n}, j ∈ {1, 2}}. Furthermore,
we do so without changing the sets used for the second to d’th coordinate. Then, by applying
this method repeatedly, we obtain a shortest tour of which all coordinates match those of
the corner points of the Hi, i.e., a shortest tour which lies on the generalised Hanan grid.

Let XT := {x1 < ... < xr} be the set of x-coordinates used by T . For every xi, let Ei be
the set of horizontal edges of with an endpoint with x-coordinate xi.

Let xi be an x-coordinate not in XH . Then let e1 and e2 be two consecutive edges in E1
(consecutive as in there are no edges in E1 in between e1 and e2 in T). Let E denote the set
of edges between e1 and e2 in T . Note that all endpoints of these edges have x-coordinate xi.
W.l.o.g., let at least one of endpoints of e1 and e2 lie to the right of xi. Let x′ denote the
smallest x-coordinate in XH ∪ XT strictly larger than xi.

Now, let us change the x-coordinate of all edges in E to x′. Furthermore, we move the
endpoints of e1 and e2 with x-coordinate xi to the x-coordinate x′. See Figure 7 for an
example. Note that the resulting tour T ′ is indeed still a tour. Furthermore, T ′ visits all Hi:
Let p be an arbitrary point in Hi visited by T but not by T ′. Note that this is only possible
if xi ≤ p0x′. However, in that case, the point p′ = (x′, p1, ..., pn) is in Hi as well, and p′ is
visited by T ′.

Now, if both other endpoints of e1 and e2 are on the same side of the hyperplane defined
by x-coordinate xi, the resulting tour T ′ is strictly shorter than T . Since T is a shortest tour,
we conclude that the other endpoints of e1 and e2 are on different sides of the hyperplane
defined by x-coordinate xi. Furthermore, note that the edge that has been shortened still
has a positive length, otherwise the assumption that T has a minimal number of edges fails.
Finally, note that this change does not change the set of all other coordinates used except
the x-coordinates.

ISAAC 2023

6:16 Geometric TSP on Sets

e1

e2

e1

e2

p p′p p′

Figure 7 An example for the proof of Lemma 8. In the left case, we can shorten the tour T by
shortening the edges e1 and e2 and moving the connected edges correspondingly. As long as the
x-coordinate of these points was not a coordinate in XH , if a point p is in a hypercube, then so is
p′. In the right case, we are free to move the edges between e1 and e2 to the smallest x-coordinate
bigger than xi, as long as their x-coordinate is not a coordinate in XH .

p1 p2

q1 q2

σ

Figure 8 An example for the proof of Lemma 10. If there are enough (directed) edges of length
at least size(σ) crossing σ, there must be two edges (p1, p2) and (q1, q2) going in the same direction,
crossing the same face, both with at least a length of size(σ)/2 on the same side of this face, and
with |p1q1| < size(σ)/2. We can then create a strictly shorter tour by removing both edges and
connecting p1 to q1 and q2 to p2 (in red). The resulting set of edges is indeed a tour, if we flip the
direction of the edges between p2 and q1.

Now, we can apply the above change exhaustively: in every step, we increase the sum
of all x-coordinates of all endpoints of all edges in T by at least some amount dependent
only on XH ∪ XT , and the total sum is bounded by 2n times the maximum x-coordinate in
XH ∪ XT . After applying this change exhaustively, no more x-coordinates not in XH are
used.

Since this procedure does not change the set of other coordinates used, we can apply this
procedure once for every coordinate, obtaining a T ′ which lies on the generalised Hanan grid.

C Proof of Lemma 10

Let T be a shortest (directed) rectilinear tour on the hypercubes H1, ..., Hn. Let σ be a
separator. We will first show that T contains O(1) edges crossing σ of length at least size(σ).
W.l.o.g., assume size(σ) = 1. Now, suppose T contains at least 2d · 4 · 4d edges crossing σ of
length at least size(σ). Then there exists a face f of σ such that at least 4 · 4d edges cross f .
W.l.o.g., at least 2 · 4d edges cross f from σin to σout. W.l.o.g., at least 4d of these edges
have length at least 1/2 outside σ. Therefore, there must be two of these edges (p1, p2) and
(q1, q2) with |p1, q1| < 1/2. Recall that |pq| denotes the rectilinear distance between p and q.
See Figure 8 for an example. Let us remove these two edges, and connect p1 to q1 and q2
to q2. Next, we flip the direction of the edges from p2 to q1. We claim that the resulting
tour T ′ is a strictly shorter rectilinear tour visiting all Hi. Since this directly contradicts our
assumption, we can then conclude that T contains O(1) edges crossing σ of length at least
size(σ).

H. Alkema and M. de Berg 6:17

σ

Figure 9 An example for the proof of Lemma 10. In black, the separator σ. In red and blue,
some of the smaller hypercubes covering σin. Any edge of length at least size(σ)/4 crosses at least
one of the smaller hypercubes. Since there are O(1) smaller hypercubes, each being crossed O(1)
time,s there are O(1) edges of length at least size(σ)/4 of T in σin.

First, we note that T ′ is indeed a tour: see Figure 8 for an example. Furthermore, T ′

indeed visits all Hi: since T is a simple tour, any tour visiting all endpoints of the edges of T

(and hence, the points p1, ..., pn) visits all Hi. Finally, T ′ is strictly shorter than T : clearly,

||T || − ||T ′|| = |p1p2| + |q1q2| − |p1q1| − |p2q2|.

W.l.o.g., let |p1p2| ≥ |q1q2|. We know that |p1p2 ≥ |q1q2| ≥ 1. Furthermore, we know that
|p1q1| < 1/2. Since p1p2 and q1q2 both go in the same direction, we get

|p2q2| ≤ |p1q1| + |p1p2| − |q1q2|.

Combining these, we get

||T || − ||T ′|| = |p1p2| + |q1q2| − |p1q1| − |p2q2|
≥ |p1p2| + |q1q2| − |p1q1| − (|p1q1| + |p1p2| − |q1q2|)
≥ 2|q1q2| − 2|p1q1|
≥ 2 · 1 − 2 · 1/2 > 0,

as we wanted to prove.
Next, we show that T contains O(1) edges fully in σin with length at least size(σ)/4.

W.l.o.g., let σ be the hypercube of size 1 with center c = (1/2, ..., 1/2). For 0 ≤ i1, ..., id ≤ 8,
let σi1,...,id

be the hypercube of size 1/4 with center (i1/8, ..., i2/8). Then, every edge of T

fully in σin of length at least 1/4 crosses at least one of these hypercubes; see Figure 9 for an
example. On the other hand, by using the first part of this proof we conclude that every one
of these smaller hypercubes is crossed O(1) times. Since the number of smaller hypercubes is
9d = O(1), we conclude that there are O(1) edges of T of length at least size(σ)/4 fully in
σin. This concludes the proof of the second part of the Packing Property, and hence, the
proof of the Packing Property for edges of a simple tour.

D Running time of the Rectilinear One-of-a-Cube TSP algorithm

There are three differences between the algorithms that impact the running time. First,
as mentioned, there are n2d initial calls made to the algorithm, one for every pair of
points. However, since we will prove that the running time is 2O(λ1/dn1−1/d log n), this
factor is irrelevant. Second is the fact that there are more candidate sets. Specifically,
2O(λ1/dn1−1/d log n) subproblems are generated. Finally, because we only guess where the
separator is crossed, O(n1−1/d) new boundary points are generated instead of selected from
the already existing points. We will now compute the impact of the last two differences on
the running time of the algorithm.

ISAAC 2023

6:18 Geometric TSP on Sets

Define T (n, b) to be the running time of the algorithm when run on an input containing n

points of which b are boundary points. Let nS,in, nS,out, bS,in and bS,out denote the numbers
of points and boundary points in the subproblems generated.

Let I(σ, H) be the set of 2m possible combinations of choices, where m is the number of
hypercubes split by σ. Clearly, if one of the points of an Hi is in B, no choice needs to be
made. Define C∗(σ, H) ⊆ C′(σ, H) × I(σ, H) to be the set of combinations of candidate sets
and splitting choices restricted this way.

Let N be arbitrarily large but fixed. We get:

T (n, b) ≤


c0 if n ≤ N∑

S∈C∗(σH,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

We prove by induction that T (n, b) ≤ eλ
1
d (d1n1−1/d+d2b) log n for some constants d1 and d2

and for all 1 ≤ b ≤ n. This clearly holds for b, n ≤ N , so by induction, for each S we have

ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out)

≤ ec3(n1−1/d+b) log n + eλ
1
d (d1n

1−1/d

S,in
+d2bS,in) log n + eλ

1
d (d1n

1−1/d

S,out
+d2bS,out) log n.

Let c2, c4 and c5 be the constants from part (2), (3) and (4) of Theorem 12. For any
S ∈ C∗(σB , H), we have bS,in ≤ δb + c2n1−1/d and bS,out ≤ δb + c2n1−1/d; similarly, for any
S ∈ C∗(σH, H), we have nS,in ≤ δn + c2n1−1/d and nS,out ≤ δn + c2n1−1/d. In the remaining
cases, for bS,. we can use the trivial bound bS,. ≤ b + c2n1−1/d. For nS,., we can use nS,. ≤ n;
despite the possibility of new points being created, there will never be more points created
then there are points on either side of σ. Since |C∗(σ, H)| ≤ ec4λ

1
d n1−1/d log n, we get the

following:

T (n, b) ≤


c0 if n ≤ N∑

S∈C∗(σH,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

≤


c0 if n ≤ N

ec4λ
1
d n1−1/d log n

(
ec3(n1−1/d+b) log n + 2eλ

1
d (d1(δn+c2n1−1/d)1−1/d+d2(b+c2n1−1/d)) log n

)
if b ≤ γn1−1/d

ec4λ
1
d n1−1/d log n

(
ec3(n1−1/d+b) log n + 2eλ

1
d (d1n1−1/d+d2(δb+c2n1−1/d)) log n

)
if b > γn1−1/d.

For simplicity, let λ′ := λ
1
d , let n′ := n1−1/d, and Let c := max{c0, c2, c3, c4}. We get

T (n, b) ≤


c if n ≤ N

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1(δn+cn′)1−1/d+d2(b+cn′)) log n if b ≤ γn′

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1n′+d2(δb+cn′)) log n if b > γn′.

Now, if n is large enough (dependent only on d), then δn + cn′ ≤ ζn, where ζ = 1+δ
2 . Since

we know that n > N and N is arbitrarily large, we get

T (n, b) ≤


c if n ≤ N

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1ζ1−1/dn′+d2(b+cn′)) log n if b ≤ γn′

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1n′+d2(δb+cn′)) log n if b > γn′.

H. Alkema and M. de Berg 6:19

T (n, b) ≤


c if n ≤ N

e(cλ′+c+λ′d1ζ1−1/d+λ′d2c)n′ log n+(cb+λ′d2b) log n+1 if b ≤ γn′

e(cλ′+c+λ′d1+λ′d2c)n′ log n+(cb+λ′d2δb) log n+1 if b > γn′.

T (n, b) ≤


c if n ≤ N

eλ′ log n((ζ1−1/dd1+3cd2)n′+(2c+d2)b) if b ≤ γn′

eλ′ log n((d1+3cd2)n′+(2c+δd2)b) if b > γn′.

Now, for the case b > γn′, we have

eλ′ log n((d1+3cd2)n′+(2c+δd2)b) ≤ eλ′(d1n′+d2b) log n

if and only if

(d1 + 3cd2)n′ + (2c + δd2)b ≤ d1n′ + d2b.

We choose γ = 4c
1−δ and d2 = 8c

1−δ , satisfying the equation.
For the case b ≤ γn1−1/d, we have

eλ′ log n((ζ1−1/dd1+3cd2)n′+(2c+d2)b) ≤ eλ′(d1n′+d2b) log n

if and only if

(ζ1−1/dd1 + 3cd2)n′ + (2c + d2)b ≤ d1n′ + d2b.

We choose d1 = 32c2

(1−ζ1−1/d)(1−δ) , satisfying the equation.
Finally, we note that γ, d1 and d2 are indeed (nonnegative) constants, as they only depend

on c, δ and ζ, which in turn only depend on d.

ISAAC 2023

	1 Introduction
	2 A subexponential algorithm for Euclidean One-of-a-Set TSP
	3 Rectlinear One-of-a-Cube TSP
	A Running time of the One-of-a-Set TSP algorithm
	B Proof of Lemma 8
	C Proof of Lemma 10
	D Running time of the Rectilinear One-of-a-Cube TSP algorithm

