
Non-Clairvoyant Makespan Minimization
Scheduling with Predictions
Evripidis Bampis #

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Alexander Kononov #

Sobolev Institute of Mathematics, Novosibirsk, Russia
Novosibirsk State University, Russia

Giorgio Lucarelli #

LCOMS, University of Lorraine, Metz, France

Fanny Pascual #

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract
We revisit the classical non-clairvoyant problem of scheduling a set of n jobs on a set of m parallel
identical machines where the processing time of a job is not known until the job finishes. Our
objective is the minimization of the makespan, i.e., the date at which the last job terminates its
execution. We adopt the framework of learning-augmented algorithms and we study the question of
whether (possibly erroneous) predictions may help design algorithms with a competitive ratio which
is good when the prediction is accurate (consistency), deteriorates gradually with respect to the
prediction error (smoothness), and not too bad and bounded when the prediction is arbitrarily bad
(robustness). We first consider the non-preemptive case and we devise lower bounds, as a function of
the error of the prediction, for any deterministic learning-augmented algorithm. Then we analyze a
variant of Longest Processing Time first (LP T ) algorithm (with and without release dates) and we
prove that it is consistent, smooth, and robust. Furthermore, we study the preemptive case and we
provide lower bounds for any deterministic algorithm with predictions as a function of the prediction
error. Finally, we introduce a variant of the classical Round Robin algorithm (RR), the Predicted
Proportional Round Robin algorithm (P P RR), which we prove to be consistent, smooth and robust.
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1 Introduction

We consider the problem of scheduling a set of n jobs on m identical machines so that the
makespan, i.e., the time when the last job completes its execution, to be minimized. This is
one of the most fundamental and well studied problems in scheduling [27, 34, 38]. We focus
on the online paradigm of unknown running times where the processing requirement of a job
is unknown until the end of its processing (see e.g. [38]), that is the non-clairvoyant setting.

The performance of an online algorithm in the competitive analysis framework is usually
evaluated using the competitive ratio [10, 40]. An online algorithm for a minimization problem
is ρ-competitive if for every instance of the problem, the value of the objective function of a
solution produced by the algorithm is at most ρ times the value of the objective function of an
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9:2 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

optimal offline solution. The non-clairvoyant non-preemptive makespan minimization problem
on identical machines was the first scheduling problem, and perhaps the first optimization
problem, that has been studied using competitive analysis. In 1966, Graham [17] proved that
a simple deterministic greedy algorithm, the List Scheduling algorithm (LS), has a makespan
within a factor of (2 − 1/m) of the makespan of an optimal algorithm with no preemption
allowed. The analysis of Graham works also in the non-preemptive case where each job
has a release time as well as for the preemptive case, where the processing of any job may
be interrupted and resumed at a later time [17, 18]. Given that LS does not use the jobs’
processing times, it is also an online non-clairvoyant scheduling algorithm with competitive
ratio (2 − 1/m). Shmoys et al. [39] proved that the competitive ratio of any deterministic
online algorithm for the non-preemptive non-clairvoyant makespan minimization problem is
at least (2−1/m). They also proved that the same tight bound on the competitive ratio holds
in the preemptive case. These results showed that in the non-clairvoyant setting there is no
difference with respect to the competitive ratio between the preemptive and non-preemptive
variants of the makespan minimization problem.

Nevertheless, the assumption of the standard competitive analysis framework that no
information is available about the input instance is quite pessimistic. Given the success of
Machine Learning methods and Artificial Intelligence in the last years, predictions become
available for many optimization problems [2, 33, 44]. However, no guarantees are available
concerning the quality of the predictions and several works focus on the following question:
“For a given optimization problem and an (unreliable) prediction of the input, is it possible to
devise an algorithm with a performance guarantee that is good when the prediction is accurate
(consistency), deteriorates gracefully with respect to the prediction error (smoothness), and
not too bad and bounded when the prediction is arbitrarily bad (robustness)?” In this paper,
we propose to revisit the classical non-clairvoyant makespan minimization scheduling problem
in the context of the vibrant area of learning-augmented algorithms that has been formalized
in [29] by Lykouris and Vassilvitskii (see [1] for a list of papers in this area) focusing on low
complexity learning-augmented algorithms.

2 Further related works

Classical setting. The problem of minimizing the makespan of a schedule of a set of jobs is
one of the most fundamental and well studied problems in scheduling theory. As mentioned
earlier, Graham proved that LS is a (2 − 1

m )-approximate algorithm [17]. In [18], Graham
showed that if the list is ordered in the decreasing order of the processing times of the jobs,
then the Longest Processing Time first (LPT ) algorithm is ( 4

3 − 1
3m )-approximate. Later

Coffman et al. [22] proposed a new algorithm, the MULTIFIT algorithm, which leverages
the bin packing problem. Improvements to the approximation ratio followed in the works
of Friesen [13] and Langston [24, 14]. For a fixed number of machines, a fully polynomial
time approximation scheme has been proposed in [37]. Hochbaum and Shmoys [20] proposed
a polynomial time approximation scheme for an arbitrary number of processors.For the
online (clairvoyant) case with release times, Chen and Vestjens [11] showed that LPT is
3
2 -competitive. When the preemption of jobs is allowed, a simple wrap-around algorithm has
been proposed by McNaughton for the offline case [30] which first computes a lower bound
of the optimal makespan and then determines a schedule matching this lower bound.

Learning-augmented setting. The framework of learning-augmented algorithms has been
formalized by Lykouris and Vassilvitskii [29]. A series of learning-augmented algorithms has
been proposed for various problems (see [31, 32]): caching [4, 29, 36, 42], ski-rental [3, 15, 35,
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41], routing problems [8, 9, 12, 23], etc. In scheduling, learning-augmented algorithms have
been proposed for different criteria, e.g. for the average completion time [7, 21, 28, 35, 43] or
the energy consumption in the speed scaling setting [5, 6]. We focus here only on the related
work for makespan.

In [25], Lattanzi et al. studied the makespan minimization problem for scheduling a set
of jobs with restricted assignments where each job is characterized by a job-dependent subset
of the m available machines on which the job can be executed, as well as its processing time.
When job j arrives it must be immediately and irrevocably assigned to a machine. They
associate a weight to each machine and based on these weights they propose a prediction
model where the predicted quantity is the weight of each machine. By using a multiplicative
error measure, they show how to obtain a near optimal robust solution for the fractional
version based only on the weight-predictions, and use a randomized algorithm for rounding
the fractional assignments online with a polylogarithmic loss in the competitive ratio. In [26],
Lavastida et al. consider the fractional version of the restricted assignment problem and
they prove that the predictions used in [25] can be learned. Moreover, they showed that
the predictions are instance-robust. Zhao et al. [45] considered the preemptive-with-restarts
makespan minimization problem on a set of uniform parallel machines and they studied it in
a learning-augmented setting. They considered an input-prediction model, similar to the
one in [35], where for each job a prediction of its processing time is given in advance and
they proposed a learning-augmented algorithm with respect to the error prediction that is
consistent and robust.

3 Problem Definition, Notations and Preliminaries

In the classical makespan minimization scheduling problem [17], we are given a set J of n

jobs that have to be executed on a set of m parallel identical machines. The execution of
each job j ∈ J takes a processing time of xj time units, while it is available for execution
only after its release date rj . Let Cj be the completion time of a job j in a given schedule.
The objective is to minimize the completion time of the last job, also known as makespan
and denoted by Cmax = maxj{Cj}. We consider both the non-preemptive (Section 4) and
the preemptive case (Section 5).

In the non-clairvoyant setting, the real processing time (or real length) xj of each job
j ∈ J is not known in advance and it becomes known only when j completes its execution.
Here, we consider an input-prediction model where for each job j ∈ J a prediction of its
processing time is given, as it is the case in [21, 35, 45]. Let yj be the predicted processing
time (or predicted length) of a job j ∈ J . We consider the error measure used also in [45].

▶ Definition 1 (Prediction error, α). The error of the prediction for job j is defined as
αj = max{ xj

yj
,

yj

xj
} and the error of the prediction is α = maxj{aj}.

The prediction is perfect if α = 1, and in general α ≥ 1. For example, if α = 2 the
predicted processing time of a job cannot be more than twice its real processing time or less
than half its real processing time. We use the competitive analysis framework to evaluate the
performance of the algorithms and our aim is to express the competitive ratio as a function
of the prediction error in order to find a trade-off between consistency and robustness.

Given an algorithm A and an instance I, we denote by Cmax(A, I) the makespan obtained
by the algorithm A on the instance I. In a similar way, we denote by OPT (I) the makespan
obtained by the optimal solution on the instance I. Note that the same notation is used for
both the classical problem and the problem with predictions, while the optimal solution does
not depend on predictions in the latter one. In the case where the instance is clear by the
context, we simplify the above notations to Cmax(A) and OPT .
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9:4 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

Let I be an instance of the classical scheduling problem consisting of n jobs with processing
times set to be the real processing times (xj). Similarly, let Ip be an instance of the problem
consisting of the same n jobs with processing times set to be the predicted processing times
(yj). Since (i) the optimal makespan function is monotonic, (ii) the length of each job in Ip

is larger than or equal to 1
α its real length, and (iii) the length of each job in Ip is smaller

than or equal to α times its true length, then the following proposition directly follows.

▶ Proposition 2. 1
α OPT (Ip) ≤ OPT (I) ≤ αOPT (Ip)

Before continuing with the previously mentioned results, let us present the following
example.

▶ Observation 3. Consider the following example: we are given 2m − 1 jobs with predicted
lengths yj = 1 and m identical machines. Let x1 = x2 = . . . = xm−1 = m − 1, xm = . . . =
x2m−2 = 1, and x2m−1 = m be the real processing times of the jobs. Hence, α = m. For this
instance, an optimal solution which knows the real processing times xj , schedules the job
2m − 1 to a single machine and each of the m − 1 couples of jobs with processing times 1 and
m − 1 to the remaining m − 1 machines. Hence, OPT = m. However, any deterministic list
scheduling algorithm A (it does not leave any idle time before the starting time of the last
scheduled job) cannot take any scheduling decision since it does not know the real processing
times, while the known predicted processing times are all identical. Therefore, A is obliged to
create an arbitrary solution which in the worst case will be to schedule the jobs 1, 2, . . . , m−1
to the first m − 1 machines, the jobs m, m + 1, . . . , 2m − 2 to machine m, and finally the job
2m − 1 to any machine, leading to Cmax(A) = 2m − 1.

This example shows that any deterministic list scheduling algorithm is at least (2 − 1
m )-

competitive with predictions. Since any list scheduling algorithm is also at most (2 − 1
m )-

competitive, we cannot differentiate between different list scheduling algorithms without
taking into account some other parameter, such as the value α for example. In what follows,
we provide lower and upper bounds as a function of the value of α.

We now formally define the notions of consistency, smoothness and robustness as in [16].

▶ Definition 4 (Consistency, Smoothness, Robustness). An algorithm A is:
ρc-consistent, if it is ρc-competitive when the prediction is correct, i.e. α = 1.
ρs-smooth for a continuous function ρs(α), if it is ρs(α)-competitive, where α is the
prediction error.
ρr-robust, if it is ρr-competitive regardless of the prediction error.

3.1 Our contribution and articulation of the paper
We consider three variants of the problem of scheduling identical machines in the learning-
augmented setting. In many works in this area and especially in scheduling (see e.g. [6, 7,
28, 35]), it is common to combine two algorithms, a clairvoyant (assuming predictions to
be correct) for consistency and a non-clairvoyant algorithm for robustness. In this work,
we propose a single algorithm for each variant (one stone) that achieves simultaneously
consistency, smoothness and robustness (for many birds). In our work, we adapt and analyse
two among the most popular algorithms in scheduling, namely LPT and Round Robin (RR),
in the learning-augmented framework.

More precisely, for the non-preemptive variants (with and without release dates), we
exploit the classical result of Graham [17, 18] which states that LS is a non-clairvoyant
(2 − 1/m)-competitive algorithm. This allows us to devise learning-augmented algorithms
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that use the predictions in order to create a priority list and then to apply LS. Note that
by using such an approach robustness comes for free. In the preemptive case, we devise a
new learning-augmented algorithm which is based on the predictions and whose smoothness
analysis shows that the competitive ratio gracefully deteriorates with respect to the prediction
error from 1 (consistency, when α = 1) to 2 − 1/m (robustness, when α → ∞). Recall, that
for the preemptive case the offline problem can be solved optimally [30] and that for the
non-clairvoyant setting, no deterministic algorithm is possible with competitive ratio better
than 2 − 1/m [39]. In addition, we provide lower bounds for both the non-preemptive and
the preemptive variants. Tables 1 and 2 summarize our results with respect to consistency,
robustness and smoothness.

The paper is articulated as follows. In Section 4.1, we prove lower bounds for any
deterministic learning-augmented algorithm for the identical machines non-clairvoyant non-
preemptive makespan minimization problem with predictions. Then, in Section 4.2, we
analyze a variant of LPT and we prove that it is consistent, smooth and robust. We
also study the non-preemptive problem with release dates and predictions, in Section 4.3,
and we show that the generalization of LPT in this setting is also consistent, smooth and
robust. Furthermore, we investigate the preemptive case with predictions and we provide
lower bounds for any deterministic learning-augmented algorithm as a function of the error
(Section 5.1), and then we introduce PPRR that we prove to be consistent, smooth and
robust (Section 5.2).

Table 1 Consistency, robustness guarantees.

Without Predictions With Predictions
Competitiveness Consistency Robustness

Lower Bounds Upper Bounds α = 1

Non-preemptive 2 − 1/m [39] 2 − 1/m [17] 4/3 2 − 1/m

Non-preemptive
with release dates 2 − 1/m [39] 2 − 1/m [17] 3/2 2 − 1/m

Preemptive 2 − 1/m [39] 2 − 1/m [17] 1 2 − 1/m

4 Non-preemptive Scheduling

In this section, we consider the case with no preemption allowed. We start with two generic
lower bounds that hold for any deterministic algorithm, and then we propose and analyze a
learning-augmented algorithm based on an adaptation of LPT .

4.1 Lower Bounds
▶ Proposition 5. If 1 ≤ α <

√
2, there is no deterministic non-clairvoyant algorithm with

predictions for scheduling identical machines, with no preemption allowed, which has a
competitive ratio smaller than 1

2 + α2

2 .

Proof. Consider the following instance: m machines, one job of real length α, and m jobs of
real length 1

α . All jobs have predicted length 1. The minimal makespan of a schedule of this
instance is OPT = max{α, 2

α } = 2
α since α <

√
2.

ISAAC 2023



9:6 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

Table 2 Smoothness guarantees.

Smoothness
Lower Bounds Upper Bounds

If 1 ≤ α <
√

2
Non-preemptive 1

2 + α2

2
min{ 2(α2+1)

3 , 1 + α2

2 (1 − 1
m

), 2 − 1
m

}

Non-preemptive If α ≥
√

2
with release dates 1 + 1

⌊α2⌋

⌊
⌊α2⌋(m−1)

m

⌋ 1 + min{1, α2

2 }

Preemptive

m−1
m

+ 1 − 1
α2

2 − α2+m−2
α2m−1

If α <
√

2
mα2+m−1
α2+2(m−1)

If α ≥
√

2
m−1

m
+ 1

m⌊α2⌋ + 1 − 1
⌊α2⌋

Consider a deterministic algorithm A, and let J be the job scheduled in the last position.
Let us assume that J is the job with real processing time α. Therefore, job J starts at a time
larger than or equal to 1

α , and the completion time of J is thus at least 1
α + α. Therefore,

the competitive ratio of A is at least 1/α+α
2/α = 1

2 + α2

2 . ◀

▶ Proposition 6. If α ≥
√

2, there is no deterministic non-clairvoyant algorithm with
predictions for scheduling identical machines, with no preemption allowed, which has a
competitive ratio smaller than 1 + 1

⌊α2⌋

⌊
⌊α2⌋(m−1)

m

⌋
.

Proof. Consider the following instance : m machines, one job of real length α, and (m−1)⌊α2⌋
jobs of real length α

⌊α2⌋ . The optimal makespan of such an instance is OPT = α. Let us
assume that the predicted length of all the jobs is 1.

Consider a deterministic algorithm A, and let J be the last job to be started in the
schedule returned by A. Let us assume that J is the job of real length α. Since J is the last
job to be scheduled, it starts at the earliest at time

⌊
(m−1)⌊α2⌋

m

⌋
× α

⌊α2⌋ . Its completion time

is thus at least
⌊

(m−1)⌊α2⌋
m

⌋
× α

⌊α2⌋ + α. Since OPT = α, the competitive ratio of A is larger

than or equal to 1 + 1
⌊α2⌋

⌊
⌊α2⌋(m−1)

m

⌋
. ◀

4.2 Common Release Dates
In the case where all jobs are released at time zero, our algorithm works as follows: consider
the jobs in non-increasing order of their predicted processing times, i.e. y1 ≥ y2 ≥ . . . ≥ yn.
Then, whenever a machine becomes idle, assign to it and schedule non-preemptively the next
job according to this order. We call this algorithm the Longest Predicted Processing Time
algorithm (LPPT ). Note that each job j finishes xj units of time after its starting time,
while the scheduling decisions are taken based only on the predicted processing times.

In what follows, we establish the following result.
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▶ Theorem 7 (Consistency, Smoothness and Robustness). LPPT is a non-clairvoyant al-
gorithm with predictions for scheduling identical machines, with no preemption allowed, that
achieves a competitive ratio of

min{2(α2 + 1)
3 , 1 + α2

2 (1 − 1
m

), 2 − 1
m

}.

Proof. We first give a simple analysis of LPPT for any α ≥ 1.

▶ Lemma 8. LPPT is a non-clairvoyant algorithm with predictions for scheduling identical
machines, with no preemption allowed, that achieves a competitive ratio of

1 + min{1,
α2

2 }(1 − 1
m

).

Proof. Let us consider the schedule returned by LPPT on a given instance I. We assume
that the jobs are indexed with respect to the LPPT order, that is in non-increasing order of
their predicted processing times: y1 ≥ y2 ≥ · · · ≥ yn. Let t be a job which is completed last
(i.e. Ct = Cmax(LPPT )). We now consider two cases.

Case 1: yt >
OP T (Ip)

2 . In this case t ≤ m and the job t is alone on its machine, and
starts at time 0, since otherwise there will be a machine in OPT (Ip) executing two jobs
of processing times strictly greater than OP T (Ip)

2 , which is a contradiction to the value of
OPT (Ip). Therefore, Cmax = xt, and the schedule is optimal (indeed OPT (I) ≥ xt).

Case 2: yt ≤ OP T (Ip)
2 . By the definition of α, we have that xt ≤ αyt ≤ α

OP T (Ip)
2 ≤

α2 OP T (I)
2 , where the last inequality holds by Proposition 2. Let st be the time at which

job t starts to be scheduled. Until st, all the machines are busy: this date is thus at

most
∑

j ̸=t
xj

m . Since Cmax(LPPT ) = st + xt, we have: Cmax(LPPT ) ≤
∑

j ̸=t
xj

m + xt =∑
j

xj

m − xt

m + xt. Since OPT (I) ≥
∑

j
xj

m and xt ≤ min{ α2OP T (I)
2 , OPT (I)}, we get:

Cmax(LPPT ) ≤ (1 + min{1, α2

2 }(1 − 1
m ))OPT (I). ◀

Note, this bound is better than 2 when α <
√

2. Moreover, when the predictions are
correct i.e. when α = 1, it is 3

2 − 1
2m (whereas LPT is ( 4

3 − 1
3m )-approximate).

We give a better analysis of the LPPT algorithm when α <
√

2.

▶ Lemma 9. When α <
√

2, LPPT is a non-clairvoyant algorithm with predictions for
scheduling identical machines, with no preemption allowed, that achieves a competitive ratio
of 2(α2+1)

3 .

Proof. Let us consider the schedule returned by LPPT on a given instance I. We assume
that the jobs are indexed with respect to the LPPT order, that is in non-increasing order of
their predicted processing times: y1 ≥ y2 ≥ · · · ≥ yn. Let t be a job which is completed last
(i.e. Ct = Cmax(LPPT )). We now consider two cases.

Case 1: yt >
OP T (Ip)

3 . If t ≤ m, then the job t is alone on its machine, and starts at
time 0. Therefore, Cmax(LPPT ) = xt, and the schedule is optimal (indeed OPT (I) ≥ xt).
Note also that t ≤ 2m, since otherwise there will be a machine in OPT (Ip) executing three
jobs of processing times strictly greater than OP T (Ip)

3 , which is a contradiction to the value of
OPT (Ip). Moreover, we can ignore the jobs t + 1, t + 2, . . . , n, since the makespan of LPPT

is not affected by their removal, while the optimal can only decrease. In what follows in this
case, we assume that the instance is reduced to contain only the jobs 1, 2, . . . , t.

ISAAC 2023



9:8 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

We next transform the reduced instance I to a new instance I ′ as follows:
For j = 1, 2, . . . , m, we set x′

j = αxj .
For j = m + 1, m + 2, . . . , t, we set

x′
j = xj

α , if xj > yj , and
x′

j = xj , otherwise.
Recall that we have yj

α ≤ xj ≤ αyj . So, we get x′
j = αxj ≥ yj , for all j = 1, 2, . . . , m, as well

as, x′
j ≤ yj , for all j = m + 1, m + 2, . . . , t. It follows that x′

j ≥ x′
j′ for any pair j, j′ such

that j ≤ m and j′ ≥ m + 1.
Next, we further modify the instance I ′ to obtain the instance Ī.
For j = 1, 2, . . . , m, we set x̄j = x′

j .
For the remaining jobs, we initialize µ = m. In an iterative way and while µ < t, we
search for the job k = argmaxµ+1≤j≤tx

′
j . Then, for j = µ+1, µ+2, . . . , k, we set x̄j = x′

k.
We reset µ = k and pass to the next iteration.

▶ Property 1. Consider a reduced instance I and the corresponding transformed instance Ī.
Then, the following properties hold.
(1) For j = m + 1, m + 2, . . . , t, we have that x̄j ≤ αxj.
(2) x̄m+1 ≥ x̄m+2 ≥ · · · ≥ x̄t.
(3) For any pair j, j′ such that j ≤ m and j′ ≥ m + 1, we have that x̄j ≥ x̄j′ .

Recall that, without loss of generality, we assumed that the instance I is reduced in the
first t jobs in non-increasing order of predicted processing times and that t ≤ 2m. Based on
this, we define the algorithm LPPT2 which works like LPPT under the constraint that each
machine can execute at most two jobs. It is clear that

Cmax(LPPT, I) ≤ Cmax(LPPT2, I) (1)

Similarly, we define the algorithm LPT2 which works like LPT under the constraint that
each machine can execute at most two jobs.

▷ Claim 10. Cmax(LPPT2, I) ≤ α2+1
2α Cmax(LPT2, Ī).

▷ Claim 11. Cmax(LPT2, Ī) ≤ 4
3 OPT (Ī).

▷ Claim 12. OPT (Ī) ≤ αOPT (I).

By combining Equation 1 and Claims 10, 11, 12, we get:

Cmax(LPPT, I) ≤ Cmax(LPPT2, I) ≤ α2 + 1
2α

Cmax(LPT2, Ī)

≤ 2(α2 + 1)
3α

OPT (Ī) ≤ 2(α2 + 1)
3 OPT (I).

Case 2: yt ≤ OP T (Ip)
3 . By the definition of α, we have that xt ≤ αyt ≤ α

OP T (Ip)
3 ≤

α2 OP T (I)
3 , where the last inequality holds by Proposition 2. Let st be the time at which job t

starts to be scheduled. Until st, all the machines are busy: this date is thus at most
∑

j ̸=t
xj

m .

Since Cmax(LPPT ) = st + xt, we have: Cmax(LPPT ) ≤
∑

j ̸=t
xj

m + xt =
∑

j
xj

m − xt

m + xt.

Since OPT (I) ≥
∑

j
xj

m we get:

Cmax(LPPT ) ≤ 1 + α2

3 (1 − 1
m

)OPT (I) ≤ 2(α2 + 1)
3 ◀

Lemmas 8 and 9 imply Theorem 7. ◀
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▶ Remark 13. For example, if m = 5 we have the competitive ratio of 2(α2+1)
3 for α ∈ [1,

√
5
4 ],

1 + α2

2 (1 − 1
m ) for α ∈ [

√
5
4 ,

√
2], and 9

5 for α >
√

2.

4.3 Arbitrary Release Dates
In the case where the jobs have arbitrary release dates, then the algorithm chooses the next
available job to assign to an idle machine, that is a job which is already released but not yet
scheduled. We call this algorithm the Longest Predicted Processing Time with Release dates
algorithm (LPPTR). Here also, each job j finishes xj units of time after its starting time,
while the scheduling decisions are taken based only on the predicted processing times.

▶ Theorem 14 (Consistency and Smoothness). LPPTR is a non-clairvoyant algorithm with
predictions for scheduling identical machines, with release dates and no preemption allowed,
that achieves a competitive ratio of 1 + min{1, α2

2 }.

Proof. Let l be a job that is completed last. Let rl be the release date of job l. If sl = rl we
have an optimal schedule.

Case 1: yl >
OP T (Ip)

2 . In the interval between rl and sl, no more than one other
job is performed. Let J(rl) be a set of jobs that were performed immediately after the
moment of time rl. Let Y = minj∈J(rl) yj . At most m jobs have a processing time greater
than OP T (Ip)

2 . Thus, Y ≤ OP T (Ip)
2 . Hence, sl − rl ≤ Y ≤ OP T (Ip)

2 ≤ α2OP T
2 . So, we get

Cmax = sl + xl = sl − rl + rl + xl = OPT + α2OP T
2 = OPT (1 + α2

2 ).

Case 2: yl ≤ OP T (Ip)
2 . Since OPT (Ip) ≤ αOPT , we have xl ≤ αyl ≤ α

OP T (Ip)
2 ≤ α2 OP T

2 .
Assume that we have an instance in which Cmax > OPT (1 + α2

2 ). Since Cmax = sl + xl, and
since OPT ≥ rl + xl, we have:

OPT (1 + α2

2 ) < sl + xl = sl − rl + rl + xl ≤ sl − rl + OPT.

We get that sl − rl > α2OP T
2 . Let [ts, tf ] be the last non-empty interval of idle time

before the job l begins processing. If such an interval does not exist, then all machines would
be busy up to time sl and OPT > sl. Then, Cmax = sl + xl < OPT + α2OP T

2 which is a
contradiction, so there exists at least a non-empty interval of idle time before that job l

begins.

▶ Lemma 15. In the LPPTR schedule, some jobs begin at or before ts and complete at or
after tf .

▶ Lemma 16. Let tf be the latest point before rl that some machine is idle. Then xl ≤
α2OP T

2 − tf

2 .

Additionally we have OPT ≥ sl − tf

2 (see Formula (1.10) in Hochbaum’s book [19]). The
proof is based on the Lemma 15 and the properties of greedy schedules. Finally, we get
Cmax = sl + xl ≤ sl + α2OP T

2 − tf

2 ≤ OPT (1 + α2

2 ), contradicting the original assumption on
Cmax. The first inequality follows from Lemma 16. ◀

▶ Remark 17. The fact that LPPTR is (2 − 1/m)-robust comes for free from [17, 18] since
it is a list scheduling algorithm.
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5 Preemptive Scheduling

In this section, we consider the preemptive case and we assume that all jobs and the
predictions of their processing times are available at time zero.

5.1 Lower bounds
▶ Proposition 18. If α ≥

√
2, there is no deterministic non-clairvoyant algorithm with

predictions for scheduling identical machines, with preemption allowed, which has a competitive
ratio smaller than m−1

m + 1
m⌊α2⌋ + 1 − 1

⌊α2⌋ .

▶ Proposition 19. There is no deterministic non-clairvoyant algorithm with predictions for
scheduling identical machines, with preemption allowed, which has a competitive ratio smaller
than m−1

m + 1 − 1
α2 .

▶ Proposition 20. If α <
√

2, there is no deterministic non-clairvoyant algorithm with
predictions for scheduling identical machines, with preemption allowed, which has a competitive
ratio smaller than mα2+m−1

α2+2(m−1) .

5.2 Competitive Algorithm
For this variant, we propose the Predicted Proportional Round Robin (PPRR) algorithm
which, at each time instant, shares the processing power of the machines to the uncompleted
jobs proportionally to their predicted processing times. More specifically, consider a time
t. PPRR considers the uncompleted jobs at t in non-increasing order of their predicted
processing times, i.e. y1 ≥ y2 ≥ . . . ≥ yk, where k is the number of uncompleted jobs at
t. We say that a job i is mandatory at time t if yi(m − i) ≥

∑k
j=i+1 yj . Each mandatory

job is executed alone in a separate machine. Let r be the number of mandatory jobs at
time t. Then, a non-mandatory job j at t is executed with speed m−r∑k

ℓ=r+1
yℓ

yj . That is, the

non-mandatory jobs are executed at a rate proportional to their predicted processing times.
Note that, if k > m, then the number of mandatory jobs at t does not exceed m − 1,

while if k ≤ m, then all k jobs are mandatory. Moreover, we need to recompute the set of
mandatory jobs and the speeds of non-mandatory jobs only at time instants corresponding
either to the begin of the schedule or to a completion time of a job.

The following lemma shows intuitively that, at a given time t where the total predicted
processing time is fixed, the presence of mandatory jobs speeds up the execution of non
mandatory jobs.

▶ Lemma 21. Let ϕ(i) = m−i∑k

ℓ=i+1
yℓ

. Consider a r such that yi(m − i) ≥
∑k

j=i+1 yj, for

each i = 1, 2, . . . , r. For each i, 1 ≤ i ≤ r, it holds that ϕ(i − 1) ≤ ϕ(i).

Let us now present some interesting properties of the solution obtained by the PPRR

algorithm.

▶ Property 2.
(1) The execution speed of each job can be only increased by the time.
(2) If a job becomes mandatory at a time t, then it remains mandatory until its completion.
(3) If a job i is mandatory at time t, then any job j such that j < i (yj ≥ yi) is also

mandatory.
(4) If two jobs i and j do not become mandatory during their execution and yi/xi > yj/xj,

then the job i is completed before the job j.
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(5) If two jobs do not become mandatory during their execution and have the same prediction
error α, then they are completed simultaneously.

(6) If the prediction is accurate or all jobs have the same prediction error then PPRR is
optimal.

▶ Theorem 22 (Consistency, Smoothness, Robustness). PPRR is a non-clairvoyant algorithm
with predictions for scheduling identical machines, with preemption allowed, that achieves a
competitive ratio of 2 − α2+m−2

α2m−1 . (Hence, PPRR is 1-consistent and (2 − 1
m )-robust.)

Proof. In a schedule constructed by an algorithm A, we call the job i critical if Ci = Cmax(A).
We assume, without loss of generality, that in an optimal schedule, all jobs are completed
simultaneously. Indeed, even if this is not the case, then a critical job, say i, is mandatory
from time 0 to OPT = xi. Let X =

∑
j xj . We have xi > X

m . We add jobs with a total
processing time of mxi − X. The value of the optimum will not change, and the solution
of the algorithm with an incorrect prediction can only worsen. Henceforth, we assume that
OPT = X/m and in the optimal schedule, all jobs are completed simultaneously.

Let σ∗ be an optimal schedule, and σ be the schedule obtained by the algorithm PPRR.
Moreover, let sj(t) be the processing speed of a job j at time t in σ. We denote by
xj(τ) the total execution time of the job j during the interval [0, τ ] in σ. In other words,
xj(τ) =

∫ τ

0 sj(t)dt. Let s̃j(τ)) be the average speed of the job j in the interval [0, τ ] in σ,
i.e., s̃j(τ) = xj(τ)/τ .

Let job c be the critical job in σ, i.e. Cc = Cmax(PPRR). Assume that c becomes
mandatory at time τc in σ. We have

Cmax(PPRR) = Cc = τc + xc − xc(τc) = τc + xc − s̃c(τc) · τc (2)

Note that all machines work without any idle time during the interval [0, τc] in σ. It follows
that mτc ≤ X − (xc − s̃c(τc)τc), where X =

∑
j xj . Hence, τc ≤ X−xc

m−s̃c(τc) and by substituting
τc in (2), we get

Cmax(PPRR) ≤ (X − xc)(1 − s̃c(τc))
m − s̃c(τc) + xc (3)

Consider the right-hand side of the expression (3) as a function h of s = s̃c(τc). Then, we
have

h′(s) = (X − xc) · −(m − s) + (1 − s)
(m − s)2 = (X − xc)(1 − m)

(m − s)2 < 0

Thus, h(s) reaches a maximum when s = s̃c(τc) is as small as possible.
In order to get a lower bound to s̃c(τc), observe that sc(0) = min{1, m−r∑n

ℓ=r+1
yℓ

yc}, where

r is the number of mandatory jobs at time 0. If sc(0) = 1, then the job c is mandatory
starting from time 0, and hence Cmax(PPRR) = xc and PPRR is optimal. In what follows
in this proof we consider that sc(0) = m−r∑n

ℓ=r+1
yℓ

yc. By Lemma 21, we get

sc(0) = m − r∑n
ℓ=r+1 yℓ

yc ≥ m − 0∑n
ℓ=0+1 yℓ

yc = m∑n
ℓ=1 yℓ

yc = myc

Y

where Y =
∑n

ℓ=1 yℓ. By the definition of α, we have that yc ≥ xc

α and αX > Y . So, it holds
that sc(0) ≥ mxc

α2X . From Property 2(1) of the PPRR algorithm, we have that sc(0) ≤ sc(t)
for all t ∈ [0, τc]. Then, it follows that

s̃c(τc) ≥ mxc

α2X
(4)
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By using Equation (4) as a lower bound on s̃c(τc) and replacing it in Equation (3) we get

Cmax(PPRR) ≤
(X − xc)(1 − mxc

α2X )
m − mxc

α2X

+ xc = (X − xc)(α2X − mxc)
α2mX − mxc

+ xc

= α2X2 − mXxc − α2Xxc + mx2
c + α2mXxc − mx2

c

α2mX − mxc

= α2X2 − mXxc − α2Xxc + α2mXxc

α2mX − mxc
(5)

Note that m and α are constants. Fix X and consider the right-hand side of the expression (5)
as a function f(xc). We have

f ′(xc) = (α2mX − α2X − mX)(α2mX − mxc) + m(α2X2 − mXxc − α2Xxc + α2mXxc)
(α2mX − mxc)2

= α2mX2(α2(m − 1) − (m − 1))
(α2mX − mxc)2 = α2mX2(α2 − 1)(m − 1)

(α2mX − mxc)2 ≥ 0

Thus, f(xc) reaches a maximum when xc is as large as possible. By our initial observation,
we have that xc ≤ X/m and by replacing in Equation (5) we get

Cmax(PPRR) ≤ α2X2 − X2 − α2X2/m + α2X2

α2mX − X

Observe that in an optimal schedule the total execution load is equally partitioned to all
machines, and hence OPT ≥ X

m . Therefore, for the competitive ratio ρ of PPRR we have

ρ ≤ α2X2 − X2 − α2X2/m + α2X2

α2X2 − X2/m
= 2α2m − m − α2

α2m − 1 = 2 − α2 + m − 2
α2m − 1 .

The consistency (resp. robustness) ratio is achieved by replacing α = 1 (resp. taking the
bound when α −→ ∞). ◀

Figure 1 shows the competitive ratio of algorithm PPRR as well as lower bounds on the
ratio of any deterministic preemptive algorithm. As we can see, lower bounds and upper
bounds are quite close, and get closer when m increases.
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Figure 1 In blue: competitive ratio of algorithm PPRR as a function of α (x axis). In green and
red: lower bounds on the competitive ratio of a deterministic algorithm with preemption. In red:
lower bound given by Proposition 18. Left (resp. Right): ratio when m = 2 (resp. m = 50). On the
left, in green: lower bound given by Proposition 20 (the bound of Proposition 19 is not drawn here
since when m = 2, it is lower than the other lower bounds). On the right, in green: lower bound
given by Proposition 19 (the bound of Proposition 20 is not drawn here since when m = 50, it is
lower than the other lower bounds).
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