
34th International Symposium on
Algorithms and Computation

ISAAC 2023, December 3-6, 2023, Kyoto, Japan

Edited by

Satoru Iwata
Naonori Kakimura

LIPIcs – Vo l . 283 – ISAAC 2023 www.dagstuh l .de/ l ip i c s

Editors

Satoru Iwata
University of Tokyo, Tokyo,
Hokkaido University, Sapporo, Japan
iwata@mist.i.u-tokyo.ac.jp

Naonori Kakimura
Keio University, Yokohama, Japan
kakimura@math.keio.ac.jp

ACM Classification 2012
Theory of computation; Mathematics of computing

ISBN 978-3-95977-289-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-289-1.

Publication date
December, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ISAAC.2023.0

ISBN 978-3-95977-289-1 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-6467-1335
mailto:iwata@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-3918-3479
mailto:kakimura@math.keio.ac.jp
https://www.dagstuhl.de/dagpub/978-3-95977-289-1
https://www.dagstuhl.de/dagpub/978-3-95977-289-1
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ISAAC.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-289-1
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ISAAC 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Satoru Iwata and Naonori Kakimura . 0:ix

Program Committee
. 0:xi

External Reviewers
. 0:xiii–0:xv

Invited Talks

Group Fairness: From Multiwinner Voting to Participatory Budgeting
Edith Elkind . 1:1–1:3

Faithful Graph Drawing
Seok-Hee Hong . 2:1–2:1

Regular Papers

Realizability of Free Spaces of Curves
Hugo A. Akitaya, Maike Buchin, Majid Mirzanezhad, Leonie Ryvkin, and
Carola Wenk . 3:1–3:20

k-Universality of Regular Languages
Duncan Adamson, Pamela Fleischmann, Annika Huch, Tore Koß, Florin Manea, and
Dirk Nowotka . 4:1–4:21

Unified Almost Linear Kernels for Generalized Covering and Packing Problems
on Nowhere Dense Classes

Jungho Ahn, Jinha Kim, and O-joung Kwon . 5:1–5:19

Geometric TSP on Sets
Henk Alkema and Mark de Berg . 6:1–6:19

Depth-Three Circuits for Inner Product and Majority Functions
Kazuyuki Amano . 7:1–7:16

Recognizing Unit Multiple Intervals Is Hard
Virginia Ardévol Martínez, Romeo Rizzi, Florian Sikora, and Stéphane Vialette . . . 8:1–8:18

Non-Clairvoyant Makespan Minimization Scheduling with Predictions
Evripidis Bampis, Alexander Kononov, Giorgio Lucarelli, and Fanny Pascual 9:1–9:15

Small-Space Algorithms for the Online Language Distance Problem for
Palindromes and Squares

Gabriel Bathie, Tomasz Kociumaka, and Tatiana Starikovskaya 10:1–10:17

Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width
Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný,
Filip Pokrývka, and Marek Sokołowski . 11:1–11:13

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Substring Complexity in Sublinear Space
Giulia Bernardini, Gabriele Fici, Paweł Gawrychowski, and Solon P. Pissis 12:1–12:19

New Support Size Bounds for Integer Programming, Applied to Makespan
Minimization on Uniformly Related Machines

Sebastian Berndt, Hauke Brinkop, Klaus Jansen, Matthias Mnich, and
Tobias Stamm . 13:1–13:18

Improved Guarantees for the A Priori TSP
Jannis Blauth, Meike Neuwohner, Luise Puhlmann, and Jens Vygen 14:1–14:16

An FPT Algorithm for Splitting a Necklace Among Two Thieves
Michaela Borzechowski, Patrick Schnider, and Simon Weber . 15:1–15:14

Fast Convolutions for Near-Convex Sequences
Cornelius Brand and Alexandra Lassota . 16:1–16:16

Matrix Completion: Approximating the Minimum Diameter
Diptarka Chakraborty and Sanjana Dey . 17:1–17:19

Distance Queries over Dynamic Interval Graphs
Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and
Daniel J. Zhang . 18:1–18:19

FPT Approximation Using Treewidth: Capacitated Vertex Cover, Target Set
Selection and Vector Dominating Set

Huairui Chu and Bingkai Lin . 19:1–19:20

Improved Approximation for Two-Dimensional Vector Multiple Knapsack
Tomer Cohen, Ariel Kulik, and Hadas Shachnai . 20:1–20:17

A Compact DAG for Storing and Searching Maximal Common Subsequences
Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno 21:1–21:15

Prefix Sorting DFAs: A Recursive Algorithm
Nicola Cotumaccio . 22:1–22:15

Clustering in Polygonal Domains
Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous . 23:1–23:15

Finding Diverse Minimum s-t Cuts
Mark de Berg, Andrés López Martínez, and Frits Spieksma . 24:1–24:17

Efficient Algorithms for Euclidean Steiner Minimal Tree on Near-Convex
Terminal Sets

Anubhav Dhar, Soumita Hait, and Sudeshna Kolay . 25:1–25:17

Rectilinear-Upward Planarity Testing of Digraphs
Walter Didimo, Michael Kaufmann, Giuseppe Liotta, Giacomo Ortali, and Maurizio
Patrignani . 26:1–26:20

A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules
Yann Disser and Nils Mosis . 27:1–27:17

Exact Matching: Correct Parity and FPT Parameterized by Independence Number
Nicolas El Maalouly, Raphael Steiner, and Lasse Wulf . 28:1–28:18

Contents 0:vii

Approximation Guarantees for Shortest Superstrings: Simpler and Better
Matthias Englert, Nicolaos Matsakis, and Pavel Veselý . 29:1–29:17

Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in
Bounded-Treewidth Graphs

David Eppstein and Daniel Frishberg . 30:1–30:13

Matching Cuts in Graphs of High Girth and H-Free Graphs
Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries 31:1–31:16

Computing Paths of Large Rank in Planar Frameworks Deterministically
Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis . . . 32:1–32:15

Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections
Petr Gregor, Torsten Mütze, and Namrata . 33:1–33:19

Computing a Subtrajectory Cluster from c-Packed Trajectories
Joachim Gudmundsson, Zijin Huang, André van Renssen, and Sampson Wong . . . 34:1–34:15

Shortest Beer Path Queries in Digraphs with Bounded Treewidth
Joachim Gudmundsson and Yuan Sha . 35:1–35:17

Coloring and Recognizing Mixed Interval Graphs
Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski,
Alexander Wolff, and Johannes Zink . 36:1–36:14

Shortest Beer Path Queries Based on Graph Decomposition
Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama 37:1–37:20

Temporal Separators with Deadlines
Hovhannes A. Harutyunyan, Kamran Koupayi, and Denis Pankratov 38:1–38:19

Regularization of Low Error PCPs and an Application to MCSP
Shuichi Hirahara and Dana Moshkovitz . 39:1–39:16

Structural Parameterizations of b-Coloring
Lars Jaffke, Paloma T. Lima, and Roohani Sharma . 40:1–40:14

Clustering What Matters in Constrained Settings: Improved Outlier to
Outlier-Free Reductions

Ragesh Jaiswal and Amit Kumar . 41:1–41:16

Single-Exponential FPT Algorithms for Enumerating Secluded F -Free Subgraphs
and Deleting to Scattered Graph Classes

Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk 42:1–42:18

Is the Algorithmic Kadison-Singer Problem Hard?
Ben Jourdan, Peter Macgregor, and He Sun . 43:1–43:18

Succinct Planar Encoding with Minor Operations
Frank Kammer and Johannes Meintrup . 44:1–44:18

Improved Approximation Algorithm for Capacitated Facility Location with
Uniform Facility Cost

Mong-Jen Kao . 45:1–45:14

ISAAC 2023

0:viii Contents

The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable
Liana Khazaliya, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, and
Kirill Simonov . 46:1–46:13

A Combinatorial Certifying Algorithm for Linear Programming Problems with
Gainfree Leontief Substitution Systems

Kei Kimura and Kazuhisa Makino . 47:1–47:17

Reconfiguration of the Union of Arborescences
Yusuke Kobayashi, Ryoga Mahara, and Tamás Schwarcz . 48:1–48:14

An Approximation Algorithm for Two-Edge-Connected Subgraph Problem via
Triangle-Free Two-Edge-Cover

Yusuke Kobayashi and Takashi Noguchi . 49:1–49:10

On Min-Max Graph Balancing with Strict Negative Correlation Constraints
Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and
Mong-Jen Kao . 50:1–50:15

On the Line-Separable Unit-Disk Coverage and Related Problems
Gang Liu and Haitao Wang . 51:1–51:14

Improved Smoothed Analysis of 2-Opt for the Euclidean TSP
Bodo Manthey and Jesse van Rhijn . 52:1–52:16

On the Complexity of the Eigenvalue Deletion Problem
Neeldhara Misra, Harshil Mittal, Saket Saurabh, and Dhara Thakkar 53:1–53:17

Connected Vertex Cover on AT-Free Graphs
Joydeep Mukherjee and Tamojit Saha . 54:1–54:12

On the Fine-Grained Query Complexity of Symmetric Functions
Supartha Podder, Penghui Yao, and Zekun Ye . 55:1–55:18

Testing Properties of Distributions in the Streaming Model
Sampriti Roy and Yadu Vasudev . 56:1–56:17

A Strongly Polynomial-Time Algorithm for Weighted General Factors with
Three Feasible Degrees

Shuai Shao and Stanislav Živný . 57:1–57:17

Preface

This volume contains the papers presented at the 34th International Symposium on Algorithms
and Computation (ISAAC 2023), which was held in Kyoto, Japan on December 3–6, 2023,
organized by Kyoto University, Japan. ISAAC 2023 provided a forum for researchers
working in the areas of algorithms, theory of computation, and computational complexity.
The technical program of the conference included 55 contributed papers. We received 184
submissions in response to the call for papers. Each submission received at least three reviews.
The program committee held electronic meetings using EasyChair. In the end, the program
committee selected 55 of the submissions for presentation at the symposium.

The program committee selected the following papers as the recipients of the ISAAC
2023 Best Paper and Best Student Paper Awards.

Best Paper. Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries: Matching
Cuts in Graphs of High Girth and H-Free Graphs.
Best Paper. Ragesh Jaiswal and Amit Kumar: Clustering What Matters in Constrained
Settings: Improved Outlier to Outlier-Free Reductions.
Best Student Paper. Nicola Cotumaccio: Prefix Sorting DFAs: a Recursive Algorithm.

The symposium included two invited presentations, delivered by Edith Elkind (University
of Oxford, UK) and Seok-Hee Hong (University of Sydney, Australia). Abstracts of their
talks are included in this volume. We are grateful to Inoue Foundation for Science, KDDI
Foundation, Support Center for Advanced Telecommunications Technology Research (SCAT),
The Telecommunications Advancement Foundation, and Algorithmic Foundations for Social
Advancement (AFSA) by Grant-in-Aid for Transformative Research Areas, MEXT, Japan
for financial support and to the local organizers of ISAAC 2023. Finally, we acknowledge the
endorsement from Technical Committee on Theoretical Foundations of Computing (COMP)
of IEICE and Special Interest Group on Algorithms (SIGAL) of IPSJ.

December 2023
Satoru Iwata and Naonori Kakimura

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Hee-Kap Ahn (POSTECH, Korea)
Hyung-Chan An (Yonsei University, Korea)
Kevin Buchin (Technische Universität Dortmund, Germany)
Yixin Cao (Hong Kong Polytechnic University, China)
T-H. Hubert Chan (University of Hong Kong, China)
Karthekeyan Chandrasekaran (University of Illinois, Urbana-Champaign, USA)
Zhiyi Huang (University of Hong Kong, China)
Ayumi Igarashi (University of Tokyo, Japan)
Takehiro Ito (Tohoku University, Japan)
Satoru Iwata (Chair, University of Tokyo & Hokkaido University, Japan)
Taisuke Izumi (Osaka University, Japan)
Naonori Kakimura (Keio University, Japan)
Michael Lampis (University Paris Dauphine, France)
Euiwoong Lee (University of Michigan, USA)
Yi Li (Nanyang Technological University, Singapore)
Chung-Shou Liao (National Tsing Hua University, Taiwan)
Julian Mestre (University of Sydney, Australia)
Frédéric Meunier (École des Ponts, France)
Wolfgang Mulzer (Freie Universität Berlin, Germany)
Petra Mutzel (University of Bonn, Germany)
Alantha Newman (Université Grenoble Alpes, France)
Harumichi Nishimura (Nagoya University, Japan)
Eunjin Oh (POSTECH, Korea)
Laura Sanitá (Bocconi University, Italy)
Gregory Schwartzman (JAIST, Japan)
Kavitha Telikepalli (Tata Institute of Fundamental Research, India)
Seeun William Umboh (The University of Melbourne, Australia)
Chunhao Wang (Pennsylvania State University, USA)
Anthony Wirth (The University of Melbourne, Australia)
Wei Xu (Tsinghua University, China)
Yu Yokoi (Tokyo Institute of Technology, Japan)

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers

Peyman Afshani
Taehoon Ahn
Marianne Akian
Hugo Akitaya
Tatsuya Akutsu
Xavier Allamigeon
Shinwoo An
Aditya Anand
Elena Arseneva
James Bailey
Niranka Banerjee
Paul Bell
Rémy Belmonte
Omri Ben-Eliezer
Ioana Bercea
Amey Bhangale
Umang Bhaskar
Sudatta Bhattacharya
Vijay Bhattiprolu
Davide Bilò
Jannis Blauth
Hans L. Bodlaender
Édouard Bonnet
Michaela Borzechowski
Valentin Bouquet
Cornelius Brand
Niv Buchbinder
Maike Buchin
Jin-Yi Cai
Clément Canonne
Matteo Ceccarello
Sankardeep Chakraborty
Yi-Jun Chang
Sudhanshu Chanpuriya
Abhranil Chatterjee
Ho-Lin Chen
Li-Hsuan Chen
Po-An Chen
Yurong Chen
Rajesh Chitnis
Kyungjin Cho
Keerti Choudhary
Chaeyoon Chung
Jaehoon Chung
Jonas Cleve

Nicola Cotumaccio
Radu Curticapean
Nathael Da Costa
Syamantak Das
Joshua Daymude
Jean-Lou De Carufel
Ronald de Haan
Paloma de Lima
Arnaud De Mesmay
Fabien De Montgolfier
Claire Delaplace
Argyrios Deligkas
Dong Deng
Patrick Eades
Martijn van Ee
Ryota Eguchi
Friedrich Eisenbrand
Jonas Ellert
Matthias Englert
Taekang Eom
Joshua Erde
Andreas Emil Feldmann
Weiming Feng
Yiding Feng
Pamela Fleischmann
Till Fluschnik
Klaus-Tycho Foerster
Mathew Francis
Takuro Fukunaga
Junhao Gan
Serge Gaspers
Colin Geniet
Daniel Gibney
Tatsuya Gima
Andreas Göbel
Adrián Goga
Petr Golovach
Alexander Golovnev
Fabrizio Grandoni
Yan Gu
Tesshu Hanaka
Ararat Harutyunyan
Koyo Hayashi
Kun He
Meng He

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Klaus Heeger
Kevin Hendrey
Duc A. Hoang
Alexandros Hollender
Wing-Kai Hon
Lingxiao Huang
Shenwei Huang
Zijin Huang
Ling-Ju Hung
Yuni Iwamasa
Afrouz Jabal Ameli
Lars Jaffke
Stephen Jaud
Shaofeng Jiang
Yonggang Jiang
Seungbum Jo
Mook Kwon Jung
Dominik Kaaser
Byeonguk Kang
Alexander Kauer
Jun Kawahara
Yasushi Kawase
Safia Kedad-Sidhoum
Arindam Khan
Eun Jung Kim
Hwi Kim
Yonghwan Kim
Sándor Kisfaludi-Bak
Boris Klemz
Katharina Klost
Fabian Klute
Kristin Knorr
Sang-Ki Ko
Yasuaki Kobayashi
Yusuke Kobayashi
Noleen Köhler
Tuukka Korhonen
Laszlo Kozma
Alexander Kulikov
Shubhang Kulkarni
Pankaj Kumar
O-Joung Kwon
Elmar Langetepe
Hoang-Oanh Le
Hung Le
Francois Le Gall
Chui Shan Lee
Jaegun Lee

Seungjun Lee
Jianqiang Li
Meng-Hsi Li
Shi Li
Young-San Lin
Andrzej Lingas
Kelin Luo
Jayson Lynch
Shunichi Maezawa
Ryoga Mahara
Florin Manea
Pasin Manurangsi
Giovanni Manzini
Nikolaos Melissinos
Yang Meng
Arturo Merino
Takuya Mieno
Pranabendu Misra
Shuichi Miyazaki
Benjamin Moseley
Guiqiang Mou
Moritz Muehlenthaler
Yonatan Nakar
Yuto Nakashima
Jesper Nederlof
Gabriel Nivasch
André Nusser
Naoto Ohsaka
Yoshio Okamoto
Taihei Oki
Lukáš Ondráček
Fukuhito Ooshita
Michal Opler
Joachim Orthaber
Yota Otachi
Katarzyna Paluch
Ami Paz
Binghui Peng
Asaf Petruschka
Marc Pfetsch
Matthias Pfretzschner
Christophe Picouleau
Vladimir Podolskii
Germain Poullot
Amaury Pouly
Pegah Pournajafi
Gautam Prakriya
Nicola Prezza

External Reviewers 0:xv

Saladi Rahul
Ashutosh Rai
Malin Rau
Carolin Rehs
André van Renssen
Adele Rescigno
Bernard Ries
Heiko Röglin
Thomas Rothvoss
Eric Rowland
Bodhayan Roy
Kunihiko Sadakane
Toshiki Saitoh
Yoshifumi Sakai
Sherry Sarkar
Maria Saumell
Ildikó Schlotter
Lia Schütze
Chris Schwiegelshohn
Andras Sebo
Martin P. Seybold
Yuan Sha
Amatya Sharma
Gokarna Sharma
Takeharu Shiraga
Igor Shparlinski
Xinkai Shu
Sebastian Siebertz
Bertrand Simon
Sunil Simon
Kirill Simonov
Mohit Singh
Shikha Singh
Nodari Sitchinava
Minju Song
Francisco Soulignac
K. Subramani
Yuichi Sudo
Noriyoshi Sukegawa
Hanna Sumita
Enze Sun
Yiming Sun
Akira Suzuki
Tsuyoshi Takagi
Mizuyo Takamatsu
Kenjiro Takazawa
Toru Takisaka
Suguru Tamaki

Yuma Tamura
Jakub Tarnawski
Pablo Torres
Meng-Tsung Tsai
Garnero Valentin
Manolis Vasilakis
Daniel Vaz
Giovanni Viglietta
Magnus Wahlström
Haitao Wang
Hung-Lung Wang
Shenghua Wang
Kunihiro Wasa
Sebastian Wiederrecht
Max Willert
Michal Wlodarczyk
Petra Wolf
Sampson Wong
Pei Wu
Mingji Xia
Chao Xu
Luze Xu
Yinzhan Xu
Jie Xue
Yutaro Yamaguchi
Yukiko Yamauchi
Wei Yu
Yang Yuan
Ahad N. Zehmakan
Chihao Zhang
Guochuan Zhang
Peng Zhang
Xinyuan Zhang
Xinzhi Zhang
Yuhao Zhang
Yuxuan Zhang
Rudy Zhou
Isabella Ziccardi

ISAAC 2023

Group Fairness: From Multiwinner Voting to
Participatory Budgeting
Edith Elkind #

University of Oxford, UK
Alan Turing Institute, London, UK

Abstract
Many cities around the world allocate a part of their budget based on residents’ votes, following
a process known as participatory budgeting. It is important to understand which outcomes of
this process should be viewed as fair, and whether fair outcomes could be computed efficiently.
We summarise recent progress on this topic. We first focus on a special case of participatory
budgeting where all candidate projects have the same cost (known as multiwinner voting), formulate
progressively more demanding notions of fairness for this setting, and identify efficiently computable
voting rules that satisfy them. We then discuss the challenges of extending these ideas to the general
model.

2012 ACM Subject Classification Applied computing

Keywords and phrases multiwinner voting, participatory budgeting, justified representation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.1

Category Invited Talk

1 Talk Summary

Many cities around the world allocate a fraction of their budget using a process known
as participatory budgeting: the local authority decides on a budget, collects proposals for
projects to be implemented (such as, e.g., renovating a playground, building an outdoor gym,
or planting trees), vets them for suitability, comes up with a cost estimate for each candidate
project, and then elicits the residents’ preferences over these projects [5, 11, 3]. The ballots
are then aggregated to decide which subset of projects should be implemented. The goal of
the aggregation process is to select a set of projects that fits within the given budget, yet
reflects the residents’ desires.

The implementation details of preference elicitation and aggregation processes vary from
one municipality to another. Some localities ask the voters to rank the projects or to approve
the projects they like (sometimes there is a bound on the number of projects that one is
allowed to approve), while others ask them to specify their “ideal” budget allocation (see, e.g.,
the discussion in the work of Benade et al. [4]). Then, once the preferences are submitted,
there is a multitude of procedures that can be used to aggregate the ballots into a collective
decision. For instance, if voters are required to submit approval ballots, i.e., list all projects
that they approve, the simplest (and widely used) method is to use the greedy strategy: one
can order all projects either by the number of approvals they receive or by the number of
approvals divided by the cost of the projects (‘bang for the buck’), and add the projects to
the selection one by one, skipping over the projects if adding them would violate the budget
constraint.

However, the greedy approach may result in outcomes that are clearly undesirable.
Imagine, for instance, that a city is partitioned into two districts by the railroad tracks, with
300,000 people living south of the tracks and 280,000 people living north of the tracks. As
there are few track crossings, the residents of each district only approve projects in their
own district. Now, suppose the overall budget is $1,000,000, and in each district there

© Edith Elkind;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 1; pp. 1:1–1:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elkind@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ISAAC.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Group Fairness in Participatory Budgeting

are five popular proposals that cost $200,000 each to implement (as well as various other
less popular proposals). Then, if 60% of the residents of each district participate in the
selection process, all five south-of-the-tracks popular projects receive more votes than all five
north-of-the-tracks projects, so the greedy approach would result in all money being spent
according to the wishes of the south-of-the-tracks district residents. Obviously, a much fairer
solution would be to implement three projects in the south and two projects in the north.

One can ensure fair distribution of funding across geographic areas by explicitly dividing
the budget among the districts in proportion to their population, but geographic diversity is
not the only concern that we need to worry about. For instance, we do not want the entire
budget to be spent on cycling infrastructure, or on children’s facilities; indeed, we want our
decisions to be fair to all groups of residents, including those that the city council is not
aware of. Conceptually, one can argue that if the total budget is B and the population size is
n, each resident should be entitled to allocate B/n dollars in any way they wish. This idea,
which is closely related to the concept of the core on cooperative game theory, suggests a
decentralised procedure, where residents can form groups to jointly support various projects.
However, the majority of residents would probably find it too burdensome to engage in
negotiations. Is there a simple voting rule that provides the same guarantees, but can be
implemented by the city council based on the residents’ ballots?

In this survey, we summarise the state of the art regarding participatory budgeting with
group fairness guarantees, under the assumption that voters’ preferences are captured by
approval ballots (i.e., each voter approves a subset of projects, and is indifferent among all
projects they approve). We formulate several axioms that aim to capture what it means
for a budget allocation process to be fair, describe voting rules that satisfy (some of) these
axioms, and discuss their algorithmic complexity.

In more detail, we start by considering the setting of multiwinner voting, i.e., a special
case of participatory budgeting where all projects have the same cost. We formulate several
fairness axioms for this model, such as justified representation [1], proportional justified
representation [10], extended justified representation [1], full justified representation [8], and
the core [1]. We present the definitions of popular multiwinner voting rules, focusing, in
particular, on Proportional Approval Voting (PAV) [6], the recently introduced Method of
Equal Shares [9], and their variants [2], and discuss their computational complexity. We
then discuss generalisations of these axioms and voting rules to the setting of participatory
budgeting, and outline their strengths and limitations [9, 7].

References

1 Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and Toby Walsh.
Justified representation in approval-based committee voting. Social Choice and Welfare,
48(2):461–485, 2017.

2 Haris Aziz, Edith Elkind, Shenwei Huang, Martin Lackner, Luis Sánchez-Fernández, and
Piotr Skowron. On the complexity of extended and proportional justified representation. In
AAAI’18, 2018.

3 Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. Pathways
Between Social Science and Computational Social Science: Theories, Methods, and Interpreta-
tions, pages 215–236, 2021.

4 Gerdus Benade, Swaprava Nath, Ariel D Procaccia, and Nisarg Shah. Preference elicitation
for participatory budgeting. Management Science, 67(5):2813–2827, 2021.

5 Yves Cabannes. Participatory budgeting: a significant contribution to participatory democracy.
Environment and urbanization, 16(1):27–46, 2004.

E. Elkind 1:3

6 D. Marc Kilgour. Approval balloting for multi-winner elections. In Handbook on Approval
Voting, pages 105–124. Springer, 2010.

7 Sonja Kraiczy and Edith Elkind. An adaptive and verifiably proportional method for particip-
atory budgeting. In WINE’23, 2023.

8 Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory budget-
ing with additive utilities. In NeurIPS’21, pages 12726–12737, 2021.

9 Dominik Peters and Piotr Skowron. Proportionality and the limits of welfarism. In ACM
EC’20, pages 793–794, 2020.

10 Luis Sánchez-Fernández, Edith Elkind, Martin Lackner, Norberto Fernández, Jesús Fisteus,
Pablo Basanta Val, and Piotr Skowron. Proportional justified representation. In AAAI’17,
pages 670–676, 2017.

11 Brian Wampler, Stephanie McNulty, and Michael Touchton. Participatory budgeting in global
perspective. Oxford University Press, 2021.

ISAAC 2023

Faithful Graph Drawing
Seok-Hee Hong #

School of Computer Science, The University of Sydney, Australia

Abstract
Graph drawing aims to compute good geometric representations of graphs in two or three dimensions.
It has wide applications in network visualisation, such as social networks and biological networks,
arising from many other disciplines.

This talk will review fundamental theoretical results as well as recent advances in graph drawing,
including symmetric graph drawing, generalisation of the Tutte’s barycenter theorem, Steinitz’s
theorem, and Fáry’s theorem, and the so-called beyond planar graphs such as k-planar graphs.

I will conclude my talk with recent progress in visualization of big complex graphs, including
sublinear-time graph drawing algorithms and faithful graph drawing.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Graph drawing, Planar graphs, Beyond planar graphs, Tutte’s barycenter
theorem, Steinitz’s theorem, Fáry’s theorem, Sublinear-time graph drawing algorithm, Faithful graph
drawing, Symmetric graph drawing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.2

Category Invited Talk

Funding Research supported by ARC (Australian Research Council) Future Fellowship and ARC
Discovery Projects.

Acknowledgements I would like to thank all my research collaborators, in particular, Peter Eades,
Hiroshi Nagamochi, Giuseppe Liotta, Amyra Meidiana, and Weidong Huang.

© Seok-Hee Hong;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:seokhee.hong@sydney.edu.au
https://orcid.org/0000-0003-1698-3868
https://doi.org/10.4230/LIPIcs.ISAAC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Realizability of Free Spaces of Curves
Hugo A. Akitaya #

Department of Computer Science, University of Massachusetts Lowell, MA, USA

Maike Buchin #

Department of Computer Science, Ruhr University Bochum, Germany

Majid Mirzanezhad #

Transportation Research Institute, University of Michigan, Ann Arbor, MI, USA

Leonie Ryvkin #

Department of Mathematics and Computer Science, Eindhoven University of Technology,
The Netherlands

Carola Wenk #

Department of Computer Science, Tulane University, New Orleans, LA, USA

Abstract
The free space diagram is a popular tool to compute the well-known Fréchet distance. As the Fréchet
distance is used in many different fields, many variants have been established to cover the specific
needs of these applications. Often the question arises whether a certain pattern in the free space
diagram is realizable, i.e., whether there exists a pair of polygonal chains whose free space diagram
corresponds to it. The answer to this question may help in deciding the computational complexity
of these distance measures, as well as allowing to design more efficient algorithms for restricted
input classes that avoid certain free space patterns. Therefore we study the inverse problem: Given
a potential free space diagram, do there exist curves that generate this diagram?

Our problem of interest is closely tied to the classic Distance Geometry problem. We settle
the complexity of Distance Geometry in R>2, showing ∃R-hardness. We use this to show that
for curves in R≥2 the realizability problem is ∃R-complete, both for continuous and for discrete
Fréchet distance. We prove that the continuous case in R1 is only weakly NP-hard, and we provide
a pseudo-polynomial time algorithm and show that it is fixed-parameter tractable. Interestingly, for
the discrete case in R1 we show that the problem becomes solvable in polynomial time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, Distance Geometry, free space diagram, inverse problem

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.3

Related Version Full Version: https://arxiv.org/abs/2311.07573

Funding Carola Wenk: partially supported by NSF grant CCF 2107434.

1 Introduction

The Fréchet distance is arguably the most popular distance measure for curves in computa-
tional geometry and has been studied extensively in the last years. It has application in various
fields, including geographic data analysis and the comparison of protein chains [25, 26, 35, 28].
For the latter application, typically the well-established variant, the discrete Fréchet distance,
is used. The standard tool for computing the Fréchet distance of two curves is the free space
diagram, which is the cross-product of the parameter spaces of the curves partitioned into
free space and its complement, where free space is the sublevel set of the distance function
for a given ε > 0. For two piecewise linear curves of m and n line segments parameterized
by their natural arc-length parametrization, it is well-known that the free space diagram
consists of mn cells, and the free space in each cell has the shape of a cropped ellipse [5]. The

© Hugo A. Akitaya, Maike Buchin, Majid Mirzanezhad, Leonie Ryvkin, and Carola Wenk;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 3; pp. 3:1–3:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo_akitaya@uml.edu
https://orcid.org/0000-0002-6827-2200
mailto:maike.buchin@rub.de
https://orcid.org/0000-0002-3446-4343
mailto:miirza@umich.edu
https://orcid.org/0000-0002-2950-673X
mailto:leonie.ryvkin@tue.nl
https://orcid.org/0000-0002-7036-1341
mailto:cwenk@tulane.edu
https://orcid.org/0000-0001-9275-5336
https://doi.org/10.4230/LIPIcs.ISAAC.2023.3
https://arxiv.org/abs/2311.07573
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Realizability of Free Spaces of Curves

Fréchet distance is at most ε if and only if there exists a monotone path in the free space
diagram that covers the parameter spaces of both curves. Hence, to compute the Fréchet
distance one searches for such a path in the free space diagram.

For different applications, many variants of the Fréchet distance have been developed,
which are typically also computed using the free space diagram. The discrete Fréchet distance
relies on (a discretization of the free space diagram) the free space matrix: For two discretized
curves given by n and m points, respectively, the n × m free space matrix with entries
ai,j ∈ {0, 1} captures whether two points i, j of different curves lie within ε > 0 distance of
one another, or not. The discrete Fréchet distance of two curves is at most ε iff there exists
a monotone “path” of 1 entries connecting opposing corners in the free space matrix.

Runtimes of the resulting algorithms usually depend on the complexity of the free space
diagram or free space matrix [23, 8, 10]. It is known that neither Fréchet distance nor discrete
Fréchet distance can be computed in subquadratic time unless SETH fails [12, 16, 13].
However, there are several faster algorithms for special curve classes such as [6, 24], which
exploit a special structure of the free space diagram. These complexity bounds always consider
the worst-case complexity of the free space diagram, but not every free space diagram can
be realized by a pair of curves. Also, some variants of the Fréchet distance have proven to be
NP-hard to decide [4, 17], some of which build certain free space diagrams for the reduction.

Here we therefore study the inverse problem: Given a (potential) free space diagram
(free space matrix), do there exist curves (ordered point sets) that generate this free space
diagram or matrix? To our knowledge this free space realizability problem has so far only
been studied for special cases [32, 18, 3]. Understanding it will give structural insights into
free spaces and the computation of the Fréchet distance, in particular for special curve
classes. Note that although we gained a good understanding of the realizability problem
in the settings described below, other settings remain to be investigated further. We are
particularly interested in studying settings where less information is given in the free space
diagram or matrix, e.g. only some cells or only cell boundaries are provided with the input.

Overview. We give results (see Table 1) for both the continuous and the discrete variant
of the problem, with free space diagram and free space matrix inputs, and curves may be
realized in Rd, with d = 1 or d ≥ 2. We show that for curves in R≥2 the realizability problem
is ∃R-complete both for the continuous case (Section 3) and for the discrete case (Section 5).
For the continuous case in R2, algorithms are known only for special cases [32, 18]. For curves
in R1, the problem in the discrete case interestingly becomes solvable in polynomial time
(Section 6), while in the continuous case, it is weakly NP-hard (Section 4) and fixed-parameter
tractable, and we also provide a pseudo-polynomial time algorithm (Section 4).

Table 1 Overview of our and known results.

Input Rd Results

Free Space Diagram

d ≥ 2 ∃R-complete (Theorem 4) Section 3
Algorithms for special cases ([32, 18])
weakly NP-hard (Theorem 7) Section 4

d = 1 FPT O(mn2k) (Theorem 8) Section 4
Pseudo-poly time (Theorem 13) Section 4

Free Space Matrix d ≥ 2 ∃R-complete (Theorem 14) Section 5
d = 1 O(nm2) (Theorem 16) Section 6

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:3

Related problems. The exploration of inverse problems is a recurrent subject in computa-
tional geometry, often applied to recognition and reconstruction problems. Notable examples
are the inverse Voronoi Diagram problem [9] and the visibility graph recognition problem [11].
Our problem of interest can be viewed as a curve embeddability problem given certain
proximity criteria on edge lengths and point-to-point distances between two curves in their
free space diagram. Our results have a significant impact on problems involving distance
constraints on geometric graphs, such as Distance Geometry and Disk Intersection Graphs.

Distance Geometry. Our results closely relate to problems involving distance constraints
on geometric graphs, such as the Distance Geometry problem, which is a classic inverse
problem in computational geometry. It involves embedding an abstract weighted graph in Rd

Euclidean space such that the Euclidean length of each edge corresponds to its weight [33].
This problem is equivalent to Linkage Realizability, where the edges correspond to rigid bars
in a mechanical linkage [33]. While distance geometry was shown to be NP-hard in the 70s,
its membership in NP remained open until Schaefer showed ∃R-completeness in 2012 [34]
for R2. Whether the problem remains ∃R-hard in higher dimensions was posed as an open
problem by Schaefer. To show that the continuous version of the free space realizability
problem in R≥2 is ∃R-hard we reduce from distance geometry, using a gadget from [33].

Unit Sphere Graphs. The sphericity of a graph is the minimum dimension for which
the graph has a unit sphere representation. Unit sphere graph realizability is known to
be ∃R-hard. Havel first introduced the study of sphericity in the context of molecular
conformation [27]. A unit sphere graph is an intersection graph of unit spheres and can be
seen as a complete graph where each edge is marked with a distance constraint ≤ 1 or > 1.
The problem of realizing a free space matrix corresponds to realizing a complete bipartite
graph where each edge is marked with a distance constraint ≤ 1 or > 1 (Section 5). This
defines a class of graphs, as do unit disk graphs. In contrast to a unit disk graph, there are
pairs of vertices (the ones in the same partite set) whose distances are dispensable. A similar
class are visibility graphs, the recognition of which is also known to be ∃R-complete [19].

Bipartite Distance-Constrained Graphs. Modeling distance constraints in general (non-
complete) graphs is useful when data is unavailable between every pair of nodes or due to the
topology of the underlying network. E.g., heteronuclear NMR is used to obtain less cluttered
and less noisy data [30]. This allows the inference of distances between two different types of
atoms, and thus, the distances constraints form a bipartite graph.

2 Preliminaries

Continuous case. Let P = (p0, . . . , pn) and Q = (q0, . . . , qm) be polygonal curves in Rd of
lengths ℓP and ℓQ, continuously parameterized by arc-length, i.e. pi = P (i) and qj = Q(j)
for i ∈ [n], j ∈ [m], where [n] = {1, · · · , n}. Given ε > 0, their free space is defined as
Fε(P, Q) = {(r, t) | ∥P (r)−Q(t)∥ ≤ ε}. The free space diagram puts this information in an
m× n grid: We define Dε(P, Q) as the colored rectangle R = [0, ℓP]× [0, ℓQ] ⊆ R2, where
a point (p, q) ∈ R is colored white iff (p, q) ∈ Fε(P, Q). The grid X, which is the set of
segments {pi × [0, ℓQ] | i ∈ {0, . . . , n}} ∪ {[0, ℓP] × qj | j ∈ {0, . . . , m}}, subdivides R into
n×m cells Ci,j . We call a single cell Ci,j empty if Ci,j ∩ Fε = ∅ and full if Ci,j ∩ Fε = Ci,j .
If ∅ ̸= Ci,j ∩ Fε ̸= Ci,j , the cell Ci,j is called partially full. A diagram Dε is called realizable
if there exist curves P, Q such that Dε(P, Q) = Dε. We assume that the exact lengths of

ISAAC 2023

3:4 Realizability of Free Spaces of Curves

all cell boundaries and the equation of each component’s boundary curve are part of the
input. We consider the real RAM computation model throughout the paper. In Figure 1, the
leftmost diagram is not realizable: Upon fixing the placement of segments corresponding to
cell C1,1, we have two options to place the remaining segments such that cell C2,2 is realized.
This either induces components in none of the remaining cells, or in both.

Dε

Q
Q′

P

P ′ε

Dε(P,Q) Dε(P
′, Q′)

Figure 1 Given diagram Dε, there are two ways to place curves P, Q in R2. Neither realizes Dε.

In the following, we denote the ball of radius r centered at a point x ∈ Rd as Br(x) :=
{p ∈ Rd | ∥x − p∥ ≤ r}. The ε-neighborhood of an object X is given by

⋃
x∈X Bε(x). We

denote by sP
i = pi−1pi, i ∈ [n], the line segment connecting consecutive vertices of P , and

define sQ
i analogously. In R1, if two consecutive segments sP

i , sP
i+1 have different orientations

(segments are placed on top of each other), we say the curve folds at the common folding
vertex pi. Else, we say that the curve is straight at pi. It is known that the free space of two
lines has the shape of a cropped ellipse with axis at ±45◦ [5, 31]. For curves in R1, the lines
are necessarily parallel, hence the ellipse degenerates to a slab bounded by lines at ±45◦ [14].

Partially full cells. We now establish a necessary condition for curves P, Q to realize Dε that
is used in Sections 3–4. Partially full cells give us information about the relative placement
of the segments. We use the term relative placement of two segments to mean that we know
the distances between the intersection point of the lines containing the segments and the
segment endpoints. Note that after fixing the position of one segment, this still allows for
two symmetric placements of the second segment.

▶ Lemma 1. Given a partially full free space cell, ε > 0, and four points on the boundary of
the ellipse in the cell, none of which are mirror images of another with respect to the ellipse’s
major and minor axes, we can compute the corresponding segments’ relative placement.

The proof (see Lemma 5.5 in [32]) relies on knowing that a cell is an ellipse at 45◦. Note
that we obtain much less information from full or empty cells, namely only that the segments
do or do not lie within or not within distance ε from each other.

Definitions: Discrete case. For discrete polygonal curves (i.e., point sequences) P, Q with n

and m points, resp., the free space is defined as Fε(P, Q) = {(i, j) ∈ [n]× [m] | ∥pi− qj∥ ≤ ε}.
We define the free space matrix Mε(P, Q) as the n×m matrix featuring entries ai,j ∈ {0, 1},
i ∈ [n], j ∈ [m] where ai,j = 1 if and only if (i, j) ∈ Fε(P, Q). For a given matrix Mε we ask
whether there exist curves P, Q such that Mε = Mε(P, Q).

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:5

3 ∃R-Completeness for Continuous Curves

We first show that given a diagram Dε, the problem of finding two curves in R2 that realize
Dε is ∃R-complete. We then generalize to higher dimensions in Section 3.1. Containment in
∃R is shown by expressing the problem using real inequalities, see Lemma 17, Appendix A.

We reduce from the problem of deciding whether a linkage has a planar realization which
was shown ∃R-hard by Abel et al. [1, 2]. A mechanical linkage is a mechanism made of rigid
bars connected at hinges. The input is a weighted graph G = (V (G), E(G), ℓG), where ℓG is
the weight function, and a function Π: W → R2, where W ⊆ V (G), that represents vertices
whose positions are pinned. A configuration C of a linkage L = (G, Π) is a straight-line
drawing of G where the length of each edge e ∈ E(G) is ℓG(e) and the position of each vertex
w ∈ W is Π(w). The linkage realization problem asks whether a given linkage admits a
configuration. A configuration C is noncrossing if C is a plane drawing. Abel et al. [1, 2]
showed that the linkage realization problem remains hard for a series of restrictions on
the input linkage L. We restate a direct consequence of Theorems 2.2.13 and 2.4.6 in [2].
Although not all conditions in the theorem below are explicitly stated in [2, Theorem 2.2.13],
they can be directly inferred by their construction in [2, Section 2.7].

▶ Theorem 2 (Simplified from [2], Theorems 2.2.13 and 2.4.6). Given a linkage L = (G, Π)
and a combinatorial embedding (clockwise circular order of edges around each vertex) σ of
G, deciding whether there exists a planar realization of L is ∃R-hard even if the following
constraints are enforced:
1. G is connected, and the length of every edge is an integer.
2. A set of edge disjoint subgraphs H of G can be assigned rigid, i.e., each angle between

consecutive incident edges in H is prescribed from {90◦, 180◦, 270◦, 360◦}. Each subgraph
H is a tree, and an edge in E(G) \ E(H) incident to H must be incident to a leaf of H.

3. Only three vertices are pinned (|Π| = 3), all three belong to the same rigid subgraph H

(described in constraint (2)), and they are not collinear.
4. For every noncrossing configuration C of L that satisfies constraints (1–3), holds:

a. C agrees with σ.
b. Angles that are not prescribed by constraint (2) lie strictly between 60◦ and 240◦.
c. The minimum distance of a vertex and a nonincident edge is at least a constant ϕ.

We call a vertex rigid if it is incident to at least two edges of the same rigid subgraph H ,
and nonrigid otherwise. By (2), every angle incident to a rigid vertex is prescribed while
no angle in a nonrigid vertex is prescribed (which by (4b) can only vary in the interval
(60◦, 240◦)). Note that distance geometry is equivalent to linkage realization with Π = ∅.
Since (3) makes Π irrelevant, Theorem 2 also implies hardness for distance geometry.

Reduction description. Given L and σ satisfying the constraints in Theorem 2, we construct
an instance Dε as follows. A full example can be seen in Figure 2. The idea is to build a
free space such that realizing curves trace out the linkage, following the given combinatorial
embedding. For this, we first transform G into a tree. The angle constraints in the linkage
can also be enforced in the free space using a specific gadget.

While there is a cycle in G, split one edge in a cycle by placing a new vertex in its
midpoint and performing a vertex split, creating two copies of the new vertex, each attached
to half of the original edge. We end up with a tree T . Let T ′ be the multigraph obtained
by doubling each edge of T . Intuitively, Dε forces the curves P and Q to roughly trace a
planar Eulerian circuit of T ′ using the combinatorial embedding σ. (Up to a reflection and

ISAAC 2023

3:6 Realizability of Free Spaces of Curves

v v'
v''

(a) (b) (c)

(d)

Figure 2 Example of our reduction from linkage realizability to free space diagram realizability.
(a) An input linkage L = (G, Π) and a subdivision vertex v in a cycle of G. Rigid vertices are
marked with gray angles. (b) Splitting v transforms G into a tree T . (c) The curves P and Q in R2

obtained from T . (d) The obtained free space diagram.

translation since Dε can only specify the relative placement of P and Q.) Q is exactly a
planar Eulerian circuit of T ′ while P traces the same circuit but avoids an ε-neighborhood
of each nonrigid vertex using our angle gadget (described later), which allows these angles
to lie freely between 60◦ and 240◦. Both P and Q trace the “outline” σ counterclockwise.
W.l.o.g. assume ϕ ≥ 6, scaling the linkage by a constant factor if necessary. We chose ε = 1
so that edges of P and Q that correspond to an edge e of G are close to each other and
far from other edges. Since every partially full cell determines the relative position of the
corresponding pair of edges, the four edges (two from P and two from Q) that correspond to
the traversal of e are fixed relative to one another and lie on top of each other. They then
simulate edge e. The angle gadget guarantees flexibility so that the angle between incident
edges can vary accordingly. We add free space components to make the newly introduced
subdivision vertices rigid: Their relative position is locked by Lemma 1 forming a 180◦ angle,
see the four small components on the sides of the free space diagram in Figure 2d.

The angle gadget, see Figure 3, is represented by the 12 free space cells shown in Figure 3(b).
It is located at a small neighborhood of a vertex v of Q; the figure only shows the portion of
the free space relative to this neighborhood. Note that v is a degree-2 copy of a vertex v∗ of
G. For clarity, we refer to all the copies of v∗ in Q with different labels (by construction,
there are deg(v∗) copies of each v∗ ∈ V (G), except for the starting vertex of the Eulerian
circuit, which has an extra copy). Let −→e1 and −→e2 be the two edges of Q incident to v, and

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:7

Q

Q

P

P(a) (b) (c) (d)

ve1
→

e1′→ e1,a
→

e1,b
→

e1,c
→

e1,d
→

e2′→

e2
→

Figure 3 The angle gadget. (a) The 90◦ configuration and (b) its free space diagram. (c) and (d)
show the extremal configurations of the gadget with angles 2 · tan−1(1/2) ≈ 53.13◦ and 270◦, resp.

let ←−e1 and ←−e2 be the corresponding copies going in the opposite direction in Q, respectively.
Locally, P has two edges −→e1

′ and −→e2
′ that overlap with −→e1 and −→e2 , respectively. We enforce

the overlap by making all free space cells relative to −→e1
′ (resp., −→e2

′) empty except for the ones
relative to −→e1 and ←−e1 (resp., −→e2 and ←−e2) which are partially full, containing an upward and
downward 45◦ full strip. The distance between v and the endpoints of −→e1

′ and −→e2
′ closest to

v is 2 by Lemma 1. We place four edges (−−→e1,a,−→e1,b,−→e1,c,−−→e1,d) between −→e1
′ and −→e2

′ of lengths
1, 3, 3, and 1 in this order. Only edges of length 1 have corresponding partially full cells:
C−−→e1,a,−→e1 and C−−→e1,a,←−e1 contain half of a disk of radius 1.

▶ Lemma 3. Given a realization of P and Q, assume that (−−→e1,a,−→e1,b,−→e1,c,−−→e1,d) lie to the
right of (−→e1 ,−→e2). Then, −→e1 and ←−e1 (resp., −→e2 and ←−e2) lie exactly on top of each other, and the
angle to the right of (−→e1 ,−→e2) is strictly between 2 · tan−1(1/2) ≈ 53.13◦ and 270◦.

Proof. The fact that −→e1 and ←−e1 lie exactly on top of each other is a consequence of applying
Lemma 1 to −→e1 and −→e1

′, and to −→e1
′ and ←−e1 . We now focus on the angle constraint. Note

that by Lemma 1, the relative positions of −→e1 and −−→e1,a (resp., −→e2 and −−→e1,d) is fixed. If we fix
the positions of −−→e1,a and −−→e1,d, then the positions of −→e1,b and −→e1,c are completely determined:
There are two points whose distance is 3 from the endpoints of −−→e1,a and −−→e1,d; one of them
causes −→e1,b and −→e1,c to intersect with Q which cannot happen since their free space cells
are empty. If the angle is 2 · tan−1(1/2) or smaller, the common endpoint of −→e1,c and −−→e1,d

would lie in the closed ε-neighborhood of −→e1 and C−→e1,−−→e1,c
would not be empty (Figure 3(c)),

a contradiction. If the angle is 270◦ or greater, a portion of −→e1,b would lie in the closed
ε-neighborhood of −→e1 and C−→e1,−−→e1,b

would not be empty (Figure 3(d)), a contradiction. For all
values in between there is a placement for −→e1,b and −→e1,c away from −→e1 and −→e2 , making the
section of the free space diagram exactly as required. ◀

Using Lemma 3 we can simulate a linkage L subject to the constraints in Theorem 2
using curves given by Dε, obtaining the following theorem.

▶ Lemma 4. It is ∃R-complete to decide if a given free space diagram is realizable in R2.

Proof. The described reduction produces a free space diagram Dε with of size O(|E(G)|2):
Q has length 2|E(G)| and each edge in |E(G)| generates up to 10 segments in P , depending
on whether the endpoints are rigid or not. The runtime is linear in the size of Dε: each row
corresponding to an edge of P has precisely two partially full cells. All other cells are empty.

Given a positive instance of linkage realization, Theorem 2(4) and Lemma 3 guarantee
that we can find a placement of P and Q realizing Dε as described in the reduction. The
other direction is a little more subtle. Dε forces Q to trace σ exactly: using Lemma 1 with

ISAAC 2023

3:8 Realizability of Free Spaces of Curves

u1

u2

v1

v2

ℓ(uv)

ℓ(uv)+1

1

√

(a) (b)

(c) (d)
P

Q
P

Q

Figure 4 (a) The dimension gadget corresponding to an edge uv with length ℓ(uv). (b) Three
gadgets in R3 corresponding to a degree-3 vertex. The gadget forces all vertices to be in one of two
planes. (c) The realization of an angle gadget after applying the dimension gadget. (d) The free
space and its realization (perturbed for clarity).

transitivity constraints the two edges of Q corresponding to an edge in E(G) to lie exactly
on top of each other, while the angle gadgets force the circular order around each vertex.
By Lemmas 3 and 18, Q traces a noncrossing configuration of L exactly. If there is a valid
placement of P and Q one can find a noncrossing configuration of L obtained by the image of
Q. If such a configuration does not satisfy Theorem 2(4), that would contradict Theorem 2.
Thus the promise in Theorem 2(4) must also be fulfilled by the Fréchet realization instance
and the angles in each angle gadget would indeed be between 60◦ and 240◦. ◀

3.1 Higher Dimensions
In order to show that free space realization is ∃R-hard in higher dimensions, we show that
the realizability of linkages and, thus, distance geometry are also ∃R-hard. Here, the linkage
realization is not required to be injective since we are in R>2, but the reduction will force
crossings to only happen between predictable pairs of edges. This will be important in our
reduction to free space realization since crossings between the curves appear in the free space
diagram. We remark that, although all the ingredients of this proof were already known, the
claim does not appear in the literature to the best of the authors’ knowledge.

▶ Theorem 5. Linkage Realization and Distance Geometry are ∃R-hard in R≥2.

Proof. Recall that linkage realization with no pinned vertices is equivalent to distance
geometry. The main ingredient of this proof is the dimension gadget shown in Figure 4 that
appears in [33]. The gadget is isomorphic to K4 which is globally rigid in R2 [20], meaning
that there is a unique embedding of the gadget in R2, and every realization of the gadget in
R>2 is congruent with the planar realization. Given a linkage L satisfying the constraints
of Theorem 2, replace every edge of G by a copy of the dimension gadget. Note that every
vertex v is now represented by two vertices v1 and v2. We call the resulting linkage L′.
The gadgets force all vertices v1 for all v ∈ V (G) to be in the same (k − 1)-hyperplane,
perpendicular to the edges v1v2. Thus, L′ is realizable in Rd iff L is realizable in R(d−1). ◀

▶ Theorem 6. It is ∃R-complete to decide if a given free space diagram is realizable in R≥2.

Proof. We adapt the dimension gadget to the free space diagram realizability problem. We
first argue for R3. Figure 4(d) shows the adapted gadget and its free space. We use the same
reduction as in Lemma 4, but replacing the edges of Q and the edges of P that overlap edges

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:9

of Q with the modified dimension gadget as follows. Each edge of Q is replaced by a path of
length 7, and each edge of P that lies in the interior of an edge of Q is replaced by a path of
length 10. The free space diagram between the two paths force the path of Q to be embedded
as the dimension gadget. Two-dimension gadgets are neighbors if their corresponding edges
share an endpoint. The cells between these paths and other non-neighbor dimension gadgets
are empty. The two length-ε edges of P in the angle gadget (−−→e1,a and −−→e1,d) induce partially
full cells in the free space of dimension gadget (first and last collumns in the free space
diagram of Figure 4(d)), forcing these edges to be perpendicular to the plane of the dimension
gadget. (See Figure 4(c)) The cells of the two length-3ε edges of P in the angle gadget (−→e1,b

and −→e1,c) remain empty and thus they must be realized far from the dimension gadget. Note
that the ε-neighborhood of v1 and v2 does not intersect P , and that the ε-neighborhood
of the edges of P in the angle gadget still does not intersect Q leaving the dihedral angle
between the planes of the neighbor dimension gadgets to vary as in Lemma 3. Thus the
embedding of P and Q corresponds to a realization of L′.

For dimension d > 3, we recursively apply the dimension gadget construction in the
following way. Note that in the d− 1-dimensional construction each edge of Q overlaps with
at least one edge of P (possibly degenerate to a vertex). We recursively replace each edge of
Q with the dimension gadget construction as normal. We split one edge of P that overlaps
with the edge of Q at its midpoint and insert the length-8 path forming a cross that contains
the midpoints of the edges in the dimension gadget of Q as in Figure 4(d). ◀

4 NP-Hardness and Algorithmic Results for Continuous Curves in R1

We briefly consider the realizability problem for curves in R1. In this case, the curves have
less space to be placed in and hence the free space diagram has limited “configurations”.
Cells are still empty, full or partially full cells, but now free space ellipses degenerate to slabs,
and the white space is bounded by parallel line segments oriented at + or −45◦, see [15, 31].
Here, we present only sketches. For details, we refer to [3]. We note that for curves in 1D
the problem is weakly NP-hard by a reduction from the Partition problem. The reduction
is similar to the hardness of ruler-folding.

▶ Theorem 7. Realizability of continuous curves in R1 is weakly NP-complete.

Next, we sketch an FPT-algorithm for continuous curves in R1. Inspired by computational
origami [22], we observe that a given diagram Dε is realizable iff it can be folded at the
grid lines so that the white space is aligned (overlapping only with other white space) into
a single convex component. In [3], we developed an algorithm to enumerate and check the
different foldings, inspired by the algorithm for simple-foldability in R1 [7]. Our algorithm
runs in exponential time O(mn2k), where k is the total number of (vertical and horizontal)
grid lines of Dε that do not intersect the white space (completely gray or completely white).

▶ Theorem 8. Given an m× n diagram Dε, in O(mn2k) time one can find curves P and Q

in R1, if they exist, such that Dε = Dε(P, Q).

We now describe an algorithm whose input is a diagram Dε where the dimensions of each
cell are integers upper-bounded by W , and that outputs a pair of curves P, Q in R1 such
that Dε = Dε(P, Q) if they exist. Otherwise, it returns false. We use the limited placement
options of curves in R1; the main technical ingredient is the use of dynamic programming to
decide the placement of the portions of P and Q for which we have no explicit information.

ISAAC 2023

3:10 Realizability of Free Spaces of Curves

(a) (b)

(c) (d)

ε

ε
ε

Figure 5 Regions defined by curves P (orange) and Q (blue). Certainty regions are green or
pink, subdivision vertices are gray, and uncertainty regions are white (middle) or gray (left/right).

We use the following placement graph1 G: The vertices V (G) are the set of segments in
the bipartite graph between segments of P and Q where an edge (vP

i , vQ
j) encodes that the

cell Ci,j is partially full. G can be computed in O(mn) time. By Lemma 3.1 in [3], if G has
a single component, we can either compute P and Q, or report that no such curves exist in
R1 in O(mn) time. We now show a key property of G for curves in R1. We say that a curve
in R1 spans a distance w if its image in R1 is an interval of length w. A component of G is a
singleton component if its size is one (i.e., a single vertex).

▶ Lemma 9. If P and Q are two curves in R1, then the placement graph G computed from
Dε(P, Q) has at most two non-singleton components. If either P or Q spans more than 2ε,
then G has at most one non-singleton component.

Proof. Let pℓ and pr be the leftmost and rightmost points of P , respectively. We first prove
the claim when P , without loss of generality, spans more than 2ε. For contradiction assume
there are 2 non-singleton components in G. Every point of Q in [pℓ − ε, pr + ε] has exactly
distance ε to some point in P and thus defines the boundary of a free-space component and
can be assigned an edge of G. By continuity, every maximal subcurve of Q in [pℓ − ε, pr + ε]
corresponds to edges in the same component of G. By transitivity, any two overlapping
subcurves of Q in [pℓ−ε, pr +ε] are also represented in the same component of G as both have
at least one point at distance exactly ε from the same point in P . Thus the two components
in G correspond to nonoverlapping maximal subcurves of Q in [pℓ − ε, pr + ε] and there is no
third subcurve of Q that overlaps the first two. Then, Q is disconnected, a contradiction.

Now, consider the case that both P and Q span less than 2ε. The points in R1 that are
exactly at distance ε from some point in P form the intervals [pℓ−ε, pr−ε] and [pℓ +ε, pr +ε].
The same argument as above shows that the subcurves of Q in each of these intervals define
a single component in G. Thus, there are at most 2 non-singleton components. ◀

Algorithm description. First, we subdivide the two curves based on the orthogonal projec-
tions of the free space’s boundary (see Figure 5). We introduce subdivision vertices so that
each point in the interior of a segment is either:
1. farther than ε from any point in the other curve (an edge whose corresponding row or

column in Dε is completely empty);

1 This is a variation of the placement graph used for the same problem for continuous curves in R2 [32].

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:11

2. within ε distance from every point in the other curve (an edge whose corresponding row
or column in Dε is completely full); or

3. at exactly ε distance from a point of the other curve (an edge covered by the orthogonal
projection of the boundary of the free space).

We partition the segments of both curves based on these three types. Singleton components
of G correspond to segments of types (1) and (2), and vertices of non-singleton components
correspond to segments of type (3). The first correspond to segments of one curve that are
farther than ε from every point in the other curve. The presence of type (2) segments implies
that one of the curves spans less than 2ε. Adding subdivision vertices does not asymptotically
increase the complexity of the problem as each segment is subdivided at most twice.

For each of the two curves, we partition R into up to 5 regions used to embed the segments
of each of the types based on containment in the ε-neighborhoods of the extreme points of
the other curve. Let pℓ and pr be the leftmost and rightmost points of P . We note that we
do not have previous knowledge of the points pℓ and pr but we later describe how to infer
information about these points from Dε. The regions serve as an abstraction that allows
us to divide the problem into subproblems. If the balls Bε(pℓ) and Bε(pr) intersect, we call
the interval [pr − ε, pℓ + ε] the middle uncertainty region (colored white in Figure 5(a) and
(c)). Segments of type (2) must be embedded in this region. The intervals of R1 contained
in a single disk are called left and right certainty regions, respectively [pℓ − ε, pr − ε] and
[pℓ + ε, pr + ε] (colored green or pink in Figure 5(a) and in the bottom curve in (c)). If Bε(pℓ)
and Bε(pr) do not intersect, then we call the interval [pℓ − ε, pr + ε] the middle certainty
region (colored green in the top curve of Figure 5(c)). The segments of type (3) must be
embedded in these regions. In both cases, we call the intervals (−∞, pℓ − ε] and [pr + ε,∞)
the left and right uncertainty regions (colored gray in Figure 5. Note that the figure only
shows a closeup view and the only visible portion of a right uncertainty region is shown for
the bottom curve in (c)). The segments of type (1) must be embedded in these regions.

▶ Lemma 10. Given Dε, in O(nm) time we can partition the segments of Q into the three
types and assign each segment to a region.

Proof. The orthogonal projection of the components can be computed by a traversal of
the free space’s boundary. Thus, we can compute the subdivision vertices in O(nm) time.
The types of all segments can be inferred from Dε in O(nm) time. We can compute G in
O(nm) time. If there are two non-singleton components, we arbitrarily fix the orientation of
one segment and use Lemma 3.1 in [3] to decide the relative placement for their respective
segments. Note that the type of the segments adjacent to a segment in a certainty region
determines which of the components is the left and which is the right certainty region: the
left certainty region is adjacent to segments of type (2) on its right boundary. ◀

We can use Lemma 3.1 in [3] to determine the relative embedding of P and Q in certainty
regions. It remains to determine whether the subcurves in uncertainty regions can be
embedded. We use a dynamic program (DP) to solve the problem in each uncertainty region
separately. We further divide the problem into two cases depending on whether we know
the relative position of the boundaries of the respective region. The input of each DP is a
maximal subcurve of P (resp., Q) in an uncertainty region. The DP computes the possible
placements of the subcurve for a set of boundary constraints. We later describe how to
combine the output of all the DPs into a single solution.

Fixed boundary subproblem. If one of the curves does not have edges of type (2), by
Lemma 3.1 in [3] we know the size of the uncertainty regions. We define DP problems for
each maximal subcurve in an uncertainty region whose value is true iff it is possible to

ISAAC 2023

3:12 Realizability of Free Spaces of Curves

realize the subcurve in the region. We define subproblems based on a suffix of the subcurve
and the coordinate of the first point of the suffix (details are left to a full version of this
paper). The recursive definition tries embedding the next edge oriented towards the right or
left, thus each subproblem depends on only two subproblems. The number of subproblems
depends on the number of segments in the subcurve and the size of the uncertainty region.

▶ Lemma 11. One can compute each fixed boundary subproblem defined by a subcurve Q′

with n′ segments, each with an integer length of at most W , and an integer interval [0, r], in
O(n′ ·min(r, n′W)) time.

Proof. Since k ∈ {1, . . . , n′} and s ∈ {0, . . . , r} there are at most O(n′r) subproblems. We
can also upper-bound s by n′W since this is the maximum length of the image of Q′ (which
is necessary in the case when r = ∞). Each subproblem can be computed in O(1) time.
Thus the total runtime is O(n′ ·min(r, n′W)). ◀

Variable boundary subproblem. When both curves have segments of type (2), the size of
the middle uncertainty region of one curve depends on the size of the middle uncertainty
region of the other. We similarly define a DP problem for each maximal subcurve in an
uncertainty region. However, each subproblem is also defined by a suffix of the subcurve, the
coordinate of the first point, and, additionally, the size of the uncertainty region. In this
case, the size of the uncertainty region is upper-bounded by 2ε.

▶ Lemma 12. For variable boundary subproblems, in O(max(n, m) · ε2) time, one can
compute all DP tables and, if there exist P and Q in R1 that realize Dε, find rP and rQ that
are compatible with a solution to all subproblems, where rP and rQ denote the sizes of the
middle uncertainty regions of P and Q respectively.

Proof. There are O(m + n) DP tables since this is the upper bound on the number of
maximal subcurves in the middle uncertainty regions. Each table has O(n′ · ε2) subproblems,
each can be computed in O(1) time, where n′ is the size of the maximal subcurve. Thus,
it takes O(max(n, m) · ε2) to compute all DP tables. For each table, we can keep track in
a separate data structure what values of α have an entry R(i, ., α) = true. Then, given
values for rP and rQ, we can check whether there exist a compatible solution in each table in
O(1) time per table. Thus, we can try all possible rP , rQ ∈ {1, . . . , 2ε} searching for values
compatible with a solution for each DP problem. Then, searching for a set of compatible
solutions takes O(max(n, m) · ε2) time. ◀

▶ Theorem 13. Given an m× n free space diagram Dε, where n ≥ m, every cell has integer
dimensions of at most W , and ε is an integer, we can produce two curves in R1 that realize
Dε or answer false if no such curves exist in time O(max(nε2, n2W)).

5 ∃R-Completeness for Discrete Curves in R2

We now turn to the discrete Fréchet distance, and prove that realizability by curves in R≥2

for a given free space matrix is also ∃R-complete. We reduce from d-Stretchability, which
asks whether there exists an arrangement of hyperplanes in R≥2 that realizes a combinatorial
description. The formal description follows in the next paragraph. We use the machinery
developed by Kang and Müller [29] to show that recognizing a d-sphere graph (generalization
of unit disk graphs in Rd) is ∃R-hard for d ≥ 2. (Although only NP-hardness is claimed
in [29], their proof also extends to ∃R-hardness as noted in their conclusion.) Recall that we
explain in Section 1 that, though they are similar, our problem differs from d-sphericity.

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:13

An instance of d-Stretchability is given by a set S ⊆ {−, +}n of size 1 +
(

n+1
2

)
. An

arrangement of n hyperplanes divides Rd into 1 +
(

n+1
2

)
cells. Each vector in S corresponds

to a cell in a potential arrangement. We denote by vj ∈ S the jth vector in S and by vj [i]
its ith coordinate. Then vj [i] = − (resp., vj [i] = +) if the corresponding cell is below (resp.,
above) the ith hyperplane. Note that (−, . . . ,−) and (+, . . . , +) must be in S, and so we
assume they are respectively v1 and v2. The problem asks whether S is the combinatorial
description of an arrangement of n hyperplanes.

Reduction. Given an instance S of d-Stretchability of n hyperplanes we construct a
2n× |S| free space matrix Mε as follows. We partition P (whose vertices correspond to rows
of Mε) into two subcurves P + = (a1, . . . , an) and P− = (b1, . . . , bn). Informally, ai (resp.,
bi) will be a point in the upper (resp., lower) halfspace of a hyperplane ℓi in the arrangement.
Each column j of Mε (i.e., vertex of Q) represents a vector in vj ∈ S, that is, Mε[i][j] = 0
and Mε[n + i][j] = 1 (resp., Mε[i][j] = 1 and Mε[n + i][j] = 0) if vj [i] = − (resp., vj [i] = +).

▶ Theorem 14. Given a free space matrix Mε, it is ∃R-complete to decide whether there
exists a pair of curves P and Q in R≥2 that realizes Mε.

Proof. Containment in ∃R can be proven by a straightforward reduction to ∃R similar
to the proof of Lemma 17. We now focus on the reduction defined above. It is clear
that it runs in polynomial time. Assume that there exists a pair of curves P and Q that
realizes Mε. Refer to Figure 6(a). We use the labels of point of P defined in the reduction
and assume Q = (q1, . . . , q|S|). Recall that, informally, points q1 and q2 represent vectors
v1 = (−, . . . ,−) and v2 = (+, . . . , +), respectively. Rotate the solution in order to make
the vector −−→q1q2 vertical and pointing upwards. We build a hyperplane arrangement as
follows. For each i ∈ [n], create a hyperplane ℓi bisecting the segment aibi. Now, we argue
that qj , j ∈ {1, . . . , |S|} is in a cell in the produced arrangement with description vj . Let
C1 and C2 be the cells in the arrangements of circles of radius ε containing q1 and q2,
respectively. By definition, if vj [i] = +, then qj must be within ε distance from ai and
farther than ε from bi, that is qj ∈ Bε(ai) \ Bε(bi). Thus, C1 = (

⋂n
i=1 Bε(bi) \

⋃n
i=1 Bε(ai))

and C2 = (
⋂n

i=1 Bε(ai) \
⋃n

i=1 Bε(bi)). Note that every hyperplane ℓi must separate C1 and
C2 by definition. Thus every ℓi intersects the line segment q1q2. We focus on a specific
hyperplane ℓi. Without loss of generality assume vj [i] = +. Then, Bε(ai) \ Bε(bi) is above ℓi

and so is qj . Therefore, the produced hyperplane arrangement realizes S.
Now assume that there exists a hyperplane arrangement realizing S. Refer to Figure 6(b).

For each cell in the arrangement described by vj , choose a point qj in the interior of the
cell. As before, every hyperplane intersects the line segment q1q2, since q1 is below all the
hyperplanes and q2 is above. Let ti be the intersection of ℓi and q1q2. Define the balls
Br(w+

i,r) and Br(w−i,r) respectively above and below ℓi, tangent to ℓi at ti. Note that Br(w+
i,r)

(resp., Br(w−i,r)) equals the upper (resp., lower) halfspace of ℓi when r → ∞. Thus, for
sufficiently large r, Br(w+

i,r) contains all points qj above ℓi and Br(w−i,r) contains all points
qj below ℓi. Let r∗ be a sufficiently large r such that the previous statement is true for all
i ∈ [n]. Scale the entire construction to make r∗ = ε. Then, we can construct P by making
ai = w+

i,ε and bi = w−i,ε. Now, each qj is contained in the appropriate cell of the arrangement
of circles of radius ε centered at points of P . Thus, the constructed P and Q realize Mε. ◀

ISAAC 2023

3:14 Realizability of Free Spaces of Curves

q2

q1

q2

q1

q2

q1

a1

b1

w+1,r* =a1

t1

w1,r* =b1

a2

b2

`2

`1

r*="

(a)

(b)

Figure 6 Reduction from S = {(−, −, −), (+, +, +), (−, −, +), (−, +, +), (−, +, −), (+, +−),
(+, −, −)}. (a) Transforming a solution to Mε into a line arrangement that realizes S. (b) Trans-
forming a solution to S into curves P and Q that realize Mε. Here squares represent points of P

and circles represent points of Q.

6 A Polynomial Time Algorithm for Discrete Curves in R1

We now turn to realizability for discrete curves in R1 and show that this can be decided in
polynomial time. We lend our main idea from the unit-interval graph recognition (UIGR)
in [21]: given an abstract graph G whose nodes are intervals and two intervals intersect iff
there is an edge between the two corresponding nodes in G, the goal is to find a placement of
intervals in the real line such that the intersections induced by them fulfill G. See Figure 7
for an example. In free space realizability, we derive a unit interval graph G from the free
space matrix Mε. We then adapt the idea in [21] to handle the realizability in our case.

First, we borrow some notations from [21]. For a vertex v ∈ G the neighboring vertices
of v is denoted by N(v). We also define N [v] = N(v) ∪ {v}. Two vertices u and v are
indistinguishable if N [u] = N [v]. In order to recognize a unit-interval graph, Corneil et
al. [21] propose a linear-time algorithm: (i) find the left anchor in G (the left-most interval in

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:15

a

b c

d e f

g h

i

a
b
c

d
e
f

g
h

i

Figure 7 An abstract graph of intervals and its recognition in R1.

the recognition), (2) perform a BFS search starting at the left anchor to get a partial order of
the intervals, meaning that some groups of intervals are ordered properly, but still intervals
belonging to each group need to be re-ordered, and (3) refine the partial order, i.e., the
intervals within in each group, to get the global order. If the global order exists, return “YES”,
and “NO”, otherwise. To handle (1), they perform a BFS from an arbitrary node in G. Find
a vertex z at the last level Lt of the BFS search such that deg(z) = min{deg(w) : w ∈ Lt}.
In (2), they locally order the vertices in G based upon the level in which they are encountered
along the BFS search from z. Finally in (3), in each level Lk obtained in (2) they sort each
vertex v ∈ Lk in an increasing order of D(v) = |Next(N(v))| − |Prev(N(v))|. Here, Next(v)
is the set of adjacent vertices to v in Lk+1 and Prev(v) is the set of adjacent vertices to v

in Lk−1. Next, for each vertex v in G, they compute α(v) = min{order(u) : u ∈ N [v]} and
ω(v) = max{order(u) : u ∈ N [v]}, where order(u) is the order in which u is encountered on
the line. In the end, if there exists a v for which α(v) ̸= ω(v), “NO” is returned, and “YES”
is returned, otherwise. We modify Step (3) to handle our case.

The problem of realizing Mε is more restrictive than UIGR as follows. Let ε = 1/2.
Similar to the R2 case, we can see the realization of Q = (q1, . . . , qn) as an arrangement of
intervals Bε(qj) partitioning R1. Each row i of Mε describes a “cell” in the arrangement
(which is an interval in R1) where we place a point pi of P . Thus, Mε requires a unit interval
realization of P with not only prescribed adjacencies in G but prescribed cells. Our goal is to
take the partial order that we get from (2), and refine it to be closer to a global order using
information from Mε. In the following, we refer to vertices of G and the interval they refer to
interchangeably, and we call the maximal set of vertices that are pairwise indistinguishable
an equivalence class. See Appendix B for a full algorithmic description.
DiscreteRealizabilityAlgo(Mε) : (1) Construct the unit-interval graph G from Mε. (2)
Choose a left anchor v0 by running a BFS search on G. (3) Perform a BFS on G starting
at v0 to obtain a partial order of the intervals. (4) Refine the partial order by sorting the
intervals at each level of the BFS under the criterion of D(v) = |Next(N(v))| − |Prev(N(v))|.
(5) Refine the partial order D to an order D′: For each row of Mε, place intervals of entry 1
in the equivalence class C towards those intervals that don’t belong to C whose entries are 1
and orders are different than intervals in C. (6) Extend the partial order defined by the BFS
levels and D′ to a global order breaking ties arbitrarily. (7) Verify whether the produced
arrangement is compatible with Mε or not.

▶ Lemma 15. The algorithm returns “YES” if and only if Mε is realizable.

Proof. By Step (7), it is clear that when the algorithm returns “YES” the instance Mε is
realizable. If the algorithm returns “NO”, we show that there are no P and Q realizing Mε.
Note that the constraints in the ordering obtained from Steps (1–4) are the same as for UIGR.
Thus, we must show that if G is not a unit interval graph, then Mε is not realizable. We
show the constrapositive: if Mε is realizable, then G is a unit interval graph. As discussed
before, the realization of Q implies the realization of a unit interval graph G∗ whose intervals

ISAAC 2023

3:16 Realizability of Free Spaces of Curves

are Bε(qj), for ε = 1/2. It is clear that G∗ is a supergraph of G since the required cells in
the interval arrangement exist containing points of P . Let qiqj be an edge that exists in
G∗ and not in G such that qi is to the left of qj and with shortest interval Bε(qi) ∩ Bε(qj).
Since qiqj is not in G, Bε(qi) ∩ Bε(qj) contain no points of P and all the cells in this interval
are not necessary. By the assumption that Bε(qi) ∩ Bε(qj) is shortest, there is no point qk

of Q to the right of qj whose interval Bε(qk) intersects Bε(qi) ∩ Bε(qj). Let S be the set
of points including qj and all points qk of Q to the right of qj whose interval Bε(qk) does
not intersect Bε(qj). Move all points in S until the intersection Bε(qi) ∩ Bε(qj) disappears.
By construction, ass cells previously in Bε(qi) ∩ Bε(qj) disappear. We show that no other
cell does, and thus the modified Q is still a solution for Mε. A cell to the left of qj − ε is
not affected since we only move points to the left of qj . A cell to the right of qj + ε would
disappear if Bε(qj) starts to intersect with an interval that it didn’t before. This does not
happen since S contains all such intervals. A cell in Bε(qj) \ Bε(qi) would disappear if an
interval defined by qk ∈ S \ {qj} stopped intersecting another interval. Recall that there
are no intervals whose right endpoint are between qj + ε and qj + ε + |Bε(qi) ∩ Bε(qj)| by
the “shortest” assumption. Then, such cells do not exist. Thus, we produced a solution
to Mε whose interval intersection graph has fewer edges than G∗. Applying this argument
successively we conclude that there exist a solution whose intersection graph is G.

We now show that Step (5) is necessary. Suppose there are four intervals {a, b, c, d} in
row r, Ir = {a, c}, C = {b, c, d}, and C ′ = {c}. Also by assumption a <D b =D c =D d. For
the sake of contradiction, suppose that there exists a positive solution that does not place
the interval c before C\C ′ = {b, d} and after Ir\C = {a}. Placing c before a implies that
c <D a which is a contradiction. Placing c after b implies that the intersection Bε(a) ∩ Bε(c)
is contained in Bε(b). This means that the cell required by Ir = {a, c} does not exist, which
is again a contradiction.

Finally, we analyse Steps (6–7). The only worry is that there might exist two extensions
of the partial order produced in Step (5) such that one is a positive solution and the other
isn’t. Let qi and qj be two incomparable vertices in the partial order. Since Step (5) refines
equivalence classes, qi and qj are also in the same equivalence class C. Then, there exist
no row containing an interval not in C whose entries relative to qi and qj are different. If
there is a row containing only a proper subset of C, the arrangement must contain a cell
in which the proper subset of C intersect and that does not intersect any other interval.
Since intervals in C intersect the same intervals by definition, including intervals that must
be to the left and to the right of intervals in C (note that we add v0 and vf so that every
equivalence class has a predecessor and successor), this cell cannot exist. Then Step (7)
returns “NO”. Else, the columns relative to qi and qj are identical and interchangeable. ◀

The construction of G takes O(k2n) time where k ≤ m is the maximum number of entries
filled with 1 over all rows in Mε, since G might contain n cliques of size k. The other steps
can be implemented in linear time. The full algorithm description is given in Appendix B.

▶ Theorem 16. Given an n×m free space matrix Mε, we can decide whether there exist
curves P and Q in R1 that realize Mε in O(nm + k2n) time, where m ≤ n.

Proof. Correctness is given by Lemma 15. First note that the size of V derived from Mε

is |V | = m, and |E| = O(m2) due to the size of the adjacency matrix we use in Step (1),
however, we need O(k2n) time to add all edges in G due to the size of the clique induced
by the intervals with entry 1 in each row. The size of each clique is at most k2. Thus
|E| = min(m2, k2n). Steps (2–3) takes O(|V |+ |E|) = O

(
m + min(m2, k2n)

)
for performing

the BFS on G. Step (4) takes O(|V |) = O(m) time using a counting sort per level of the

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:17

BFS. Step (5) takes O(mn) time by processing each row of Mε and partitioning the relevant
intervals into their equivalence classes in O(m) time. Step (6) takes O(m) time. In step (7),
the real line can be partitioned into 2m = O(m) cells. Verifying that all n points of P fall into
the induced cell takes O(nm) time. Thus, the algorithm’s total runtime is O(mn + k2n). ◀

References
1 Zachary Abel, Erik D Demaine, Martin L Demaine, Sarah Eisenstat, Jayson Lynch, and

Tao B Schardl. Who needs crossings? Hardness of plane graph rigidity. In 32nd International
Symposium on Computational Geometry (SoCG 2016), volume 51, pages 3:1–3:15, 2016.

2 Zachary Ryan Abel. On folding and unfolding with linkages and origami. PhD thesis,
Massachusetts Institute of Technology, 2016.

3 Hugo A. Akitaya, Maike Buchin, Majid Mirzanezhad, Leonie Ryvkin, and Carola Wenk. Real-
izability of free space diagrams for 1D curves. In 38th European Workshop on Computational
Geometry (EuroCG), 2022.

4 Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. The k-Fréchet
distance: How to walk your dog while teleporting. In 30th International Symposium on
Algorithms and Computation, ISAAC 2019, pages 50:1–50:15, 2019.

5 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(1-2):75–91, 1995.

6 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica. An International Journal in Computer Science, 38(1):45–58, 2004.

7 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph S.B.
Mitchell, Saurabh Sethia, and Steven S. Skiena. When can you fold a map? Computational
Geometry, 29(1):23–46, 2004. Special Issue on the 10th Fall Workshop on Computational
Geometry, SUNY at Stony Brook.

8 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In 14th Annual European Symposium on Algorithms, pages
52–63, 2006.

9 Peter F Ash and Ethan D Bolker. Recognizing Dirichlet tessellations. Geometriae Dedicata,
19:175–206, 1985.

10 Jérémy Barbay. Adaptive computation of the discrete fréchet distance. In String Processing
and Information Retrieval, pages 50–60, 2018.

11 Hossein Boomari, Mojtaba Ostovari, and Alireza Zarei. Recognizing visibility graphs of
polygons with holes and internal-external visibility graphs of polygons. arXiv preprint, 2018.
arXiv:1804.05105.

12 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 661–670, 2014.

13 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016.

14 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017.

15 Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans, Yoshio
Okamoto, and Taichi Shiitada. Folding free-space diagrams: Computing the Fréchet distance
between 1-dimensional curves (multimedia contribution). In 33rd International Symposium on
Computational Geometry, (SoCG 2017), pages 64:1–64:5, 2017.

16 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance is
faster, but only if it is continuous and in one dimension. In Proc. 30th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2887–2901, 2019.

ISAAC 2023

https://arxiv.org/abs/1804.05105

3:18 Realizability of Free Spaces of Curves

17 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance with
shortcuts is NP-hard. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry (SOCG’14), pages 367–376, 2014.

18 Maike Buchin, Leonie Ryvkin, and Carola Wenk. On the realizability of free space diagrams.
In 37th European Workshop on Computational Geometry (EuroCG), 2021.

19 Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility graphs.
Discrete & Computational Geometry, 57, January 2017.

20 Robert Connelly. Generic global rigidity. Discrete & Computational Geometry, 33(4):549,
2005.

21 Derek G Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and Alan P Sprague.
Simple linear time recognition of unit interval graphs. Information Processing Letters, 55(2):99–
104, 1995.

22 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, 2008.

23 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48:94–127, 2012.

24 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry. An International
Journal of Mathematics and Computer Science, 48(1):94–127, 2012.

25 Alon Efrat, Leonidas J. Guibas, Sariel Har-Peled, Joseph S.B. Mitchell, and T.M Murali. New
similarity measures between polylines with applications to morphing and polygon sweeping.
Discrete & Computational Geometry, 28(4):535–569, 2002.

26 Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Movement patterns in spatio-
temporal data. In S. Shekhar and H. Xiong, editors, Encyclopedia of GIS. Springer-Verlag,
2007.

27 Timothy Franklin Havel. The combinatorial distance geometry approach to the calculation of
molecular conformation. University of California, Berkeley, 1982.

28 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure alignment with discrete
Fréchet distance. Journal of Bioinformatics and Computational Biology, 6(1):51–64, 2008.

29 Ross J Kang and Tobias Müller. Sphere and dot product representations of graphs. Discrete
Comput Geom, 47:548–568, 2012.

30 Joseph Noggle. The nuclear Overhauser effect. Academic Press, 2012.
31 Günter Rote. Lexicographic Fréchet matchings. In 30th European Workshop on Computational

Geometry, 2014.
32 Leonie Ryvkin. On distance measures for polygonal curves bridging between Hausdorff and

Fréchet distance. doctoralthesis, Ruhr-Universität Bochum, Universitätsbibliothek, 2021.
doi:10.13154/294-8275.

33 James B Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In 17th
Allerton Conf. Commun. Control Comput., 1979, pages 480–489, 1979.

34 Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric Graph
Theory, pages 461–482. springer, 2012.

35 R. Sriraghavendra, Karthik K., and Chiranjib Bhattacharyya. Fréchet distance based ap-
proach for searching online handwritten documents. In Proc. 9th International Conference on
Document Analysis and Recognition (ICDAR), pages 461–465, 2007.

A Omitted Proofs and Details from Section 3

▶ Lemma 17. The problem of finding curves P and Q in R2 that realize an input diagram
Dε is in ∃R.

Proof. We reduce the problem to a system of real polynomial inequalities. The coordinate
of vertices of P and Q are the variables. Each cell represents a constraint: The proof of
Lemma 3.1 [3] gives a quadratic equation relating the endpoints of the corresponding segments.

https://doi.org/10.13154/294-8275

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin, and C. Wenk 3:19

Completely full cells require each segment to lie in the intersection of the ε-neighborhood of
the other segment’s endpoints. Completely empty cells require that each segment lies outside
of the other segment’s ε-neighborhood. All constraints can be expressed with a constant
number of quadratic inequalities. ◀

Reduction description. Here, we detail the overview shown in Section 3. Refer to Figure 2.
Note that every edge in Q corresponds to an edge of T . Every edge of T has two correspondents
on Q. Every edge in P either corresponds to an edge of T or is part of an angle gadget. A
free space cell is empty unless it corresponds to a pair of edges of P and Q that (i) correspond
to the same edge, (ii) correspond to adjacent edges and their shared vertex is rigid, (iii)
one is part of an angle gadget and the other corresponds to one of the edges in the angle
represented by the gadget, or (iv) correspond to a pair of edges in T that were the result of
a subdivision of an edge of G. In case (i), the corresponding cell has a ±45◦ slab of width√

2 depending on the direction of the traversal of the edge. In case (ii), if the rigid acute
angle between the corresponding edges of G is 90◦, the corresponding cell has a quarter
of a unit disk centered at the corner that corresponds to the rigid vertex. Else, the rigid
angle is 180◦ the corresponding cell has a right isosceles triangle with two edges of length 1
and whose vertex incident to the right angle is at the corner of the cell that corresponds to
the rigid vertex. In case (iii), as explained in the description of the angle gadget, the cells
corresponding to long edges are empty. The cells between a short edge of P and an edge
of Q incident to the angle will contain half of a unit disk so that the distance between the
half-disk and the corner of the cell that correspond to the nonrigid vertex is 1. Finally, case
(iv) is the same as case (ii) with a rigid angle of 180◦.

▶ Lemma 18. Given a realization of P and Q, the subcurves that correspond to a rigid
subgraph H exactly cover a rigid transformation of H.

Proof. By construction, every pair of edges from P and Q that either correspond to the
same edge of T , or to two adjacent edges of T that in turn correspond to edges in the same
rigid subgraph H, define a partially full cell. Then, the claim follows by Lemma 1. ◀

B Omitted Details from Section 6

The full description of realizability of discrete curves in R1 is presented below:
DiscreteRealizabilityAlgo(Mε) :

Step (1): Construct an abstract unit-interval graph G from Mε whose rows are vertices in
P and columns are vertices in Q: The vertex set of G represents the columns of Mε, i.e., the
interval of length 2ε centered at a point q ∈ Q. For every row (p ∈ P), the edge set of G is
defined by including a clique between the columns (vertices in Q) that are filled with 1 in
that row. We store the edges of G in an adjacency matrix. In the following we assume G

connected, or else, we treat each component separately.

Step (2): Choose a left anchor as follows. As in [21], we get a set of candidates for left
anchor by running a BFS search on G from an arbitrary vertex. The set contains the vertices
with minimum degree in the deepest level of the BFS. The set of candidates must be in at
most two equivalence classes, or else G is not an interval graph. We augment G by adding a
new vertex v0 connected to each vertex in one of the equivalence classes of candidates. We
choose v0 as a left anchor.

ISAAC 2023

3:20 Realizability of Free Spaces of Curves

Step (3): Perform a BFS on G starting at v0 to obtain a partial order of the vertices.

Step (4): Refine the partial order to get the global order by sorting the intervals at each
level of the BFS under the criterion of |Next(N(v))| − |Prev(N(v))|. We denote the current
partial order as D and use <D, >D and =D to denote whether intervals appear in order,
in reverse order, or are incomparable in D, respectively. By Theorem 2.2 in [21], a pair of
vertices u and v with u =D v are indistinguishable. Thus a set of pairwise incomparable
vertices in this partial order forms an equivalence class. Add a vertex vf to the end of the
order, connecting it to all vertices in the last equivalence class.

Step (5): Further refine the partial order as follows. We refer to such refinement as D′.
For each row r in Mε, let Ir be the set of intervals with entry 1 in r, and let C ′ = C ∩ Ir ̸= ∅
where C is an equivalence class. If there are i ∈ Ir \ C and c′ ∈ C ′ where i <D c′ (resp.,
i >D c′), make c′ <D′ c (resp., c′ >D′ c) for all c ∈ C \ C ′.

Step (6): Extend the partial order defined by the BFS levels and D′ to a global order
breaking ties arbitrarily. Obtain the arrangement of unit intervals based on the global order
and G. This can be done as in Theorem 3.2 in [21].

Step (7): Verify whether the produced arrangement is compatible with Mε. Each row r

specifies the existence of a cell where exactly the intervals with entry 1 intersect. If a cell
specified by a row does not exist in the arrangement, return “NO”. Otherwise, return “YES”.

k-Universality of Regular Languages
Duncan Adamson #

Leverhulme Centre for Functional Material Design, University of Liverpool, UK

Pamela Fleischmann #

Department of Computer Science, Kiel University, Germany

Annika Huch #

Department of Computer Science, Kiel University, Germany

Tore Koß #

Department of Computer Science, University of Göttingen, Germany

Florin Manea #

Department of Computer Science, University of Göttingen, Germany

Dirk Nowotka #

Department of Computer Science, Kiel University, Germany

Abstract
A subsequence of a word w is a word u such that u = w[i1]w[i2] . . . w[ik], for some set of indices
1 ≤ i1 < i2 < · · · < ik ≤ |w|. A word w is k-subsequence universal over an alphabet Σ if every
word in Σk appears in w as a subsequence. In this paper, we study the intersection between the set
of k-subsequence universal words over some alphabet Σ and regular languages over Σ. We call a
regular language L k-∃-subsequence universal if there exists a k-subsequence universal word in L,
and k-∀-subsequence universal if every word of L is k-subsequence universal. We give algorithms
solving the problems of deciding if a given regular language, represented by a finite automaton
recognising it, is k-∃-subsequence universal and, respectively, if it is k-∀-subsequence universal, for
a given k. The algorithms are FPT w.r.t. the size of the input alphabet, and their run-time does
not depend on k; they run in polynomial time in the number n of states of the input automaton
when the size of the input alphabet is O(log n). Moreover, we show that the problem of deciding if
a given regular language is k-∃-subsequence universal is NP-complete, when the language is over a
large alphabet. Further, we provide algorithms for counting the number of k-subsequence universal
words (paths) accepted by a given deterministic (respectively, nondeterministic) finite automaton,
and ranking an input word (path) within the set of k-subsequence universal words accepted by a
given finite automaton.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases String Algorithms, Regular Languages, Finite Automata, Subsequences

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.4

Related Version Full Version: http://arxiv.org/abs/2311.10658

Funding Duncan Adamson: Leverhulme Trust via the Leverhulme Research Centre for Functional
Material Design
Tore Koß: partly supported by the German Research Foundation (DFG), via the project number
389613931 (research grant)
Florin Manea: partly supported by the German Research Foundation (DFG), via the project number
466789228 (Heisenberg grant)

1 Introduction

Words and subsequences are two fundamental combinatorial objects. Informally, a sub-
sequence of a word w is a word u that can be obtained by deleting some of w’s let-
ters while preserving the order of the rest. For instance, taunt and salty are sub-

© Duncan Adamson, Pamela Fleischmann, Annika Huch, Tore Koß, Florin Manea, and Dirk Nowotka;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 4; pp. 4:1–4:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.a.adamson@liverpool.ac.uk
https://orcid.org/0000-0003-3343-2435
mailto:fpa@informatik.uni-kiel.de
https://orcid.org/0000-0002-1531-7970
mailto:stu216885@mail.uni-kiel.de
mailto:tore.koss@cs.uni-goettingen.de
https://orcid.org/0000-0001-6002-1581
mailto:florin.manea@cs.uni-goettingen.de
https://orcid.org/0000-0001-6094-3324
mailto:dn@informatik.uni-kiel.de
https://orcid.org/0000-0002-5422-2229
https://doi.org/10.4230/LIPIcs.ISAAC.2023.4
http://arxiv.org/abs/2311.10658
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 k-Universality of Regular Languages

sequences of automatauniversality, while trauma is not since these letters do not occur
in the correct order. Subsequences are a heavily studied object within computer science
[6, 9, 13, 22, 31, 35, 38, 40, 45, 49, 50, 51] and beyond, with applications in a wide number
of fields including bioinformatics [23, 47], database theory [5, 17, 32, 33], and modelling
concurrency [46]. A survey of combinatorial pattern matching algorithms for subsequences
has been provided by Kosche et al. [36], highlighting a series of recent results for problems
on finding subsequences in words as well as their applications and connections to other areas
of computer science, to which we refer the reader for further details and references.

This paper considers k-subsequence universal words. A word w is k-subsequence universal
over an alphabet Σ = {1, . . . , σ} if w contains every word of length k over Σ as a subsequence.
These words were first defined by Karandikar and Schnoebelen [28, 44] as k-rich words,
however more recent work has used the term k-subsequence (or scattered factor) universality
[2, 4, 6, 9, 12, 14, 35, 45], which we use here. The study of these words follows from the
seminal work by Simon [48] where a congruence – nowadays known as Simon’s congruence –
is introduced. Two words w, v are k-congruent, denoted w ∼k v, if w and v share the same
set of subsequences up to length k. As such, k-subsequence universal words are those which
are k-congruent to the word (1 · · · σ)k.

Simon’s congruence relation is well studied [11, 13, 14, 49, 50, 51], with recent asymptot-
ically optimal algorithms for testing if two words are k-congruent [6] and for computing the
largest k for which two words are k-congruent [18], as well as for pattern matching under Si-
mon’s congruence [31]. Indeed, besides the usage of k-subsequence universal words in [28, 44]
in a context related to the study of the height of piecewise testable languages and the logic of
subsequence, the idea of universality itself is quite important in formal languages, automata
theory, but also in combinatorics. In this context, the universality problem [25] is whether a
given language L (over an alphabet Σ, given as an automaton) is equal to Σ∗. This problem
for various classes of languages and language accepting/generating formalisms is studied in,
e.g., [41, 37, 19] and the references therein. The universality problem was considered for
contiguous factors (substrings) of words [39, 10] and partial words [7, 21], as well. In that
context, one analyses, the (partial) words w over an alphabet Σ which have exactly one
occurrence of each string of length ℓ over Σ as a substring. De Bruijn sequences [10] fulfil
this property and have many applications in computer science or combinatorics, see [7, 21]
and the references therein. While it is a perfectly valid problem to investigate (partial) words
where each substring occurs exactly once, in the case of subsequence universality this is a
trivial restriction, as in each long-enough word there will be subsequences occurring more
than once [6].

Coming closer to the topic of this work, we recall the works by Barker et al. [6], Day et
al. [9], and Schnoebelen and Veron [45], which directly address k-subsequence universal words.
In [6], the authors show that it is possible to determine in linear time (1) whether a word is
k-subsequence universal and (2) the shortest k-subsequence universal prefix of a given word.
Additionally, they show that the minimal set of factors w1, w2, . . . , wℓ of a word w, such that
w1w2 · · · wℓ is k-subsequence universal and the exponent i such that wi is k-subsequence
universal can be determined efficiently. Further, [9] proposes a set of algorithmic results for
computing the minimum number of edit operations (insertion, deletions, substitutions) to
apply to a word w in order to make it k-subsequence universal; in general, their algorithms
run in O(|w|k) time, for k ≤ |w| (the problems are trivial, otherwise). Interestingly, the
problems approached in that paper can be seen as determining the minimum number ∆ such
that the (finite) language containing the words found at edit distance at most ∆ from w

contains a k-universal word. Finally, [45] presents an algorithm computing the largest k for
which a word, given in a compressed form, is k-universal.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:3

Another paper which is also strongly related to our work is [29] (as well as its follow-up
[30]). In this paper, the authors investigate the language of words which are k-congruent to
u, for a given word u, called the k-closure of u. They show that this language is regular, and
effectively construct a finite automaton recognising it (of size exponential in σ, the size of the
input alphabet). Now, testing whether another given finite (or regular) language contains a
word which is k-congruent to u can be reduced to deciding the emptiness of the intersection
between the k-closure of u and the given language.

Our work builds on [9, 29], as well as on the works whose main object is the downward
closure of languages (see [51] and the references therein), and investigates the problem
of efficiently detecting k-subsequence universal words within regular languages. In other
words, we are interested in identifying the words of a given regular language L which are
k-subsequence universal, i.e., in the k-closure of the target word (1 · · · σ)k. There is, however,
a fundamental difference between the problems considered here and those of [29, 30]. The
input of the problems studied here is a regular language L and a number k (given in binary
representation, similarly to [9]), and we want to detect the words of L which are k-universal,
without having to explicitly write those words or the target word (1 · · · σ)k (whose length is
at least kσ, so exponential in the size of the binary representation of k, our input). On the
other hand, in the setting of [29, 30] we are explicitly given a target word w for which we
construct the finite automaton recognising its k-closure; applying this approach to our setting
would lead to dealing explicitly with the target word w = (1 · · · σ)k, so we would directly have
an exponential blow-up both at this step and when the automaton is constructed. Hence,
the problem discussed in this paper extends significantly the one of [9] by looking at the
intersection between the language of k-subsequence universal words and arbitrary regular
languages, rather than a very particular class of finite languages. Moreover, it addresses a
highly-relevant particular case of the theory presented in [29, 30], by considering the class of
k-subsequence universal words, with the interesting property that this case can be succinctly
specified, and with the hope that more direct and efficient algorithms can be obtained in
this setting, without having to go through the general framework.

Going more into the details of our approach, we start our investigation by defining two
notions for k-subsequence universality of regular languages. A regular language L is existence
k-subsequence universal (k-∃-subsequence universal) if there exists at least one k-subsequence
universal word in L, and it is universal k-subsequence universal (k-∀-subsequence universal)
if every word of L is k-subsequence universal. We assume that regular languages are given
by finite automata which recognises them, so, canonically, we will call an automaton k-∃-
subsequence universal (respectively, k-∀-subsequence universal) if the language accepted by
it is k-∃-subsequence universal (respectively, k-∀-subsequence universal).

Alongside the categorisation problems (given an automaton, decide whether the language
it recognises is k-∃-subsequence universal or k-∀-subsequence universal), we consider the
problems of counting and ranking the number of ℓ-length k-subsequence universal words
accepted by a given finite automaton A. The counting problem asks for the total number of
ℓ-length k-subsequence universal words accepted by A. The ranking problem takes a word w

as input and asks for the number of k-subsequence universal words accepted by A that are
lexicographically smaller than w. Both of these problems have been heavily studied for other
classes of words, including cyclic words [1, 2, 3, 16, 20, 34, 43] and Gray codes [16, 34, 42].

Our Contributions. In Section 2 we introduce the novel notions of k-∃-subsequence univer-
sality or k-∀-subsequence universality for regular languages and finite automata.

In Section 3, we give algorithms solving the problems of deciding if the language accepted

ISAAC 2023

4:4 k-Universality of Regular Languages

by a given finite automaton with n states is k-∃-subsequence universal and, respectively, if it
is k-∀-subsequence universal, for a given k. These algorithms are fixed parameter tractable
with respect to σ, the size of the input alphabet. If we have additionally σ ∈ O(log n), they
run in polynomial time, and their run-time does not depend at all on k. Note that one could
easily devise solutions for both these problems using the framework of [29, 30], but their
complexity would have been exponential both in log k (the size of the representation of k in
our input) and in σ. Moreover, we show that, if no bound is placed on the size of the input
alphabet, the problem of deciding if a given regular language is k-∃-subsequence universal is
NP-complete. The NP-hardness of this problem follows from [29]; it is worth noting that,
on the one hand, the problem is hard even if k = 1, but also, on the other hand, that the
hardness proof is indeed based on the fact that the input alphabet is large (equal to the
number of states in the input automaton). Showing that this problem is in NP, as well as
our algorithms, requires a series of combinatorial insights on the structure of k-universal
words accepted by finite automata.

Further, in Section 4, building on the aforementioned understanding of the combinatorial
properties of k-universal words accepted by finite automata, we provide algorithms for
counting the number of k-subsequence universal words (respectively, paths) accepted by a
given deterministic (respectively, non-deterministic) finite automaton, and ranking an input
word within the set of k-subsequence universal words (paths) accepted by a given deterministic
(respectively, non-deterministic) finite automaton. Again, this approach extends non-trivially
the approach from [2], where problems related to counting and ranking subsequence universal
words (unrestricted by any regular membership constraint) were approached for the first
time.

2 Preliminaries

Let N = {1, 2, . . .} denote the natural numbers and set N0 = N∪{0} as well as [n] = {1, . . . , n}
and [i, n] = {i, i + 1, . . . , n} for all i, n ∈ N0 with i ≤ n.

An alphabet Σ = {1, 2, . . . , σ} is a finite set of symbols, called letters (w.l.o.g., we can
assume that the letters are integers). A word w is a finite sequence of letters from a given
alphabet and its length |w| is the number of w’s letters. For i ∈ [|w|] let w[i] denote
w’s ith letter. The set of all finite words (aka strings) over the alphabet Σ, denoted by
Σ∗, is the free monoid generated by Σ with concatenation as operation and the neutral
element is the empty word ε, i.e., the word of length 0. Let Σn denote all words in Σ∗

exactly of length n ∈ N0 and Σ≤n the set of all words of Σ∗ up to length n ∈ N0. Set
alph(w) = {a ∈ Σ | ∃i ∈ [|w|] : w[i] = a} as w’s alphabet. For u, w ∈ Σ∗, u is called a
factor of w, if w = xuy for some words x, y ∈ Σ∗. If x = ε (resp., y = ε) then u is called a
prefix (resp., suffix) of w. For 1 ≤ i ≤ j ≤ |w| define the factor from w’s ith letter to the jth

letter by w[i, j] = w[i] · · · w[j]. Futher, given a pair of indices i < j, w[j, i] = ε. Let < be
an order relation on Σ (e.g., the natural order on integers). We extend this order relation
to the lexicrographical order on Σ∗ in the following way: the word u is lexicographically
smaller than the word w (u < w) iff either u is a prefix of w or there exists x, y1, y2 ∈ Σ∗

and a, b ∈ Σ with u = xay1, w = xby2 and a < b.
As we are interested in investigating the k-subsequence universality of regular languages,

we firstly introduce the basic concepts related to subsequences. We then present the definitions
for the transformation of these notions to the domain of regular languages and finite automata.

▶ Definition 1. Let w ∈ Σ∗ and n ∈ N0. A word u ∈ Σ∗ is called subsequence of w

(u ∈ SubSeq(w)) if there exist v1, . . . , vn+1 ∈ Σ∗ such that w = v1u[1]v2u[2] · · · vnu[n]vn+1.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:5

Set SubSeqk(w) = {u ∈ SubSeq(w) | |u| = k}.

▶ Example 2. Subsequences of automatauniversality are auto, tomata, salty, mate, and
atom while star and alien are not because their letters do not occur in the correct order.

In [6], the authors investigated words which have, for a given k ∈ N0, all words from Σk

as subsequence, namely k-subsequence universal words. Note that this notion is similar to
the one of richness introduced and investigated in [27, 28]. We stick here to the notion of
k-subsequence universality since our focus are regular languages and thus the well-known
notion of the universality of automata and formal languages, i.e., L(A) = Σ∗ for a given
finite automaton A, is close to the one of subsequence universality of words.

▶ Definition 3. A word w ∈ Σ∗ is called k-subsequence universal (w.r.t. Σ), for k ∈ N0, if
SubSeqk(w) = Σk. If the context is clear we briefly call w k-universal. The universality-index
ι(w) is the largest k such that w is k-universal.

We denote the set of k-universal words in a given set M ⊆ Σ∗ by UnivM,k. Thus, the
set of all k-universal words over a given alphabet Σ is denoted UnivΣ∗,k.

▶ Example 4. Consider the word w = baaababb ∈ {a, b}∗. We have | SubSeq3(baaababb)| =
|{aaa, aab, aba, abb, baa, bab, bba, bbb}| = 8 = 23. Thus, baaababb ∈ Univ{a,b}∗,3. Since
abba /∈ SubSeq4(baaababb), it follows that baaababb /∈ Univ{a,b}∗,4 and ι(baaababb) = 3.

Further, we recall the arch factorisation by Hébrard [24] which factorises words uniquely.

▶ Definition 5. The arch factorisation of w ∈ Σ∗ is given by w = ar1(w) · · · ark(w) r(w) for
k ∈ N0 with ι(ari(w)) = 1 and ari(w)[| ari(w)|] /∈ alph(ari(w)[1, | ari(w)| − 1]) for all i ∈ [k],
as well as alph(r(w)) ⊊ Σ. The words ari(w) are the arches and r(w) is the rest of w.

▶ Example 6. Continuing Example 4, we have the arch factorisation w = (ba) · (aab) · (ab) · b
where the parantheses denote the three arches and the rest b.

A proper subset of the k-universal words is given by all the words with an empty rest
introduced in [12] as the set of perfect k-universal words.

▶ Definition 7. We call a word w ∈ Σ∗ perfect k-universal if ι(w) = k and r(w) = ε. The
set of all these words with alph(w) = Σ is denoted by PUnivΣ∗,k.

▶ Example 8. The word baaababb from Examples 4 and 6 is not perfect 3-universal since
it has ι(baaababb) = 3 but r(baaababb) = b ̸= ε. To give a positive example, consider
abcbbaccbbaacb ∈ PUniv{a,b,c}∗,4 since its arch factorisation is (abc) · (bbac) · (cbba) · (acb).

▶ Theorem 9 ([6]). Let w ∈ Σ≥k with alph(w) = Σ. Then we have ι(w) = k iff w has
exactly k arches.

In the remainder of this section, we introduce the basic definitions we need to define
the k-universality of regular languages. For basic notions on finite automata, we refer
to [26]. A non-deterministic finite automaton (NFA) A is a tuple (Q, Σ, q0, δ, F) with the
finite set of states Q (of cardinality n ∈ N), an initial state q0 ∈ Q, the set of final states
F ⊆ Q, an input alphabet Σ, and a transition function δ : Q × Σ → 2Q, where 2Q is the
powerset of Q. If we have |δ(q, a)| = 1 for all q ∈ Q, a ∈ Σ, then A is called deterministic
(DFA). We call a sequence π = (q0, a1, q1, a2, . . . , aℓ, qℓ) an ℓ-length path in A iff qi ∈ Q

for all i ∈ [0, ℓ] and qi+1 ∈ δ(qi, ai+1), for all i ∈ [0, ℓ − 1]. The word wπ = a1 · · · aℓ is
the word (label) associated to π. A path is simple if it does not contain the same state

ISAAC 2023

4:6 k-Universality of Regular Languages

q0 q1 q2

a, b

c a

b, c
A

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

a b
c

b c

c
b

a
c

c
a

a
b

b
a

B

Figure 1 A 2-∃-universal NFA A and a 1-∀-universal NFA B.

twice. Moreover, a state q ∈ Q is called accessible (respectively, co-accessible) in A if
there exists a path connecting q0 to q (respectively, q to a final state). A path is called
accepting if qℓ ∈ F holds. Define the language of A, i.e., the set of words accepted by
A, by L(A) = {w ∈ Σ∗ | ∃ accepting path π in A : w = wπ}. For abbreviation, we set
An = L(A)∩Σn and A≤n = L(A)∩Σ≤n. Note that the class of languages accepted by NFAs
is equal to the class of languages accepted by DFAs and it is equal to the class of regular
languages. Moreover, for every word w ∈ L(A) there exists exactly one (in the deterministic
case) or a set of (in the non-deterministic case) associated path(s). For a word w accepted
by a finite automaton, let πw denote one accepting path labelled with w; in the case when
there are multiple such paths, we simply choose one of them. Since we usually are interested
in only one path for a word w ∈ L(A), we refer to it as πw.

▶ Definition 10. For a given NFA A, the reverse transition function ∆(q, x) returns the set
of states in Q with a transition labelled by x to q, i.e, ∆(q, x) = {q′ ∈ Q | δ(q′, x) = q}.

Now, we can define the k-subsequence universality of a regular language L. Here, we
distinguish whether at least one or all words of L are k-universal w.r.t. Definition 3. Note that
we always take the minimal alphabet Σ such that L ⊆ Σ∗ as a reference when considering
the k-universality of words from L.

▶ Definition 11. Let L be a regular language. L is called existence k-subsequence universal
(k-∃-universal) for some k ∈ N, if there exists a k-universal word w ∈ L. L is called universal
k-subsequence universal (k-∀-universal) for some k ∈ N, if all w ∈ L are k-universal.

If a regular language L, accepted by some finite automaton A (NFA or DFA), is k-∃-
universal (respectively, k-∀-universal) then we also say that the automaton A is k-∃-universal
(respectively, k-∀-universal). Further, we also say that a path π in A is k-universal if the
label of π, namely wπ, is k-universal. As an example, a 2-∃-universal NFA A, which is not
3-∃-universal, and a 1-∀-universal NFA B which is not 2-∀-universal are shown in Figure 1
(note that B recognises exactly every permutation of abc). Based on this definition we define
two associated decision problems.

▶ Problem 12. The existence subsequence universality problem for regular languages (k-ESU)
is to decide for a regular language, given by a finite automaton A recognising it, and k ∈ N,
given in binary representation, whether L is k-∃-universal.

▶ Problem 13. The universal subsequence universality problem for finite automata (k-ASU)
is to decide for a regular language, given by a finite automaton A recognising it, and k ∈ N,
given in binary representation, whether L is k-∀-universal.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:7

We finish this section by introducing the rank of a word in order to enumerate the
k-universal words accepted by a given finite automaton.

▶ Definition 14. The rank of a word w within the set UnivM,k is the number of words in
UnivM,k lexicographically smaller than w, i.e. rank(w) = |{v ∈ UnivM,k | v < w}|.

▶ Remark 15. By Definition 3, the set of all k-universal words accepted by A is given by
UnivL(A),k, the set of all n-length k-universal words accepted by A is given by UnivAn,k,
and the set of all k-universal words of length at most n accepted by A is given by UnivA≤n,k.

The computational model we use is the standard unit-cost RAM with logarithmic word
size: for an input of size n, each memory word can hold log(n) bits. Arithmetic and bitwise
operations with numbers in [1, n] are, thus, assumed to take O(1) time. Numbers larger
than n, with ℓ bits, are represented in O(ℓ/ log n) memory words, and working with them
takes time proportional to the number of memory words on which they are represented.
In all the problems, we assume that we are given a number k, binary encoded, and one
finite automaton A, specified as the set of states, set of input letters, set of transitions, and
initial and final states. The size of the input is, as such, the size of the binary encoding of
k, which is ⌈log2 k⌉, plus the size S of the encoding of A (which is lower bounded by the
number of edges in the graph associated to the automaton). So, one memory word can hold
log(S + log2(k)) bits.

For a more detailed general discussion on this model see, e. g., [8].
Some of our algorithms run in exponential time and use exponential space w.r.t. the size n

of the input. Following the literature dealing with such exponential algorithms (see, e.g., [15]),
we will use the O∗-notation. By definition, for functions f and g we write f(n) = O∗(g(n)) if
f(n) = O(g(n)nO(1)). In other words, the O∗-notation hides polynomial factors, just as the
O-notation hides constants. Using this notation, we can assume that our single-exponential
time and single-exponential space algorithms run on a RAM model where arithmetic and
bitwise operations with single exponential numbers (w.r.t. the size n of the input) as well
as accessing the memory-words (given their address, like in an usual RAM) are assumed to
take O∗(1) time. Working with such a computational model allows us to analyse the actual
algorithms rather than the various intricacies of the computational model.

In particular, when expressing the complexity of our algorithms, we get functions which
are exponential in σ (the size of the alphabet) but polynomial in the number n of states
of the input NFA or, for the enumeration algorithms, in the length m of the enumerated
strings or in the value of the input number k (the parameter of the considered problems).
For clarity of the exposure, although we use the O∗-notation, we will explicitly write the
dependency on n, m, and k, and only hide the polynomial dependency on σ.

3 Decision Problems

In this section, we consider the decision problems k-ESU and k-ASU. We begin with a series
of combinatorial observations.

▶ Remark 16. Every path acccepted by an NFA A is k-universal iff every simple accepting
path in it is k-universal. In one direction, if A accepts any path that is not k-universal, then
not every path accepted by A is k-universal. Otherwise, the set of paths induced by every
word accepted by A must contain, as a subsequence, some non-cyclic path. Therefore, if
each non-cyclic path is k-universal, then every path is.

ISAAC 2023

4:8 k-Universality of Regular Languages

q1 q2 q3 q4
a a a

Σ \ {a}
A

Figure 2 Note that the shortest k-universal word accepted by A has length (σ − 1)kn.

▶ Lemma 17. Let q, q′ ∈ Q be a pair of states in the NFA A such that there exists a path π

from q to q′ where the final transition in π is labelled x ∈ Σ. Then, there exists some path π′

of length at most n = |Q| from q to q′ where the final transition in the path is labelled x.

Proof. Let q̂ ∈ Q be the state in π before q′, i.e., the state such that q′ ∈ δ(q̂, x). As there
are at most n states in A, given any pair of states q1, q2 ∈ Q, if q2 can be reached from q1,
then there must exist a path from q1 to q2 of length at most n − 1. In particular, there exists
a path of length n − 1 from q to q̂. Extending this path by the transition from q̂ reading x
to q′, we obtain a path π′ from q to q′ of length at most n. ◀

▶ Lemma 18. For an NFA A with n states, if there is a k-universal word accepted by A,
then there is a k-universal word accepted by A of length at most knσ − (n − 1)(k − 1).

Proof. Let w be a k-universal word accepted by A and for all i ∈ [k] let ai,1, . . . ai,σ ∈ Σ be
the letters of Σ in the order they occur in ari(w), that is ai,1 = ari(w)[1] and ai,j = ari(w)[ℓ]
such that j − 1 = | alph(ari(w)[1, ℓ − 1])| < | alph(ari(w)[1, ℓ])| = j for 1 < j ≤ σ. Then
ari(w) = ai,1ui,1ai,2 · · · ui,σ−1ai,σ where ui,j ∈ Σ∗ is a word such that there is a path πui,j in
A labeled with ui,j . For the sake of readability we denote the suffix of w starting after ark(w)
by uk+1,1 in this proof. By Lemma 17, ui,j is accepted by an automaton with at most n

states obtainable from A by changing the initial (respectively, final) state of A to the starting
(respectively, end) state of πui,j . Hence we can find a word vi,j of length at most n−1 which is
the label of a path starting and ending in the same state as πui,j

. Let w′ be the word obtained
from w by replacing every ui,j by vi,j . Then w′ is a k-universal word accepted by A of
length |w′| =

∑k
i=1

(∑σ
j=1 |ai,j | +

∑σ−1
j=1 |vi,j |

)
+ |vk+1,1| ≤ k (σ + (σ − 1)(n − 1)) + n − 1 =

knσ − (k − 1)(n − 1) (cf. Figure 2). ◀

We now move to the main results of this section and give fixed parameter tractable (FPT)
algorithms w.r.t. σ. The time complexity of these algorithms is polynomial for σ ∈ O(log n)
and does not depend at all on k.

▶ Lemma 19. For a given NFA A with n states and |Σ| = σ, we can decide in O∗(n32σ)
time whether A accepts words whose universality index is arbitrarily large. If the answer is
negative, then we can compute the largest universality index of a word accepted by A.

Proof. Assume that A = (Q, Σ, q0, δ, F), as defined in Section 2. Let us assume w.l.o.g. that
A contains only accessible and co-accessible states.

Our approach is based on a series of observations. We first make these observations, and
then provide an algorithm proving the statement of the lemma.

Note first that if there exists a state q ∈ Q (which is both accessible and co-accessible, by
assumption) such that there is a path in A from q to q labelled with a word which contains all
letters of Σ, then we can immediately decide that A accepts words whose universality index
is arbitrarily large. Indeed, to obtain an accepted word (accepting path), whose universality
index is at least ℓ, we follow the path from q0 to q, then follow ℓ times the path which

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:9

contains all letters of Σ going from q to q, and finally follow a path connecting q to a final
state.

Secondly, assume that there exists no state q ∈ Q such that there is a path in A from q to
q labelled with a word which contains all letters of Σ. In this setting we note that, for each
state q ∈ Q, there exists a unique maximal (w.r.t. inclusion) subset Vq ⊊ Σ such that there
exists a path from q to q labelled with a word βq with alph(βq) = Vq. Indeed, if two such
different maximal sets V ′

q and V ′′
q would exist, witnessed by the words w′ and w′′, then we

can follow the path labelled with w′w′′, which goes from q to q, and alph(w′w′′) = V ′
q ∪ V ′′

q

(and this includes both V ′
q and V ′′

q).
Finally, consider an accepting path π = (q0, a1, q1, a2, . . . , aℓ, qℓ) of A. We can rewrite

the path π as follows:
Find the rightmost occurrence of q0 in π; let us assume that this is the hth state on this
path, namely qh. Replace the subpath connecting the initial occurrence of q0 to qh with
the loop (q0, a1 · · · ah)◦ (where we use ◦ to emphasise this is a loop). Now the path is
rewritten as ((q0, a1 · · · ah)◦, ah+1, qh+1, . . . , aℓ, qℓ). If q0 appears only once in π, then the
path is rewritten as ((q0, ε)◦, a1, q1, . . . , aℓ, qℓ).
Now, we repeat the procedure for the path (qh+1, ah+2, . . . , aℓ, qℓ) (respectively, if q0
appeared only once on π, for the path (q1, . . . , aℓ, qℓ)).

After completing this process, one obtains a normal-form representation of the path π as
((q′

0, α1)◦, a′
1, (q′

1, α2)◦, a′
2, . . . , a′

r, (q′
r, αr+1)◦), with r ≤ n, as the states q′

0 = q0, q′
1, . . . , q′

r

are pairwise distinct; moreover, αi ∈ Σ∗ for all i ∈ [r].
Let us come back now to the case when there exists no state q ∈ Q such that there

is a path in A from q to q labelled with a word which contains all letters of Σ. Consider
now all accepting paths ((q′

0, α1)◦, a′
1, (q′

1, α2)◦, a′
2, . . . , a′

r, (q′
r, αr+1)◦) (given in normal-form

representation) where the states q′
0, . . . , q′

r and the letters a′
1, . . . , a′

r are fixed, and the loops
α1, . . . , αr are variable. We are interested in how we can, for i ∈ [r + 1], choose αi ∈ V ∗

qi−1
in

order to maximise the universality index of the resulting word. We claim that it is enough to
take αi = β2

qi−1
(where the words βq were defined above). Indeed, this holds because the arch

decomposition of the word labelling the path ((q′
0, α1)◦, a′

1, (q′
1, α2)◦, a′

2, . . . , a′
r, (q′

r, αr+1)◦)
is done greedily from left to right, and we are thus interested in packing as many arches
as possible in each of the prefixes ((q′

0, α1)◦, a′
1, (q′

1, α2)◦, a′
2, . . . , a′

i, (q′
i, αi+1)◦), for all i. So,

we begin by noting that the alphabet of the word labelling ((q′
0, α1)◦) is always included in

Vq′
0
, and is indeed equal to Vq′

0
for, e.g., α1 = β2

q′
0
. Now, let us consider i ≥ 1 and the path

((q′
0, α1)◦, a′

1, (q′
1, α2)◦, a′

2, . . . , a′
i, (q′

i, αi+1)◦). We note that, as we do not have 1-universal
loops, the loop (q′

i, αi+1)◦ can at most complete the final (and previously incomplete) arch
of ((q′

0, α1)◦, a′
1, (q′

1, α2)◦, a′
2, . . . , a′

i−1, (q′
i−1, αi)◦); after this potential completion, we can

only try to add as many new letters as we can in the last arch. So, we will define αi+1 as a
power of the word βq′

i
, that labels the loop containing q′

i which adds the most new letters to
the constructed word, and moreover it is enough to only use βq′

i
twice in this power (i.e.,

αi+1 = β2
qi

). To see that this holds, note that if the rest of the word labelling the path
((q′

0, α1)◦, a′
1, (q′

1, α2)◦, a′
2, . . . , a′

i−1, (q′
i−1, αi)◦) is completed to a new arch by a repetition

βf
q′

i
for some f > 2, then this is done by the first βq′

i
from this repetition. Then, the suffix

βf−1
q′

i
adds as many new letters to the alphabet of the rest of the resulting word as a single

occurrence of βq′
i
. This completes the proof of our claim.

In conclusion: among all accepting paths ((q′
0, α1)◦, a′

1, (q′
1, α2)◦, a′

2, . . . , a′
r, (q′

r, αr+1)◦)
(given in normal-form representation) the path ((q′

0, β2
q′

0
)◦, a′

1, (q′
1, β2

q′
1
)◦, a′

2, . . . , a′
r, (q′

r, β2
q′

r
)◦)

has the highest universality index.
Based on these observations, we can now state the main idea of our algorithm. We first

ISAAC 2023

4:10 k-Universality of Regular Languages

preprocess the input automaton to get rid of the states which are not accessible and of the
states which are not co-accessible. Then, we check whether there exists a state q ∈ Q such that
there is a path in A from q to q labelled with a word which contains all letters of Σ; if yes, we
simply decide that there exists k-universal accepted words, for any k. If no such state exists, we
compute, by dynamic programming, the path ((q′

0, β2
q′

0
)◦, a′

1, (q′
1, β2

q′
1
)◦, a′

2, . . . , a′
r, (q′

r, β2
q′

r
)◦)

with the highest universality index, for all states qr ∈ Q.
In the following we describe this algorithm in more details, by highlighting its main

phases.
Preprocessing: We determine the accessible states of A by running a graph traversal

algorithm on A starting from the state q0. The not-accessible states are removed. We
determine the co-accessible states of A by running a graph traversal algorithm on the graph
of A, with the direction of all edges inverted, starting from the final states. The not-co-
accessible states of A are removed. The complexity of this step is O(n3) in the worst case.
Note that for this step it is enough to consider a simplified form of the graph associated to
A, where we only see, for each two states, if there is at least one edge between them or not;
as such, the total size of the graph A is O(n2)). From now on, we assume that all states of
A are both accessible and co-accessible.

Universal Loops: In this step, we determine whether there exists a state q of A such that
there is a path in A from q to q labelled with a word which contains all letters of Σ. This
is done as follows. For each state q ∈ Q, we run the following process. We define L to be
a queue, initially containing the element (q, ∅), and S be a set which is initially empty. As
long as L is not empty, we pop the first element from L, let it be (q′, R′), and update S to
S ∪{(q′, R′)}. Now, for all transitions leaving q of the form q′′ ∈ δ(q′, a), if (q′′, R′ ∪{a}) ̸∈ S,
we insert (q′′, R′ ∪ {a}) into L. When L is empty, we are done, and we simply check if (q, Σ)
is contained in S. If (q, Σ) is contained in S then there exists a path from q to q which is
1-universal. Otherwise, there is no such path. Moreover, we also compute and store the set
Vq of maximal cardinality for which (q, Vq) belongs to S.

After running the above process for all states in Q, if we have identified a state q for
which there exists a path from q to q which is 1-universal, then we simply conclude that A
accepts words whose universality index is arbitrarily large. Otherwise, we continue with the
next phase.

The complexity of this phase is O∗(n32σ), as the numbers of transitions leaving a state q

is upper bounded by nσ.
No Universal Loop: In this case, we will use a n × 2σ matrix M [·][·] (and an auxiliary

matrix M ′ of the same size). Our algorithm has at most n iterations, and we will maintain the
property that, before iteration ℓ + 1 (for ℓ ≥ 0), M [q′

r][V] is the maximum among the number
of arches of some path with the normal-form ((q′

0, β2
q′

0
)◦, a′

1, (q′
1, β2

q′
1
)◦, a′

2, . . . , a′
r, (q′

r, β2
q′

r
)◦),

with q′
0 = q0 and r ≤ ℓ, such that the rest r(u) of the word u labelling this path has the

alphabet V , or M [q′
r][V] = −1 if no such path exists.

To begin with, before the first iteration of the loop, we initialize M [q][V] = −1 for all q

and V . Then we set M [q0][Vq0] = 0.
In the ℓth iteration, we copy M into the matrix M ′. We then go through all q and V and,

if M [q][V] ̸= −1, we do the following: for all letters a ∈ Σ, for all q′ ∈ δ(q, a), set V ′ = V ∪{a}
and δ = 0. If V ′ = Σ, we reset V ′ = ∅ and set δ = 1. Then, we compute V ′′ = V ′ ∪ Vq′ .
If V ′′ = Σ (note that this can only happen when V ′ ̸= ∅) we reset V ′′ = ∅ and set δ = 1.
Finally, we compute V ′′′ = V ′′ ∪ Vq′ and set M ′[q][V ′′′] = max{M ′[q′][V ′′], M [q][V] + δ}.

We stop this process after n iterations.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:11

Clearly, before the first iteration of our algorithm, the property we intend to maintain
holds. Then, in the ith iteration, we try to extend the already constructed path ending in
state q, with rest V , by reading first one letter and reaching state q′, and then by reading β2

q′ ,
and compute the universality index of this resulting path. So, the property is maintained in
the ℓth iteration.

The complexity of this phase is O∗(n32σ), if all the above steps are implemented naïvely.
Now, the highest universality index of a word accepted by A is the largest value M [q][V]

for q ∈ F , V ⊆ Σ.
Conclusion: The algorithm consisting of the three phases above decides whether A accepts

words whose universality index is arbitrarily large, or, if this is not the case, computes the
largest universality index of a word accepted by A. Its time complexity is O∗(n32σ). ◀

As a corollary of Lemma 19, we get the following theorem.

▶ Theorem 20. For a given NFA A with n states and |Σ| = σ and a natural number k ∈ N,
we can decide k-ESU in O∗(n32σ) time.

Proof. We first use Lemma 19 to test whether A accepts words whose universality index is
arbitrarily large. If yes, then the answer for the given instance of k-ESU is positive. If A
does not accept words whose universality index is arbitrarily large, we compute the largest
universality index ℓ of a word accepted by A. If ℓ ≥ k, then the answer for the given instance
of k-ESU is positive. Otherwise, the answer for the given instance of k-ESU is negative. ◀

Next, we approach the k-ASU problem. Once again, we show a preliminary lemma.

▶ Lemma 21. For a given NFA A with n states and |Σ| = σ, we can compute in O∗(n32σ)
time the smallest universality index of a word accepted by A.

Proof. Clearly, the set of words accepted by A which have the smallest universality index
(among all words accepted by A) includes a word which is the label of a simple path in A.
So, to solve the problem stated in this lemma it is enough to consider only words which
are the label of simple paths in A. The length of these words is upper bounded by n. This
also shows that their universality index is upper bound by n (so, as a consequence, this
universality index and the numbers smaller than it fit in one memory word).

The solution of our problem is done by a dynamic programming algorithm. We define
two n × 2σ matrices M, M ′ where initially M [q][V] = M ′[q][V] = ∞ for V ⊆ Σ. Also, we
use a set L = ∅. Further, set M [q0][∅] = 0 and insert (q0, ∅) in L.

We will maintain the property that before the (r + 1)th iteration of our algorithm (for
r ≥ 0) M [q][S] stores the minimal number of arches of the word wr,q of length at most r

which connects q0 and q such that alph(r(wr,q)) = S. This property clearly holds before the
first iteration of the algorithm. Now, we perform the following steps

for ℓ = 1 to n

for all (q, S) ∈ L

for all a ∈ Σ and q′ ∈ δ(q, a)
if S ∪ {a} = Σ

set M ′[q′][∅] = M [q][S] + 1 and insert (q′, ∅) in L

else
set M ′[q′][S ∪ {a}] = M [q][S] and insert (q′, S ∪ {a}) in L

for all q ∈ Q and V ⊆ Σ
set M [q][V] = min{M [q][V], M ′[q][V]}

ISAAC 2023

4:12 k-Universality of Regular Languages

In the iteration of the outmost for-loop for ℓ = r we actually consider, for each pair (q, S),
the word v of length at most r − 1 which connects q0 and q, such that v has a minimum
number of arches and alph(r(v)) = S (the relevant information about this path, i.e., its rest
and the number of arches is stored in M), and try to extend this path by one letter a. This
leads to another pair (q′, S ∪ {a}), and we simply check if this is the word v′ with a minimum
number of arches, of length at most r which connects q0 and q′, such that alph(r(v′)) is
either ∅, when Σ = S ∪ {a}, or S ∪ {a} otherwise (see also Lemma 25, which explains how a
path is extended). This implies that the property which we wanted to maintain holds before
the iteration of the loop for ℓ = r + 1.

The time complexity of this algorithm is O∗(n32σ).
Now, the smallest universality index of a word accepted by A is simply the minimum

entry M [q][V], for a final state q. ◀

▶ Theorem 22. For a given NFA A with n states, and input alphabet of size σ, and a natural
number k, k-ASU is decidable in O∗(n32σ) time.

Proof. We first use Lemma 21 to compute ℓ, the smallest universality index of a word
accepted by A. If ℓ < k, then the answer for the given instance of k-ASU is negative.
Otherwise, the answer is positive. ◀

After the submission of this conference paper, we realized that the algorithmic problems
solved in Lemma 21 and Theorem 22 can actually be solved, in fact, in polynomial time.
These results will be included in an extended version of this paper.

We conclude this section by showing that k-ESU is actually NP-complete, and it is
NP-hard even for k = 1. Clearly, in the light of our previous results from Theorem 20, for
this problem to be NP-hard we need to consider the case of an input alphabet σ ∈ Ω(log n).
▶ Remark 23. Note that an automaton accepts a word w which is k-universal for k > n = |Q|
iff there exists a state q, which is both accessible and co-accessible, and a loop from q to q

labelled with a ℓ-universal word, for some ℓ ≥ 1. Indeed, for the left-to-right implication, we
look at the states qi reached by reading the first i arches of the word w, for i ∈ [k]. Clearly,
there will be some i < j such that qi = qj , and the subpath between qi and qj on the path
labelled with w is ℓ-universal for some ℓ ≥ 1. The other implication is immediate.

▶ Theorem 24. k-ESU is NP-complete.

Proof. We begin by showing that this problem is in NP.
To solve k-ESU in NP-time, we first check if the automaton A contains a state q, which

is both accessible and co-accessible, and a path from q to q labelled with a x-universal word.
First, we traverse (deterministically) the graph of A from q0 to determine the accessible states,
and also from the final states using the inverted edges to determine the co-accessible states.
For each of these states, we non-deterministically guess a 1-universal word of length at most
nσ and see if this takes us from q to q (by Lemma 18 we have that, if there exists a 1-universal
word accepted by an altered version of the automaton A, where q is the unique initial and
final state, then there exists one such word of length at most nσ). If we successfully guessed
this word, and k > n, then we simply accept the input automaton; otherwise, we reject. If
k ≤ n and no such altered autonaton exists, then follwoing Lemma 18 any k-subsequence
universal word must have length at most knσ. Therefore, we can check every word in Σknσ

to determine if any word is both k-subsequence universal and accepted by A. If such a word
is found we accept the input automaton, otherwise we reject.

The fact that the problem is NP-hard follows from the proof of Theorem 3 from [29]. For
completeness (as the respective proof is not given in the accessible version of the paper), we
sketch here a reduction from the Hamiltonian Path Problem. The high level idea behind this

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:13

reduction is to take a graph G = (V, E) containing n vertices v1, . . . , vn and construct an
automaton A containing n2 + 2 states, with a unique starting state q0, a unique failure state
qf , and a set of n2 states labeled qi,j for every i, j ∈ [1, n]. The state qi,j is used to represent
visiting the vertex vj at the ith step of some path in G. With this in mind, a transition
exists from qi,j to qℓ,k if and only if ℓ = i + 1, and (j, k) is an edge in G. In order to map
the paths accepted by this automaton directly to the paths in G, each transition is labelled
by the index k corresponding to the end state of the edge, i.e., the transition between qi,j

and qi+1,k is labelled by k. With this construction, the path in A labelled by the word w

corresponds directly to some path of length |w| in G.
As a Hamiltonian path must have length exactly n, for every j ∈ [1, n] the state qn,j is

marked as an accepting state, and every transition from qn,j leads to the failure state qf .
From this construction, any 1-universal word must correspond exactly to some permutation
of the alphabet [n], representing a Hamiltonian path in G. In the other direction if no such
word exists, then there does not exist any such path. ◀

As far as k-ASU is concerned, from Lemma 16, and the other results presented here,
we can only infer that this problem is in coNP. However, as mentioned above, more recent
results show that it can actually be solved in polynomial time.

4 Counting and Ranking

In this section we discuss the problems of counting and ranking efficiently k-universal words
from a regular language, given as a DFA, or k-universal paths in the case when the respective
language is given as an NFA. Note, that there is a one-to-one correspondence between paths
and words in the case of DFAs, so, for the sake of simplicity, from now on we will simply talk
about counting and ranking paths accepted by the finite automata we are given as input.

Here, we define the problem of counting and ranking problems, for a given automaton A,
and universality index k. The counting problem is defined as the problem of determining the
number of k-universal words accepted by A, equivalent to determining the size of UnivL(A),k.
For a given length m ∈ N, the problem of counting the number of k-universal words of
length exactly (respectively, at most) m is the problem of determining the size of UnivAm,k

(respectively UnivA≤m,k. The rank of a word w ∈ An is the number of k-universal words
accepted by A that are smaller than w, i.e. the size of {v < w | v ∈ UnivL(A),k}. For a given
length m, the rank of w within the set of k-universal words of length exactly (respectively,
at most) m is the problem of determining the size of the set |{v < w | v ∈ UnivAm,k}|
(respectively, |{v < w | v ∈ UnivA≤m,k}|).

Recall that we are operating on a DFA or NFA A with n states and an alphabet of size
σ > 1 (the case σ = 1 is trivial). We are also given as input the natural numbers k and m

in binary representation: we are interested in counting (ranking) the k-universal words of
length m contained in L(A). It is important to know that these problems are only interesting
for k ≤ m/σ; otherwise, there are no m-length k-universal words. However, an additional
difficulty related to this problem, compared to the case of the decision problems discussed
in Section 3, is that we need to do arithmetics with large numbers. In general, if M is an
upper bound on the value of the numbers that we need to process and ω is the size of the
memory word of our model, then each arithmetic operation requires at most O(log M

ω) time
to complete. In the cases we approach here, M ≤ (nσ)m+1 (a crude upper bound on the
total number of paths of length at most m in A), so each arithmetic operation requires at
most O((m+1) log(nσ)

ω), that is O∗(m) time.

ISAAC 2023

4:14 k-Universality of Regular Languages

This section is laid out as follows. First, we consider the problems of counting the number
of k-universal accepting paths of the finite automaton A. For a given m ∈ N this is split
into two cases, counting the number of k-universal accepting paths of A of length exactly m,
and counting the number of k-universal accepting paths of A of length at most m. We show
that both can be computed in O∗(m2n2k2σ) time. Additionally, we show that the number
of k-universal accepting paths of A can be computed in O∗(n4k22σ) time.

We extend our counting results to the ranking setting, showing that a path π (respectively,
word w) can be ranked within the set of k-universal paths (respectively, words) of length
exactly m accepted by the NFA (respectively, DFA) A in O∗(m2n2k2σ) time, of length at
most m in O∗(m2n2k2σ) time, and of any length in O∗(n4k22σ) time.

The main tool used in this section is the n × (m + 1) × k × 2σ size table T , which we refer
to as the path table of length m for a given m ∈ N0. Each entry in the table T is indexed
by a state q ∈ Q, a length ℓ ∈ [0, m], the number of arches c ∈ [0, k − 1], and a subset of
symbols R ⊂ Σ. The entry T [q, ℓ, c, R] contains the number of ℓ-length paths starting at the
state q0 and ending in the state q such that the words induced by the paths contain each c

arches, and the alphabet of the rest is R. Thus, in the context of the arch factorisation, we
are interested in all words belonging to paths in A which are not yet k-universal. Formally,
we have T [q, ℓ, c, R] =

∑
w∈Σℓ,alph(r(w))=R,ι(w)=c |P(w, q)|, where P(w, q) is the set of paths

from q0 to q in A labelled by w. Note, that for DFAs, we have |P(w, q)| = 1. The words
which have at least k arches in their arch factorisation are captured in the auxiliary n × m + 1
size table U [q, ℓ], which we refer to as the universal words table. Each entry in U is indexed by
a state q ∈ Q and length ℓ ∈ [0, m] with the entry U [q, ℓ] containing the number of ℓ-length
paths ending at q which are k-universal, i.e., ι(w) ≥ k.

The remainder of this section provides the combinatorial and technical tools needed to
construct the tables T and U . Theorems 29 and 34, and Corollary 31 summarise the main
complexity results of this section.

▶ Lemma 25. Let π be an (ℓ − 1)-length path in the NFA A ending at q and corresponding
to the word wπ, such that ι(wπ) = c and alph(r(wπ)) = R. Then the word wπ′ corresponding
to the path π′ formed by following a transition labelled x ∈ Σ from q either:

has an empty rest (r(wπ′) = ε) if R ∪ {x} = Σ and hence ι(wπ′) = c + 1, or
has a rest equal to R ∪{x} (alph(r(wπ′)) = R ∪{x}) if R ∪{x} ⊊ Σ and hence ι(wπ′) = c.

Proof. In the first case, if alph(r(wπ)) = Σ \ {x} then r(wπ)x is an arch, as it contains
every symbol from Σ at least once, and hence the arch factorisation of wπ′ contains c + 1
arches, and an empty rest, i.e. ι(wπ′) = c + 1 and r(wπ′) = ε. Otherwise, r(wπ)x contains
the set of letters R ∪ {x}, and does not complete a new arch. Hence the arch factorisation
of wπ′ contains c arches and the rest contains the letters R ∪ {x}, i.e., ι(wπ′) = c and
alph(r(wπ′)) = alph(wπ) ∪ {x}. ◀

Lemma 25 provides the outline of the dynamic programming approach used to compute
the table T . Starting with the 0-length path corresponding to the empty word ε, the value of
T [q, ℓ, c, R] is computed from the values of T [q′, ℓ−1, c′, R′], allowing an efficient computation
of the table. Corollary 26 rewrites this in terms of computing the number of paths of length
ℓ ending at state q corresponding to words with c arches and the set of symbols R of w’s
rest. The proof is analogous to the one of Lemma 25.

▶ Corollary 26. Let π be an ℓ-length path in the NFA A with ι(wπ) = c, and alph(r(wπ)) = R.
Now, we distinguish the cases whether R is empty:
R = ∅: ι(wπ[1, ℓ − 1]) = c − 1 and alph(r(wπ[1, ℓ − 1])) = Σ \ {wπ[ℓ]},

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:15

R ̸= ∅: ι(wπ[1, ℓ − 1]) = c and either alph(r(wπ[1, ℓ − 1])) = alph(r(wπ)) \ {wπ[ℓ]} or
alph(r(wπ[1, ℓ − 1])) = alph(r(wπ)). In this case we also have R = alph(r(wπ[1, ℓ − 1])) ∪
{wπ[ℓ]}.

Now, we formally establish the dynamic programming approach to calculate the value
of T [q, ℓ, c, R] from the already computed cells of the table. For better readability, we use
P[q, ℓ, c, R] as the set of all ℓ-length paths from q0 to q where the associated word has c

arches and the alphabet of its rest is R. Notice that we have |P [q, ℓ, c, R]| = T [q, ℓ, c, R].

▶ Lemma 27. Let A be an NFA and assume that T [q0, 0, 0, ∅] is given. Notice that given
q ∈ Q, the combination (q′, x) ∈ Q×Σ only contributes to T [q, ℓ, c, R] if we have q′ ∈ ∆(q, x).
Thus, we have for all ℓ ≥ 1

T [q, ℓ, c, R] =
∑
x∈Σ,

q′∈∆(q,x)

0 if x /∈ R and R ̸= ∅,

0 if R = ∅, c = 0,

T [q′, ℓ − 1, c − 1, Σ \ {x}] if R = ∅, c > 0,

T [q′, ℓ − 1, c, R \ {x}] + T [q′, ℓ − 1, c, R] if R ̸= ∅, x ∈ R.

Proof. From Lemma 25, for every path π ∈ P[q, ℓ − 1, c, R], corresponding to the word
wπ, and symbol x, there exists some ℓ-length path π′ ending at some state q′ ∈ δ(q, x)
corresponding to the word wπ′ = wπx such that:

π′ ∈ P [q′, ℓ, c + 1, ∅], if R = Σ \ {x}, or
π′ ∈ P [q′, ℓ, c, R ∪ {x}] if R ̸= Σ \ {x}.

In the other direction, from Lemma 26, every path π′ ∈ P [q, ℓ, c, R] corresponding to the
word wπ′ must contain an (ℓ − 1)-length prefix corresponding to a word with either:

c − 1 arches, and the set of symbols Σ \ {x} in the rest of the word, if R = ∅, or
c arches, and rest of the word containing the set of symbols R or R \ {x}, if R ̸= ∅.

Therefore, if R = ∅, the size of P [q, ℓ, c, R] is equal to
∑

x∈Σ
∑

q′∈∆(q,x) T [q′, ℓ−1, c−1, Σ\{x}].
Similarly, if R ̸= ∅, the size of P[q, ℓ, c, R] is equal to

∑
x∈R

∑
q′∈∆(q,x) T [q′, ℓ − 1, c, R \

{x}] + T [q′, ℓ − 1, c, R].
Note that if R ̸= ∅, and x /∈ R for some x ∈ Σ, there is no path in P [q, ℓ, c, R] where the

final transition is labelled x. Similarly , P [q, ℓ, 0, ∅] = ∅ for any ℓ ≥ 1. Otherwise, one of the
two above cases must apply, depending on the value of R. This concludes the proof. ◀

Following Lemma 27, the table T can be constructed via dynamic programming. As a
base case, note that the only length 0 path in this automaton starting at q0 is the empty
path, which must also end at state q0 and contains 0 arches and no symbols in the alphabet
of the rest. Therefore, T [q, 0, c, R] is set to 0 for every q ∈ Q, R ⊊ Σ and c ∈ [0, k − 1] other
than T [q0, 0, 0, ∅], which is set to 1. We now use T to construct U .

▶ Corollary 28. We have U [q, ℓ] =
∑

x∈Σ,q′∈∆(q,x) U [q′, ℓ − 1] + T [q′, ℓ − 1, k − 1, Σ \ {x}].

Proof. The correctness of this construction follows from Lemma 27. ◀

Note that the total number of k-universal accepting paths of the automaton A is given by∑
q∈F U [q, m]. Using the tables T and U , the total number of k-universal paths and words

of length m can be computed in O∗(m2n2k2σ).

▶ Theorem 29. The number of k-universal accepting paths of length m of an NFA A, for
k ≤ m/σ, can be computed in O∗(m2n2k2σ) time. For k > m/σ, this number is 0.

ISAAC 2023

4:16 k-Universality of Regular Languages

Proof. Note that, as explained before, all arithmetic operations require O(m) time in our
computational model (we operate with numbers of value at most (nσ)m). Using the table
U , the number of k-universal words of length m can be counted by computing the sum∑

q∈F U [q, m], which takes O∗(mn) time. To construct the table U , it is nessesary first to
construct the table T . Assuming that the value of T [q′, ℓ−1, c′, R′] has been precomputed for
every q′ ∈ Q, c′ ∈ [1, k − 1] and R′ ⊊ Σ, the value of T [q, ℓ, c, R] can be computed in O∗(mn)
time. As there are n values of q ∈ Q, 2σ values of R ⊂ Σ, and k values of c ∈ [0, k − 1],
the value of T [q, ℓ, c, R] can be computed for every q ∈ Q, c ∈ [0, k − 1] , and R ⊂ Σ in
O∗(mn2k2σ) time. As there are m + 1 values of ℓ ∈ [0, m], the total time of constructing T

is O∗(m2n2k2σ).
Analogously, the value of U [q, ℓ] can be computed in O∗(mn) time, assuming the values

of U [q′, ℓ − 1] and T [q′, ℓ − 1, k − 1, Σ \ {x}] have be precomputed from every q′ ∈ Q and
x ∈ Σ. Hence U can be constructed from the table T in O∗(m2n2) time. By extension the
number of k-universal paths of length m accepted by A computed in O∗(m2n2k2σ) time. ◀

▶ Corollary 30. The number of k-universal accepting paths of length at most m of an NFA
A, for k ≤ m/σ, can be computed in O∗(m2n2k2σ) time. For k > m/σ, this number is 0.

Proof. Observe that the number of k-universal paths of length at most ℓ is equal to∑
q∈F

∑
ℓ∈[1,m] U [q, ℓ]. As this summation can be computed in O∗(mn) time once U has been

constructed, the total complexity follows from the cost of constructing tables T and U . ◀

Since in a DFA each word is associated with exactly one path, the following holds.

▶ Corollary 31. The number of k-universal words of length either exactly or at most m

accepted by a DFA A, for k ≤ m/σ, can be computed in O∗(m2n2k2σ) time. For k > m/σ,
this number is 0.

We may further generalise this to the problem of finding the number of perfect k-universal
words and paths by discarding any k-universal paths with a non-empty rest.

▶ Corollary 32. The number of perfect k-universal accepting paths of length either exactly or
at most m of an NFA A, for k ≤ m/σ, can be computed in O∗(m2n2k2σ) time.

▶ Corollary 33. The number of perfect k-universal words of length either exactly or at most
m accepted by a DFA A, for k ≤ m/σ, can be computed in O∗(m2n2k2σ) time.

We now generalise these tools to the problem of counting the total number of k-universal
paths accepted by a finite automaton A. The primary challenge of counting the total number
of such paths comes from determining if there exists either a finite or an infinite number of
k-universal paths accepted by A. By the pumping lemma [26], we have that an automaton
A accepts an infinite number of k-universal words (paths) if and only if A accepts some
k-universal word (path) of length at least n + 1. Clearly, if k > n we have that A either
accepts an infinite number of k-universal words (paths) or none (and this can be tested as
in Lemma 19, in time that does not depend on k). Therefore, using the upper bound on
the maximum length of the shortest k-universal word accepted by the automaton A from
Lemma 18, combined with Corollary 31, we now count the total number of k-subsequence
universal words accepted by A.

▶ Theorem 34. The total number of k-universal words (resp., paths) accepted by a DFA
(resp., NFA) A can be determined in O∗(n4k22σ) time (resp., O∗(n4k32σ) time), for k ≤ n.
For k > n, this number is either 0 or ∞, and can be determined in O∗(n32σ) time.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:17

Proof. We only show this for NFAs, as the argument for DFAs is similar (and uses the
previous results corresponding to this class of automata).

Note first that if an automaton accepts some k-universal paths w of length at least n + 1,
then it must accept an infinite number of such words, as the path induced by w in A must
visit some state twice and thus contain a cycle. Therefore, if A accepts only a finite number
of k-universal paths, the total number of paths accepted by A can be computed in O∗(n4k2σ)
time via Theorem 29 and Corollary 30.

Following the same arguments as in Lemma 18, a k-universal path of length of at least
n + 1 exists if and only if there exists some k-universal word of length between n + 1 and
knσ, hence it is sufficient to check if A accepts some word of length between n + 1 and knσ,
which can be achieved in O∗(n4k32σ) time. If no k-universal word accepted by A of length
at least n + 1 exists, then total number of k-universal words accepted by A is determined by
counting the number of k-universal words accepted by A of length at most n. ◀

We now extend our results of counting to the problem of ranking k-universal words. Note,
that these results can be generalised to ranking the k-universal accepted paths, but one
needs to define an ordering on the transitions from each state in the automaton. To keep
the presentation simple, we will therefore only discuss here about DFAs and words. The
main idea is to count the number of k-universal words with a prefix strictly smaller than
the prefix of w of the same length; again, each arithmetic operation takes O(m) time in our
computational model. This section is laid out as follows. First, we show how to compute
the rank of w efficiently within the set UnivA≤m,k in O∗(m2n2k2σ) time. Secondly, we show
that the rank of w can be computed within the set UnivL(A),k in O∗(n4k32σ) time. As noted
above, when discussing counting, these problems only make sense for k ≤ m/σ. This follows
from the same arguments used to count the total number of k-universal words accepted by
A laid out in Theorem 34.

The primary tool used in this section is a generalisation of the path table: the fixed prefix
path table of length m is an n × (m + 1) × k × 2σ sized table, defined for a set of prefixes
PR and denoted T (PR). Informally, the table T (PR) is used to count the number of paths
with some prefix from the given set PR. Thus, T (PR)[q, ℓ, c, R] stores the number of words
w ∈ Σℓ associated to a path from q0 to q, with ι(w) = c, alph(r(w)) = R, and there exists a
p ∈ PR such that p = w[1, |p|]. The table U(PR) is defined analogously to the table U but
again with the additional condition as in T (PR). These tables can be constructed directly
using the same techniques introduced for T and U , by initially setting T (PR)[q0, 0, 0, ∅] to 0
and T (PR)[δ(q0, p), |p|, ι(p), alph(r(p))] to 1 for every p ∈ PR. Similarly, in the special case
where there exists some p ∈ PR such that ι(p) ≥ k, then the value of U [δ(q0, p), |p|] is set
to 1. We assume, without loss of generality, that no prefix in PR is also the prefix of some
other word p′ ∈ PR. The remaining entries are computed as before. In the following results,
we use PR(w) = {w[1, i]x | i ∈ [0, |w|], x ∈ [1, w[i + 1] − 1]}. Note, that the following results
hold for both counting words accepted by deterministic automata, and accepting paths in
non-deterministic automata.

▶ Corollary 35. T (PR), U(PR) are constructible for m-length paths in O∗(m2n2k2σ) time.

▶ Theorem 36. The rank of w ∈ UnivAm,k can be determined in O∗(m2n2k2σ) time.

Proof. Note that a word v is smaller than w (w.r.t. the lexicographical ordering) if and only
if v is a prefix of w or they share a common prefix u and v[|u| + 1] < w[|u| + 1]. Therefore,
the number of m-length k-universal words starting with some prefix in PR(w) is given
by either

∑
q∈F U(PR(w))[q, m], if w has length at most m, or 1 +

∑
q∈F U(PR(w))[q, m]

ISAAC 2023

4:18 k-Universality of Regular Languages

if the w[1, m]th state of the path associated with w is an accepting state, |w| > m, and
ι(w[1, m]) = k. As T (PR(w)) can be computed in O∗(m2n2k2σ) time, and the above
summation completed in O∗(mn) time, the total time complexity of finding the m-length
rank of w is O∗(m2n2k2σ). ◀

▶ Corollary 37. The rank of w ∈ UnivA≤m,k can be determined in O∗(m2n2k2σ) time.

Proof. Using the table T (PR(w)) as above, the number of words k-universal words of length
at most m smaller than w is given by

∑
i∈[1,m]

∑
q∈F

U(PR(w))[q, i] +
∑

i∈[1,m]

{
1, qw[1,i] ∈ F,

0, qw[1,i] /∈ F.

As the table can be constructed in O∗(m2n2k2σ) time, and the summation requires at most
O∗(m2n) time, the total complexity of finding the at-most-m-length rank of a word w in
UnivAm,k is O∗(m2n2k2σ). ◀

▶ Corollary 38. The rank of w ∈ UnivL(A),k can be determined in O∗(n4k32σ) time.

Proof. Following the same arguments as given in Theorem 34, note that there is an infinite
number of words smaller than w if and only if there exists some word of length at least
n + 1 with a prefix in PR. The existence of such a word can be determined from the tables
T (PR(w)) and U(PR(w)) for paths of length at most kmσ in O∗(k2n3) time. As the tables
T (PR(w)) and U(PR(w)) can be constructed for paths of length at most knσ in O∗(n4k32σ)
time, the total rank of w within UnivL(A),k can be computed in O∗(n4k2) time. ◀

5 Conclusions

This paper proposed a series of novel algorithmic results and insights regarding the analysis
of the sets which can be expressed as the intersection of regular languages and the language
of k-universal words over some alphabet. We have introduced two natural notions of k-
universality in regular languages, namely existence k-universal languages and universal
k-universal languages, and have proposed algorithms for testing whether a regular language
is in one of these two classes. While we have a good understanding of the problem of deciding
whether a language is defined by an existence k-universal automaton, the exact complexity
of the problem of deciding whether a language is universal k-universal remains open. As well
as the introduction of these notions, and the study of some decisions problems related to
them, we have provided a toolbox for counting and ranking k-universal paths (respectively,
words) accepted by a given NFA (respectively, DFA).

We note that using a divide and conquer approach to count paths (with a certain amount
of arches, at most m) of length 2ℓ by combining paths of length 2ℓ−1 (with less arches), one
factor m can be reduced to log m for counting and ranking words of (or of at most) given
length m, at the cost of additional complexity in terms of n, k and σ (as, in that case, one
would have to allow the existence of prefixes of such paths which are not part of arches, as
well as consider the fact that these paths connect arbitrary pairs of states, and may have
different counts of arches). This has been left out of the current version to provide a clearer
understanding of our main results, and avoid over-complicating the presentation of the paper.

Duncan Adamson’s work was funded by the Leverhulme Trust via the Leverhulme Research
Centre for Functional Material Design. Tore Koß’s work was supported by the DFG project
number 389613931. Florin Manea’s work was supported by the DFG Heisenberg-project
number 466789228.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:19

References
1 D. Adamson. Ranking binary unlabelled necklaces in polynomial time. In DCFS, pages 15–29.

Springer, 2022.
2 D. Adamson. Ranking and unranking k-subsequence universal words. In Anna Frid and Robert

Mercaş, editors, WORDS, pages 47–59. Springer Nature Switzerland, 2023.
3 D. Adamson, A. Deligkas, V. V. Gusev, and I. Potapov. Ranking bracelets in polynomial time.

CPM, pages 4–17, 2021.
4 D. Adamson, M. Kosche, T. Koß, F. Manea, and S. Siemer. Longest common subsequence

with gap constraints. In Anna Frid and Robert Mercaş, editors, WORDS, pages 60–76, 2023.
5 A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, and M. Weidlich. Complex event

recognition languages: Tutorial. In DEBS, pages 7–10, 2017.
6 L. Barker, P. Fleischmann, K. Harwardt, F. Manea, and D. Nowotka. Scattered factor-

universality of words. In DLT, pages 14–28. Springer, 2020.
7 H. Z. Q. Chen, S. Kitaev, T. Mütze, and B. Y. Sun. On universal partial words. Electronic

Notes in Discrete Mathematics, 61:231–237, 2017.
8 M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge University

Press, 2007.
9 J.D. Day, P. Fleischmann, M. Kosche, T. Koß, F. Manea, and S. Siemer. The edit distance to

k-subsequence universality. In STACS, volume 187, pages 25:1–25:19, 2021.
10 N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschap-

pen, 49:758–764, 1946.
11 L. Fleischer and M. Kufleitner. Testing simon’s congruence. In MFCS. Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2018.
12 P. Fleischmann, S.B. Germann, and D. Nowotka. Scattered factor universality–the power of

the remainder. preprint arXiv:2104.09063 (published at RuFiDim), 2021.
13 P. Fleischmann, L. Haschke, A. Huch, A. Mayrock, and D. Nowotka. Nearly k-universal

words-investigating a part of simon’s congruence. In DCFS, pages 57–71, 2022.
14 P. Fleischmann, J. Höfer, A. Huch, and D. Nowotka. α-β-factorization and the binary case of

simon’s congruence, 2023. arXiv:2306.14192.
15 F. V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact algorithms for treewidth and

minimum fill-in. SIAM J. Comput., 38(3):1058–1079, 2008. doi:10.1137/050643350.
16 H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences.

Discrete Mathematics, 23(3):207–210, 1978.
17 A. Frochaux and S. Kleest-Meißner. Puzzling over subsequence-query extensions: Disjunction

and generalised gaps. In AMW 2023, volume 3409 of CEUR Workshop Proceedings. CEUR-
WS.org, 2023.

18 P. Gawrychowski, M. Kosche, T. Koß, F. Manea, and S. Siemer. Efficiently Testing Simon’s
Congruence. In STACS, volume 187, pages 34:1–34:18, 2021.

19 P. Gawrychowski, M. Lange, N. Rampersad, J. O. Shallit, and M. Szykula. Existential length
universality. In Proc. STACS 2020, volume 154 of LIPIcs, pages 16:1–16:14, 2020.

20 E. N. Gilbert and J. Riordan. Symmetry types of periodic sequences. Illinois Journal of
Mathematics, 5(4):657–665, 1961.

21 B. Goeckner, C. Groothuis, C. Hettle, B. Kell, P. Kirkpatrick, R. Kirsch, and R. W. Solava.
Universal partial words over non-binary alphabets. Theor. Comput. Sci, 713:56–65, 2018.

22 S. Halfon, P. Schnoebelen, and G. Zetzsche. Decidability, complexity, and expressiveness of
first-order logic over the subword ordering. In LICS, pages 1–12. IEEE, 2017.

23 R. Han, S. Wang, and X. Gao. Novel algorithms for efficient subsequence searching and mapping
in nanopore raw signals towards targeted sequencing. Bioinformatics, 36(5):1333–1343, 2020.

24 J.-J. Hebrard. An algorithm for distinguishing efficiently bit-strings by their subsequences.
Theoretical Computer Science, 82(1):35–49, 1991.

25 M. Holzer and M. Kutrib. Descriptional and computational complexity of finite automata - A
survey. Inf. Comput., 209(3):456–470, 2011.

ISAAC 2023

https://arxiv.org/abs/2306.14192
https://doi.org/10.1137/050643350

4:20 k-Universality of Regular Languages

26 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, 1979.

27 P. Karandikar, M. Kufleitner, and P. Schnoebelen. On the index of Simon’s congruence for
piecewise testability. Inf. Process. Lett., 115(4):515–519, 2015.

28 P. Karandikar and P. Schnoebelen. The height of piecewise-testable languages with applications
in logical complexity. In CSL, 2016.

29 S. Kim, Y. Han, S. Ko, and K. Salomaa. On simon’s congruence closure of a string. In
DCFS 2022, Proceedings, volume 13439 of Lecture Notes in Computer Science, pages 127–141.
Springer, 2022.

30 S. Kim, Y. Han, S. Ko, and K. Salomaa. On the simon’s congruence neighborhood of languages.
In DLT 2023, Proceedings, volume 13911 of Lecture Notes in Computer Science, pages 168–181.
Springer, 2023.

31 S. Kim, S. Ko, and Y. Han. Simon’s congruence pattern matching. In ISAAC 2022, Proceedings,
volume 248 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

32 S. Kleest-Meißner, R. Sattler, M. L. Schmid, N. Schweikardt, and M. Weidlich. Discovering
event queries from traces: Laying foundations for subsequence-queries with wildcards and
gap-size constraints. In ICDT 2022, Proceedings, volume 220 of LIPIcs, pages 18:1–18:21,
2022.

33 S. Kleest-Meißner, R. Sattler, M. L. Schmid, N. Schweikardt, and M. Weidlich. Discovering
multi-dimensional subsequence queries from traces - from theory to practice. In BTW 2023,
Proceedings, volume P-331 of LNI, pages 511–533, 2023.

34 T. Kociumaka, J. Radoszewski, and W. Rytter. Computing k-th Lyndon word and decoding
lexicographically minimal de Bruijn sequence. In CPM, pages 202–211. Springer, 2014.

35 M. Kosche, T. Koß, F. Manea, and S. Siemer. Absent subsequences in words. In RP, pages
115–131. Springer, 2021.

36 M. Kosche, T. Koß, F. Manea, and S. Siemer. Combinatorial algorithms for subsequence
matching: A survey. In Henning Bordihn, Géza Horváth, and György Vaszil, editors, NCMA,
2022.

37 M. Krötzsch, T. Masopust, and M. Thomazo. Complexity of universality and related problems
for partially ordered NFAs. Inf. Comput., 255:177–192, 2017.

38 M. Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cambridge University
Press, 1997.

39 M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40(12):859–864, December
1934.

40 A. Mateescu, A. Salomaa, and S. Yu. Subword histories and parikh matrices. Journal of
Computer and System Sciences, 68(1):1–21, 2004.

41 N. Rampersad, J. Shallit, and Z. Xu. The computational complexity of universality problems for
prefixes, suffixes, factors, and subwords of regular languages. Fundam. Inf., 116(1-4):223–236,
January 2012.

42 C. Savage. A survey of combinatorial gray codes. SIAM review, 39(4):605–629, 1997.
43 J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de

Bruijn sequences. Journal of Discrete Algorithms, 43:95–110, 2017.
44 P. Schnoebelen and P. Karandikar. The height of piecewise-testable languages and the

complexity of the logic of subwords. Logical Methods in Computer Science, 15, 2019.
45 P. Schnoebelen and J. Veron. On arch factorization and subword universality for words and

compressed words. In WORDS 2023, Proceedings, volume 13899 of Lecture Notes in Computer
Science, pages 274–287. Springer, 2023.

46 A. C. Shaw. Software descriptions with flow expressions. IEEE Transactions on Software
Engineering, 3:242–254, 1978.

47 R. Shikder, P. Thulasiraman, P. Irani, and P. Hu. An openmp-based tool for finding longest
common subsequence in bioinformatics. BMC research notes, 12:1–6, 2019.

D. Adamson, P. Fleischmann, A. Huch, T. Koß, F. Manea, and D. Nowotka 4:21

48 I. Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., volume 33
of LNCS, pages 214–222. Springer, 1975.

49 I. Simon. Words distinguished by their subwords. WORDS, 27:6–13, 2003.
50 Z. Troniĉek. Common subsequence automaton. In CIAA, pages 270–275, 2003.
51 G. Zetzsche. The complexity of downward closure comparisons. In ICALP, volume 55, pages

123:1–123:14, 2016.

ISAAC 2023

Unified Almost Linear Kernels for
Generalized Covering and Packing Problems
on Nowhere Dense Classes
Jungho Ahn # Ñ

Korea Institute for Advanced Study, Seoul, South Korea

Jinha Kim # Ñ

Department of Mathematics, Chonnam National University, Gwangju, South Korea

O-joung Kwon # Ñ

Department of Mathematics, Hanyang University, Seoul, South Korea
Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea

Abstract
Let F be a family of graphs, and let p, r be nonnegative integers. For a graph G and an integer k, the
pp, r, Fq-Covering problem asks whether there is a set D Ď V pGq of size at most k such that if the
p-th power of G has an induced subgraph isomorphic to a graph in F , then it is at distance at most r

from D. The pp, r, Fq-Packing problem asks whether Gp has k induced subgraphs H1, . . . , Hk such
that each Hi is isomorphic to a graph in F , and for i, j P t1, . . . , ku, the distance between V pHiq

and V pHjq in G is larger than r.
We show that for every fixed nonnegative integers p, r and every fixed nonempty finite family F

of connected graphs, pp, r, Fq-Covering with p ď 2r ` 1 and pp, r, Fq-Packing with p ď 2tr{2u ` 1
admit almost linear kernels on every nowhere dense class of graphs, parameterized by the solution
size k. As corollaries, we prove that Distance-r Vertex Cover, Distance-r Matching, F-Free
Vertex Deletion, and Induced-F-Packing for any fixed finite family F of connected graphs
admit almost linear kernels on every nowhere dense class of graphs. Our results extend the results
for Distance-r Dominating Set by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP
2017), and for Distance-r Independent Set by Pilipczuk and Siebertz (EJC 2021).

2012 ACM Subject Classification Theory of computation Ñ Design and analysis of algorithms;
Theory of computation Ñ Graph algorithms analysis; Theory of computation Ñ Parameterized
complexity and exact algorithms

Keywords and phrases kernelization, independent set, dominating set, covering, packing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.5

Related Version Full Version: https://arxiv.org/abs/2207.06660

Funding All the authors were supported by the Institute for Basic Science (IBS-R029-C1). Jungho
Ahn was also supported by the KIAS Individual Grant (CG095301) at Korea Institute for Advanced
Study, and O-joung Kwon was also supported by the National Research Foundation of Korea
(NRF) grant funded by the Ministry of Science and ICT (No. NRF-2021K2A9A2A11101617 and
RS-2023-00211670).

1 Introduction

The Dominating Set problem is one of the classical NP-hard problems which asks whether
a graph G contains a set of at most k vertices whose closed neighborhood contains all the
vertices of G. A natural variant of it is the Distance-r Dominating Set problem which
asks whether G contains a set of at most k vertices such that every vertex of G is at distance
at most r from one of these vertices. Dominating Set has been intensively studied in
the context of fixed-parameter algorithms. In a parameterized problem Π, we are given an

© Jungho Ahn, Jinha Kim, and O-joung Kwon;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 5; pp. 5:1–5:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:junghoahn@kias.re.kr
https://www.junghoahn.com/
https://orcid.org/0000-0003-0511-1976
mailto:jinhakim@jnu.ac.kr
https://sites.google.com/view/jinhakim
https://orcid.org/0000-0001-5982-7836
mailto:ojoungkwon@hanyang.ac.kr
http://ojkwon.com/
https://orcid.org/0000-0003-1820-1962
https://doi.org/10.4230/LIPIcs.ISAAC.2023.5
https://arxiv.org/abs/2207.06660
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Almost Linear Kernels for Generalized Covering and Packing Problems

instance px, kq where k is a parameter, and the central question is whether the parameterized
problem admits an algorithm, called fixed-parameter algorithm, that runs in time fpkq ¨ |x|c
for some computable function f and a constant c. We say that Π is fixed-parameter tractable,
or FPT for short if it admits a fixed-parameter algorithm. It is known that Dominating
Set is W[2]-complete parameterized by k [14, 15], meaning that it is not FPT unless an
unexpected collapse occurs in the parameterized complexity hierarchy. Thus, it is natural
to restrict graph classes and see whether a fixed-parameter algorithm exists. Dominating
Set admits a fixed-parameter algorithm on planar graphs [13, 27], and the project of finding
larger sparse graph classes on which fixed-parameter algorithms for Dominating Set exist
has been studied intensively, see [11, 4, 30, 38, 29, 24, 40].

A kernelization algorithm for a parameterized problem takes an instance px, kq and
outputs an equivalent instance px1, k1q in time polynomial in |x|`k, where |x1|`k1 ď gpkq for
some computable function g. We call the function g the size of the kernel. If g is a polynomial
(resp. linear), then such an algorithm is called a polynomial (resp. linear) kernel. It is well
known that a parameterized decision problem is FPT if and only if it admits a kernelization;
see [16]. Furthermore, with a polynomial kernel, we can compress inputs to instances of
polynomial size, which lead to boost up the running time of exact algorithms solving the
problem, like the brute-force search algorithm. Therefore, it is natural and applicable to
investigate the existence of a polynomial kernel or a linear kernel. In particular, the existence
of linear kernels for Dominating Set on sparse graph classes have been investigated.

One of the first results is a linear kernel for Dominating Set on planar graphs due to
Alber, Fellows, and Niedermeier [3]. It has been generalized to classes of bounded genus
graphs [26], H-minor free graphs [23], and H-topological minor free graphs [24]. Drange
et al. [17] extended the previous results to classes of graphs with bounded expansion for
Distance-r Dominating Set, and Eickmeyer et al. [20] obtained almost linear kernels for
Distance-r Dominating Set on nowhere dense classes of graphs. Classes of graphs with
bounded expansion and nowhere dense classes of graphs were introduced by Nešetřil and
Ossona de Mendez [37], which are defined in terms of shallow minors and capture most of
well-studied sparse graph classes.

Independent Set is another classic NP-hard problem which asks to find a set of k vertices
in a given graph whose pairwise distance is more than 1, and Distance-r Independent
Set is the problem obtained by replacing 1 with r. It is known that Independent Set is
W[1]-complete parameterized by k [15]. The distance variations of Dominating Set and
Independent Set are closely related, in a sense that the size of a distance-2r independent
set is a lower bound for the minimum size of a distance-r dominating set. Dvořák [18]
presented an approximation algorithm for Distance-r Dominating Set, which outputs a
set of size bounded by a function of the 2r-weak coloring number and the maximum size of a
distance-2r independent set. Pilipczuk and Siebertz [39] recently presented an almost linear
kernel for Distance-r Independent Set on nowhere dense classes of graphs.

For a fixed r, both Distance-r Dominating Set and Distance-r Independent Set
can be expressed in first-order logic. Thus, by the meta-theorem of Grohe, Kreutzer, and
Siebertz [29], there are almost-linear-time fixed-parameter tractable on every nowhere dense
class of graphs. Fabiański, Pilipczuk, Siebertz, and Toruńczyk [22] presented linear-time
fixed-parameter algorithms for Distance-r Dominating Set on various graph classes,
including powers of nowhere dense classes and map graphs, and a linear-time fixed-parameter
algorithm for Distance-r Independent Set on every nowhere dense class of graphs.

A natural question is whether there are linear/polynomial kernels for other problems
on classes of graphs with bounded expansion and nowhere dense classes of graphs. Meta-
type kernelization results have been studied for graphs on bounded genus [6], H-minor free

J. Ahn, J. Kim, and O. Kwon 5:3

graphs [25], H-topological minor free graphs [32], classes of graphs with bounded expansion,
and nowhere dense classes of graphs [28]. Note that the last result by Gajarsky et al. [28] is
to obtain kernelizations parameterized by the size of a modulator to constant tree-depth, and
not by the solution size. Currently, limited investigations have been conducted on variations
of Distance-r Dominating Set and Distance-r Independent Set. In this paper, we
consider generic problems to hit finite graphs by the r-th neighborhood of a set of vertices.

Let F be a family of graphs, and let p and r be nonnegative integers. For a graph G,
let Gp be the graph with vertex set V pGq such that distinct vertices v and w are adjacent
in Gp if and only if the distance between v and w in G is at most p, and let Nr

GrDs be the
set of all vertices in G at distance at most r from D in G. For a graph G, a set D Ď V pGq is
a pp, r,Fq-cover of G if there is no set X Ď V pGqzNr

GrDs such that GprXs is isomorphic to
a graph in F . We denote by the γF

p,rpGq the minimum size of a pp, r,Fq-cover of G. For a
graph G and an integer k, the pp, r,Fq-Covering problem asks whether γF

p,rpGq ď k. Note
that Distance-r Dominating Set is equal to p1, r, tK1uq-Covering.

Our main results are the following. For classes of graphs with bounded expansion, we can
obtain linear kernels. Let N be the set of nonnegative integers and R` be the set of positives.

▶ Theorem 1.1. For every nowhere dense class C of graphs, there is gcov : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph
G P C and k P N, either correctly decides that γF

p,rpGq ą k, or outputs a graph G1 with
|V pG1q| ď gcovpr, d, εq ¨ k

1`ε such that γF
p,rpGq ď k if and only if γF

p,rpG
1q ď k ` 1.

A pp, r,Fq-packing of G is a family of sets A1, . . . , Aℓ Ď V pGq such that each GprAis is
isomorphic to a graph in F , and for all 1 ď i ă j ď ℓ, the distance between Ai and Aj in G

is more than r. We denote by αF
p,rpGq the maximum size of a pp, r,Fq-packing of G. For a

graph G and an integer k, the pp, r,Fq-Packing problem asks whether αF
p,rpGq ě k. Note

that Distance-r Independent Set is equal to p1, r, tK1uq-Packing.

▶ Theorem 1.2. For every nowhere dense class C of graphs, there is gpack : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2tr{2u` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph G P C
and k P N, either correctly decides that αF

p,rpGq “ 0, or correctly decides that αF
p,rpGq ą k,

or outputs a graph G1 with |V pG1q| ď gpackpr, d, εq ¨ k
1`ε such that αF

p,rpGq ě k if and only if
αF

p,rpG
1q ě k ` 1.

Applications. Our kernels for the covering problems have the following applications. Canales,
Hernández, Martins, and Matos [9] introduced a distance-r vertex cover and a distance-r
guarding set. For a graph G and a positive integer r, a set D Ď V pGq is a distance-r
vertex cover if G´Nr

GrDs has no edge, and a distance-r guarding set if G´Nr´1
G rDs has no

triangle. For a positive integer k, the Distance-r Vertex Cover problem asks whether
a graph G has a distance-r vertex cover of size at most k. Similarly, the Distance-r
Guarding Set problem asks whether a graph G has a distance-r guarding set of size at
most k. Distance-r Vertex Cover and Distance-r Guarding Set for r ě 1 can
be formulated as p1, r, tK2uq-Covering and p1, r ´ 1, tK3uq-Covering, respectively. By
Theorem 1.1, both problems admit almost linear kernels on every nowhere dense class of
graphs, and these kernels also can be translated to fixed-parameter algorithms solving those
problems on every nowhere dense class of graphs.

ISAAC 2023

5:4 Almost Linear Kernels for Generalized Covering and Packing Problems

For a family F of graphs, a graph G, and an integer k, the F-Free Vertex Deletion
problem asks whether there is a set S of at most k vertices in G such that G ´ S has no
induced subgraph isomorphic to F . If all graphs in F have at most d vertices, then this
problem is related to the d-Hitting Set problem, and has a kernel of size Opkd´1q [1]. Our
results imply that if F is a finite set of connected graphs, then F-Free Vertex Deletion
admits an almost linear kernel on every nowhere dense class of graphs. This can be applied
to Cograph Vertex Deletion [36], to Cluster Vertex Deletion [5, 41], and to
Claw-Free Vertex Deletion [7].

Our kernels for the packing problems have the following applications. A matching of
a graph G is a set M of edges of G such that no two edges in M share an end. For a
positive integer r, a distance-r matching of G is a matching M of G such that for distinct
edges u1u2, v1v2 P M , mintdistGpui, vjq : i, j P r2su ě r. For an integer k, the Distance-r
Matching problem asks whether G has a distance-r matching of size at least k. Distance-1
Matching is nothing but finding a matching of size at least k, so can be solved in polynomial
time [19]. Distance-r Matching for r ě 2 is equal to p1, r ´ 1, tK2uq-Packing. Moser
and Sikdar [35] presented linear kernels for Distance-2 Matching on planar graphs and
graphs of bounded degree, and a cubic kernel for the same problem on graphs of girth at
least 6. Later, Kanj, Pelsmajer, Schaefer, and Xia [31] presented a kernel of size 40k for
Distance-2 Matching on planar graphs. By Theorem 1.2, Distance-r Matching for
every r ě 2 admits an almost linear kernel on every nowhere dense class of graphs.

We can further generalize the matching problem. For a graph H and an integer k, the
H-Matching problem asks whether a graph G has k vertex-disjoint subgraphs isomorphic
to H. For every integer d ě 1, let Pd be a path on d vertices. Dell and Marx [10] presented
a kernel for P3-Matching with Opk2.5q edges, and a unified kernel for Pd-Matching with
Opdd2

d7k3q vertices. They also showed that for every integer d ě 3 and every ε ą 0, under
some complexity hypothesis, Kd-Matching does not have kernels with Opkd´1´εq edges.
By taking F as the set of all graphs on |V pHq| vertices that contain H as a subgraph, we
can formulate H-Matching as p1, 0,Fq-Packing. Generally, we may consider Induced-F-
Packing which asks whether a graph has k vertex-disjoint induced subgraphs each isomorphic
to some graph in F . By Theorem 1.2, Induced-F-Packing for every fixed finite family F
of connected graphs admits almost linear kernel on every nowhere dense class of graphs.

We may formulate pp, r,Fq-Covering and pp, r,Fq-Packing on fixed powers of a given
graph. Formally, for a fixed positive integer t, ppt, rt,Fq-Covering on a graph G is exactly
same as pp, r,Fq-Covering on its t-th power Gt. Therefore, our result provides the existence
of almost linear kernels for both problems on t-th powers Gt of graphs from a nowhere dense
class of graphs, assuming that the original graph G is given. However, if the power Gt is
only given, then we need to find the graph G to apply our kernelization algorithm.

Organization. We organize this paper as follows. In Section 2, we present some terminology
from graph theory, especially lemmas on nowhere dense classes of graphs. In Sections 3
and 4, we present almost linear kernels for pp, r,Fq-Covering and pp, r,Fq-Packing on
every nowhere dense class of graphs, respectively.

2 Preliminaries

In this paper, all graphs are simple and finite and have at least one vertex. For an equivalence
relation „ on a set X, we denote by indexp„q the number of equivalence classes of „ in X.
For every integer n, let rns be the set of positive integers at most n. Throughout this section,

J. Ahn, J. Kim, and O. Kwon 5:5

we let p, r be nonnegative integers, let G be a graph, and let A,B be subsets of V pGq. We
follow the notations from the textbook of Diestel [12]. We denote by distGpv, wq the distance
between vertices v and w in G and by distGpA,Bq be the shortest distance between a vertex
in A and a vertex in B. The p-th power of G, denoted by Gp, is the graph with vertex set
V pGq such that distinct vertices v and w are adjacent in Gp if and only if distGpv, wq ď p.
For a vertex v of G, let Nr

Grvs be the set of vertices of G which are at distance at most r
from v in G, and Nr

Gpvq :“ Nr
Grvsztvu. Let Nr

GrAs :“
Ť

vPA N
r
Grvs and Nr

GpAq :“ Nr
GrAszA.

A set X Ď V pGq is a distance-r independent set in G if the vertices in X are pairwise
at distance larger than r in G. We denote by αrpGq the maximum size of a distance-r
independent in G. A set D Ď V pGq is a distance-r dominating set of G if every vertex of G
lies in Nr

GrDs. We denote by γrpGq the minimum size of a distance-r dominating set of G.

Sparse graphs. A graph H with vertex set tv1, . . . , vnu is an r-shallow minor of G if there
exist pairwise disjoint subsets V1, . . . , Vn of V pGq such that each GrVis has radius at most r
and for all edges vivj P EpHq, distGpVi, Vjq “ 1. A class C of graphs has bounded expansion
if there is f : N Ñ N such that for all r P N, G P C, and an r-shallow minor H of G,
|EpHq|{|V pHq| ď fprq. A class C of graphs is nowhere dense if there is g : N Ñ N such that
for all r P N and G P C, Kgprq is not an r-shallow minor of G.

For vertices v P A and u P V pGqzA, a path P from u to v is A-avoiding if V pP qXA “ tvu.
For a vertex u P V pGqzA, the r-projection of u on A, denoted by MG

r pu,Aq, is the set
of all vertices v P A connected to u by an A-avoiding path of length at most r in G.
The r-projection profile of u on A is a function ρG

r ru,As : A Ñ rrs Y t8u such that for
each vertex v P A, ρG

r ru,Aspvq is 8 if there is no A-avoiding path of length at most r
from u to v, and otherwise the length of a shortest A-avoiding path from u to v. Let
µrpG,Aq :“ |tρG

r ru,As : u P V pGqzAu|. We will use the following lemmas.

▶ Lemma 2.1 (Eickmeyer et al. [20]). For every nowhere dense class C of graphs, there is
fproj : N ˆ R` Ñ N such that for all r P N, ε ą 0, G P C, and X Ď V pGq, µrpG,Xq ď

fprojpr, εq ¨ |X|1`ε.

For t ě 0, a set X Ď V pGq is pr, tq-close if |MG
r pu,Xq| ď t for every u P V pGqzX.

▶ Lemma 2.2 (Eickmeyer et al. [20]). For every nowhere dense class C of graphs, there exist
fcl : N ˆ R` Ñ N and a polynomial-time algorithm that for all r P N, ε ą 0, G P C, and
X Ď V pGq, outputs an pr, fclpr, εq ¨ |X|εq-close set Xcl Ě X of size at most fclpr, εq ¨ |X|1`ε.

For a set X Ď V pGq, an r-path closure of X is a set Xpth Ě X such that for u, v P X, if
distGpu, vq ď r, then distGrXpthspu, vq “ distGpu, vq.

▶ Lemma 2.3 (Eickmeyer et al. [20]). For every nowhere dense class C of graphs, there exist
fpth : N ˆ R` Ñ N and a polynomial-time algorithm that for all r P N, ε ą 0, G P C, and
X Ď V pGq, outputs an r-path closure of X having size at most fpthpr, εq ¨ |X|1`ε.

Drange et al. [17] showed analogues of these three lemmas on classes of graphs with
bounded expansion. By substituting Lemmas 2.1, 2.2, and 2.3 with their analogues, we
can easily obtain linear kernels for pp, r,Fq-Covering and pp, r,Fq-Packing on classes of
graphs with bounded expansion. Thus, we mainly focus on constructing almost linear kernels
for the problems on nowhere dense classes of graphs.

A class C of graphs is uniformly quasi-wide if there exist N : Nˆ N Ñ N and s : N Ñ N
such that for all G P C and A Ď V pGq with |A| ě Npr,mq, there exist sets S Ď V pGq and
B Ď AzS such that |S| ď sprq, |B| ě m, and B is distance-r independent in G´ S.

ISAAC 2023

5:6 Almost Linear Kernels for Generalized Covering and Packing Problems

▶ Theorem 2.4 (Kreutzer, Rabinovich, and Siebertz [33]). Let C be a nowhere dense class of
graphs. For every r ě 0, there are pprq, sprq such that for all G P C, m P N, and A Ď V pGq

with |A| ě mpprq, there are sets S Ď V pGq and B Ď AzS such that |S| ď sprq, |B| ě m,
and B is distance-r independent in G´ S. Moreover, if Kc is not an r-shallow minor of G,
then sprq ď c ¨ r and one can find desired sets S and B in Opr ¨ c ¨ |A|c`6 ¨ |V pGq|2q time.

VC-dimension. A set-system is a family of subsets of a set, called the ground set. Let S be a
set-system with the ground set S. A set S1 Ď S is shattered by S if |tS1 X T : T P Su| “ 2|S1|.
The Vapnik-Chervonenkis dimension, or VC-dimension for short, of S is the largest cardinality
of a shattered subset of S by S. Observe that if a set S1 Ď S is shattered by S, then every
subset of S1 is also shattered by S. In addition, for every S 1 Ď S, the VC-dimension of S 1 is
at most that of S.

▶ Proposition 2.5 (See [34, Proposition 10.3.3]). Let F pX1, . . . , Xdq be a set-theoretic expres-
sion using set variables X1, . . . , Xd and the operations of union, intersection, and difference.
Let S be a set-system with the ground set S, and T :“ tF pS1, . . . , Sdq : S1, . . . , Sd P Su. If S
has VC-dimension c ă 8, then T has VC-dimension Opcd log dq.

A hitting set of S is a set X Ď S such that for every T P S, T XX ‰ H. Let τpSq be the
minimum size of a hitting set of S.

Brönnimann and Goodrich [8] and Even, Rawitz, and Shahar [21] presented polynomial-
time algorithms finding a hitting set X of a nonempty set-system S having VC-dimension at
most c with |X| “ Opc ¨ τpSq ¨ ln τpSqq.

▶ Theorem 2.6 ([8, 21]). There exist a constant Cτ and a polynomial-time algorithm that
for every nonempty set-system S having VC-dimension at most c, outputs a hitting set of S
having size at most Cτ ¨ c ¨ τpSq ¨ ln τpSq ` 1.

The VC-dimension of G is defined by the VC-dimension of tNGrvs : v P V pGqu.

▶ Theorem 2.7 (Adler and Adler [2]). Let C be a nowhere dense class of graphs and ϕpx, yq be
a first-order formula such that for all G P C and vertices v and w of G, G |ù ϕpv, wq if and
only if G |ù ϕpw, vq. For a graph G P C, let Gϕ :“ pV pGq, tvw : G |ù ϕpv, wquq. Then there
exists a nonnegative integer c depending on C and ϕ such that every graph in tGϕ : G P Cu
has VC-dimension at most c.

For every p P N, the property that the distance between two vertices is at most p can be
expressed in a first-order formula, so Theorem 2.7 has the following corollary.

▶ Corollary 2.8. For every nowhere dense class C of graphs, there exists a function fvc :
N Ñ N such that for all p P N and G P C, Gp has VC-dimension at most fvcppq. ◀

3 Kernels for the pp, r, Fq-Covering problems

Let p, r be nonnegative integers with p ď 2r ` 1 and let F be a nonempty finite family of
connected graphs. In this section, we present an almost linear kernel for pp, r,Fq-Covering
on every nowhere dense class of graphs. To do this, we divert to an annotated variant of
pp, r,Fq-Covering. For a graph G and a set A Ď V pGq, a set D Ď V pGq is a pp, r,Fq-cover
of A in G if there is no set X Ď AzNr

GrDs such that GprXs is isomorphic to a graph in F .
We denote by γF

p,rpG,Aq the minimum size of a pp, r,Fq-cover of A in G. For a graph G, a
set A Ď V pGq, and an integer k, the Annotated pp, r,Fq-Covering problem asks whether
γF

p,rpG,Aq ď k.

J. Ahn, J. Kim, and O. Kwon 5:7

We first construct an almost linear kernel for Annotated pp, r,Fq-Covering on every
nowhere dense class of graphs. Every instance of pp, r,Fq-Covering can be seen as an
instance of an annotated variant, so we apply the almost linear kernel to the input instance.
Afterwards, we construct an equivalent instance of pp, r,Fq-Covering by attaching a small
graph, which will be called a pp,Fq-critical graph, to the resulting instance obtained from
the almost linear kernel.

For a graph G and a set A Ď V pGq, a pp, r,Fq-core of A in G is a set Z Ď A such that
every minimum-size pp, r,Fq-cover of Z in G is a pp, r,Fq-cover of A in G. Observe that
γF

p,rpG,Aq “ γF
p,rpG,Zq and A is a pp, r,Fq-core of A in G. We derive an almost linear kernel

for Annotated pp, r,Fq-Covering from Proposition 3.1 saying that we can either confirm
that the given instance is a no-instance, or reduce the size of a pp, r,Fq-core of A in G.

▶ Proposition 3.1. For every nowhere dense class C of graphs, there is fcore : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph
G P C, A Ď V pGq, k P N, and a pp, r,Fq-core Z of A in G with |Z| ą fcorepr, d, εq ¨ k

1`ε,
either correctly decides that γF

p,rpG,Aq ą k, or outputs a vertex z P Z such that Zztzu is a
pp, r,Fq-core of A in G.

We will use the following proposition to prove Proposition 3.1.

▶ Proposition 3.2. For every nowhere dense class C of graphs, there is fapx : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N,
and ε ą 0, there is a polynomial-time algorithm that given a graph G P C and A Ď V pGq,
outputs a pp, r,Fq-cover of A in G having size at most fapxpr, d, εq ¨ γ

F
p,rpG,Aq

1`ε.

Proof. Let N :“ tNr
Grvs : v P V pGqu and NA :“ tNr

Grvs : v P Au. By Corollary 2.8, N has
VC-dimension at most fvcprq. Since NA Ď N , NA has VC-dimension at most fvcprq. Let
H0 :“ tNr

GrBs : B Ď A, |B| ď du. Let H1 be the family of sets B Ď A such that GprBs

is isomorphic to a graph in F , and H2 :“ tNr
GrBs : B P H1u. Since N has VC-dimension

at most fvcprq, by Proposition 2.5, H0 has VC-dimension at most Opfvcprq ¨ d log dq. Since
H2 Ď H0, H2 has VC-dimension at most Opfvcprq ¨ d log dq.

Let γ :“ γF
p,rpG,Aq and δ be the VC-dimension of H2. Observe that pp, r,Fq-covers of

A in G correspond to hitting sets of H2, and vice versa. By Theorem 2.6, one can find in
polynomial time a hitting set X of H2 having size at most Cτ ¨ δ ¨ γ ¨ ln γ ` 1. Thus, one can
choose the function fapxpr, d, εq with |X| ď fapxpr, d, εq ¨ γ

1`ε. ◀

Proof of Proposition 3.1. The function fcorepr, d, εq will be defined later. At the beginning,
we assume that |Z| ą fcorepr, d, εq ¨ k

1`Cε for some constant C, and at the end, we scale ε
accordingly. If Z contains a vertex v such that for every set B Ď Zztvu with |B| ď d ´ 1,
GprB Y tvus is isomorphic to no graph in F , then the statement holds by taking v as z.
Thus, we may assume that for every v P Z, there is a set B Ď Zztvu such that GprB Y tvus

is isomorphic to a graph in F .
By Proposition 3.2, one can find in polynomial time a pp, r,Fq-cover X of Z in G having

size at most fapxpr, d, εq ¨ γ
F
p,rpG,Zq

1`ε. If |X| ą fapxpr, d, εq ¨ k
1`ε, then γF

p,rpG,Aq “

γF
p,rpG,Zq ą k. Thus, we may assume that |X| ď fapxpr, d, εq ¨ k

1`ε. Let r1 :“ 2pd` 3r. By
Lemma 2.2, one can find in polynomial time an pr1, fclpr

1, εq ¨ |X|εq-close set Xcl Ě X of size
at most fclpr

1, εq ¨ |X|1`ε ď fclpr
1, εq ¨ fapxpr, d, εq

1`ε ¨ k1`3ε.
Let „ be an equivalence relation on ZzXcl such that for vertices u, v P ZzXcl, u „ v if

and only if ρG
r1ru,Xcls “ ρG

r1rv,Xcls. By Lemma 2.1,

indexp„q ď fprojpr
1, εq ¨ |Xcl|1`ε ď fprojpr

1, εq ¨ fclpr
1, εq1`ε ¨ fapxpr, d, εq

1`3ε ¨ k1`7ε.

ISAAC 2023

5:8 Almost Linear Kernels for Generalized Covering and Packing Problems

Let ppr1q and s :“ spr1q be the constants in Theorem 2.4. Let

ξ :“ 2 ¨ fclpr
1, εq ¨ fapxpr, d, εq

ε ¨ k2ε ` d2{4 ` s` 1 and m :“ 22d2{2`sd
¨pr`1qsd

¨ ξ ` 1.

By setting C “ 7 ` 2 ¨ ppr1q, one can choose fcorepr, d, εq with fcorepr, d, εq ¨ k
1`Cε ě |Xcl| `

indexp„q ¨mppr1
q. Since |Z| ą fcorepr, d, εq ¨ k

1`Cε, we have that |ZzXcl| ą indexp„q ¨mppr1
q.

Thus, by the pigeonhole principle, there is an equivalence class λ of „ with |λ| ą mppr1
q. By

Theorem 2.4, one can find in polynomial time sets S Ď V pGq and L Ď λzS such that |S| ď s,
|L| ě m, and L is distance-r1 independent in G´ S.

We are going to find a desired vertex z from L. To do this, we define the following. For
each i P rds, let Gi be the set of all graphs whose vertex sets are ris. Note that |Gi| “ 2ipi´1q{2

for each i P rds. Let H be the set of functions ρ : S Ñ r2r` 1s Y t8u. Since |S| ď s, we have
that |H| ď p2r` 2qs. For each i P rds, let Hi be the set of all vectors ph1, . . . , hi, gq of length
i` 1 where hj P H for each j P ris and g P Gi. Let H :“

Ťd
i“1 Hi. Note that

|H| “
d

ÿ

i“1
|Hi| “

d
ÿ

i“1
p|H|i ¨ |Gi|q ď

d
ÿ

i“1
pp2r ` 2qsi ¨ 2ipi´1q{2q ď 2d2

{2`sd ¨ pr ` 1qsd.

Let ℓ :“ |H|. We take an arbitrary ordering σ1, . . . , σℓ of H. For each v P L, let Av :“ H

and xpvq be a zero vector of length ℓ. One can enumerate in polynomial time the sets
B Ď Zztvu of size at most d´ 1 such that GprB Y tvus is isomorphic to a graph in F . For
each such B, we do the following. If there is an index i P rℓs such that the i-th entry of xpvq
is 0 and for σi “ phi

1, . . . , h
i
t, giq P H, there is an isomorphism ϕi : pBzSqY tvu Ñ rts between

pG ´ SqprpBzSq Y tvus and gi where ϕipvq “ 1 and ρG
2r`1rϕ

´1
i pjq, Ss “ hi

j for each j P rts,
then we put B into Av and convert the i-th entry of xpvq to 1. Otherwise, we do nothing for
the chosen B. Since |B| ď d´ 1, one can check in polynomial time whether B satisfies the
conditions. Thus, the resulting Av and xpvq can be computed in polynomial time.

For each v P L, since Zztvu has a subset B such that GprB Y tvus is isomorphic to a
graph in F , Av ‰ H and xpvq has a nonzero entry. For each set B P Av, let B˚ be the
vertex set of the component of pG´ SqprpBzSq Y tvus having v, and Bv :“

Ť

BPAv
B˚.

Since |L| ě m “ 22d2{2`sd
¨pr`1qsd

¨ ξ ` 1 and ℓ ď 2d2
{2`sd ¨ pr ` 1qsd, by the pigeonhole

principle, L has a subset κ1 such that |κ1| ě ξ ` 1 and xpvq “ xpwq for all v, w P κ1. Let z
be a vertex in κ1 such that distG´SpBz, Xclq ě distG´SpBv, Xclq for every v P κ1.

We show that Zztzu is a pp, r,Fq-core of A in G. To do this, for a minimum-size pp, r,Fq-
cover D of Zztzu in G, we need to show that D is a pp, r,Fq-cover of A in G. Since Z is a
pp, r,Fq-core of A in G, it suffices to show that D is a pp, r,Fq-cover of Z in G.

Suppose for contradiction that D is not a pp, r,Fq-cover of Z in G. Since D is a pp, r,Fq-
cover of Zztzu in G, there is a set Bz Ď ZzpNr

GrDsYtzuq such that GprBzYtzus is isomorphic
to a graph in F . In particular, there exist a graph H P Gt for some t ď d and an isomorphism
ψz : pBzzSq Y tzu Ñ rts between pG ´ SqprpBzzSq Y tzus and H where ψzpzq “ 1. For
each v P κ1ztzu, there exist Bv P Av and an isomorphism ψv : pBvzSq Y tvu Ñ rts between
pG ´ SqprpBvzSq Y tvus and H where ψvpvq “ 1 and for each j P rts, ρG

2r`1rψ
´1
v pjq, Ss “

ρG
2r`1rψ

´1
z pjq, Ss. To derive a contradiction, we do the following steps.

(1) Find a set κ3 Ď κ1ztzu such that for each u P κ3, distG´SpBu, Xclq ą r and GprB˚
u Y

pBzzB
˚
z qs is isomorphic to GprBz Y tzus.

(2) Show that |D| ě |κ3|.
(3) Construct a pp, r,Fq-cover of Zztzu in G having size less than |D|.
Since D is a minimum-size pp, r,Fq-cover of Zztzu in G, these steps derive a contradiction.

J. Ahn, J. Kim, and O. Kwon 5:9

Let κ11 be the set of vertices v P κ1 with distG´SpBv, Xclq ď r and let κ2 :“ κ1zκ
1
1.

We can show that |κ11| ď |MG
r1 pz,Xclq|. Thus, |κ2| ě ξ ` 1 ´ |MG

r1 pz,Xclq| ě fclpr
1, εq ¨

fapxpr, d, εq
ε ¨ k2ε ` d2{4 ` s ` 2. Since κ2 is nonempty, by the choice of z, κ2 contains z.

Let B˚
z be the vertex set of the component of pG´ SqprpBzzSq Y tzus having z. Note that

for vertices v, w P κ2, ψ´1
v ˝ ψw is an isomorphism between pG ´ SqprpBwzSq Y twus and

pG´ SqprpBvzSq Y tvus assigning w to v. Thus, ψ´1
v ˝ ψzpB

˚
z q “ B˚

v . The following claim
shows that the isomorphism is indeed an isomorphism between induced subgraphs of Gp.

▷ Claim 1. For vertices v, w P κ2, ψ´1
w ˝ ψv is an isomorphism between GprpBvzSq Y tvus

and GprpBwzSq Y twus.

Proof. It suffices to show that for i, j P rts, ψ´1
v piq is adjacent to ψ´1

v pjq in Gp if and only if
ψ´1

w piq is adjacent to ψ´1
w pjq in Gp. Suppose that ψ´1

v piq is adjacent to ψ´1
v pjq in Gp. Since

ψ´1
w ˝ ψv is an isomorphism between pGzSqprpBvzSq Y tvus and pGzSqprpBwzSq Y twus, we

may assume that ψ´1
v piq and ψ´1

v pjq are nonadjacent in pGzSqprpBvzSq Y tvus. Thus, every
path of length at most p in G between ψ´1

v piq and ψ´1
v pjq has a vertex in S.

We take an arbitrary path Q of G between ψ´1
v piq and ψ´1

v pjq having length at most
p. Let qi and qj be the vertices in V pQq X S such that each of distQpψ´1

v piq, qiq and
distQpψ´1

v pjq, qjq is minimum. Such qi and qj exist, because Q has a vertex in S. Let Qi be
the subpath of Q between ψ´1

v piq and qi, and Qj be the subpath of Q between ψ´1
v pjq and

qj . Note that both Qi and Qj are S-avoiding paths of length at most p ď 2r ` 1.
Since tv, wu Ď κ2 Ď κ1, ρG

2r`1rψ
´1
v piq, Ss and ρG

2r`1rψ
´1
w piq, Ss are same, and therefore

G has an S-avoiding path Q1
i between ψ´1

w piq and qi whose length is at most that of Qi.
Similarly, G has an S-avoiding path Q1

j between ψ´1
w pjq and qj whose length is at most that

of Qj . By substituting Qi and Qj with Q1
i and Q1

j from Q, respectively, we obtain a walk
of G between ψ´1

w piq and ψ´1
w pjq whose length is at most p. Therefore, ψ´1

w piq is adjacent to
ψ´1

w pjq in Gp. ◁

The following claim shows that except for at most d2{4 vertices in κ2, for every remaining
vertex u P κ2, we can build an isomorphic copy of GprBz Y tzus by substituting B˚

z with B˚
u .

▷ Claim 2. κ2 has at most d2{4 vertices v such that GprB˚
v Y pBzzB

˚
z qs is not isomorphic

to GprBz Y tzus.

Proof. For vertices u P κ2ztzu and i P ψzpB
˚
z q, since tu, zu Ď κ2 Ď κ1, ρG

2r`1rψ
´1
u piq, Ss and

ρG
2r`1rψ

´1
z piq, Ss are same. Therefore, for each w P S, ψ´1

u piq is adjacent to w in Gp if and
only if ψ´1

z piq is adjacent to w in Gp. By Claim 1, the restriction of ψ´1
u ˝ ψz on B˚

z is an
isomorphism between GprB˚

z s and GprB˚
u s.

We first show that for all vertices v P κ2, i P ψzpB
˚
z q, and w P BzzpB

˚
z Y Sq, if ψ´1

z piq is
adjacent to w in Gp, then ψ´1

v piq is adjacent to w in Gp. Suppose that ψ´1
z piq is adjacent to w

in Gp. Let Q1 be a path of G between ψ´1
z piq and w of length at most p. Since pG´SqprB˚

z s

is a component of pG´ SqprpBzzSq Y tzus having z and w R B˚
z , Q1 X S ‰ H.

Let q be the the vertex in V pQ1qXS such that distQ1pψ´1
z piq, qq is minimum. Such q exists,

because Q1 has a vertex in S. Let Q1
1 be the subpath of Q1 between ψ´1

z piq and q. Note that Q1
1

is an S-avoiding path of length at most p ď 2r`1. Since ρG
2r`1rψ

´1
v piq, Ss “ ρG

2r`1rψ
´1
z piq, Ss,

there is an S-avoiding path Q1
2 in G between ψ´1

v piq and q having length at most that of Q1
1.

By substituting Q1
1 with Q1

2 from Q1, we obtain a walk of G between ψ´1
v piq and w having

length at most p. Thus, ψ´1
v piq is adjacent to w in Gp. So, there is no pair of i P ψzpB

˚
z q

and w P BzzpB
˚
z Y Sq so that in Gp, ψ´1

z piq is adjacent to w and ψ´1
u piq is nonadjacent to w.

ISAAC 2023

5:10 Almost Linear Kernels for Generalized Covering and Packing Problems

We now show that if there exist vertices i P ψzpB
˚
z q and w P BzzpB

˚
z Y Sq such that

ψ´1
z piq is nonadjacent to w in Gp, then κ2 contains at most one vertex x such that ψ´1

x piq

is adjacent to w in Gp. To prove the claim, it suffices to show this statement, because
|B˚

z | ¨ |BzzpB
˚
z Y Sq| ď d2{4.

Suppose for contradiction that there exist vertices i P ψzpB
˚
z q, w P BzzpB

˚
z Y Sq, and

distinct x, x1 P κ2 such that ψ´1
z piq is nonadjacent to w in Gp and both ψ´1

x piq and ψ´1
x1 piq

are adjacent to w in Gp. Then G has paths R and R1 of length at most p from w to ψ´1
x piq

and ψ´1
x1 piq, respectively. We can verify that R or R1 has a vertex in S, as otherwise L is

not distance-r1 independent in G´ S. By symmetry, we may assume that R has a vertex
in S. Let t be the vertex in V pRq X S such that distRpψ

´1
x piq, tq is minimum. Let R0 be

the subpath of R between ψ´1
x piq and t. Note that R0 is an S-avoiding path of length at

most p ď 2r ` 1. Since ρG
2r`1rψ

´1
x piq, Ss “ ρG

2r`1rψ
´1
z piq, Ss, G has an S-avoiding path R1

0
between ψ´1

z piq and t having length at most that of R0. By substituting R0 with R1
0 from

R, we obtain a walk of G between ψ´1
z piq and w having length at most p, contradicting the

assumption that ψ´1
z piq is nonadjacent to w in Gp, and this proves the claim. ◁

Since |κ2| ě fclpr
1, εq ¨ fapxpr, d, εq

ε ¨ k2ε ` d2{4 ` s ` 2, by Claim 2, κ2ztzu has a
subset κ3 of size at least fclpr

1, εq ¨ fapxpr, d, εq
ε ¨ k2ε ` s` 1 such that for each vertex u P κ3,

GprB˚
u YpBzzB

˚
z qs is isomorphic to GprBz Ytzus, which is isomorphic to a graph in F . This

is the end of the first step.
We now show that |D| ě |κ3|. For each vertex u P κ3, since B˚

u YpBzzB
˚
z q Ď Zztzu and D

is a pp, r,Fq-cover of Zztzu in G, there exist vertices xu P B˚
u Y pBzzB

˚
z q and du P D with

distGpxu, duq ď r. Observe that xu P ψ´1
u ˝ψzpB

˚
z q, because BzzB

˚
z Ď Bz Ď ZzpNr

GrDsYtzuq.
Let Pu be an arbitrary path in G between xu and du of length at most r.

▷ Claim 3. For each u P κ3, V pPuq X pS YXclq “ H.

Proof. Let u be a vertex in κ3. Suppose for contradiction that V pPuq X S ‰ H. Let q
be the vertex in V pPuq X S such that distPu

pxu, qq is minimum. Let P1 be the subpath
of Pu between xu and q. Note that P1 is an S-avoiding path of length at most r. Since
tu, zu Ď κ2 Ď κ1, G has an S-avoiding path P2 between ψ´1

z ˝ ψupxuq and q having length
at most that of P1. By substituting P1 with P2 from Pu, we obtain a walk of G between
ψ´1

z ˝ψupxuq P B
˚
z Ď Bz Ytzu and du having length at most r, contradicting the assumption

that Bz XNr
GrDs “ H. Hence, V pPuq X S “ H.

Since u R κ11 and Bu P Au, we have that

distGzSpxu, Xclq ě distGzSpB
˚
u , Xclq ě distGzSpBu, Xclq ą r.

Since Pu is a path of GzS having length at most r, V pPuq XXcl “ H. ◁

We now derive |D| ě |κ3| from the following.

▷ Claim 4. For distinct u, u1 P κ3, the vertices du and du1 are distinct.

As the last step, we now construct a pp, r,Fq-cover of Zztzu in G having size less than |D|.
Let Dsell :“ tdu : u P κ3u, Dbuy :“MG

r1 pz,XclqYS, and D1 :“ pDzDsellqYDbuy. By Claim 4,

|Dsell| “ |κ3| ě fclpr
1, εq ¨ fapxpr, d, εq

ε ¨ k2ε ` s` 1,
|Dbuy| ď |MG

r1 pz,Xclq| ` |S| ď fclpr
1, εq ¨ fapxpr, d, εq

ε ¨ k2ε ` s.

Since Dsell Ď D, we have that |D1| ă |D|. For a contradiction, we show the following claim.

J. Ahn, J. Kim, and O. Kwon 5:11

▷ Claim 5. D1 is a pp, r,Fq-cover of Zztzu in G.

Proof. Suppose not. Then there is a set B1 Ď ZzpNr
GrD

1s Y tzuq such that GprB1s is
isomorphic to a graph in F . Since D is a pp, r,Fq-cover of Zztzu in G and DzD1 Ď Dsell,
Dsell contains a vertex du for some u P κ3 with distGpdu, B

1q ď r.
Since pGzSqprB˚

u s is connected and |B˚
u | ď d, GzS has a path Q0 of length at most

ppd´ 1q between u and xu. More specifically, Q0 is a concatenation of paths Q1
0, . . . , Q

t1
0 for

t1 ď d´ 1 such that for each i P rt1s, the length of Qi
0 is at most p and the ends of Qi

0 are in
B˚

u . Since distGpdu, B
1q ď r, G has a path Q1 of length at most r between du and w1 P B1.

Since Xcl is a pp, r,Fq-cover of Z in G, G has a path Q2 of length at most r between w2 P B1

and x P Xcl. Since GprB1s is isomorphic to a connected graph in F and |B1| ď d, G has a
path R of length at most ppd´1q between w1 and w2. More specifically, R is a concatenation
of paths R1, . . . , Rt2 for t2 ď d´ 1 such that for each i P rt2s, the length of Ri is at most p
and the ends of Ri are in B1. By concatenating Q0, Pu, Q1, R, and Q2, we obtain a walk
of G between u and x having length at most

|EpQ0q| ` |EpPuq| ` |EpQ1q| ` |EpRq| ` |EpQ2q|
ď ppd´ 1q ` r ` r ` ppd´ 1q ` r “ 2ppd´ 1q ` 3r ď r1.

Let P be a path of G between u and x consisting of edges of the walk. Let b be the vertex in
V pP q X pS YXclq such that distP pu, bq is minimum. Such b exists, because x P Xcl.

We first show that distGpb, B
1q ď r. Note that Q0 has no vertex in S. Since u R κ11,

distGzSpBu, Xclq ą r. Since p ď 2r ` 1, for some j P rt1s, if Qj
0 has a vertex in Xcl, then

distGzSpBu, Xclq ď distGzSpB
˚
u , Xclq ď r, a contradiction. Therefore, Q0 has no vertex in Xcl.

By Claim 3, V pPuq X pS Y Xclq “ H. These imply that b P V pQ1q Y V pRq Y V pQ2q. If
b P V pQ1q Y V pQ2q, then distGpb, B

1q ď r clearly. Since p ď 2r ` 1, for some j P rt2s, if
b P Rj , then distGpb, B

1q ď r. Therefore, distGpb, B
1q ď r.

Since B1 Ď ZzpNr
GrD

1s Y tzuq, b is not contained in D1. Since S Ď Dbuy Ď D1, b is
contained in XclzS. Since the subpath of P between u and b is an Xcl-avoiding path of length
at most r1, b is contained in MG

r1 pu,Xclq. Since tu, zu Ď κ2 Ď λ where λ is an equivalence class
of „, MG

r1 pu,Xclq and MG
r1 pz,Xclq are same. Therefore, b PMG

r1 pz,Xclq Ď D1, a contradiction.
◁

Claim 5 contradicts the assumption that D is a minimum-size pp, r,Fq-cover of Zztzu
in G. Thus, Zztzu is a pp, r,Fq-core of A in G. We conclude the proof by scaling ε to
ε{C. ◀

After recursively applying Proposition 3.1, started from A, we may assume that we are
given a small pp, r,Fq-core Z. By taking a p2r ` 1q-path closure Y of some superset of Z
with Lemma 2.3, we can derive an almost linear kernel for Annotated pp, r,Fq-Covering
as follows.

▶ Theorem 3.3. For every nowhere dense class C of graphs, there is fcov : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph G P C,
A Ď V pGq, and k P N, either correctly decides that γF

p,rpG,Aq ą k, or outputs sets Y Ď V pGq

of size at most fcovpr, d, εq ¨ k
1`ε and Z Ď AX Y such that γF

p,rpGrY s, Zq “ γF
p,rpG,Aq.

We now convert the resulting instance of Theorem 3.3 to an equivalent instance of
pp, r,Fq-Covering. To do this, we will use the following definition and lemmas. For an
integer q ě 0 and a nonempty family G of graphs, a graph H is pq,Gq-critical if either

ISAAC 2023

5:12 Almost Linear Kernels for Generalized Covering and Packing Problems

H is a 1-vertex graph and G contains a 1-vertex graph, or
H has at least two vertices, Hq has an induced subgraph isomorphic to a graph in G, and
for every vertex v of H, pH ´ vqq has no induced subgraph isomorphic to a graph in G.

▶ Lemma 3.4. Let G be a nonempty family of graphs. Let F be a graph in G and d be the
order of F . For every positive integer q, there is a pq,Gq-critical graph of order at most
dpdq ` 1q{2. Moreover, if every graph in G has order at most d, then one can construct the
pq,Gq-critical graph in time polynomial in d.

Proof. Let F0 be the q-subdivision of F . Since F has at most dpd´ 1q{2 edges,

|V pF0q| ď d`
dpd´ 1qpq ´ 1q

2 “ d ¨
dq ´ d´ q ` 3

2 ď
dpdq ` 1q

2 .

Let H be a graph which is initially set as F0. Note that Hq has an induced subgraph
isomorphic to F P G. If |V pHq| “ 1, then H is pq,Gq-critical. Otherwise, for each vertex
v of H, we check whether pHzvqq has an induced subgraph isomorphic to a graph in G. If
H has no such vertex, then H is pq,Gq-critical. Otherwise, we set H by Hzv and do the
above process until either |V pHq| “ 1 or H has no such a vertex. It is readily seen that the
resulting graph is pq,Gq-critical graph and has at most dpdq ` 1q{2 vertices. Whole these
processes work in polynomial time when every graph in G has at most d vertices. ◀

The following lemma shows that every vertex of a pq,Gq-critical graph is a pq, tq{2u,Gq-
cover of it.

▶ Lemma 3.5. Let G be a nonempty family of graphs, and q be a positive integer. If H is a
pq,Gq-critical graph and there is a set B Ď V pHq such that HqrBs is isomorphic to a graph
in G, then for every x P V pHq, B contains a vertex in N

tq{2u

H rxs.

Proof. Suppose for contradiction that B contains no vertex in N
tq{2u

H rxs. Since H is pq,Gq-
critical, pHzxqqrBs is isomorphic to no graph in G. Since HqrBs is isomorphic to a graph in
G, B contains distinct vertices v and w such that v and w are adjacent in Hq and every path
of H between v and w having length at most q should contain x. However, since neither v
nor w is in N

tq{2u

H rxs, if H has a path P between v and w having x as an internal vertex,
then the length of P is at least 2tq{2u ` 2 ą q, a contradiction. ◀

To prove Theorem 1.1, we construct an equivalent instance of pp, r,Fq-Covering by
attaching a pp,Fq-critical graph to the resulting instance of Theorem 3.3.

Sketch of the proof of Theorem 1.1. The cases where either r “ 0 or p “ 0 are relatively
easy to deal with. Thus, in this sketch, we assume that both r and p are positive. Let d
be the maximum order of a graph in F . By Lemma 3.4, one can find in polynomial time
a pp,Fq-critical graph H having at most dpdp ` 1q{2 vertices. Let p1 :“ tp{2u and x be a
vertex of H. We construct the graph G1 as follows: take the disjoint union of GrY s and H,
add a new vertex h, and for each vertex v P pY zZq YNp1

H rxs, connect h and v by a path Pv

of length r. We can show that the resulting graph G1 is the desired one by Lemma 3.5. ◀

4 Kernels for the pp, r, Fq-Packing problems

Let p, r be nonnegative integers with p ď r`1 and F be a nonempty finite family of connected
graphs. We present an almost linear kernel for pp, r,Fq-Packing on every nowhere dense
class of graphs. We also divert to the annotated variant of pp, r,Fq-Packing. Although

J. Ahn, J. Kim, and O. Kwon 5:13

the proof scheme is similar to that of the kernel for pp, r,Fq-Covering, we need a more
intricate approximation algorithm, and the key lemma and the main steps of its proof are
quite different from those of pp, r,Fq-Covering.

For a graph G and a set A Ď V pGq, a pp, r,Fq-packing of A in G is a family of subsets of A,
say A1, . . . , Aℓ such that each GprAis is isomorphic to a graph in F , and for all 1 ď i ă j ď ℓ,
distGpAi, Ajq ą r. We denote by αF

p,rpG,Aq the maximum size of a pp, r,Fq-packing of A
in G. For a graph G, a set A Ď V pGq, and an integer k, Annotated pp, r,Fq-Packing asks
whether αF

p,rpG,Aq ě k. We first derive an almost linear kernel for this problem.

▶ Proposition 4.1. For every nowhere dense class C of graphs, there is frd : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r P N
with p ď 2tr{2u` 1, and ε ą 0, there is a polynomial-time algorithm that given a graph G P C,
A Ď V pGq with |A| ą frdpr, d, εq¨k

1`ε, and k P N, either correctly decides that αF
p,rpG,Aq ą k,

or outputs a vertex z P A such that αF
p,rpG,Aq ě k if and only if αF

p,rpG,Aztzuq ě k.

▶ Proposition 4.2. For every nowhere dense class C of graphs, there is fdual : NˆNˆR` Ñ N
such that for every nonempty family F of connected graphs with at most d vertices, p, r, r0 P N
with maxtp, r0u ď 2r ` 1, and ε ą 0, there is a polynomial-time algorithm that given
a graph G P C and A Ď V pGq, outputs a pp, r,Fq-cover of A in G having size at most
fdualpr, d, εq ¨ α

F
p,r0

pG,Aq1`ε.

Proof of Proposition 4.1. The function frdpr, d, εq will be defined later. At the beginning,
we assume that |A| ą frdpr, d, εq ¨ k

1`Cε for some constant C, and at the end, we scale ε
accordingly. We may assume that for every v P A, there is B Ď Aztvu such that GprBYtvus

is isomorphic to a graph in F . Since p ď 2tr{2u ` 1, by Proposition 4.2, one can find
a pp, tr{2u,Fq-cover X of A in G having size at most fdualptr{2u, d, εq ¨ αF

p,rpG,Aq
1`ε in

polynomial time. If |X| ą fdualptr{2u, d, εq ¨ k1`ε, then αF
p,rpG,Aq ą k. Thus, we may

assume that |X| ď fdualptr{2u, d, εq ¨ k1`ε. Let r1 :“ 4pd ` 3r. By Lemma 2.2, one can
find an pr1, fclpr

1, εq ¨ |X|εq-close set Xcl Ě X of size at most fclpr
1, εq ¨ |X|1`ε ď fclpr

1, εq ¨

fdualptr{2u, d, εq1`ε ¨ k1`3ε in polynomial time.
We define an equivalence relation „ on AzXcl such that for u, v P AzXcl, u „ v if and only

if ρG
r1ru,Xcls “ ρG

r1rv,Xcls. Then indexp„q ď fprojpr
1, εqfclpr

1, εq1`εfdualptr{2u, d, εq1`3εk1`7ε

by Lemma 2.1. Let ppr1q and s :“ spr1q be the constants in Theorem 2.4. Let

ξ :“ d ¨ pfclpr
1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` d2{4 ` 1q and m :“ 22d2{2

¨pr`2qsd

¨ ξ ` 1.

By setting C “ 7 ` 2 ¨ ppr1q, one can choose frdpr, d, εq with frdpr, d, εq ¨ k
1`Cε ě |Xcl| `

indexp„q ¨mppr1
q. Since |A| ą frdpr, d, εq ¨ k

1`Cε, we have that |AzXcl| ą indexp„q ¨mppr1
q.

Thus, by the pigeonhole principle, there is an equivalence class λ of „ with |λ| ą mppr1
q. By

Theorem 2.4, one can find in polynomial time sets S Ď V pGq and L Ď λzS such that |S| ď s,
|L| ě m, and L is distance-r1 independent in G´ S.

We are going to find a desired vertex z from L. To do this, we define the following. For
each i P rds, let Gi be the set of all graphs whose vertex sets are ris. Note that |Gi| “ 2ipi´1q{2

for each i P rds. Let H1 be the set of functions ρ : S Ñ rr ` 1s Y t8u. Since |S| ď s, we
have that |H1| ď pr ` 2qs. For each i P rds, let H1

i be the set of all vectors ph1, . . . , hi, gq

of length i ` 1 where hj P H1 for each j P ris and g P Gi. Let H1 :“
Ťd

i“1 H1
i. Similar to

the proof of Proposition 3.1, we can show that |H1| ď 2d2
{2 ¨ pr ` 2qsd. Let ℓ :“ |H1|. We

take an arbitrary ordering σ1, . . . , σℓ of H1. For each v P L, let Av :“ H and xpvq be a zero
vector of length ℓ. One can enumerate in polynomial time the sets B Ď Aztvu of size at most
d ´ 1 such that GprB Y tvus is isomorphic to a graph in F in polynomial time. For each

ISAAC 2023

5:14 Almost Linear Kernels for Generalized Covering and Packing Problems

such B, we do the following. If there is an index i P rℓs such that the i-th entry of xpvq is 0
and for σi “ phi

1, . . . , h
i
t, giq P H1, there is an isomorphism ϕi : pBzSq Y tvu Ñ rts between

pG´ SqprpBzSq Y tvus and gi where ϕipvq “ 1 and for each j P rts, ρG
r rϕ

´1pjq, Ss “ hi
j , then

we put B into Av and convert the i-th entry of xpvq to 1. Otherwise, we do nothing for
the chosen B. Since |B| ď d´ 1, one can check in polynomial time whether B satisfies the
conditions. Thus, the resulting Av and xpvq can be computed in polynomial time.

For each v P L, since Aztvu has a subset B such that GprB Y tvus is isomorphic to a
graph in F , Av ‰ H and xpvq has a nonzero entry. For each B P Av, let B˚ be the vertex
set of the component of pG´SqprpBzSqY tvus having v. Since |L| ě m “ 22d2{2

¨pr`2qsd

¨ ξ` 1
and ℓ ď 2d2

{2 ¨ pr` 2qsd, by the pigeonhole principle, L has a subset κ1 such that |κ1| ě ξ` 1
and xpvq “ xpwq for all v, w P κ1. Let z be an arbitrary vertex in κ1.

We show that αF
p,rpG,Aq ě k if and only if αF

p,rpG,Aztzuq ě k. The backward direction
is obvious. Suppose that G has a pp, r,Fq-packing I of A in G having size at least k. We may
assume that z is contained in some Bz P I, because otherwise I is also a pp, r,Fq-packing
of Aztzu. In particular, there exist a graph H P Gt for some t ď d and an isomorphism
ψz : pBzzSq Y tzu Ñ rts between pG´ SqprpBzzSq Y tzus and H where ψzpzq “ 1. To show
that αF

p,rpG,Aztzuq ě k, it suffices to show that there exist a vertex z1 P κ1ztzu and a set
Bz1 Ď Aztzu such that z1 P Bz1 and pIztBzuq Y tBz1u is a pp, r,Fq-packing of Aztzu in G

having the same size as I.
Suppose for contradiction that no such z1 exists. It means that for each v P κ1ztzu,

if Aztzu has a subset B such that v P B and GprBs is isomorphic to a graph in F , then
IztBzu contains an element B1 with distGpB,B

1q ď r, because otherwise we can substitute
Bz with B from I. For each v P κ1ztzu, there exist Bv P Av and an isomorphism ψv :
pBvzSq Y tvu Ñ rts between pG´ SqprpBvzSq Y tvus and H where ψvpvq “ 1 and for each
j P rts, ρG

r`1rψ
´1
v pjq, Ss “ ρG

r`1rψ
´1
z pjq, Ss. For each v P κ1ztzu, let fpvq :“ B˚

v Y pBzzB
˚
z q.

To derive a contradiction, we do the following steps.
(1) Find a set κ4 Ď κ1ztzu such that for each u P κ4, Gprfpuqs is isomorphic to GprBz Ytzus

and I contains an element Cu with distGpfpuq, Cuq ď r and distGpCu, Sq ą tr{2u.
(2) Show that κ4 contains distinct vertices v and v1 with distG´Spv, v

1q ď r1.
Since κ4 Ď L is distance-r1 independent in G´ S, these steps derive a contradiction.

Let B˚
z be the vertex set of the component of pG ´ SqprpBzzSq Y tzus having z. Note

that for vertices v, w P κ1, ψ´1
v ˝ ψw is an isomorphism between pG ´ SqprpBwzSq Y twus

and pG´ SqprpBvzSq Y tvus assigning w to v. Thus, ψ´1
v ˝ ψzpB

˚
z q “ B˚

v .
For the first step, we will use the following three claims. The proofs of Claims 6 and 7

are similar to those of Claims 1 and 2, respectively.

▷ Claim 6. For vertices v, w P κ1, ψ´1
w ˝ ψv is an isomorphism between GprpBvzSq Y tvus

and GprpBwzSq Y twus.

▷ Claim 7. κ1 has at most d2{4 vertices v where Gprfpvqs is not isomorphic to GprBzs.

Proof. For vertices u P κ1ztzu and i P ψzpB
˚
z q, since tu, zu Ď κ1, ρG

r`1rψ
´1
u piq, Ss and

ρG
r`1rψ

´1
z piq, Ss are same. Therefore, for each w P S, ψ´1

u piq is adjacent to w in Gp if and
only if ψ´1

z piq is adjacent to w in Gp. By Claim 6, the restriction of ψ´1
u ˝ ψz on B˚

z is an
isomorphism between GprB˚

z s and GprB˚
u s.

We first show that for all vertices v P κ1, i P ψzpB
˚
z q, and w P BzzpB

˚
z Y Sq, if ψ´1

z piq is
adjacent to w in Gp, then ψ´1

v piq is adjacent to w in Gp. Suppose that ψ´1
z piq is adjacent

to w in Gp. We take an arbitrary path Q1 of G between ψ´1
z piq and w having length at most

p. Since pGzSqprB˚
z s is a component of pGzSqprpBzzSqY tzus having z and w R B˚

z , Q1 must
have a vertex in S.

J. Ahn, J. Kim, and O. Kwon 5:15

Let q be the the vertex in V pQ1q X S such that distQ1pψ´1
z piq, qq is minimum. Let Q1

1
be the subpath of Q1 between ψ´1

z piq and q. Note that Q1
1 is an S-avoiding path of length

at most p ď r ` 1. Since ρG
r`1rψ

´1
v piq, Ss “ ρG

r`1rψ
´1
z piq, Ss, G has an S-avoiding path Q1

2
between ψ´1

v piq and q having length at most that of Q1
1. By substituting Q1

1 with Q1
2 from Q1,

we obtain a walk of G between ψ´1
v piq and w having length at most p. Hence, ψ´1

v piq is
adjacent to w in Gp.

Thus, there is no pair of vertices i P ψzpB
˚
z q and w P BzzpB

˚
z Y Sq such that ψ´1

z piq is
adjacent to w in Gp and ψ´1

u piq is nonadjacent to w in Gp.
We now show that if there exist vertices i P ψzpB

˚
z q and w P BzzpB

˚
z Y Sq such that

ψ´1
z piq is nonadjacent to w in Gp, then κ1 contains at most one vertex x such that ψ´1

x piq

is adjacent to w in Gp. To prove the claim, it suffices to show this statement, because
|B˚

z | ¨ |BzzpB
˚
z Y Sq| ď d2{4.

Suppose for contradiction that there exist i P ψzpB
˚
z q, w P BzzpB

˚
z Y Sq, and distinct

x, x1 P κ1 such that ψ´1
z piq is nonadjacent to w in Gp and both ψ´1

x piq and ψ´1
x1 piq are

adjacent to w in Gp. Then G has paths R and R1 of length at most p from w to ψ´1
x piq and

ψ´1
x1 piq, respectively.

We first verify that R or R1 has a vertex in S. Suppose not. Since |B˚
x | ď d, GzS has a

path R1 of length at most ppd´ 1q between x and ψ´1
x piq. Similarly, GzS has a path R1

1 of
length at most ppd´ 1q between x1 and ψ´1

x1 piq. Since neither R nor R1 has a vertex in S,
by concatenating R1, R, R1, and R1

1, we obtain a walk of GzS of length at most 2pd ď r1

between x and x1, contradicting the assumption that L is distance-r1 independent in GzS.
Hence, R or R1 has a vertex in S. By symmetry, we may assume that R has a vertex in S.

Let t be the vertex in V pRq X S such that distRpψ
´1
x piq, tq is minimum. Let R0 be the

subpath of R between ψ´1
x piq and t. Note that R0 is an S-avoiding path of length at most

p ď r ` 1. Since ρG
r`1rψ

´1
x piq, Ss “ ρG

r`1rψ
´1
z piq, Ss, G has an S-avoiding path R1

0 between
ψ´1

z piq and t having length at most that of R0. By substituting R0 with R1
0 from R, we obtain

a walk of G between ψ´1
z piq and w having length at most p, contradicting the assumption

that ψ´1
z piq is nonadjacent to w in Gp, and this proves the claim. ◁

Since |κ1| ě d ¨ pfclpr
1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` d2{4 ` 1q ` 1, by Claim 7, κ1ztzu

has a subset κ2 of size at least d ¨ pfclpr
1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` 1q such that for each

vertex u P κ2, Gprfpuqs is isomorphic to GprBzs, which is isomorphic to a graph in F .
For each u P κ2, since fpuq Ď Aztzu, by assumption, IztBzu contains an element Cu

with distGpfpuq, Cuq ď r. We take an arbitrary path Pu of G between bu P fpuq and
cu P Cu having length at most r. Since tBz, Cuu Ď I which is a pp, r,Fq-packing of A in G,
distGpBzzB

˚
z , Cuq ě distGpBz, Cuq ą r. Thus, bu P fpuqzpBzzB

˚
z q “ B˚

u .

▷ Claim 8. For each u P κ2, V pPuq X S “ H.

Proof. Suppose for contradiction that for some u P κ2, V pPuq X S ‰ H. Let q be the vertex
in V pPuq X S such that distPupbu, qq is minimum. Let P1 be the subpath of Pu between bu

and q. Note that P1 is an S-avoiding path of length at most r. Since tu, zu Ď κ1, G has
an S-avoiding path P2 between ψ´1

z ˝ ψupbuq and q having length at most that of P1. By
substituting P1 with P2 from Pu, we obtain a walk of G between ψ´1

z ˝ ψupbuq P Bz and cu

having length at most r, contradicting the assumption that distGpBz, Cuq ą r. ◁

Since L is distance-r1 independent in G´ S and 2r ď r1, by Claim 8, cu ‰ cu1 for distinct
u, u1 P κ2. Since |κ2| ě d ¨ pfclpr

1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` s` 1q and every element in I

contains at most d vertices, there is a set κ3 Ď κ2 of size at least fclpr
1, εq ¨ fdualptr{2u, d, εqε ¨

k2ε ` s` 1 such that Cu ‰ Cu1 for all distinct u, u1 P κ3.

ISAAC 2023

5:16 Almost Linear Kernels for Generalized Covering and Packing Problems

Let κ13 be the set of vertices u P κ3 with distGpCu, Sq ď tr{2u. Since I is a pp, r,Fq-packing
of A in G, for all distinct u, u1 P κ3, distGpCu, Cu1q ą r. Thus, we deduce that |κ13| ď |S| ď s.
Let κ4 :“ κ3zκ

1
3. Note that |κ4| ě fclpr

1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` 1.
We now show that κ4 contains distinct vertices v and v1 with distG´Spv, v

1q ď r1. For
each u P κ4, since GprCus is isomorphic to a graph in F and Xcl is a pp, tr{2u,Fq-cover of A
in G, G has a path Ru of length at most tr{2u between some yu P Cu and xu P Xcl. Since
u R κ13, V pRuqXS “ H. Since GprCus is isomorphic to a connected graph in F , G has a path
Qu of length at most ppd´ 1q between cu and yu. More specifically, Qu is a concatenation
of Q1

u, . . . , Q
t1

u for t1 ď d ´ 1 such that for each i P rt1s, the length of Qi
u is at most p and

the ends of Qi
u are in Cu. Since p ď 2tr{2u ` 1, for some j P rt1s, if V pQj

uq X S ‰ H,
then distGpCu, Sq ď tr{2u, contradicting that u R κ13. Thus, V pQuq X S “ H. By Claim 8,
V pPuq X S “ H. Since pG ´ SqprB˚

u s is connected and |B˚
u | ď d, G ´ S has a path Ou of

length at most ppd´ 1q between u and bu. By concatenating Ou, Pu, Qu, and Ru, we obtain
a walk of G´ S between u and xu having length at most

|EpOuq| ` |EpPuq| ` |EpQuq| ` |EpRuq| ď ppd´ 1q ` r ` ppd´ 1q ` tr{2u ď tr1{2u.

Let Wu be a path of G ´ S between u and xu consisting of edges of the walk. Let wu be
the vertex in V pWuq XXcl such that distWu

pu,wuq is minimum. Such wu exists, because
xu P Xcl. Note that the subpath of Wu between u and wu is an Xcl-avoiding path of length
at most tr1{2u. Thus, wu is contained in MG

r1 pu,Xclq. Since tu, zu Ď κ1 Ď λ where λ is an
equivalence class of „, MG

r1 pu,Xclq and MG
r1 pz,Xclq are same. Therefore, wu PMG

r1 pz,Xclq.
Since |κ4| ě fclpr

1, εq ¨ fdualptr{2u, d, εqε ¨ k2ε ` 1 ě |MG
r1 pz,Xclq| ` 1, by the pigeonhole

principle, there are distinct v, v1 P κ4 with wv “ wv1 . By concatenating Wv and Wv1 , we
obtain a walk of G´S between v and v1 having length at most r1, contradicting the assumption
that L is distance-r1 independent in G´ S. Therefore, there are a vertex z1 P κ1ztzu and a
set Bz1 Ď Aztzu such that z1 P Bz1 and pIztBzuq Y tBz1u is a pp, r,Fq-packing of Aztzu in G
having the same size as I. We conclude the proof by scaling ε to ε{C. ◀

By recursively applying Proposition 4.1 and taking an pr`1q-path closure of the resulting
set Z, we can construct an almost linear kernel for Annotated pp, r,Fq-Packing as follows.

▶ Theorem 4.3. For every nowhere dense class C of graphs, there is a function fpck :
NˆNˆR` Ñ N such that for every nonempty family F of connected graphs with at most d
vertices, p, r P N with p ď 2tr{2u ` 1, and ε ą 0, there is a polynomial-time algorithm that
given a graph G P C, A Ď V pGq, and k P N, either correctly decides that αF

p,rpG,Aq ą k,
or outputs sets Y Ď V pGq of size at most fpckpr, d, εq ¨ k

1`ε and Z Ď A X Y such that
αF

p,rpG,Aq ě k if and only if αF
p,rpGrY s, Zq ě k.

To prove Theorem 1.2, we first apply the kernel in Theorem 4.3 and attach a pp,Fq-critical
graph to the resulting instance of this kernel. The way is similar to that of the proof of
Theorem 1.1, but slightly different.

Sketch of the proof of Theorem 1.2. The cases where either r ď 1 or p “ 0 are relatively
easy to deal with. Thus, in this sketch, we assume that r ě 2 and p ě 1. Let d be the
maximum order of a graph in F . By Lemma 3.4, one can find in polynomial time a pp,Fq-
critical graph H having at most dpdp ` 1q{2 vertices. Let p1 :“ tp{2u and x be a vertex
of H. We construct a graph G1 as follows: take the disjoint union of GrY s and H, add a
new vertex h, for each v P Y zZ, connect h and v by a path of length tr{2u, and for each
v P Np1

H rxs, connect h and v by a path of length rr{2s. We can show that the resulting graph
G1 is the desired one by Lemma 3.5. ◀

J. Ahn, J. Kim, and O. Kwon 5:17

References
1 Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. System Sci.,

76(7):524–531, 2010. doi:10.1016/j.jcss.2009.09.002.
2 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of

model theory. European J. Combin., 36:322–330, 2014. doi:10.1016/j.ejc.2013.06.048.
3 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for

dominating set. J. ACM, 51(3):363–384, 2004. doi:10.1145/990308.990309.
4 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed size

in degenerated graphs. Algorithmica, 54(4):544–556, 2009. doi:10.1007/s00453-008-9204-0.
5 Manuel Aprile, Matthew Drescher, Samuel Fiorini, and Tony Huynh. A tight approximation

algorithm for the cluster vertex deletion problem. Math. Program., 197(2):1069–1091, 2023.
doi:10.1007/s10107-021-01744-w.

6 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) kernelization. J. ACM, 63(5):Art. 44, 69, 2016. doi:
10.1145/2973749.

7 Flavia Bonomo-Braberman, Julliano R. Nascimento, Fabiano S. Oliveira, Uéverton S. Souza,
and Jayme L. Szwarcfiter. Linear-time algorithms for eliminating claws in graphs. In Computing
and combinatorics, volume 12273 of Lecture Notes in Comput. Sci., pages 14–26. Springer,
Cham, 2020.

8 H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete Comput. Geom., 14(4):463–479, 1995. ACM Symposium on Computational Geometry.
doi:10.1007/BF02570718.

9 Santiago Canales, Gregorio Hernández, Mafalda Martins, and Inês Matos. Distance domination,
guarding and covering of maximal outerplanar graphs. Discrete Appl. Math., 181:41–49, 2015.
doi:10.1016/j.dam.2014.08.040.

10 Holger Dell and Dániel Marx. Kernelization of packing problems. In 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 68–81. ACM, New York, 2012.

11 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

12 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, fifth edition, 2018. Paperback edition of [MR3644391].

13 Frederic Dorn. Dynamic programming and fast matrix multiplication. In 14th Annual European
Symposium, Zurich, Switzerland, September 11-13, 2006, volume 4168 of Lecture Notes in
Comput. Sci., pages 280–291. Springer, Berlin, 2006. doi:10.1007/11841036_27.

14 Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness. I.
Basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

15 Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness. II.
On completeness for W r1s. Theoret. Comput. Sci., 141(1-2):109–131, 1995. doi:10.1016/
0304-3975(94)00097-3.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized complexity. Texts
in Computer Science. Springer, London, 2013. doi:10.1007/978-1-4471-5559-1.

17 Pål Grønås Drange, Markus Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov,
Marcin Pilipczuk, Michał Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh,
Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the case of dominating
set. In 33rd Symposium on Theoretical Aspects of Computer Science, volume 47 of LIPIcs.
Leibniz Int. Proc. Inform., pages Art. No. 31, 14. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2016. doi:10.4230/LIPIcs.STACS.2016.31.

18 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs.
European J. Combin., 34(5):833–840, 2013. doi:10.1016/j.ejc.2012.12.004.

19 Jack Edmonds. Paths, trees, and flowers. Canadian J. Math., 17:449–467, 1965. doi:
10.4153/CJM-1965-045-4.

ISAAC 2023

https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1145/990308.990309
https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1007/s10107-021-01744-w
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1007/BF02570718
https://doi.org/10.1016/j.dam.2014.08.040
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1007/11841036_27
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPIcs.STACS.2016.31
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4

5:18 Almost Linear Kernels for Generalized Covering and Packing Problems

20 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michał Pilip-
czuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernelization
for nowhere dense classes of graphs. In 44th International Colloquium on Automata, Languages,
and Programming, volume 80 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 63, 14.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017. doi:10.4230/LIPIcs.ICALP.2017.63.

21 Guy Even, Dror Rawitz, and Shimon Shahar. Hitting sets when the VC-dimension is small.
Inform. Process. Lett., 95(2):358–362, 2005. doi:10.1016/j.ipl.2005.03.010.

22 Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Progressive
algorithms for domination and independence. In 36th International Symposium on Theoretical
Aspects of Computer Science, volume 126 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No.
27, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019.

23 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear
kernels for (connected) dominating set on H-minor-free graphs. In 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 82–92. ACM, New York, 2012.

24 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Kernels
for (connected) dominating set on graphs with excluded topological minors. ACM Trans.
Algorithms, 14(1):Art. 6, 31, 2018. doi:10.1145/3155298.

25 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimension-
ality and kernels. SIAM J. Comput., 49(6):1397–1422, 2020. doi:10.1137/16M1080264.

26 Fedor V. Fomin and Dimitrios M. Thilikos. Fast parameterized algorithms for graphs on
surfaces: linear kernel and exponential speed-up. In Automata, languages and programming,
volume 3142 of Lecture Notes in Comput. Sci., pages 581–592. Springer, Berlin, 2004. doi:
10.1007/978-3-540-27836-8_50.

27 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: branch-
width and exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006. doi:10.1137/
S0097539702419649.

28 Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using struc-
tural parameters on sparse graph classes. J. Comput. System Sci., 84:219–242, 2017.
doi:10.1016/j.jcss.2016.09.002.

29 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):Art. 17, 32, 2017. doi:10.1145/3051095.

30 Shai Gutner. Polynomial kernels and faster algorithms for the dominating set problem on graphs
with an excluded minor. In Parameterized and exact computation, volume 5917 of Lecture Notes
in Comput. Sci., pages 246–257. Springer, Berlin, 2009. doi:10.1007/978-3-642-11269-0_20.

31 Iyad Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. On the induced matching
problem. J. Comput. System Sci., 77(6):1058–1070, 2011. doi:10.1016/j.jcss.2010.09.001.

32 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Trans. Algorithms, 12(2):Art. 21, 41, 2016. doi:10.1145/2797140.

33 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and
wideness properties of nowhere dense graph classes. ACM Trans. Algorithms, 15(2):Art. 24,
19, 2019. doi:10.1145/3274652.

34 Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

35 Hannes Moser and Somnath Sikdar. The parameterized complexity of the induced matching
problem. Discrete Appl. Math., 157(4):715–727, 2009. doi:10.1016/j.dam.2008.07.011.

36 James Nastos and Yong Gao. Bounded search tree algorithms for parametrized cograph
deletion: efficient branching rules by exploiting structures of special graph classes. Discrete
Math. Algorithms Appl., 4(1):1250008, 23, 2012. doi:10.1142/S1793830912500085.

https://doi.org/10.4230/LIPIcs.ICALP.2017.63
https://doi.org/10.1016/j.ipl.2005.03.010
https://doi.org/10.1145/3155298
https://doi.org/10.1137/16M1080264
https://doi.org/10.1007/978-3-540-27836-8_50
https://doi.org/10.1007/978-3-540-27836-8_50
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1016/j.jcss.2016.09.002
https://doi.org/10.1145/3051095
https://doi.org/10.1007/978-3-642-11269-0_20
https://doi.org/10.1016/j.jcss.2010.09.001
https://doi.org/10.1145/2797140
https://doi.org/10.1145/3274652
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1016/j.dam.2008.07.011
https://doi.org/10.1142/S1793830912500085

J. Ahn, J. Kim, and O. Kwon 5:19

37 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion. I.
Decompositions. European J. Combin., 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.07.
013.

38 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms, 9(1):Art. 11, 23,
2012. doi:10.1145/2390176.2390187.

39 Michał Pilipczuk and Sebastian Siebertz. Kernelization and approximation of distance-r
independent sets on nowhere dense graphs. European J. Combin., 94:103309, 19, 2021.
doi:10.1016/j.ejc.2021.103309.

40 J. A. Telle and Y. Villanger. FPT algorithms for domination in sparse graphs and beyond.
Theoret. Comput. Sci., 770:62–68, 2019. doi:10.1016/j.tcs.2018.10.030.

41 Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst.,
65(2):323–343, 2021. doi:10.1007/s00224-020-10005-w.

ISAAC 2023

https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1145/2390176.2390187
https://doi.org/10.1016/j.ejc.2021.103309
https://doi.org/10.1016/j.tcs.2018.10.030
https://doi.org/10.1007/s00224-020-10005-w

Geometric TSP on Sets
Henk Alkema #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
In One-of-a-Set TSP, also known as the Generalised TSP, the input is a collection P :=
{P1, ..., Pr} of sets in a metric space and the goal is to compute a minimum-length tour that visits
one element from each set.

In the Euclidean variant of this problem, each Pi is a set of points in Rd that is contained in
a given hypercube Hi. We investigate how the complexity of Euclidean One-of-a-Set TSP
depends on λ, the ply of the set H := {H1, ..., Hr} of hypercubes (The ply is the smallest λ such
that every point in Rd is in at most λ of the hypercubes). Furthermore, we show that the problem
can be solved in 2O(λ1/dn1−1/d) time, where n :=

∑r

i=1 |Pi| is the total number of points. Finally,
we show that the problem cannot be solved in 2o(n) time when λ = Θ(n), unless the Exponential
Time Hypothesis (ETH) fails.

In Rectilinear One-of-a-Cube TSP, the input is a set H of hypercubes in Rd and the goal
is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the
problem can be solved in 2O(λ1/dn1−1/d log n) time, where n is the number of hypercubes.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases Euclidean TSP, TSP on Sets, Rectilinear TSP, TSP on Neighbourhoods

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.6

Funding The work in this paper is supported by the Dutch Research Council (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

In the Traveling Salesman Problem we are given an edge-weighted complete graph
and the goal is to compute a tour, i.e., a simple cycle visiting all nodes, of minimum total
weight. The Traveling Salesman Problem is among the most famous problems in
computer science and combinatorial optimization. One variation is the Euclidean TSP.
In Euclidean TSP the input is a set P of n points in Rd, and the goal is to compute a
minimum-length tour visiting each point. This problem was proven to be np-hard in the
1970s [6, 15]. However, unlike the general (metric) version, Euclidean TSP in the plane can
be solved in subexponential time, i.e., in time 2o(n). Both Kann [10] and Hwang et al. [8] have
given algorithms with nO(

√
n) running time. Smith and Wormald [16] gave a subexponential

algorithm that works in any (fixed) dimension d, taking nO(n1−1/d) time. Recently De Berg et
al. [3] improved this to 2O(n1−1/d), which is tight up to constant factors in the exponent,
under the Exponential-Time Hypothesis (ETH) [9].

Meanwhile, generalised versions of the Traveling Salesman Problem have also been
studied. One popular example is the One-of-a-Set TSP, also known as Generalised
TSP or Group TSP. Here, the n nodes of the graph are partitioned into sets Vi and the goal
is to compute a tour of minimal weight visiting at least (or exactly) one node of every set.
The One-of-a-Set TSP has been studied extensively, see for example the survey by Gutin
and Punnen [7]. In 2008, Dror and Orlin showed that even if the vertices and their distances
correspond to locations in Rd and their Euclidean distances, and every set Vi contains only
two vertices, the problem is still APX-hard, i.e., there exists no PTAS unless P = NP [5].

© Henk Alkema and Mark de Berg;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.y.alkema@tue.nl
mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0001-5770-3784
https://doi.org/10.4230/LIPIcs.ISAAC.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Geometric TSP on Sets

One generalisation of Euclidean TSP is TSP with Neighbourhoods. Here, we are
given a set of neighbourhoods in Rd – the shape of these neighbourhoods depends on the
variant studied – and the goal is to find a shortest Euclidean tour visiting all neighbourhoods.
As it is a generalised version of an APX-hard problem it is APX-hard itself [4]. Since then,
many variants which place restrictions on the shape of the neighbourhoods have been shown to
have a PTAS. This includes disjoint fat convex regions [4], pairwise-disjoint connected regions
of any shape [14], arbitrary disjoint fat regions [13], and weakly disjoint neighbourhoods [2].

In this paper, we focus on two geometric variations of One-of-a-Set TSP. For the first
variation, Euclidean One-of-a-Set TSP, most research has been focused on the so-called
grid cluster variant, introduced by Bhattacharya et al. [1]. In this variant, a partition is
specified by the cells of the integer 1 × 1 grid (on the Euclidean plane); from every non-empty
cell, exactly one point needs to be visited. Khachay and Neznakhina showed that a PTAS
exists if there are many (O(log n)) or few (n − O(log n)) non-empty cells [11], and that if the
grid has fixed height or width, a solution can be found in polynomial time [12].

For the second variation, Rectilinear One-of-a-Cube TSP, instead of discrete sets Vi

we are given a set of (hyper)cubes Hi. The goal is to find the shortest rectilinear tour which
visits at least one point of every Hi. Thus this is a variant of TSP with Neighbourhoods
where the neighborhoods are hypercubes.

Our contribution. We investigate the complexity of Euclidean One-of-a-Set TSP and
Rectilinear One-of-a-Cube TSP. For Euclidean One-of-a-Set TSP, let H be a set
of hypercubes H1, ..., Hr. Let P be a family of sets of points P1, ..., Pr with Pi ⊂ Hi and
|Pi| ≤ k for all i. We will use P to denote ∪iPi. Our objective is to find a shortest tour
T = (p1, ..., pn) such that for every Pi there exists a p ∈ Pi such that p ∈ T . Let λ be the
ply of the given hypercubes, i.e., the smallest number such that every point in Rd is in at
most λ of the hypercubes.

Intuitively, one would expect that the complexity of Euclidean One-of-a-Set TSP
depends on how well separated the sets Pi are. To formalize this intuition, we investigate
the dependency of its complexity on the ply of H. We present an algorithm that runs in
2O(λ1/dn1−1/d) time, which is based on a recent algorithm by De Berg et al. [3]. Note that for
λ = 1 this matches the ETH-tight running time for Euclidean TSP. For λ = n, however, the
running time becomes 2O(n), so it is no longer sub-exponential. We show this is unavoidable
(assuming ETH) by proving that Euclidean One-of-a-Set TSP in R2 cannot be solved
in 2o(n) for λ = n. Finally, we show that we instead of using the ply of a set of hypercubes
covering the Pi, one can use the ply of a set of more generic objects covering the Pi.

For Rectilinear One-of-a-Cube TSP, let H be a set {H1, ..., Hn} of hypercubes in
Rd. Let λ be the ply of these hypercubes. Our objective is to find a shortest rectilinear tour
T = (p1, ..., pn) such that for every Hi there exists a p ∈ Hi such that p ∈ T . For this case
we present an algorithm running in 2O(λ1/dn1−1/d) log n time.

2 A subexponential algorithm for Euclidean One-of-a-Set TSP

We start by giving an overview of our algorithm. The problem it solves is the more generic
Euclidean One-of-a-Set Path Cover problem. In this problem, we are given a collection
of point sets Pi and a set of boundary points B, where |B| ≥ 2 is even. The goal is for every
possible matching on B to find the shortest collection of paths that (i) have the so-called
Packing Property, (ii) adhere to the matching and (iii) visit one point of every Pi. The
Packing Property, which is known to hold for the set of edges of an optimal TSP tour,
intuitively states that an optimal tour cannot contain many long edges close together; the
precise definition is not important for this paper. Note that this property also holds for an

H. Alkema and M. de Berg 6:3

(a) (b) (c) (d) (e)

Figure 1 An example of the Euclidean One-of-a-Set TSP algorithm. (a) The given problem.
In red and blue, the four boundary points, and the corresponding matching we will be using. In
black, the five given point sets (circles, disks, squares, filled squares, and crosses). (b) We find a
good separator σ, and guess how it is crossed. (c) The resulting subproblem for the points inside σ,
and one possible matching. Note that the circle inside σ has been removed, as we guessed we visit a
circle outside σ. (d) The answer after combining two answers of the subproblems. (e) Note that not
every combination of matchings leads to a valid answer.

optimal Euclidean One-of-a-Set TSP tour Topt, as it is obviously also an optimal tour
for the Euclidean TSP instance obtained by taking only a single point from each Pi into
account, namely the point visited by Topt.

Our algorithm broadly works in the following way; see Figure 1. We define a separator to
be the boundary of an axis-aligned hypercube. First, we find a separator σ that is crossed
only a few times by the optimal collection of paths, and splits only few of the point sets Pi.
Then, we “guess” how the solution crosses σ, by iterating over all possibilities. By doing so,
we create two subproblems: one for the points inside σ, and one for the points outside σ.
However, these two subproblems are not completely independent yet: first, for every point set
Pi which contains at least one point inside σ and one outside σ, we need to “guess” on which
side of σ we visit a point of Pi. After solving all versions of both subproblems recursively, the
so-called rank-based approach is used to efficiently find the correct combination of matchings
on both sides resulting in the shortest overall valid answer.

A good separator. Our algorithm will need a so-called distance-based separator, similar to
the distance-based separator introduced by De Berg et al. [3]. The properties they proved
for their separator are not quite sufficient for us, though, so below we present a stronger
version of their separator result. Before we can state our result, we need to introduce some
terminology and notation from their paper. We denote the region of all points in Rd inside
or on a separator σ by σin, and the region of all points in Rd strictly outside σ by σout. The
size of a separator σ, denoted by size(σ), is defined to be its edge length. For a separator σ

and a scaling factor t > 0, we define tσ to be the separator obtained by scaling σ by a factor
t with respect to its center. In other words, tσ is the separator whose center is the same as
the center of σ and with size(tσ) = t · size(σ). Note that a separator σ induces a partition of
the given point set P into two subsets, namely P ∩ σin and P ∩ σout. A separator is balanced
with respect to a set Q ⊆ P if max(|Q ∩ σin|, |Q ∩ σout|) ≤ 4d

4d+1 n. If a separator is balanced
with respect to P itself, we call it a balanced separator.

Our separator is chosen such that there are only few points close to it. To quantify this,
let the relative distance from a point p to σ, denoted by rdist(p, σ), be defined as follows:

rdist(p, σ) := d∞(p, σ)/size(σ),

where d∞(p, σ) denotes the shortest ℓ∞-distance between p and any point on σ. Recall that σ

is the boundary of a hypercube; hence, all points in the interior of σin have a nonzero relative
distance to σ. Note that if t is the scaling factor such that p ∈ tσ, then rdist(p, σ) = |1 − t|/2.
For integers i define

ISAAC 2023

6:4 Geometric TSP on Sets

P (i, σ) := {p ∈ P : rdist(p, σ) ≤ 2i/n1/d}.

Note that the smaller i is, the closer to σ the points in P (i, σ) are required to be. De Berg et
al. choose σ such that the size of the sets P (i, σ) decrease rapidly as i decreases. Our
generalised theorem also allows for some control over the number of Pi which are split by σ,
i.e., the Pi of which at least one point of Pi is in σin and at least one point of Pi is in σout.

▶ Theorem 1. Let P = {P1, ..., Pr} be a collection of point sets in Rd, and let Q ⊆ P . Let n

be the total number of points in P . Then there is a separator σ that is balanced with respect
to Q and such that

|P (i, σ)| =
{

O((3/2)in1−1/d) for all i < 0
O(4in1−1/d) for all i ≥ 0.

Furthermore, σ splits at most λ1/dn1−1/d of the point sets Pi. Moreover, such a separator
can be found in O(nd+1) time.

Proof. The proof is analogous to the proof of Theorem 1 and Corollary 3 in the paper by
De Berg et al. [3], with one major difference. Instead of the weight function wp(t), we use
the weight function

w∗
p(t) :=

1{tσ∗ intersects Hi(p)}
size(Hi(p))

+ wp(t),

where σ∗ is the smallest balanced separator, which we assume w.l.o.g. has size 1 (as in the
original proof), i(p) denotes the i such that p ∈ Pi, and 1{bool} denotes the indicator function,
which is 1 if bool is true, and 0 otherwise. Since

∫ 3
0 wp(t) = O(1), we have

∫ 3
0 w∗

p(t) = O(1)
as well, because

∫ 3
0 1{tσ∗ intersects Hi(p)} ≤ size(Hi(p)). Hence, we can find a t∗ such that∑

p w∗
p(t∗) = O(n). Therefore, we can use this t∗ to prove the bounds on |P (i, σ)| analogously

to the original proofs.
It remains to prove the bound on the number of Pi split by t∗σ∗. We get∑

i

1{t∗σ∗ intersects Hi}
size(Hi)

≤
∑

p

1{t∗σ∗ intersects Hi(p)}
size(Hi(p))

<
∑

p

w∗
p(t) = O(n).

Therefore, for any L, at most O(nL) different Hi of size at most L intersect tσ∗. Furthermore,
an Hi of size at least L intersecting σ covers at least Ld−1 of the (d − 1)-dimensional volume
of σ, which is 2d = O(1). (Recall that σ is defined as the boundary of a hypercube, which
is a (d − 1)-dimensional object, and that we consider d to be fixed.) See Figure 2. Since
the Hi have a ply of λ, there can be at most λ/Ld−1 of these. Hence, for any L, at most
O(nL + λ/Ld−1) hypercubes intersect σ. Specifically, by taking L = λ1/dn−1/d, we conclude
that σ intersects O(λ1/dn1−1/d) of the Hi. Finally, we note that the number of Pi split by σ

is bounded by the number of Hi intersected by σ, finishing our proof. ◀

We will now use this distance-based separator theorem to present an efficient algorithm for
Euclidean One-of-a-Set TSP.

Let S(P) := {pq : (p, q) ∈ P × P} be the set of all line segments defined by P . Since we
wish to guess how σ is crossed by the optimal answer, and we know that the edges of the
answer have the packing property, we are interested in the following set:

C(σ, P) := {S ⊆ S(P) : S has the packing property and all segments in S cross σ}.

H. Alkema and M. de Berg 6:5

p

σ

x

Figure 2 Example for the proof of Theorem 1. The point p is at distance x from σ. Hence, any
square H (in blue) that contains both p and a point outside σ covers at least x of the total length of
the edges of σ. For arbitrary d, any d-dimensional hypercube H that contains both p and a point
outside σ covers at least xd−1 of the (d − 1)-dimensional volume of σ. (Recall that σ is defined to be
the (d − 1)-dimensional boundary of a hypercube, so σ does not include the region enclosed by it.)

Our main separator theorem, presented next, states that we can find a separator σ that is
balanced, splits few Pi, and is such that the sets in C(σ, P), as well as the collection C(σ, P)
itself, are small. Since the packing property is hard to test, we will not enumerate C(σ, P)
but a slightly larger collection of candidate sets, which we denote by C′(σ, P).

▶ Theorem 2. Let P = {P1, ..., Pr} be a family of point sets in Rd, and let H = {H1, ..., Hr}
be a set of hypercubes such that Pi ⊂ Hi for every i. Let Q ⊆ P , where P = P1 ∪ · · · ∪ Pr.
Then there exists a separator σ with the following properties:
1. σ is balanced with respect to Q.
2. Each candidate set S ∈ C′(σ, P) contains O(n1−1/d) segments.
3. C(σ, P) ⊆ C′(σ, P) and |C′(σ, P)| = 2O(n1−1/d).
4. σ splits O(λ 1

d n1−1/d) of the sets Pi, where λ is the ply of H.
Moreover, σ and the collection C′(σ, P) can be computed in 2O(n1−1/d) time.

Proof. The separator chosen is the one found by applying Theorem 1. Hence, the proof of
properties 1-3 is analogous to that of the original paper by De Berg et al. Property 4 is
directly implied by Theorem 1, as well. ◀

The algorithm. Our adapted algorithm contains four changes compared to the original:
We choose our separator σ using Theorem 2 instead of the equivalent from the original
paper. Note that this does not impact the running time.
Candidate sets of which the endpoints of the edges contain more than one point of any
set Pi can be ignored. Note that this can be easily checked.
When “guessing” the correct candidate set, for every point set Pi split by σ we also guess
whether a point of Pi in σin or a point in σout is used. If we guess that we will visit a
point in Pi ∩ σin, then we can ignore the points in Pi ∩ σout for the recursive call outside
σ, and vice versa. Note that for every Pi that contains a boundary point this choice (if
applicable) is implied by the location of the boundary point. Furthermore, once we have
chosen a point from a set Pi as one of our boundary points, then we can remove all other
points from Pi from further consideration. This way, the subproblems generated remain
independent, while ensuring that exactly one point of every Pi is visited.
In the initial call, the original algorithm turns the problem into a Euclidean Path
Cover problem by duplicating point p1 and taking the boundary set B = (p1, p′

1). In
other words, it simply searches for a path from p1 to p1 through all other points. In
our case, we guess which p in P1 is used in the optimal tour. Then, we remove all other
points in P1 and duplicate p as in the original algorithm.

This brings us to our main theorem for this section.

ISAAC 2023

6:6 Geometric TSP on Sets

Figure 3 On the left, an example of a point set whose hypercubes generate a high ply. The
pattern can be repeated to get a ply of Θ(n). However, the separator we find will not split Θ(n)
point sets. On the right, the same point set covered by α-fat objects. Here, we have a ply of only 1.

▶ Theorem 3. Let P = {P1, .., Pr} be a collection of point set in Rd with n points in total.
Let H1, ..., Hr be hypercubes with ply λ such that Pi ⊂ Hi for all i. Then Euclidean
One-of-a-Set TSP on P can be solved in 2O(λ

1
d n1−1/d) time.

For the full proof, see Appendix A. It follows the proof of the original algorithm [3] almost
verbatim; the main difference is that we need to take the dependency on λ into account.

An improved analysis of the running time. So far, we have used the ply of hypercubes
covering the point sets to bound the running time of our algorithm. (Note that the algorithm
itself does not use the hypercubes, we only used their ply in the analysis to quantify how
separated the sets are.) However, in some cases, these hypercubes can have a high ply, even
though they are still fairly well separable. Thus the analysis may be overly pessimistic. We
show that this is indeed the case by replacing the hypercubes by so-called α-fat objects,
whose ply can be much smaller than the ply of the hypercubes. let 0 < α < 1 be arbitrary
but fixed. We say a connected closed set of points O ⊆ Rd is an α-fat object if and only if
for every ball B ⊂ Rd whose center lies in O we have that (i) O fully lies in B or (ii) at least
a fraction α of the volume of B is covered by O. See Figure 3 for an example showing how
α-fat objects can have significantly lower ply than hypercubes.

It remains to show that with this new λ our running time of 2O(λ1/dn1−1/d) is still accurate.
Note that we use the fact that the objects containing the sets Pi are hypercubes only once,
namely during the proof of Theorem 1, where we bound the number of Hi split by σ to
2O(λ1/dn1−1/d). We will now prove that a similar bound holds for arbitrary α-fat objects.

Before we define the size of an α-fat object, we need the following observation.

▶ Observation 4. Let α > 0 be arbitrary but fixed. Let O be an α-fat object. Let B be the
bounding box of O, i.e., the smallest box such that O lies fully in B. Then the dimensions of
B are within a constant factor of each other.

Proof. Let α, O and B be as defined above. Let s be the largest dimension of B. W.l.o.g.,
s = 1. Let p be a point in O. W.l.o.g., p is the origin. Note that O fully lies in [−1, 1]d.
Let B be the ball of radius 1/3 centered at the origin. Note that B does not fully cover
O (in fact, any radius strictly smaller than 1/2 suffices). Hence, since O is an α-fat object,
at least αcd/3d of B (and therefore [−1, 1]d) is covered by O, where cd is the volume of a
d-dimensional ball with radius 1. Since for any dimension x of B, the volume of O inside
[−1, 1]d can be bounded by x, we get that x ≥ αcd/3d = O(1), as required. ◀

We now define the size of an α-fat object O to be the largest dimension of its bounding box.
We will now show that these objects have all required properties.

▶ Lemma 5. Let P = {P1, ..., Pr} be a collection of point sets in Rd, and let Q ⊆ P . Let n

be the total number of points in P. Let σ be the separator found when applying Theorem 1
with α-fat objects instead of hypercubes. Then σ splits O(λ1/dn1−1/d) point sets Pi.

H. Alkema and M. de Berg 6:7

p

σ

q

Figure 4 The dotted lines denote the square annulus A of all points with an rdist of at most
2j/n1/d to σ. In blue, the object Oi crossing σ. It has at least one of (i) a point p in σin but not in
A, or (ii) a point q in σout but not in A. Therefore, if we draw a ball (in red) the width of A centered
at a point where Oi coincides with σ, this circle does not fully contain Oi. Hence, the volume of Oi

inside the ball (light blue), and therefore inside A, is at least α times the volume of the ball.

Proof. First, we note that the logic showing that w∗
p(t) = O(1) still holds for α-fat objects.

Furthermore, analogously to the original proof of Theorem 1, there are O(λ1/dn1−1/d) objects
of size at most λ1/dn−1/d intersected by σ. It remains to prove that σ splits O(λ1/dn1−1/d)
point sets whose objects have size larger than λ1/dn−1/d. Note that it is sufficient to prove
that O(λ1/dn−1/d) objects of size larger than O(λ1/dn−1/d) intersect σ.

Let Oi be an object of size strictly larger than λ1/dn−1/d intersected by σ. Then Oi must
contain a point at a distance more than cα,dλ1/dn−1/d from σ for some constant cα,d: this
distance is clearly nonzero, as Oi has a positive volume, and since α and d are fixed, the
problem scales linearly.

For brevity, we write x := cα,dλ1/dn−1/d. Let B be the ball with radius x and centered at
an intersection point of Oi and σ. Now, B does not fully cover O. Therefore, O covers at least
a fraction α of B. Let A be the square annulus defined by {p ∈ Rd : rdist(p, σ) ≤ x}. Note
that B fully in A. See Figure 4 for an example. Since B is d-dimensional, every Oi covers
Θ(xd) of the volume of A. Now, the total volume of A is smaller than 2d · (1+2x)d−12x, since
each of the 2d facets of σ contributes (1 + 2x)d−12x to the annulus. (This is a conservative
estimate since we ignore overlap between the contributions of the facets.) Since x < 1, this
can be further bounded by 3d+2dx. Furthermore, the volume of a d-dimensional ball with
radius x is cdxd for some constant cd. Therefore, the maximum number of Oi intersected by
σ of size strictly larger than λ1/dn−1/d is bounded by

λ
3d+2dx

αcdxd
= O(λx1−d) = O(λ · λ(1−d)/dn−(1−d)/d) = O(λ1/dn1−1/d),

as we wanted to prove. ◀

We thus obtain the following theorem.

▶ Theorem 6. Let α > 0 be arbitrary but fixed. Let P = {P1, .., Pr} be a collection of point
set in Rd with n points in total. Suppose there exist O1, ..., Or be α-fat objects with ply λ

such that Pi ⊂ Oi for all i. Then Euclidean One-of-a-Set TSP on P can be solved in
2O(λ

1
d n1−1/d) time.

A lower bound on the running time when λ = Θ(n). In this section we show that for
λ = Θ(n), the problem cannot be solved in subexponential time.

▶ Theorem 7. Euclidean One-of-a-Set TSP in R2 cannot be solved in 2o(n) time, unless
ETH fails.

ISAAC 2023

6:8 Geometric TSP on Sets

t1

f1

t2

f2

tn

fn

set forming gadget for (x1 ∨ x2 ∨ ¬xn)

set forming gadget for (¬x2 ∨ ¬x3 ∨ x5)

(100m, 100m)(0, 100m)

(0, 0) (100m, 0)

Figure 5 An example for the proof of Theorem 7. Not to scale. The points inside the small pink
disks (which are the points pi and qi as defined in the text) must all be visited. The sets indicated
by the green ellipses ensure that for each i at least one of ti and fi is visited. The sets indicated
by the blue regions correspond to the clauses. The pink and green sets imply a lower bound on
the length of the shortest tour. If this bound is tight, the shortest tour visits exactly one of each
pair (ti, fi). Note that each such tour maps directly to an assignment of True and False to the
variables. If an assignment of True and False to the variables satisfying all clauses exists, then the
corresponding tour indeed visits all sets at least once.

Proof. The ETH states that 3-SAT cannot be solved in 2o(n) time [9]. We will prove
Theorem 7 by showing that if Euclidean One-of-a-Set TSP can be solved in 2o(n) with
d = 2 and λ = Θ(n), then 3-SAT can be solved in 2o(n) time as well.

Let F be a 3-SAT formula containing clauses C1, ..., Cn over variables x1, ..., xm. Note that
m = O(n). We define p1 = (0, 0), p2 = (0, 100m), p3 = (100m, 100m), and p4 = (100m, 0).
Furthermore, let qi = (50m − 2i, 0) for all i = 0, ..., m, let ti = (50m − 2i + 1, −1) and let
fi = (50m − 2i + 1, 1) for all i = 1, ..., m. See Figure 5 for an example. Now, let P be the
family containing the following point sets:

For all 0 ≤ i ≤ 3, one point set containing only pi.
For all 1 ≤ i ≤ m, one point set containing ti and fi. This is the gadget representing the
variable xi.
For all 1 ≤ i ≤ n, one point set representing the clause Ci. Specifically, this point set
should contain tj iff Ci contains the literal xj , and should contain fj iff Cj contains the
literal ¬xj . Note that each of these point sets contains three elements, and that each
point in a clause gadget coincides with a point from a variable gadget.

Now we claim that F is satisfiable if and only if P admits a shortest tour of length exactly
L := (398 + 2

√
2)m. Note that if this claim indeed holds, we are done; if we can solve

Euclidean One-of-a-Set TSP in 2o(n) time, then the shortest tour on P can be found in
2o(n+m) = 2o(n) time, and therefore we answer whether F is satisfiable in 2o(n) time.

Note that if a shortest tour of length L exists, F is satisfiable. To satisfy F , simply set xi

to True if ti is visited in the shortest tour, and set it to False otherwise. Since the shortest
tour visits every point set corresponding to a clause, all clauses are indeed satisfied.

Next, we check that if F is satisfiable, a shortest tour of length L exists. We simply do
the reverse: let x1, ..., xm satisfy F . Then note that the tour passing through ti if xi is True
and through fi otherwise indeed has the required length. Finally, we still have to show the
shortest tour can never be shorter than L. It is easy to see that the shortest tour must visit
qm, p1, p2, p3, p4, q0 consecutively in that order, giving a length of 398m. Connecting q0 to qm

while passing through at least one of every pair (ti, fi) and through every qi inbetween takes a
total length of at least 2

√
2m. Therefore, the shortest tour has length at least (398 + 2

√
2)m.

H. Alkema and M. de Berg 6:9

In conclusion, F is satisfiable if and only if the shortest tour on P has length L. Therefore,
if Euclidean One-of-a-Set TSP can be solved in subexponential time when λ = Θ(n),
then so can 3-SAT. Hence, unless ETH fails, Euclidean One-of-a-Set TSP cannot be
solved in subexponential time. ◀

3 Rectlinear One-of-a-Cube TSP

We continue with Rectilinear One-of-a-Cube TSP. Recall that for this setting, H :=
{H1, ..., Hn} is a set of hypercubes, and λ is the ply of H, i.e., the smallest number such that
every point in Rd is in at most λ of the hypercubes. We now want to find a minimum-length
rectilinear tour visiting all of the hypercubes Hi.

The algorithm works using the same divide-and-conquer approach as the Euclidean
One-of-a-Set TSP algorithm; see the beginning of Section 2 for a more detailed description.

Properties of an optimal tour. We start by limiting the set of points and edges we need to
consider. We show that there is an optimal tour using only edges from a specific set, and
that these edges have the packing property.

First, we introduce some terminology. An edge is defined as a rectilinear line segment.
A link between two points is any shortest path formed by at most d edges of different
orientations (which always exists). We define, with slight abuse of notation, |pq| to be the
L1-distance between points p and q. Note that this is also the length of a link between p

and q. A tour is a sequence of links, where the endpoint of each link in the sequence is the
starting point of the next one, and the endpoint of the last link is the startpoint of the first
link. Note that the fact that we see the tour as a sequence (and not as a cycle) implies that
tours have a starting point and a direction – this is solely for the purpose of the analysis.

Let qi denote the i’th coordinate of a point q. Define C to be the set of 2dn corners of
the cubes in the input set H. Let G be the generalised Hanan grid induced by the set C

which is defined as the grid formed by drawing all axis-aligned lines through every point in
the point set C∗ := {p ∈ Rd : ∀1 ≤ i ≤ d : ∃c ∈ C : pi = ci}. In other words, the lines of the
grid G are the intersections of d − 1 differently oriented hyperplanes each containing the
facet of one of the hypercubes.

▶ Lemma 8. There exists a shortest tour on H which lies fully on G.

For the full proof, see Appendix B. Intuitively, this can be done by taking any shortest tour
T and “shifting” it onto the grid, bit by bit.

Given a tour T , we can reorder the hypercubes in H such that Hi is the i’th hypercube
visited by T ; ties can be broken in any way. Define pi to be the first point where Hi is
visited by T . Define P (T) := {p1, ..., pn}; we call the points in P (T) the entry points of T .
Note that the length of a shortest tour T that visits the points pi in the given order equals∑

1≤i≤n |pipi+1|, where we define pn+1 := p1. (Recall that |pq| denotes the L1-distance
from p to q.) We say a tour T is a canonical tour on H if it has the following properties:
1. T is a shortest tour on H
2. T lies fully on G

3. Each pair of consecutive entry points in P (T) is connected by a link, that is, the portion of
T connecting consecutive entry points consist of at most d edges of different orientations.

▶ Observation 9. For every H, a canonical tour on H exists.

ISAAC 2023

6:10 Geometric TSP on Sets

σ

H1

H2

Figure 6 An example of odrdist. Given an Hi, in every direction ej the four distances between
one of the sides of Hi perpendicular to ej and one of the sides of σ perpendicular to ej are measured.
The shortest of all the measured distances, scaled such that size(σ) = 1, defines the odrdist between
the two. Note how H1, in red, intersects σ and H2, in blue, seems far away from σ. Yet, the odrdist

of H1, denoted by the red arrow, is larger than that of H2, denoted by the blue arrow.

Proof. By Lemma 8 there exists a shortest tour T which lies fully on G, satisfying the first
two properties. Now, we can create a new tour T ′ by creating a link between every two
consecutive pi in P (T). Since T ′ is a shortest tour on a set of points on T , it must be
a shortest tour itself as well. Furthermore, since T ′ visits all pi in P (T), it visits all Hi.
Finally, since T lies on the generalised Hanan grid G, so do the points pi. Furthermore, note
that a link between two points on G lies on G itself. We conclude that T ′ has the required
properties. ◀

▶ Lemma 10. The edges of a canonical tour have the Packing Property.

For the full proof, see Appendix C. Intuitively, suppose we have two long edges in the same
direction (e.g. left to right) and close to each other. We can then replace these edges by two
new edges – one connecting the two starting points of the removed edges and one connecting
the end points – whose total length is shorter.

A good separator. As mentioned, our algorithm will be a divide-and-conquer algorithm,
based on separators. Thus we need a good separator for tours on hypercubes. Our separator
will again be based in the distance-based separator from [3]. It will not be sufficient to work
with a distance-based separator on the corners of the hypercubes. Instead, we want to have
only a few Hi with a facet close to one of the parallel facets of σ, measured in the dimension
perpendicular to these facets. To be precise, for a hypercube H, let center(H) be its center
and size(H) its edge length. Let the one-dimensional distance from a hypercube H to a
separator σ, denoted by oddist(H, σ) be defined as the minimum distance between any pair
of parallel hyperplanes h, h′ such that h contains a facet of H and h′ contains a facet of σ.
The one-dimensional relative distance from H to σ, denoted by odrdist(H, σ) is now defined
as odrdist(H, σ)/size(σ). See Figure 6 for an example. For integers j define

Pj(σ) := {H ∈ H : 0 < odrdist(H, σ) ≤ 2j/n1/d}.

We can now prove the following theorem.

H. Alkema and M. de Berg 6:11

▶ Theorem 11. Let H be a set of n hypercubes in Rd and let I ⊆ H. Then there is a
separator σ that is balanced with respect to the corner points of I, and such that

|Pj(σ)| =
{

O((3/2)jn1−1/d) for all j < 0
O(4jn1−1/d) for all 0 ≤ j < ∞.

Furthermore, at most O(λ1/dn1−1/d) elements of H intersect σ. Moreover, such a separator
can be found in O(nd+1) time.

Proof. Let C be the set of corner points of the hypercubes in I. Let σ∗ be a smallest
separator such that |σ∗

in ∩ C| ≥ (4n)/(4d + 1). As in the original proof, one can argue that
for all 1 ≤ t ≤ 3, the separator tσ∗ is balanced w.r.t. C. Assume w.l.o.g. that size(σ∗) = 1.
Define jH(t) to be the integer such that

2jH (t)−1/n1/d < odrdist(H, tσ∗) ≤ 2jH (t)/n1/d,

where jH(t) = ∞ if odrdist(H, tσ∗) = 0. We define the weight function as

wH(t) := 1{H intersects tσ∗}
size(H) +

n1/d

(3/2)ji
H

(t) if ji
H(t) < 0

n1/d

4ji
H

(t) otherwise 0 ≤ ji
H(t) < ∞

undefined otherwise.

(Recall that 1{bool} denotes the indicator function, which is 1 if bool is true, and 0 otherwise.)
Now, for every H ∈ H we have

∫ 3
1 wH(t)dt = O(1), since the second part of wH(t) can be

expressed as the maximum of 2d different versions of the weight function wp(t) of the original
proof. Since H can obviously intersect tσ only during an interval of t of size size(H), we get
that

∫ 3
1 wH(t)dt = O(1).

Therefore, we can find a t∗ such that
∑

H wH(t∗) = O(n). We claim that t∗σ∗ has the
desired properties. We have already shown that it is balanced w.r.t. the corner points of I.

Let 1 ≤ i ≤ d, and let j < 0. Then each element in P i
j (σ) contributes at least wi

H(t∗) ≤
n1/d

(3/2)j to the total weight. Therefore, there are at most O(n/ n1/d

(3/2)j) = O(n1−1/d(3/2)j) such
elements, as required. The case for 0 ≤ j < ∞ can be proven analogously.

Finally, we note that at most O(2dλ/(λ1/dn−1/d)d−1) = O(λ1/dn1−1/d) of the Hi of size
at least λ1/dn−1/d can intersect σ (otherwise, somewhere, λ + 1 would overlap). Furthermore,
there are O(n

1/(λ1/dn−1/d)) = O(λ1/dn1−1/d) of the Hi of size at most λ1/dn−1/d that intersect
σ, as they all contribute weight at least 1/(λ1/dn−1/d). Therefore, there are O(λ1/dn1−1/d)
hypercubes intersecting σ.

As in the original proof, we can argue that we can compute t∗σ∗ quickly by truncating
wi

H(t). ◀

This brings us to the candidate sets. Instead of guessing how we cross the separators
precisely, guessing where we cross the separators will suffice. For simplicity, we consider the
boundary points created this way to be infinitely small hypercubes.

▶ Theorem 12. Let H = {H1, ..., Hn} be a set of n hypercubes in Rd and let I ⊆ H. Then
there is a separator σ and a collection C ′(σ, H) of candidate point sets such that
1. σ is balanced with respect to the corner points of I
2. Each candidate set X ∈ C ′(σ, H) contains O(n1−1/d) points.
3. There exists a shortest tour T and an X ∈ C ′(σ, H) such that X is the set of locations

where T crosses σ, and |C ′(σ, H)| ≤ 2O(n1−1/d log n)

4. σ splits O(λ1/dn1−1/d) of the Hi, where λ is the ply of H.

ISAAC 2023

6:12 Geometric TSP on Sets

Moreover, σ and C ′(σ, H) can be calculated in 2O(n1−1/d log n) time.

Proof. Let σ be the separator given by Theorem 11. Then σ has properties 1 and 4. W.l.o.g.,
we assume that size(σ) = 1 and σ is centered at the origin. From now on, we will only
consider edges that cross σ once and lie on the Hanan grid G. Any set S ∈ C ′(σ, H) we
return can be divided into two subsets:

Sshort := {s ∈ S : length(s) ≤ 1/n1/d}
Slong := {s ∈ S : length(s) > 1/n1/d}

(The original proof uses three subsets: Sshort, Smid and Slong. However, since we have an
extra factor log n in the exponent, we can merge Sshort with part of Smid, and merge the rest
of Smid with Slong.) We start with Sshort. Let us take a look at a single facet of σ. We will
now show that we can cross this facet in only a limited number of ways. First, we note that
for the corresponding i, we have |P i

0(σ)| = O(n1−1/d). Let e be an arbitrary edge of our tour
crossing σ through this face. Now, by property (3) of a canonical tour, the pj and pj+1 that
are connected by e must both have a distance at most 1/n1/d to σ in the i’th coordinate.
Therefore, the same holds of the odrdistances of the corresponding Hj . Furthermore, note
that if we charge every edge e crossing σ through our facet to the two hypercubes of the
corresponding pj and pj+1, no hypercube is charged more than twice. Hence, the number
of short edges crossing σ through this facet is bounded by the number of hypercubes with
odrdistance at most 1/n1/d to σ, of which there are O(n1−1/d). As there are O(nd−1)
possible locations for these edges to cross σ, there are (nd−1)O(n1−1/d) = 2O(n1−1/d log n)

possible combinations for every face. Finally, since there are O(d) facets, the total amount
of possible combinations is 2O(n1−1/d log n).

We continue to Slong, the set of edges longer than 1/n1/d. Let us take a look at those
edges which cross some arbitrary facet of σ. Using the same logic as in the original paper, by
using Lemma 10, we can see that there are (2n1/d)d−1 = O(n1−1/d) of these edges at most.
Analogously, there are at most O(n1−1/d) edges of which at least 1/(2n1/d) is inside σ. Since
there are O(nd−1) options for every edge, there are (nd−1)O(n1−1/d) = 2O(n1−1/d log n) options
for every face, and just as many for every σ. ◀

The algorithm. Our algorithm contains the following changes compared to the original:
We choose our separator σ using Theorem 11 instead of the equivalent from the original
paper, and use Theorem 12 to obtain the candidate sets of crossing points.
Instead of choosing already existing points as boundary points, we create new boundary
points as explained above. To ensure that the recursion ends, we bruteforce the solution
if n is smaller than some arbitrarily large but fixed N , instead of recurring until n = 1.
All Hi visited by one of the new boundary points are removed from both subproblems.
For every Hi split by σ but not visited by one of the new boundary points, we need to
“guess” whether it is visited inside or outside σ.
For the initial call, we guess p1 and pn of the final tour, and connect them with a link -
there are O(n2d) viable combinations of points on the generalised Hanan grid. We remove
all Hi we already visit by doing so, and then run the algorithm on the remaining Hi and
the boundary set B = {p1, pn}.

Since there are O(λ1/d) hypercubes Hi split by σ, there are 2O(λ1/dn1−1/d log n) · 2O(λ1/d) =
2O(λ1/dn1−1/d log n) subproblems generated in total, leading to the following theorem. (For
the full proof, see Appendix D, where we show how to analyze the dependency on λ, and
deal with the larger amount of candidate sets and the creation of extra boundary points.)

▶ Theorem 13. Then Rectilinear One-of-a-Cube TSP on hypercubes with ply λ can be
solved in 2O(λ

1
d n1−1/d log n) time.

H. Alkema and M. de Berg 6:13

References

1 Binay Bhattacharya, Ante Ćustić, Akbar Rafiey, Arash Rafiey, and Vladyslav Sokol. Approx-
imation algorithms for generalized mst and TSP in grid clusters. In Zaixin Lu, Donghyun Kim,
Weili Wu, Wei Li, and Ding-Zhu Du, editors, Combinatorial Optimization and Applications,
pages 110–125, Cham, 2015. Springer International Publishing.

2 T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 754–765. SIAM,
2016. doi:10.1137/1.9781611974331.ch54.

3 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An ETH-tight
exact algorithm for euclidean TSP. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pages 450–461, 2018. doi:10.1109/FOCS.2018.00050.

4 Mark de Berg, Joachim Gudmundsson, Matthew J. Katz, Christos Levcopoulos, Mark H.
Overmars, and A. Frank van der Stappen. TSP with neighborhoods of varying size. Journal
of Algorithms, 57(1):22–36, 2005. doi:10.1016/j.jalgor.2005.01.010.

5 Moshe Dror and James B. Orlin. Combinatorial optimization with explicit delineation of the
ground set by a collection of subsets. SIAM Journal on Discrete Mathematics, 21(4):1019–1034,
2008. doi:10.1137/050636589.

6 M. R. Garey, Ronald L. Graham, and David S. Johnson. Some NP-complete geometric
problems. In STOC, pages 10–22. ACM, 1976.

7 Gregory Gutin and Abraham P. Punnen. The Traveling Salesman Problem and Its Variations.
Springer, 2006.

8 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

9 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

10 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

11 Michael Khachay and Katherine Neznakhina. Approximation algorithms for generalized TSP
in grid clusters. CEUR Workshop Proceedings, 1623:39–48, 2016.

12 Michael Khachay and Katherine Neznakhina. Complexity and approximability of the euclidean
generalized traveling salesman problem in grid clusters. Annals of Mathematics and Artificial
Intelligence, 88(1):53–69, 2020. doi:10.1007/s10472-019-09626-w.

13 Joseph S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, pages 11–18, 2007.

14 Joseph S.B. Mitchell. A constant-factor approximation algorithm for TSP with pairwise-disjoint
connected neighborhoods in the plane. In Proceedings of the Twenty-Sixth Annual Symposium
on Computational Geometry, pages 183–191, 2010. doi:10.1145/1810959.1810992.

15 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor.
Comput. Sci., 4(3):237–244, 1977.

16 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications. In
FOCS, pages 232–243. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743449.

A Running time of the One-of-a-Set TSP algorithm

To prove the running time of the One-of-a-Set TSP algorithm, we can follow the proof of
the running time of the the original algorithm [3] almost verbatim. We only need to take
the dependency on λ into account at the right places. Define T (n, b) to be the running time
of the algorithm when run on an input containing n points of which b are boundary points.
Let nS,in, nS,out, bS,in and bS,out denote the numbers of points and boundary points in the
subproblems generated.

ISAAC 2023

https://doi.org/10.1137/1.9781611974331.ch54
https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.1016/j.jalgor.2005.01.010
https://doi.org/10.1137/050636589
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/s10472-019-09626-w
https://doi.org/10.1145/1810959.1810992
https://doi.org/10.1109/SFCS.1998.743449

6:14 Geometric TSP on Sets

As far as the candidate sets are concerned, we can restrict our attention to candidate
sets S ∈ C′(σ, P) that contain at most one edge incident to any given point in B, and at
most two edges incident to any given point in P \ B. Define C′′(σ, P) to be the family of
candidate sets gained from restricting C′(σ, P) this way. Furthermore, given a candidate set
and a boundary set, for every point set split by σ we need to choose whether to use a point
in σin or σout. Let I(σ, P) be the set of 2m possible combinations of choices, where m is the
number of point sets split by σ. Clearly, if one of the points of a Pi is in B, no choice needs
to be made. Define C∗(σ, P) ⊆ C′′(σ, P) × I(σ, P) to be the set of combinations of candidate
sets and splitting choices restricted this way.

We get:

T (n, b) ≤

c0 if n ≤ 1∑

S∈C∗(σP ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

We prove by induction that T (n, b) ≤ eλ
1
d (d1n1−1/d+d2b) for some constants d1 and d2 and for

all 1 ≤ b ≤ n. This clearly holds for b, n ≤ 1, so by induction, for each S we have

ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out)

≤ ec3(n1−1/d+b) + eλ
1
d (d1n

1−1/d

S,in
+d2bS,in) + eλ

1
d (d1n

1−1/d

S,out
+d2bS,out).

Let c2, c4 and c5 be the constants from part (2), (3) and (4) of Theorem 2. For any
S ∈ C∗(σB , P), we have bS,in ≤ δb + c2n1−1/d and bS,out ≤ δb + c2n1−1/d; similarly, for any
S ∈ C∗(σP , P), we have nS,in ≤ δn and nS,out ≤ δn. In the remaining cases, we can just use
the trivial bounds bS,. ≤ b + c2n1−1/d and nS,. ≤ n. Since |C∗(σ, P)| ≤ ec4λ

1
d n1−1/d , we get

the following:

T (n, b) ≤

c0 if n ≤ 1∑

S∈C∗(σP ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,P) ec3(n1−1/d+b) + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

T (n, b) ≤

c0 if n ≤ 1
ec4λ

1
d n1−1/d

(
ec3(n1−1/d+b) + 2eλ

1
d (d1(δn)1−1/d+d2(b+c2n1−1/d))

)
if b ≤ γn1−1/d

ec4λ
1
d n1−1/d

(
ec3(n1−1/d+b) + 2eλ

1
d (d1n1−1/d+d2(δb+c2n1−1/d))

)
if b > γn1−1/d.

For simplicity, let λ′ := λ
1
d , and Let c := max{c0, c2, c3, c4}. We get

T (n, b) ≤

c if n ≤ 1
ecλ′n1−1/d+c(n1−1/d+b)+1+λ′(d1(δn)1−1/d+d2(b+cn1−1/d)) if b ≤ γn1−1/d

ecλ′n1−1/d+c(n1−1/d+b)+1+λ′(d1n1−1/d+d2(δb+cn1−1/d)) if b > γn1−1/d.

T (n, b) ≤

c if n ≤ 1
eλ′((2c+cd2+d1δ1−1/d)n1−1/d+(d2+2c)b) if b ≤ γn1−1/d

eλ′((2c+cd2+d1)n1−1/d+(d2δ+2c)b) if b > γn1−1/d.

Now, for the case b > γn1−1/d, we have

eλ′((2c+cd2+d1)n1−1/d+(d2δ+2c)b) ≤ eλ′(d1n1−1/d+d2b)

H. Alkema and M. de Berg 6:15

if and only if

(2c + cd2)n1−1/d + (d2(δ − 1) + 2c)b ≤ (2c + d2(c − γ(1 − δ)) + 2cγ)n1−1/d ≤ 0.

We choose γ = 2c
1−δ and d2 = 2 + 2γ, satisfying the equation.

For the case b ≤ γn1−1/d, we have

eλ′((2c+cd2+d1δ1−1/d)n1−1/d+(d2+2c)b) ≤ eλ′(d1n1−1/d+d2b)

if and only if

(2c + cd2 + d1(δ1−1/d − 1))n1−1/d + 2cb ≤ (2c + cd2 + d1(δ1−1/d − 1) + 2cγ)n1−1/d ≤ 0.

We choose d1 = 4c(1+γ)
1−δ1−1/d , satisfying the equation.

Finally, we note that d1 and d2 are indeed (nonnegative) constants, as they only depend
on c, γ and δ, which in turn only depend on d.

B Proof of Lemma 8

Let T be any shortest tour with a minimal number of edges on the given hypercubes
H1, ..., Hn. Note that because T has a minimal number of edges, no edges have length 0.
Recall that pi denotes the i’th coordinate of p. For simplicity, let us call the first coordinate
the x-coordinate, and let us call those edges whose endpoints have different x-coordinates
horizontal. For every Hi, let xi1 and xi2 denote the x-coordinates of the corner points of Hi.
We will now show that we can change T into a shortest tour of which all x-coordinates of the
endpoints of the edges used are in the set XH := {xij |i ∈ {1, ..., n}, j ∈ {1, 2}}. Furthermore,
we do so without changing the sets used for the second to d’th coordinate. Then, by applying
this method repeatedly, we obtain a shortest tour of which all coordinates match those of
the corner points of the Hi, i.e., a shortest tour which lies on the generalised Hanan grid.

Let XT := {x1 < ... < xr} be the set of x-coordinates used by T . For every xi, let Ei be
the set of horizontal edges of with an endpoint with x-coordinate xi.

Let xi be an x-coordinate not in XH . Then let e1 and e2 be two consecutive edges in E1
(consecutive as in there are no edges in E1 in between e1 and e2 in T). Let E denote the set
of edges between e1 and e2 in T . Note that all endpoints of these edges have x-coordinate xi.
W.l.o.g., let at least one of endpoints of e1 and e2 lie to the right of xi. Let x′ denote the
smallest x-coordinate in XH ∪ XT strictly larger than xi.

Now, let us change the x-coordinate of all edges in E to x′. Furthermore, we move the
endpoints of e1 and e2 with x-coordinate xi to the x-coordinate x′. See Figure 7 for an
example. Note that the resulting tour T ′ is indeed still a tour. Furthermore, T ′ visits all Hi:
Let p be an arbitrary point in Hi visited by T but not by T ′. Note that this is only possible
if xi ≤ p0x′. However, in that case, the point p′ = (x′, p1, ..., pn) is in Hi as well, and p′ is
visited by T ′.

Now, if both other endpoints of e1 and e2 are on the same side of the hyperplane defined
by x-coordinate xi, the resulting tour T ′ is strictly shorter than T . Since T is a shortest tour,
we conclude that the other endpoints of e1 and e2 are on different sides of the hyperplane
defined by x-coordinate xi. Furthermore, note that the edge that has been shortened still
has a positive length, otherwise the assumption that T has a minimal number of edges fails.
Finally, note that this change does not change the set of all other coordinates used except
the x-coordinates.

ISAAC 2023

6:16 Geometric TSP on Sets

e1

e2

e1

e2

p p′p p′

Figure 7 An example for the proof of Lemma 8. In the left case, we can shorten the tour T by
shortening the edges e1 and e2 and moving the connected edges correspondingly. As long as the
x-coordinate of these points was not a coordinate in XH , if a point p is in a hypercube, then so is
p′. In the right case, we are free to move the edges between e1 and e2 to the smallest x-coordinate
bigger than xi, as long as their x-coordinate is not a coordinate in XH .

p1 p2

q1 q2

σ

Figure 8 An example for the proof of Lemma 10. If there are enough (directed) edges of length
at least size(σ) crossing σ, there must be two edges (p1, p2) and (q1, q2) going in the same direction,
crossing the same face, both with at least a length of size(σ)/2 on the same side of this face, and
with |p1q1| < size(σ)/2. We can then create a strictly shorter tour by removing both edges and
connecting p1 to q1 and q2 to p2 (in red). The resulting set of edges is indeed a tour, if we flip the
direction of the edges between p2 and q1.

Now, we can apply the above change exhaustively: in every step, we increase the sum
of all x-coordinates of all endpoints of all edges in T by at least some amount dependent
only on XH ∪ XT , and the total sum is bounded by 2n times the maximum x-coordinate in
XH ∪ XT . After applying this change exhaustively, no more x-coordinates not in XH are
used.

Since this procedure does not change the set of other coordinates used, we can apply this
procedure once for every coordinate, obtaining a T ′ which lies on the generalised Hanan grid.

C Proof of Lemma 10

Let T be a shortest (directed) rectilinear tour on the hypercubes H1, ..., Hn. Let σ be a
separator. We will first show that T contains O(1) edges crossing σ of length at least size(σ).
W.l.o.g., assume size(σ) = 1. Now, suppose T contains at least 2d · 4 · 4d edges crossing σ of
length at least size(σ). Then there exists a face f of σ such that at least 4 · 4d edges cross f .
W.l.o.g., at least 2 · 4d edges cross f from σin to σout. W.l.o.g., at least 4d of these edges
have length at least 1/2 outside σ. Therefore, there must be two of these edges (p1, p2) and
(q1, q2) with |p1, q1| < 1/2. Recall that |pq| denotes the rectilinear distance between p and q.
See Figure 8 for an example. Let us remove these two edges, and connect p1 to q1 and q2
to q2. Next, we flip the direction of the edges from p2 to q1. We claim that the resulting
tour T ′ is a strictly shorter rectilinear tour visiting all Hi. Since this directly contradicts our
assumption, we can then conclude that T contains O(1) edges crossing σ of length at least
size(σ).

H. Alkema and M. de Berg 6:17

σ

Figure 9 An example for the proof of Lemma 10. In black, the separator σ. In red and blue,
some of the smaller hypercubes covering σin. Any edge of length at least size(σ)/4 crosses at least
one of the smaller hypercubes. Since there are O(1) smaller hypercubes, each being crossed O(1)
time,s there are O(1) edges of length at least size(σ)/4 of T in σin.

First, we note that T ′ is indeed a tour: see Figure 8 for an example. Furthermore, T ′

indeed visits all Hi: since T is a simple tour, any tour visiting all endpoints of the edges of T

(and hence, the points p1, ..., pn) visits all Hi. Finally, T ′ is strictly shorter than T : clearly,

||T || − ||T ′|| = |p1p2| + |q1q2| − |p1q1| − |p2q2|.

W.l.o.g., let |p1p2| ≥ |q1q2|. We know that |p1p2 ≥ |q1q2| ≥ 1. Furthermore, we know that
|p1q1| < 1/2. Since p1p2 and q1q2 both go in the same direction, we get

|p2q2| ≤ |p1q1| + |p1p2| − |q1q2|.

Combining these, we get

||T || − ||T ′|| = |p1p2| + |q1q2| − |p1q1| − |p2q2|
≥ |p1p2| + |q1q2| − |p1q1| − (|p1q1| + |p1p2| − |q1q2|)
≥ 2|q1q2| − 2|p1q1|
≥ 2 · 1 − 2 · 1/2 > 0,

as we wanted to prove.
Next, we show that T contains O(1) edges fully in σin with length at least size(σ)/4.

W.l.o.g., let σ be the hypercube of size 1 with center c = (1/2, ..., 1/2). For 0 ≤ i1, ..., id ≤ 8,
let σi1,...,id

be the hypercube of size 1/4 with center (i1/8, ..., i2/8). Then, every edge of T

fully in σin of length at least 1/4 crosses at least one of these hypercubes; see Figure 9 for an
example. On the other hand, by using the first part of this proof we conclude that every one
of these smaller hypercubes is crossed O(1) times. Since the number of smaller hypercubes is
9d = O(1), we conclude that there are O(1) edges of T of length at least size(σ)/4 fully in
σin. This concludes the proof of the second part of the Packing Property, and hence, the
proof of the Packing Property for edges of a simple tour.

D Running time of the Rectilinear One-of-a-Cube TSP algorithm

There are three differences between the algorithms that impact the running time. First,
as mentioned, there are n2d initial calls made to the algorithm, one for every pair of
points. However, since we will prove that the running time is 2O(λ1/dn1−1/d log n), this
factor is irrelevant. Second is the fact that there are more candidate sets. Specifically,
2O(λ1/dn1−1/d log n) subproblems are generated. Finally, because we only guess where the
separator is crossed, O(n1−1/d) new boundary points are generated instead of selected from
the already existing points. We will now compute the impact of the last two differences on
the running time of the algorithm.

ISAAC 2023

6:18 Geometric TSP on Sets

Define T (n, b) to be the running time of the algorithm when run on an input containing n

points of which b are boundary points. Let nS,in, nS,out, bS,in and bS,out denote the numbers
of points and boundary points in the subproblems generated.

Let I(σ, H) be the set of 2m possible combinations of choices, where m is the number of
hypercubes split by σ. Clearly, if one of the points of an Hi is in B, no choice needs to be
made. Define C∗(σ, H) ⊆ C′(σ, H) × I(σ, H) to be the set of combinations of candidate sets
and splitting choices restricted this way.

Let N be arbitrarily large but fixed. We get:

T (n, b) ≤

c0 if n ≤ N∑

S∈C∗(σH,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

We prove by induction that T (n, b) ≤ eλ
1
d (d1n1−1/d+d2b) log n for some constants d1 and d2

and for all 1 ≤ b ≤ n. This clearly holds for b, n ≤ N , so by induction, for each S we have

ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out)

≤ ec3(n1−1/d+b) log n + eλ
1
d (d1n

1−1/d

S,in
+d2bS,in) log n + eλ

1
d (d1n

1−1/d

S,out
+d2bS,out) log n.

Let c2, c4 and c5 be the constants from part (2), (3) and (4) of Theorem 12. For any
S ∈ C∗(σB , H), we have bS,in ≤ δb + c2n1−1/d and bS,out ≤ δb + c2n1−1/d; similarly, for any
S ∈ C∗(σH, H), we have nS,in ≤ δn + c2n1−1/d and nS,out ≤ δn + c2n1−1/d. In the remaining
cases, for bS,. we can use the trivial bound bS,. ≤ b + c2n1−1/d. For nS,., we can use nS,. ≤ n;
despite the possibility of new points being created, there will never be more points created
then there are points on either side of σ. Since |C∗(σ, H)| ≤ ec4λ

1
d n1−1/d log n, we get the

following:

T (n, b) ≤

c0 if n ≤ N∑

S∈C∗(σH,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b ≤ γn1−1/d∑
S∈C∗(σB ,H) ec3(n1−1/d+b) log n + T (nS,in, bS,in) + T (nS,out, bS,out) if b > γn1−1/d.

≤

c0 if n ≤ N

ec4λ
1
d n1−1/d log n

(
ec3(n1−1/d+b) log n + 2eλ

1
d (d1(δn+c2n1−1/d)1−1/d+d2(b+c2n1−1/d)) log n

)
if b ≤ γn1−1/d

ec4λ
1
d n1−1/d log n

(
ec3(n1−1/d+b) log n + 2eλ

1
d (d1n1−1/d+d2(δb+c2n1−1/d)) log n

)
if b > γn1−1/d.

For simplicity, let λ′ := λ
1
d , let n′ := n1−1/d, and Let c := max{c0, c2, c3, c4}. We get

T (n, b) ≤

c if n ≤ N

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1(δn+cn′)1−1/d+d2(b+cn′)) log n if b ≤ γn′

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1n′+d2(δb+cn′)) log n if b > γn′.

Now, if n is large enough (dependent only on d), then δn + cn′ ≤ ζn, where ζ = 1+δ
2 . Since

we know that n > N and N is arbitrarily large, we get

T (n, b) ≤

c if n ≤ N

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1ζ1−1/dn′+d2(b+cn′)) log n if b ≤ γn′

ecλ′n′ log n+c(n′+b) log n+1+λ′(d1n′+d2(δb+cn′)) log n if b > γn′.

H. Alkema and M. de Berg 6:19

T (n, b) ≤

c if n ≤ N

e(cλ′+c+λ′d1ζ1−1/d+λ′d2c)n′ log n+(cb+λ′d2b) log n+1 if b ≤ γn′

e(cλ′+c+λ′d1+λ′d2c)n′ log n+(cb+λ′d2δb) log n+1 if b > γn′.

T (n, b) ≤

c if n ≤ N

eλ′ log n((ζ1−1/dd1+3cd2)n′+(2c+d2)b) if b ≤ γn′

eλ′ log n((d1+3cd2)n′+(2c+δd2)b) if b > γn′.

Now, for the case b > γn′, we have

eλ′ log n((d1+3cd2)n′+(2c+δd2)b) ≤ eλ′(d1n′+d2b) log n

if and only if

(d1 + 3cd2)n′ + (2c + δd2)b ≤ d1n′ + d2b.

We choose γ = 4c
1−δ and d2 = 8c

1−δ , satisfying the equation.
For the case b ≤ γn1−1/d, we have

eλ′ log n((ζ1−1/dd1+3cd2)n′+(2c+d2)b) ≤ eλ′(d1n′+d2b) log n

if and only if

(ζ1−1/dd1 + 3cd2)n′ + (2c + d2)b ≤ d1n′ + d2b.

We choose d1 = 32c2

(1−ζ1−1/d)(1−δ) , satisfying the equation.
Finally, we note that γ, d1 and d2 are indeed (nonnegative) constants, as they only depend

on c, δ and ζ, which in turn only depend on d.

ISAAC 2023

Depth-Three Circuits for Inner Product and
Majority Functions
Kazuyuki Amano #

Gunma University, Kiryu, Japan

Abstract
We consider the complexity of depth-three Boolean circuits with limited bottom fan-in that compute
some explicit functions. This is one of the simplest circuit classes for which we cannot derive tight
bounds on the complexity for many functions. A Σk

3 -circuit is a depth-three OR ◦ AND ◦ OR circuit
in which each bottom gate has fan-in at most k.

First, we investigate the complexity of Σk
3 -circuits computing the inner product mod two function

IPn on n pairs of variables for small values of k. We give an explicit construction of a Σ2
3-circuit of

size smaller than 20.952n for IPn as well as a Σ3
3-circuit of size smaller than 20.692n. These improve

the known upper bounds of 2n−o(n) for Σ2
3-circuits and 3n/2 ∼ 20.792n for Σ3

3-circuits by Golovnev,
Kulikov and Williams (ITCS 2021), and also the upper bound of 2(0.965...)n for Σ2

3-circuits shown in
a recent concurrent work by Göös, Guan and Mosnoi (MFCS 2023).

Second, we investigate the complexity of the majority function MAJn aiming for exploring the
effect of negations. Currently, the smallest known depth-three circuit for MAJn is a monotone circuit.
A Σ(+k,−ℓ)

3 -circuit is a Σ3-circuit in which each bottom gate has at most k positive literals and ℓ

negative literals as its input. We show that, for k ≤ 2, the minimum size of a Σ(+k,−∞)
3 -circuit

for MAJn is essentially equal to the minimum size of a monotone Σk
3-circuit for MAJn. In sharp

contrast, we also show that, for k = 3, 4 and 5, there exists a Σ(+k,−ℓ)
3 -circuit computing MAJn (for

an appropriately chosen ℓ) that is smaller than the smallest known monotone Σk
3 -circuit for MAJn.

Our results suggest that negations may help to speed up the computation of the majority function
even for depth-three circuits. All these constructions rely on efficient circuits or formulas on a small
number of variables that we found through a computer search.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Circuit complexity, depth-3 circuits, upper bounds, lower bounds, computer-
assisted proof

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.7

Supplementary Material Dataset: https://gitlab.com/KazAmano/depth-3-circuits
archived at swh:1:dir:6c19f0a1a69eae1143d2270517dd6f46df08bfb7

Funding This work was supported in part by JSPS Kakenhi No. JP21K19758, JP18K11152 and
JP18H04090.

Acknowledgements The author would like to thank anonymous referees for their helpful comments.

1 Introduction

Deriving a strong lower bound on the size of a Boolean circuit computing an explicit function
is one of the most challenging problems in theoretical computer science. Many different types
of restricted circuits have been investigated, and this paper concentrates on depth-three
circuits.

A Σ3-circuit is a depth-three OR ◦ AND ◦ OR circuit consisting of unbounded fan-in
AND/OR gates, with variables or their negations feeding into the bottom gates. In other
words, a Σ3-circuit is an OR of an arbitrary number of CNF formulas.

© Kazuyuki Amano;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amano@gunma-u.ac.jp
https://orcid.org/0000-0003-2322-6072
https://doi.org/10.4230/LIPIcs.ISAAC.2023.7
https://gitlab.com/KazAmano/depth-3-circuits
https://archive.softwareheritage.org/swh:1:dir:6c19f0a1a69eae1143d2270517dd6f46df08bfb7;origin=https://gitlab.com/KazAmano/depth-3-circuits;visit=swh:1:snp:c5e7eb864e24bb1e2a8ef53d3631851732c14ada;anchor=swh:1:rev:6751cd00dde086f61b33cca91e0703470f3ea746
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Depth-Three Circuits for Inner Product and Majority Functions

Despite its simplicity, there still is a considerable gap between the upper and lower bounds
on the size of Σ3-circuits. Here, the size of a Σ3-circuit is defined as the number of gates
in the circuit. A counting argument shows that a random function on n variable needs
a Σ3-circuit of size Θ(2n/2) [6, 25]. However, the strongest lower bound on the size of a
Σ3-circuit for an explicit Boolean function is 2Ω(

√
n) (e.g., [16] for the proof for the parity and

majority functions). Deriving a lower bound of 2ω(
√

n) on the size of a Σ3-circuit computing
some explicit function has been open for over 30 years.

Such a situation motivates us to consider further restricted Σ3-circuits. One natural
restriction is to bound the bottom fan-in. For a natural number k, a Σk

3-circuit is a Σ3-circuit
with bottom fan-in bounded by k, or equivalently, an OR of k-CNF formulas.

When the value of k is small, stronger lower bounds are known. For example, Paturi, Saks
and Zane [21] showed that the minimum size of a Σk

3-circuit computing the parity function on
n variables is at least 2n/k, for any k ≤ O(

√
n). See e.g., the introduction of [17] or [11] for

more results on Σk
3-circuits. A recent work by Golovnev, Kulikov and Williams [11] showed

that a 2n−o(n) lower bound on the Σ16
3 -circuit size for an explicit function implies a 3.9n

lower bound on the general circuit size, which would be a breakthrough on circuit complexity
since the best known lower bound is much smaller, say, 3.1n − o(n) [20] (see also [8]).

Despite the simplicity of a model, for many functions, we still do not know the size of an
optimal Σk

3-circuit even for small values of k. In this paper, we investigate Σk
3-circuits for

two well-studied functions, namely, the inner product mod two function and the majority
function.

1.1 Inner Product
The first target function we consider in this paper is the inner product mod two function
IPn(x1, . . . , xn, y1, . . . , yn) := ⊕ixiyi. The function IPn has frequently appeared as a target
for analyzing the complexity of shallow circuits (see e.g., [2, 9, 11, 15, 18]).

For a Boolean function f , we write the minimum size (i.e., number of gates) of a Σk
3-circuit

computing f as sk
3(f). For many functions f , we do not have a technique for determining

sk
3(f) even for small values of k. We sometimes consider the minimum fan-in of the top OR

gate in a Σk
3-circuit computing f , which is denoted by s̃k

3(f). It is easy to see that sk
3(f) is

at most polynomially larger than s̃k
3(f), when k = O(1).

Recently, Golovnev, Kulikov and Williams [11] and Frankl, Gryaznov and Talebanfard [10]
invesigated the complexity of IPn for Σ2

3 and Σ3
3-circuits. The bounds described in [10, 11]

are 2n/2 ≤ s2
3(IPn) ≤ 2n−o(n) and 2n/3 ≤ s3

3(IPn) ≤ 3n/2 ∼ 20.792n. Both upper bounds are
given in [11]. Both lower bounds are via a simple reduction to the parity function ⊕n on n

variables and the fact that sk
3(⊕n) ≥ 2n/k [21]. The problem of determining s3

3(IPn) as well
as s2

3(IPn) has been left as an open problem in these works. After the initial submission of
this manuscript, we learned that Göös, Guan and Mosnoi [12] subsequently improved the
upper and lower bounds on the size of Σ2

3-circuits to 2(0.847...)n < s2
3(IPn) < 2(0.965...)n using

an LP-based technique.
In this work, we show that both upper bounds can be improved considerably. Namely,

we present an explicit construction of Σ2
3-circuits of size less than 20.952n and Σ3

3-circuits of
size less than 20.692n that compute IPn (we will review this more carefully in Section 1.3).

1.2 Majority
The second target function we consider in this paper the size of is the majority function
MAJn(x1, . . . , xn) := [

∑
i xi ≥ n/2], where [·] denotes the Iverson bracket.

K. Amano 7:3

The best known upper bound on the size of a Σ3-circuit for MAJn is 2O(
√

n log n) [3, 19].
Note that their circuit is monotone, i.e., a circuit without negative literals. The best known
lower bound on the size of a Σ3-circuit for MAJn is 2d(

√
n)−o(

√
n) where d = 1/

√
ln 4 = 0.849 . . .

due to Håstad, Jukna and Pudlák [16]. Hence, there still is
√

log n factor gap in the exponent
and there is a possibility that the minimum size of a Σ3-circuit for MAJn is 2ω(

√
n). A recent

work by Cavalar and Oliveira [4] reveals that a slightly weaker lower bound of 2Ω(
√

n/ log n)

can be shown via monotone simulations of non-monotone circuits.
Apparently, one natural question is whether an optimal Σ3-circuit (or Σk

3-circuit) for
MAJn is monotone or not, which is the main focus of the second part of this work.

The resolution of this problem would contribute to unraveling the mystery of NOT gates
in the computation of Boolean functions. Despite more than 30 years have passed since
exponential lower bounds on the size of monotone circuits were proven [1, 23], we cannot
prove even 4n lower bound on a general circuit size for an explicit function in NP.

The depth-three is the simplest interesting case in the sense that negations are known
to be useless for computing monotone functions in depth-two circuits. Namely, Quine [22]
showed that, for any monotone Boolean function f , a smallest DNF (or CNF, respectively)
computing f is a monotone DNF (or monotone CNF, respectively).

For two non-negative integers k and ℓ, a (+k, −ℓ)-CNF formula is a CNF formula in
which each clause contains at most k positive literals and at most ℓ negative literals. A
Σ(+k,−ℓ)-circuit is a Σ3-circuit in which all inputs of the top OR gate are (+k, −ℓ)-CNF
formulas. A Σ(+k,−0)

3 -circuit, which is a monotone Σk
3-circuit, is simply written as a Σ+k

3 -
circuit. It is tempting to guess that, for any ℓ, an optimal Σ(+k,−ℓ)

3 -circuit for MAJn is in
fact a monotone, i.e., a Σ+k

3 -circuit.
In this work, we obtain some evidence suggesting that this hypothesis may not hold for

k ≥ 3. A detailed explanation of what we have shown is provided in the next subsection.

1.3 Our Contributions and Implications
In short, the contribution of this paper is to improve the upper bounds on the size of a
Σ3-circuit with limited bottom fan-in that compute IPn and MAJn.

For IPn, we give an explicit construction showing that (i) s̃2
3(IPn) < 20.952n, and (ii)

s̃3
3(IPn) < 20.692n. As described in Section 1.1, these improve the known upper bounds in [11]

and [12] . Note that the construction of our circuits includes components that are found by
a computer search. As a result, some circuits look a bit exotic. This suggests that, even in
the case of a simple circuit model and a simple target function, a good circuit may have an
unintuitive form. We will give a detailed description of our circuits in Section 3.

For MAJn, we show that for k = 3, 4 and 5, there exist a Σ(+k,−ℓ)
3 -circuit whose size is

smaller than the currently known smallest monotone Σ+k
3 -circuit for an appropriately chosen

ℓ. Namely, we show that
(i) There exists a Σ(+3,−6)

3 -circuit of size O(1.2768n) for MAJn, which is smaller than the
currently known smallest Σ+3

3 -circuit of size O(1.2779n).
(ii) There exists a Σ(+4,−4)

3 -circuit of size O(1.2040n) for MAJn, which is smaller than the
currently known smallest Σ+4

3 -circuit of size O(1.2093n).
(iii) There exists a Σ(+5,−7)

3 -circuit of size O(1.1751n) for MAJn, which is smaller than the
currently known smallest Σ+5

3 -circuit of size O(1.1760n).
Although the improvement in the size is relatively small, we believe that our results give
some hints on how to use negations to speed up the computation of monotone functions in a
shallow circuit. Note that, unlike the circuits for IPn, the circuits for MAJn are probabilistic,

ISAAC 2023

7:4 Depth-Three Circuits for Inner Product and Majority Functions

i.e., the proof is existential. As a complementary result, we also show that the size of a
smallest Σ(+k,−∞)

3 -circuit for MAJn and the size of a smallest a Σ+k
3 -circuit for MAJn are

essentially equal when k ≤ 2. We also give some non-trivial lower bounds on the size of a
Σ(+k,−∞)

3 -circuit computing MAJn for k ≥ 3. All the results on the complexity of MAJn will
be given in Section 4.

The constructions of all our circuits are based on a common methodology, which may be
of independent interest. First, we obtain a small building block by a computer search, or
more specifically by using an IP (integer programming) solver with some additional heuristics
in some cases. Then, we use it to construct a circuit for general input size. As expected from
the methodology, some circuits are complicated and difficult to explain why these work. All
certificates of our circuits are available electronically at https://gitlab.com/KazAmano/
depth-3-circuits. Note that we use Gurobi Optimizer [14] in our experiments.

1.4 Organization
The rest of the paper is organized as follows. In Section 2, we give preliminaries. In Section 3,
we show the construction of depth-three circuits for the inner product functions. In Section 4,
we analyze the size of depth-three circuits for the majority function focusing on the effect of
negations. Finally, we close the paper with some concluding remarks in Section 5.

2 Preliminaries

For a vector x ∈ {0, 1}n, xi denotes the i-th bit of x and |x| denotes the number of ones in
x, i.e., |x| :=

∑n
i=1 xi. For two vectors x, y ∈ {0, 1}n, we write x ≥ y if xi ≥ yi for every

i = 1, . . . , n.
As usual, a CNF formula in which each clause contains at most k literals is called a

k-CNF formula. We also use a terminology (+k, −ℓ)-CNF formula for two non-negative
integers k and ℓ that represents a CNF formula in which each clause contains at most k

positive literals and at most ℓ negative literals.
In this paper, we concentrate on depth-three OR ◦ AND ◦ OR circuits consisting of

unbounded fan-in AND/OR gates. Each bottom OR gate has positive or negative literals as
its input. We consider several subclasses of Σ3-circuits where the inputs of the bottom gates
are restricted.

A Σk
3-circuit is a Σ3-circuit in which all inputs of the top OR gate are k-CNF formulas.

Similarly, a Σ(+k,−ℓ)
3 -circuit is a Σ3-circuit in which all inputs of the top OR gate are (+k, −ℓ)-

CNF formulas. When ℓ = 0, we simply write this as a Σ+k-circuit. A Σ(+k,−∞)
3 -circuit

means a Σ(+k,−ℓ)
3 -circuit with an unbounded value of ℓ. A circuit is said to be monotone if it

does not contain negative literals.
Recall that the size of a Σ3-circuit is defined as the number of gates in the circuit. For a

Boolean function f , we write the minimum size of a Σk
3-circuit that computes f as sk

3(f). We
sometimes consider the minimum fan-in of the top OR gate in a Σk

3-circuit that computes f ,
which is denoted by s̃k

3(f). When k = O(1), sk
3(f) is at most polynomially (in the number

of input variables) larger than s̃k
3(f). We also use the symbols s̃

(+k,−∞)
3 , which is defined

analogously to s̃k
3 .

Let f : {0, 1}n → {0, 1} be a Boolean function. For an integer t such that 0 ≤ t ≤ n, the
number of input vectors x ∈ {0, 1}n with |x| = t such that f(x) = 1 is denoted by |f |t. A
Boolean function f is said to be monotone if f(x) ≥ f(y) for every pair of inputs x and y

such that x ≥ y.
Since the top gate of a Σ3-circuit is an OR gate, every function g that feeds into the

top gate satisfies g−1(1) ⊆ f−1(1) when the circuit computes f . We refer to a function g

satisfying this condition as being consistent with f .

https://gitlab.com/KazAmano/depth-3-circuits
https://gitlab.com/KazAmano/depth-3-circuits

K. Amano 7:5

The inner product mod two function over n pairs of input variables, denoted by IPn, is
defined as

IPn(x1, . . . , xn, y1, . . . , yn) :=
{

1, if
∑n

i=1 xiyi (mod 2) ≡ 1,

0, otherwise.

The majority function over n input variables, denoted by MAJn, is defined as

MAJn(x1, . . . , xn) :=
{

1, if
∑n

i=1 xi ≥ n/2,

0, otherwise.

3 Improving Depth-3 Circuits for Inner Product

In this section, we show the upper bounds on the size of Σ2
3-circuits and Σ3

3-circuits for IPn.

▶ Theorem 1. For every sufficiently large n,
1. s̃2

3(IPn) ≤ 2d2n where d2 = (log2 14)/4 = 0.9518 . . .,
2. s̃3

3(IPn) ≤ 2d3n where d3 = (log2 11)/5 = 0.6918

The proof of Theorem 1 consists of two parts. First, we obtain a small Σk
3-circuit for IPm

and IPm for small values of m, where IPm denotes the negation of IPm. Then, we use these
circuits to construct a circuit computing IPn for general values of n. The second part relies
on the following lemma.

▶ Lemma 2. Let m be some natural number. Suppose that s̃k
3(IPm) ≤ s1 and s̃k

3(IPm) ≤ s0.
Then, for all n that are multiples of m, s̃k

3(IPn) ≤ 2dn where d = log2(s0 + s1)/m.

Proof. Put p = n/m. Let IP0
m denote IPm and IP1

m denote IPm. By the definition of IPn, it
is obvious that

IPn(x1, . . . , xn, y1, . . . , yn) =
∨

i1,...,ip∈{0,1}
i1+···+ip≡1 (mod 2)

(IPi1
m ∧ IPi2

m ∧ · · · ∧ IPip
m),

where we omit the input variables in the RHS of the above equation for simplicity. The t-th
IPm (or IPm) in the brackets gets (x(t−1)m+1, . . . , xtm, y(t−1)m+1, . . . , ytm).

Since IPm and IPm can be represented by the OR of s1 and s0 k-CNF formulas, respectively,
(IPi1

m ∧ IPi2
m ∧ · · · ∧ IPip

m) can be represented by the OR of (
∏p

j=1 sij
) k-CNF formulas by

expansion. Hence, we have

s̃k
3(IPn) ≤

∑
i1,...,ip∈{0,1}

i1+···+ip≡1 (mod 2)

p∏
j=1

sij
< (s0 + s1)p = 2log2(s0+s1)n/m.

This completes the proof of Lemma 2. ◀

By Lemma 2, our task now is to find a good Σk
3-circuit for IPm and IPm for small values

of m. In this work, we use an IP (integer programming) solver for this task.
Suppose that the fan-in of the top OR gate is T . We can formulate the condition that the

OR of t k-CNF formulas computes the target function f as an integer programming problem.
For each t = 1, . . . , T and for every possible clause c, we introduce a Boolean variable

Ft,c that represents whether the clause c is appeared in the t-th CNF formula. For each
t = 1, . . . , T and for every input vector x, we also introduce a Boolean variable Vt,x which
represents the output of the t-th CNF formula. Obviously, Vt,x = 1 iff

∑
c:c(x)=0 Ft,c = 0

and Vt,x = 0 iff
∑

c:c(x)=0 Ft,c ≥ 1. Finally, we impose the additional constraint that∨
t Vt,x = f(x) for every x.

ISAAC 2023

7:6 Depth-Three Circuits for Inner Product and Majority Functions

Proof of Theorem 1. In order to prove Theorem 1, it is sufficient to verify the following
fact by Lemma 2. ◀

▶ Fact 3.
(i) s̃2

3(IP4) ≤ 7 and s̃2
3(IP4) ≤ 7.

(ii) s̃3
3(IP5) ≤ 6 and s̃3

3(IP5) ≤ 5.

Proof. A certificate for the first part of (i) is the OR of the following seven 2-CNF formulas.

f1: (-x2 -y2)(-x3 -y3)(-x4 -y4)(x1)(y1)
f2: (-x1 -y1)(-x3 -y3)(-x4 -y4)(x2)(y2)
f3: (-x4 -y4)(x1 -y2)(x2 -y2)(y1 -y2)(-y1 y2)(x3)(y3)
f4: (-x3 -y3)(x1 -x2)(-x1 x2)(y1 -x2)(-x2 y2)(x4)(y4)
f5: (-x1 -y1)(-x2 -y2)(-y3 -y4)(x3 -y3)(y3 x4)(y3 y4)
f6: (-x2 -y2)(x1 -x4)(x3 -y1)(-x1 x4)(-x3 y1)(y1 x4)(y3)(y4)
f7: (-x1 -y1)(x2 -x4)(x3 -y2)(x3 x2)(-x2 x4)(-x3 y2)(-x3 y3)(y4)

Here, for example, (x2 -y2) represents a clause (x2 ∨ y2).
A certificate for the second part of (i), i.e., for IP4, is the OR of the following seven 2-CNF

formulas.

f1: (-x1 -y1)(-x2 -y2)(x3 -x4)(-x3 x4)(y3 -x4)(y4)
f2: (-x2 -y2)(-x4 -y4)(x1 -y3)(x3 -y1)(-x3 y1)(-x1 y3)
f3: (-x2 -y2)(-x3 -y3)(x1 -y1)(-y1 x4)(y1 -x4)(-x4 y4)
f4: (-x3 -y3)(-x4 -y4)(x1 -x2)(-x1 x2)(y1 -x2)(-x2 y2)
f5: (-x1 -y1)(-x3 -y3)(x2 -y4)(x4 -y4)(y2 -y4)(-y2 y4)
f6: (-x1 -y1)(-x4 -y4)(-y3 x2)(x3 -y3)(-y3 y2)(y3 -x2)
f7: (x1)(x2)(x3)(x4)(y1)(y2)(y3)(y4)

The correctness of these circuits can be verified by hand or by using a computer. Currently,
we do not have a simple explanation of why these circuits work, especially for the first set of
formulas.

The certificates for statement (ii), i.e., for IP5 and IP5, are given in the appendix. ◀

Currently, we do not know whether the bounds in Fact 3 are optimal. Remark that
we also observed that s̃3

3(IP4) ≤ 4 and s̃3
3(IP4) ≤ 3, but these yield a weaker bound of

s̃3
3(IPn) ≤ 20.702n. We include the certificates for these bounds in the appendix.

4 Negations may Help Depth-3 Circuits computing Majority

In this section, we consider the size of a Σ(+k,−ℓ)
3 -circuit computing the majority function for

small values of k.

4.1 Motivating Example
When we consider depth-three Σ+k

3 -circuits, i.e., an OR of monotone k-CNF formulas,
the smallest size of such a circuit for MAJn is essentially determined by the maximum of
Rϕ := |{x | ϕ(x) = 1 and |x| = n/2}| over all monotone k-CNF formulas ϕ consistent with
MAJn. We write this maximum as R∗.

Precisely, the minimum top fan-in of a Σ+k
3 -circuit for MAJn is at least

(
n

n/2
)
/R∗ and at

most n
(

n
n/2
)
/R∗. The lower bound is obvious since the top gate is an OR gate. The upper

bound can be proved by a standard technique combining random sampling and the union
bound (similar to the proof of Theorem 10 in Section 4.3). An alternative proof based on
the integral gap of a certain integer programming problem can be found in [17].

K. Amano 7:7

Let us consider Σ+2
3 -circuits, i.e., a disjunction of monotone 2-CNF formulas. Finding

the value of R∗ for 2-CNF formulas is closely related to the well-known Turán problem
(see e.g., [17]). The value is known to be R∗ = 2n/2 and the unique extremal formula is
given by the disjoint union of n/2 edges in an n-vertex graph. Hence the size of a smallest
Σ+2

3 -circuit for MAJn is Θ̃(2n/2). In Section 4.2, we will verify that the minimum size of a
Σ(+2,−∞)

3 -circuit for MAJn is also Θ̃(2n/2), which means that negations are useless if each
bottom gate gets at most two positive literals.

Let us now consider Σ+3
3 circuits. To the best of our knowledge, the value of R∗ for

monotone 3-CNF formulas is unknown. Through our computer experiments, we see that the
maximum value of Rϕ among all n-variable monotone 3-CNF formulas ϕ for n = 4, 6, 8, 10
and 12 are 6, 14, 36, 84 and 216, respectively. Note that, for n = 4, 8 and 12, an extremal
3-CNF formula is given by n/4 independent copies of 3-uniform hypergraph on four vertices.
This suggests that R∗ = 6n/4, which would imply that the smallest Σ+3

3 -circuit for MAJn

has size Θ̃((2/61/4)n) = Θ̃(1.2778 · · ·n). It is tempting to guess that the minimum size of a
Σ(+3,−∞)

3 -circuit is equal to this.
Surprisingly (at least for us), we discovered that this is not true. We found a CNF formula

χ on 12 variables in which each clause contains at most three positive literals (and at most four
negative literals), such that the value of Rχ is 217, exceeding the maximum value for monotone
3-CNF formulas by one. The description of χ will be given in Section 4.3. As expected, we
can use χ to show that there exists a Σ(+3,−4)

3 -circuit of size Õ((2/2171/12)n) = O(1.2774n)
for MAJn. Although the improvement is small, this suggests that negations may be useful
for computing MAJn by a Σ(+3,−∞)

3 -circuit.
In the following subsections, we analyze such a phenomenon more carefully.

4.2 Negations are useless for k ≤ 2
We first show a lower bound on the size a Σ(+k,−∞)

3 -circuit for MAJn. This was essentially
shown in [16]. We include the proof here for completeness.

▶ Theorem 4. For every natural number k, s̃
(+k,−∞)
3 (MAJn) = Ω(2n/(kn/2√

n)).

The proof relies on the notion of the lower limit introduced in [16]. Here, for a vector
x ∈ {0, 1}n and a set of indices S ⊆ {1, . . . , n}, x|S denotes the restriction of x to the set S.

▶ Definition 5. Let B ⊆ {0, 1}n be a set of vectors. A vector y ∈ {0, 1}n is a lower k-limit
for a set B, if, for any subset of indices S ⊆ {1, . . . , n} with |S| = k, there exists a vector
x ∈ B such that x > y and y|S = x|S. ⌟

▶ Lemma 6 ([16]). Let F be a family of s-element subsets of {1, . . . , n}. If |F| > ks, then
there exists a lower k-limit y for F . ⌟

Proof of Theorem 4. Let C be any Σ(+k,−∞)
3 -circuit computing MAJn. Let g1, . . . , gm be

the functions that feed into the top OR gate of C. Note that every gi is consistent with
MAJn (i.e., g−1

i (1) ⊆ MAJ−1
n (1)) and that

⋃m
i=1 g−1

i (1) = MAJ−1
n (1).

For every i = 1, . . . , m, let Bi := {x | x ∈ g−1
i (1) ∧ |x| = n/2}. We claim that |Bi| ≤ kn/2

for every i, which immediately implies the lemma since |MAJ−1
n (1)| = Ω(2n/

√
n).

The claim can be verified using Lemma 6 as follows. Suppose for the contrary that
|Bi| > kn/2 for some i. By Lemma 6, there exists a lower k-limit y for Bi. For each clause
c in a (+k, −∞)-CNF gi, let Sc be the set of indices of positive literals that appeared in c.
By the definition of the lower limit, there exists a vector xc ∈ Bi with xc > y that coincides
with y on Sc, which ensures that c(y) = c(xc) = 1. This holds for every clause c in gi, which
implies that gi(y) = 1. However, it should satisfy that |y| ≤ n/2−1 and hence y ∈ MAJ−1

n (0),
a contradiction. ◀

ISAAC 2023

7:8 Depth-Three Circuits for Inner Product and Majority Functions

▶ Theorem 7. For k = 1 and 2, the minimum size of a Σ(+k,−∞)
3 -circuit for MAJn and the

minimum size of a Σ+k
3 -circuit for MAJn are both Θ̃(2n/k).

Proof. Both lower bounds are shown by Theorem 4. The upper bound for k = 1 is trivial,
and the upper bound for k = 2 was shown in e.g., [17], as discussed in Section 4.1. ◀

Note that Theorem 4 does not yield a non-trivial lower bound for k ≥ 4. For such k, we
can apply the following theorem that can be proved by a similar argument to the proof of
Theorem 4. An explicit value of the lower bounds obtained from Theorem 8 is shown in
Table 1 in Section 4.5.

▶ Theorem 8. For every natural number k and for every real number s with 0 < s ≤ 0.5,
s̃

(+k,−∞)
3 (MAJn) = Ω̃(2dn) where d = (0.5+s)H(s/(0.5+s))−s log2 k, where H(·) represents

the binary entropy function.

Proof (sketch). The proof is similar to the proof of Theorem 4. Suppose that a Σ(+k,−∞)
3 -

circuit C computes a MAJn. Let s be an arbitrary real number with 0 < s ≤ 0.5. We
fix arbitrarily chosen (0.5 − s)n input variables to the value 1 in C. The resulting circuit
computes the threshold function on (0.5 + s)n variables that output 1 iff the number of ones
in an input vector is at least sn.

The rest of the proof is analogous to the proof of Theorem 4. By noticing that the number
of vectors x ∈ {0, 1}(0.5+s)n with |x| = sn is(

(0.5 + s)n
sn

)
∼ 2(0.5+s)nH(s/(0.5+s)),

we can complete the proof of Theorem 8 using Lemma 6. ◀

4.3 Negations may be useful for k ≥ 3
In this subsection, we give some unintuitive construction of depth-three circuits for the
majority function using negations. As to the construction for IPn, we first obtain a good
building block by a computer search and then extend it to a circuit for a general input size.

4.3.1 Blow-up Lemma
In the following, we give several lemmas that will be used in the blow-up process. If a “base”
function g is monotone, then this step is easy. We can compute MAJn by taking an OR
of an appropriate number of independent copies of g over random permutations on inputs.
Because our base function is not monotone, we need a small twist to this argument.

▶ Definition 9. Suppose that n ≥ 2 is an even integer. We say that a list of n-variable
Boolean functions (gn/2, gn/2+1, . . . , gn) satisfies the increasing property, if (i) every g in the
list is consistent with MAJn (i.e., g(x) = 0 for every x ∈ {0, 1}n with |x| < n/2), and (ii)
for every t ≥ n/2 + 1, it holds that

|gt|t ≥ |gn/2|n/2

t∏
m=n/2+1

n − m + 1
m − 1 .

Here, gn/2, . . . , gn are not necessarily distinct.

The following theorem gives a probabilistic construction of a depth-three circuit consistent
with MAJn that outputs 1 on all inputs in the t-th layer of the Boolean cube, when we are
given a function g on n variables consistent with MAJn such that |g|t is large.

K. Amano 7:9

▶ Theorem 10. Suppose that an n-variable (+k, −ℓ)-CNF formula g is consistent with MAJn.
Then, for every t ≥ n/2 + 1, there exists a Σ(+k,−ℓ)

3 -circuit C of size at most (n
t)

|g|t
ln
(

n
t

)
such

that (i) C(x) = 0 for every x ∈ {0, 1}n with |x| < n/2 and (ii) C(x) = 1 for every x ∈ {0, 1}n

with |x| = t.

Proof. Let g be the uniform distribution over all functions obtained from g by permuting
the input variables of g.

Let x ∈ {0, 1}n be an arbitrarily fixed input vector that contains t 1’s. Then, we have

Pr
g∈g

[g(x) = 1] = |g|t(
n
t

) .

Let v := (n
t)

|g|t
ln
(

n
t

)
. Then, we see that

Pr
g1,...,gv∈g

[
v∨

i=1
gi(x) = 0

]
=
(

1 − |g|t(
n
t

))v

<
1(
n
t

) .

By the union bound, this implies that there are (+k, −ℓ)-CNF formulas g1, . . . , gv such
that

∨v
i=1 gi(x) = 1 for every x ∈ {0, 1}n with |x| = t. Obviously

∨v
i=1 gi(x) = 0 for

every x ∈ {0, 1}n with |x| < n/2. Hence,
∨v

i=1 gi gives a desired depth-three circuit, which
completes the proof of Theorem 10. ◀

The following lemma intuitively says that we can mimic a monotone function by a list of
non-monotone functions with the increasing property.

▶ Lemma 11. Suppose that m is an even positive integer and n is a multiple of m. Let g be
a list of m-variable (+k, −ℓ)-CNF formulas (gm/2, . . . , gm) satisfying the increasing property.
For each integer t satisfying n/2 ≤ t ≤ n, we define an n-variable Boolean function ft as

ft(x1, . . . , xn) := gs1(x1, . . . , xm) ∧ gs2(xm+1, . . . , x2m) ∧ · · · ∧ gsn/m
(xn−m−1, . . . , xn),

where si ∈ {⌊tm/n⌋, ⌈tm/n⌉} for i = 1, . . . , n/m and satisfies
∑n/m

i=1 si = t. Then, it holds
that

|ft|t(
n
t

) ≥
|fn/2|n/2(

n
n/2
) ,

and |ft|v = 0 for every integer v satisfying 0 ≤ v < n/2. ⌟

For example, when n = 120, m = 12 and t = 63, ft is the AND of three g7’s and seven
g6’s. The proof of Lemma 11 is postponed to Appendix.

The following theorem is the main body of our blow-up process.

▶ Theorem 12. Let m ≥ 2 be an even integer. Let g = (gm/2, . . . , gm) be a list of m-
variable (+k, −ℓ)-CNF formulas satisfying the increasing property. Then, there exists a
Σ(+k,−ℓ)

3 -circuit of size at most O
(

n1.5 ·
(

2
(|gm/2|m/2)1/m

)n)
that computes MAJn.

Proof. For each t satisfying n/2 ≤ t ≤ n, we will construct a Σ(+k,−ℓ)
3 -circuit Ct of size

O
(√

n ·
(

2
(|gm/2|m/2)1/m

)n)
such that Ct(x) = 1 for every x ∈ {0, 1}n with |x| = t and

Ct(x) = 0 for every x ∈ {0, 1}n with |x| < n/2. By taking the OR of all Ct’s, a desired
depth-three circuit will be obtained.

ISAAC 2023

7:10 Depth-Three Circuits for Inner Product and Majority Functions

For each t, let ft be a function on n variables defined as in the statement of Lemma 11.
Then, by Theorem 10, there exists a Σ(+k,−ℓ)

3 -circuit Ct of size at most(
n
t

)
|ft|t

ln
(

n

t

)
(1)

such that Ct(x) = 1 for every x with |x| = t and Ct(x) = 0 for every x with |x| < n/2.
By Lemma 11, Eq. (1) is upper bounded by(

n
n/2
)

|f |n/2
ln
(

n

n/2

)
= O

(
2n

√
n · |f |n/2

ln 2n

)
= O

(√
n ·
(

2
(|g|m/2)1/m

)n)
.

This completes the proof of Theorem 12. ◀

4.3.2 Construction for k = 3
By the blow-up lemma described in the previous section, what we need is to find a (list of)
(+3, ·)-CNF formula that is consistent with the majority function satisfying the increasing
property. For a Boolean function f on n variables, we call a list (|f |0, |f |1, . . . , |f |n) as a
profile of f .

▶ Fact 13. There exists a (+3, −4)-CNF formula on 12 variables that is consistent with MAJ12
whose profile is (0, 0, 0, 0, 0, 0, 217, 394, 363, 196, 66, 12, 1). There also exists a (+3, −6)-CNF
formula on 16 variables that is consistent with MAJ16 whose profile is (0, . . . , 0, 1314, 2933,

3547, 2710, 1424, 510, 120, 16, 1).

As to the case of IPn, we use an IP (integer programming) solver to find these formulas.
Essentially, our task is to find a CNF formula g consistent with MAJn that maximizes |g|n/2.
This can easily be formulated by an IP problem as was described in Section 4.2. In certain
cases, we impose some additional constraints on the IP problem to narrow the search space.
For this reason, most of our base functions have not been shown to be optimal.

Proof. A certificate for the first statement is the AND of the following 26 clauses.
(1 2 3 -4)(1 2 4 -3)(1 3 4 -2)(5 6 7 -8)(5 6 8 -7)
(2 3 4)(7 8 9)(7 8 10)
(2 9 10 -3 -4 -5 -6)(3 9 10 -2 -4 -5 -6)(4 9 10 -2 -3 -5 -6)
(5 9 10 -2 -3 -4)(6 9 10 -2 -3 -4)(7 9 10 -1 -5 -6)(8 9 10 -1 -5 -6)
(5 6 11 -9 -10)(5 6 12 -9 -10)(9 10 11 -12)(9 10 12 -11)
(2 11 12 -3 -4 -7 -8)(3 11 12 -2 -4 -7 -8)(4 11 12 -2 -3 -7 -8)
(5 11 12 -1)(6 11 12 -1)(5 11 12 -6)(6 11 12 -5)
Here, for example, (1 2 3 -4) denotes the clause (x1 ∨ x2 ∨ x3 ∨ x4). The verification is

easy by using a computer (but not so easy by hand).
A certificate for the second statement, which has 99 clauses, is provided at the aforemen-

tioned GitLab repository. ◀

It is easy to check that both profiles satisfy the increasing property. Hence, the second
statement of Fact 13 and Theorem 12 immediately imply the following bound.

▶ Theorem 14. There is a Σ(+3,−6)
3 -circuit of size O(dn) that computes MAJn, where

d = 2/(13141/16) < 1.2768. ⌟

Here, the values 1314 and 16 in the statement of Theorem 14 represent the eighth
element (counting from zero) of the profile and the number of variables in the base function,
respectively.

K. Amano 7:11

4.3.3 Construction for k = 4

▶ Fact 15. There exists a (+4, −4)-CNF formula on 10 variables consistent with MAJ10
whose profile is (0, 0, 0, 0, 0, 160, 120, 120, 45, 10, 1).

Proof. Unlike the case of k = 3, our certificate for Fact 15 is well-structured.
We show a CNF formula g consisting of two classes of clauses. To simplify the notation,

we start the indexing of input variables from 0 instead of 1, i.e., g is a CNF formula over
{x0, x1, . . . , x9}. The first class consists of

(5
2
)

clauses all of them are monotone:

(x2i ∨ x2i+1 ∨ x2j ∨ x2j+1) (∀{i, j} ⊆ {0, 1, . . . , 4}).

The second class consists of
(5

2
)

· 24 = 80 clauses each of which contains four positive
literals and four negative literals:

(xt1
2i1

∨ x1−t1
2i1+1 ∨ xt2

2i2
∨ x1−t2

2i2+1 ∨ xt3
2i3

∨ x1−t3
2i3+1 ∨ xt4

2i4
∨ x1−t4

2i4+1)
(∀{i1, i2, i3, i4} ⊆ {0, 1, . . . , 4}, ∀{t1, t2, t3, t4} ∈ {0, 1}4),

where x0 denotes x and x1 denotes x itself. It is not hard to verify that g is consistent with
MAJ10 and has a profile (0, 0, 0, 0, 0, 160, 120, 120, 45, 10, 1). ◀

Note that the maximum value of |ϕ|5 over all monotone 4-CNF formulas ϕ on 10 variables
consistent with MAJ10 seems to be 136, which is much smaller than |g|5 = 160.

Since |g|6 is not large enough, the function g alone is not sufficient to form a list satisfying
the increasing property. We need to introduce another function h on 10 variables. It is a
monotone CNF consisting of 20 clauses, each of which contains four variables. The clauses of
h are:

(0 1 2 4) (0 1 5 8) (0 1 6 9) (0 2 3 9) (0 2 7 8) (0 3 4 5) (0 4 6 7)
(0 5 7 9) (1 2 3 6) (1 2 5 7) (1 3 4 8) (1 4 7 9) (1 6 7 8) (2 3 5 8)
(2 4 5 9) (2 4 6 8) (3 4 6 9) (3 5 6 7) (3 7 8 9) (5 6 8 9).

We can see that h has a profile (0, 0, 0, 0, 0, 132, 190, 120, 45, 10, 1). In fact, h is a function
that maximizes |h|6 over all monotone 4-CNF formulas on 10 variables that is consistent
with MAJ10. Now the list g = (g, h, h, h, h, h) satisfies the increasing property. Since
2/(|g|5)1/10 = 2/1601/10 ∼ 1.20398, we have the following theorem.

▶ Theorem 16. There is a Σ(+4,−4)
3 -circuit of size O(1.2040n) that computes MAJn. ⌟

4.3.4 Construction for k = 5

For k = 5, our best bound relies on a CNF formula with the following property.

▶ Fact 17. There exists a (+5, −7)-CNF formula on 16 variables that is consistent with
MAJ16 whose profile is (0, . . . , 0, 4958, 5312, 4890, 3353, 1820, 560, 120, 16, 1). ⌟

We provide a certificate for Fact 17, which has 6817(!) clauses, at the aforementioned
GitLab repository. Since this profile satisfies the increasing property, we have the following
bound.

▶ Theorem 18. There exists a Σ(+5,−7)
3 -circuit of size O(dn) that computes MAJn, where

d = 2/(49581/16) < 1.1751. ⌟

ISAAC 2023

7:12 Depth-Three Circuits for Inner Product and Majority Functions

4.4 Construction based on Covering Design

As we have seen in Introduction, an asymptotically tight bound for the majority function is
not known even for monotone Σk

3-circuits. It is not hard to show that if we use a monotone
k-CNF formula representing MAJ2(k−1) as a building block, we have a Σk

3-circuit of size
Õ(dn) where d = 2/

(2(k−1)
k−1

)1/2(k−1)
.

One possibility for improvement is to use a combinatorial object called covering design,
which has a rich history of research (e.g., refer to [5, 7, 13, 24]). A (v, k, t)-covering design
is a collection of k-element subsets, called blocks, of {1, 2, . . . , v}, such that any t-element
subset is contained in at least one block. Let C(v, k, t) be the smallest possible number of
blocks in a (v, k, t)-covering design.

We can use a covering design as a building block of depth-three circuits for the majority
function. Given a (2k, k, k − 1)-covering design S, let fS be a monotone k-CNF formula
defined as

fS :=
∧

S∈S

∨
i∈S

xi,

where S denotes the set {1, 2, . . . , 2k}\S. It is easy to see that fS is consistent with MAJ2k

and satisfies |fS |k =
(2k

k

)
− |S|.

Generally, such a covering design gives a monotone Σk
3-circuit of size Õ(dn), where

d =
((

2k

k

)
− C(2k, k, k − 1)

) 1
2k

.

The size is smaller than the size of a circuit relying on the direct product of k-CNFs formula
representing MAJ2(k−1), if

d <

(
2(k − 1)

k − 1

) 1
2(k−1)

. (2)

The exact value of C(2k, k, k − 1) is known for k ≤ 6; C(6, 3, 2) = 6, C(8, 4, 3) = 14,
C(10, 5, 4) = 51 and C(12, 6, 5) = 132 (see e.g., an online database by Gordon [13]). The
situation is mixed for this range of k. InEq. (2) holds when k = 4 and 6, but it does not hold
when k = 3 and 5. We think that the problem of determining the values of k that satisfy
InEq. (2) is already an intriguing problem.

4.5 Summary

We summarize the upper bounds on the size of a Σ3-circuit computing MAJn in which each
bottom gate contains at most k positive literals for k = 3, 4 and 5 (see Table 1). In each
entry in Table 1, (a,b) represents that the upper bound is O((2/b1/a)n) which is obtained
from a base function ϕ on a-variable consistent with MAJa satisfying |ϕ−1(1)|a/2 = b. The
first line shows the bounds by a direct product of k-CNF formulas representing MAJ2(k−1).
The second line shows the bounds based on a covering design described in Section 4.4. Both
circuits are monotone. The third line shows the bounds by our construction using negations.
It is very likely that these bounds can further be improved. The lower bounds given by
Theorem 8 (for a suitable choice of s found by a numerical calculation) are shown in the last
line.

K. Amano 7:13

Table 1 The upper bounds on the size of Σ(+k,−∞)
3 -circuit for k = 3, 4 and 5.

Σ(+3,−∞)
3 Σ(+4,−∞)

3 Σ(+5,−∞)
3

block threshold O(1.2779n) (4,6) O(1.2140n) (6,20) O(1.1760n) (8,70)
covering design O(1.2883n) (6,14) O(1.2093n) (8,56) O(1.1769n) (10,201)
with negations O(1.2768n) (16, 1314) O(1.2040n) (10,160) O(1.1751n) (16,4958)
lower bound Ω(1.2247n) Ω(1.1547n) Ω(1.1180n)

5 Concluding Remark

In this paper, we give some exotic but efficient constructions of Σ3-circuits for IPn and MAJn.
Our construction relies on a computer search. As an outcome of this approach, in some cases,
it seems hard to give a simple explanation on why the obtained circuits work. Extracting the
reasoning from our circuits would be a good step for further research. Finally, we would like
to emphasize that the question of whether an optimal circuit is inherently looking random
would be an intriguing challenge.

References
1 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.

Comb., 7(1):1–22, 1987. doi:10.1007/BF02579196.
2 Kazuyuki Amano. On the size of depth-two threshold circuits for the inner product mod

2 function. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron,
editors, Language and Automata Theory and Applications – 14th International Conference,
LATA 2020, volume 12038 of Lecture Notes in Computer Science, pages 235–247. Springer,
2020. doi:10.1007/978-3-030-40608-0_16.

3 Ravi B. Boppana. Threshold functions and bounded depth monotone circuits. J. Comput.
Syst. Sci., 32(2):222–229, 1986. doi:10.1016/0022-0000(86)90027-9.

4 Bruno Pasqualotto Cavalar and Igor C. Oliveira. Constant-depth circuits vs. monotone
circuits. In Amnon Ta-Shma, editor, 38th Computational Complexity Conference, CCC 2023,
July 17-20, 2023, Warwick, UK, volume 264 of LIPIcs, pages 29:1–29:37. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CCC.2023.29.

5 Jeffrey H. Dinitz Charles J. Colbourn. Handbook of Combinatorial Designs (Discrete Mathem-
atics and Its Applications). Chapman and Hall/CRC, 2006.

6 Vlado Dancík. Complexity of boolean functions over bases with unbounded fan-in gates. Inf.
Process. Lett., 57(1):31–34, 1996. doi:10.1016/0020-0190(95)00182-4.

7 Paul Erdős and Joel Spencer. Probabilistic Methods in Combinatorics. Academic Press, 1974.
8 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A

better-than-3n lower bound for the circuit complexity of an explicit function. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
pages 89–98. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.19.

9 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication com-
plexity. J. Comput. Syst. Sci., 65(4):612–625, 2002. doi:10.1016/S0022-0000(02)00019-3.

10 Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A variant of the vc-dimension with
applications to depth-3 circuits. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 72:1–72:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.72.

11 Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit depth reductions.
In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference,
ITCS 2021, volume 185 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.24.

ISAAC 2023

https://doi.org/10.1007/BF02579196
https://doi.org/10.1007/978-3-030-40608-0_16
https://doi.org/10.1016/0022-0000(86)90027-9
https://doi.org/10.4230/LIPIcs.CCC.2023.29
https://doi.org/10.1016/0020-0190(95)00182-4
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1016/S0022-0000(02)00019-3
https://doi.org/10.4230/LIPIcs.ITCS.2022.72
https://doi.org/10.4230/LIPIcs.ITCS.2021.24

7:14 Depth-Three Circuits for Inner Product and Majority Functions

12 Mika Göös, Ziyi Guan, and Tiberiu Mosnoi. Depth-3 circuits for inner product. In Jérôme
Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2023, August 28 to September 1, 2023,
Bordeaux, France, volume 272 of LIPIcs, pages 51:1–51:12. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.MFCS.2023.51.

13 Daniel M. Gordon. Covering designs. https://www.dmgordon.org/cover/.
14 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.

gurobi.com.
15 András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold

circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993. doi:10.1016/
0022-0000(93)90001-D.

16 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three
circuits. Comput. Complex., 5(2):99–112, 1995. doi:10.1007/BF01268140.

17 Shuichi Hirahara. A duality between depth-three formulas and approximation by depth-two.
CoRR, abs/1705.03588, 2017. arXiv:1705.03588.

18 Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds
for depth-two and depth-three threshold circuits. In Daniel Wichs and Yishay Mansour,
editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, pages 633–643. ACM, 2016. doi:10.1145/2897518.2897636.

19 Maria M. Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On monotone
formulae with restricted depth (preliminary version). In Richard A. DeMillo, editor, Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, STOC 1984, pages 480–487.
ACM, 1984. doi:10.1145/800057.808717.

20 Jiatu Li and Tianqi Yang. 3.1n – o(n) circuit lower bounds for explicit functions. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20–24, 2022, pages 1180–1193. ACM, 2022.
doi:10.1145/3519935.3519976.

21 Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for depth
3 boolean circuits. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, STOC 1997, pages
86–91. ACM, 1997. doi:10.1145/258533.258556.

22 W. V. Quine. Two theorems about truth-functions. Boletín de la Sociedad Matemática
Mexicana, 10(1–2):64–70, 1953.

23 Alexander A. Razborov. On the method of approximations. In David S. Johnson, editor,
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, STOC 1989, pages
167–176. ACM, 1989. doi:10.1145/73007.73023.

24 Vojtech Rödl. On a packing and covering problem. Eur. J. Comb., 6(1):69–78, 1985. doi:
10.1016/S0195-6698(85)80023-8.

25 Igor’ S. Sergeev. On the complexity of bounded-depth circuits and formulas over the basis
of fan-in gates. Discrete Mathematics and Applications, 29:241–254, 2019. doi:10.1515/
dma-2019-0022.

A Appendix

A.1 Certificates for IPn

The following is a certificate of s̃3
3(IP5) ≤ 6.

f1: (-x1 -y1 -x2)(-x3 -x4 -y4)(x1 -y1 x2)(x3 x4 -x5)(-x3 -y3 x5)(-x4 -y4
x5)(y1 x2)(-x2 y2)(-x3 y3 -x5)(x3 y4 -x5)(-x5 y5)

f2: (-x1 -y1)(-x2 -y2 -y4)(x3 -x5 -y5)(x4 -y4)(-x3 -y3 x5) (y3 -x5 -y5)
(x2 -y2 y4)(y2 y4)(-x3 -y3 y5)

https://doi.org/10.4230/LIPIcs.MFCS.2023.51
https://www.dmgordon.org/cover/
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1007/BF01268140
https://arxiv.org/abs/1705.03588
https://doi.org/10.1145/2897518.2897636
https://doi.org/10.1145/800057.808717
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/258533.258556
https://doi.org/10.1145/73007.73023
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.1016/S0195-6698(85)80023-8
https://doi.org/10.1515/dma-2019-0022
https://doi.org/10.1515/dma-2019-0022

K. Amano 7:15

f3: (-x3 -y3)(-x2 -y2 -y5)(x1 -x4 -y4)(-x1 -y1 x4)(x5 -y5)(y1 -x4 -y4)
(-x1 -y1 y4)(x2 y5)(y2 y5)

f4: (-y3 -x4 -y4)(-y2 -x5 -y5)(x1)(x2)(-x1 x3)(y1 -x2 -x3)(y2 x5)(-x2 y3
x4)(-x1 y3 y4)(-x2 y2 y5)

f5: (-x1 -y1 -x3)(-y3 -x5 -y5)(x2 -x4 -y4)(x3 -x5 -y5)(x1 x3)(-x2 -y2
x4)(-x1 y1 x3)(y2 -x4 -y4)(-x3 y3 x5)(-x2 -y2 y4)(-x3 y3 y5)

f6: (x1)(y1)(-x2 -y2 x5)(x2 -x5 -y5)(x3 -x4 -y4)(-x3 -y3 x4)(y2 -x5 -y5)
(y3 -x4 -y4)(-x3 -y3 y4)(-x2 -y2 y5)

The following is a certificate of s̃3
3(IP5) ≤ 5.

f1: (-x1 -y1)(x2 -x4 -y4)(x3 -x5 -y5)(-x2 -y2 x4)(-x3 -y3 x5)
(y2 -x4 -y4)(y3 -x5 -y5)(-x2 -y2 y4)(-x3 -y3 y5)

f2: (-x2 -y2)(x1 -x5 -y5)(x3 -x4 -y4)(-x3 -y3 x4)(-x1 -y1 x5)
(y1 -x5 -y5)(y3 -x4 -y4)(-x3 -y3 y4)(-x1 -y1 y5)

f3: (-x3 -y3)(x1 -x2 -y2)(-x1 -y1 x2)(x4 -x5 -y5)(-x4 -y4 x5)
(y1 -x2 -y2)(-x1 -y1 y2)(y4 -x5 -y5)(-x4 -y4 y5)

f4: (-x4 -y4)(x1 -x3 -y3)(x2 -x5 -y5)(-x1 -y1 x3)(-x2 -y2 x5)
(y1 -x3 -y3)(y2 -x5 -y5)(-x1 -y1 y3)(-x2 -y2 y5)

f5: (-x5 -y5)(x1 -x4 -y4)(x2 -x3 -y3)(-x2 -y2 x3)(-x1 -y1 x4)
(y1 -x4 -y4)(y2 -x3 -y3)(-x2 -y2 y3)(-x1 -y1 y4)

The first set of formulas looks quite random, whereas the second set of formulas is
well-structured.

The following is a certificate for s̃3
3(IP4) ≤ 4.

f1: (x1)(y1)(-x2 -y2)(x3 -x4 -y4)(-x3 -y3 x4)(y3 -x4 -y4)(-x3 -y3 y4)
f2: (x2)(y2)(-x3 -y3)(x1 -x4 -y4)(-x1 -y1 x4)(y1 -x4 -y4)(-x1 -y1 y4)
f3: (x3)(y3)(-x4 -y4)(x1 -x2 -y2)(-x1 -y1 x2)(y1 -x2 -y2)(-x1 -y1 y2)
f4: (x4)(y4)(-x1 -y1)(x2 -x3 -y3)(-x2 -y2 x3)(y2 -x3 -y3)(-x2 -y2 y3)
The following is a certificate for s̃3

3(IP4) ≤ 3.
f1: (x1 -x3 -y3)(-x1 -y1 x3)(y1 -x3 -y3)(-x1 -y1 y3)(x2 -x4 -y4)

(-x2 -y2 x4)(y2 -x4 -y4)(-x2 -y2 y4)
f2: (x1 -x4 -y4)(-x1 -y1 x4)(y1 -x4 -y4)(-x1 -y1 y4)(x2 -x3 -y3)

(-x2 -y2 x3)(y2 -x3 -y3)(-x2 -y2 y3)
f3: (x1 -x2 -y2)(-x1 -y1 x2)(y1 -x2 -y2)(-x1 -y1 y2)(x3 -x4 -y4)

(-x3 -y3 x4)(y3 -x4 -y4)(-x3 -y3 y4)

A.2 Proof of Lemma 11
Proof of Lemma 11. We first verify the second part of the statement of Lemma 11, i.e.,
|fv|t = 0 for every v < n/2. This is almost obvious, since if an input vector x ∈ {0, 1}n

contains less than n/2 ones, then some function gsi gets an input containing less than m/2
ones, and hence it outputs 0 for x.

We now show the first part of the statement of Lemma 11. To this end, it is sufficient to
show that, for every t ≥ n/2 + 1, it holds that

|ft|t ≥ |fn/2|n/2 ·
(

n
t

)(
n

n/2
)

= |fn/2|n/2

t∏
ℓ=n/2+1

n − ℓ + 1
ℓ

. (3)

ISAAC 2023

7:16 Depth-Three Circuits for Inner Product and Majority Functions

Let p = n/m and z = ⌊t/p⌋. Let α = t (mod p). Since g satisfies the increasing property,
we have

|ft|t ≥ (|gz+1|z+1)α (|gz|z)p−α

≥ (|gm/2|m/2)p

 z∏
ℓ′=m/2+1

m − ℓ′ + 1
ℓ′ − 1

p(
m − z

z

)α

= |fn/2|n/2

t∏
ℓ=n/2+1

n − ℓ + 1
ℓ

.

This completes the proof of Lemma 11. ◀

Recognizing Unit Multiple Intervals Is Hard
Virginia Ardévol Martínez #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016 Paris, France

Romeo Rizzi #

Department of Computer Science, University of Verona, Italy

Florian Sikora #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016 Paris, France

Stéphane Vialette #

LIGM, CNRS, Univ Gustave Eiffel, F77454 Marne-la-Vallée, France

Abstract
Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s
to deal with situations arising naturally in scheduling and allocation. A d-interval is the union of d

intervals on the real line, and a graph is a d-interval graph if it is the intersection graph of d-intervals.
In particular, it is a unit d-interval graph if it admits a d-interval representation where every interval
has unit length.

Whereas it has been known for a long time that recognizing 2-interval graphs and other related
classes such as 2-track interval graphs is NP-complete, the complexity of recognizing unit 2-interval
graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval
graphs is also NP-complete. Our proof technique uses a completely different approach from the other
hardness results of recognizing related classes. Furthermore, we extend the result for unit d-interval
graphs for any d ⩾ 2, which does not follow directly in graph recognition problems –as an example,
it took almost 20 years to close the gap between d = 2 and d > 2 for the recognition of d-track
interval graphs. Our result has several implications, including that recognizing (x, . . . , x) d-interval
graphs and depth r unit 2-interval graphs is NP-complete for every x ⩾ 11 and every r ⩾ 4.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Mathematics of computing → Graph theory

Keywords and phrases Interval graphs, unit multiple interval graphs, recognition, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.8

Related Version Full Version: https://arxiv.org/abs/2309.11908

Funding This work was partially supported by the ANR project ANR-21-CE48-0022 (“S-EX-AP-
PE-AL”).

Acknowledgements Part of this work was conducted when RR was an invited professor at Université
Paris-Dauphine.

1 Introduction

Interval graphs are undirected graphs formed from a set of intervals on the real line, with a
vertex for each interval and an edge between vertices whose intervals intersect. In particular,
they are chordal and perfect graphs. Due to its numerous applications the class of interval
graphs is one of the most well-studied classes of graphs [27, 12, 23]. These include DNA
mapping [33], resource allocation problems in scheduling theory [1] and ecological niche and
food web [6].

The practical applications of interval graphs have led to the study of various generalizations,
including multiple interval graphs [22, 29, 16]. A graph is a d-interval graph if each vertex
is associated with a d-interval (the union of d disjoint intervals on the real line) instead

© Virginia Ardévol Martínez, Romeo Rizzi, Florian Sikora, and Stéphane Vialette;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:virginia.ardevol-martinez@dauphine.psl.eu
https://orcid.org/0000-0002-3703-2335
mailto:romeo.rizzi@univr.it
https://orcid.org/0000-0002-2387-0952
mailto:florian.sikora@dauphine.fr
https://orcid.org/0000-0003-2670-6258
mailto:stephane.vialette@univ-eiffel.fr
https://orcid.org/0000-0003-2308-6970
https://doi.org/10.4230/LIPIcs.ISAAC.2023.8
https://arxiv.org/abs/2309.11908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Recognizing Unit Multiple Intervals Is Hard

of a simple interval, and again, there is an edge between two vertices if and only if the
corresponding d-intervals overlap at some point of the real line. This generalization enables us
to model more complex situation arising naturally in scheduling and allocation problems, such
as multi-task scheduling, allocation of multiple associated linear resources, or transmission of
continuous-media data [2]. Applications to bioinformatics, namely to model DNA sequence
similarity or RNA secondary structure [19, 30], increased the interest in this class of graphs.

Inside the class of multiple interval graphs, different restrictions have been studied. One
of the most natural ones is the subclass of unit d-interval graphs, which corresponds to
d-interval graphs that have an interval representation where every interval has unit length.
Unit multiple intervals can be applied, for example, to model tasks of the same duration in
scheduling.

Apart from their concrete applications, another reason why interval graphs have been
widely studied in the literature is because many problems that are NP-hard in general graphs
become polynomial-time solvable when restricted to interval graphs: colorability, clique,
independent set, or Hamiltonian cycle, to name a few. In particular, recognizing interval
graphs is also polynomial, and more precisely, it can be done in linear time [4, 7]. Furthermore,
there exist multiple characterizations of interval graphs, including a characterization in terms
of forbidden induced subgraphs [21]. This is also the case for unit interval graphs [25], which
are exactly graphs that do not contain any claw, tent, net, or induced cycle of length at least
4. Unit interval graphs are also characterized as interval graphs that are claw-free [27].

However, for multiple interval graphs, most problems remain hard, even their recognition,
and they do not have any simple characterization. In particular, they are neither chordal
graphs nor perfect graphs. It is known that Maximum Clique remains NP-complete in
multiple interval graphs, even for unit 2-intervals [13], and so do other problems such as
Independent Set or Dominating Set [2, 5]. The parameterized complexity of some of
these problems in multiple interval graphs has also been studied, see for instance [18, 10].
With respect to the recognition of multiple interval graphs, it was proven to be NP-hard in
1984 [31]. More precisely, West and Shmoys showed that determining whether the interval
number of a graph (i.e., the smallest integer d such that the graph has a disjoint d-interval
representation) is smaller or equal to d, for any d ⩾ 2, is NP-complete. Furthermore, they
also proved that for any r ⩾ 3 and any d ⩾ 2, determining whether a graph has an r-depth
d-interval representation (i.e., a d-interval representation with at most r intervals sharing
a common point) is NP-complete. On the other hand, the complexity of recognizing depth
2 d-interval graphs is still open, although it is known to be polynomial for depth 2 unit
d-interval graphs [18]. The above-mentioned proof of hardness (for unrestricted depth) was
then adapted by Gambette and Vialette for balanced 2-intervals [15], which are 2-interval
graphs that admit a representation such that every 2-interval is composed of two intervals
of the same length, while intervals of different 2-intervals can have different lengths. In the
same paper, the authors also initiate the study of the recognition of unit 2-interval graphs
and of (x, x) 2-interval graphs (where the two disjoint open intervals have integer endpoints
and have length x), but the complexity of both problems remained unsettled. Note that
contrary to the previous characterization by Roberts of unit interval graphs, unit 2-interval
graphs cannot be characterized as K1,5-free 2-interval graphs [28].

Another well-studied generalization of interval graphs are d-track interval graphs, where
each vertex is associated to the union of d disjoint intervals, each in a different parallel line
called track. Gyárfás and West proved that their recognition is NP-hard for d = 2, and
conjectured the same for d ⩾ 3 [17]. This conjecture was proven way later in [18] by Jiang,
who also showed that recognition remains hard for unit d-track interval graphs for any d ⩾ 2,
but left the recognition of unit d-interval graphs as an open question.

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:3

Multiple track interval graphs can be seen as the union of interval graphs. In the same
manner, d-boxicity graphs can be seen as the intersection of interval graphs. Boxicity is
a graph invariant introduced by Roberts [26] and it is the minimum dimension in which a
graph can be represented as the intersection graph of boxes. Furthermore, given a graph
G = (V, E), it corresponds to the minimum number of interval graphs on the set of vertices
V such that the intersection of their edge sets is G. Their recognition is NP-complete [8, 32],
even for d = 2 [20].

In this paper, we finally settle the complexity of the recognition of unit 2-interval graphs,
answering the open question by Jiang [18]. To do so, we prove that it is NP-hard by
reducing from Satisfiability instead of Hamiltonian Path, which has been often used for
proving the hardness of the recognition of variants of interval graphs. The reductions from
Hamiltonian path in triangle-free cubic graphs used previously to prove the hardness of
recognizing d-interval graphs, balanced d-interval graphs and d-track interval graphs all use
a special vertex which is adjacent to n vertices of a triangle free graph, and therefore, cannot
be directly adapted for unit 2-interval graphs. We then extend the hardness result for unit
d-interval graphs, for any d ⩾ 2. Note that, as pointed out in the concluding remarks of [18],
recognition problems are very different from optimization problems, and the boundary of a
graph class is not necessarily harder than that of a subclass1. Thus, even though one would
expect the recognition of unit d-interval graphs to be hard for any d if it’s hard for d = 2, it
is not directly implied.

Our result has several consequences, namely that recognizing (x, . . . , x) d-interval graphs
and depth r unit d-interval graphs is NP-complete for every x ⩾ 11 and every r ⩾ 4. Finally,
our reduction implies as well a lower bound under the ETH.

Structure of the paper. The paper is organized as follows. Section 2 briefly introduces
the necessary concepts and definitions. In Section 3, we present the results of the paper.
First, in Subsection 3.1, we prove that a generalization of the recognition of unit 2-intervals,
Colored unit 2-interval recognition, is NP-complete. Then, we use this result in
Subsection 3.2 to prove the main theorem of the paper, which states the NP-completeness of
Unit 2-interval recognition. Finally, we present several implications of our result in
Subsection 3.3, namely the NP-completeness of recognizing unit d-interval graphs for every
d ⩾ 2, and of recognizing (x, . . . , x) d-interval graphs and depth r unit d-interval graphs for
every x ⩾ 11 and every r ⩾ 4. We conclude with some directions for future work in Section 4.

Due to space constraints, some proofs (marked with (⋆)) are deferred to the full version
of this paper.

2 Definitions

An interval is a set of real numbers of the form [a, b] := {x ∈ R | a ⩽ x ⩽ b}.2
A d-interval is the union of d disjoint intervals. A d-interval is balanced if all its d intervals

have the same length, and unit when this common length is 1. A family F of d-intervals
is balanced (resp., unit) if it comprises only balanced (resp., unit) d-intervals. Notice that,

1 As an example, the class of K1,5-free graphs, which admits a brute-force O(n6) time recognition
algorithm, contains the class of unit 2-track interval graphs, which is NP-hard to recognize [18].

2 In the literature, it is not always specified whether the intervals considered for the intersection repres-
entation of interval graphs are open or closed. As discussed in [24], the reason for this might be that
both definitions lead to the same class of finite graphs [14], even for unit interval graphs. However, note
that if we allow the use of both open and closed intervals within one representation, then the class of
unit interval graphs obtained is not the same as if we only allowed open or closed intervals within one
representation [24].

ISAAC 2023

8:4 Recognizing Unit Multiple Intervals Is Hard

for d ⩾ 2, different d-intervals of a same balanced family may comprise 1-intervals with
different lengths. A family F of d-intervals can be used as a representation of the graph
Ω (F) having the d-intervals of F as its vertex set, and where two d-intervals are adjacent if
and only if their intersection is not empty. A graph G is called a (possibly balanced, unit)
d-interval graph when it admits a representation F consisting only of (respectively balanced,
unit) d-intervals. Notice that the representing family is not unique (in fact, even only by
translating all intervals by a same value, we already obtain an infinite number of them).
Multiple interval graphs generalize the standard notion of interval graphs (special case for
d = 1). In this paper, we will use the term unit 1-interval (resp. unit 1-interval graph) to
denote a classical unit interval (resp. a classical unit interval graph), to avoid confusion with
a unit 2-interval (resp. unit 2-interval graphs).

Note that many references do not specify whether the intervals of a d-interval must be
disjoint or not, and some even define them as the union of d not necessarily disjoint intervals
[29]. However, this might be related to the fact that, when there are no restrictions on the
length of the intervals, the two definitions lead to the same class of graphs. This is not true
for unit d-intervals, so we study the case where disjointness is required, as in the hardness
proof of recognizing multiple interval graphs [31].

A d-interval graph is proper when it admits a representing family F such that no 1-interval
is properly contained in another one. The classes of proper and unit 1-interval graphs are
equivalent, and they correspond exactly to K1,3-free interval graphs. The graph K1,3 is the
star with 3 leaves, and is also called a claw. Equivalently, unit interval graphs are known to
be exactly those graphs that do not contain any claw, tent, net, or cycle of length at least 4
as an induced subgraph [25].

A d-interval is a (x1, . . . , xd) d-interval if the d disjoint intervals are open, have integer
endpoints, and have lengths x1, . . . , xd, respectively.

The depth of a family of intervals is the maximum number of intervals that share a
common point, and the representation depth of a d-interval graph is the minimum depth of
any d-interval representation of the graph.

The hierarchy of subclasses of d-interval graphs is as follows [15, 18]: (x, . . . , x) ⊂
(x + 1, . . . , x + 1) ⊂ unit ⊂ balanced ⊂ unrestricted.

The problem Unit 2-interval recognition is defined as follows.

Unit 2-interval recognition
Input: A graph G = (V, E)
Task: Decide whether G has a unit 2-interval representation.

Furthermore, we define a more general version of the above problem, which will be useful
to prove the hardness of Unit 2-interval recognition.

Colored unit 2-interval recognition
Input: A graph G = (V, E) and a coloring γ : V → {white, black}.
Task: Decide whether G has a unit 2-interval representation where:

each white vertex is represented by a unit 2-interval,
each black vertex is represented by a unit 1-interval.

We refer to this representation as a colored unit 2-interval representation.

3 Hardness of recognizing unit multiple interval graphs

In this section, we prove the main result of this paper, which is the hardness of recognizing
unit 2-interval graphs, used later on to prove the hardness of recognizing unit d-intervals
for every d ⩾ 2. The result for d = 2 is obtained in two steps. We first prove that the more

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:5

general version Colored unit 2-interval representation is NP-complete, and then
reduce this problem to Unit 2-interval recognition, which yields the main result of this
paper.

3.1 Hardness of Colored Unit 2-Interval Recognition
Before proceeding to the hardness proof of Colored unit 2-interval recognition, we
first introduce the variant of SAT that we will reduce from. In the following, we use the
term “j-clause” to refer to a clause that contains exactly j literals.

▶ Lemma 1 ([11]). (⋆) Satisfiability is NP-complete even when restricted to CNF-formulae
such that:
1. Every clause contains either 3 literals (3-clause) or 2 literals (2-clause).
2. Each variable appears in exactly one 3-clause.
3. Each 3-clause is positive monotone, i.e., is comprised of three positive literals.
4. Each variable occurs exactly in three clauses, once negated and twice positive.

We can now proceed to the proof of hardness of Colored Unit 2-Interval Recogni-
tion.

▶ Theorem 2. Colored Unit 2-Interval Recognition is NP-complete, even for graphs
of degree at most 6.

The rest of the subsection is dedicated to the proof of Theorem 2. We first describe the
construction used for the reduction and then prove its correctness.

Construction. Let Ψ be an instance of the variant of SAT described in Lemma 1, formed
by a set of Boolean variables x1, . . . , xn and a set of clauses C1, . . . , Cm. We construct an
equivalent instance (GΨ, γΨ) of Colored unit 2-interval recognition as follows.

For every variable xi, we introduce the variable gadget V̂i (truth setting component),
which is the vertex-colored graph on three black vertices Ai, Bi, Ci and three white vertices
x1

i , x2
i and xN

i , with all edges between a black vertex and a white vertex, plus the edges
(x1

i , x2
i), (Ci, Ai) and (Ci, Bi). We anticipate that the white vertices of V̂i will be adjacent

also to vertices outside V̂i; in order to underline this distinction, these three vertices are
called public, and the black vertices are called private.

Ai

Bi

Ci

x1
i

x2
i

xN
i

Figure 1 Variable gadget V̂i corresponding to a variable xi. Black vertices are displayed with a
black background.

Figure 1 illustrates the variable gadget V̂i. Notice that the three white node x1
i , x2

i , xN
i

correspond each to precisely one of the occurrences of the represented variable xi: vertex xN
i

represents the negated occurrence of xi, vertex x1
i represents the positive occurrence in a

3-clause, and vertex x2
i represent the positive occurrence in a 2-clause. Therefore, we refer to

them as literal vertices. Furthermore, note that a vertex of V̂i is adjacent to Ai if and only if
it is adjacent to Bi; and being private, these two nodes will remain false twins also in G. We
will exploit this symmetry to simplify the case analysis.

ISAAC 2023

8:6 Recognizing Unit Multiple Intervals Is Hard

Ai

Bi

Ci

x1
i

x2
i

xN
i

Aj

Bj

Cj

x1
j

x2
j

xN
j

AkBk

Ck

x1
k x2

k xN
k

Figure 2 Clause gadget Ĉα associated to a 3-clause Cα = (xi ∨ xj ∨ xk). Note that in the final
graph, each vertex xm

i , xm
j , xm

k , for every m ∈ {1, 2, N}, will be incident to exactly 2 edges linking
them to vertices outside their variable gadget.

To conclude the construction, we show how to encode each clause Cα, for α = 1, . . . , m.
If Cα is a 3-clause, then it is monotone positive, i.e., Cα = (xi ∨ xj ∨ xk) for some i, j, k ∈
{1, . . . , n}, and all that is needed is to introduce the three edges (x1

i , x1
j), (x1

j , x1
k), (x1

k, x1
i).

These three edges comprise the clause gadget (see Figure 2).
If Cα is a 2-clause, say Cα = (xr

i ∨ xs
j) with i, j ∈ {1, . . . , n} and r, s ∈ {2, N}, then we

introduce a public black vertex Lα
i,j with a private black neighbor pα

i,j and we add the four
edges (xr

i , xs
j), (xr

i , Lα
i,j), (xs

j , Lα
i,j) and (Lα

i,j , pα
i,j). These four edges together with the two

vertices added comprise the clause gadget (see Figure 3).

Ai

Bi

Ci

x1
i

x2
i

xN
i

Aj

Bj

Cj

x1
j

x2
j

xN
j

Lα
i,j

pα
i,j

Figure 3 Gadget for a 2-clause Ĉα of the form Cα = (xi ∨ xj).

The description of the reduction is complete. Clearly, GΨ has at most 6n + 2m vertices
and at most 12n + 4m edges. We next introduce a few notions to ease the proof that GΨ is
a colored unit 2-interval graph if and only if Ψ is satisfiable.

▶ Definition 3. Given a colored graph (G, γ), we say that a pair (S, f) formed by a graph S

and a function f : V (S) 7→ V (G) is a split of (G, γ) if f satisfies the following conditions:
|f−1(v)| = 1 for every v ∈ V (G) with γ(v) = black.
|f−1(v)| = 2 for every v ∈ V (G) with γ(v) = white.
For every vertex v of G, f−1(v) is an independent set in S.
For every edge (s, t) of S, (f(s), f(t)) is an edge of G.
For every edge (u, v) of G, there exist two vertices s and t in f−1({u, v}) such that (s, t)
is an edge of S.

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:7

▶ Definition 4. We define the family of splits of G that lead to a unit 1-interval graph as
SU (G) := {(S, f) | (S, f) is a split of G and S is a unit 1-interval graph}.

The next lemma shows how a split (S, f) of a colored graph G can be used to certify that
G is a colored unit 2-interval graph. This has the advantage of being a truly combinatorial
certificate, whereas the number of interval families representing a same graph is infinite with
the power of the continuous as soon as at least one exists. Trotter and Harary [29] have
already studied vertex splitting in the context of turning a graph into an interval graph.

▶ Lemma 5. (⋆) A colored graph (G, γ) is a colored unit 2-interval graph if and only if the
family SU (G) is not empty.

We can now proceed to study the shape of the possible splits (S, f) ∈ SU (GΨ). Let (S, f)
be a split of a graph G. For every vertex v ∈ V (G), we call each element of the set f−1(v)
a representative of v. In particular, if v is a white node, we denote its two representatives
in V (S) by f−1

1 (v) and f−1
2 (v). For simplicity, when we refer to an arbitrary representative

of a vertex or to the unique representative of a black vertex, we abuse notation and denote
it by its label in V (G). Furthermore, given an edge (u, v) ∈ G, we call the edge (s, t) ∈ S,
a representative of (u, v) if s ∈ f−1(u) and t ∈ f−1(v). Furthermore, given a split (S, f)
of the graph GΨ, we denote by S[V̂i] the subgraph of S induced by the vertices of the
variable gadget V̂i (i.e., vertices Ai, Bi, Ci, f−1

1 (xN
i), f−1

1 (x1
i), f−1

1 (x2
i), f−1

2 (xN
i), f−1

2 (x1
i)

and f−1
2 (x2

i)). Finally, we say that a representative of a literal vertex is an isolated vertex if
it is not adjacent to any of the private vertices of its variable gadget (i.e., it is not adjacent
to Ai, Bi or Ci).

▷ Claim 6. Let (S, f) be an arbitrary graph in SU (GΨ). Then, none of the black vertices of
S[V̂i] can be adjacent to both representatives of a literal vertex. Furthermore, if a black vertex
is adjacent to a representative of x1

i and to a representative of x2
i , these two representatives

must be adjacent to each other.

Proof. Suppose that the two representatives of a literal vertex are adjacent to the same
black vertex. If the literal vertex is x1

i or x2
i , the black vertex would be a center of a K1,3

with these two representatives plus a representative of the vertex xN
i as leaves. If the literal

vertex is xN
i , the black vertex would be a center of a K1,3 with the two representatives of

xN
i and one of x1

i or x2
i as leaves. Since the graph K1,3 is a forbidden induced subgraph

for unit 1-interval graphs, this contradicts the fact that S belongs to SU (GΨ). Finally, if a
black vertex is adjacent to a representative of x1

i and to a representative of x2
i which are not

adjacent, the black vertex would be a center of a K1,3 with these two representatives plus a
representative of xN

i as leaves. ◁

▷ Claim 7. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] satisfies at least one of the following two conditions, up to
symmetry:
1. The vertex f−1

1 (xN
i) is adjacent to Ai and the vertex f−1

2 (xN
i) is adjacent to Bi.

2. The vertices f−1
1 (x1

i) and f−1
1 (x2

i) are adjacent to each other and to Ai, and the vertices
f−1

2 (x1
i) and f−1

2 (x2
i) are adjacent to each other and to Bi.

Proof. By the properties of f , for every edge (u, v) ∈ GΨ, there exist elements s, t ∈ V (S)
with f−1(u) = s and f−1(v) = t such that (s, t) is an edge in S.

Suppose condition 1 does not hold, i.e., one of the representatives of xN
i , say f−1

1 (xN
i), is

adjacent to both Ai and Bi. We will show that if condition 2 does not hold either, S cannot
be a unit 1-interval graph. Assume that one of the representatives of x1

i or x2
i , say f−1

1 (x1
i)

ISAAC 2023

8:8 Recognizing Unit Multiple Intervals Is Hard

(resp. f−1
1 (x2

i)), is adjacent to both Ai and Bi. Then, S contains an induced cycle of length
four:

(
f−1

1 (xN
i), Bi, f−1

1 (x1
i), Ai

)
(resp.

(
f−1

1 (xN
i), Bi, f−1

1 (x2
i), Ai

)
). This is a forbidden

induced subgraph for unit 1-interval graphs, so it contradicts the hypothesis. Thus, it follows
that, up to symmetry, vertices f−1

1 (x1
i) and f−1

1 (x2
i) need to be adjacent to Ai, and vertices

f−1
2 (x1

i) and f−1
2 (x2

i), to Bi. Finally, by Claim 6, f−1
1 (x1

i) and f−1
1 (x2

i) need to be adjacent
to each other, so condition 2 must hold.

Conversely, suppose condition 2 does not hold, i.e., at least one of the representatives of
x1

i or x2
i , say f−1

1 (x1
i) w.l.o.g., is adjacent to both Ai and Bi. We will see that condition 1

must hold in order for S to be a unit 1-interval graph. Indeed, if a single representative of
xN

i , say f−1
1 (xN

i), is adjacent to both Ai and Bi, then S contains an induced cycle of size
four:

(
f−1

1 (xN
i), Bi, f−1

1 (x1
i), Ai

)
. Therefore, one representative of xN

i must be adjacent to
Ai and the other, to Bi. ◁

The previous claim implies that there are four possible configuration of S[V̂i] such that it
does not contain any induced cycles of length greater or equal to 4.

▶ Lemma 8. Let (S, f) be a split of GΨ such that S[V̂i] does not contain any induced cycles
of length greater or equal to 4. Then, S satisfies one of the following conditions:
1. The vertex f−1

1 (xN
i) is adjacent to Ai and the vertex f−1

2 (xN
i) is adjacent to Bi, while

for the rest of the literal vertices, there exists an element in the image via f−1 that is an
isolated vertex.

2. The vertices f−1
1 (x1

i) and f−1
1 (x2

i) are adjacent to each other and to Ai, and the vertices
f−1

2 (x1
i) and f−1

2 (x2
i) are adjacent to each other and to Bi, while f−1(xN

i) contains an
isolated vertex.

3. The images of x1
i and x2

i via f−1 are as in Case 1 and f−1(xN
i) is as in Case 2 (see the

graph in Figure 4).
4. Either the image of x1

i or the image of x2
i via f−1 is as in Case 1 (w.l.o.g., assume it is

f−1(x1
i)) so that both representatives of x1

i are adjacent to the non-isolated representative
of x2

i ; and f−1(xN
i) is as in Case 2.

Proof. We have already shown that one of the conditions of Claim 7 must hold. If condition 1
holds, then we have three possible configurations of f−1(x1

i) and f−1(x2
i): either both literal

vertices have a representative that is isolated (Case 1), only one of them has a representative
that is isolated (Case 4), or none of them has an isolated representative (Case 3). On the
other hand, if condition 2 holds, the we only have two possible configurations of f−1(xN

i):
one representative of xN

i is isolated (Case 2), or none of them is (Case 3). Finally, note that
in Case 4, both representatives of x1

i need to be adjacent to the non-isolated representative
of x2

i by Claim 6. ◀

The next two claims are devoted to proving that if (S, f) is a split of (GΨ, γ) contained in
the family SU (GΨ), then Cases 3 and 4 of Lemma 8 are not possible. To do so, observe that
by construction, since every variable appears exactly in three clauses (twice positive and once
negated), we know that in GΨ, the vertices xN

i , x1
i and x2

i all have two incident edges linking
them with vertices outside of the variable gadget, called external edges in the following. The
neighbors outside of the variable gadget are external vertices, and they constitute private
neighbors of the vertices of the variable gadget, as it is not possible for two different vertices
of the variable gadget to be incident to the same external neighbor. We will see that if S is
as in Case 3 or Case 4, then the vertices of S[V̂i] create an induced net with the external
neighbors. Since nets are a forbidden induced subgraph for (unit) interval graphs, then S

cannot be a unit 1-interval graph.

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:9

▷ Claim 9. Let S be an arbitrary graph in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] cannot be as in Case 3 of Lemma 8.

Proof. Suppose that S[V̂i] is as in Case 3 of Lemma 8, i.e., as in Figure 4 (where Ci could be
in the neighborhood of the other representatives of the vertices, but thanks to the symmetry,
these cases are equivalent). We distinguish two cases:

The two external edges incident to x1
i and x2

i are incident to two representatives that are
adjacent. Then, either f−1

1 (xN
i), Ai, f−1

1 (x1
i), f−1

1 (x2
i), a private neighbor of f−1

1 (x1
i) and

a private neighbor of f−1
1 (x2

i) form a net; or f−1
2 (xN

i), Bi, f−1
2 (x1

i), f−1
2 (x2

i), a private
neighbor of f−1

2 (x1
i) and a private neighbor of f−1

2 (x2
i) form a net (see the red net in

Figure 4).
Otherwise, at least one of f−1

1 (x1
i) or f−1

1 (x2
i) will be incident to an external edge. Then,

Ci, Ai, f−1
1 (x1

i) or Ci, Ai, f−1
1 (x2

i) will create a net together with Bi, f−1
1 (xN

i), and the
corresponding external neighbor of f−1

1 (x1
i) or f−1

1 (x2
i), respectively (see the blue net in

Figure 4).

Ai

Bi

Ci

f−1
1 (x1

i) x1
l

f−1
1 (x2

i)

f−1
2 (x1

i) x1
j

f−1
2 (x2

i) x1
k

f−1
1 (xN

i)

f−1
2 (xN

i)

Figure 4 Configuration of S[V̂i] described in Case 3 of Lemma 8. In red, the net created if both
f−1

2 (x1
i) and f−1

2 (x2
i) have an external neighbor. In blue, the net created if f−1

1 (x1
i) has an external

neighbor.

In both cases, we have a forbidden induced subgraph for (unit) interval graphs, contra-
dicting the hypothesis that S is a unit interval graph.

◁

▷ Claim 10. (⋆) Let (S, f) be an arbitrary split in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] cannot be as in Case 4 of Lemma 8.

The proof of Claim 10 uses similar arguments to that of Claim 9 and is thus omitted
here. Recall that in Case 1 of Lemma 8, one of the representatives of x1

i and one of the
representatives of x2

i are isolated; and in Case 2 of Lemma 8, one of the representatives of
xN

i is isolated. Therefore, we obtain the following result.

▷ Claim 11. Let (S, f) be an arbitrary split in the family SU (GΨ). Then, for every variable
xi with i ∈ {1, . . . , n}, the subgraph S[V̂i] satisfies exactly one of the following two conditions:
1. There is a representative of x1

i and a representative of x2
i that are isolated vertices (they

are either two non-adjacent vertices or they form a K2).
2. One of the representatives of xN

i is an isolated vertex.

ISAAC 2023

8:10 Recognizing Unit Multiple Intervals Is Hard

I1(Ci)

I1(Ai) I1(Bi)

I1(xN
i) I2(xN

i)

I1(x1
i)

I1(x2
i)

(a)

I1(Ci)

I1(Ai) I1(Bi)

I1(x1
i) I2(x1

i)

I1(x2
i) I2(x2

i)

I1(xN
i)

(b)

Figure 5 Representation of the variable gadget associated to the true value (left, 5a) or false
value (right, 5b).

Proof. Combining Lemma 8 with Claims 9 and 10, it follows that S[V̂i] is either as in Case 1
or as in Case 2 of Lemma 8, which means that either one representative of each of x1

i and x2
i

is isolated, or that one representative of xN
i is isolated, respectively. These options correspond

to the interval representations in Figure 5a and Figure 5b, respectively. The reader can check
the previous assertion observing the figures, and verify that the external edges incident to
each of the vertices x1

i , x2
i and xN

i can be added in both representations, as we always have
either a whole free interval (not depicted in the figures) or one extreme of the interval free
for each of the vertices. ◁

The correctness of the reduction now follows from the two lemmas below.

▶ Lemma 12. If Ψ is satisfiable, then the constructed graph GΨ = (V, E), V = Vwhite ∪Vblack,
admits a colored unit 2-interval representation.

Proof. Given a satisfying assignment ϕ of Ψ, we explain how to construct a colored unit
2-interval representation of GΨ, i.e., a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) |
v ∈ Vwhite} and a collection of unit 1-intervals Iblack = {I1(v) | v ∈ Vblack} such that
G ≃ Ω (Dwhite ∪ Iblack). Note that by Lemma 5, if GΨ is a colored unit 2-interval graph,
then there exists a split (S, f) in the family SU (GΨ), and we know how to construct a colored
unit 2-interval representation of GΨ given a unit 1-interval representation of S by defining
the 2-interval associated to a white vertex v ∈ Vwhite as the union of the interval associated
to f−1

1 (v) and the interval associated to f−1
2 (v); and the 1-interval associated to a black

vertex v ∈ Vblack as the interval associated to the single vertex f−1(v).
For each variable xi with i ∈ {1, . . . , n}, if Φ(xi) = true, we represent the variable gadget

V̂i as shown in Figure 5a, which corresponds exactly to Case 1 of Claim 11. On the other
hand, if Φ(xi) = false, we represent V̂i as in Figure 5b, which corresponds to Case 2 of
Claim 11. Notice that in both representations, the literals that are true have an isolated
representative, i.e., one of the intervals associated to them is unused in the representation of
V̂i and remains completely free to display intersections with external neighbors.

After this, it only remains to explain the connections introduced by the clauses.

▷ Claim 13. Given a 3-clause (xi ∨ xj ∨ xk), there exists a unit interval representation of
the subgraph of GΨ induced by the vertices of the variable gadgets V̂i, V̂j and V̂k.

Proof. Each of the variable gadgets can be represented as in Figure 5a or Figure 5b. To
represent the edges associated to the 3-clauses, we first notice that, since the 3-clauses are
positive monotone, true literals correspond to true variables. As we are assuming that we
have a satisfying assignment, we only have three cases (up to symmetry), which correspond to
the three variables being true; exactly two variables being true; and only one variable being
true. The literals that are true have a whole free interval to display the intersection, whereas
the literals that are false only have the extreme of an interval (while the other extreme is

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:11

I1(Ci)

I1(Ai) I1(Bi)

I1(x1
i) I2(x1

i)

I1(x2
i)

I2(x2
j)

I2(x1
k)

I2(x2
i)

I1(xN
i)

Figure 6 Representation of a 3-clause (xi ∨ xj ∨ xk), where xi is set to false while xj , xk are set
to true.

I1(Ci)

I1(Ai) I1(Bi)

I1(x2
i) I2(x2

i)

I1(x1
i)

I2(x1
j)

I2(x1
i)

I1(xN
i)

I1(Ck)

I1(Ak) I1(Bk)

I1(x2
k) I2(x2

k)

I1(x1
k)

I2(x1
k)

I1(xN
k)

Figure 7 Representation of a 3-clause (xi ∨ xj ∨ xk), where xi and xk are set to false and xj is
set to true.

glued to the rest of the representation of the gadget, see Figure 5b). Let (xi ∨ xj ∨ xk) be a
3-clause, with i, j, k ∈ {1, . . . , n}. If the three variables are true, we can easily represent the
clause by making the three free intervals of the variables – w.l.o.g. I2(x1

i), I2(x1
j), I2(x1

k) –
intersect at the same time. On the other hand, if only one variable – say xi – is false, we
can add the two free intervals –I2(x1

j), I2(x1
k) – to the corresponding extreme of the gadget

of the false variable, as in Figure 6. Finally, if two variables are false – say xi, xk –, then
we need to merge the two interval representations associated to their gadgets and add the
free interval – I2(x1

j) – in the middle, as in Figure 7. Note that the interval representations
given in the figures are not unit, but they are proper, so at the end we will be able to use
the algorithm described in [3] to turn it into a unit one. ◁

After representing all the 3-clauses, we can assume that the representations of some of
the variable gadgets have been merged two by two (we will never have to merge a gadget
more than once since a variable occurs in exactly one 3-clause in Ψ) and we can fix them in
the real line separated from one another. The separation between them can be arbitrarily
large, and needs to be at least greater than the space needed to place the remaining intervals.
The variable gadgets that have not been merged can also be fixed in the real line, while the
unused free intervals (corresponding to true literals), the intervals I1(Lα

i,j), and the intervals
I1(pα

i,j) remain unplaced.
Now, to display the 2-clauses, we distinguish two cases. First, if both literals are true,

then there exists a free interval for each, and we can represent the clause in a separate part
of the real line (there is one Lα

i,j and one pα
i,j per clause, so these intervals will never cause

a problem). Secondly, if one of the literals is false, then the free interval associated to the
true literal needs to be glued to the extreme of the representation of the variable gadget
of the false one. Note that there is always one free extreme because the 3-clauses use at
most one extreme per variable gadget (and we can extend Ij(x2

i) to allow the intersection
while keeping the representation proper). Note also that we will never need more than two
extremes to obtain a representation because, since each variable occurs twice positive and
once negated, we can have at most two false literals (when the variable is set to false).

Since we have constructed a proper interval representation, we can now use the algorithm
described in [3] to turn the representation into a unit one, as mentioned before. ◀

ISAAC 2023

8:12 Recognizing Unit Multiple Intervals Is Hard

I1(Ci)

I1(Ai) I1(Bi)

I1(x2
i) I2(x2

i)

I1(x1
i)

I2(x2
m)

I1(Lm,i)

I1(pm,i) I2(x2
l)

I1(Ll,k)

I1(pl,k)

I1(x1
i)

I2(x1
j)

I2(x1
i)

I1(xN
i)

I1(Ck)

I1(Ak) I1(Bk)

I1(x2
k) I2(x2

k)

I1(x1
k)

I2(x1
k)

I1(xN
k)

Figure 8 Representation of a longest contiguous block of intervals, where each color represents
the intervals associated to a different variable. A longest contiguous block occurs when there is
a clause (xi ∨ xj ∨ xk), where xi and xk are set to false and both of them also appear as positive
literals in a 2-clause.

Let us now prove the converse implication.

▶ Lemma 14. If the constructed graph GΨ = (V, E), V = Vwhite ∪ Vblack, admits a colored
unit 2-interval representation, then the original formula Ψ is satisfiable.

Proof. Assume that the constructed graph GΨ admits a colored unit 2-interval representation
where black vertices are represented by unit 1-intervals and white vertices are represented by
unit 2-intervals. As in Claim 11, we study the splits (S, f) ∈ SU (GΨ).

We have already seen in Claim 11 that there are only two possible configurations for
S[V̂i], up to symmetry. Let us assign a truth value to each of the configurations. If S[V̂i]
satisfies condition 1 of Claim 11, we set Φ(xi) = true. Otherwise, if it satisfies condition 2 of
Claim 11, then we set Φ(xi) = false. Recall that this implies that there is a representative
of the vertices representing true literals which remains isolated from its variable gadget.

The following claims restrict the structure of a representable clause gadget. Both use
similar arguments, so only the first proof is included here. Given a clause gadget Ĉα in G,
we define the clause gadget S[Ĉα] in S as the set of representatives of the edges and vertices
of Ĉα.

▷ Claim 15. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every 3-clause, at least
one of the representatives of the literal vertices incident to the clause gadget in S must be
an isolated vertex.

Proof. Towards a contradiction, we assume that there exists a 3-clause gadget in S such that
none of the representatives of the literal vertices adjacent to the clause gadget are isolated.
Let Cα = xi ∨ xj ∨ xk, with i, j, k ∈ {1, . . . , n} be a (monotone positive) 3-clause. Each of
the literal vertices has two external neighbors. In S, either the two external neighbors are
incident to the same representative of the literal vertices (and thus only one representative is
incident to the clause gadget), or each of them is incident to a different representative. We
distinguish two cases, depending on whether only one representative of each literal vertex is
incident to the clause gadget, or whether there is at least one literal vertex such that both of
its representatives are incident to the clause gadget:

If only one representative of each literal vertex is incident to the clause gadget in S, then
w.l.o.g., the clause gadget is formed by edges {(f−1

1 (x1
i), f−1

1 (x1
j)), (f−1

1 (x1
j), f−1

1 (x1
k)),

(f−1
1 (x1

k), f−1
1 (x1

i))}. By assumption, none of the vertices incident to the clause gadget
in S are isolated, so they are all connected to at least one black vertex of their variable
gadget. Thus, without loss of generality, {f−1

1 (x1
i), f−1

1 (x1
j), f−1

1 (x1
k), Ai, Aj , Ak} form a

net (the readers can convince themselves looking at Figure 2). Note that when we say
without loss of generality, we are using the symmetry between Ai and Bi.

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:13

Ai

Bi

Ci

f−1
1 (x1

i)

f−1
1 (x2

i)

x1
j

x1
k

f−1
2 (x1

i)

f−1
2 (x2

i)

xN
i

Figure 9 In red, the net created if both representatives of x1
i are incident to the clause gadget in

S and f−1
1 (x2

i) is incident to an external edge.

If there is at least one literal vertex such that both of its representatives are incident to the
clause gadget, then w.l.o.g., the clause gadget in S contains edges {(f−1

1 (x1
i), f−1

1 (x1
j)),

(f−1
1 (x1

k), f−1
2 (x1

i))} (and eventually, edges between representatives of x1
j and x1

k). Then,
since one of the representative of x2

i also has a private neighbor outside of the variable
gadget, either the subgraph induced by {Ai, f−1

1 (x1
i), f−1

1 (x2
i)} or the subgraph induced

by {Bi, f−1
2 (x1

i), f−1
2 (x2

i)} (and one private neighbor of each of the three vertices, where
the private neighbor of Ai and Bi is xN

i) is a net. This situation is depicted in Figure 9.

In both cases, the resulting graph S would not be a unit 1-interval graph, contradicting
the hypothesis. ◁

▷ Claim 16. (⋆) Let (S, f) be an arbitrary split in SU (GΨ). Then, for every 2-clause, at
least one of the representatives of the literal vertices incident to the clause gadget in S must
be an isolated vertex.

The previous claims imply that there is an isolated literal vertex incident to every 3-clause
and to every 2-clause. Since literal vertices that have an isolated representative correspond
to true literals in the assignment fixed before, it follows that there is a true literal per clause,
and thus, all clauses are satisfied. This finishes the proof of the converse direction. ◀

As the problem is clearly in NP, the polynomial-time construction together with Lemmas
12 and 14 conclude the proof of Theorem 2. The bound on the degree follows because the
constructed graph G has maximum degree 6 (the positive literal vertices have degree 4 in
the variable gadget and are incident to 2 external edges).

3.2 Hardness of Unit 2-Interval Recognition
We show next that Colored Unit 2-Interval Recognition is polynomial-time reducible
to Unit 2-Interval Recognition, which yields the main result of the paper:

▶ Theorem 17. Unit 2-Interval Recognition is NP-complete, even for graphs of degree
at most 7.

Proof. We reduce from Colored Unit 2-Interval Recognition, which is NP-hard by
Theorem 2. Given any instance (G, γ) of Colored Unit 2-Interval Recognition, where
G = (V, E) is a graph and γ : V → {white, black} is a vertex-coloring map, we construct
an equivalent instance G′ = (V ′, E′) of Unit 2-Interval Recognition. Define n = |V |
and Vc = {u | u ∈ V ∧ γ(u) = c} for c ∈ {white, black} (so that n = |Vwhite| + |Vblack|).

ISAAC 2023

8:14 Recognizing Unit Multiple Intervals Is Hard

We obtain G′ = (V ′, E′) from G by replacing every vertex v ∈ Vblack by the gadget Bv

depicted in Figure 10, which we also call black vertex gadget. Formally, for every v ∈ Vblack,
we add the vertices Vv = {ai

v, bi
v | 0 ⩽ i ⩽ 3} and the edges Ev = {(v, a0

v), (a0
v, ai

v), (v, b0
v),

(b0
v, bi

v), (a0
v, b0

v) | 1 ⩽ i ⩽ 3}. The gadget Bv is exactly the graph induced by the union of Vv

and vertex v. Note that the vertex v of Bv is public, that is, it is adjacent to vertices of Bv

and to vertices outside of Bv, while the rest of the vertices of Bv are private, i.e., they are
only adjacent to vertices of Bv.

We have thus constructed a graph G′ with vertex set V ′ = V ∪ {Vv | v ∈ Vblack} and
edge set E′ = E ∪ {Ev | v ∈ Vblack}. Note that G′ contains G as an induced subgraph, as
G′[V] = G. Combining this with the replacement of every vertex in Vblack by a gadget with
9 vertices and 9 edges, it follows that |V ′| = |Vwhite| + 9 |Vblack| and |E′| = |E| + 9 |Vblack|.

v

a0
v b0

v

a1
v b1

va2
v b2

va3
v b3

v

Figure 10 Gadget Bv used to replace every black vertex v of G in the construction of G′. Vertex
v is a public vertex, as it is adjacent to vertices of the gadget (a0

v and b0
v) and vertices outside the

gadget (namely, its neighbors in the original graph G), whereas the rest of the vertices are private,
as their only neighbors are vertices from the gadget (the ones shown in the figure).

The purpose of the black vertex gadget Bv used to replace every v ∈ Vblack in the
construction of G′ is to restrict the unit 2-interval representations of G′. Indeed, we will
see that it forces one of the intervals associated to v to be used exclusively to represent the
gadget, while the other interval is used exclusively to represent the rest of the neighborhood
of v (which is exactly its neighborhood in the original graph G). Figure 11 shows a unit
2-interval representation R = {(I1(x), I2(x)) | x ∈ Vv ∪ {v}} of Bv such that I1(v) does not
have any points in common with the rest of the intervals of R (i.e., only I2(v) is used to
represent the gadget). Furthermore, in the given representation, I2(v) cannot intersect any
interval associated to a vertex outside of the gadget, as there is no point of I2(v) that does
not intersect either I1(a0

v) or I1(b0
v), and both a0

v and b0
v are private vertices for v. The next

claim proves that any unit 2-interval representation of Bv is as in Figure 11, up to symmetry.

I1(a1
v)

I1(a0
v)

I2(v)

I1(b0
v)

I1(b1
v)

I1(a2
v)

I2(a0
v)

I1(a3
v) I1(b2

v)

I2(b0
v)

I1(b3
v)

Figure 11 A unit 2-interval representation of Bv (Figure 10), i.e., DBv for an arbitrary v ∈ Vblack.
Note that only one interval of v is used (I2(v)), while the other one remains free to display the rest
of the neighborhood of v (and is not represented here).

▷ Claim 18. Let {(I1(x), I2(x)) | x ∈ Vv∪{v}} be a unit 2-interval representation of Bv. Then,
there exist some indices i, j, k ∈ {1, 2} such that the representation of Ii(v), Ij(a0

v), Ik(b0
v) is

contiguous (i.e., the union of the three intervals is an interval) and Ii(v) is properly contained
in the union Ij(a0

v) ∪ Ik(b0
v).

Proof. In the following, we denote an interval associated to a vertex by the name of the
vertex if it refers to an arbitrary interval from the corresponding 2-interval (i.e., we will write
v to denote I1(v) or I2(v) when the choice of interval is irrelevant).

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:15

Since a0
v and b0

v are both centers of an induced K1,4, one of the intervals associated to a0
v,

say I1(a0
v), needs to intersect v, b0

v and one of the ai
v for some i ∈ {1, 2, 3}, say a1

v without
loss of generality (because of the symmetry). Furthermore, the intervals of v and b0

v that
intersect I1(a0

v) also need to intersect each other, as otherwise I1(a0
v) would intersect three

disjoint intervals, contradicting the fact that the representation is unit. On the other hand,
I2(a0

v) has to intersect the two remaining ai
v, that is, a2

v and a3
v. Similarly, one of the intervals

associated to b0
v, say I1(b0

v), needs to intersect v and a0
v (which also intersect each other), and

one of the bi
v for some i ∈ {1, 2, 3}, whereas I2(b0

v) intersects the two remaining bi
v. Again,

without loss of generality, we can assume that I(b0
v) intersects b1

v while I2(b0
v) intersects b2

v

and b3
v.

Thus, we have that I1(a0
v) intersects v and I1(b0

v) (which also intersect each other), and
a1

v; while I(b0
v) intersects v and I1(a0

v) (which also intersect each other), and b1
v. This implies

that the representation of a1
v, I1(a0

v), b1
v, I1(b0

v) has to be contiguous. Finally, since vertex
v is not adjacent to either a1

v nor b1
v, the only possibility to represent the edges (v, a0

v) and
(v, b0

v) is by placing an interval associated to v, say I2(v), properly contained in the union
I1(a0

v) ∪ I1(b0
v), as in Figure 11. ◁

The next two claims now prove the correctness of the reduction.

▷ Claim 19. If G is a colored unit 2-interval graph, then G′ is a unit 2-interval graph.

Proof. Suppose that G is a colored unit 2-interval graph. Then, by assumption, there exists
a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) | v ∈ Vwhite} and a collection of unit
intervals Iblack = {I1(v) | v ∈ Vblack} such that G ≃ Ω (Dwhite ∪ Iblack).

From D = (Dwhite ∪ Iblack), we show how to construct a unit 2-interval representation
D′ of G′. Recall that (Vwhite ∪ Vblack) = V ⊂ V ′. Similarly, we will construct D′ such that
D ⊂ D′. In fact, we will have that D′ = D ∪

(⋃
v∈Vblack

DBv

)
, where for every v ∈ Vblack,

DBv is the interval representation of the gadget Bv. More precisely, we construct D′ as
follows:

For every v ∈ Vwhite, we add to D′ the 2-interval (I1(v), I2(v)) from D.
For every v ∈ Vblack, we add to D′ the interval I1(v) from D together with DBv

, i.e., the
interval I2(v) plus the 2-intervals (I1(ak

v), I2(ak
v)) and (I1(bk

v), I2(bk
v)) for 0 ⩽ k ⩽ 3 as

defined in Figure 11.
By construction, D′ is a collection of unit 2-intervals. It is now a simple matter to verify
that G′ ≃ Ω(D′). ◁

▷ Claim 20. (⋆) If G′ is a unit 2-interval graph, then G is a colored unit 2-interval graph.

As the problem is clearly in NP, combining the fact that the construction of G′ can be
carried out in polynomial time with Claims 19 and 20, we obtain that Unit 2-Interval
Recognition is NP-complete. The bound on the degree given in the statement of the
theorem follows by construction, from adding the black vertex gadgets (Figure 10) to the
graph constructed in the proof of Theorem 2 (Figure 2). Indeed, this results in a graph of
maximum degree 7, as Ci is adjacent to 5 vertices in the variable gadget and to 2 vertices
from the black vertex gadget. ◀

3.3 Consequences and generalizations
We now generalize the result for unit d-interval graphs, with d ⩾ 2, which is not directly
implied in graph recognition problems, and for some specific cases of unit d-intervals.

▶ Corollary 21. (⋆) Recognizing unit d-interval graphs is NP-complete for every d ⩾ 2.

ISAAC 2023

8:16 Recognizing Unit Multiple Intervals Is Hard

▶ Corollary 22. (⋆) Recognizing (x, . . . , x) d-interval graphs is NP-complete for every x ⩾ 11
and every d ⩾ 2.

▶ Corollary 23. (⋆) Recognizing depth r unit d-interval graphs is NP-complete for every
r ⩾ 4 and every d ⩾ 2.

The following corollary is based on the Exponential Time Hypothesis (ETH). More details
on this notion that we are only touching here can be found in [9, Chapter 14].

▶ Corollary 24. (⋆) Unless the ETH fails, Unit d-interval recognition does not admit
an algorithm with running time 2o(|V |+|E|).

4 Concluding remarks

We have proven that recognizing unit d-interval graphs is NP-complete for any d ⩾ 2.
Furthermore, our reduction implies that recognizing (x, . . . , x) d-interval graphs for any
x ⩾ 11, and depth r unit d-interval graphs for any r ⩾ 4, is also hard. These results represent
a significant step towards settling the landscape of the complexity of the recognition of the
different subclasses of d-interval graphs.

However, some questions still remain open. Since we have shown that recognizing depth
4 unit d-interval graphs is NP-complete and it is known that the recognition of depth 2
unit d-interval graphs is polynomial-time solvable [18], it still remains to delineate the exact
boundary, i.e., study the case of depth 3 unit d-interval graphs. On the other hand, the
complexity of recognizing (x, . . . , x) d-interval graphs for x < 11 is also unknown. Finally,
we have obtained a lower bound for the running time of an algorithm for recognizing unit
2-intervals. Since the brute-force algorithm, running in O(2n2), is far from achieving it, it
would be interesting to reduce this gap.

References
1 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A unified

approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090,
2001. doi:10.1145/502102.502107.

2 Reuven Bar-Yehuda, Magnús M. Halldórsson, Joseph Naor, Hadas Shachnai, and Irina
Shapira. Scheduling Split Intervals. SIAM J. Comput., 36(1):1–15, 2006. doi:10.1137/
S0097539703437843.

3 Kenneth P. Bogart and Douglas B. West. A short proof that ’proper = unit’. Discret. Math.,
201(1-3):21–23, 1999. doi:10.1016/S0012-365X(98)00310-0.

4 Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

5 Ayelet Butman, Danny Hermelin, Moshe Lewenstein, and Dror Rawitz. Optimization problems
in multiple-interval graphs. ACM Trans. Algorithms, 6(2), 2010. doi:10.1145/1721837.
1721856.

6 Joel E. Cohen. Food Webs and Niche Space, volume 11 of Monographs in Population Biology.
Princeton University Press, 1978.

7 Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and recog-
nition of interval graphs. SIAM J. Discret. Math., 23(4):1905–1953, 2010. doi:10.1137/
S0895480100373455.

8 Margaret B. Cozzens. Higher and Multi-Dimensional Analogues of Interval Graphs. PhD
thesis, Rutgers University, 1982.

https://doi.org/10.1145/502102.502107
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1137/S0097539703437843
https://doi.org/10.1016/S0012-365X(98)00310-0
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1145/1721837.1721856
https://doi.org/10.1145/1721837.1721856
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455

V. Ardévol Martínez, R. Rizzi, F. Sikora, and S. Vialette 8:17

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the Parameterized Complexity of Multiple-Interval Graph Problems. Theor. Comput. Sci.,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

11 Michael R. Fellows, Jan Kratochvíl, Matthias Middendorf, and Frank Pfeiffer. The complexity
of induced minors and related problems. Algorithmica, 13(3):266–282, 1995. doi:10.1007/
BF01190507.

12 Peter C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets.
Wiley, 1985.

13 Mathew C. Francis, Daniel Gonçalves, and Pascal Ochem. The maximum clique problem in mul-
tiple interval graphs. Algorithmica, 71(4):812–836, 2015. doi:10.1007/s00453-013-9828-6.

14 Peter Frankl and Hiroshi Maehara. Open-interval graphs versus closed-interval graphs. Discret.
Math., 63(1):97–100, 1987. doi:10.1016/0012-365X(87)90156-7.

15 Philippe Gambette and Stéphane Vialette. On restrictions of balanced 2-interval graphs. In
Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors, Graph-Theoretic Concepts
in Computer Science, 33rd International Workshop, WG 2007, Dornburg, Germany, June
21-23, 2007. Revised Papers, volume 4769 of LNCS, pages 55–65. Springer, 2007. doi:
10.1007/978-3-540-74839-7_6.

16 Jerrold R. Griggs and Douglas B. West. Extremal values of the interval number of a graph.
SIAM J. Algebraic Discret. Methods, 1(1):1–7, 1980. doi:10.1137/0601001.

17 András Gyárfás and Douglas West. Multitrack interval graphs. Congressus Numerantium,
pages 109–116, 1995.

18 Minghui Jiang. Recognizing d-interval graphs and d-track interval graphs. Algorithmica,
66(3):541–563, 2013. doi:10.1007/s00453-012-9651-5.

19 Deborah Joseph, Joao Meidanis, and Prasoon Tiwari. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. In Otto Nurmi and Esko
Ukkonen, editors, Algorithm Theory - SWAT ’92, Third Scandinavian Workshop on Algorithm
Theory, Helsinki, Finland, July 8-10, 1992, Proceedings, volume 621 of LNCS, pages 326–337.
Springer, 1992. doi:10.1007/3-540-55706-7_29.

20 Jan Kratochvíl. A special planar satisfiability problem and a consequence of its NP-
completeness. Discret. Appl. Math., 52(3):233–252, 1994. doi:10.1016/0166-218X(94)
90143-0.

21 Cornelis Gerrit Lekkerkerker and Johan Ch. Boland. Representation of a finite graph by a set
of intervals on the real line. Fundamenta Mathematicae, 51:45–64, 1962.

22 Robert McGuigan. Presentation at NSF-CBMS Conference at Colby College, 1977.
23 Terry A McKee and Fred R McMorris. Topics in intersection graph theory. SIAM, 1999.
24 Dieter Rautenbach and Jayme L Szwarcfiter. Unit interval graphs of open and closed intervals.

J. Graph Theory, 72(4):418–429, 2013. doi:10.1002/jgt.21650.
25 Fred S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph Theory,

pages 139–146. Academic Press, NY, 1969.
26 Fred S. Roberts. On the boxicity and cubicity of a graph. In W. T. Tutte, editor, Recent

Progress in Combinatorics, pages 301–310. Academic Press, NY, 1969.
27 Fred S. Roberts. Graph theory and its applications to problems of society. SIAM, 1978.
28 Alexandre Simon. Algorithmic study of 2-interval graphs. Master’s thesis, Delft University of

Technology, 2021.
29 William T. Trotter and Frank Harary. On double and multiple interval graphs. J. Graph

Theory, 3(3):205–211, 1979. doi:10.1002/jgt.3190030302.
30 Stéphane Vialette. On the computational complexity of 2-interval pattern matching problems.

Theor. Comput. Sci., 312(2-3):223–249, 2004. doi:10.1016/j.tcs.2003.08.010.

ISAAC 2023

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/BF01190507
https://doi.org/10.1007/BF01190507
https://doi.org/10.1007/s00453-013-9828-6
https://doi.org/10.1016/0012-365X(87)90156-7
https://doi.org/10.1007/978-3-540-74839-7_6
https://doi.org/10.1007/978-3-540-74839-7_6
https://doi.org/10.1137/0601001
https://doi.org/10.1007/s00453-012-9651-5
https://doi.org/10.1007/3-540-55706-7_29
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1002/jgt.21650
https://doi.org/10.1002/jgt.3190030302
https://doi.org/10.1016/j.tcs.2003.08.010

8:18 Recognizing Unit Multiple Intervals Is Hard

31 Douglas B. West and David B. Shmoys. Recognizing graphs with fixed interval number is
NP-complete. Disrecte Appl. Math., 8:295–305, 1984. doi:10.1016/0166-218X(84)90127-6.

32 Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM Journal
on Algebraic Discrete Methods, 3(3):351–358, 1982.

33 Peisen Zhang, Eric A Schon, Stuart G Fischer, Eftihia Cayanis, Janie Weiss, Susan Kistler,
and Philip E Bourne. An algorithm based on graph theory for the assembly of contigs
in physical mapping of DNA. Comput. Appl. Biosci., 10(3):309–317, 1994. doi:10.1093/
bioinformatics/10.3.309.

https://doi.org/10.1016/0166-218X(84)90127-6
https://doi.org/10.1093/bioinformatics/10.3.309
https://doi.org/10.1093/bioinformatics/10.3.309

Non-Clairvoyant Makespan Minimization
Scheduling with Predictions
Evripidis Bampis #

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Alexander Kononov #

Sobolev Institute of Mathematics, Novosibirsk, Russia
Novosibirsk State University, Russia

Giorgio Lucarelli #

LCOMS, University of Lorraine, Metz, France

Fanny Pascual #

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract
We revisit the classical non-clairvoyant problem of scheduling a set of n jobs on a set of m parallel
identical machines where the processing time of a job is not known until the job finishes. Our
objective is the minimization of the makespan, i.e., the date at which the last job terminates its
execution. We adopt the framework of learning-augmented algorithms and we study the question of
whether (possibly erroneous) predictions may help design algorithms with a competitive ratio which
is good when the prediction is accurate (consistency), deteriorates gradually with respect to the
prediction error (smoothness), and not too bad and bounded when the prediction is arbitrarily bad
(robustness). We first consider the non-preemptive case and we devise lower bounds, as a function of
the error of the prediction, for any deterministic learning-augmented algorithm. Then we analyze a
variant of Longest Processing Time first (LP T) algorithm (with and without release dates) and we
prove that it is consistent, smooth, and robust. Furthermore, we study the preemptive case and we
provide lower bounds for any deterministic algorithm with predictions as a function of the prediction
error. Finally, we introduce a variant of the classical Round Robin algorithm (RR), the Predicted
Proportional Round Robin algorithm (P P RR), which we prove to be consistent, smooth and robust.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases scheduling, online, learning-augmented algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.9

Funding Evripidis Bampis: This work was partially supported by the French National Research
Agency (Algoridam ANR-19-CE48-0016).
Alexander Kononov: This research was carried out within the framework of the state contract of the
Sobolev Institute of Mathematics (project FWNF-2022-0019).

1 Introduction

We consider the problem of scheduling a set of n jobs on m identical machines so that the
makespan, i.e., the time when the last job completes its execution, to be minimized. This is
one of the most fundamental and well studied problems in scheduling [27, 34, 38]. We focus
on the online paradigm of unknown running times where the processing requirement of a job
is unknown until the end of its processing (see e.g. [38]), that is the non-clairvoyant setting.

The performance of an online algorithm in the competitive analysis framework is usually
evaluated using the competitive ratio [10, 40]. An online algorithm for a minimization problem
is ρ-competitive if for every instance of the problem, the value of the objective function of a
solution produced by the algorithm is at most ρ times the value of the objective function of an

© Evripidis Bampis, Alexander Kononov, Giorgio Lucarelli, and Fanny Pascual;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evripidis.bampis@lip6.fr
https://orcid.org/0000-0002-4498-3040
mailto:alvenko@mail.math.nsc.ru
https://orcid.org/0000-0001-6144-0251
mailto:giorgio.lucarelli@univ-lorraine.fr
https://orcid.org/0000-0001-7368-355X
mailto:fanny.pascual@lip6.fr
https://orcid.org/0000-0003-0215-409X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

optimal offline solution. The non-clairvoyant non-preemptive makespan minimization problem
on identical machines was the first scheduling problem, and perhaps the first optimization
problem, that has been studied using competitive analysis. In 1966, Graham [17] proved that
a simple deterministic greedy algorithm, the List Scheduling algorithm (LS), has a makespan
within a factor of (2 − 1/m) of the makespan of an optimal algorithm with no preemption
allowed. The analysis of Graham works also in the non-preemptive case where each job
has a release time as well as for the preemptive case, where the processing of any job may
be interrupted and resumed at a later time [17, 18]. Given that LS does not use the jobs’
processing times, it is also an online non-clairvoyant scheduling algorithm with competitive
ratio (2 − 1/m). Shmoys et al. [39] proved that the competitive ratio of any deterministic
online algorithm for the non-preemptive non-clairvoyant makespan minimization problem is
at least (2−1/m). They also proved that the same tight bound on the competitive ratio holds
in the preemptive case. These results showed that in the non-clairvoyant setting there is no
difference with respect to the competitive ratio between the preemptive and non-preemptive
variants of the makespan minimization problem.

Nevertheless, the assumption of the standard competitive analysis framework that no
information is available about the input instance is quite pessimistic. Given the success of
Machine Learning methods and Artificial Intelligence in the last years, predictions become
available for many optimization problems [2, 33, 44]. However, no guarantees are available
concerning the quality of the predictions and several works focus on the following question:
“For a given optimization problem and an (unreliable) prediction of the input, is it possible to
devise an algorithm with a performance guarantee that is good when the prediction is accurate
(consistency), deteriorates gracefully with respect to the prediction error (smoothness), and
not too bad and bounded when the prediction is arbitrarily bad (robustness)?” In this paper,
we propose to revisit the classical non-clairvoyant makespan minimization scheduling problem
in the context of the vibrant area of learning-augmented algorithms that has been formalized
in [29] by Lykouris and Vassilvitskii (see [1] for a list of papers in this area) focusing on low
complexity learning-augmented algorithms.

2 Further related works

Classical setting. The problem of minimizing the makespan of a schedule of a set of jobs is
one of the most fundamental and well studied problems in scheduling theory. As mentioned
earlier, Graham proved that LS is a (2 − 1

m)-approximate algorithm [17]. In [18], Graham
showed that if the list is ordered in the decreasing order of the processing times of the jobs,
then the Longest Processing Time first (LPT) algorithm is (4

3 − 1
3m)-approximate. Later

Coffman et al. [22] proposed a new algorithm, the MULTIFIT algorithm, which leverages
the bin packing problem. Improvements to the approximation ratio followed in the works
of Friesen [13] and Langston [24, 14]. For a fixed number of machines, a fully polynomial
time approximation scheme has been proposed in [37]. Hochbaum and Shmoys [20] proposed
a polynomial time approximation scheme for an arbitrary number of processors.For the
online (clairvoyant) case with release times, Chen and Vestjens [11] showed that LPT is
3
2 -competitive. When the preemption of jobs is allowed, a simple wrap-around algorithm has
been proposed by McNaughton for the offline case [30] which first computes a lower bound
of the optimal makespan and then determines a schedule matching this lower bound.

Learning-augmented setting. The framework of learning-augmented algorithms has been
formalized by Lykouris and Vassilvitskii [29]. A series of learning-augmented algorithms has
been proposed for various problems (see [31, 32]): caching [4, 29, 36, 42], ski-rental [3, 15, 35,

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:3

41], routing problems [8, 9, 12, 23], etc. In scheduling, learning-augmented algorithms have
been proposed for different criteria, e.g. for the average completion time [7, 21, 28, 35, 43] or
the energy consumption in the speed scaling setting [5, 6]. We focus here only on the related
work for makespan.

In [25], Lattanzi et al. studied the makespan minimization problem for scheduling a set
of jobs with restricted assignments where each job is characterized by a job-dependent subset
of the m available machines on which the job can be executed, as well as its processing time.
When job j arrives it must be immediately and irrevocably assigned to a machine. They
associate a weight to each machine and based on these weights they propose a prediction
model where the predicted quantity is the weight of each machine. By using a multiplicative
error measure, they show how to obtain a near optimal robust solution for the fractional
version based only on the weight-predictions, and use a randomized algorithm for rounding
the fractional assignments online with a polylogarithmic loss in the competitive ratio. In [26],
Lavastida et al. consider the fractional version of the restricted assignment problem and
they prove that the predictions used in [25] can be learned. Moreover, they showed that
the predictions are instance-robust. Zhao et al. [45] considered the preemptive-with-restarts
makespan minimization problem on a set of uniform parallel machines and they studied it in
a learning-augmented setting. They considered an input-prediction model, similar to the
one in [35], where for each job a prediction of its processing time is given in advance and
they proposed a learning-augmented algorithm with respect to the error prediction that is
consistent and robust.

3 Problem Definition, Notations and Preliminaries

In the classical makespan minimization scheduling problem [17], we are given a set J of n

jobs that have to be executed on a set of m parallel identical machines. The execution of
each job j ∈ J takes a processing time of xj time units, while it is available for execution
only after its release date rj . Let Cj be the completion time of a job j in a given schedule.
The objective is to minimize the completion time of the last job, also known as makespan
and denoted by Cmax = maxj{Cj}. We consider both the non-preemptive (Section 4) and
the preemptive case (Section 5).

In the non-clairvoyant setting, the real processing time (or real length) xj of each job
j ∈ J is not known in advance and it becomes known only when j completes its execution.
Here, we consider an input-prediction model where for each job j ∈ J a prediction of its
processing time is given, as it is the case in [21, 35, 45]. Let yj be the predicted processing
time (or predicted length) of a job j ∈ J . We consider the error measure used also in [45].

▶ Definition 1 (Prediction error, α). The error of the prediction for job j is defined as
αj = max{ xj

yj
,

yj

xj
} and the error of the prediction is α = maxj{aj}.

The prediction is perfect if α = 1, and in general α ≥ 1. For example, if α = 2 the
predicted processing time of a job cannot be more than twice its real processing time or less
than half its real processing time. We use the competitive analysis framework to evaluate the
performance of the algorithms and our aim is to express the competitive ratio as a function
of the prediction error in order to find a trade-off between consistency and robustness.

Given an algorithm A and an instance I, we denote by Cmax(A, I) the makespan obtained
by the algorithm A on the instance I. In a similar way, we denote by OPT (I) the makespan
obtained by the optimal solution on the instance I. Note that the same notation is used for
both the classical problem and the problem with predictions, while the optimal solution does
not depend on predictions in the latter one. In the case where the instance is clear by the
context, we simplify the above notations to Cmax(A) and OPT .

ISAAC 2023

9:4 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

Let I be an instance of the classical scheduling problem consisting of n jobs with processing
times set to be the real processing times (xj). Similarly, let Ip be an instance of the problem
consisting of the same n jobs with processing times set to be the predicted processing times
(yj). Since (i) the optimal makespan function is monotonic, (ii) the length of each job in Ip

is larger than or equal to 1
α its real length, and (iii) the length of each job in Ip is smaller

than or equal to α times its true length, then the following proposition directly follows.

▶ Proposition 2. 1
α OPT (Ip) ≤ OPT (I) ≤ αOPT (Ip)

Before continuing with the previously mentioned results, let us present the following
example.

▶ Observation 3. Consider the following example: we are given 2m − 1 jobs with predicted
lengths yj = 1 and m identical machines. Let x1 = x2 = . . . = xm−1 = m − 1, xm = . . . =
x2m−2 = 1, and x2m−1 = m be the real processing times of the jobs. Hence, α = m. For this
instance, an optimal solution which knows the real processing times xj , schedules the job
2m − 1 to a single machine and each of the m − 1 couples of jobs with processing times 1 and
m − 1 to the remaining m − 1 machines. Hence, OPT = m. However, any deterministic list
scheduling algorithm A (it does not leave any idle time before the starting time of the last
scheduled job) cannot take any scheduling decision since it does not know the real processing
times, while the known predicted processing times are all identical. Therefore, A is obliged to
create an arbitrary solution which in the worst case will be to schedule the jobs 1, 2, . . . , m−1
to the first m − 1 machines, the jobs m, m + 1, . . . , 2m − 2 to machine m, and finally the job
2m − 1 to any machine, leading to Cmax(A) = 2m − 1.

This example shows that any deterministic list scheduling algorithm is at least (2 − 1
m)-

competitive with predictions. Since any list scheduling algorithm is also at most (2 − 1
m)-

competitive, we cannot differentiate between different list scheduling algorithms without
taking into account some other parameter, such as the value α for example. In what follows,
we provide lower and upper bounds as a function of the value of α.

We now formally define the notions of consistency, smoothness and robustness as in [16].

▶ Definition 4 (Consistency, Smoothness, Robustness). An algorithm A is:
ρc-consistent, if it is ρc-competitive when the prediction is correct, i.e. α = 1.
ρs-smooth for a continuous function ρs(α), if it is ρs(α)-competitive, where α is the
prediction error.
ρr-robust, if it is ρr-competitive regardless of the prediction error.

3.1 Our contribution and articulation of the paper
We consider three variants of the problem of scheduling identical machines in the learning-
augmented setting. In many works in this area and especially in scheduling (see e.g. [6, 7,
28, 35]), it is common to combine two algorithms, a clairvoyant (assuming predictions to
be correct) for consistency and a non-clairvoyant algorithm for robustness. In this work,
we propose a single algorithm for each variant (one stone) that achieves simultaneously
consistency, smoothness and robustness (for many birds). In our work, we adapt and analyse
two among the most popular algorithms in scheduling, namely LPT and Round Robin (RR),
in the learning-augmented framework.

More precisely, for the non-preemptive variants (with and without release dates), we
exploit the classical result of Graham [17, 18] which states that LS is a non-clairvoyant
(2 − 1/m)-competitive algorithm. This allows us to devise learning-augmented algorithms

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:5

that use the predictions in order to create a priority list and then to apply LS. Note that
by using such an approach robustness comes for free. In the preemptive case, we devise a
new learning-augmented algorithm which is based on the predictions and whose smoothness
analysis shows that the competitive ratio gracefully deteriorates with respect to the prediction
error from 1 (consistency, when α = 1) to 2 − 1/m (robustness, when α → ∞). Recall, that
for the preemptive case the offline problem can be solved optimally [30] and that for the
non-clairvoyant setting, no deterministic algorithm is possible with competitive ratio better
than 2 − 1/m [39]. In addition, we provide lower bounds for both the non-preemptive and
the preemptive variants. Tables 1 and 2 summarize our results with respect to consistency,
robustness and smoothness.

The paper is articulated as follows. In Section 4.1, we prove lower bounds for any
deterministic learning-augmented algorithm for the identical machines non-clairvoyant non-
preemptive makespan minimization problem with predictions. Then, in Section 4.2, we
analyze a variant of LPT and we prove that it is consistent, smooth and robust. We
also study the non-preemptive problem with release dates and predictions, in Section 4.3,
and we show that the generalization of LPT in this setting is also consistent, smooth and
robust. Furthermore, we investigate the preemptive case with predictions and we provide
lower bounds for any deterministic learning-augmented algorithm as a function of the error
(Section 5.1), and then we introduce PPRR that we prove to be consistent, smooth and
robust (Section 5.2).

Table 1 Consistency, robustness guarantees.

Without Predictions With Predictions
Competitiveness Consistency Robustness

Lower Bounds Upper Bounds α = 1

Non-preemptive 2 − 1/m [39] 2 − 1/m [17] 4/3 2 − 1/m

Non-preemptive
with release dates 2 − 1/m [39] 2 − 1/m [17] 3/2 2 − 1/m

Preemptive 2 − 1/m [39] 2 − 1/m [17] 1 2 − 1/m

4 Non-preemptive Scheduling

In this section, we consider the case with no preemption allowed. We start with two generic
lower bounds that hold for any deterministic algorithm, and then we propose and analyze a
learning-augmented algorithm based on an adaptation of LPT .

4.1 Lower Bounds
▶ Proposition 5. If 1 ≤ α <

√
2, there is no deterministic non-clairvoyant algorithm with

predictions for scheduling identical machines, with no preemption allowed, which has a
competitive ratio smaller than 1

2 + α2

2 .

Proof. Consider the following instance: m machines, one job of real length α, and m jobs of
real length 1

α . All jobs have predicted length 1. The minimal makespan of a schedule of this
instance is OPT = max{α, 2

α } = 2
α since α <

√
2.

ISAAC 2023

9:6 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

Table 2 Smoothness guarantees.

Smoothness
Lower Bounds Upper Bounds

If 1 ≤ α <
√

2
Non-preemptive 1

2 + α2

2
min{ 2(α2+1)

3 , 1 + α2

2 (1 − 1
m

), 2 − 1
m

}

Non-preemptive If α ≥
√

2
with release dates 1 + 1

⌊α2⌋

⌊
⌊α2⌋(m−1)

m

⌋ 1 + min{1, α2

2 }

Preemptive

m−1
m

+ 1 − 1
α2

2 − α2+m−2
α2m−1

If α <
√

2
mα2+m−1
α2+2(m−1)

If α ≥
√

2
m−1

m
+ 1

m⌊α2⌋ + 1 − 1
⌊α2⌋

Consider a deterministic algorithm A, and let J be the job scheduled in the last position.
Let us assume that J is the job with real processing time α. Therefore, job J starts at a time
larger than or equal to 1

α , and the completion time of J is thus at least 1
α + α. Therefore,

the competitive ratio of A is at least 1/α+α
2/α = 1

2 + α2

2 . ◀

▶ Proposition 6. If α ≥
√

2, there is no deterministic non-clairvoyant algorithm with
predictions for scheduling identical machines, with no preemption allowed, which has a
competitive ratio smaller than 1 + 1

⌊α2⌋

⌊
⌊α2⌋(m−1)

m

⌋
.

Proof. Consider the following instance : m machines, one job of real length α, and (m−1)⌊α2⌋
jobs of real length α

⌊α2⌋ . The optimal makespan of such an instance is OPT = α. Let us
assume that the predicted length of all the jobs is 1.

Consider a deterministic algorithm A, and let J be the last job to be started in the
schedule returned by A. Let us assume that J is the job of real length α. Since J is the last
job to be scheduled, it starts at the earliest at time

⌊
(m−1)⌊α2⌋

m

⌋
× α

⌊α2⌋ . Its completion time

is thus at least
⌊

(m−1)⌊α2⌋
m

⌋
× α

⌊α2⌋ + α. Since OPT = α, the competitive ratio of A is larger

than or equal to 1 + 1
⌊α2⌋

⌊
⌊α2⌋(m−1)

m

⌋
. ◀

4.2 Common Release Dates
In the case where all jobs are released at time zero, our algorithm works as follows: consider
the jobs in non-increasing order of their predicted processing times, i.e. y1 ≥ y2 ≥ . . . ≥ yn.
Then, whenever a machine becomes idle, assign to it and schedule non-preemptively the next
job according to this order. We call this algorithm the Longest Predicted Processing Time
algorithm (LPPT). Note that each job j finishes xj units of time after its starting time,
while the scheduling decisions are taken based only on the predicted processing times.

In what follows, we establish the following result.

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:7

▶ Theorem 7 (Consistency, Smoothness and Robustness). LPPT is a non-clairvoyant al-
gorithm with predictions for scheduling identical machines, with no preemption allowed, that
achieves a competitive ratio of

min{2(α2 + 1)
3 , 1 + α2

2 (1 − 1
m

), 2 − 1
m

}.

Proof. We first give a simple analysis of LPPT for any α ≥ 1.

▶ Lemma 8. LPPT is a non-clairvoyant algorithm with predictions for scheduling identical
machines, with no preemption allowed, that achieves a competitive ratio of

1 + min{1,
α2

2 }(1 − 1
m

).

Proof. Let us consider the schedule returned by LPPT on a given instance I. We assume
that the jobs are indexed with respect to the LPPT order, that is in non-increasing order of
their predicted processing times: y1 ≥ y2 ≥ · · · ≥ yn. Let t be a job which is completed last
(i.e. Ct = Cmax(LPPT)). We now consider two cases.

Case 1: yt >
OP T (Ip)

2 . In this case t ≤ m and the job t is alone on its machine, and
starts at time 0, since otherwise there will be a machine in OPT (Ip) executing two jobs
of processing times strictly greater than OP T (Ip)

2 , which is a contradiction to the value of
OPT (Ip). Therefore, Cmax = xt, and the schedule is optimal (indeed OPT (I) ≥ xt).

Case 2: yt ≤ OP T (Ip)
2 . By the definition of α, we have that xt ≤ αyt ≤ α

OP T (Ip)
2 ≤

α2 OP T (I)
2 , where the last inequality holds by Proposition 2. Let st be the time at which

job t starts to be scheduled. Until st, all the machines are busy: this date is thus at

most
∑

j ̸=t
xj

m . Since Cmax(LPPT) = st + xt, we have: Cmax(LPPT) ≤
∑

j ̸=t
xj

m + xt =∑
j

xj

m − xt

m + xt. Since OPT (I) ≥
∑

j
xj

m and xt ≤ min{ α2OP T (I)
2 , OPT (I)}, we get:

Cmax(LPPT) ≤ (1 + min{1, α2

2 }(1 − 1
m))OPT (I). ◀

Note, this bound is better than 2 when α <
√

2. Moreover, when the predictions are
correct i.e. when α = 1, it is 3

2 − 1
2m (whereas LPT is (4

3 − 1
3m)-approximate).

We give a better analysis of the LPPT algorithm when α <
√

2.

▶ Lemma 9. When α <
√

2, LPPT is a non-clairvoyant algorithm with predictions for
scheduling identical machines, with no preemption allowed, that achieves a competitive ratio
of 2(α2+1)

3 .

Proof. Let us consider the schedule returned by LPPT on a given instance I. We assume
that the jobs are indexed with respect to the LPPT order, that is in non-increasing order of
their predicted processing times: y1 ≥ y2 ≥ · · · ≥ yn. Let t be a job which is completed last
(i.e. Ct = Cmax(LPPT)). We now consider two cases.

Case 1: yt >
OP T (Ip)

3 . If t ≤ m, then the job t is alone on its machine, and starts at
time 0. Therefore, Cmax(LPPT) = xt, and the schedule is optimal (indeed OPT (I) ≥ xt).
Note also that t ≤ 2m, since otherwise there will be a machine in OPT (Ip) executing three
jobs of processing times strictly greater than OP T (Ip)

3 , which is a contradiction to the value of
OPT (Ip). Moreover, we can ignore the jobs t + 1, t + 2, . . . , n, since the makespan of LPPT

is not affected by their removal, while the optimal can only decrease. In what follows in this
case, we assume that the instance is reduced to contain only the jobs 1, 2, . . . , t.

ISAAC 2023

9:8 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

We next transform the reduced instance I to a new instance I ′ as follows:
For j = 1, 2, . . . , m, we set x′

j = αxj .
For j = m + 1, m + 2, . . . , t, we set

x′
j = xj

α , if xj > yj , and
x′

j = xj , otherwise.
Recall that we have yj

α ≤ xj ≤ αyj . So, we get x′
j = αxj ≥ yj , for all j = 1, 2, . . . , m, as well

as, x′
j ≤ yj , for all j = m + 1, m + 2, . . . , t. It follows that x′

j ≥ x′
j′ for any pair j, j′ such

that j ≤ m and j′ ≥ m + 1.
Next, we further modify the instance I ′ to obtain the instance Ī.
For j = 1, 2, . . . , m, we set x̄j = x′

j .
For the remaining jobs, we initialize µ = m. In an iterative way and while µ < t, we
search for the job k = argmaxµ+1≤j≤tx

′
j . Then, for j = µ+1, µ+2, . . . , k, we set x̄j = x′

k.
We reset µ = k and pass to the next iteration.

▶ Property 1. Consider a reduced instance I and the corresponding transformed instance Ī.
Then, the following properties hold.
(1) For j = m + 1, m + 2, . . . , t, we have that x̄j ≤ αxj.
(2) x̄m+1 ≥ x̄m+2 ≥ · · · ≥ x̄t.
(3) For any pair j, j′ such that j ≤ m and j′ ≥ m + 1, we have that x̄j ≥ x̄j′ .

Recall that, without loss of generality, we assumed that the instance I is reduced in the
first t jobs in non-increasing order of predicted processing times and that t ≤ 2m. Based on
this, we define the algorithm LPPT2 which works like LPPT under the constraint that each
machine can execute at most two jobs. It is clear that

Cmax(LPPT, I) ≤ Cmax(LPPT2, I) (1)

Similarly, we define the algorithm LPT2 which works like LPT under the constraint that
each machine can execute at most two jobs.

▷ Claim 10. Cmax(LPPT2, I) ≤ α2+1
2α Cmax(LPT2, Ī).

▷ Claim 11. Cmax(LPT2, Ī) ≤ 4
3 OPT (Ī).

▷ Claim 12. OPT (Ī) ≤ αOPT (I).

By combining Equation 1 and Claims 10, 11, 12, we get:

Cmax(LPPT, I) ≤ Cmax(LPPT2, I) ≤ α2 + 1
2α

Cmax(LPT2, Ī)

≤ 2(α2 + 1)
3α

OPT (Ī) ≤ 2(α2 + 1)
3 OPT (I).

Case 2: yt ≤ OP T (Ip)
3 . By the definition of α, we have that xt ≤ αyt ≤ α

OP T (Ip)
3 ≤

α2 OP T (I)
3 , where the last inequality holds by Proposition 2. Let st be the time at which job t

starts to be scheduled. Until st, all the machines are busy: this date is thus at most
∑

j ̸=t
xj

m .

Since Cmax(LPPT) = st + xt, we have: Cmax(LPPT) ≤
∑

j ̸=t
xj

m + xt =
∑

j
xj

m − xt

m + xt.

Since OPT (I) ≥
∑

j
xj

m we get:

Cmax(LPPT) ≤ 1 + α2

3 (1 − 1
m

)OPT (I) ≤ 2(α2 + 1)
3 ◀

Lemmas 8 and 9 imply Theorem 7. ◀

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:9

▶ Remark 13. For example, if m = 5 we have the competitive ratio of 2(α2+1)
3 for α ∈ [1,

√
5
4],

1 + α2

2 (1 − 1
m) for α ∈ [

√
5
4 ,

√
2], and 9

5 for α >
√

2.

4.3 Arbitrary Release Dates
In the case where the jobs have arbitrary release dates, then the algorithm chooses the next
available job to assign to an idle machine, that is a job which is already released but not yet
scheduled. We call this algorithm the Longest Predicted Processing Time with Release dates
algorithm (LPPTR). Here also, each job j finishes xj units of time after its starting time,
while the scheduling decisions are taken based only on the predicted processing times.

▶ Theorem 14 (Consistency and Smoothness). LPPTR is a non-clairvoyant algorithm with
predictions for scheduling identical machines, with release dates and no preemption allowed,
that achieves a competitive ratio of 1 + min{1, α2

2 }.

Proof. Let l be a job that is completed last. Let rl be the release date of job l. If sl = rl we
have an optimal schedule.

Case 1: yl >
OP T (Ip)

2 . In the interval between rl and sl, no more than one other
job is performed. Let J(rl) be a set of jobs that were performed immediately after the
moment of time rl. Let Y = minj∈J(rl) yj . At most m jobs have a processing time greater
than OP T (Ip)

2 . Thus, Y ≤ OP T (Ip)
2 . Hence, sl − rl ≤ Y ≤ OP T (Ip)

2 ≤ α2OP T
2 . So, we get

Cmax = sl + xl = sl − rl + rl + xl = OPT + α2OP T
2 = OPT (1 + α2

2).

Case 2: yl ≤ OP T (Ip)
2 . Since OPT (Ip) ≤ αOPT , we have xl ≤ αyl ≤ α

OP T (Ip)
2 ≤ α2 OP T

2 .
Assume that we have an instance in which Cmax > OPT (1 + α2

2). Since Cmax = sl + xl, and
since OPT ≥ rl + xl, we have:

OPT (1 + α2

2) < sl + xl = sl − rl + rl + xl ≤ sl − rl + OPT.

We get that sl − rl > α2OP T
2 . Let [ts, tf] be the last non-empty interval of idle time

before the job l begins processing. If such an interval does not exist, then all machines would
be busy up to time sl and OPT > sl. Then, Cmax = sl + xl < OPT + α2OP T

2 which is a
contradiction, so there exists at least a non-empty interval of idle time before that job l

begins.

▶ Lemma 15. In the LPPTR schedule, some jobs begin at or before ts and complete at or
after tf .

▶ Lemma 16. Let tf be the latest point before rl that some machine is idle. Then xl ≤
α2OP T

2 − tf

2 .

Additionally we have OPT ≥ sl − tf

2 (see Formula (1.10) in Hochbaum’s book [19]). The
proof is based on the Lemma 15 and the properties of greedy schedules. Finally, we get
Cmax = sl + xl ≤ sl + α2OP T

2 − tf

2 ≤ OPT (1 + α2

2), contradicting the original assumption on
Cmax. The first inequality follows from Lemma 16. ◀

▶ Remark 17. The fact that LPPTR is (2 − 1/m)-robust comes for free from [17, 18] since
it is a list scheduling algorithm.

ISAAC 2023

9:10 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

5 Preemptive Scheduling

In this section, we consider the preemptive case and we assume that all jobs and the
predictions of their processing times are available at time zero.

5.1 Lower bounds
▶ Proposition 18. If α ≥

√
2, there is no deterministic non-clairvoyant algorithm with

predictions for scheduling identical machines, with preemption allowed, which has a competitive
ratio smaller than m−1

m + 1
m⌊α2⌋ + 1 − 1

⌊α2⌋ .

▶ Proposition 19. There is no deterministic non-clairvoyant algorithm with predictions for
scheduling identical machines, with preemption allowed, which has a competitive ratio smaller
than m−1

m + 1 − 1
α2 .

▶ Proposition 20. If α <
√

2, there is no deterministic non-clairvoyant algorithm with
predictions for scheduling identical machines, with preemption allowed, which has a competitive
ratio smaller than mα2+m−1

α2+2(m−1) .

5.2 Competitive Algorithm
For this variant, we propose the Predicted Proportional Round Robin (PPRR) algorithm
which, at each time instant, shares the processing power of the machines to the uncompleted
jobs proportionally to their predicted processing times. More specifically, consider a time
t. PPRR considers the uncompleted jobs at t in non-increasing order of their predicted
processing times, i.e. y1 ≥ y2 ≥ . . . ≥ yk, where k is the number of uncompleted jobs at
t. We say that a job i is mandatory at time t if yi(m − i) ≥

∑k
j=i+1 yj . Each mandatory

job is executed alone in a separate machine. Let r be the number of mandatory jobs at
time t. Then, a non-mandatory job j at t is executed with speed m−r∑k

ℓ=r+1
yℓ

yj . That is, the

non-mandatory jobs are executed at a rate proportional to their predicted processing times.
Note that, if k > m, then the number of mandatory jobs at t does not exceed m − 1,

while if k ≤ m, then all k jobs are mandatory. Moreover, we need to recompute the set of
mandatory jobs and the speeds of non-mandatory jobs only at time instants corresponding
either to the begin of the schedule or to a completion time of a job.

The following lemma shows intuitively that, at a given time t where the total predicted
processing time is fixed, the presence of mandatory jobs speeds up the execution of non
mandatory jobs.

▶ Lemma 21. Let ϕ(i) = m−i∑k

ℓ=i+1
yℓ

. Consider a r such that yi(m − i) ≥
∑k

j=i+1 yj, for

each i = 1, 2, . . . , r. For each i, 1 ≤ i ≤ r, it holds that ϕ(i − 1) ≤ ϕ(i).

Let us now present some interesting properties of the solution obtained by the PPRR

algorithm.

▶ Property 2.
(1) The execution speed of each job can be only increased by the time.
(2) If a job becomes mandatory at a time t, then it remains mandatory until its completion.
(3) If a job i is mandatory at time t, then any job j such that j < i (yj ≥ yi) is also

mandatory.
(4) If two jobs i and j do not become mandatory during their execution and yi/xi > yj/xj,

then the job i is completed before the job j.

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:11

(5) If two jobs do not become mandatory during their execution and have the same prediction
error α, then they are completed simultaneously.

(6) If the prediction is accurate or all jobs have the same prediction error then PPRR is
optimal.

▶ Theorem 22 (Consistency, Smoothness, Robustness). PPRR is a non-clairvoyant algorithm
with predictions for scheduling identical machines, with preemption allowed, that achieves a
competitive ratio of 2 − α2+m−2

α2m−1 . (Hence, PPRR is 1-consistent and (2 − 1
m)-robust.)

Proof. In a schedule constructed by an algorithm A, we call the job i critical if Ci = Cmax(A).
We assume, without loss of generality, that in an optimal schedule, all jobs are completed
simultaneously. Indeed, even if this is not the case, then a critical job, say i, is mandatory
from time 0 to OPT = xi. Let X =

∑
j xj . We have xi > X

m . We add jobs with a total
processing time of mxi − X. The value of the optimum will not change, and the solution
of the algorithm with an incorrect prediction can only worsen. Henceforth, we assume that
OPT = X/m and in the optimal schedule, all jobs are completed simultaneously.

Let σ∗ be an optimal schedule, and σ be the schedule obtained by the algorithm PPRR.
Moreover, let sj(t) be the processing speed of a job j at time t in σ. We denote by
xj(τ) the total execution time of the job j during the interval [0, τ] in σ. In other words,
xj(τ) =

∫ τ

0 sj(t)dt. Let s̃j(τ)) be the average speed of the job j in the interval [0, τ] in σ,
i.e., s̃j(τ) = xj(τ)/τ .

Let job c be the critical job in σ, i.e. Cc = Cmax(PPRR). Assume that c becomes
mandatory at time τc in σ. We have

Cmax(PPRR) = Cc = τc + xc − xc(τc) = τc + xc − s̃c(τc) · τc (2)

Note that all machines work without any idle time during the interval [0, τc] in σ. It follows
that mτc ≤ X − (xc − s̃c(τc)τc), where X =

∑
j xj . Hence, τc ≤ X−xc

m−s̃c(τc) and by substituting
τc in (2), we get

Cmax(PPRR) ≤ (X − xc)(1 − s̃c(τc))
m − s̃c(τc) + xc (3)

Consider the right-hand side of the expression (3) as a function h of s = s̃c(τc). Then, we
have

h′(s) = (X − xc) · −(m − s) + (1 − s)
(m − s)2 = (X − xc)(1 − m)

(m − s)2 < 0

Thus, h(s) reaches a maximum when s = s̃c(τc) is as small as possible.
In order to get a lower bound to s̃c(τc), observe that sc(0) = min{1, m−r∑n

ℓ=r+1
yℓ

yc}, where

r is the number of mandatory jobs at time 0. If sc(0) = 1, then the job c is mandatory
starting from time 0, and hence Cmax(PPRR) = xc and PPRR is optimal. In what follows
in this proof we consider that sc(0) = m−r∑n

ℓ=r+1
yℓ

yc. By Lemma 21, we get

sc(0) = m − r∑n
ℓ=r+1 yℓ

yc ≥ m − 0∑n
ℓ=0+1 yℓ

yc = m∑n
ℓ=1 yℓ

yc = myc

Y

where Y =
∑n

ℓ=1 yℓ. By the definition of α, we have that yc ≥ xc

α and αX > Y . So, it holds
that sc(0) ≥ mxc

α2X . From Property 2(1) of the PPRR algorithm, we have that sc(0) ≤ sc(t)
for all t ∈ [0, τc]. Then, it follows that

s̃c(τc) ≥ mxc

α2X
(4)

ISAAC 2023

9:12 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

By using Equation (4) as a lower bound on s̃c(τc) and replacing it in Equation (3) we get

Cmax(PPRR) ≤
(X − xc)(1 − mxc

α2X)
m − mxc

α2X

+ xc = (X − xc)(α2X − mxc)
α2mX − mxc

+ xc

= α2X2 − mXxc − α2Xxc + mx2
c + α2mXxc − mx2

c

α2mX − mxc

= α2X2 − mXxc − α2Xxc + α2mXxc

α2mX − mxc
(5)

Note that m and α are constants. Fix X and consider the right-hand side of the expression (5)
as a function f(xc). We have

f ′(xc) = (α2mX − α2X − mX)(α2mX − mxc) + m(α2X2 − mXxc − α2Xxc + α2mXxc)
(α2mX − mxc)2

= α2mX2(α2(m − 1) − (m − 1))
(α2mX − mxc)2 = α2mX2(α2 − 1)(m − 1)

(α2mX − mxc)2 ≥ 0

Thus, f(xc) reaches a maximum when xc is as large as possible. By our initial observation,
we have that xc ≤ X/m and by replacing in Equation (5) we get

Cmax(PPRR) ≤ α2X2 − X2 − α2X2/m + α2X2

α2mX − X

Observe that in an optimal schedule the total execution load is equally partitioned to all
machines, and hence OPT ≥ X

m . Therefore, for the competitive ratio ρ of PPRR we have

ρ ≤ α2X2 − X2 − α2X2/m + α2X2

α2X2 − X2/m
= 2α2m − m − α2

α2m − 1 = 2 − α2 + m − 2
α2m − 1 .

The consistency (resp. robustness) ratio is achieved by replacing α = 1 (resp. taking the
bound when α −→ ∞). ◀

Figure 1 shows the competitive ratio of algorithm PPRR as well as lower bounds on the
ratio of any deterministic preemptive algorithm. As we can see, lower bounds and upper
bounds are quite close, and get closer when m increases.

1.5 2 2.5 3

1.1

1.2

1.3

1.4

α

ra
tio

1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

α

ra
tio

Figure 1 In blue: competitive ratio of algorithm PPRR as a function of α (x axis). In green and
red: lower bounds on the competitive ratio of a deterministic algorithm with preemption. In red:
lower bound given by Proposition 18. Left (resp. Right): ratio when m = 2 (resp. m = 50). On the
left, in green: lower bound given by Proposition 20 (the bound of Proposition 19 is not drawn here
since when m = 2, it is lower than the other lower bounds). On the right, in green: lower bound
given by Proposition 19 (the bound of Proposition 20 is not drawn here since when m = 50, it is
lower than the other lower bounds).

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:13

References
1 https://algorithms-with-predictions.github.io.
2 Maryam Amiri and Leili Mohammad Khanli. Survey on prediction models of applications for

resources provisioning in cloud. J. Netw. Comput. Appl., 82:93–113, 2017.
3 Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault.

Online computation with untrusted advice. In ITCS, 2020.
4 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.

Online metric algorithms with untrusted predictions. In ICML, 2020.
5 Antonios Antoniadis, Peyman Jabbarzade Ganje, and Golnoosh Shahkarami. A novel prediction

setup for online speed-scaling. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn,
Faroe Islands, volume 227 of LIPIcs, pages 9:1–9:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

6 Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In NeurIPS, 2020.

7 Evripidis Bampis, Konstantinos Dogeas, Alexander V. Kononov, Giorgio Lucarelli, and Fanny
Pascual. Scheduling with untrusted predictions. In Luc De Raedt, editor, Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, pages 4581–4587. ijcai.org, 2022.

8 Evripidis Bampis, Bruno Escoffier, Themis Gouleakis, Niklas Hahn, Kostas Lakis, Golnoosh
Shahkarami, and Michalis Xefteris. Learning-augmented online TSP on rings, trees, flowers
and (almost) everywhere else. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi,
and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023,
September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 12:1–12:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ESA.2023.12.

9 Evripidis Bampis, Bruno Escoffier, and Michalis Xefteris. Canadian traveller problem with pre-
dictions. In Parinya Chalermsook and Bundit Laekhanukit, editors, Approximation and Online
Algorithms, pages 116–133. Springer International Publishing, 2022.

10 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

11 Bo Chen and Arjen P.A. Vestjens. Scheduling on identical machines: How good is lpt in an
on-line setting? Operations Research Letters, 21(4):165–169, 1997.

12 Franziska Eberle, Alexander Lindermayr, Nicole Megow, Lukas Nölke, and Jens Schlöter.
Robustification of online graph exploration methods. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(9):9732–9740, June 2022.

13 Donald K. Friesen. Tighter bounds for the multifit processor scheduling algorithm. SIAM J.
Comput., 13(1):170–181, 1984.

14 Donald K. Friesen and Michael A. Langston. Evaluation of a multifit-based scheduling
algorithm. J. Algorithms, 7(1):35–59, 1986.

15 Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In ICML, 2019.

16 Themis Gouleakis, Konstantinos Lakis, and Golnoosh Shahkarami. Learning-Augmented
Algorithms for Online TSP on the Line. To appear in AAAI, 2023. CoRR abs/2206.00655.

17 Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J.,
45(9):1563–1581, 1966.

18 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

19 Dorit S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing, 1997.
20 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling

on uniform processors: Using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988.

ISAAC 2023

https://algorithms-with-predictions.github.io
https://doi.org/10.4230/LIPIcs.ESA.2023.12

9:14 Non-Clairvoyant Makespan Minimization Scheduling with Predictions

21 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In SPAA, pages 285–294. ACM, 2021.

22 Edward G. Coffman Jr., M. R. Garey, and David S. Johnson. An application of bin-packing
to multiprocessor scheduling. SIAM J. Comput., 7(1):1–17, 1978.

23 Murali Kodialam and T. V. Lakshman. Prediction augmented segment routing. In 2021 IEEE
22nd International Conference on High Performance Switching and Routing (HPSR), pages
1–6, 2021.

24 M.A. Langston. A. Processors cheduling with improved heuristic algorithms. Doctoral disserta-
tion,. PhD thesis, Texas A&M Univ., College Station, Tex., 1981.

25 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In SODA, pages 1859–1877. SIAM, 2020.

26 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing. In Petra Mutzel, Rasmus
Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA
2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs,
pages 59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

27 Joseph Leung, Laurie Kelly, and James H. Anderson. Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. CRC Press, Inc., USA, 2004.

28 Alexander Lindermayr and Nicole Megow. Permutation predictions for non-clairvoyant
scheduling. In Kunal Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM
Symposium on Parallelism in Algorithms and Architectures, Philadelphia, PA, USA, July 11 -
14, 2022, pages 357–368. ACM, 2022.

29 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In ICML, volume 80 of Proceedings of Machine Learning Research, pages 3302–3311. PMLR,
2018.

30 Robert McNaughton. Scheduling with deadlines and loss functions. Management Science,
6(1):1–12, 1959.

31 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Beyond Worst
Case Analysis, pages 646–662. Cambridge University Press, 2021.

32 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications
of the ACM, 65(7):33–35, 2022.

33 Narges Peyravi and Ali Moeini. Estimating runtime of a job in hadoop mapreduce. Journal
of Big Data, 7(: 44), 2020.

34 Kirk Pruhs, Jirí Sgall, and Eric Torng. Online scheduling. In Joseph Y.-T. Leung, editor,
Handbook of Scheduling - Algorithms, Models, and Performance Analysis. Chapman and
Hall/CRC, 2004.

35 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml
predictions. In NeurIPS, 2018.

36 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
SODA, 2020.

37 Sartaj Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127, 1976.
38 Jirí Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online Algorithms:

The State of the Art, pages 196–231. Springer, 1998.
39 David B. Shmoys, Joel Wein, and David P. Williamson. Scheduling parallel machines on-line.

SIAM J. Comput., 24(6):1313–1331, 1995.
40 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and

paging rules. Commun. ACM, 28(2):202–208, 1985.
41 Shufan Wang and Jian Li. Online algorithms for multi-shop ski rental with machine learned

predictions. In AAMAS, 2020.
42 Alexander Wei. Better and simpler learning-augmented online caching. In APPROX/RANDOM,

2020.

E. Bampis, A. Kononov, G. Lucarelli, and F. Pascual 9:15

43 Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. In NeurIPS, 2020.

44 Hirochika Yamashiro and Hirofumi Nonaka. Estimation of processing time using machine learn-
ing and real factory data for optimization of parallel machine scheduling problem. Operations
Research Perspectives, 8(: 100196), 2021.

45 Tianming Zhao, Wei Li, and Albert Y. Zomaya. Uniform machine scheduling with predictions.
In Akshat Kumar, Sylvie Thiébaux, Pradeep Varakantham, and William Yeoh, editors, Pro-
ceedings of the Thirty-Second International Conference on Automated Planning and Scheduling,
ICAPS 2022, Singapore (virtual), June 13-24, 2022, pages 413–422. AAAI Press, 2022.

ISAAC 2023

Small-Space Algorithms for the Online Language
Distance Problem for Palindromes and Squares
Gabriel Bathie #

DIENS, École normale supérieure de Paris, PSL Research University, France
LaBRI, Université de Bordeaux, France

Tomasz Kociumaka #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Tatiana Starikovskaya #

DIENS, École normale supérieure de Paris, PSL Research University, France

Abstract
We study the online variant of the language distance problem for two classical formal languages, the
language of palindromes and the language of squares, and for the two most fundamental distances,
the Hamming distance and the edit (Levenshtein) distance. In this problem, defined for a fixed
formal language L, we are given a string T of length n, and the task is to compute the minimal
distance to L from every prefix of T . We focus on the low-distance regime, where one must compute
only the distances smaller than a given threshold k. In this work, our contribution is twofold:
1. First, we show streaming algorithms, which access the input string T only through a single

left-to-right scan. Both for palindromes and squares, our algorithms use O(k polylog n) space
and time per character in the Hamming-distance case and O(k2 polylog n) space and time per
character in the edit-distance case. These algorithms are randomised by necessity, and they err
with probability inverse-polynomial in n.

2. Second, we show deterministic read-only online algorithms, which are also provided with read-only
random access to the already processed characters of T . Both for palindromes and squares,
our algorithms use O(k polylog n) space and time per character in the Hamming-distance case
and O(k4 polylog n) space and amortised time per character in the edit-distance case.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Pattern matching

Keywords and phrases Approximate pattern matching, streaming algorithms, palindromes, squares

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.10

Related Version Full Version with Details for the Edit Distance Algorithms:
https://arxiv.org/abs/2309.14788

Funding Partially funded by the grant ANR-20-CE48-0001 from the French National Research
Agency.

1 Introduction

The language distance problem is one of the most fundamental problems in formal language
theory. In this problem, the task is to compute the minimal distance between a given string S

and any string belonging to a formal language L. Introduced in the early 1970s by Aho and
Peterson [2], the language distance problem has been studied extensively for regular languages
under Hamming and edit distances [5], for general context-free languages, mainly focusing on
the edit distance [1, 2, 8, 10, 25, 27, 29, 32, 33, 34], and the Dyck language (the language of
well-nested parentheses sequences) in particular [1, 4, 8, 10, 12, 13, 15, 22, 23, 31, 32, 33].

© Gabriel Bathie, Tomasz Kociumaka, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 10; pp. 10:1–10:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabriel.bathie@gmail.com
https://orcid.org/0000-0003-2400-4914
mailto:tomasz.kociumaka@mpi-inf.mpg.de
https://orcid.org/0000-0002-2477-1702
mailto:tat.starikovskaya@gmail.com
https://orcid.org/0000-0002-7193-9432
https://doi.org/10.4230/LIPIcs.ISAAC.2023.10
https://arxiv.org/abs/2309.14788
https://arxiv.org/abs/2309.14788
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Online Language Distance Problem for Palindromes and Squares

Our results. In this work, we study the complexity of the online and low-distance version
of the language distance problem, where we are given a string T of length n, and the task is
to compute the minimal distance from every prefix of T to a formal language L (the distance
and the language are specified in the problem definition). We focus on the low-distance
regime, i.e., we assume to be given a threshold parameter k such that distances larger than k

do not need to be computed. We consider the edit distance (defined as the minimum number
of character insertions, deletions, and substitutions needed to transform one string into the
other) and, as a preliminary step, the Hamming distance (allowing for substitutions only).
We study the problem for two classical languages: the language PAL of all palindromes,
where a palindrome is a string that is equal to its reversed copy, and the language SQ
of all squares, where a square is the concatenation of two copies of a string. These two
languages are very similar yet very different in nature: PAL is not regular but is context-free,
whereas SQ is not even context-free. Formally, the problems we consider are defined as
follows:

▶ Problem 1.1. k-LHD-PAL (resp. k-LHD-SQ)
Input: A string T of length n and a positive integer k.
Output: For each 1 ≤ i ≤ n, report min{k + 1, hdi}, where hdi is the minimum Hamming
distance between T [1. .i] and a string in PAL (resp. in SQ).

▶ Problem 1.2. k-LED-PAL (resp. k-LED-SQ)
Input: A string T of length n and a positive integer k.
Output: For each 1 ≤ i ≤ n, report min{k + 1, edi}, where edi is the minimum edit distance
between T [1. .i] and a string in PAL (resp. in SQ).

Table 1 Summary of the complexities of the algorithms introduced in this work.

Problem Model Time per character Space complexity Reference

k-LHD-PAL Streaming O(k log3 n) O(k log n) Thm 3.2
k-LHD-SQ Streaming Õ(k) O(k log2 n) Thm 3.3
k-LHD-PAL/SQ Read-only O(k log n) O(k log n) Thms 4.8 and 4.10
k-LED-PAL/SQ Streaming Õ(k2) Õ(k2) Thms 5.1 and 5.2
k-LED-PAL/SQ Read-only Õ(k4) (amortised) Õ(k4) Thms 5.3 and 5.4

Amir and Porat [3] showed that there is a randomised streaming algorithm that solves the
k-LHD-PAL problem in Õ(k) space and Õ(k2) time per input character.1 We continue their
line of research and show streaming algorithms for all four problems that use poly(k, log n)
time per character and poly(k, log n) space. While streaming algorithms are extremely
efficient (in particular, the space complexities above account for all the space used by the
algorithms, including the space needed to store information about the input), it is important
to note that they are randomised in nature, which means that they may produce incorrect
results with a certain probability (inverse polynomial in the input size n). Motivated by this,
we also study the problems in the read-only model, where random access to the input is
allowed (and not accounted for in the space usage). In this model, we show deterministic
algorithms for the four problems that use poly(k, log n) time per character and poly(k, log n)
space; see Table 1 for a summary. As a side result of independent interest, we develop the first
poly(k, log n) space read-only algorithms for computing k-mismatch and k-edit occurrences
of a pattern in a text.

1 Hereafter, Õ(·) hides factors polynomial in log n.

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:3

Due to the lack of space, descriptions of the algorithms for the Language edit distance
problems (k-LED-PAL and k-LED-SQ) are omitted from this version of the paper, but can
be found in the full one.

1.1 Related work
Offline model. In the classical offline model, the problem of finding all maximal substrings
that are within Hamming distance k from PAL can be solved in O(nk) time as a simple
application of the kangaroo jumps technique [17]. For the edit distance, Porto and Barbosa [28]
showed an O(nk2) solution. For the SQ language, the best known solutions take O(nk log k +
output) time for the Hamming distance [21] and O(nk log2 k+output) for the edit distance [24,
35, 36].

Online model. The problems k-LHD-PAL and k-LED-PAL can be viewed as a gener-
alization of the classical online palindrome recognition problem (see [16] and references
therein).

Streaming algorithms for PAL and SQ. Berebrink et al. [6] followed by Gawrychowski et
al. [18] studied the question of computing the length of a maximal substring of a stream that
belongs to PAL. Merkurev and Shur [26] considered a similar question for the SQ language.

2 Preliminaries

We assume to be given an alphabet Σ, the elements of which, called characters, can be stored
in a single machine word of the RAM model. For an integer n ≥ 0, we denote the set of all
length-n strings by Σn, and we set Σ≤n =

⋃n
m=0 Σm as well as Σ∗ =

⋃∞
n=0 Σn. The empty

string is denoted by ε.
For two strings S, T ∈ Σ∗, we use ST or S · T indifferently to denote their concatenation.

For an integer m ≥ 0, the string obtained by concatenating S to itself m times is denoted
by Sm; note that S0 = ε. A string S is a square if there exists a string T such that S = T 2.

For a string T ∈ Σn and an index i ∈ [1. .n],2 the ith character of T is denoted by T [i].
We use |T | = n to denote the length of T . For indices 1 ≤ i, j ≤ n, T [i. .j] denotes the
substring T [i]T [i + 1] · · · T [j] of T if i ≤ j and the empty string otherwise. When i = 1
or j = n, we omit these indices, i.e., we write T [. .j] = T [1. .j] and T [i. .] = T [i. .n]. We
extend the above notation with T [i. .j) = T [i. .j − 1] and T (i. .j] = T [i + 1. .j]. We say that
a string P is a prefix of T if there exists j ∈ [1. .n] such that P = T [. .j], and a suffix of T

if there exists i ∈ [1. .n] such that P = T [i. .]. We use T R to denote the reverse of T , that
is T R = T [n]T [n − 1] · · · T [1]. A string T is a palindrome if T R = T .

We define the forward cyclic rotation rot(T) = T [2] · · · T [n]T [1]. In general, a cyclic
rotation rots(T) with shift s ∈ Z is obtained by iterating rot or the inverse operation rot−1.
A non-empty string T ∈ Σn is primitive if it is distinct from its non-trivial rotations, i.e.,
if T = rots(T) holds only when n divides s.

Given two strings U, V and two indices i ∈ [1. .|U |] and j ∈ [1. .|V |], the longest common
prefix (LCP) of U [i. .] and V [j. .], denoted LCP(U [i. .], V [j. .]), is the length of the longest
string that is a prefix of both U [i. .] and V [j. .].

2 For integers i, j ∈ Z, denote [i. .j] = {k ∈ Z : i ≤ k ≤ j}, [i. .j) = {k ∈ Z : i ≤ k < j}, and
(i. .j] = {k ∈ Z : i < k ≤ j}.

ISAAC 2023

10:4 Online Language Distance Problem for Palindromes and Squares

Given two non-empty strings U, Q and an operator F defined over pairs of strings, we use
the notation F (U, Q∞) for the application of F to U and the prefix of Q∞ = QQ · · · that
has the same length as U , i.e., F (U, Q∞) = F (U, Qm[. .|U |]), where m is any integer such
that |Qm| ≥ |U |. We define F (Q∞, U) symmetrically.

2.1 Hamming distance, palindromes, and squares
The Hamming distance between two strings S, T (denoted hd(S, T)) is defined to be equal
to infinity if S and T have different lengths, and otherwise to the number of positions
where the two strings differ (mismatches). We define the mismatch information between
two length-n strings S and T , MI(S, T) as the set {(i, S[i], T [i]) : i ∈ [1. .n] and S[i] ̸= T [i]}.
For two strings P, T , a position i ∈ [|P |. .|T |] of T is a k-mismatch occurrence of P in T

if hd(T (i−|P |. .i], P) ≤ k. For an integer k, we denote hd≤k(X, Y) = hd(X, Y) if hd(X, Y) ≤ k

and ∞ otherwise.
Due to the self-similarity of palindromes and squares, the Hamming distance from a

string U to PAL and SQ can be measured in terms of the self-similarity of U .

▶ Property 2.1. Each string U ∈ Σm satisfies hd(U, PAL) = hd(U [. .⌊m/2⌋], U(⌈m/2⌉. .]R) =
1
2 hd(U, UR).

Proof. Denote U1 = U [. .⌊m/2⌋] and U2 = U(⌈m/2⌉. .]. For the second equality, we have
hd(U, UR) = hd(U1, UR

2) + hd(U2, UR
1) = 2 · hd(U1, UR

2).
The first equality is equivalent to hd(U1, UR

2) = hd(U, PAL). As the Hamming dis-
tance between U and the palindrome UR

2 U2 (or UR
2 aU2 if m is odd) is hd(U1, UR

2), we
have hd(U1, UR

2) ≥ hd(U, PAL).
Conversely, let V be a palindrome such that hd(U, V) = hd(U, PAL). We decompose

similarly V into V1V R
1 (or V1bV R

1 for odd m) and obtain hd(U, V) ≥ hd(U1, V1) + hd(U2, V R
1).

Using the fact that hd(U2, V R
1) = hd(UR

2 , V1) and applying the triangle inequality, we
get hd(U1, UR

2) ≤ hd(U, PAL). ◀

▶ Property 2.2. Each string U ∈ Σm satisfies hd(U, SQ) = hd(U [. .m/2], U(m/2. .]) if m is
even and hd(U, SQ) = ∞ if m is odd.

Proof. Every square has even length; hence, if m is odd, the distance between U and SQ
is infinite. In what follows, we assume that m = 2i for some i ∈ N. Let U1 = U [. .i] and
U2 = U(i. .]. By modifying the copy of U1 in U into U2, we obtain a square U2U2; hence,
hd(U, SQ) ≤ hd(U1, U2).

For the converse inequality, let V 2 be a square such that hd(U, SQ) = hd(U, V 2). We
have |V | = |U1| = |U2|; hence, hd(U, V 2) = hd(U1, V) + hd(V, U2). Applying the triangle
inequality, we obtain hd(U, SQ) = hd(U, V 2) ≥ hd(U1, U2). ◀

2.2 Models of computation
In this work, we focus on two by now classical models of computation: streaming and
read-only random access. In the streaming model, we assume that the input string T arrives
as a stream, one character at a time. For each prefix T [1. .i], we must report the distance
to PAL or SQ as soon as we receive T [i]. We account for all the space used, including the
space needed to store any information about T . In contrast, in the read-only model, we
do not account for the space occupied by the input string. We assume that T is read from
the left to the right. After having read T [1. .i], we assume to have constant-time read-only
random access to the first i characters of T . Similar to the streaming model, the distance
from T [1. .i] to PAL or SQ must be reported as soon as we read T [i].

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:5

3 Warm-up: Streaming algorithms for the LHD problems

In this section, we present streaming algorithms for k-LHD-PAL and k-LHD-SQ. Our
solutions use the Hamming distance sketches introduced by Clifford, Kociumaka, and
Porat [11] to solve the streaming k-mismatch problem.

▶ Fact 3.1. There exists a function skhd
k (parameterized by a constant c > 1, integers

n ≥ k ≥ 1, and a seed of O(log n) random bits) that assigns an O(k log n)-bit sketch to each
string in Σ≤n. Moreover:
1. There is an O(k log2 n)-time encoding algorithm that, given U ∈ Σ≤k, builds skhd

k (U).
2. There is an O(k log n)-time algorithm that, given any two among skhd

k (U), skhd
k (V), or

skhd
k (UV), computes the third one (provided that |UV | ≤ n).

3. There is an O(k log3 n)-time decoding algorithm that, given skhd
k (U) and skhd

k (V), computes
MI(U, V) if hd(U, V) ≤ k. The error probability is O(n−c).

3.1 A streaming algorithm for k-LHD-PAL
We first show that the sketches described in Fact 3.1 give a simple algorithm improving upon
the result of Amir and Porat [3] and achieving the time complexity of Õ(k) per letter.

▶ Theorem 3.2. There is a randomised streaming algorithm that solves the k-LHD-PAL
problem for a string T ∈ Σn using O(k log n) bits of space and O(k log3 n) time per character.
The algorithm errs with probability inverse-polynomial in n.

Using Property 2.1, we can reduce the k-LHD-PAL problem to that of computing
the threshold Hamming distance between the current prefix of the input string and its
reverse. The algorithm maintains the sketches skhd

2k(T [. .i]) and skhd
2k(T [. .i]R). When it

receives T [i], it constructs skhd
2k(T [i]), updates both skhd

2k(T [. .i]) and skhd
2k(T [. .i]R), and com-

putes d = hd≤2k(T [. .i], T [. .i]R) (in O(k log3 n) total time by Fact 3.1). Property 2.1 implies
hd≤k(T [. .i], PAL) = d/2. The error probability of the algorithm follows from the error
probability for the decoding algorithm for Hamming distance sketches.

The algorithm uses O(k log n) bits, which is nearly optimal: Indeed, by Property 2.1,
if U = V W , with |V | = |W |, then hd(U, UR) = 2 · hd(V, W R). Therefore, using a standard
reduction from streaming algorithms to one-way communication complexity protocols, we
obtain a lower bound of Ω(k) bits for the space complexity of streaming algorithms for the
k-LHD-PAL problem from the Ω(k) bits lower bound for the communication complexity of
the Hamming distance [19].

3.2 A streaming algorithm for k-LHD-SQ
In this section, we show the following theorem:

▶ Theorem 3.3. There is a randomised streaming algorithm that solves the k-LHD-SQ
problem for a string T ∈ Σn using O(k log2 n) bits of space and Õ(k) time per character.
The algorithm errs with probability inverse-polynomial in n.

Property 2.2 allows us to derive hd≤k(T [. .2i], SQ) from the sketches skhd
k (T [. .i])

and skhd
k (T [. .2i]): we can combine them to obtain skhd

k (T (i. .2i]), and a distance computation
on skhd

k (T [. .i]) and skhd
k (T (i. .2i]) returns hd≤k(T [. .i], T (i. .2i]) = hd≤k(T [. .2i], SQ).

Naively applying this procedure requires storing the sketch skhd
k (T [. .i]) until the algorithm

has read T [. .2i], that is, storing Θ(n) sketches at the same time. To reduce the number of
sketches stored, we use a filtering procedure based on the following observation:

ISAAC 2023

10:6 Online Language Distance Problem for Palindromes and Squares

▶ Observation 3.4. If hd(T [. .2i], SQ) ≤ k and ℓ ∈ [1. .i], then i + ℓ is a k-mismatch
occurrence of T [. .ℓ], that is, hd(T [. .ℓ], T (i. .i + ℓ]) ≤ k.

▶ Example 3.5. For k = 1, ℓ = 2, and i = 3, the word T [. .6] = abcacc is a 1-mismatch
square (by Property 2.2) and the fragment T (3. .5] = ac is a 1-mismatch occurrence of the
prefix T [. .2] = ab.

Observation 3.4 motivates our filtering procedure: if we choose some prefix P = T [. .ℓ] of
the string, we only need to store every i ≥ ℓ such that i + ℓ is a k-mismatch occurrence of P .
Clifford, Kociumaka and Porat [11] showed a data structure S that exploits the structure of
such occurrences and stores them using O(k log2 n) bits of space while allowing reporting the
occurrence at position i + ℓ when T [i + ℓ + ∆] is pushed into S – we say that S reports the
k-mismatch occurrences of P in T with a fixed delay ∆ [11]. Our algorithm needs to receive
the occurrence at position i + ℓ when T [2i] is pushed into the stream, i.e., we require S to
report occurrences with non-decreasing delays. In Section 3.2.1 we present a modification of
the data structure [11] to allow non-decreasing delays, and in Section 3.2.2 we explain how
we use it to implement a space-efficient streaming algorithm for k-LHD-SQ.

3.2.1 Reporting k-mismatch occurrences with nondecreasing delay
The algorithm of Clifford, Kociumaka, and Porat [11] reports additional information along
with the positions of the k-mismatch occurrences: specifically, it produces the stream of
k-mismatch occurrences of P in T , defined as follows.

▶ Definition 3.6 ([11, Definition 3.2]). The stream of k-mismatch occurrences of a pattern P

in a text T is a sequence Sk
P such that Sk

P [i] = (i, MI(T (i − |P |. .i], P), skhd
k (T [. .i − |P |])) if

hd(P, T (i − |P |. .i]) ≤ k and Sk
P [i] = ⊥ otherwise.

As explained next, the algorithm of [11] can report the k-mismatch occurrences with a
prescribed delay.

▶ Corollary 3.7 (of [11]). There is a streaming algorithm that, given a pattern P followed by
a text T ∈ Σn, reports the k-mismatch occurrences of P in T using O(k log2 n) bits of space
and O(

√
k log3 n + log4 n) time per character. The algorithm can report each occurrence i

with no delay (that is, upon receiving T [i]) or with any prescribed delay ∆ = Θ(|P |) (that is,
upon receiving T [i + ∆]). For each reported occurrence i, the underlying tuple Sk

P [i] can be
provided on request in O(k log2 n) time.

Proof. If no delay is required, we use [11, Theorem 1.2], which reports k-mismatch occurrences
of P in T and, upon request, provides the mismatch information MI(T (i − |P |. .i], P); this
algorithm uses O(k log2 n) bits of space and takes O(

√
k log3 n + log4 n) time per character.

We also use [11, Fact 4.4] to maintain the sketch skhd
k (T [. .i]) (reported on request); this

algorithm uses O(k log n) bits of space and takes O(log2 n) time per character.
Whenever requested to provide Sk

P [i] for some k-mismatch occurrence i of P in T ,
we retrieve the mismatch information MI(T (i − |P |. .i], P) (in O(k) time) and the sketch
skhd

k (T [. .i]) (in O(k log2 n) time). Combining skhd
k (P) with MI(T (i − |P |. .i], P), we build

skhd
k (T (i−|P |. .i]) (using [11, Lemma 6.4] in O(k log2 n) time) and then derive skhd

k (T [. .i−|P |])
using Fact 3.1 (in O(k log n) time). Overall, processing the request takes O(k log2 n) time
and O(k log2 n) bits of space.

If a delay ∆ = Θ(|P |) is required, our approach depends on whether there exists p ∈ [1. .k]
such that hd(P [. .|P | − p], P (p. .|P |]) ≤ 2k (such p is called a 2k-period in [11]). This
property is tested using a streaming algorithm of [11, Lemma 4.3], which takes O(k log n)

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:7

bits of space, O(
√

k log n) time per character of P , and requires O(k
√

k log n)-time post-
processing (performed while reading T [. .k]). If P satisfies this condition, then we just use
[11, Theorem 4.2], whose statement matches that of Corollary 3.7.

Otherwise, [11, Observation 4.1] shows that P has at most one k-mismatch occurrence
among any k consecutive positions in T . In that case, we use the aforementioned approach
to produce the stream Sk

P with no delay and the buffer of [11, Proposition 3.3] to delay the
stream by ∆ characters. The buffering algorithm takes O(k log2 n) bits of space and processes
each character T [i] in O(k log2 n+log3 n) time (if P has k-mismatch occurrences at positions i

or i − ∆) or O(
√

k log n + log3 n) time (otherwise). Since the former case holds for at most
two out of every k consecutive positions, we can achieve O(

√
k log3 n + log4 n) worst-case

time per character by decreasing the delay to ∆ − k and buffering up to k characters of T

and up to k elements of Sk
P . While the algorithm processes T [i + ∆], the latter buffer already

contains Sk
P [i], but O(k) time is still needed to output this value (if Sk

P [i] ̸= ⊥). ◀

The algorithm of Corollary 3.7 has a fixed delay ∆, i.e., it outputs Sk
P [i] upon receiving

T [i + ∆]. Our application requires a variable delay: we need to access Sk
P [i + |P |] upon

reading T [2i], that is, with a delay of i − |P |. We present a black-box construction that
extends the data structure of Corollary 3.7 to support non-decreasing delays ∆i, i ∈ [1. .d].
Naively, one could use the algorithm A of Corollary 3.7 with a fixed delay ∆1 and buffer
the input characters so that A receives T [i + ∆1] only when we actually process T [i + ∆i].
Unfortunately, this requires storing T [i + ∆1. .i + ∆i), which could take too much space.
Thus, we feed A with T [1. .∆1] followed by blank characters ⊥ (issued at appropriate time
steps without the necessity of buffering input characters) so that A reports k-mismatch
occurrences i ∈ [1. .∆1] with prescribed delays. Then, we use another instance of the
algorithm of Corollary 3.7, with a fixed delay ∆1+∆1 , to output k-mismatch occurrences
i ∈ (∆1. .∆1 + ∆1+∆1]; we continue this way until the whole interval [1. .d] is covered. We
formalise this idea in the following lemma.

▶ Lemma 3.8. Let ∆1 ≤ ∆2 ≤ · · · ≤ ∆d be a non-decreasing sequence of d = O(|P |) integers
∆i = Θ(|P |), represented by an oracle that reports each element ∆i in constant time.

There is a streaming algorithm that, given a pattern P followed by a text T , reports the
k-mismatch occurrences of P in T using O(k log2 n) bits of space and O(

√
k log3 n + log4 n)

time per character. The algorithm reports each occurrence i ∈ [1. .d] with delay ∆i, that is,
upon receiving T [i + ∆i]. For each reported occurrence i ∈ [1. .d], the underlying tuple Sk

P [i]
can be provided on request in O(k log n) time.

Proof. We use multiple instances A1, . . . , At of the algorithm of Corollary 3.7. We define
a sequence (sr)t

r=0 so that Ar works with a fixed delay ∆sr−1 , it is given T [1. .sr) · ⊥∆sr−1 ,
and it reports k-mismatch occurrences i ∈ [sr−1. .sr). Specifically, we set s0 = 1 and
sr = sr−1 + ∆sr−1 , with t chosen as the smallest integer such that st > d. Note that
sr − sr−1 = ∆sr−1 ≥ ∆1 implies t ≤ 1 + d

∆1
= O(1).

We assign three different roles to the algorithms A1, . . . , Ar: passive, active, and inactive.
While we process T [j], the algorithm Ar is passive if j < sr, active if j ∈ [sr. .sr+1), and
inactive if j ≥ sr+1. Our invariant is that, once we process T [j], each passive algorithm Ar

has already received T [1. .j], the unique active algorithm Ar has already received T [1. .sr) ·
⊥1+i−sr−1 , where i is the largest integer such that i+∆i ≤ j, and each inactive algorithm Ar

has already received its entire input, that is, T [1. .sr) · ⊥∆sr−1 .
Upon receiving T [j], we simply forward T [j] to all passive algorithms. Moreover, if

j = i + ∆i for some i ∈ [1. .d], we feed the active algorithm with ⊥ so that it checks whether
i is a k-mismatch occurrence of P in T and, upon request, outputs Sk

P [i].

ISAAC 2023

10:8 Online Language Distance Problem for Palindromes and Squares

Let us argue that this approach is correct from the perspective of a fixed algorithm Ar.
As we process T [1. .sr), the algorithm is passive, and it is fed with subsequent characters
of T . For j = sr − 1, the position i = sr−1 − 1 is the maximum one such that i + ∆i ≤ j.
Consequently, the input T [1. .sr) already satisfies the invariant for passive algorithms. For
subsequent iterations j ∈ [sr. .sr+1), as Ar is active, it receives ⊥ whenever i increases, so its
input stays equal to T [1. .sr) ·⊥1+i−sr−1 . The length of this string is sr + i−sr−1 = i+∆sr−1 ,
so the algorithm indeed checks whether i is a k-mismatch occurrence of P in T at each
such iteration (recall that its fixed delay is ∆sr−1), and it satisfies the invariant for active
algorithms. Once we reach j = sr+1 − 1, we have i = sr − 1 = sr−1 + ∆sr−1 − 1, so the input
becomes T [1. .sr) · ⊥∆sr−1 , and it already satisfies the invariant for inactive algorithms. The
state of inactive algorithms does not change, so this invariant remains satisfied as Ar stays
inactive indefinitely.

The time and space complexity analysis follows from the fact that t = O(1). ◀

3.2.2 Algorithm
We now show how to use the data structure of Lemma 3.8 to implement our filtering procedure
using low space. For each j ∈ [1. .⌊log n⌋], let Pj denote the prefix of the text of length
ℓj = 2j , i.e., Pj = T [. .2j]. We search for k-mismatch occurrences of Pj in Tj = T (3ℓj/2. .4ℓj].
As argued below, this allows filtering positions in (3ℓj . .6ℓj]. Additionally, our choice of (ℓj)j

ensures that we do not miss any k-mismatch square when running our search for every Pj in
parallel.

▷ Claim 3.9. For each j ∈ [1. .⌊log n⌋], let Occj be the set of k-mismatch occurrences of Pj

in Tj = T (3ℓj/2. .4ℓj]. If hd(T [. .2i], SQ) ≤ k and 2i ∈ [3ℓj . .6ℓj), then p = i − ℓj/2 ∈ Occj .

Proof. Since ℓj ≤ i, Observation 3.4 implies that i + ℓj is a k-mismatch occurrence of Pj

in T . Moreover, when 2i ∈ [3ℓj . .6ℓj), we have 3ℓj/2 ≤ i ≤ 3ℓj ; therefore, that k-mismatch
occurrence of Pj is fully contained within Tj , and it ends at positions i + ℓj − 3ℓj/2 = i − ℓj/2
of Tj . ◁

In what follows, we use p to denote indices in Tj , whereas i denotes indices in the original
text T . As Tj = T (3ℓj/2. .4ℓj], the correspondence is given by i = p + 3ℓj/2. In other words,
we only need to compute hd≤k(T [. .2i], SQ) when i−ℓj/2 ∈ Occj . As noted in Property 2.2, it
suffices to know the sketches skhd

k (T (i. .2i]) and skhd
k (T [. .i]). We store skhd

k (Pj) = skhd
k (T [. .ℓj])

as well as sj = skhd
k (T [. .3ℓj/2]) and maintain skhd

k (T [. .2i]) in a rolling manner as we receive
the characters of the text.

We use the algorithm of Lemma 3.8, asking for k-mismatch occurrences of Pj in Tj , to
report skhd

k (Tj [. .i − ℓj]) = skhd
k (T (ℓj . .i]) for every i ∈ Occj . The delay sequence is specified

as ∆p = p − ℓj/2 for p ∈ [ℓj . .5ℓj/2) so that the conditions of Lemma 3.8 are satisfied.
(For p < ℓj , we can assume ∆p = ∆ℓj

= ℓj/2; anyway, there cannot be a k-mismatch
occurrence of Pj before position ℓj .) This way, for every i ∈ [3ℓj/2. .3ℓj), we receive
Sk

Pj
[i + ℓj] (which corresponds to a potential k-mismatch occurrence starting at position

i + 1) while processing Tj [p + ∆p] for p = i + ℓj − 3ℓj/2 = i − ℓj/2. As ∆p = p − ℓj/2,
this corresponds to position p′ = 2p − ℓj/2 in Tj , or position i′ = 2p + ℓj = 2i in T ,
i.e., this happens precisely as we are processing T [2i]. See Figure 1 for an illustration
of the above. If Sk

Pj
[i + ℓj] is blank, we move on to the next position. Otherwise, we

retrieve the sketch skhd
k (Tj [. .i]) = skhd

k (T (3ℓj/2. .i]), combine it with sj = skhd
k (T [. .3ℓj/2])

and skhd
k (T [. .2i]) to obtain skhd

k (T [. .i]) and skhd
k (T (i. .2i]), and use the latter two sketches to

compute hd≤k(T [. .i], T (i. .2i]), which is equal to hd≤k(T [. .2i], SQ) by Property 2.2.

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:9

T

3ℓj/2 4ℓji i + ℓj 2i

Pj P ′

Tj

0

p = i − ℓj/2

∆p = p − ℓj/2

Figure 1 Illustration of our filtering procedure. Here, P ′ is a k-mismatch occurrence of Pj at
position i + ℓj in T and position p = i − ℓj/2 in Tj , reported with delay ∆p = p − ℓj/2 in Tj , hence
it arrives at time 2i in T .

We proceed with the complexity analysis of our algorithm. The k-mismatch pattern
matching algorithm of Lemma 3.8 uses O(k log2 n) bits of space and Õ(k) time per character,
and we maintain O(log n) instances of this algorithm. However, since all the patterns Pj

are prefixes of T , the instances can share the pattern processing phase. Moreover, since any
position is contained in at most three fragments T [ℓj . .6ℓj) (each such fragment follows Pj

and contains Tj), at most three instances contribute to the time and space complexity at
any given moment. Thus, the entire algorithm uses O(k log2 n) bits of space and Õ(k) time
per character, which completes the proof of Theorem 3.3.

Our streaming algorithm for k-LED-SQ (Theorem 5.2) relies on the streaming algorithm
for k-LHD-SQ. It requires testing hd(T [. .2i], SQ) ≤ k only for selected positions i, and thus
it benefits from the following variant of Theorem 3.3:

▶ Proposition 3.10. There is a randomised streaming algorithm that, given a string T ∈ Σn,
upon receiving T [2i], can be requested to test whether hd(T [. .2i], SQ) ≤ k and, if so, report the
mismatch information between T [. .2i] and a closest square. The algorithm uses O(k log2 n)
bits of space and processes each character in Õ(

√
k) or Õ(k) time, depending on whether the

request has been issued at that character.

Proof. We follow the algorithm above with minor modifications. First, instead of maintaining
skhd

k (T [. .2i]) explicitly, we apply [11, Fact 4.4], which uses O(k log n) bits of space, takes
O(log2 n) time per character, and reports skhd

k (T [. .2i]) on demand in O(k log2 n) time.
To process a request concerning position 2i, we retrieve skhd

k (T [. .2i]) and ask the
pattern-matching algorithm of Lemma 3.8 to output Sk

Pj
[i] (normally, the algorithm

only reports whether i is a k-mismatch occurrence of Pj in Tj). In this case, we build
skhd

k (T [. .i]) and skhd
k (T (i. .2i]) as in algorithm above. The decoding algorithm not only results

in hd≤k(T [. .i], T (i. .2i]) = hd≤k(T [. .2i], SQ) but, if hd(T [. .2i], SQ) ≤ k, also the underlying
mismatch information.

The space complexity of the modified algorithm is still O(k log2 n) bits. The running time
is Õ(

√
k) if we do not ask the algorithm to test hd(T [. .2i], SQ) ≤ k and Õ(k) if we do. ◀

4 Deterministic read-only algorithms for the LHD problems

In this section, we present deterministic read-only algorithms for k-LHD-PAL and k-LHD-SQ.
We start by recalling structural results for k-mismatch occurrences used by the algorithms.

ISAAC 2023

10:10 Online Language Distance Problem for Palindromes and Squares

4.1 Structure of k-mismatch occurrences
▶ Definition 4.1 ([9]). A string U is d-mismatch periodic if there exists a primitive string Q

such that |Q| ≤ |U |/128d and hd(U, Q∞) ≤ 2d. Such a string Q is called the d-mismatch
period of U .

The condition |Q| ≤ |U |/128d implies that Q is equal to some substring of U ; hence, given
the starting and ending positions of Q in U and random access to U , we can simulate random
access to Q.

▷ Claim 4.2 (From [20, Claim 7.1]). Let U and V be strings such that U is a prefix of V ,
and |V | ≤ 2|U |. If U is d-mismatch periodic with d-mismatch period Q, then V either is not
d-mismatch periodic or has d-mismatch period Q.

Charalampopoulos, Kociumaka, and Wellnitz [9] showed that the set of k-mismatch
occurrences has a very regular structure:

▶ Fact 4.3 (See [9, Section 3]). Let P and T be two strings such that |P | ≤ |T | ≤ 3/2|P |.
1. If P is not k-mismatch periodic, then there are O(k) k-mismatch occurrences of P in T .
2. If P is k-mismatch periodic with period Q, then any two k-mismatch occurrences i ≤ i′

of P in T satisfy i ≡ i′ (mod |Q|) and hd(T (i − |P |. .i′], Q∞) ≤ 3k.

They also presented efficient offline algorithms for computing the k-mismatch period and
the k-mismatch occurrences in the so-called PILLAR model. In this model, one is given
a family of strings X for preprocessing. The elementary objects are fragments X[i. .j] of
strings X ∈ X . Given elementary objects S, S1, S2, the PILLAR operations are:
1. Access(S, i): Assuming i ∈ [1. .|S|], retrieve S[i].
2. Length(S): Retrieve the length |S| of S.
3. LCP(S1, S2): Compute the length of the longest common prefix of S1 and S2.
4. LCPR(S1, S2): Compute the length of the longest common suffix of S1 and S2.
5. IPM(S1, S2): Assuming that |S2| ≤ 2|S1|, compute the set of the starting positions of

occurrences of S1 in S2, which by Fine and Wilf periodicity lemma [14] can be represented
as one arithmetic progression.

In the read-only model, operations Access and Length can be implemented in constant time
and O(log m) bits. The operations LCP and LCPR can be implemented naively via character-
by-character comparison in O(min{|S1|, |S2|}) total time and O(log m) bits. Finally, the IPM
operation can be implemented in O(|S1| + |S2|) total time and O(log m) bits (see e.g. [30]).

As a corollary, we immediately obtain:

▶ Corollary 4.4 (From [9, Lemma 4.4]). Given random access to a string U , testing whether
it is d-mismatch periodic, and, if so, computing its d-mismatch period, can be done using
O(d|U |) time and O(d) space.

4.2 Read-only algorithm for the pattern matching with k mismatches
The above implementation of the PILLAR operations further implies an offline algorithm that
finds all k-mismatch occurrences of P in T in Õ(k2 · |T |) time and Õ(k2) space (see [9, Main
Theorem 8]). Nevertheless, we provide a more efficient online algorithm that additionally
provides the mismatch information for every k-mismatch occurrence of P .

▶ Theorem 4.5. There is a deterministic online algorithm that finds all k-mismatch oc-
currences of a length-m pattern P within a text T using O(k log m) space and O(k log m)
worst-case time per character. The algorithm outputs the mismatch information along with
every reported k-mismatch occurrence of P .

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:11

Consistently with the streaming algorithm of [11], our algorithm uses a family of
exponentially-growing prefixes to filter out candidate positions. However, in order to use
the structural properties of Fact 4.3 efficiently, we construct a different family P to ensure
that we are either working in an approximately periodic region of the text or processing an
aperiodic prefix.

We first add to P the prefixes Rj = P [. . min{m, ⌊(3/2)j⌋}] for j ∈ [0. .⌈log3/2 m⌉]. If Rj

is k-mismatch periodic but Rj+1 is not, we also add to P the shortest extension of Rj that
is not k-mismatch periodic. Hereafter, let P = (Pj)t

j=1 denote the resulting sequence of
prefixes, sorted in order of increasing lengths, and let ℓj = |Pj | for every j ∈ [1. .t].

▷ Claim 4.6. The sequence P = (Pj)t
j=1 satisfies the following properties:

(a) P1 = P [1] and Pt = P ,
(b) t = |P| = O(log m),
(c) for every j ∈ [1. .t), we have ℓj+1 ≤ 3ℓj/2,
(d) for every j ∈ [1. .t), if Pj is k-mismatch periodic with period Qj , then hd(Pj+1, Q∞

j) ≤
2k + 1.

Proof. Properties (a), (b), and (c) are straightforward. For Property (d), there are two
possible cases: if Pj+1 is k-mismatch periodic, Claim 4.2 implies that Pj+1 has the same
k-mismatch period Qj as Pj , that is hd(Pj+1, Q∞

j) ≤ 2k. Otherwise, by construction, Pj+1
is the shortest extension of Pj that is not k-mismatch periodic. By minimality, removing
its last character yields a k-mismatch periodic prefix, and by Claim 4.2, it has the same
k-mismatch period Qj as Pj , i.e., we have hd(P [. .ℓj+1), Q∞

j) ≤ 2k for i < ℓj . Adding one
more character to P [. .ℓj+1) can increase the Hamming distance by at most one. ◁

Processing the pattern. In the preprocessing phase, we build P and, for each k-mismatch
periodic prefix Pj ∈ P \ {P}, we also retrieve the period Qj (represented as a fragment of Pj)
and the mismatch information MI(Pj+1, Q∞

j). For subsequent indices j ∈ [0. .⌈log3/2 m⌉], we
add the prefix Rj to P . If Rj ̸= P , we apply Corollary 4.4 to test whether Rj is k-mismatch
periodic and, if so, retrieve the period Q. If Rj is k-mismatch periodic, we build MI(Rj , Q∞)
and extend Rj while maintaining the mismatch information with the appropriate prefix
of Q∞. We proceed until we reach length |Rj+1| or 2k + 1 mismatches, whichever comes first.
We add the obtained extension R′

j to P and store the mismatch information MI(R′
j , Q∞).

If hd(R′
j , Q∞) ≤ 2k, then R′

j = Rj+1 is k-mismatch periodic with the same period Q.
Otherwise, by Claim 4.2, neither R′

j nor Rj+1 are k-mismatch periodic. Processing each j

takes O(|Rj+1|k) time and O(k) space, for a total of O(mk) time and O(k log m) space across
j ∈ [0. .⌈log3/2 m⌉].

Processing the text. Our online algorithm processing the text T consists of t = |P| layers,
each of which reports the k-mismatch occurrences of Pj ∈ P, along with the underlying
mismatch information.

The first layer, responsible for P1 = P [1], is implemented naively in O(1) space and time
per character.

Each of the subsequent layers receives the k-mismatch occurrences of Pj and outputs the
k-mismatch occurrences of Pj+1. The processing is based on the following simple observation:

▶ Observation 4.7. If Pj+1 has a k-mismatch occurrence at position i of T , then Pj has a
k-mismatch occurrence at position i − ℓj+1 + ℓj of T .

ISAAC 2023

10:12 Online Language Distance Problem for Palindromes and Squares

We partition T into blocks of length b := ⌈ℓj/2⌉ and, for each block T (rb. .(r + 1)b],
use a separate subroutine to output k-mismatch occurrences of Pj+1 at positions i ∈
(rb. .(r + 1)b]. This subroutine receives the k-mismatch occurrences of Pj at positions
i − ℓj+1 + ℓj ∈ (rb − ℓj+1 + ℓj . .(r + 1)b − ℓj+1 + ℓj]. It is considered active as the algorithm
reads T (rb − ℓj+1 + ℓj . .(r + 1)b]; since ℓj+1 ≤ 3

2 ℓj , at most two subroutines are active at any
given time. The implementation of the subroutine depends on whether Pj is k-mismatch
periodic or not.

Pj is not k-mismatch periodic. In this case, for every received k-mismatch occurrence i′

of Pj , the subroutine stores the mismatch information MI(T (i′ − ℓj . .i′], Pj) and, as the
algorithm receives subsequent characters T [i] for i ∈ (i′. .i′+ℓj+1−ℓj], we maintain MI(T (i′−ℓj

. .i], P [. .ℓj + i − i′]) as long as there are at most k mismatches. If this is still the case for
i = i′ + ℓj+1 − ℓj , we report a k-mismatch occurrence of Pj+1 and output MI(T (i′ − ℓj

. .i], P [. .ℓj +i−i′]) = MI(T (i−ℓj+1. .i], Pj+1). By Observation 4.7, no k-mismatch occurrence
of Pj+1 is missed. Moreover, Fact 4.3 guarantees that the subroutine receives O(k) k-mismatch
occurrences of Pj , and thus it uses O(k) space and O(k) time per character.

Pj is k-mismatch periodic with period Qj . In this case, we wait for the leftmost k-
mismatch occurrence p ∈ (rb − ℓj+1 + ℓj . .(r + 1)b − ℓj+1 + ℓj] of Pj and ignore all the
subsequent occurrences of Pj . We use the received mismatch information MI(T (p − ℓj . .p], Pj)
and the preprocessed mismatch information MI(Pj+1, Q∞

j) to construct MI(T (p− ℓj . .p], Q∞
j);

by the triangle inequality, the size of this set is guaranteed to be at most 3k. As the algorithm
receives subsequent characters of T [i] for i ∈ (p. .(r + 1)b], we maintain MI(T (p − ℓj . .i], Q∞

j)
as long as the number of mismatches does not exceed 6k + 1. Whenever i ≥ p + ℓj+1 − ℓj and
i ≡ p+ℓj+1 −ℓj (mod |Qj |), we extract MI(T (i−ℓj+1. .i], Q∞

j) from MI(T (p−ℓj . .i], Q∞
j) and

use the precomputed mismatch information MI(Pj+1, Q∞
j) to construct MI(T (i− ℓj+1. .i], Pj).

If it is of size at most k, we report i as a k-mismatch occurrence of Pj .
As for the correctness, we argue that we miss no k-mismatch occurrence i ∈ (rb. .(r + 1)b]

of Pj+1 in T . Since hd(T (i − ℓj+1. .i], Pj+1) ≤ k and hd(Pj+1, Q∞
j) ≤ 2k + 1, we have

hd(T (i − ℓj+1. .i], Q∞
j) ≤ 3k + 1. Moreover, by Observation 4.7, i − ℓj+1 + ℓj is a k-

mismatch occurrence of Pj . Fact 4.3 further implies that i − ℓj+1 + ℓj ≡ p (mod |Qj |) and
hd(T (p − ℓj . .i − ℓj+1], Q∞

j) ≤ 3k. Consequently, hd(T (p − ℓj . .i], Q∞
j) ≤ 6k + 1, and thus we

compute MI(T (i − ℓj+1. .i], Q∞
j) and report i as a k-mismatch occurrence of Pj+1.

We conclude with the complexity analysis: the working space is O(k), dominated by the
maintained mismatch information. Moreover, whenever we compute MI(T (i − ℓj+1. .i], Pj),
the size of this set is, by the triangle inequality, at most 6k + 1 + 2k + 1 ≤ 8k + 2, and it can
be computed in O(k) time.

Summary. Overall, each subroutine of each level takes O(k) space and O(k) time per
character. Since there are t = O(log m) levels and each level contains at most two active
subroutines, the algorithm takes O(k log m) space and O(k log m) time per text character.
Although our pattern preprocessing algorithm is an offline procedure, we can run it while
the algorithm reads the first m/2 characters of the text. Then, while the algorithm reads
further m/2 characters, it can process two characters at a time to catch up with the input
stream. This does not result in any delay on the output because the leftmost k-mismatch
occurrence of P is at position m or larger.

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:13

4.3 Read-only algorithm for k-LHD-PAL
▶ Theorem 4.8. There is a deterministic online algorithm that solves the k-LHD-PAL
problem for a string of length n using O(k log n) space and O(k log n) worst-case time per
character.

The algorithm uses a filtering approach to select positions where a prefix close to PAL
can end. Define a family P = {Pj = T [. .⌊(3/2)j⌋] : j ∈ [1. .⌊log3/2 n⌋]} of prefixes of the text,
and let ℓj = |Pj |, setting ℓ0 = 0 for notational convenience.

▷ Claim 4.9. Consider j ∈ [1. .⌊log3/2 n⌋] and a position i ∈ (2ℓj−1. .2ℓj]. If
hd(T [. .i], PAL) ≤ k, then i is a 2k-mismatch occurrence of P R

j in T . Moreover,
hd(T [. .i], PAL) = hd(T (i − i′. .i], Pj [1. .i′)R) for i′ = ⌊i/2⌋.

Proof. Note that i > 2ℓj−1 ≥ ℓj implies that Pj is a prefix of T [. .i] and, equivalently,
P R

j is a suffix of T [. .i]R. Property 2.1 implies 2 · hd(T [. .i], PAL) = hd(T [. .i], T [. .i]R) ≥
hd(T (i − ℓj . .i], Pj). Thus, if hd(T [. .i], PAL) ≤ k, then i is a 2k-mismatch occurrence of
Pj in T . Since T [. .i′] is a prefix of Pj , Property 2.1 further implies hd(T [. .i], PAL) =
hd(T (i − i′. .i], T [. .i′]R) = hd(T (i − i′. .i], Pj [1. .i′)R). ◁

The algorithm constructs the family P as it reads the text. For each level j, we implement
a subroutine responsible for positions i ∈ (2ℓj−1. .2ℓj]. First, while reading T [ℓj . .2ℓj−1), we
launch the pattern-matching algorithm of Theorem 4.5 in order to compute the 2k-mismatch
occurrences of P R

j in Tj = T [. .2ℓj) and feed the pattern-matching algorithm with the
pattern Pj and a prefix T [. .2ℓj−1) of Tj , ignoring any output produced. The total number of
characters provided is ℓj + 2ℓj−1 ≤ 7 · (2ℓj−1 − ℓj), so we can feed the algorithm with O(1)
characters for every scanned character of T . Then, while reading T [2ℓj−1. .2ℓj), we feed the
pattern-matching algorithm with subsequent characters of T . For every reported 2k-mismatch
occurrence i of P R

j in Tj , we retrieve the mismatch information MI(T (i − ℓj . .i], P R
j) and

obtain MI(T (i − i′. .i], Pj [. .i′]R) by removing the entries corresponding to the leftmost ℓj − i′

positions. We report the size of this set (or ∞ if the size exceeds k) as hd≤k(T [. .i], PAL).
By Claim 4.9, all positions i ∈ (2ℓj−1. .2ℓj] such that hd(T [. .i], PAL) ≤ k pass the test

and the distance hd(T [. .i], PAL) is equal to the size of the set MI(T (i − i′. .i], Pj [. .i′]R). As
for the complexity analysis, observe that, for each level j, the pattern-matching algorithm
uses O(k ·j) space and takes O(k ·j) time per character. Since, at any time, there is a constant
number of active levels, the main algorithm uses O(k log n) space and takes O(k log n) time
per character.

4.4 Read-only algorithm for k-LHD-SQ
▶ Theorem 4.10. There is a deterministic online algorithm that solves the k-LHD-SQ
problem for a string T ∈ Σn using O(k log n) space and O(k log n) worst-case time per
character.

Our algorithm is very similar to the pattern-matching algorithm of Theorem 4.5. We use
the same sequence P = (Pj)t

j=1 of prefixes, now defined for P = T . Again, we set ℓj = |Pj |
for j ∈ [1. .t]. Instead of Observation 4.7, we use Observation 3.4 to argue that our filtering
procedure is correct.

Processing P. We build P in an online fashion so that the prefix Pj is constructed while
scanning T (ℓj . .⌈3ℓj/2⌉]. If Pj is k-mismatch periodic, then we also identify Pj+1 and build
MI(Pj+1, Q∞

j).

ISAAC 2023

10:14 Online Language Distance Problem for Palindromes and Squares

For subsequent indices j ∈ [0. .⌊log3/2 n⌋], we add the prefix Rj to P as soon as it has
been read. Then, we launch an offline procedure that applies Corollary 4.4 to test whether Rj

is k-mismatch periodic and, if so, retrieves the period Q. If Rj is k-mismatch periodic,
we build MI(Rj , Q∞) and extend Rj while maintaining the mismatch information with the
appropriate prefix of Q∞. We proceed until we reach length |Rj+1| or 2k + 1 mismatches,
whichever comes first. We add the obtained extension R′

j to P and store the mismatch
information MI(R′

j , Q∞). If hd(R′
j , Q∞) ≤ 2k, then R′

j = Rj+1 is k-mismatch periodic with
the same period Q. Otherwise, by Claim 4.2, neither R′

j nor Rj+1 are k-mismatch periodic.
Processing each j takes O(|Rj+1|k) time and O(k) space, and this computation needs to
be completed while the algorithm reads T (|Rj |. .|Rj+1|]. This gives O(k) time per position
since ⌊ 3

2 |Rj |⌋ ≤ |Rj+1| ≤ ⌈ 3
2 |Rj |⌉.

Across all indices j ∈ [0. .⌊log3/2 n⌋], the preprocessing algorithm takes O(k) space and
time per character (since no two indices are processed simultaneously).

Computing the distances. For each level j ∈ [1. .t], we implement a subroutine responsible
for even positions i ∈ [2ℓj . .2ℓj+1); this procedure is active as we read T [ℓj . .2ℓj+1). As
described above, the pattern Pj is identified while the algorithm reads T (ℓj . .⌈3ℓj/2⌉] and,
if Pj is k-mismatch periodic, the period Qj and the mismatch information MI(Pj+1, Q∞

j) are
also computed at that time. While reading T [⌈3ℓj/2⌉. .2ℓj), we launch the pattern-matching
algorithm of Theorem 4.5 to report the k-mismatch occurrences of Pj in Tj = T [. .ℓj + ℓj+1)
and feed this algorithm with the pattern Pj and the prefix T [. .2ℓj) of the text Tj . The
total number of characters provided is 3ℓj ≤ 6 · 1

2 ℓj , so can feed the pattern-matching
algorithm with O(1) character for every scanned character of T . Then, while reading
T [2ℓj . .ℓj + ℓj+1), we feed the pattern-matching algorithm subsequent text characters. For
every i′ ∈ [2ℓj . .ℓj + ℓj+1), we learn whether i′ is a k-mismatch occurrence of Pj and, if so, we
obtain the mismatch information MI(Pj , T (i′ − ℓj . .i′]). How we utilise this output depends
on whether Pj is k-mismatch periodic or not: if Pj is not k-mismatch periodic, then Tj

contains O(k) k-mismatch occurrences of Pj and storing them explicitly requires little space.
When Pj is k-mismatch periodic, Tj must exhibit similar periodicity, which we can use to
avoid storing all occurrences explicitly.

Pj is not k-mismatch periodic. In this case, for every received k-mismatch occurrence i′

of Pj , we store the mismatch information MI(T (i′ − ℓj . .i′], Pj) and, as the algorithm receives
subsequent characters T [i] for i ∈ (i′. .2(i′ − ℓj)], we maintain MI(T (i′ − ℓj . .i], T [. .ℓj + i − i′])
as long as there are at most k mismatches. If this is still the case for i = 2(i′ − ℓj), we report
that T [. .i] is a k-mismatch square, with hd(T [. .i], SQ) = hd(T (i′ − ℓj . .i], T [. .ℓj + i − i′]) =
hd(T (i/2. .i], T [. .i/2]). By Observation 3.4, no k-mismatch square T [. .i] is missed. Moreover,
Fact 4.3 guarantees that there are O(k) k-mismatch occurrences of Pj , and thus we use O(k)
space and O(k) time per character to process all of them.

Pj is k-mismatch periodic with period Qj . In this case, we wait for the leftmost k-
mismatch occurrence p ∈ [2ℓj . .ℓj + ℓj+1) of Pj and ignore all the subsequent occurrences
of Pj . We use the received mismatch information MI(T (p − ℓj . .p], Pj) and the preprocessed
mismatch information MI(Pj+1, Q∞

j) to construct MI(T (p − ℓj . .p], Q∞
j); by the triangle

inequality, the size of this set is guaranteed to be at most 3k. As the algorithm receives
subsequent characters of T [i] for i ∈ (p. .2ℓj+1), we maintain MI(T (p − ℓj . .i], Q∞

j) as long as
the number of mismatches does not exceed 6k + 1. Whenever i/2 ≥ p − ℓj and i/2 ≡ p − ℓj

(mod |Qj |), we extract MI(T (i/2. .i], Q∞
j) from MI(T (p−ℓj . .i], Q∞

j) and use the precomputed

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:15

mismatch information MI(Pj+1, Q∞
j) to construct MI(T [. .i/2], Q∞

j) first, and then derive
MI(T [. .i/2], T (i/2. .i]). If the latter is of size at most k, we report T [. .i] as a k-mismatch
square.

As for the correctness, we argue that we miss no k-mismatch square T [. .i] with i ∈
(2ℓj . .2ℓj+1]. Since hd(T (i/2. .i], T [. .i/2]) ≤ k and hd(Pj+1, Q∞

j) ≤ 2k + 1, as a corollary
we obtain hd(T (i/2. .i], Q∞

j) ≤ 3k + 1. Moreover, by Observation 3.4, i/2 + ℓj is a k-
mismatch occurrence of Pj . Fact 4.3 further implies that i/2 + ℓj ≡ p (mod |Qj |) and
hd(T (p − ℓj . .i/2], Q∞

j) ≤ 3k. Consequently, hd(T (p − ℓj . .i], Q∞
j) ≤ 6k + 1, and thus we

compute MI(T [. .i/2], T (i/2. .i]) and report T [1. .i] as a k-mismatch square.
We conclude with the complexity analysis: the working space is O(k), dominated by the

maintained mismatch information. Moreover, whenever we compute MI(T [. .i/2], T (i/2. .i]),
the size of this set is, by the triangle inequality, at most 6k + 1 + 2k + 1 ≤ 8k + 2, and it can
be computed in O(k) time.

Summary. Overall, each level takes O(k log n) space and O(k log n) time per character,
dominated by the pattern-matching algorithm of Theorem 4.5. However, since constantly
many levels are processed at any given time, the entire algorithm still uses O(k log n) space
and O(k log n) time per character.

5 Language Edit Distance problems

The edit distance between two strings U and V , denoted by ed(U, V), is the minimum number
of character insertions, deletions, and substitutions required to transform U into V . Similar
to the Hamming distance, the edit distance from a string U to PAL and SQ can be expressed
in terms of self-similarity of U . This allows us to use similar approaches as for the Language
Hamming distance problems, with tools for the Hamming distance replaced with appropriate
tools for the edit distance. Details for the proof of these theorems can be found in the full
version of the paper, available on arXiv at https://arxiv.org/abs/2309.14788.

By replacing the Hamming distance sketch [11] with the edit distance sketch of Bhat-
tacharya and Koucký [7].

▶ Theorem 5.1. There is a randomised streaming algorithm that solves the k-LED-PAL
problem for a string of length n using Õ(k2) bits of space and Õ(k2) time per character.

Furthermore, the results of Bhattacharya and Koucký [7] show a reduction from the edit
distance to the Hamming distance via locally consistent string decompositions, which allows
reducing the k-LED-SQ problem to k-LHD-SQ, solved via Proposition 3.10:

▶ Theorem 5.2. There is a randomised streaming algorithm that solves the k-LED-SQ
problem for a string of length n using Õ(k2) bits of space and Õ(k2) time per character.

Finally, by replacing the online read-only algorithm for finding the k-mismatch occurrences
of a pattern in a text with an online read-only algorithm for finding k-error occurrences
and the structural results for the Hamming distance with the structural results for the edit
distance, we obtain algorithms for k-LED-PAL and k-LED-SQ:

▶ Theorem 5.3. There is a deterministic online read-only algorithm that solves the k-
LED-PAL problem for a string of length n using Õ(k4) bits of space and Õ(k4) time per
character.

ISAAC 2023

https://arxiv.org/abs/2309.14788

10:16 Online Language Distance Problem for Palindromes and Squares

▶ Theorem 5.4. There is a deterministic online read-only algorithm that solves the k-LED-
SQ problem for a string of length n using Õ(k4) bits of space and Õ(k4) amortised time per
character.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the Current Clique

Algorithms Are Optimal, so Is Valiant’s Parser. SIAM Journal on Computing, 47(6):2527–2555,
2018. doi:10.1137/16M1061771.

2 Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for
context-free languages. SIAM Journal on Computing, 1(4):305–312, 1972. doi:10.1137/
0201022.

3 Amihood Amir and Benny Porat. Approximate on-line palindrome recognition, and applications.
In Proc. of CPM 2014, volume 8486 of LNCS, pages 21–29. Springer, 2014. doi:10.1007/
978-3-319-07566-2_3.

4 Arturs Backurs and Krzysztof Onak. Fast algorithms for parsing sequences of parentheses
with few errors. In Proc. of PODS 2016, pages 477–488. ACM, 2016. doi:10.1145/2902251.
2902304.

5 Djamal Belazzougui and Mathieu Raffinot. Approximate regular expression matching with
multi-strings. Journal of Discrete Algorithms, 18:14–21, 2013. doi:10.1016/j.jda.2012.07.
008.

6 Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palindrome
recognition in the streaming model. In Proc. of STACS, volume 25, pages 149–161, 2014.
doi:10.4230/LIPIcs.STACS.2014.149.

7 Sudatta Bhattacharya and Michal Koucký. Locally consistent decomposition of strings with
applications to edit distance sketching. In Proc. of 55th STOC, pages 219–232. ACM, 2023.
doi:10.1145/3564246.3585239.

8 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly
subcubic algorithms for language edit distance and RNA folding via fast bounded-difference min-
plus product. SIAM Journal on Computing, 48(2):481–512, 2019. doi:10.1137/17M112720X.

9 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In Proc. of 61st FOCS, pages 978–989. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00095.

10 Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for
monotone instances. In Proc. of 54th STOC, pages 1529–1542. ACM, 2022. doi:10.1145/
3519935.3520057.

11 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem. In
Proc. of SODA 2019, pages 1106–1125. SIAM, 2019. doi:10.1137/1.9781611975482.68.

12 Debarati Das, Tomasz Kociumaka, and Barna Saha. Improved approximation algorithms for
Dyck edit distance and RNA folding. In Proc. of ICALP 2022, volume 229 of LIPIcs, pages
49:1–49:20, 2022. doi:10.4230/LIPIcs.ICALP.2022.49.

13 Anita Dürr. Improved bounds for rectangular monotone Min-Plus Product and applications.
Information Processing Letters, 181:106358, 2023. doi:10.1016/j.ipl.2023.106358.

14 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions.
Proceedings of the American Mathematical Society, 16(1):109–114, 1965. doi:10.1090/
S0002-9939-1965-0174934-9.

15 Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Tatiana
Starikovskaya. An improved algorithm for the k-Dyck edit distance problem. In Proc. of
SODA 2022, pages 3650–3669. SIAM, 2022. doi:10.1137/1.9781611977073.144.

16 Zvi Galil. Real-time algorithms for string-matching and palindrome recognition. In Proc. of
STOC, pages 161–173. ACM, 1976. doi:10.1145/800113.803644.

https://doi.org/10.1137/16M1061771
https://doi.org/10.1137/0201022
https://doi.org/10.1137/0201022
https://doi.org/10.1007/978-3-319-07566-2_3
https://doi.org/10.1007/978-3-319-07566-2_3
https://doi.org/10.1145/2902251.2902304
https://doi.org/10.1145/2902251.2902304
https://doi.org/10.1016/j.jda.2012.07.008
https://doi.org/10.1016/j.jda.2012.07.008
https://doi.org/10.4230/LIPIcs.STACS.2014.149
https://doi.org/10.1145/3564246.3585239
https://doi.org/10.1137/17M112720X
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.4230/LIPIcs.ICALP.2022.49
https://doi.org/10.1016/j.ipl.2023.106358
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1137/1.9781611977073.144
https://doi.org/10.1145/800113.803644

G. Bathie, T. Kociumaka, and T. Starikovskaya 10:17

17 Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. ACM SIGACT
News, 17(4):52–54, 1986. doi:10.1145/8307.8309.

18 Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight
tradeoffs for real-time approximation of longest palindromes in streams. Algorithmica,
81(9):3630–3654, 2019. doi:10.1007/s00453-019-00591-8.

19 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity of
the Hamming distance problem. Information Processing Letters, 99(4):149–153, 2006.

20 Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. Small-space and streaming
pattern matching with k edits. In Proc. of FOCS 2021, pages 885–896. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00090.

21 Roman Kolpakov and Gregory Kucherov. Finding approximate repetitions under Hamming
distance. Theoretical Computer Science, 303(1):135–156, 2003. Logic and Complexity in
Computer Science. doi:10.1016/S0304-3975(02)00448-6.

22 Michal Koucký and Michael E. Saks. Simple, deterministic, fast (but weak) approximations to
edit distance and Dyck edit distance. In Proc. of SODA 2023, pages 5203–5219. SIAM, 2023.
doi:10.1137/1.9781611977554.ch188.

23 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming algorithms for recognizing
nearly well-parenthesized expressions. In Proc. of MFCS 2011, volume 6907 of LNCS, pages
412–423. Springer, 2011. doi:10.1007/978-3-642-22993-0_38.

24 Gad M. Landau and Jeanette P. Schmidt. An algorithm for approximate tandem repeats. In
Proc. of CPM, pages 120–133, 1993. doi:10.1007/BFb0029801.

25 Lillian Lee. Fast context-free grammar parsing requires fast Boolean matrix multiplication.
Journal of the ACM, 49(1):1–15, January 2002. doi:10.1145/505241.505242.

26 Oleg Merkurev and Arseny M. Shur. Computing the maximum exponent in a stream. Al-
gorithmica, 84(3):742–756, 2022. doi:10.1007/s00453-021-00883-y.

27 Gene Myers. Approximately matching context-free languages. Information Processing Letters,
54(2):85–92, 1995. doi:10.1016/0020-0190(95)00007-y.

28 Alexandre H. L. Porto and Valmir Carneiro Barbosa. Finding approximate palindromes in
strings. Pattern Recognit., 35(11):2581–2591, 2002. doi:10.1016/S0031-3203(01)00179-0.

29 Walter L. Ruzzo. On the complexity of general context-free language parsing and recognition.
In Proc. of ICALP 1979, volume 71 of LNCS, pages 489–497. Springer, 1979. doi:10.1007/
3-540-09510-1_39.

30 Wojciech Rytter. On maximal suffixes and constant-space linear-time versions of
KMP algorithm. Theoretical Computer Science, 299(1-3):763–774, 2003. doi:10.1016/
S0304-3975(02)00590-X.

31 Barna Saha. The Dyck language edit distance problem in near-linear time. In Proc. of FOCS
2014, pages 611–620. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.71.

32 Barna Saha. Language edit distance and maximum likelihood parsing of stochastic grammars:
Faster algorithms and connection to fundamental graph problems. In Proc. of FOCS 2015,
pages 118–135. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.17.

33 Barna Saha. Fast space-efficient approximations of language edit distance and RNA folding:
An amnesic dynamic programming approach. In Proc. of FOCS 2017, pages 295–306. IEEE
Computer Society, 2017. doi:10.1109/FOCS.2017.35.

34 Giorgio Satta. Tree-adjoining grammar parsing and boolean matrix multiplication. Comput.
Linguistics, 20(2):173–191, 1994. URL: https://aclanthology.org/J94-2002.

35 Dina Sokol, Gary Benson, and Justin Tojeira. Tandem repeats over the edit distance. Bioin-
formatics, 23(2):e30–e35, January 2007. doi:10.1093/bioinformatics/btl309.

36 Dina Sokol and Justin Tojeira. Speeding up the detection of tandem repeats over the
edit distance. Theoretical Computer Science, 525:103–110, 2014. Advances in Stringology.
doi:10.1016/j.tcs.2013.04.021.

ISAAC 2023

https://doi.org/10.1145/8307.8309
https://doi.org/10.1007/s00453-019-00591-8
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1016/S0304-3975(02)00448-6
https://doi.org/10.1137/1.9781611977554.ch188
https://doi.org/10.1007/978-3-642-22993-0_38
https://doi.org/10.1007/BFb0029801
https://doi.org/10.1145/505241.505242
https://doi.org/10.1007/s00453-021-00883-y
https://doi.org/10.1016/0020-0190(95)00007-y
https://doi.org/10.1016/S0031-3203(01)00179-0
https://doi.org/10.1007/3-540-09510-1_39
https://doi.org/10.1007/3-540-09510-1_39
https://doi.org/10.1016/S0304-3975(02)00590-X
https://doi.org/10.1016/S0304-3975(02)00590-X
https://doi.org/10.1109/FOCS.2014.71
https://doi.org/10.1109/FOCS.2015.17
https://doi.org/10.1109/FOCS.2017.35
https://aclanthology.org/J94-2002
https://doi.org/10.1093/bioinformatics/btl309
https://doi.org/10.1016/j.tcs.2013.04.021

Sparse Graphs of Twin-Width 2 Have Bounded
Tree-Width
Benjamin Bergougnoux #

University of Warsaw, Poland

Jakub Gajarský #

University of Warsaw, Poland

Grzegorz Guśpiel #

Masaryk University, Brno, Czech Republic

Petr Hliněný #

Masaryk University, Brno, Czech Republic

Filip Pokrývka #

Masaryk University, Brno, Czech Republic

Marek Sokołowski #

University of Warsaw, Poland

Abstract
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant
[FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given
graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices,
and it can be seen as widely generalizing several other traditional structural parameters. Having
such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses
on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we
prove that if a graph G of twin-width at most 2 contains no Kt,t subgraph for some integer t, then
the tree-width of G is bounded by a polynomial function of t. As a consequence, for any sparse
graph class C we obtain a polynomial time algorithm which for any input graph G ∈ C either outputs
a contraction sequence of width at most c (where c depends only on C), or correctly outputs that
G has twin-width more than 2. On the other hand, we present an easy example of a graph class
of twin-width 3 with unbounded tree-width, showing that our result cannot be extended to higher
values of twin-width.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Fixed parameter tractability

Keywords and phrases twin-width, tree-width, excluded grid, sparsity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.11

Funding J. Gajarský and M. Sokołowski have received funding from the European Research Council
(ERC) (grant agreement No 948057 – BOBR).

1 Introduction

Twin-width is a relatively new structural width measure of graphs and relational structures
introduced in 2020 by Bonnet, Kim, Thomassé and Watrigant [13]. Informally, the twin-width
of a graph measures how diverse the neighbourhoods of the graph vertices are. For instance,
cographs – the graphs which can be built from singleton vertices by repeated operations of a
disjoint union and taking the complement – are exactly the graphs of twin-width 0, which
means that the graph can be brought down to a single vertex by successively identifying
twin vertices. (Two vertices x and y are called twins in a graph G if they have the same
neighbours in V (G) \ {x, y}.) Hence the name, twin-width, for the parameter.

© Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guśpiel, Petr Hliněný, Filip Pokrývka, and
Marek Sokołowski;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.bergougnoux@mimuw.edu.pl
https://orcid.org/0000-0002-6270-3663
mailto:gajasky@mimuw.edu.pl
https://orcid.org/0000-0002-4761-3432
mailto:guspiel@fi.muni.cz
https://orcid.org/0000-0002-3303-8107
mailto:hlineny@fi.muni.cz
https://orcid.org/0000-0003-2125-1514
mailto:xpokryvk@fi.muni.cz
https://orcid.org/0000-0003-1212-4927
mailto:marek.sokolowski@mimuw.edu.pl
https://orcid.org/0000-0001-8309-0141
https://doi.org/10.4230/LIPIcs.ISAAC.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

Importance of this new concept is clearly witnessed by numerous recent papers on the
topic, such as the follow-up series [7–11,14] and more related research papers which consider
twin-width from algorithmic [5,25], combinatorial [2,3,23], structural [4,15] and logical [4,19]
perspective.

In particular, twin-width, as a structural width parameter, has naturally algorithmic
applications in the parameterized complexity area. Among the most important ones we
mention that the first order (FO) model checking problem – that is, deciding whether a fixed
first-order sentence holds in an input graph – can be solved in linear FPT-time [14]. This and
other algorithmic applications assume that a contraction sequence of bounded width is given
alongside with the input graph, since in general we do not know how to construct such a
sequence efficiently. Consequently, finding an efficient algorithm for computing twin-width of
input graph G together with its twin-width decomposition (known as a contraction sequence
of G) is a central problem in the area. Currently, very little is known about this problem.
It is known that one can check whether a graph has twin-width 0 and 1 and compute the
corresponding contraction-sequence in polynomial time [12]. On the other hand, in general
the problem of deciding the exact value of twin-width is NP-hard, and in particular, deciding
whether a graph has twin-width 4 is NP-hard [5]. This means that even for fixed k, the
best one can hope for is an approximation algorithm which for given input graph G either
correctly outputs that G has twin-width more than k or produces a contraction sequence
of G of width at most k′, where k′ is some fixed number with k < k′. However, to the best
of our knowledge, no such efficient algorithm is currently known, even for graph classes of
twin-width 2.

The importance and popularity of twin-width largely stems from the fact that it generalizes
many well-known graph-theoretic concepts. For example, graph classes of bounded clique-
width, planar graphs and more generally graph classes defined by excluding a fixed minor,
posets of bounded width and various subclasses of geometric graphs have been shown to
have bounded twin-width [14,22]. In many cases, the proof of having bounded twin-width is
constructive, meaning that for such class there exists an integer d and a polynomial time
algorithm which takes a graph G as input and outputs a contraction sequence of G of width
at most d.

Apart from establishing that some well-known graph classes have bounded twin-width,
there are also results relating twin-width to various graph classes from the other direction:
one considers graph classes of bounded bounded twin-width which are restricted in some
sense, and proves that such classes fall within some well-studied framework. Prime examples
of this approach are results stating that Kt,t-free graph classes of bounded twin-width have
bounded expansion [8,18] or that stable graph classes of bounded twin-width have structurally
bounded expansion [20]. Results of this form allow us to use well-established structural
and algorithmic tools for (structurally) bounded expansion to restricted classes of bounded
twin-width.

Our research is motivated by the following conjecture, which also fits into this line of
research and about which we learned from É. Bonnet.

▶ Conjecture 1.1. Let C be a class of graphs of twin-width at most 3 such that there exists t

such that no G ∈ C contains Kt,t as a subgraph. Then C has bounded tree-width.

For graph classes of twin-width at most one, we can easily argue that Conjecture 1.1
is true as follows. It is known [11] that if a graph class C is such that every G ∈ C has a
contraction sequence in which red components (see Section 2) have bounded size, then C has
bounded clique-width. Since in a contraction sequence of width one each red component has

B. Bergougnoux, J. Gajarský, G. Guśpiel, P. Hliněný, F. Pokrývka, and M. Sokołowski 11:3

size one, this implies that graph classes of twin-width one have bounded clique-width. In
combination with the fact that graph classes of bounded clique-width which exclude Kt,t as
a subgraph have bounded tree-width, this proves the result.

However, for twin-width 2 or 3 we cannot assume that red components of trigraphs
occurring in contraction sequences have bounded size, and so to attack Conjecture 1.1 one
has to employ a more fine-tuned approach by directly analyzing contraction sequences.

Our contribution

We confirm Conjecture 1.1 for the case of graph classes of twin-width 2 and disprove the
conjecture for graph classes of twin-width 3. Namely on the positive side we prove the
following.

▶ Theorem 1.2. Let t be an integer and let C be a class of graphs of twin-width at most 2
such that no G ∈ C contains Kt,t as a subgraph. Then the tree-width of C is bounded by a
polynomial function of t, namely at most O(t20).

Theorem 1.2 allows us to apply the existing tools for bounded tree-width to sparse classes
of twin-width 2, making many hard problems efficiently solvable on such classes. Moreover,
Theorem 1.2 also leads to the following algorithmic corollary.

▶ Corollary 1.3. Let C be a class of graphs such that there exists t such that no G ∈ C contains
Kt,t as a subgraph. Then there exists a constant c depending on C, and a polynomial-time
algorithm which for every G ∈ C either outputs a contraction sequence of G of width at
most c, or correctly outputs that G has twin-width more than 2.

On the negative side, we exhibit an example of a graph class C of twin-width 3 such that
no G ∈ C contains a K2,2 ≃ C4 subgraph, and that C has unbounded tree-width.

2 Related Definitions and Tools

We use standard graph-theoretic terminology and notation. All graphs considered in this paper
are finite and simple, i.e., without loops and multiple edges. For the sake of completeness,
we include the following folklore definition and tool.

▶ Definition 2.1 (Tree-width [26]). A tree-decomposition of a graph G is a pair (X, T) where
T is a tree, whose vertices we call nodes, and X = {Xi | i ∈ V (T)} is a collection of subsets
of V (G) such that
1.

⋃
i∈V (T) Xi = V (G),

2. for each edge vw ∈ E(G), there is i ∈ V (T) such that v, w ∈ Xi and,
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of T .

The width of tree-decomposition ({Xi | i ∈ V (T)}, T) is equal to maxi∈V (T){|Xi| − 1}. The
tree-width of a graph G is the minimum width over all tree-decompositions of G.

For a graph G and A, B ⊆ V (G), an A − B path is a path with one endvertex in A and
the other endvertex in B. We will use Menger’s theorem (see for example [17]).

▶ Theorem 2.2 (Menger’s theorem). Let G be a graph and A, B ⊆ V (G). The minimum
size of a set S ⊆ V (G) such that there is no A − B path in G − S is equal to the maximum
number of vertex-disjoint A − B paths in G.

ISAAC 2023

11:4 Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

For an integer N , the N ×N wall (or hexagonal grid) is the graph consisting of N disjoint
paths P1, . . . , PN , each Pi with vertices vi

1, . . . , vi
N in this order in Pi, together with the edges

given by the following rule: if both i, j ∈ {1, . . . , N} have the same parity and i < N , then
vi

j is adjacent to vi+1
j .

For an integer N , a graph H is called an N × N cubic mesh if the maximum degree of H

is 3 and the following holds; we can write H = Q1 ∪ Q2, where each Qi, i = 1, 2, is formed
as a vertex-disjoint union of N paths, the ends of paths of Qi are disjoint from V (Q3−i) for
i = 1, 2, and every component–path of Q1 intersects every component–path of Q2 in precisely
one (common) subpath. These paths of Q1 (resp. of Q2) are called the rows (resp. columns)
of the mesh H, and the vertices of H of degree 3 are called the branching vertices of H.
The intersection of any row and any column of H must be a subpath of nonzero length
since ∆(H) = 3, and it contributes two branching vertices.

▶ Observation 2.3. Any subdivision of the classical (2N + 2) × (2N + 2) wall (hexagonal
grid) contains an N × N cubic mesh as a subgraph. See Figure 1.

Figure 1 Example of an 8 × 8 wall. We obtain a 3 × 3 cubic mesh by considering the yellow
paths as columns and the blue horizontal paths as rows. Hollow vertices are the branching vertices
of this cubic mesh.

The notion of twin-width can in general be considered over arbitrary binary relational
structures of a finite signature, but here we will define it and deal with it for only finite
simple graphs. It is based on the following concept.

A trigraph is a simple graph G in which some edges are marked as red, and with respect
to the red edges only, we naturally speak about red neighbours and red degree in G (while the
terms neighbour and degree without “red” refer to all edges of G inclusive of red ones, and
edges which are not red are also called black). For a pair of (possibly not adjacent) vertices
x1, x2 ∈ V (G), we define a contraction of the pair x1, x2 as the operation creating a trigraph
G′ which is the same as G except that x1, x2 are replaced with a new vertex x0 (said to stem
from x1, x2) such that:

the (full) neighbourhood of x0 in G′ (i.e., including the red neighbours), denoted by
NG′(x0), equals the union of the neighbourhoods NG(x1) of x1 and NG(x2) of x2 in G

except x1, x2 themselves, that is, NG′(x0) = (NG(x1) ∪ NG(x2)) \ {x1, x2}, and
the red neighbours of x0, denoted here by Nr

G′(x0), inherit all red neighbours of x1
and of x2 and add those in NG(x1)∆NG(x2), that is, Nr

G′(x0) =
(
Nr

G(x1) ∪ Nr
G(x2) ∪

(NG(x1)∆NG(x2))
)

\ {x1, x2}, where ∆ denotes the symmetric set difference.

B. Bergougnoux, J. Gajarský, G. Guśpiel, P. Hliněný, F. Pokrývka, and M. Sokołowski 11:5

▶ Definition 2.4 (Contraction sequence and twin-width [13]). A contraction sequence of a
trigraph G is a sequence of successive contractions turning G into a single vertex, and its
width d is the maximum red degree of any vertex in any trigraph of the sequence. We say
that G has or admits a d-contraction sequence if there is a contraction sequence of G of
width at most d. The twin-width of a trigraph G is the minimum width over all possible
contraction sequences of G.

To define a contraction sequence and the twin-width of an ordinary graph G, we consider
G as a trigraph with no red edges. In a summary, a graph has twin-width at most d, if and
only if it admits a d-contraction sequence.

For our purpose, the following “inverted” view of a contraction sequence will be useful.

▶ Definition 2.5 (Uncontraction sequence). A partitioned graph is a graph G associated with
an unordered vertex partition P = (P1, . . . , Pm) of V (G). The partitioned trigraph of (G, P)
is a trigraph H on the vertex set V (H) = P such that {P1, P2} ∈ E(H) if and only if G

contains an edge from P1 to P2, and this edge {P1, P2} is red if and only if not all pairs of
P1 × P2 are edges of G. An uncontraction sequence of an n-vertex graph G is a sequence of
partitioned graphs (G, Pi) for i = 1, . . . , n, where P1 = {V (G)} and Pn is the partition of
V (G) into singletons, and for 1 < i ≤ n the partition Pi is obtained from Pi−1 by splitting
an arbitrary one part of Pi−1 into two.

It is easy to observe that if G0, G1, . . . , Gn−1 is a contraction sequence of the n-vertex
graph G = G0, then for the trigraph Gn−k (on k vertices) we may form the corresponding
vertex partition Pk = (P k

1 , . . . , P k
k) of V (G) by setting P k

i to be the set of vertices of G

contracted into wi ∈ V (Gn−k), i = 1, . . . , k. The partitioned trigraph of (G, Pk) is hence
isomorphic to the trigraph Gn−k of the former contraction sequence, and these two possible
approaches to twin-width in Definition 2.4 and Definition 2.5 exactly coincide.

3 Proof of Theorem 1.2

Our proof proceeds by contradiction. Thus, we assume that there is a Kt,t-free graph G of
large tree-width which has twin-width at most 2. We then proceed in two steps:

Step I: Since G has large tree-width, it has to contain a subdivision of a large wall, and
hence a large cubic mesh, as a subgraph. Using this and the assumption that G has an
uncontraction sequence of width at most 2, we show that there has to be a point in time
during the uncontraction sequence such that there are four parts X1, X2, X3, X4 which
form a red path in the corresponding trigraph and there are many disjoint paths of G

fully contained in X1 ∪ X2 ∪ X3 ∪ X4 with one endpoint in X1 and the other in X4.

Step II: Using a carefully chosen invariant we show that the structure found in Step I
can be maintained indefinitely during the subsequent steps of the uncontraction sequence
(still of width at most 2). This yields a contradiction, since the final partition of the
uncontraction sequence consists of singletons and there are no red edges.

So, we actually prove the following alternative formulation of Theorem 1.2.

▶ Theorem 3.1. If G is a simple graph not containing a Kt,t subgraph, but containing a
subgraph (not necessarily induced) H ⊆ G which is an N × N cubic mesh for N = 16 · (13t)2,
then G is of twin-width at least 3.

ISAAC 2023

11:6 Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

3.1 Proving Step I
We start with a trivial claim which is crucial in our arguments:

▶ Observation 3.2. Assume a partitioned graph (G, P) such that G has no Kt,t subgraph,
and X1, X2 ∈ P such that |X1|, |X2| ≥ t. Then the partitioned trigraph of (G, P) cannot
contain a black edge {X1, X2}. In other words, whenever G has an edge from X1 to X2,
there is a red edge {X1, X2} in the partitioned trigraph of (G, P).

The first step in the proof of Theorem 1.2 is precisely formulated and proved next.

▶ Lemma 3.3. Let t be an integer. Assume that G is a simple graph not containing a
Kt,t subgraph, but containing a subgraph (not necessarily induced) H ⊆ G which is an
N × N cubic mesh, where N = 16 · (13t)2. If there is an uncontraction sequence (G, Pi)
for i = 1, . . . , |V (G)| of width at most 2, then there exists m ∈ {1, . . . , |V (G)|} such that the
following holds:

There are parts X1, X2, X3, X4 ∈ Pm with |Xi| ≥ t for each i ∈ {1, . . . , 4} which induce a
red path in this order in the partitioned trigraph of (G, Pm), and there is no edge between
X1 and X4.
The set X := X1 ∪ X2 ∪ X3 ∪ X4 induces in G a subgraph containing s ≥ 4t pairwise
vertex-disjoint paths from X1 to X4.

Proof. Set k := 13t. Let m ∈ {1, . . . , |V (G)|} be the least index such that every part of Pm

contains less than 4k2 branching vertices of H. Then there is a part Z ∈ Pm such that Z

contains at least 2k2 branching vertices of H (one of the two having resulted by the last
splitting before Pm). If Z intersected less than k rows and less than k columns of H , by the
condition on intersecting rows and columns we would have less than 2k2 branching vertices
in Z altogether. Hence, up to symmetry, we may assume that Z hits at least k rows of H.
Moreover, since N = 16 · (13t)2 = 16 · k2, we have that Z contains branching vertices of less
than 4k2 = N/4 rows of H.

Let L2, L1, R1, R2 ∈ Pm denote the (at most) four parts that are connected to Z by a
red path of length ≤ 2 in the partitioned trigraph of (G, Pm). That is, we have a red path
on, (L2, L1, Z, R1, R2) in this order (for simplicity, we silently ignore if some of the parts do
not exist). Again, each of L1, L2, R1, R2 contains branching vertices of less than 4k2 = N/4
rows of H. Altogether, every row of H hit by Z has at least 2N − 5 · N/4 = 3 · N/4 > 0
branching vertices not contained in

⋃
Z where Z = {L2, L1, Z, R1, R2}. We have thus got,

as subpaths of the rows hit by Z, a collection Q = {Q1, . . . , Qk} of k vertex-disjoint paths in
G which connect Z to parts in Pm \ Z. Let the paths in Q be chosen as inclusion-minimal
and for any Qi ∈ Q let ai and bi be the endpoints of Qi.

We now proceed assuming that all L1, L2, R1, R2 have size at least t, the case when one of
{L1, L2} or one of {R1, R2} is smaller than t is addressed below. Every path Q ∈ Q, by its
minimality, connects a vertex of Z to a vertex of Y ∈ Pm \ Z where Y is a neighbour (red or
black) of the set Z in the partitioned trigraph of (G, Pm). For any X ∈ {L2, L1, Z, R1, R2},
since |X| ≥ t, the union of the parts adjacent to X by black edges in the partitioned trigraph
is of cardinality less than t, or we have a Kt,t subgraph. Together, at most 5t of the paths of
Q in G may end in parts Y ∈ Pm \ Z which are not red neighbours of Z in the partitioned
trigraph. Since we have at most two red neighbours of parts of Z among the parts of Pm \ Z
(namely, the “outside” red neighbours of L2 and of R2), up to symmetry, the (unique) red
neighbour L3 ∈ Pm \ Z of L2 contains ends of at least (k − 5t)/2 = 4t of the paths in Q.
In particular, L3 has to exist, and L3 is not adjacent to Z in the partitioned trigraph by
Observation 3.2. We thus conclude by choosing X1 = L3, X2 = L2, X3 = L1 and X4 = Z.

B. Bergougnoux, J. Gajarský, G. Guśpiel, P. Hliněný, F. Pokrývka, and M. Sokołowski 11:7

Next, we address the case when exactly one of {L1, L2} or {R1, R2} contains W such that
|W | < t. Without loss of generality assume that W ∈ {R1, R2} and so both L1 and L2 have
size at least t. If W = R1, set Z ′ := {L2, L1, Z}, otherwise set Z ′ := {L2, L1, Z, R1}. Every
path Q ∈ Q, by its minimality, connects a vertex of Z to a vertex of Y ∈ Pm \ Z ′ where Y

is a neighbour (red or black) of the set Z ′ in the partitioned trigraph of (G, Pm). For any X

in Z, since |X| ≥ t, the union of the parts adjacent to X by black edges in the partitioned
trigraph is of cardinality less than t, or we have a Kt,t subgraph. Together, at most 4t of the
paths of Q in G may end in parts Y ∈ Pm \ Z ′ which are not red neighbours of Z ′ in the
partitioned trigraph, and at most t paths of Q can go through W . Ignoring all these at most
5t paths, all the remaining |Q| − 5t > 4t paths have to end in the red neighbor of L2; call this
neighbor L3. We thus again conclude by choosing X1 = L3, X2 = L2, X3 = L1 and X4 = Z.

Finally, we consider the case when there is WL ∈ {L1, L2} with |WL| < t and Wr ∈
{R1, R2} with |WR| < t. We will show that this leads to a contradiction. We first fix the
choice of WL and WR more precisely. If both L1 and L2 have size less than t, then we choose
L1 as WL and similarly, if both R1 and R2 have size less than t, we choose R1 as WR. Then
in the path L2L1ZR1R2 all parts between WL and WR have size at least t. Since each part
X between WL and WR has size at least t, the union of the parts adjacent to X by black
edges has size less than t, as otherwise we have a Kt,t as a subgraph. Thus, the union of WL,
WR, and all black neighbors of (at most 3) parts between WL an WR has size at most 5t.
This means that there are at most 5t vertices which separate {a1, . . . , ak} from {b1, . . . , bk}
(recall that for any i ∈ [k] we denote by ai and bi the endpoints of Qi). Since there are k > 5t

disjoint paths between A := {a1, . . . , ak} and B := {b1, . . . , bk}, this is a contradiction to
Menger’s theorem. ◀

▶ Observation 3.4. From Observation 3.2 it follows that each of the s paths from X1 to X4
claimed in Lemma 3.3 must also intersect X2 and X3 (possibly many times back and forth).

3.2 Proving Step II
For our convenience, we introduce the following notation. Given a graph G, an uncontraction
sequence (G, Pi) for i = 1, . . . , |V (G)|, an integer j ∈ {1, . . . , |V (G)|}, and X ∈ Pj , we
define N b

j (X) as the set of parts of Pj that have a black edge to X in the partitioned
trigraph of (G, Pj); we call this set the black neighborhood of X in (G, Pj). Also, we set
∥N b

j (X)∥ :=
∑

Y ∈Nb
j

(X) |Y | to be the total number of vertices of G in any part of the black
neighborhood of X in (G, Pj).

▶ Lemma 3.5. Let G be an arbitrary simple graph not containing a Kt,t as a subgraph,
and let (G, Pi) for i = 1, . . . , |V (G)| be an uncontraction sequence for G. Suppose that,
for some m ∈ {1, . . . , |V (G)|}, there are parts X1, X2, X3, X4 ∈ Pm with |Xi| ≥ t for each
i ∈ {1, . . . , 4} such that:

X1, X2, X3, X4 induce a red path in this order in the partitioned trigraph of (G, Pm),
there is no edge between X1 and X4, and
the set X1∪X2∪X3∪X4 induces in G a subgraph containing s ≥ 4t pairwise vertex-disjoint
paths from X1 to X4.

Then the width of this uncontraction sequence is greater than 2.

Proof. For a contradiction, suppose that the width of the considered uncontraction sequence
of G is at most 2. We are going to formulate an invariant which is true for (G, Pm), and
which will remain true at every subsequent step of the uncontraction sequence. Since this
invariant, at the same time, will preclude the finest partition into singletons, the assumed
sequence of width ≤ 2 cannot exist.

ISAAC 2023

11:8 Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

Invariant. At step j ≥ m of the uncontraction sequence, in the graph (G, Pj) and its
partitioned trigraph, the following holds. There are 4 parts X1, X2, X3, X4 ∈ Pj , each of size
at least t, forming a red path in this order in the partitioned trigraph of (G, Pj), and parts
X1 and X4 are not adjacent. Denote by sj the maximum number of vertex-disjoint paths in
G[X1 ∪X2 ∪X3 ∪X4], starting in X1 and ending in X4. Then sj +∥N b

j (X2)∥+∥N b
j (X3)∥ ≥ 4t.

Note that in the base case we have sm ≥ 4t, so the invariant is trivially satisfied for
j = m. Also, without loss of generality we can assume that all the vertex-disjoint paths in
G[X1 ∪ X2 ∪ X3 ∪ X4] are inclusion-wise minimal; so in particular, each path contains exactly
one (starting) vertex in X1 and exactly one (ending) vertex in X4. See also an informal
illustration in Figure 2.

Now suppose the invariant holds for some j ∈ {m, . . . , |V (G)| − 1} and let us prove that
it is also preserved after the j-th uncontraction. First observe that for each i ∈ {1, 2, 3, 4}, G

contains a bipartite clique with sides Xi and
⋃

N b
j (Xi). Since |Xi| ≥ t and G does not contain

Kt,t as a subgraph, we have ∥N b
j (Xi)∥ ≤ t−1. Therefore, sj ≥ 4t−(t−1)−(t−1) ≥ 2t. Each

of the sj disjoint paths in G[X1 ∪X2 ∪X3 ∪X4] must intersect each of the sets X1, X2, X3, X4
(Observation 3.4), so actually |Xi| ≥ sj ≥ 2t for each i ∈ {1, 2, 3, 4}.

X1 X2 X3 X4

N b
j (X2) N b

j (X3)

Figure 2 Illustration of 4 big parts X1, X2, X3, X4 forming red path (red), an example of one of
sj paths (green), and parts in black neighbourhoods Nb

j (X2), Nb
j (X3) (black).

We now analyze all the possible cases for an uncontraction step. Denote by x ∈ Pj the
part that is split into new parts y, z ∈ Pj+1. Also select some sj ≥ 2t inclusionwise-minimal
pairwise vertex-disjoint paths P1, . . . , Psj

from X1 to X4 in G[X1 ∪ X2 ∪ X3 ∪ X4]. By
minimality, Observation 3.2 and Observation 3.4, each path has its first vertex in X1, its
second vertex in X2, its penultimate vertex in X3, and its last vertex in X4. Also notice that
there cannot be any edges between X1 and X3, or any edges between X2 and X4 (otherwise,
Observation 3.2 would apply and the red degree of X2 or X3 would be too large). Recall
also there are no edges between X1 and X4.

If x ̸∈ {X1, X2, X3, X4}, the black neighbourhood of X2 and X3 in the partitioned trigraph
can only increase; also, sj+1 = sj as the vertex-disjoint paths in G[X1 ∪ X2 ∪ X3 ∪ X4] in
(G, Pj) are preserved in the uncontraction step. Hence, the invariant is satisfied.

Suppose x = X1 or x = X4. Without loss of generality, x = X1 (or suppose the red
path is actually X4, X3, X2, X1), as illustrated in Figure 3a. Since at the j-th step, there
were at least sj ≥ 2t inclusion-wise minimal pairwise vertex-disjoint paths from X1 to X4 in
G[X1 ∪ X2 ∪ X3 ∪ X4], at least t of these start in y or at least t of these start in z; again
without loss of generality, assume that y contains at least t starts of the paths (so naturally
|y| ≥ t). As each of those paths have its second vertex in X2, we know that yX2 is an edge in
the partitioned trigraph of (G, Pj+1); and it must be a red edge, because both y and X2 have
size at least t and Observation 3.2 applies. We now claim that the red path y, X2, X3, X4
preserves the invariant in (G, Pj+1). Since y, z ⊆ X1, both y and z are non-adjacent to X3

B. Bergougnoux, J. Gajarský, G. Guśpiel, P. Hliněný, F. Pokrývka, and M. Sokołowski 11:9

and X4. Observe also that z cannot be red-adjacent to X2 in (G, Pj+1) as in this case, the
red degree of X2 would be at least 3. However, z can be either black-adjacent or non-adjacent
to X2. If z is non-adjacent to X2, then z cannot contain the start of any of the sj paths Pi as
the second vertex of each such path is in X2. Hence we do not lose any path Pi by removing
z from X1 ∪ X2 ∪ X3 ∪ X4, so sj+1 = sj and the invariant still holds. If z is black-adjacent
to X2, then by a counting argument z contains at most |z| starts of the considered paths
Pi; hence, sj+1 ≥ sj − |z|. However, the number of vertices of G in the black neighborhood
of X2 also increases by |z|, because z was split out of X1 which was a red neighbour of X2.
Hence the inequality from the invariant is satisfied:

sj+1 + ∥N b
j+1(X2)∥ + ∥N b

j+1(X3)∥ ≥ (sj − |z|) + (∥N b
j (X2)∥ + |z|) + ∥N b

j (X3)∥ ≥ 4t.

It is also easy to verify the remaining conditions of the invariant.
It remains to consider x = X2 or x = X3. Without loss of generality, x = X2 (or suppose

the red path X4, . . . , X1). We first prove that at least one of y, z is red-adjacent to X1 in
(G, Pj+1). Assume otherwise; then y is either non-adjacent to X1 (and then |NG(X1)∩y| = 0)
or black-adjacent to X1 (and then |y| ≤ t − 1 by Observation 3.2, so |NG(X1) ∩ y| ≤ t − 1).
Analogously, |NG(X1)∩z| ≤ t−1. Since X2 = y∪z, we conclude that |NG(X1)∩X2| ≤ 2t−2.
But each of sj ≥ 2t vertex-disjoint paths P1, . . . , Psj have two consecutive vertices in X1 and
X2, so |NG(X1) ∩ X2| ≥ sj – a contradiction. Hence at least one of y, z is red-adjacent to
X1. Repeating the same argument with X3 instead of X1 implies that at least one of y, z is
red-adjacent to X3. Additionally, X3 is already red-adjacent to X4, so exactly one of y, z is
red-adjacent to X3. Without loss of generality, assume that y is red-adjacent to X3. We now
consider two separate cases, depending on whether y is red-adjacent to X1.

First assume that y is red-adjacent to X1, as illustrated in Figure 3b. We claim that
the red path X1, y, X3, X4 preserves the invariant in (G, Pj+1). Observe that z cannot be
red-adjacent to y due to the red degree condition of y in (G, Pj+1). If z is non-adjacent to
y and X3, no inclusion-wise minimal path from X1 to X4 in G[X1 ∪ X2 ∪ X3 ∪ X4] can be
routed through z as all neighbors of z in X1 ∪ X2 ∪ X3 ∪ X4 are in X1. Then sj+1 = sj and
it is easy to verify the remaining parts of the invariant. Next suppose z is black-adjacent to
X3; then by Observation 3.2 we have |z| ≤ t − 1, hence |y| = |X2| − |z| ≥ t. Also observe
that at most |z| paths Pi intersect z, so sj+1 ≥ sj − |z|. Therefore, the inequality from the
invariant is preserved:

sj+1 + ∥N b
j+1(X2)∥ + ∥N b

j+1(X3)∥ ≥ (sj − |z|) + ∥N b
j (X2)∥ + (∥N b

j (X3) + |z|)∥ ≥ 4t,

and the remaining conditions of the invariant are easy to verify. Finally suppose z is
non-adjacent to X3 and black-adjacent to y. Then each path Pi must intersect y, hence
|y| ≥ sj > t. Moreover, sj+1 ≥ sj − |z| and again ∥N b

j+1(X2)∥ ≥ ∥N b
j (X2)∥ + |z|, so the

inequality from the invariant is preserved; once again, the remaining parts of the invariant
follow.

It remains to consider the case where y is not red-adjacent to X1 (i.e., either non-adjacent
or black-adjacent to X1), as illustrated in Figure 3c. We claim that z, y, X3, X4 is a red
path preserving the invariant in (G, Pj+1). We first prove that |y|, |z| ≥ t. First assume
that |y| ≤ t − 1. Then |z| = |X2| − |y| ≥ 2t − (t − 1) ≥ t, so by Observation 3.2, z is not
black-adjacent to X3; and it is not red-adjacent to X3 as X3 is already red-adjacent to y

and X4. Thus z is non-adjacent to X3, so each path Pi must intersect y (this is because
X2 = y ∪ z and each path Pi contains an edge between X2 and X3). But then |y| ≥ st > t − 1
– a contradiction. Similarly, if |z| ≤ t − 1, then |y| = |X2| − |z| ≥ t, so by Observation 3.2,
y is not black-adjacent to X1; and it is not red-adjacent to X1 by our assumption. So y is

ISAAC 2023

11:10 Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

non-adjacent to X1 and each path Pi must intersect z – a contradiction. Hence, |y|, |z| ≥ t.
Applying Observation 3.2 three times, we find that y is non-adjacent to X1; z is non-adjacent
to X3; and y is not black-adjacent to z. Since y must be adjacent to z (otherwise X1 and
X4 would be in separate connected components of G[X1 ∪ X2 ∪ X3 ∪ X4]), we get that y is
red-adjacent to z. Hence the subgraph of the partitioned trigraph of (G, Pj+1) induced by
{X1, z, y, X3, X4} contains red edges X1z, zy, yX3 and X3X4 and no black edges. Therefore,
the second vertex of each path Pi is actually in z; so we can remove a prefix from each path Pi

so that each path starts in z, finishes in X4 and is contained in z ∪y ∪X3 ∪X4. This witnesses
that there exist sj vertex-disjoint paths from z to X4 in G[z ∪ y ∪ X3 ∪ X4], so sj+1 ≥ sj .
Moreover, ∥N b

j+1(y)∥ = ∥N b
j (X2)∥ (as the black neighborhoods of y and z in (G, Pj+1) are

equal to the black neighborhood of X2 in (G, Pj)), and ∥N b
j+1(X3)∥ = ∥N b

j (X3)∥ (as the
black neighborhood of X3 did not change during the uncontraction). We conclude that
sj+1 + ∥N b

j+1(y)∥ + ∥N b
j+1(X3)∥ ≥ 4t, as required, and all the satisfaction of the remaining

parts of the invariant is clear.

x = X1

y

z

X2 X3 X4

(a)

X1

x = X2

y

z

X3 X4

(b)

X1

x = X2

y

z

X3 X4

(c)

Figure 3 Illustration of possible uncontractions from the proof of Lemma 3.5. Multiple edge
connections between parts show all possible edges, dotted edge means non-adjacency.

◀

3.3 Concluding the Main Proof
Observe that the basic assumptions of Theorem 3.1 are the same as those of Lemma 3.3,
and the assumptions of Lemma 3.5 follow from Lemma 3.3. Hence, as detailed in the formal
proof below, Lemma 3.3 and Lemma 3.5 together imply Theorem 3.1.

To extend this to a proof of Theorem 1.2, we use the following tool – an excluded-grid
theorem for tree-width in the currently strongest published formulation (modulo polylog
factors which we have “rounded up” for simplicity):

▶ Theorem 3.6 (Chuzhoy and Tan [16]). There is a function f(n) ∈ O(n10) such that, for
every positive integer N , if a graph G is of tree-width at least f(N), then G contains a
subdivision of the N × N wall as a subgraph.

B. Bergougnoux, J. Gajarský, G. Guśpiel, P. Hliněný, F. Pokrývka, and M. Sokołowski 11:11

Proof of Theorem 1.2. Let f be the function of Theorem 3.6, and choose f1(t) = f(2 ·
16 · (13t)2 + 2) ∈ O(t20). If our graph G has tree-width at least f1(t), then G contains a
subdivision of the (2 · 16 · (13t)2 + 2) × (2 · 16 · (13t)2 + 2) wall by Theorem 3.6. Consequently,
by Observation 2.3, G contains a subgraph which is a (16 · (13t)2) × (16 · (13t)2) cubic mesh.

We now invoke Lemma 3.3, assuming G admits an uncontraction sequence of width
at most 2; so, we obtain the parts X1, X2, X3, X4 as claimed by Lemma 3.3 and required
by Lemma 3.5. By the subsequent invocation of Lemma 3.5, we immediately arrive at a
contradiction to having the uncontraction sequence of width at most 2. Consequently, the
tree-width less than f1(t) = f(2 · 16 · (13t)2 + 2) ∈ O(t20). ◀

Proof of Corollary 1.3. Let t be an integer and C a graph class such that no G ∈ C contains
Kt,t as a subgraph. Let f1 be the polynomial function from (the proof of) Theorem 1.2
and set k := f1(t), which is a constant depending on C. Let G ∈ C be the input graph. We
first use the linear time algorithm of Bodlaender [6] to test whether G has tree-width at
most k. If the answer is no, then we know by Theorem 1.2 that G cannot have twin-width
at most 2. Otherwise, G has tree-width at most k, and we easily turn the decomposition
into a branch-decomposition of width at most k + 1. This directly gives a boolean-width
decomposition of width at most k + 1 [1] (with virtually the same decomposition tree).
Finally, by the result of [14], from a boolean-width decomposition of G of width k + 1 one
can obtain a contraction sequence of width at most 2k+2 − 1 and an easy inspection of the
proof shows that this can be done in polynomial time.

Thus, in the end (with respect to the fixed class C) we compute in polynomial time a
contraction sequence of G of width at most 2poly(t). If the class C and implicit t were to be
considered as parameters, the discussed algorithm would have an FPT runtime. ◀

3.4 Case of Twin-width 3

Lastly, we show that in the class of graphs of twin-width 3, no upper bound on the tree-width
is possible even if we exclude K2,2.

▶ Lemma 3.7. For every positive integer N , there exists an (N2 + N)-vertex graph with no
K2,2 subgraphs whose twin-width is at most 3 and tree-width is at least N .

Figure 4 Illustration of the K2,2-free graph of twin-width 3 and tree-width θ(
√

n). It represents
a partitioned trigraph of a contraction sequence of width 3: hollow vertices are singletons and the
gray rectangle reveals the next contraction.

ISAAC 2023

11:12 Sparse Graphs of Twin-Width 2 Have Bounded Tree-Width

Proof. Let N be a positive integer. We take G the graph obtained from the disjoint union
of N paths P1, . . . , PN of length N , and for each i ∈ [N], we add a new vertex adjacent to
the i-th vertex of each path P1, . . . , PN . See Figure 4 for an illustration. Obviously G has
N2 + N vertices and no K2,2 as subgraph.

Observe that by contracting each path P1, . . . , PN , we obtain the complete bipartite
graph KN,N . As G admits KN,N as a minor, we deduce that its tree-width is at least N .

We claim that the twin-width of G is at most 3. We can assume without loss of generality
that the edges of P1 are red. We contract P1 and P2 by iteratively contracting their i-th
vertices as illustrated in Figure 4. The maximum red degree of each encountered trigraph is
3 and we end up with a trigraph isomorphic to G − P2. We can repeat this operation to end
up with a trigraph isomorphic to G − (P2 ∪ · · · ∪ PN). Then we can contract each pendant
vertex with its unique neighbor to obtain a red path whose twin-width is obviously at most 2.
We conclude that the twin-width of G is at most 3. ◀

4 Conclusions

We have shown that sparse classes of graphs of twin-width 2 have bounded tree-width. This
means that the existing rich machinery of structural and algorithmic tools for tree-width is
applicable to such graph classes.

One might wonder how one can relax the requirement on C being Kt,t-free to relate
graphs of twin-width 2 to other well-studied graph notions. One could even try to drop any
restrictions altogether and conjecture that any class of twin-width at most 2 has bounded
clique-width. This cannot be true, since the class of unit interval graphs has twin-width 2
and unbounded clique-width [21]. However, we conjecture the following.

▶ Conjecture 4.1. Let C be a stable class of graphs of twin-width at most 2. Then C has
bounded clique-width.

Here being stable means that there exists k such that no G ∈ C contains a half-graph of
order k as a semi-induced subgraph. We refer to [20, 24] for details about stability and a
discussion on how it relates to tree-width, clique-width and twin-width.

References
1 Isolde Adler, Binh-Minh Bui-Xuan, Yuri Rabinovich, Gabriel Renault, Jan Arne Telle, and

Martin Vatshelle. On the boolean-width of a graph: Structure and applications. In WG,
volume 6410 of Lecture Notes in Computer Science, pages 159–170, 2010.

2 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of
graphs. CoRR, abs/2110.03957, 2021. arXiv:2110.03957.

3 Jakub Balabán and Petr Hliněný. Twin-width is linear in the poset width. In IPEC, volume
214 of LIPIcs, pages 6:1–6:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

4 Jakub Balabán, Petr Hliněný, and Jan Jedelský. Twin-width and transductions of proper
k-mixed-thin graphs. In WG, volume 13453 of Lecture Notes in Computer Science, pages
43–55. Springer, 2022.

5 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is
NP-complete. In ICALP, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022.

6 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

7 Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé. Twin-width VIII: delineation and win-wins. In IPEC, volume 249 of
LIPIcs, pages 9:1–9:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

https://arxiv.org/abs/2110.03957
https://doi.org/10.1137/S0097539793251219

B. Bergougnoux, J. Gajarský, G. Guśpiel, P. Hliněný, F. Pokrývka, and M. Sokołowski 11:13

8 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In SODA, pages 1977–1996. SIAM, 2021.

9 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In ICALP, volume
198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

10 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In STOC, pages
924–937. ACM, 2022.

11 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. In SODA, pages 1036–1056. SIAM, 2022.

12 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. Algorithmica, 84(11):3300–3337, 2022. doi:10.1007/
s00453-022-00965-5.

13 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In FOCS, pages 601–612. IEEE, 2020.

14 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022.

15 Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan
Thomassé. Twin-width and permutations. CoRR, abs/2102.06880, 2021. arXiv:2102.06880.

16 Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the excluded grid theorem. J.
Comb. Theory, Ser. B, 146:219–265, 2021. doi:10.1016/j.jctb.2020.09.010.

17 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

18 Jan Dreier, Jakub Gajarský, Yiting Jiang, Patrice Ossona de Mendez, and Jean-Florent
Raymond. Twin-width and generalized coloring numbers. Discret. Math., 345(3):112746, 2022.
doi:10.1016/j.disc.2021.112746.

19 Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon Torunczyk. Twin-
width and types. In ICALP, volume 229 of LIPIcs, pages 123:1–123:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

20 Jakub Gajarský, Michal Pilipczuk, and Szymon Torunczyk. Stable graphs of bounded twin-
width. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, pages 39:1–39:12.
ACM, 2022. doi:10.1145/3531130.3533356.

21 Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci., 11(3):423–443, 2000. doi:10.1142/S0129054100000260.

22 Petr Hlinený, Filip Pokrývka, and Bodhayan Roy. FO model checking on geometric graphs.
Comput. Geom., 78:1–19, 2019. doi:10.1016/j.comgeo.2018.10.001.

23 Petr Hliněný and Jan Jedelský. Twin-width of planar graphs is at most 8, and at most 6 when
bipartite planar. CoRR, abs/2210.08620, 2022. Accepted to ICALP 2023. arXiv:2210.08620.

24 Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Roman Rabinovich, and
Sebastian Siebertz. Rankwidth meets stability. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10–13, 2021, pages 2014–2033. SIAM, 2021. doi:10.1137/1.9781611976465.120.

25 Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. Compact representation for
matrices of bounded twin-width. In STACS, volume 219 of LIPIcs, pages 52:1–52:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

26 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

ISAAC 2023

https://doi.org/10.1007/s00453-022-00965-5
https://doi.org/10.1007/s00453-022-00965-5
https://arxiv.org/abs/2102.06880
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/j.disc.2021.112746
https://doi.org/10.1145/3531130.3533356
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1016/j.comgeo.2018.10.001
https://arxiv.org/abs/2210.08620
https://doi.org/10.1137/1.9781611976465.120
https://doi.org/10.1016/0196-6774(86)90023-4

Substring Complexity in Sublinear Space
Giulia Bernardini #

University of Trieste, Italy

Gabriele Fici #

Dipartimento di Matematica e Informatica, University of Palermo, Italy

Paweł Gawrychowski #

Institute of Computer Science, University of Wrocław, Poland

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Abstract
Shannon’s entropy is a definitive lower bound for statistical compression. Unfortunately, no such
clear measure exists for the compressibility of repetitive strings. Thus, ad hoc measures are employed
to estimate the repetitiveness of strings, e.g., the size z of the Lempel–Ziv parse or the number r of
equal-letter runs of the Burrows-Wheeler transform. A more recent one is the size γ of a smallest
string attractor. Let T be a string of length n. A string attractor of T is a set of positions of T

capturing the occurrences of all the substrings of T . Unfortunately, Kempa and Prezza [STOC 2018]
showed that computing γ is NP-hard. Kociumaka et al. [LATIN 2020] considered a new measure
of compressibility that is based on the function ST (k) counting the number of distinct substrings
of length k of T , also known as the substring complexity of T . This new measure is defined as
δ = sup{ST (k)/k, k ≥ 1} and lower bounds all the relevant ad hoc measures previously considered.
In particular, δ ≤ γ always holds and δ can be computed in O(n) time using Θ(n) working space.
Kociumaka et al. showed that one can construct an O(δ log n

δ
)-sized representation of T supporting

efficient direct access and efficient pattern matching queries on T . Given that for highly compressible
strings, δ is significantly smaller than n, it is natural to pose the following question:

Can we compute δ efficiently using sublinear working space?

It is straightforward to show that in the comparison model, any algorithm computing δ using
O(b) space requires Ω(n2−o(1)/b) time through a reduction from the element distinctness problem
[Yao, SIAM J. Comput. 1994]. We thus wanted to investigate whether we can indeed match this
lower bound. We address this algorithmic challenge by showing the following bounds to compute δ:

O(n3 log b
b2) time using O(b) space, for any b ∈ [1, n], in the comparison model.

Õ(n2/b)1 time using Õ(b) space, for any b ∈ [
√

n, n], in the word RAM model. This gives an
Õ(n1+ϵ)-time and Õ(n1−ϵ)-space algorithm to compute δ, for any 0 < ϵ ≤ 1/2.

Let us remark that our algorithms compute ST (k), for all k, within the same complexities.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases sublinear-space algorithm, string algorithm, substring complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.12

Related Version Full Version: https://arxiv.org/abs/2007.08357

Funding Giulia Bernardini: MUR – FSE REACT EU – PON R&I 2014-2020.
Gabriele Fici: Projects MUR PRIN 2017 ADASCOML – 2017K7XPAN and MUR PRIN 2022 APML
– 20229BCXNW.
Solon P. Pissis: Supported by the PANGAIA (No 872539) and ALPACA (No 956229) projects.

1 The Õ(f) notation denotes O(f · polylog(n)).

© Giulia Bernardini, Gabriele Fici, Paweł Gawrychowski, and Solon P. Pissis;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 12; pp. 12:1–12:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giulia.bernardini@units.it
https://orcid.org/0000-0001-6647-088X
mailto:gabriele.fici@unipa.it
https://orcid.org/0000-0002-3536-327X
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-6993-5440
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
https://doi.org/10.4230/LIPIcs.ISAAC.2023.12
https://arxiv.org/abs/2007.08357
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Substring Complexity in Sublinear Space

1 Introduction

We are currently witnessing our world drowning in data. These datasets are generated by
a large gamut of applications: databases, web applications, genome sequencing projects,
scientific computations, sensors, e-mail, entertainment, and others. The biggest challenge is
thus to develop theoretical and practical methods for processing datasets efficiently.

Compressed data representations that can be directly used in compressed form have a
central role in this challenge [61]. Indeed, much of the currently fastest-growing data is highly
repetitive; this, in turn, enables space reductions of orders of magnitude [35]. Prominent
examples of such data include genome, versioned text, and software repositories collections.
A common characteristic is that each element in a collection is very similar to every other.

Since a significant amount of this data is sequential, a considerable amount of algorithmic
research has been devoted to text indexes over the past decades [68, 59, 29, 45, 31, 42, 44, 6,
23, 60, 46, 35, 47]. String processing applications (see [43, 2] for reviews) require fast access
to the substrings of the input string. These applications rely on such text indexes, which
arrange the string suffixes lexicographically in an ordered tree [68] or an ordered array [59].

This significant amount of research has resulted in compressed text indexes that support
fast pattern searching in space close to the statistical entropy of the text collection. The
problem, however, is that this kind of entropy is unable to capture repetitiveness [57, 58]. To
achieve orders-of-magnitude space reductions, one thus needs to resort to other compression
methods, such as Lempel-Ziv (LZ) [71], grammar compression [50] or run-length compressed
Burrows-Wheeler transform (BWT) [35], to name a few; see [35] for a review.

Unlike Shannon’s entropy, which is a definitive lower bound for statistical compression, no
such clear measure exists for the compressibility of repetitive texts. Other than Kolmogorov’s
complexity [55], which is not computable, repetitiveness is measured in ad hoc terms, based
on what the compressors may achieve. Such measures on a string T include: the number z

of phrases produced by the LZ parsing of T ; the size g of the smallest grammar generating
T ; and the number r of maximal equal-letter runs in the BWT of T . See [62] for a survey.

An improvement is the recent introduction of the string attractor [49] notion. Let T be a
string of length n. An attractor Γ is a set of positions over [1, n] such that any substring of T

has an occurrence covering a position in Γ. The size γ of a smallest attractor asymptotically
lower bounds all the repetitiveness measures listed above (and others; see [52]). Unfortunately,
using indexes based on γ comes also with some challenges. Other than computing γ is NP-
hard [49], it is unclear if γ is the definitive measure of repetitiveness: we do not know whether
one can always represent T in O(γ) space (machine words). This motivated Christiansen
et al. [18] to consider a new measure δ of compressibility, initially introduced in the area of
string compression by Raskhodnikova et al. [66], and for which δ ≤ γ always holds [18].

▶ Definition 1 ([18]). Let T be a string and ST (k) its substring complexity: the function
counting the number of distinct substrings of length k of T . The normalized substring
complexity of T is the function ST (k)/k and we set δ = sup{ST (k)/k, k ≥ 1} its supremum.

Christiansen et al. also showed that δ can be computed in O(n) time using Θ(n) working
space. Kociumaka et al. [52, 53] showed that δ can also be strictly smaller than γ by up to a
logarithmic factor: for any n and any δ, there are strings with γ = Ω(δ log n

δ). Moreover,
Kociumaka et al. developed a representation of T of size O(δ log n

δ), which is worst-case
optimal in terms of δ and allows for accessing any T [i] in time O(log n

δ) and for finding all
occ occurrences of any pattern P [1 . . m] in T in near-optimal time O(m log n + occ logϵ n),
for any constant ϵ > 0 (see also [51] and [48] for further improvements). Since for highly
compressible strings, δ is significantly smaller than n, we pose the following basic question:

Can we compute δ efficiently using sublinear working space?

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:3

The question on computing δ in bounded space arises naturally: it extends a large body
of work on problems on strings, which admit a straightforward solution if we have the space
to construct and store the suffix tree [68]; but as this is often not the case, one needs to
overcome the space challenge by investigating space-time trade-offs for these problems.

Related Work. The standard approach for showing space-time trade-off lower bounds for
problems answered in polynomial time has been to analyze their complexity on (multi-way)
branching programs. In this model, the input is stored in read-only memory, the output in
write-only memory, and neither is counted towards the space used by any algorithm. This
model is powerful enough to simulate both Turing machines and standard RAM models that
are unit-cost with respect to time and log-cost with respect to space. It was introduced by
Borodin and Cook, who used it to prove that any multi-way branching program requires a
time-space product of Ω(n2/ log n) to sort n integers in the range [1, n2] [11, 4]. Unfortunately,
the techniques in [11] yield only trivial bounds for problems with single outputs.

String algorithms that use sublinear space have been extensively studied over the past
decades [36, 26, 64, 13, 67, 12, 54, 19, 34, 20, 22, 41, 40, 39, 38, 21, 37, 3, 63, 15, 65, 56].
The perhaps most relevant problem to our work is the classic longest common substring of
two strings. Formally, given two strings X and Y of total length n, the longest common
substring (LCS) problem consists in computing a longest string occurring as a substring of
both X and Y . The LCS problem was conjectured by Knuth to require Ω(n log n) time. This
conjecture was disproved by Weiner who, in his seminal paper on suffix tree construction [68],
showed how to solve the LCS problem in O(n) time for constant-sized alphabets. Farach
showed that the same problem can be solved in the optimal O(n) time for polynomially-sized
integer alphabets [29]. A straightforward space-time trade-off lower bound of Ω(b) space and
Ω(n2/b) time for the LCS problem can be derived from the problem of checking whether the
length of an LCS is 0; i.e., deciding if X and Y have a common letter or not. Thus, in some
sense, the LCS problem can be seen as a generalization of the element distinctness problem:
given n elements over a domain D, decide whether all n elements are distinct.

On the upper bound side, Starikovskaya and Vildhøj showed that for any b ∈ [n2/3, n],
the LCS problem can be solved in Õ(n2/b) time and O(b) space [67]. In [54], Kociumaka et
al. gave an O(n2/b)-time algorithm to find an LCS for any b ∈ [1, n], and also provided a
lower bound, which states that any deterministic multi-way branching program that uses
b ≤ n

log n space must take Ω(n
√

log(n/(b log n))/ log log(n/(b log n))) time. This lower bound
implies that the classic O(n)-time solution for the LCS problem [68, 29] is optimal in the
sense that we cannot hope for an O(n)-time algorithm using o(n/ log n) space. Unfortunately,
we do not know if the O(b)-space and O(n2/b)-time trade-off is generally the best possible
for the LCS problem. For the easier element distinctness problem, Beame et al. [5] showed a
randomized multiway branching program using Õ(n3/2/

√
b)-time and O(b) space.

It is thus a big open question to answer whether the LCS problem can be solved
asymptotically faster than O(n2/b) using O(b) space. Towards this direction, Ben-Nun
et al. exploited the intuition suggesting that an LCS of X and Y can be computed more
efficiently when its length L is large [63] (see also [16]). The authors showed an algorithm
which runs in Õ(n2

L·b + n) time, for any b ∈ [1, n], using O(b) space. Still, a straightforward
lower bound for the aforementioned problem is in Ω(n2

L2·b + n) time when O(b) space is used;
it seems that further insight is required to match this space-time trade-off lower bound.

Our Results and Techniques. Our goal is to efficiently compute δ using O(b) space. As a
preliminary step towards this algorithmic challenge, we show the following theorem.

ISAAC 2023

12:4 Substring Complexity in Sublinear Space

▶ Theorem 2. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
O(n3 log b

b2) time using O(b) space, for any b ∈ [1, n], in the comparison model.

It is straightforward to show that any comparison-based branching program to compute δ

using O(b) space requires Ω(n2−o(1)/b) time through a reduction from the element distinctness
problem [70]. By Yao’s lemma, this lower bound also applies to randomized branching
programs [70]. This suggests that a natural intermediate step towards fully understanding
the computation complexity of computing δ in small space should be designing an Õ(n2/b)-
time algorithm using O(b) space (not necessarily in the comparison model).

The natural approach for computing δ is through computing all values of ST (k). In
particular, this is the idea behind the straightforward O(n)-time computation of δ using
O(n) space [18]. It is unclear to us if a more direct approach exists (see also Section 6 for a
combinatorial analysis on the behaviour of δ). Under this plausible assumption, we stress
that computing ST (k), for all k one-by-one, is a more general problem than computing the
length L of an LCS of X and Y , as an algorithm computing ST (k) can be used to compute
L within the same complexities. This follows by the following argument: we compute SX(k),
SY (k), and SX#Y (k) (where # is a special letter that does not occur in X or in Y) in parallel,
and set L equal to the largest k such that SX(k)+SY (k) > SX#Y (k)−k. As the best-known
time upper bound for the very basic question of computing LCS in O(b) space remains to
be O(n2/b), this further motivates the algorithmic challenge of designing an algorithm with
such bounds for computing δ. We address it by proving the following theorem.

▶ Theorem 3. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
Õ(n2/b) time using Õ(b) space, for any b ∈ [

√
n, n], in the word RAM model.

Our algorithms compute ST (k), for all k, within the same complexities. To arrive at the
O(n3 log b

b2)-time bound, we split the computation of the values ST (k) in n/b phases: in each
phase, we restrict to substrings whose length is in a range of size b. In turn, in each phase,
we process the substrings that start within a range of b positions of T at a time, from left to
right. With this scheme, we process in O(n log b) time each block of n/b positions of T in
each of the n/b phases, resulting in O(n3 log b

b2) time using O(b) space. For large enough b,
we can process all the substrings of a single phase at once, saving a factor of n/b. We show
in fact that a representation of all the occurrences of all the substrings of a phase can be
packed in Õ(b) space if b is large enough, and process them in different ways depending on
their period, following a scheme similar to [8]; we also adapt a method used in [9] to select a
small set of anchors (length-b substrings), so that each fragment of T contains at least one
anchor but their total number of occurrences in T is bounded. Note that Theorem 3 implies
an Õ(n1+ϵ)-time and Õ(n1−ϵ)-space algorithm to compute δ, for any 0 < ϵ ≤ 1/2.

Paper Organization. Section 2 introduces the basic definitions and notation we use and
the space-time trade-off lower bound for computing δ. In Section 3, we present a simple
O(n3/b)-time and O(b)-space algorithm, for any b ∈ [1, n]. This algorithm is refined to run
in O(n3 log b

b2) time using O(b) space, for any b ∈ [1, n], in Section 4. Our main result, the
Õ(n2/b)-time and Õ(b)-space algorithm, for any b ∈ [

√
n, n], is presented in Section 5. In

Section 6, we consider the notion of substring complexity from the combinatorial point of
view; and in Section 7, we conclude this paper with a final remark on approximating δ.

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:5

2 Preliminaries

An alphabet Σ is a finite nonempty set of elements called letters. We fix throughout a string
T = T [1] · · · T [n] of length |T | = n over an ordered alphabet Σ. By ε we denote the empty
string of length 0. For two indices 1 ≤ i ≤ j ≤ n, the (i, j)-fragment of T is an occurrence of
the underlying substring T [i . . j] = T [i] · · · T [j]. A prefix of T is a fragment of T of the form
T [1 . . j] and a suffix of T is a fragment of T of the form T [i . . n]. A prefix (resp. suffix) of T

is proper if it is not equal to T . We let T r = T [n]T [n − 1] · · · T [1] denote the reversal of T .
A positive integer p is a period of a string T if T [i] = T [j] whenever i = j (mod p); we

call the period of T , denoted by per(T), the smallest such p. A string T is said to be strongly
periodic if per(T) ≤ |T |/4 and periodic if per(T) ≤ |T |/2. We call the lexicographically
smallest cyclic shift of T [1 . . per(T)] the (Lyndon) root of T . Notice that if T is periodic,
then the root of T is always a fragment of T (that is, it has an occurrence in T).

For every string t and every natural number ℓ, we define the ℓth power of t, denoted by
tℓ, by t0 = ε and tk = tk−1t, for integer k = [1, ℓ]. A run with (Lyndon) root t in a string
T is a periodic fragment T [i . . j] = t[q . . |t|]tβt[1 . . γ], with q, γ ∈ [1, |t|] and β a positive
integer, such that both T [i − 1 . . j] and T [i . . j + 1], if defined, have their smallest period
larger than |t|; we say that q ∈ [1, |t|] is the offset of the run t[q . . |t|]tβt[1 . . γ] and that two
runs with the same root are synchronized if they have the same offset. We represent a run
t[q . . |t|]tβt[1 . . γ] by its starting and ending positions (i, j) in T , its root t, and its offset q.

The element distinctness problem asks to determine if all the elements of an array A of
size n are pairwise distinct. Yao showed that, in the comparison-based branching program
model, the time required to solve the element distinctness problem using O(b) space is in
Ω(n2−o(1)/b) [70]. We show the following lower bound for computing δ in the same model.

▶ Theorem 4. The time required to compute δ for a string T of length n using O(b) space
in the comparison model is in Ω(n2−o(1)/b).

Proof. We reduce the element distinctness problem to computing δ in O(n) time as follows.
Let A be the input array for the element distinctness problem. Further let #1, #2, . . . , #n

be pairwise distinct elements not occurring in A. We set T = A · #1#2 . . . #n, with
|T | = 2n, #i ̸= A[j], for all i, j ∈ [1, n]. Observe that ST (k)/k < n, for all k ≥ 2, and thus
δ = ST (1) = n + |{A}|. Then A has a repeating element if and only if δ < 2n. ◀

3 O(n3/b) Time Using O(b) Space in the Comparison Model

We start with a warm-up lemma to guide the reader smoothly to the O(n3/b)-time algorithm.

▶ Lemma 5. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
O(n3) time using O(1) space in the comparison model.

Proof. Let us consider each ST (k) separately, for all k ∈ [1, n].
Set ST (k) = 0. For all i ∈ [1, n], we increase ST (k) if T [i . . i+k −1] is the first occurrence

in T [1 . . i + k − 1]. To perform this we check whether T [j . . j + k − 1] = T [i . . i + k − 1], for all
j ∈ [1, i−1]. We employ any linear-time constant-space pattern matching algorithm [36, 26, 13]
to do this check in O(n) time using O(1) space for a single i. The statement follows. ◀

We next generalize Lemma 5 by employing the following straightforward observation.

▶ Observation 6. Let S be a substring of T . If S occurs at least twice in T , then every
substring of S occurs at least twice in T ; if S occurs only once in T , then any substring of T

containing S as a substring occurs only once in T .

ISAAC 2023

12:6 Substring Complexity in Sublinear Space

M

L
R

1 ni i+ k − 1

Figure 1 The main setting of the algorithm underlying Proposition 7.

Main Idea. Recall that we have O(b) budget for space. At any phase of the algorithm,
we maintain ST (k) for b values of k, and iterate on consecutive non-overlapping substrings
of T of length b, which we call blocks. This gives n/b phases and n/b iterations per phase,
respectively. For each iteration, we define a substring M of T , which we call anchor. We
search for occurrences of this anchor in T and extend each of the (at most) n occurrences of
M in O(b) time per occurrence. This gives O(n3/b) time and O(b) space.

▶ Proposition 7. Given a string T of length n, we can compute δ = sup{ST (k)/k, k ≥ 1} in
O(n3/b) time using O(b) space, for any b ∈ [1, n], in the comparison model.

Proof. Our algorithm consists of n/b−2 phases. In phase α, for all α ∈ [2, 3, . . . , n/b−1],2 we
compute altogether the b values of ST (k), for all k ∈ [αb + 1, (α + 1)b]. Let S = S[1 . . b] be an
array of size b where we store the values of ST (k) corresponding to phase α: S[h] = ST (αb+h),
for h ∈ [1, b]. At the end of phase α we maintain the maximum of S[h]/(αb + h). Clearly, at
the end of the whole procedure, we can output δ = sup{ST (k)/k | k ≥ 1}.

We start by decomposing T into n/b blocks B1, B2, . . . , Bn/b, each of length b. We next
describe our algorithm for a fixed phase α > 1. First we set S[h] = 0, for all h ∈ [1, b]. Let i

be a position on T . For each k in the range of α, we want to know if T [i . . i+k−1] has its first
occurrence in T at position i or if it occurs also at some position to the left of i. We process
together all positions i in the same block Bj = T [(j − 1)b + 1 . . jb], for every j ∈ [1, n/b]. Let
L = Bj be the block we are currently processing (inspect also Figure 1). To compute ST (k)
we consider, for all k ∈ [αb + 1, (α + 1)b], the length-k fragments with starting position i in
L. All such fragments share the same anchor M = T [jb + 1 . . (j + α − 1)b]. The fragment of
length k ends at position i + k − 1, which belongs to one of the two blocks succeeding M

for all k ∈ [αb + 1, (α + 1)b]; we denote the concatenation of these two succeeding blocks as
fragment R. In particular, we have |M | = (α − 1)b and R = Bj+αBj+α+1.

We will use the occurrences of M in T that start before its starting position jb + 1 as
anchors for finding possible occurrences of the length-k fragments starting within L. We
search for such occurrences of M with any linear-time constant-space pattern matching
algorithm [36, 26, 13]. For each such occurrence of M , we then need to check the b letters
preceding it and the 2b − 1 letters following it in order to determine whether it generates a
previous occurrence of some (i, i + k − 1)-fragment, where i is a position within the block
L. In particular, we check the b letters preceding it because L is the block of b positions
preceding M ; we check the 2b − 1 letters following it because k ≤ (α + 1)b.

While processing L = Bj = T [(j − 1)b + 1 . . jb], we also maintain an array ENDL[1 . . b]
of size b. After we have finished processing L, ENDL[q] will store the length rq of the
longest prefix of R such that T [(j − 1)b + q . . (j − 1)b + q + |M | + rq − 1] occurs in T before

2 We process the substrings of length k ∈ [1, 2b] separately: for each block Bj , we compute an array LSj

of size b such that LSj [q] is the length the longest substring of length up to 2b starting at position q in
Bj that occurs in T before position (j − 1)b + q. This is done as described in the proof of Lemma 8 and
requires O(n2 log b

b) total time. At the end of this procedure, we just maintain max{ST (k) | k ∈ [1, 2b]}.

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:7

M R

1 n

L = Bj

rq(j − 1)b+ q

U
U

M

Figure 2 Largest rq such that U = T [(j − 1)b + q . . (j − 1)b + q + |M | + rq − 1].

position (j − 1)b + q (inspect Figure 2). We compute ENDL as follows. We search for all
the occurrences of M = T [jb + 1 . . (j + α − 1)b] in T [1 . . (j + α − 1)b − 1], from left to right.
Let M = T [i′ . . i′ + |M | − 1] be one such occurrence. Let ℓ be the length of the longest
common suffix of L and T [1 . . i′ − 1]; let r be the length of the longest common prefix of R

and T [i′ + |M | . . n]. For each q ≥ b − ℓ + 1, we update ENDL[q] with the maximum between
its previous value ENDL[q] and r (note that we do not update any values if ℓ = 0). After
we have processed all the occurrences of M , for each q we increase by 1 all ST (k) such that
k > b − q + 1 + |M | + ENDL[q] = b − q + 1 + (α − 1)b + ENDL[q] = αb − q + ENDL[q] + 1.
This is an application of Observation 6: all these occurrences correspond to a substring that
is longer than a substring that occurs for the first time in T at position (j − 1)b + q.

The whole algorithm takes time O(n3

b): there are n
b phases; in each phase, we consider

n
b blocks and for each block we spend O(n) time for pattern matching anchor M ; for each
occurrence of the anchor, we spend O(b) time for finding and updating the possible extensions,
thus O(nb) time overall. We finally need O(b2) time for updating the values of ST (k) for all
k’s in the range and all positions i in L. Overall this is O(n

b · n
b · (nb + b2)) = O(n3

b) time. ◀

4 O(n3 log b
b2) Time Using O(b) Space in the Comparison Model

Recall that in Proposition 7, we spend O(nb + b2) time to process the at most n occurrences
of a single anchor M in T . We show here that all these occurrences can be processed in
O(n log b) time. This is made possible by processing together batches of occurrences of M

that are close enough in T . This is done by means of answering longest common extension
queries on suffix trees constructed for certain length-O(b) fragments of T .

The first trick is based on the following remark: The pattern matching algorithm for
reporting the occurrences of M (e.g., [13]) reports the occurrences of M in real-time from left
to right. Every such occurrence m of M is preceded by a block L′ of length b on the left of m

starting at position m − b and ending at position m − 1, and it is succeeded by a fragment R′

of length 2b starting at position m + |M | and ending at position m + |M | + 2b − 1. We thus
need to find the longest common prefix of R and R′ and the longest common suffix of L and
L′. Let us describe the process for the longest common prefix of R and R′. (The procedure
for the longest common suffix of L and L′ is analogous and is executed simultaneously.)

We use the so-called standard trick to construct a sequence of n/(4b) suffix trees for
fragments of T of length 4b overlapping by 2b positions. We first concatenate each such
fragment of length 4b with R. Constructing one such suffix tree takes O(b log b) time using
O(b) space [68]. Recall that an occurrence m of M implies an occurrence of R′ at position
m+ |M | and thus this position is part of some fragment of length 4b. We preprocess this suffix
tree in O(b) time and space to answer longest common prefix queries in O(1) time [7]. The
whole preprocessing thus takes n/(4b)O(b log b) = O(n log b) time. Thus, for any occurrence
m of M we can find the longest right extension (and the longest left extension with a similar
procedure) in O(1) time; recall that each extension cannot be of length greater than 2b so
we do not miss any of them. To memorize the extensions we use an array ENDL of size b.

ISAAC 2023

12:8 Substring Complexity in Sublinear Space

For each occurrence of M , if we have a left extension of length ℓ > 0 and a right extension
of length r, we set ENDL[b − ℓ + 1] = max{ENDL[b − ℓ + 1], r} in O(1) time. At the end of
this process we sweep through ENDL and set ENDL[q] = max{ENDL[q − 1], ENDL[q]}, for
all i ∈ [2, b] by Observation 6: if we can extend a position q in L r positions to the right of
M , then we must be able to extend position q + 1 in L at least r positions to the right of M .

The second trick updates all values of ST (k) using array ENDL in O(b) time instead of
O(b2) time. We use an array I of size b with all its entries initialized to 0; I[h] will store the
number of positions q in L such that the shortest unique substring starting at q is of length
αb+h. We fill in I scanning ENDL: the shortest unique substring starting at q is by definition
of length αb − q + ENDL[q] + 2, which equals αb + h when h = ENDL[q] − q + 2. We thus
increment I[h] by one. We finally increase ST (αb + h) by

∑h
j=1 I[j] for all h = 1, . . . , b. Thus,

updating all values of ST (k) is implemented in O(b) time. We have arrived at Theorem 2.

5 Õ(n2

b
) Time Using Õ(b) Space for b ≥

√
n in the word RAM model

The algorithm underlying Theorem 2 is organized in n/b phases. In phase α we process
b values of ST (k) making use of evenly-spaced fragments of T , each of length (α − 1)b, as
anchors for finding possible multiple occurrences of the length-k fragments of T . Considering
O(n/b) anchors in each phase and processing them one by one is the bottleneck of this
algorithm. Our approach here is thus to avoid the burden of considering new anchors at
every phase by carefully selecting a set of anchors that will remain unchanged in each phase
of the algorithm. Let c > 1 be any integer constant. We will process the values of ST (k) for
k ≤ cb (Section 5.1) and for k > cb (Sections 5.2 to 5.5) in two different ways.

We work in the word RAM model and our goal is a deterministic algorithm. Recall that a
suffix tree of any string of length d can be constructed in Õ(d) time using O(d) space [68, 29].

5.1 Computing ST (k) for Small k

We process together all values k ∈ [1, cb]. Like in Sections 3-4, for such values of k we split
T into n/b blocks of b positions and work with each such block separately; we compute all
values ST (k) and keep track of maxk≤cb ST (k)/k before computing ST (k) for all k > cb.

Consider block L = Bj = T [(j − 1)b + 1 . . jb]. We compute an array LSL of size b such
that LSL[q] is the length the longest substring starting at position q in L that occurs in T

before position (j − 1)b + q, if this length does not exceed cb, otherwise we set it to ∞. This
is done by constructing multiple generalized suffix trees of windows of length 2cb and L.

▶ Lemma 8. max
k≤cb

ST (k)
k can be computed in Õ(n2/b) time and O(b) space, for any b ∈ [1, n].

Proof. We consider a block L = T [(j − 1)b + 1 . . jb] of b positions of T at a time; for each
position i of T within L, we must compute the length of the longest fragment T [i . . ℓ] that
occurs to the left of position i, if this length does not exceed cb. We consider windows of
length 2cb over the prefix T [1 . . (j + c)b], overlapping by cb positions. Clearly, if a fragment
T [i . . ℓ] occurs earlier in T , then it must be a substring of at least one such window. For a
fixed L we initialize all the b positions of an array LSL to 0; we then consider one window W

of 2cb positions at a time, from left to right. At the end of the computation for a window W ,
LSL[q] will store the length of the longest fragment starting at position (j − 1)b + q which
occurs earlier in T . We proceed as follows to achieve this computation.

For the current window W of length 2cb, we concatenate W and T [(j −1)b+1 . . (j +c)b] =
L · T [jb + 1 . . (j + c)b] (that is, block L and the following cb positions) constructing a new
string S; we use a separator letter that does not occur in either of the two strings. We then

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:9

construct the suffix tree of S; and from there on the Longest Previous Factor (LPF) array of
S in O(|S|) = O(b) time [25]. The LPF array is an array of length |S|; for each position i of
S, it gives the length of the longest substring of S that occurs both at i and to the left of
i in S. Finally, we use this information to update the values of LSL: LSL[q] maintains the
maximum between its previous value and the new value computed for the current W . We
proceed to the next window. Once we have processed all the windows, we use LSL to update
the corresponding values of ST in O(b) time the same way as we used ENDL in Section 4.

The time and space complexity is as follows. There are n/b blocks in T , each of length b.
For each such block, we consider O(n/b) windows of 2cb positions each, and for each window,
we construct the suffix tree and the LPF array of the two underlying fragments of length
O(b) in Õ(b) time using O(b) words of space. The whole procedure, for all n/b blocks and
all O(n/b) windows, thus requires Õ(n

b
n
b b) = Õ(n2/b) time using O(b) words of space. ◀

5.2 b-Runs and b-Gaps
When k > cb, we process b values of ST (k) at each phase, just like we did in Section 4.
Different from Section 4, though, we aim at selecting a global set of anchors, carefully
chosen among the length-b substrings of T . At each phase, we will distinguish three types
of substrings, depending on the period of their length-b substrings. A b-run is a maximal
fragment of length at least b such that each of its length-b substrings is strongly periodic; a
standard reasoning based on the periodicity lemma [33] shows that the period of each b-run
is at most b/4, and so a b-run is indeed a run. A b-gap is a maximal fragment such that none
of its length-b substrings is strongly periodic. Any fragment of T of length at least b and
period at most b/4 is fully contained in a unique b-run; and every fragment of T of length at
least b and such that none of its length-b substrings is strongly periodic is fully contained in
a unique b-gap. At each phase, the substrings to be processed are thus of three types: (i)
either they are fully contained in a b-gap, or (ii) they are fully contained in a b-run, or (iii)
neither of the two. We will process the substrings differently depending on their type. A
standard reasoning using the periodicity lemma [33] shows that two b-runs cannot overlap
by more than b/2 letters, so there are only O(n/b) of them. Lemma 10 states that we can
identify and store the b-runs of T in such space complexity. For proving it we rely on the
space-efficient construction of sparse suffix trees. The term “sparse” refers to constructing
the compacted trie of an arbitrary subset of the set of the suffixes of the input string.

▶ Theorem 9 ([10]). Given a set B ⊆ [n] of size Ω(log n) ≤ |B| ≤ n, there exists a
deterministic algorithm which constructs the (sparse) suffix tree of B in O(n log n

|B|) time
using O(|B|) words of space.

▶ Lemma 10. A representation of the b-runs of T can be computed in Õ(n) time using
O(n/b) space, which is O(b) space when b ≥

√
n.

Proof. We process windows of b positions of T at a time, with any two consecutive windows
overlapping by b/2 positions. At each step, we compute the longest suffix, which has period
at most b/4, of the window in O(b) time [24]. If such a suffix has nonzero length, we keep
track of its starting position in T and extend it naïvely to the right as much as possible. If
this extension results in a run of length at least b, we store its starting and ending position
in a list ordered by starting position and resume the process using the window starting b − 1
positions before the end of the run. Otherwise, if the extension results in a run shorter
than b, we ignore it. Whenever we identify a b-run, we compute its root t in O(b) time [28],
and store in a list the starting and ending position (sr, er) of its root and the starting and

ISAAC 2023

12:10 Substring Complexity in Sublinear Space

ending position (s, e) of the b-run (as mentioned above). After computing all b-runs in T , we
construct the sparse suffix tree over the set of all sr positions in the list. Each internal node
of the sparse suffix tree, corresponding to a root of a b-run of T , is associated with the list of
the starting and ending positions (s, e) of the b-runs corresponding to this root.

This procedure identifies all the b-runs of T . Indeed, consider a window T [i . . i + b − 1].
If a b-run Y with period p ≤ b/4 begins between position i and position i + b − 1 − p, a prefix
of it of length greater than p is a suffix of the window with period p. If it is the longest such
suffix, it will be extended to the right allowing the identification of the whole Y . Otherwise,
suppose there is a longer suffix of T [i . . i + b − 1] with period b/4 ≥ p′ > p (it cannot be
p′ < p, because otherwise, p′ would have been the period of the whole suffix) that includes
the whole prefix of Y in T [i . . i + b − 1]. In this case, we only extend the longer suffix and
do not find Y at this stage. However, the longer suffix with period p′ ≤ b/4 is part of a
run that overlaps with Y , and therefore such overlap must be shorter than b/2 because of
the periodicity lemma [33]. This means: (a) this situation can only happen when the prefix
of Y in T [i . . i + b − 1] is shorter than b/2, thus a longer prefix of Y will be a suffix of the
next window T [i + b/2 . . i + 3b/2 − 1]; and (b) the period p′ must break before the end of
T [i + b/2 . . i + 3b/2 − 1], thus the prefix of Y in T [i + b/2 . . i + 3b/2 − 1] must be the longest
suffix with period at most b/4 and will therefore be extended, allowing to identify the whole
Y . Finally, if Y begins between position i + b − p and position i + b − 1 of T [i . . i + b − 1], its
prefix included in the window does not have a period p, and will therefore not be extended.
However, the next window is T [i + b/2 . . i + 3b/2 − 1]: since the length of any b-run is at
least b, a prefix of the b-run of length greater than b/2 is now a suffix of the window, and
since p ≤ b/4, it will be extended to the right allowing the identification of the whole b-run.

The time and space complexity is as follows. We consider O(n/b) windows of length b.
At each step, we spend O(b) time to compute the longest suffix of the current window with
period at most b/4. Whenever we identify a suffix of a run Y with period at most b/4, we
extend it naïvely to the right in O(|Y |) time, and the next window we consider only covers
the last b − 1 positions of Y . Since consecutive b-runs can only overlap by less than b/2
positions because of the periodicity lemma [33], they are at most O(n/b) and their total
length is O(n), so it takes O(n) time to perform all extensions. For each b-run, we spend
O(b) time to compute its root. For the sparse suffix tree, we employ Theorem 9. Hence the
overall time complexity is Õ(n). As for the space, we process blocks of O(b) positions in
O(b) space. We also store a pair of positions for each b-run, therefore the space required to
store them is O(n/b), which is O(b) when b ≥

√
n. ◀

The output of Lemma 10 is a list representing all the b-runs of T in the natural left-to-right
order. The b-gaps can be deduced from this list as follows: if T [i . . j] and T [i′ . . j′] are two
consecutive b-runs in the list, then T [j − b + 2 . . i′ + b − 2] is a b-gap (if T [i . . j] is the first
run, then so is T [1 . . i + b − 2], and similarly for the last run).

A subset of the length-b substrings of T is a valid set of anchors if two properties hold:
(i) at least one anchor occurs in each fragment of T of length cb; and (ii) the total number of
occurrences of all anchors in T is in O(n/b · log n). Lemma 11 shown next will be useful to
prove that there always exists a set of valid anchors included in the b-gaps of T .

▶ Lemma 11. Let Z be a string with all length-d substrings not strongly periodic, and c > 1
be any integer constant. Then we can compute in Õ(|Z|2/d) time and Õ(|Z|/d + d) space
a subset A of the length-d substrings of Z such that: (i) at least one h ∈ A occurs in each
fragment of Z of length cd; and (ii) the total number of occurrences of all h ∈ A in Z is
O(|Z|/d · log |Z|).

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:11

Sketch of Proof. The high-level idea of the proof is to first reduce the problem to the
following: we have O(|Z|/d) strings Zi, each of length 5d/4 and with all length-d substrings
not strongly periodic, and a set of O(|Z|) possible anchors consisting of all length-d substrings
of the Zis. We want to choose a subset A of the anchors such that (i) at least one h ∈ A occurs
in each Zi, (ii) the total number of occurrences of all h ∈ A in the Zis is O(|Z|/d · log |Z|).
This is a special case of the Node Selection problem, considered in [9] as a strengthening
of the well-known Hitting Set problem.3 Indeed, we can take U to be the set of strings
Zi, V to be the set of possible anchors, and add an edge (u, v) in G(U, V, E) when the
possible anchor corresponding to v occurs in the string Zi corresponding to u. Because
every possible anchor is not strongly periodic and every Zi is of the same length 5d/4,
the degree of every node u ∈ U is 5d/4. Then, by Lemma 5.4 of [9] (the weights are
irrelevant) we can choose a set V ′ ⊆ V such that (i) N [u] ∩ V ′ ̸= ∅ for every u ∈ U , (ii)∑

u∈U |N [u] ∩ V ′| = O(|U | log |U |) = O(|Z|/d · log |Z|), so V ′ corresponds to a set of anchors
A′ with the sought properties. Furthermore, V ′ can be found in linear time and space in
the size of G, which is O(|Z|). This is however not enough for our purposes, as we cannot
store the whole G. Analysing the algorithm used inside the proof of Lemma 5.4 of [9] we
see that it considers the nodes v ∈ V one-by-one while maintaining some information of size
O(|U |) = O(|Z|/d) and a precomputed table of a size that can be bounded by the maximum
degree of any u ∈ U , which is O(d). Furthermore, the algorithm accesses G only by iterating
a constant number of times over the neighbours of the current node v ∈ V . In the full version,
we show how to implement this efficiently in our model to achieve the claimed bounds. ◀

5.3 Processing the b-Gaps
For ease of presentation, in this section, we will assume that all length-b substrings of T are
not strongly periodic, but no major changes are required to apply the same reasoning on the
set of all b-gaps. Assume we have already computed a set A of valid anchors over T . For each
h ∈ A, we compute a list of its occurrences in T . The overall size of these lists is O(n/b · log n)
because of property (ii), and the occurrences of each h ∈ A can be generated in O(n) time
and O(1) space (plus the space to store the list) with any linear-time constant-space pattern
matching algorithm, so Õ(n2/b) time overall. We divide the computation of ST (k) in n/b

phases. Consider phase α, in which we consider substrings of length k ∈ [αb + 1, (α + 1)b].
Because of property (i), at least one anchor occurs in the first cb positions of each such
substring. We conceptually associate such a substring with the leftmost anchor h ∈ A

occurring therein, and we say that a fragment of T is anchored at an occurrence i of some
anchor h if the leftmost occurrence of any anchor in the fragment is i. We then process the
substrings according to the anchor with which they are associated.

All substrings associated with an anchor h ∈ A have a (possibly empty) prefix of length
O(b) where no anchors occur, followed by h and then by a suffix where any anchor can occur.
This implies that any occurrence of such substrings can only start in a range of O(b) positions
preceding some occurrence of h in T . In particular, if h occurs at position i in T and the
closest anchor to its left is at position i′ < i, the starting range of substrings of T associated
with h is [i′ + 1, i], or [1, i] if i is the first occurrence of any anchors in T . All starting ranges
for all anchors can be computed in O(n) time by scanning the list of occurrences of the
anchors. To update the values of ST (k) with the substrings associated with h we need to

3 Let us remark that this problem has already been considered in the conference version [8], with a slightly
different definition but essentially the same proof. However, our goal is a deterministic algorithm and
to this end we need [9], the extended version of [8].

ISAAC 2023

12:12 Substring Complexity in Sublinear Space

-

-- - +- +

- +

Figure 3 A previous occurrence of T [i . . j] anchored at i′ can be detected using D(h).

know, for each occurrence i of h in T and each of its previous occurrences i′ < i, the longest
left extension within the starting ranges of i and i′, and the longest right extension of the
fragments of T following the occurrences of h at i and i′. We cannot afford to store all these
pairs of values explicitly as this would require Õ(n2/b2) space. We thus construct a separate
data structure, denoted by D(h), for each anchor h ∈ A. This data structure encode the same
information in a compact form. We next describe the data structure and its construction.

D(h) consists of two compacted tries TPr(h) and TS(h). For every occurrence i of h in
T , TS(h) contains a leaf corresponding to T [i + b . . n], and TPr(h) a leaf corresponding to
(T [1 . . i − 1])r, both labelled with position i. We only store the list of children and the length
of the path label of each node, which we call its depth. Because of property (ii), the overall
size of these data structures for all anchors is thus in O(n/b · log n). For any two occurrences
i, i′ of h, the depth of the lowest common ancestor of leaves i and i′ in TPr(h) gives the
length of their longest left extension, and the depth of their lowest common ancestor in TS(h)
gives the length of their longest right extension: see Figure 3 for an example. D(h) can be
efficiently constructed for all h ∈ A, as shown by Lemma 12.

▶ Lemma 12. Data structures D(h), for all h ∈ A, can be constructed in Õ(n2/b) total time
using Õ(n/b) space, which is Õ(b) when b ≥

√
n.

Proof. Let occ(h) be the list of occurrences of anchor h in T , let B =
⋃

h∈A occ(h) and
B′ =

⋃
h∈A occ(h) + b − 1. Recall that D(h) consists of two compacted tries TPr(h) and

TS(h). We will first construct two global compacted tries TPr(A) and TS(A) for all anchors
in A, and then extract from them subtries TPr(h) and TS(h) for each h ∈ A.

TPr(A) and TS(A) are constructed in the same way, except that for TPr(A) we consider
the reversal of strings. To construct TS(A) we employ Theorem 9 on set B, as it is essentially
the sparse suffix tree for the suffixes starting at positions in B; and to construct TPr(A) we
employ Theorem 9 on the reverse of T and set B′. Once we have constructed TS(A) and
TPr(A), to extract subtries TS(h) and TPr(h) for h ∈ A it suffices to spell h from the root
of TS(A) (resp. hr from the root of TPr(A)) and take the subtrie below.

The time and space complexity of computing TS(A) and TPr(A) is as follows. The size of
sets B and B′ is O(n/b · log n) = O(b log n) when b ≥

√
n, thus by Theorem 9 we make use

of O(b log n) words of space. Again by Theorem 9, the overall time complexity to construct
them is Õ(n). To find the right subtrie for each h ∈ A we then spend Õ(b) time for each of
the O(n/b log n) anchors of A, thus again Õ(n) time overall. ◀

Computing ST (k) Using D(h). Similar to Section 4, in each phase α we fill in an auxiliary
array I = I[1 . . b] such that, at the end of the phase, I[q] contains the number of positions i

in T such that the shortest substring that does not occur in T before position i is of length
αb + q. We proceed as follows. We consider one position of T at the time, from left to right.
When we are at position i, let h be the leftmost anchor occurring at some position i′ ≥ i.

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:13

We binary search for the smallest position j such that T [i . . j] does not occur to the left
of i using D(h). We first identify in TPr(h) the highest ancestor u of leaf i′ with string
depth at least i′ − i. This corresponds to answering a weighted level ancestor query [30] on
TPr(h), where the weight of each node is its depth. After linear-time preprocessing, weighted
ancestor queries for nodes of a weighted tree with integer weights from a universe [1 . . U] can
be answered in O(log log U) time [1]. In our case, the queries thus cost O(log log n) time.

We then start binary searching for the leftmost position j such that T [i . . j] does not
occur to the left of position i and such that |T [i . . j]| ∈ [αb + 1, (α + 1)b]: we thus look for j

in the range [i + αb, i + (α + 1)b− 1]. For each value j considered in the binary search, we find
in TS(h) the highest ancestor v of leaf i′ with string depth at least j − (i′ + b), by answering
a weighted level ancestor query. We then need to check whether T [i . . j] occurs somewhere
to the left of i, in correspondence of a previous occurrence of anchor h, in which case we
increase j in the next step; or it does not occur before, in which case we decrease j. We do
so by looking at the leaves (occurrences of h) in the subtree below u in TPr(h), denoted by
TPr(h)|u, and in the subtree below v in TS(h), TS(h)|v. Every leaf in the intersection of the
two subsets of leaves corresponds to an occurrence of T [i . . j] in T . The information we need
is whether i′ is the smallest leaf in the intersection, meaning that T [i . . j] does not occur
anywhere before. This reduces to a 2D range searching problem.

We assume that each leaf of each tree has a unique identifier, independent from their label
and such that the identifiers of the leaves of any subtree form a contiguous range. For each
leaf ℓ, its identifiers in TPr(h) and TS(h) give the coordinates of a point on a plane, to which
we assign ℓ as weight. By construction, the points corresponding to leaves in the intersection
of TPr(h)|u and TS(h)|v are contained in a rectangle: we need to find the point with the
smallest weight there and check whether it is i′ or not. Such queries can be answered in time
O(log s) with a data structure that is constructed in time and space O(s log s), where s is
the total number of points [17]. At the end of the binary search, if j = i + αb + q we increase
the counter at I[q] by one, unless j = i + (α + 1)b − 1 and T [i . . j] occurs before i, in which
case we do not increase any counters. We finally move to the next position of T .

▶ Lemma 13. Assume that all length-b substrings of T are not strongly periodic. Then δ

can be computed in Õ(n2/b) time using Õ(n/b + b) space, which is Õ(b) when b ≥
√

n.

Proof. Set A is selected in Õ(n2/b) time and Õ(n/b + b) space as per Lemma 11, and D(h)
can be computed in the same time and space for all h ∈ A and all phases, as per Lemma 12.
In each phase α, we go over the n positions of T one at a time. At each position i we binary
search for the shortest substring not occurring before i in O(log αb) steps, each requiring
O(log n) time. Over all O(n/b) phases, this requires Õ(n2/b) time and Õ(n/b) space. ◀

5.4 Processing the b-Runs
Recall that we have computed, as per Lemma 10, a representation of all the b-runs of T .
In this section, we only focus on the substrings of length at least b and periods at most
b/4. Every occurrence of such a substring is fully contained in some b-run, and for ease
of presentation we will assume that in phase α, in which we process substrings of length
k ∈ [αb + 1, (α + 1)b], every b-run is longer than αb. Observe that each substring of a b-run
T [s . . e] with root t occurs also as a prefix of some fragment starting within the first |t|
positions of the run, which we call its relevant range. Since we aim to identify the leftmost
occurrence of each substring of T , we can ignore all positions of a b-run after its relevant
range. By slightly abusing notation, we select as anchors some fragments of the b-runs of T ,
instead of selecting substrings together with the whole set of their occurrences. However,

ISAAC 2023

12:14 Substring Complexity in Sublinear Space

this set of anchors must have the following property, that for the anchors of Section 5.3 held
naturally: for any two occurrences of the same substring in the relevant ranges, the leftmost
occurrence of any anchor therein is at the same offset from the beginning of the substring.
In phase α we use as anchors the first two occurrences of the root in each b-run: let H be
this set of fragments of T . Clearly, H is of size O(n/b) because the representation of all the
b-runs is of such size.

▶ Lemma 14. For any two occurrences of the same substring of length at least b and period
at most b/4, both starting in the relevant ranges of the b-runs of T , the leftmost occurrence
of any h ∈ H in each of them is at the same offset from the beginning of the substring.

Proof. Let Y = t[d . . |t|]tβt[1 . . f] be a fragment occurring at the first t positions in some b-run
T [s . . e] = t[q . . |t|]tγt[1 . . g]. The anchors within T [s . . e] are, by definition, the occurrences
of t at position p1 = s + (|t| − q + 1) mod |t| and p2 = p1 + |t|. If d ≥ q, the leftmost
occurrence of any anchors in Y is at p1, which is at offset |t| − d + 2 in Y . Otherwise, if
d < q, the leftmost occurrence of any anchors in Y is at p2, which is in any case at offset
|t| − d + 2 in Y .

Consider another occurrence of Y in the first |t| positions of some other b-run T [s′ . . e′] =
t[q′ . . |t|]tγ′

t[1 . . g′]. The anchors are the occurrences of t at position p′
1 = s′ + (|t| − q′ + 1)

mod |t| and p′
2 = p′

1 + |t|; depending on whether d ≥ q′ or not, the leftmost occurrence of any
anchor in this occurrence of Y is either p′

1 or p′
2, in either case at offset |t| − d + 2 in Y . ◀

Let P be the set of roots of the b-runs of T . We construct a data structure D(P) for all roots
t ∈ P similar to what we do in Section 5.3, but we use only the occurrences of t corresponding
to fragments in H . We then proceed as described in Section 5.3 to fill in array I, except that,
in each b-run with root t, we disregard any position after the first |t|.

We have arrived at the following lemma.

▶ Lemma 15. The substrings of T that are fully contained within a b-run can be processed
in Õ(n2/b) time using O(n/b) space, which is O(b) when b ≥

√
n.

5.5 Computing ST (k) for Large k

The occurrences of anchors h ∈ A selected for the b-gaps anchor all the fragments fully
contained in a b-gap and possibly some other fragments. However, we are not guaranteed
that this holds for any fragment not fully contained in a b-run. Consider a fragment T [i . . j]
of length at least b with period larger than b/4 (thus, not contained in any b-run) but
containing a strongly periodic length-b fragment T [i′ . . j′] inside (so, not contained in any
b-gap). Then, T [i′ . . j′] is fully contained in some b-run T [s . . e]. Because T [i . . j] is not
fully contained in T [s . . e], either T [s − 1 . . s + b − 2] or T [e − b + 2 . . e + 1] (that is, a
length-b substring with exactly one letter before or after the b-run) is fully within T [i . . j].
This suggest that we should augment A with the following length-b substrings: for each
b-run T [s . . e], T [s − 1 . . s + b − 2] ∈ A and T [e − b + 2 . . e + 1] ∈ A, and we consider all
their occurrences in T . By the above reasoning, this guarantees that T [i . . j] contains an
occurrence of some anchor inside. We are defining only O(n/b) new anchors, but then we
need to consider all of their occurrences. Therefore, we need to argue that the total number
of occurrences of the new anchors is O(n/b). It is enough to show this for the occurrences of
the anchors T [s − 1 . . s + b − 2], where the period of T [s . . s + b − 2] is at most b/4. We claim
that for any two such occurrences T [s − 1 . . s + b − 2] and T [s′ − 1 . . s′ + b − 2] with s < s′

we have s + b/2 < s′: otherwise T [s . . s + b − 2] and T [s′ . . s′ + b − 2] overlap by at least b/2
positions, but two b-runs cannot overlap by b/2 positions, a contradiction. We generate all

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:15

these occurrences and then process all the anchors as in Section 5.3. The only difference is
the starting range associated with the anchors obtained from the suffix of some b-run: when
they are not preceded by another anchor within cb positions, we take as starting range the
αb positions preceding the anchor.

Let us put everything together. Before computing ST (k) in phases, we identify the b-runs
and the b-gaps of T as per Lemma 10. We then extract a set of anchors from the b-gaps as
described in Lemma 11, and we complement it with the length-b substrings that start one
position before each b-run, and with the length-b substrings that end one position after the
end of each b-run, to complete the set A of anchors. We then compute the list of occurrences
of each h ∈ A; we also identify the relevant ranges within each b-run. We then proceed in
phases. In each phase, we scan T from left to right and process all positions in b-gaps as per
Section 5.3. All positions within a b-run are processed as per Section 5.4, and additionally as
per Section 5.3, when they are within the starting range of an occurrence of some h ∈ A. At
the end of a phase α, we have computed an auxiliary array I such that I[h] gives the number
of positions i of T such that the shortest substring that does not occur in T before position i

is of length αb + h. We use I to compute ST (k) for each k ∈ [αb + 1, (α + 1)b] as in Section 4.
By combining Lemmas 13 and 15 we arrive at Theorem 3, the main result of this paper.

6 Substring Complexity from the Combinatorial Point of View

Knowing the substring complexity of a string can also be used to find other regularities. To
mention a few, we have the following straightforward implications in sublinear working space:

T has a substring of length k repeating in T if and only if ST (k) < n − k + 1. This yields
the length r of the longest repeated substring of T (also known as the repetition index of
T) [68]. It is worth noticing that ST (k + 1) = ST (k) − 1 for every k > r [27] and that r

approximates O(log|Σ| n) when T is randomly generated by a memoryless source [32].
A string S is called a minimal absent word of T if S does not occur in T but all proper
substrings of S occur in T . The length ℓ of a longest minimal absent word of T is equal
to 2 + r [32]. This quantity is important because if two strings X and Y have the same
set of distinct substrings up to length ℓ, then X = Y [32, 14]. The length of a shortest
absent word [69] of T over alphabet Σ is equal to the smallest k such that ST (k) < |Σ|k.
The longest common substring of strings X and Y is equal to the largest k such that
SX(k) + SY (k) > SX#Y (k) − k, where # does not occur in X nor in Y , since there are
precisely k distinct substrings of length k containing the letter # in X#Y .

The substring complexity function is well studied in the area of combinatorics on words,
both for finite and infinite strings. However, the normalization S(k)/k and its supremum δ

have not been considered until very recently. In [27] it is proved that the substring complexity
ST (k) of a string T takes its maximum precisely for k = R, where R is the minimum
length for which no substring of T has occurrences followed by different letters, and one
has ST (R) = n + 1 − max{R, K}, where K is the length of the shortest unrepeated suffix
of T . But this seems to be of little help in understanding the behaviour of the normalized
substring complexity ST (k)/k.

7 Approximating δ in Sublinear Space

Our algorithms compute the exact value of δ. If one is interested in a constant-factor
approximation of δ (e.g., an algorithm’s complexity has a polynomial dependency on δ [53]),
then there is a simple algorithm in our model based on the following combinatorial observation,
which follows directly by the number of fragments of length ℓ of a string of length n being
n − ℓ + 1, and by the fact that each fragment of length ℓ′ > ℓ has a prefix of length ℓ.

ISAAC 2023

12:16 Substring Complexity in Sublinear Space

▶ Observation 16. For any string T , let ST (k) be the number of distinct substrings of length
k. The number ST (k′) of distinct substrings of any length k′ > k is at least ST (k) − (k′ − k).

▶ Lemma 17. Let δ′ = sup{ ST (2d)
2d | d = 0, . . . , log n}. Then δ ≤ 2δ′ + 1.

Proof. Let δ = ST (k)
k for some k ≥ 1, and let d be the integer such that

2d ≤ k < 2d+1. (1)

By the definition of δ′, we have that δ′ ≥ ST (2d+1)
2d+1 . By applying Observation 16, we obtain:

ST (2d+1)
2d+1 ≥ ST (k) − (2d+1 − k)

2d+1 ≥ ST (k) − (2d+1 − 2d)
2d+1 ≥ ST (k)

2k
− 2d

2d+1 = 1
2δ − 1

2 . ◀

Recall that the algorithm underlying Theorem 2 works in n
b phases, where each phase

handles a range of b lengths k. By plugging in Lemma 17, the number of phases become
Θ(log n) – instead of Θ(n/b) – and so we obtain a simple Õ(n2/b)-time and O(b)-space
algorithm to approximate δ, within a constant factor, in the comparison model.

References
1 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static

pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.
2 Alberto Apostolico, Maxime Crochemore, Martin Farach-Colton, Zvi Galil, and S. Muthukrish-

nan. 40 years of suffix trees. Commun. ACM, 59(4):66–73, 2016. doi:10.1145/2810036.
3 Lorraine A. K. Ayad, Golnaz Badkobeh, Gabriele Fici, Alice Héliou, and Solon P. Pissis.

Constructing antidictionaries in output-sensitive space. In 29th Data Compression Conference
(DCC), pages 538–547, 2019. doi:10.1109/DCC.2019.00062.

4 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.
Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

5 Paul Beame, Raphaël Clifford, and Widad Machmouchi. Element distinctness, frequency
moments, and sliding windows. In 54th Symposium on Foundations of Computer Science
(FOCS), pages 290–299, 2013. doi:10.1109/FOCS.2013.39.

6 Djamal Belazzougui. Linear time construction of compressed text indices in compact space.
In 46th Symposium on Theory of Computing, (STOC), pages 148–193, 2014. doi:10.1145/
2591796.2591885.

7 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In 4th Latin
American Symposium (LATIN), pages 88–94, 2000. doi:10.1007/10719839_9.

8 Giulia Bernardini, Pawel Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna Ro-
sone. Even faster elastic-degenerate string matching via fast matrix multiplication. In 46th
International Colloquium on Automata, Languages, and Programming, (ICALP), volume
132 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.21.

9 Giulia Bernardini, Pawel Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone.
Elastic-degenerate string matching via fast matrix multiplication. SIAM J. Comput., 51(3):549–
576, 2022. doi:10.1137/20m1368033.

10 Or Birenzwige, Shay Golan, and Ely Porat. Locally consistent parsing for text indexing in
small space. In 31st Symposium on Discrete Algorithms, (SODA), pages 607–626. SIAM, 2020.
doi:10.1137/1.9781611975994.37.

11 Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential
model of computation. SIAM J. Comput., 11(2):287–297, 1982. doi:10.1137/0211022.

12 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Trans. Algorithms,
10(4):22:1–22:12, 2014. doi:10.1145/2635814.

13 Dany Breslauer, Roberto Grossi, and Filippo Mignosi. Simple real-time constant-space string
matching. Theoret. Comput. Sci., 483:2–9, 2013. doi:10.1016/j.tcs.2012.11.040.

https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1145/2810036
https://doi.org/10.1109/DCC.2019.00062
https://doi.org/10.1137/0220017
https://doi.org/10.1109/FOCS.2013.39
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1145/2591796.2591885
https://doi.org/10.1007/10719839_9
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.1137/20m1368033
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1137/0211022
https://doi.org/10.1145/2635814
https://doi.org/10.1016/j.tcs.2012.11.040

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:17

14 Arturo Carpi and Aldo de Luca. Words and special factors. Theoret. Comput. Sci., 259(1-
2):145–182, 2001. doi:10.1016/S0304-3975(99)00334-5.

15 Timothy M. Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Approx-
imating text-to-pattern Hamming distances. In 52nd Symposium on Theory of Computing
(STOC), pages 643–656, 2020. doi:10.1145/3357713.3384266.

16 Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Linear-time
algorithm for long LCF with k mismatches. In 29th Symposium on Combinatorial Pattern
Matching (CPM), pages 23:1–23:16, 2018. doi:10.4230/LIPIcs.CPM.2018.23.

17 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988. doi:10.1137/0217026.

18 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms,
17(1):8:1–8:39, 2021. doi:10.1145/3426473.

19 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
Dictionary matching in a stream. In 23rd Annual European Symposium on Algorithms (ESA),
pages 361–372, 2015. doi:10.1007/978-3-662-48350-3_31.

20 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya. The
k-mismatch problem revisited. In 37th Symposium on Discrete Algorithms (SODA), pages
2039–2052, 2016. doi:10.1137/1.9781611974331.ch142.

21 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem.
In 30th Symposium on Discrete Algorithms (SODA), pages 1106–1125, 2019. doi:10.1137/1.
9781611975482.68.

22 Raphaël Clifford and Tatiana Starikovskaya. Approximate Hamming distance in a stream. In
43rd International Colloquium on Automata, Languages, and Programming, (ICALP), pages
20:1–20:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.20.

23 Richard Cole, Tsvi Kopelowitz, and Moshe Lewenstein. Suffix trays and suffix trists: Structures
for faster text indexing. Algorithmica, 72(2):450–466, 2015. doi:10.1007/s00453-013-9860-6.

24 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

25 Maxime Crochemore, Lucian Ilie, Costas S. Iliopoulos, Marcin Kubica, Wojciech Rytter, and
Tomasz Walen. Computing the longest previous factor. Eur. J. Comb., 34(1):15–26, 2013.
doi:10.1016/j.ejc.2012.07.011.

26 Maxime Crochemore and Dominique Perrin. Two-way string matching. J. ACM, 38(3):651–675,
1991. doi:10.1145/116825.116845.

27 Aldo de Luca. On the combinatorics of finite words. Theoret. Comput. Sci., 218(1):13–39,
1999. doi:10.1016/S0304-3975(98)00248-5.

28 Jean Pierre Duval. Factorizing words over an ordered alphabet. Journal of Algorithms,
4(4):363–381, 1983.

29 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Symposium
on Foundations of Computer Science (FOCS), pages 137–143, 1997. doi:10.1109/SFCS.1997.
646102.

30 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.
In 7th Symposium on Combinatorial Pattern Matching (CPM), volume 1075 of Lecture Notes
in Computer Science, pages 130–140. Springer, 1996. doi:10.1007/3-540-61258-0_11.

31 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

32 Gabriele Fici, Filippo Mignosi, Antonio Restivo, and Marinella Sciortino. Word assembly
through minimal forbidden words. Theoret. Comput. Sci., 359(1-3):214–230, 2006. doi:
10.1016/j.tcs.2006.03.006.

33 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

ISAAC 2023

https://doi.org/10.1016/S0304-3975(99)00334-5
https://doi.org/10.1145/3357713.3384266
https://doi.org/10.4230/LIPIcs.CPM.2018.23
https://doi.org/10.1137/0217026
https://doi.org/10.1145/3426473
https://doi.org/10.1007/978-3-662-48350-3_31
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.4230/LIPIcs.ICALP.2016.20
https://doi.org/10.1007/s00453-013-9860-6
https://doi.org/10.1016/j.ejc.2012.07.011
https://doi.org/10.1145/116825.116845
https://doi.org/10.1016/S0304-3975(98)00248-5
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.2307/2034009

12:18 Substring Complexity in Sublinear Space

34 Johannes Fischer, Travis Gagie, Pawel Gawrychowski, and Tomasz Kociumaka. Approximating
LZ77 via small-space multiple-pattern matching. In 23rd European Symposium on Algorithms
(ESA), pages 533–544, 2015. doi:10.1007/978-3-662-48350-3_45.

35 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.

36 Zvi Galil and Joel I. Seiferas. Time-space-optimal string matching. J. Comput. Syst. Sci.,
26(3):280–294, 1983. doi:10.1016/0022-0000(83)90002-8.

37 Pawel Gawrychowski and Tatiana Starikovskaya. Streaming dictionary matching with mis-
matches. In 30th Symposium on Combinatorial Pattern Matching (CPM), pages 21:1–21:15,
2019. doi:10.4230/LIPIcs.CPM.2019.21.

38 Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. The streaming k-mismatch
problem: Tradeoffs between space and total time. In 31st Symposium on Combinatorial
Pattern Matching (CPM), pages 15:1–15:15, 2020. doi:10.4230/LIPIcs.CPM.2020.15.

39 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards optimal approximate streaming
pattern matching by matching multiple patterns in multiple streams. In 45th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 65:1–65:16, 2018.
doi:10.4230/LIPIcs.ICALP.2018.65.

40 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Streaming pattern matching with d wildcards.
Algorithmica, 81(5):1988–2015, 2019. doi:10.1007/s00453-018-0521-7.

41 Shay Golan and Ely Porat. Real-time streaming multi-pattern search for constant alphabet.
In 25th Annual European Symposium on Algorithms (ESA), pages 41:1–41:15, 2017. doi:
10.4230/LIPIcs.ESA.2017.41.

42 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

43 Dan Gusfield. Algorithms on Strings, Trees, and Sequences – Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

44 Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Breaking a time-and-space barrier
in constructing full-text indices. SIAM J. Comput., 38(6):2162–2178, 2009. doi:10.1137/
070685373.

45 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

46 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In 51st Symposium on Theory of Computing
(STOC), pages 756–767, 2019. doi:10.1145/3313276.3316368.

47 Dominik Kempa and Tomasz Kociumaka. Breaking the O(n)-barrier in the construction of
compressed suffix arrays and suffix trees. In 34th Symposium on Discrete Algorithms, SODA,
pages 5122–5202. SIAM, 2023. doi:10.1137/1.9781611977554.ch187.

48 Dominik Kempa and Tomasz Kociumaka. Collapsing the hierarchy of compressed data
structures: Suffix arrays in optimal compressed space. CoRR, abs/2308.03635, 2023. doi:
10.48550/arXiv.2308.03635.

49 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In 50th Symposium on Theory of Computing (STOC), pages 827–840, 2018. doi:10.1145/
3188745.3188814.

50 John C. Kieffer and En-Hui Yang. Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000. doi:10.1109/18.841160.

51 Tomasz Kociumaka, Gonzalo Navarro, and Francisco Olivares. Near-optimal search time in
δ-optimal space. In 15th Latin American Symposium (LATIN), volume 13568 of Lecture Notes
in Computer Science, pages 88–103. Springer, 2022. doi:10.1007/978-3-031-20624-5_6.

52 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure of
repetitiveness. In 14th Latin American Symposium (LATIN), volume 12118 of Lecture Notes
in Computer Science, pages 207–219. Springer, 2020. doi:10.1007/978-3-030-61792-9_17.

https://doi.org/10.1007/978-3-662-48350-3_45
https://doi.org/10.1145/3375890
https://doi.org/10.1016/0022-0000(83)90002-8
https://doi.org/10.4230/LIPIcs.CPM.2019.21
https://doi.org/10.4230/LIPIcs.CPM.2020.15
https://doi.org/10.4230/LIPIcs.ICALP.2018.65
https://doi.org/10.1007/s00453-018-0521-7
https://doi.org/10.4230/LIPIcs.ESA.2017.41
https://doi.org/10.4230/LIPIcs.ESA.2017.41
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1137/070685373
https://doi.org/10.1137/070685373
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1137/1.9781611977554.ch187
https://doi.org/10.48550/arXiv.2308.03635
https://doi.org/10.48550/arXiv.2308.03635
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1109/18.841160
https://doi.org/10.1007/978-3-031-20624-5_6
https://doi.org/10.1007/978-3-030-61792-9_17

G. Bernardini, G. Fici, P. Gawrychowski, and S. P. Pissis 12:19

53 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Toward a definitive compressibility
measure for repetitive sequences. IEEE Trans. Inf. Theory, 69(4):2074–2092, 2023. doi:
10.1109/TIT.2022.3224382.

54 Tomasz Kociumaka, Tatiana Starikovskaya, and Hjalte Wedel Vildhøj. Sublinear space
algorithms for the longest common substring problem. In 22th European Symposium on
Algorithms (ESA), pages 605–617, 2014. doi:10.1007/978-3-662-44777-2_50.

55 Andrei N. Kolmogorov. Three approaches to the quantitative definition of information.
International Journal of Computer Mathematics, 2(1–4):157–168, 1968. doi:10.1080/
00207166808803030.

56 Dmitry Kosolobov, Daniel Valenzuela, Gonzalo Navarro, and Simon J. Puglisi. Lempel-
ziv-like parsing in small space. Algorithmica, 82(11):3195–3215, 2020. doi:10.1007/
s00453-020-00722-6.

57 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theoret. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

58 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010. doi:10.1089/
cmb.2009.0169.

59 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

60 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of compressed
indexes in deterministic linear time. In 28th Symposium on Discrete Algorithms (SODA),
pages 408–424, 2017. doi:10.1137/1.9781611974782.26.

61 Gonzalo Navarro. Compact Data Structures – A Practical Approach. Cambridge
University Press, 2016. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
compact-data-structures-practical-approach?format=HB.

62 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Comput. Surv., 54(2):29:1–29:31, 2022. doi:10.1145/3434399.

63 Stav Ben Nun, Shay Golan, Tomasz Kociumaka, and Matan Kraus. Time-space tradeoffs for
finding a long common substring. In 31st Symposium on Combinatorial Pattern Matching
(CPM), pages 5:1–5:14, 2020. doi:10.4230/LIPIcs.CPM.2020.5.

64 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In 50th Symposium on Foundations of Computer Science (FOCS), pages 315–323, 2009.
doi:10.1109/FOCS.2009.11.

65 Jakub Radoszewski and Tatiana Starikovskaya. Streaming k-mismatch with error correcting
and applications. Inf. Comput., 271:104513, 2020. doi:10.1016/j.ic.2019.104513.

66 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
s00453-012-9618-6.

67 Tatiana Starikovskaya and Hjalte Wedel Vildhøj. Time-space trade-offs for the longest common
substring problem. In 24th Symposium on Combinatorial Pattern Matching (CPM), pages
223–234, 2013. doi:10.1007/978-3-642-38905-4_22.

68 Peter Weiner. Linear pattern matching algorithms. In 14th Symposium on Switching and
Automata Theory, pages 1–11, 1973. doi:10.1109/SWAT.1973.13.

69 Zong-Da Wu, Tao Jiang, and Wu-Jie Su. Efficient computation of shortest absent words in a
genomic sequence. Inf. Process. Lett., 110(14-15):596–601, 2010. doi:10.1016/j.ipl.2010.
05.008.

70 Andrew Chi-Chih Yao. Near-optimal time-space tradeoff for element distinctness. SIAM J.
Comput., 23(5):966–975, 1994. doi:10.1137/S0097539788148959.

71 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

ISAAC 2023

https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1007/978-3-662-44777-2_50
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1007/s00453-020-00722-6
https://doi.org/10.1007/s00453-020-00722-6
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1137/0222058
https://doi.org/10.1137/1.9781611974782.26
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1145/3434399
https://doi.org/10.4230/LIPIcs.CPM.2020.5
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.1016/j.ic.2019.104513
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/978-3-642-38905-4_22
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1016/j.ipl.2010.05.008
https://doi.org/10.1137/S0097539788148959
https://doi.org/10.1109/TIT.1977.1055714

New Support Size Bounds for Integer
Programming, Applied to Makespan Minimization
on Uniformly Related Machines
Sebastian Berndt #

Institute for Theoretical Computer Science, University of Lübeck, Germany

Hauke Brinkop #

Kiel University, Germany

Klaus Jansen #

Kiel University, Germany

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Tobias Stamm #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Abstract
Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving
fundamental problems in combinatorial optimization. The complexity of solving MILPs directly
correlates with their support size, which is the minimum number of non-zero integer variables in
an optimal solution. A hallmark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows
that any feasible integer linear program (ILP) has a solution with support size s ≤ 2m · log(4m∆),
where m is the number of constraints, and ∆ is the largest absolute coefficient in any constraint.

Our main combinatorial result are improved support size bounds for ILPs.
We show that any ILP has a solution with support size s ≤ m · (log(3Amax) +

√
log(Amax)),

where Amax := ∥A∥1 denotes the 1-norm of the constraint matrix A. Furthermore, we show support
bounds in the linearized form s ≤ 2m · log(1.46Amax). Our upper bounds also hold with Amax

replaced by
√

m∆, which improves on the previously best constants in the linearized form.
Our main algorithmic result are the fastest known approximation schemes for fundamental

scheduling problems, which use the improved support bounds as one ingredient.
We design an efficient approximation scheme (EPTAS) for makespan minimization on uniformly

related machines (Q||Cmax). Our EPTAS yields a (1 + ε)-approximation for Q||Cmax on N jobs
in time 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N), which improves over the previously fastest algorithm
by Jansen, Klein and Verschae (Math. Oper. Res., 2020) with run time 2O(1/ε log4(1/ε)) + NO(1).
Arguably, our approximation scheme is also simpler than all previous EPTASes for Q||Cmax, as we
reduce the problem to a novel MILP formulation which greatly benefits from the small support.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Integer programming, scheduling algorithms, uniformly related machines,
makespan minimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.13

Related Version arXiv Version: https://arxiv.org/abs/2305.08432 [7]

Funding Hauke Brinkop: Partially supported by DFG project JA 612/25-1, Fein-granulare Komple-
xität und Algorithmen für Scheduling und Packungen.
Klaus Jansen: Partially supported by DFG project JA 612/25-1, Fein-granulare Komplexität und
Algorithmen für Scheduling und Packungen.
Matthias Mnich: Partially supported by DFG project MN 59/4-1, Multivariate algorithms for
high-multiplicity scheduling.

© Sebastian Berndt, Hauke Brinkop, Klaus Jansen, Matthias Mnich, and Tobias Stamm;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.berndt@uni-luebeck.de
https://orcid.org/0000-0003-4177-8081
mailto:hab@informatik.uni-kiel.de
https://orcid.org/0000-0002-7791-2353
mailto:kj@informatik.uni-kiel.de
https://orcid.org/0000-0001-8358-6796
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:tobias.stamm@tuhh.de
https://orcid.org/0000-0002-5381-4935
https://doi.org/10.4230/LIPIcs.ISAAC.2023.13
https://arxiv.org/abs/2305.08432
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 New Support Size Bounds for Integer Programming

1 Introduction

The Integer Linear Programming (ILP) problem is to find an optimal integral solution
x⋆ ∈ Zn

≥0, which minimizes a linear objective c⊺x subject to a system Ax = b of m linear
constraints. In the Mixed-Integer Linear Programming (MILP) problem, the solution
sought is a pair (x⋆, y⋆) ∈ Zn

≥0 × Qr
≥0, which minimizes c⊺(x y) subject to Ax + By = b1

and Cy = b2. Solving (M)ILPs is at the core of many advanced algorithms for fundamental
combinatorial optimization problems. Very often, the run time of these algorithms scales
with the support size of the (M)ILPs, which is the smallest number of non-zero entries in an
optimal solution x⋆ resp. (x⋆, y⋆). Thus, support size bounds have found applications all
over computer science, for example in scheduling [5, 25], logic [30, 35], and even complexity
theory [21]. Therefore, the smaller the support size, the better these results become. Hence,
an important research direction is to prove strong upper bounds on the support size of
(M)ILPs. The original result on support size bounds, which is already finding its way into
the standard curriculum of integer programming courses [37, Lemma 6.1] is:

▶ Proposition 1 (Eisenbrand, Shmonin [15, Thm. 1(ii)]). Any feasible and bounded integer
program with m constraints admits a solution with support size s ≤ 2m log(4m∆), where ∆
is the largest absolute value of any entry in the constraint matrix A.

The result by Eisenbrand and Shmonin is about feasible solutions, and thus does not depend
on any objective function. Aliev et al. [2] improved the Eisenbrand-Shmonin bound to
2m log(2

√
m∆), and showed it to hold even for the support size of optimal solutions with

respect to any linear objective function. Recently, Gribanov et al. [19] were the first to achieve
a leading coefficient of 1, with a bound of the form m log(c1 ·

√
m∆ ·

√
log(c2 ·

√
m∆)), and

improved constants of 1.18m log(7.02
√

m∆) in the linearized form. For the special cases of
positively space spanning matrices [1], and in the average case over all right-hand sides [34],
results on the order of O(m) have recently been obtained. One important application
of the Eisenbrand-Shmonin bound are efficient polynomial-time approximation schemes
(EPTAS) for scheduling problems [23]. An EPTAS computes, for any problem instance I
and any ε > 0, a solution whose value is within (1 + ε) of the optimal solution value in time
f(1/ε)⟨I⟩O(1), where ⟨I⟩ denotes the encoding size of I. Several EPTAS were devised for
the classical scheduling problem of makespan minimization on uniformly related machines.
This problem is denoted as Q||Cmax in Graham’s 3-field notation [18]. The input to Q||Cmax
is a set J of N jobs, each of which is characterized by an integer processing time pj , and
a set M of M machines, each of which is characterized by an integer speed si. The goal
is to find an assignment (or schedule) σ : J → M of jobs to machines, which minimizes
the maximum completion time Cmax := maxi∈M

∑
j∈σ−1(i) pj/si of any machine. Problem

Q||Cmax is well-known to be NP-hard, even in the special case of unit speeds s1 = · · · = sm,
but still approximable to arbitrary precision, in contrast to the setting of unrelated machines.
The previously fastest EPTAS for Q||Cmax is due to Jansen, Klein and Verschae [25, 26],
and runs in time 2O(1/ε log4(1/ε)) + NO(1). Since their result first appeared in 2016, it has
been an open question whether the exponential dependency on 1/ε can be improved. In
particular, there is a gap to the best-known lower bound, which shows that a run time
of 2O((1/ε)1−δ) + NO(1) is not possible for any δ > 0, assuming the Exponential-Time
Hypothesis [12]. It is unknown, whether this gap can be improved to δ = 0, even under
stronger assumptions such as Gap-ETH [33]. Further, a gap remains to the best-known run
time 2O(1/ε log(1/ε) log(log(1/ε))) + NO(1) for the case of unit speeds s1 = · · · = sm [8]. Our
work shows that this gap could be closed with an algorithm for MILPs with few constraints,
as efficient as those available for ILPs with few constraints.

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:3

Combinatorial results. Our main combinatorial result improves on the fundamental support
size bound of Proposition 1 with regard to the new parameter Amax. Prior work used the
maximum norm ∆ := ∥A∥max = maxi,j |Ai,j |, the largest absolute value of an entry in the
constraint matrix A. Instead, we use the 1-norm Amax := ∥A∥1 = maxi ∥Ai∥1, the largest
1-norm of any column Ai in A. The matrix 1-norm is sub-multiplicative, consistent with
the vector 1-norm and recognizes some sparsity, all in contrast to the maximum norm. This
makes Amax a natural parameter to consider for studying the properties of ILPs. We show:

▶ Theorem 2. Any feasible bounded ILP with an m-row constraint matrix A with 1-norm Amax
has an optimal solution with support size s ≤ m · (log(3Amax) +

√
log(Amax)).

We also derive parametric support size bounds in linearized form, like s ≤ 1.1m·(3.42Amax).
As all our upper bounds can equally be derived with Amax replaced by

√
m∆, we thereby

improve on the constants of Gribanov et al. [19] in this form. For the parameter Amax, we
show an asymptotically matching lower bound on the support size of an optimal solution:

▶ Theorem 3. For any m ∈ Z≥0 and any Amax ∈ Z≥1, there is an ILP with m constraints,
n := m · (⌊log(Amax)⌋ + 1) ≥ m · log(Amax) variables, and 1-norm Amax of the constraint
matrix, whose unique optimal solution is the 1-vector.

To obtain this lower bound, we adapt the previously best lower bound of m log(∆) on
the support size of an optimal solution by Berndt, Jansen and Klein [9].

Algorithmic results. We use our upper bounds on the support sizes of optimal solutions
to ILPs from Theorem 2 as one ingredient to obtain new algorithmic results. Namely, we
design a new EPTAS for Q||Cmax, which is asymptotically faster than all previous EPTAS for
Q||Cmax. See Table 1 for a survey of prior work on approximation algorithms for Q||Cmax.

▶ Theorem 4. There is an algorithm for Q||Cmax that, for any ε > 0 and any set of N jobs,
computes a (1 + ε)-approximate schedule in time 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N).

Table 1 History of selected complexity results for approximating Q||Cmax.

authors year approximation run time

Gonzales, Ibarra, Sahni [17] 1977 2 − 2
M+1 O(N log(N))

Cho, Sahni [13] 1980 1 +
√

M−1
2 O(N log(N))

Woeginger [38] 1999 2 − 1
M

O(N log(N))
Hochbaum, Shmoys [22] 1988 1 + ε NO(1/ε2 log(1/ε))

Azar, Epstein [4] 1998 1 + ε NO(1/ε2)

Jansen [23] 2010 1 + ε 2O(1/ε2 log3(1/ε)) + NO(1)

Jansen, Robenek [28] 2012 1 + ε 2O(1/ε2 log3(1/ε)) + NO(1)

Jansen, Klein, Verschae [25, 26] 2016 1 + ε 2O(1/ε log4(1/ε)) + NO(1)

This paper 2023 1 + ε 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N)

Compared to previous works, we devise a novel MILP formulation for Q||Cmax whose
constraint matrix has small column norm. Solving this new formulation not only yields
the fastest known EPTAS for Q||Cmax, but also an EPTAS which is conceptually much
simpler than all previous ones. In particular, we introduce the following simplifications in
our algorithm compared to the previous EPTAS results:

ISAAC 2023

13:4 New Support Size Bounds for Integer Programming

In contrast to all other previous algorithms, we do not need a case distinction that
splits the algorithm and its analysis into three or four different cases, depending on the
processing time ratios and numbers of machines. Our algorithm handles all these cases
simultaneously by incurring an increase in the constants hidden within the O terms.
We set up an MILP where both jobs and machines with similar size and speed are
combined into few distinct job and machine classes. All but the longest jobs and machines
are then scheduled fractionally. Rounding the fractional allocations for relatively tiny
jobs in a machine class was usually done via a separate algorithm by Lenstra, Shmoys
and Tardos [32]. Instead, we pack these jobs with a simple greedy strategy.
We assign relatively huge jobs of each rounded machine speed using basic linear program
properties. This creates a linear instead of logarithmic overhead, which we accommodate
by increasing the number of integer variables by a constant factor. Previous EPTAS
mostly used a complex algorithm by Jansen [24] for a particular bin packing problem.

The only remaining algorithm used as a black-box is the well-known algorithm by Lenstra [31]
for solving MILPs with constant dimension (resp. its improvement due to Kannan [29]). To
show the versatility of our approach, we applied it to three related scheduling problems. Due
to space constraints, the details of these applications are only in the full version [7].

High-Multiplicity Scheduling. We study the problem Q|HM |Cmax, where both jobs and
machines are given in the succinct high-multiplicity encoding. We are not aware of any prior
constant-factor approximation for Q|HM |Cmax, only for the restricted setting where only
the jobs are given in a high-multiplicity encoding by Filippi and Romanin-Jacur [16].

▶ Corollary 5. There is an algorithm for Q|HM |Cmax that, for any ε > 0 and any instance I,
computes a (1 + ε)-approximate schedule in time 2O(1/ε log3(1/ε) log(log(1/ε))) + ⟨I⟩O(1).

Few Different Machine Speeds. In the special case of Q||Cmax with only k distinct machine
speeds, the run time of our algorithm can be improved.

▶ Theorem 6. There is an algorithm for Q||Cmax that, for any ε > 0, any set of N

jobs and any k distinct machine speeds, computes a (1 + ε)-approximate schedule in time
2O(k·1/ε log(1/ε) log(log(1/ε))) + O(N).

Few Different Uniform Machine Types. Jansen and Maack [27] posed RKQ||Cmax, a
generalization of Q||Cmax where each job can have up to K different processing times.

▶ Theorem 7. There is an algorithm for RKQ||Cmax that, for any ε > 0 and any set of N jobs,
computes a (1+ε)-approximate schedule in time 2O(K log(K)1/ε log3(1/ε) log(log(1/ε))) +O(K ·N).

2 Preliminaries

We use log(2) = 1, i.e., base 2 logarithms and denote Euler’s number by e := exp(1). For
a vector v, let vmin := minℓ vℓ and vmax := maxℓ vℓ be its extremal entries and supp(v) :=
{ℓ | vℓ ̸= 0} its support, i.e., the set of indices with non-zero entries. For an instance I,
its encoding size ⟨I⟩ is given by ⟨I⟩ :=

∑
x∈I(log(|x| + 1) + 1), the sum over the sizes in

binary representations of all quantities. For example, an instance I of Q||Cmax has size ⟨I⟩
logarithmic in the job processing times and machine speeds, but linear in the number of jobs
and machines. We generally use i as index for machines, and j as index for jobs.

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:5

Mixed-Integer Linear Programs. The set of feasible solutions of any MILP is

Q :=
{

x ∈ Zn
≥0, y ∈ Rr

≥0 |
(

A B

0 C

)
·
(

x

y

)
= b

}
(MILP)

for matrices A ∈ Zm×n, B ∈ Zm×r, C ∈ Zs×r and a vector b ∈ Zm+s. The encoding size
⟨MILP⟩ of (MILP) is logarithmic in the absolute value ∆ := maxi,j |Ai,j | of the largest
coefficient and right-hand side b, but linear in the number of variables and constraints.

We will make use of the following classical result for finding solutions of (MILP), which
was proved first by Lenstra [31] and obtained with improved run time by Kannan [29].

▶ Proposition 8 (Kannan [29]). For any instance of (MILP), in time 2O(n log(n))⟨MILP⟩O(1)

one either finds a solution (x, y) ∈ Q or determines that Q = ∅.

In the following, we reproduce two useful lemmata about the structure of (MILP) solutions,
which are inherited from its integral and fractional parts.

▶ Lemma 9. For any instance of (MILP) and any (x̂, ŷ) ∈ Q, in time ⟨MILP⟩O(1) we can
find (x̂, ỹ) ∈ Q such that ỹ is a vertex solution of the following restricted LP:{

y ∈ Rr
≥0 |

(
B

C

)
· y = b −

(
A

0

)
· x̂

}
. (R-LP)

Proof. By assumption, (R-LP) is feasible, as ŷ is a solution. With the ellipsoid algorithm [20,
Remark 6.5.2] we find a vertex solution ỹ of (R-LP) in polynomial time. ◀

▶ Lemma 10. For any instance of (MILP) and any (x̂, ŷ) ∈ Q there is some (x̃, ŷ) ∈ Q
such that x̃ has minimum support | supp(x)| of all solutions x to the restricted ILP{

x ∈ Zn
≥0 |

(
A

0

)
· x = b −

(
B

C

)
· ŷ

}
. (R-ILP)

Proof. By assumption, (R-ILP) is feasible, as x̂ is a solution. Hence, it also has a solution x̃

with minimum support size. Then (x̃, ŷ) ∈ Q holds because of (x̂, ŷ) ∈ Q and A·x̂ = A·x̃. ◀

Importantly, Lemma 10 implies that any support size bound for an ILP can be directly
applied to the integer variables of an MILP. One of these applications is an algorithm to
solve MILPs with few constraints. This was presented explicitly and analyzed in terms of
m and ∆ by Rohwedder and Verschae [36, p. 30], see also Dadush et al. [14]. For us, the
crucial underlying idea to efficiently solve MILPs is:

▶ Lemma 11. For any instance of (MILP) and any s ≤ n, in time 2O(s log(n)) · ⟨MILP⟩O(1)

we either find a solution (x, y) ∈ Q≤s := {(x, y) ∈ Q : | supp(x)| ≤ s} of bounded support,
or determine that Q≤s = ∅.

Proof. We exhaustively try all choices of supp(x), which are
(

n
s

)
≤ ns candidates, from

| supp(x)| = 0 up to s. For each choice we restrict (MILP) to supp(x), by fixing all other
integer variables to 0. With Proposition 8 we either find a solution with s integral variables,
or determine the infeasibility, in time sO(s)⟨MILP⟩O(1). The run time follows from s ≤ n. ◀

Note that a support size bound s on any solution of (R-ILP) allows us to use Lemma 11 to
find a solution with support size s, or decide the infeasibility of the entire (MILP). Lemma 11
directly extends to optimizing a linear objective function; and to finding a non-zero solution
of minimum support, which might be of interest for augmentation algorithms.

ISAAC 2023

13:6 New Support Size Bounds for Integer Programming

3 Refined Support Size Bounds for Integer Linear Programs

In this section, we refine the general support size bounds independent of n for integer linear
programs. Previous such bounds used as parameters the number of constraints m, and the
largest absolute value ∆ of an entry in the constraint matrix A. In our MILP formulation for
Q||Cmax, we bound the support size by the maximum 1-norm of a column vector, denoted
by Amax := ∥A∥1 = maxi=1,...,n ∥Ai∥1. Clearly, ∆ ≤ Amax ≤ m · ∆ holds, but it also means
that support size bounds using only m and ∆ are too coarse for some ranges. In this section,
we only consider feasible ILPs L ̸= ∅ with rank(A) = m. Let S := supp(v) be the support of
the vertex v, and let s := |S| be the size of the support. Our results are based on:

▶ Proposition 12 (Aliev et al. [2, Thm. 1(2)]). Any ILP L with constraint matrix A ∈ Zm×n

has an optimal solution v ∈ L with support size s := | supp(v)| ≤ m + log(
√

det(A · AT)).

In this form, the determinant of the support size bound can depend on n. The strength of
Proposition 12 is the ability to restrict A to the columns with non-zero variables. For our
vertex solution v with support S = supp(v), this is exactly AS , the columns of the variables
in the support. Aliev et al. [2] used the inequality

√
det(AS · AT

S) ≤ (
√

s∆)m to ultimately
obtain the support size bound s ≤ 2m log(2

√
m∆) [3, Thm. 1(ii)]. We analyze the term

det(AS · AT
S) in the more fine-grained parameter Amax to obtain a tighter bound:

▶ Lemma 13. For any matrix AS ∈ Zm×s it holds that
√

det(AS · AT
S) ≤ (

√
s/m · Amax)m.

Proof. The matrix G := AS · AT
S is symmetric and positive semi-definite. If G has an

eigenvalue of 0 then det(G) = 0 and the inequality holds. We will thus assume that G is
positive definite, i.e., all eigenvalues are positive. It is a classical result that for positive
definite matrices, the Hadamard inequality can be strengthened to det(G) ≤

∏m
i=1 Gi,i, the

product of the diagonal entries Gi,i. We refer to a modern presentation by Browne et al. [10,
Thm. 2] for this fact. As G = AS · AT

S , it is sufficient to bound φ(AS) :=
∏m

i=1
∑s

j=1 A2
S;i,j

subject to
∑m

i=1 |AS;i,j | ≤ Amax for j = 1, . . . , s by (s/m · A2
max)m to obtain our result.

We will first characterize a matrix AS such that φ(AS) is maximal and then relate φ(AS)
to (s/m · A2

max)m. As all entries AS;i,j of AS occur as squares or absolute values in the
optimization, we can assume AS;i,j ≥ 0 in the following. As φ is monotone in each variable,
the matrix AS that maximizes φ(AS) under the condition

∑m
i=1 |AS;i,j | ≤ Amax will fulfill

these constraints with equality, i.e.,
∑m

i=1 |AS;i,j | = Amax for j = 1, . . . , s. Renaming AS;i,j
to xi,j thus gives us the optimization problem:

max
m∏

i=1

s∑
j=1

x2
i,j s.t.

m∑
i=1

xi,j = Amax xi,j ≥ 0 for i = 1, . . . , m; j = 1, . . . , s .

To bound the optimal solutions to this program, we first consider optimal solutions over the
same region with objective function

∑m
i=1
∑s

j=1 x2
i,j . This is a convex objective function over

a polyhedral region. By Bauer’s maximum principle [6], the maximum is assumed at a vertex
and thus has s non-zero variables. Consequently, we have

∑m
i=1
∑s

j=1 x2
i,j ≤ s · A2

max. Now,
consider the problem of maximizing max

∏m
i=1 yi with

∑m
i=1 yi ≤ s · A2

max and yi ≥ 0. The
logarithm is monotone, so we can apply it to the objective, giving

∑m
i=1 log(yi) instead. For

any solution x∗
i,j maximizing

∑m
i=1
∑s

j=1 x2
i,j , we can compute the y∗

i with y∗
i =

∑s
j=1 x∗

i,j
2

that will maximize
∑m

i=1 log(yi). As the logarithm is concave, we can thus maximize∑m
i=1 log(yi) by y∗

1 = . . . = y∗
m = s/m · A2

max, as we could otherwise improve a solution by
re-balancing it. Hence, φ(AS) ≤ (s/m · A2

max)m, which implies our inequality. ◀

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:7

Importantly, by substituting Amax with
√

m∆, our inequality in Lemma 13 becomes the one
used by Aliev et al. [2]. Therefore, any of the following results can also be obtained for

√
m∆

instead of Amax. Proposition 12 and Lemma 13 imply the essential intermediate result:

▶ Corollary 14. Any ILP L with constraint matrix A ∈ Zm×n has an optimal solution v ∈ L
with | supp(v)| = s such that s/m ≤ 1 + log(

√
s/m · Amax) = 1 + log(Amax) + log(s/m)/2.

The proof of Proposition 12 uses Siegel’s Lemma, a deep result from transcendental number
theory. In contrast, Berndt et al. [9] derive a support size bound of the same form using only
elementary methods, but with worse constants. Building on their approach, we also derive a
simple combinatoric, but weaker bound similar to Corollary 14 in the extended version [7].

▶ Lemma 15. Any ILP L with constraint matrix A ∈ Zm×n has an optimal solution v ∈ L
with | supp(v)| = s such that s/m ≤ 1 + log(e) + log(1 + (s/m) · Amax).

Unfortunately, both sides of Corollary 14 are still dependent on s. We resolve Corollary 14
for s in two ways, both parametric in the trade-off between constant and super-constant
terms. In the first approach, we bound the logarithm by its tangents.

▶ Lemma 16. For any α > 0 and x > 0, it holds log(x) ≤ α · x − log(e) + log(log(e)/α).

Proof. At x = log(e)/α, both sides are log(log(e)/α), and the derivatives are α. Hence, the
affine function of the right-hand side upper bounds the left-hand side, as log(x) is concave. ◀

This direct approach allows us to give simple and short formulas for the bounds.

▶ Theorem 17. For any α ∈ (0, 1) there is an optimal solution v of ILP with

s ≤ m · log(
√

2 log(e)/(e · α) · Amax)/(1 − α) .

Proof. Applying Lemma 16 with 2α to Corollary 14 yields

s/m ≤ 1 + log(Amax) + (2α · s/m − log(e) + log(log(e)/(2α)))/2

≤ log(2Amax) + α · s/m + log
(√

log(e)
2α

)
≤ log

(√
2 log(e)

e · α
· Amax

)
+ α · s/m .

We subtract α · s/m, and multiply by m/(1 − α), which proves the claim for 0 < α < 1. ◀

For example, we can set α = 1/2 or α = 1/11 to obtain the bounds s ≤ 2m · log(1.46 · Amax)
and s ≤ 1.1m · log(3.42 · Amax). This approach, however, only gives bounds with coefficient
strictly larger than 1 for the leading term. To reduce this to 1, we make use of advanced
analytical function techniques, to tighter analyze the inequality of Corollary 14.

▶ Lemma 18. For s, m, Amax ≥ 1, the inequality in Corollary 14 is equivalent to

s/m ≤ − log(e) · W−1(−1/(2 log(e)A2
max))/2,

where W−1 is the −1 branch of the Lambert W-function, the inverse function of x 7→ xex.

Proof. We substitute s/m by − log(e) · y/2, and rearrange to obtain:

− log(e) · y/2 ≤ 1 + log(Amax) + log(− log(e) · y/2)/2
⇔ log(− log(e) · y) + log(e) · y ≥ −(2 + 2 log(Amax) − 1) = −1 − 2 log(Amax)

⇔ − log(e) · y · 2log(e)·y ≥ 1/(2 · A2
max) ⇔ y · ey ≤ −1/(2 log(e) · A2

max) .

ISAAC 2023

13:8 New Support Size Bounds for Integer Programming

For the right-hand side z := −1/(2 log(e) · A2
max), we have −1/e ≤ −1/(2 log(e)) ≤ z ≤ 0.

Therefore, the inequality is satisfied exactly when W−1(z) ≤ y ≤ W0(z) holds, where Wk are
the real branches of the aforementioned Lambert W-function.

Next, we show y ≤ W0(z) does not restrict any relevant values. For x ∈ [−1/e, 0], we
have W0(x) ≥ e · x. Furthermore s/m · A2

max ≥ 1 ≥ e/4 holds for the relevant values of
s/m ≥ 1 and Amax ≥ 1. Therefore W0(z) ≥ −e/(2 log(e)A2

max) ≥ −2 · (s/m)/ log(e) = y.
This shows that the positive solutions are only constrained from above, by W−1(z). Applying
the resubstitution of y to its lower bound gives the claimed result. ◀

Now, we apply techniques analogous to Chatzigeorgiou [11] to prove parametric bounds for
the W−1(z) branch, which we optimize for z → 0 instead of z → −1/e.

▶ Lemma 19. For any α > 0 and u ≥ 0, it holds −W−1(−e−u−1) ≤ u +
√

2α · u + α − ln(α).

Proof. Chatzigeorgiou [11] showed for x = −W−1(−e−u−1) − 1 that g(x) = u, where
g(x) := x − ln(1 + x). To show our result, it thus suffices to show that for all x ∈ R > 0 and
some additive term β, only dependent on α, it holds that

−W−1(−e−u−1) = x + 1 ≤ g(x) +
√

2α · g(x) + β + 1 = u +
√

2α · u + β + 1 .

By definition of g, this reduces to showing f(x) := − ln(1+x)+
√

2α · (x − ln(1 + x))+β ≥ 0.
The function f has a unique minimum, since we will show that f ′(x) = 0 has only one
solution and limx→∞ f(x) = ∞. Consider the critical condition:

d
dx

f(x) = −1
1 + x

+
(1 − 1

1+x) · α√
2α(x − ln(1 + x))

= 0 ⇔ xα√
2α(x − ln(1 + x))

= 1 . (1)

We show that Equation 1 has only one solution, a global minimum, because the second
derivative of f(x) is always positive, making f(x) monotonously increasing.

d
dx2 f(x) =

−x(1 − 1
1+x)α2

(2α(x − ln(1 + x)))3/2 + α√
2α(x − ln(1 + x))

> 0 ⇔

−α2x2/(1 + x)
2α(x − ln(1 + x)) +α > 0 ⇔ x2

1 + x
< 2(x−ln(1+x)) ⇔ x(2 + x)

2(1 + x) ≥ ln(1+x)

We know Equation 1 holds at the global minimum. Hence, substituting it in the inequality
f(x) ≥ 0 and applying Lemma 16 on ln(1 + x) bounds the minimal value of f(x) by

f(x) = − ln(1+x)+αx+β ≥ −α(1+x)−ln(1/α)+1+αx+β ≥ 0 ⇔ β ≥ α+ln(1/α)−1 .

We conclude that −W−1(−e−u−1) ≤ u +
√

2α · u + α + ln(1/α), as desired. ◀

From Lemma 18 and Lemma 19 we derive our asymptotically tight support size bound.

▶ Theorem 20. For any α′ > 0 there is an optimal solution v of ILP with

s ≤ m · (log(Amax) +
√

α′(log(Amax) + 0.05) + α′/2 + log(
√

1/α′) + 1.03) .

Proof. We need to rewrite the argument z := −1/(2 log(e)A2
max) in Lemma 18 to the form

−e−u−1 used in Lemma 19. Hence, solving z = −e−u−1 gives u = ln(2 log(e)A2
max/e) =

2 ln(Amax) + ln(2 log(e)/e). We now substitute α by α′/ log(e) to get log instead of ln, and
through calculation obtain the bound:

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:9

s/m ≤ − log(e)W−1(z)/2 ≤ log(e)(u +
√

2α · u + α − ln(α))/2

≤ log(e)(u +
√

2α′/ log(e) · u + α′/ log(e) − ln(α′/ log(e)))/2

≤ log(e)u/2 +
√

log(e)α′u/2 + α′/2 − log(α′/ log(e))/2

≤ log(Amax) + log(2 log(e)/e)/2 +
√

log(e)α′u/2 − log(α′/ log(e))/2 + α′/2

≤ log(Amax) +
√

α′(log(Amax) + log(2 log(e)/e)/2) + α′/2 + log(log(e)
√

2/(eα′)) .

Inserting numerical values for terms independent of α′ and Amax gives the desired result. ◀

For α′ = 1 and Amax ≥ 1 we obtain the particularly simple bounds

s ≤ m · (log(Amax) +
√

log(Amax) + 0.05 + 1.53) ≤ m · (log(3Amax) +
√

log(Amax)) .

This immediately implies our main support size bound:

▶ Theorem 2. Any feasible bounded ILP with an m-row constraint matrix A with 1-norm Amax
has an optimal solution with support size s ≤ m · (log(3Amax) +

√
log(Amax)).

In order to understand how tight our bound is, we adapt a construction by Berndt et
al. [9] to obtain an asymptotically matching lower bound on the support size:

▶ Theorem 3. For any m ∈ Z≥0 and any Amax ∈ Z≥1, there is an ILP with m constraints,
n := m · (⌊log(Amax)⌋ + 1) ≥ m · log(Amax) variables, and 1-norm Amax of the constraint
matrix, whose unique optimal solution is the 1-vector.

Proof. With d := ⌊log(Amax)⌋ we construct an ILP as follows:

max
(
30 · · · 3d 30 · · · 3d · · · 30 · · · 3d

)
· x s.t. x ∈ Zm(d+1)

≥0 ,
20 · · · 2d 0 · · · 0
0 · · · 0 20 · · · 2d · · · 0 · · · 0

...
. . .

0 · · · 0 20 · · · 2d

 · x =

2d+1 − 1
2d+1 − 1

...
2d+1 − 1

 .

Because of
∑d

i=0 2i = 2d+1 − 1, the 1-vector is a solution. All coefficients are positive. Hence,
in any solution the value of the variables with coefficient 2d must be less than 2. For any other
variable xi, if it is xi ≥ 2, we can increase the objective by setting xi := xi −2; xi+1 := xi+1 +1.
Since all objective coefficients are positive, the 1-vector is the unique optimal solution. ◀

Hence, Theorem 20 is exact in the dominant term. We pose the question, whether there is a
support size bound of the form m · log(c · Amax) for some constant c, as an open problem.

4 An Efficient Approximation Scheme for Makespan Minimization on
Uniformly Related machines

Our algorithm follows a typical structure of approximation schemes. First, we preprocess
the input, by discarding jobs and machines which are so short or slow that assigning them
naïvely is acceptable. Next, we perform a binary search on the makespan, to reduce the
optimization problem to a feasibility problem. Then, we round the remaining processing
times and machine speeds, according to our makespan guess, to make the resulting instance
more structured. Now, we construct an MILP, whose feasibility is equivalent to the existence
of a schedule. Finally, we solve the MILP and transform the solution into a schedule.

ISAAC 2023

13:10 New Support Size Bounds for Integer Programming

4.1 Preprocessing
We reduce the number of parameters bounding the instance to the number of jobs N and
a constant fraction δ of the approximation guarantee ε. To enforce N ≥ M we potentially
drop the M − N slowest machines, as there is an optimal solution not assigning them a job.

Step 1: Removing Negligible Machines and Jobs. We remove all machines slower than
δ ·smax/N and all jobs shorter than δ ·pmax/N . Compensating for the lost processing times on
a longest job and the machine speeds on a fastest machine introduces an approximation error
of at most a factor (1+δ) each. Now we have pmin > δ ·pmax/N and smin > δ ·smax/N and the
largest ratios of job processing times pmax/pmin < N/δ and machine speeds smax/smin < N/δ

are bounded only by the parameters N and δ.

Step 2: Preround the Inputs. To achieve a linear run time, we preround the machine
speeds and processing times to fewer distinct values. These are rerounded again more
carefully at every iteration of the binary search, reducing the run time at the cost of a limited
accuracy loss. We round every processing time pj and machine speed si down to the next
power of (1 + δ), introducing errors of no more than (1 + δ) by construction. Let η̃j be the
number of jobs with rounded processing times p̃j be and µ̃i be the number of machines with
rounded speed s̃j . Due to step 1, the amount of distinct values after rounding is bounded
by log1+δ(pmax/(pmaxδ/N)) = log1+δ(smax/(smaxδ/N)) ∈ O(1/δ log(1/δ · N)). Because our
inputs are sorted, the rounding above can be performed in time O(N + 1/δ log(1/δ · N)).

Step 3: Binary Search for the Makespan. We reduce finding the optimal makespan
OPT(I) to successively checking whether a schedule with makespan T is realizable. The
processing time of a longest job on a fastest machine is a lower bound: OPT(I) ≥ pmax/smax.
The schedule assigning all jobs to a fastest machine proves OPT(I) ≤

∑N
j=1 pi/smax ≤

N · pmax/smax. Hence, we can use a binary search for OPT(I) in the interval [pmax/smax, N ·
pmax/smax] of ratio N . As accuracy up to a factor (1+δ) is sufficient, we only need to consider
integer powers of (1 + δ). Our binary search therefore adds a factor of O(log1+δ(N)) =
O(1/δ log(N)) to the run time of the following steps. We denote the current makespan in
the binary search by T . This transforms the problem into either finding a schedule with
makespan (1 + O(δ)) · T , or deciding that no schedule with makespan T exists.

Step 4: Rounding Machine Speeds and Job Processing Times. A (1 + ε)-approximate
schedule σ satisfies, for each machine i, the equivalent inequalities∑

j∈σ−1(i)

pj

si
≤ (1 + ε) · T ⇔

∑
j∈σ−1(i)

pj

T
≤ (1 + ε) · si . (2)

With the aforementioned bounds on the makespan we have enforced the descending chain

smax ≥ pmax/T ≥ pmin/T > δ · pmax/(N · T) ≥ δsmax/N2 .

Therefore, all relevant quantities – especially the scaled processing times pj/T – are in
the interval I := (δ · smax/N2, smax], whose left and right end are within a ratio N2/δ.
See also Figure 1 for an overview on the relations between the parameters. We now scale
each processing time pj with 1/T ; this yields an instance with scaled processing times
p̃j = 1/T · pj , equivalent to our original instance by Equation 2. Our goal is now to cover our
interval I by as few subintervals as possible. To this end, we adapt an approach by Berndt

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:11

T

smaxδ/N2

pmaxδ/(N · T)

smaxδ/N smax

pmax/T

Figure 1 Overview on the range of parameters.

et al. [8] which combines exponential and linear rounding to obtain both sufficient accuracy
with few values and useful structural properties. With κ := ⌈log(1/δ · N2)⌉, consider the
points bk,0 := smax · 2−k for k = 0, . . . , κ. The intervals [bk+1,0, bk,0] become exponentially
finer, but have a ratio of 2, not the necessary (1 + δ). Therefore, with λ := ⌈1/δ⌉, we
add the points bk,ℓ := (1 − ℓ/(2λ)) · bk,0 for k = 0, . . . , κ − 1 and ℓ = 0, . . . , λ, which
is a linear interpolation between bk,0 and bk+1,0. Simple calculations show the relations
bk,ℓ−1/bk,ℓ = 1 + 1/(2λ − ℓ) ≤ 1 + δ and bk+1,0 = bk,0/2 = bk,⌈1/δ⌉ for all k = 0, . . . , κ − 1
and ℓ = 1, . . . , λ, which means we have achieved the necessary precision. Crucially, two jobs
within a linear interval of the same parity combine exactly to a job in the next larger linear
interval. Formally, this is described by

bk,ℓ + bk,ℓ′ =
(

2 − ℓ + ℓ′

2λ

)
· bk,0 =

(
1 − (ℓ + ℓ′)/2

2λ

)
· bk−1,0 = b

k−1, ℓ+ℓ′
2

(3)

for all 0 ≤ ℓ ≤ ℓ′ ≤ λ with ℓ + ℓ′ divisible by 2, i.e., ℓ and ℓ′ are both odd or both
even. Equation 3 will allow us to significantly reduce the number of configurations and the
maximum 1-norm of a column. To simplify our notations, we re-index the values of bk,ℓ in
descending order by setting br := bk(r),ℓ(r) with k(r) = ⌊(r − 1)/λ⌋ and ℓ(r) = (r − 1) mod λ,
such that bk·λ+ℓ+1 = bk,ℓ. Therefore, the interval I is covered completely by the τ := κ · λ ∈
O(1/δ log(1/δ · N)) intervals (br+1, br] for r = 1, . . . , τ . Finally, we round every machine
speed s̃i as well as every scaled processing time p̃j in (br+1, br] up to br. Let µi be the number
of machines with scaled speed bi. Let ηj be the number of jobs with scaled processing time bj .
This takes time O(1/δ log(1/δ · N)), which means steps 1 to 4 can be performed in total time
O(N + 1/δ log(N)(1/δ log(1/δ · N) + τ)) = O(N + 1/δ2 log2(1/δ · N)) ⊆ O(1/δ2+2·2) + O(N).

4.2 Solving an MILP Formulation
Consider the resulting instance after all steps from subsection 4.1 have been applied. Nearly
all previous approaches used a mix of configuration variables that determine the complete
schedule of a machine and assignment variables that determine the position of a single job.
We combine these different variables into a unified structure called recursive configurations.
The core idea of our formulation is that an additional machine i of speed bi can be simulated
by placing a corresponding job of the same size bi on a faster machine i′ with bi′ < bi. In
other words, by placing more jobs than the problem requires, we are also allowed to use
more machines of the same size than the problem provides. By applying this idea recursively,
we can cover a large range of job processing times with configurations of limited range only,
as the virtual machines allow us to merge several short jobs (with respect to to a certain
machine speed) into a long job. This approach allows us to successively build a configuration
from other configurations. Combined with the rounding scheme of Berndt et al. [8] we
thereby significantly reduce the overall necessary number of configurations.

ISAAC 2023

13:12 New Support Size Bounds for Integer Programming

For k = 0, . . . , κ, we define the set Gk := {r ∈ {1, . . . , τ} | br ∈ [bk,0, bk,λ]} of indices of
affine slices in our rounding scheme, separated into Geven

k := {r ∈ Gk | r = 0 mod 2} and
Godd

k := Gk\Geven
k . For i = 1, . . . , τ , we define the set Hi := {j ∈ {1, . . . , τ} | bj ∈ (δbi, bi]} of

indices of long job speeds, greater than δbi and less than the entire machine speed bi. We will
now define configurations. All configurations are vectors γ with τ entries, each representing
multiples of scaled processing times in b = (b1, . . . , bτ). In the following, we describe the
configurations for machines with speed bi. The set C(1)

i contains all the exact combinations
bj + bj′ = bi as described in Equation 3. With ej ∈ {0, 1}τ being the j-th unit vector, let

C(1)
i := {ej + ej′ | j, j′ ∈ Gk(i)−1 and j + j′ = 2 · (i − λ)} .

The second set C(2)
i contains the remaining feasible configurations of long jobs, with at most

one job at even and odd positions in an affine slice Gk:

C(2)
i := {γ ∈ {0, 1}τ | γ · b ≤ bi and supp(γ) ⊆ Hi and for all

k = 0, . . . , κ − 1 :
∑

r∈Geven
k

γr ≤ 1 and
∑

r∈Godd
k

γr ≤ 1} .

Finally, the set of configurations Ci for machines with speed bi is defined as Ci := C(1)
i ∪ C(2)

i .
The total number of entries in a configuration γ is at most ∥γ∥1 ≤ 2 log(2 · 1/δ). Only long
jobs from Hi are used, and for each k there is at most one job at an even or odd position in Gk,
respectively. We can bound the number of configurations in C(1)

i by λ2, and the number of
configurations in C(2)

i by (λ2)2 log(2·1/δ) ∈ 2O(log2(1/δ)), which implies |Ci| ∈ 2O(log2(1/δ)).
We require integrality in the variables only for the fastest L := λ⌈log(1/δ3 log(1/δ))⌉ ∈

O(1/δ log(1/δ)) machine speeds. Intuitively, we just need to assign configurations integrally
on these machines, as all remaining configurations are very short relative to the machines
with the fastest speed. Hence, we can assign them fractionally and round them later on. The
overhead from rounding is then scheduled on a fastest machine. The resulting MILP is:

∑
γ∈Ci

xi,γ − µi
(4)=

τ∑
i′=1

∑
γ∈Ci′

γi · xi′,γ − ηi

(5)
≥ 0 for i = 1, . . . , τ

xi,γ ≥ 0 for i = 1, . . . , τ ; γ ∈ Ci

xi,γ ∈ Z≥0 for i = 1, . . . , L; γ ∈ Ci.

(recursive-MILP)

Recall that the number of jobs with processing time bj in configuration γ is γj , the number
of machines with speed bi is µi, and the number of jobs with scaled processing time bj is ηj .
The constraints (4) enforce that the number of additional virtual machines of any speed
equals the number of additional corresponding jobs of that same size scheduled somewhere
else. The constraints (5) ensure that at least as many jobs of each size are assigned in
configurations, as are required by the problem. We show (recursive-MILP) is feasible, up to
an approximation factor, for a feasible instance.

▶ Lemma 21. If the original Q||Cmax-instance I has a schedule σ with makespan T , then
(recursive-MILP) is feasible for makespan (1 + 17δ) · T .

Proof. The schedule σ specifies which jobs are scheduled on any machine i and that those
have sufficient speed. We perform steps 1–4, which uses additional speed of at most a factor
(1 + δ)7. If a single job of processing time bi has been assigned to a machine of speed bi by σ,
then we create a new configuration which assigns this job on that machine, and speed up the

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:13

machine by a factor (1 + δ). Otherwise, the difficulty is finding configurations for jobs which
are not long, i.e., less than δ · bi. We repeatedly combine pairs of jobs according to Equation 3
until we have at most one job at an even and odd position in each affine slice Gk on a
machine. We partition these jobs j by their value of ℓ = ⌊logδ(bj/bi)⌋, i.e., into slices with
ratio δ. The total processing time of jobs in slice ℓ is bounded by bi ·δℓ ·2

∑∞
j=0 2−j = 4 ·bi ·δℓ.

We iteratively bundle all jobs from the same slice, starting with the last slice until only
the first slice is left, into at most 8 configurations of size bi · δℓ. Each configuration can be
packed at least half full by the greedy algorithm. The resulting configurations for slice ℓ

might have to be rounded in size to the next br. Hence, the additional speed introduced
for slice ℓ is bounded by 8 · bi · δℓ · (1 + δ). After the creation of such a configuration, if
possible, it gets combined again, which uses no additional speed. Eventually, only jobs
in the slice for ℓ = 0 are left. These can be scheduled exactly in a configuration on the
machine, by the premise. The additional load incurred on a machine can be bounded by∑∞

ℓ=1 8 · bi · δℓ · (1 + δ) = 8 · (1 + δ)/(1 − δ) · δ · bi. For δ ≤ 1/35 this is less than 9 · δ · bi and
in total a factor (1 + δ)7(1 + 9δ) ≤ (1 + 17δ) on the makespan, as claimed. The values x

derived from this satisfy constraints (4) and (5) by construction. ◀

For (recursive-MILP), the integer subproblem has m = 2L ∈ O(1/δ log(1/δ)) constraints
and maximal 1-norm of a column max ∥Ai∥1 ∈ O(log(1/δ)). The first L machine speeds
have L · 2O(log2(1/δ) = 2O(log2(1/δ)) configurations, i.e., integer variables. By Theorem 2 and
Lemma 10, if there is a feasible solution of (recursive-MILP), then there is also one with
O(1/δ log(1/δ) log(log(1/δ))) positive integer variables. Lemma 11 thus implies that we can
solve (recursive-MILP)(S) in time 2O(1/δ log3(1/δ) log(log(1/δ))) · log(N)O(1), as the encoding
size is ⟨(recursive-MILP)(S)⟩ ≤ (1/δ log(N))O(1). Note that this is the dominant run time
in terms of 1/δ. We thus either find a feasible solution for the current makespan guess T , or
discover that no such solution exists. In the latter case, we discard our current makespan
guess and increase it in the next step of the binary search.

4.3 Constructing a Schedule
We need to construct a schedule from a solution x⋆ to (recursive-MILP). By constraints (5),
we know that x⋆ schedules all jobs in some configuration. By constraints (5), we know
that x⋆ schedules each job in some configuration. By constraints (4), the number of virtual
machines equals the additional number of corresponding jobs with equal size scheduled in some
configuration. Assigning all configurations to machines within a makespan of approximately T

therefore gives a valid schedule, implemented by Algorithm AssignConfsToMachines.

▶ Lemma 22. Algorithm AssignConfsToMachines gives a schedule of makespan at most
(1 + 5δ) · T from a feasible solution x⋆ to (recursive-MILP) in time 2O(1/δ) + O(N log2(N)).

Proof. The algorithm assigns ⌊xi,γ⌋ + 1 ≥ xi,γ configurations, at least as many as x⋆ uses.
By constraints (5), all jobs get assigned, as they are assigned before the additional jobs
corresponding to virtual machines. We always have at least as many virtual machines as x⋆,
because of the extra configuration added to a fastest machine. We thus need to guarantee that
the additional speed scheduled on a fastest machine is sufficiently bounded. The variables
of x⋆ corresponding to the fastest L machines are already integral. Hence, the first bi, for
which additional speed is put onto the fastest machine, is at most δ3 · smax/ log(1/δ). There
are ⌈log(1/δ)⌉λ + 1 constraints on the variables xi,γ for γ ∈ Ci. Consequently, at most that
many variables xi,γ can be positive in a vertex solution of the projected LP, which we can
find in polynomial time by Lemma 9. As each of these has a size bi, the total additional
speed assigned to a fastest machine is bounded by

ISAAC 2023

13:14 New Support Size Bounds for Integer Programming

AssignConfsToMachines
Input: A feasible solution x⋆ to (recursive-MILP).
Output: An approximate schedule σ to the pre-processed instance.

1 : for decreasing machine speeds bi :
2 : for each γ ∈ Ci :
3 : assign ⌊xi,γ⌋ copies of γ to machines with speed bi

4 : if xi,γ ̸∈ Z≥0 : assign another copy of γ to a fastest machine
5 : for each processing time bj used in γ :
6 : assign as many jobs of processing time bj to machines with configuration γ

7 : // stop when all jobs are packed or all configurations are filled

8 : for each job in a configuration γ not filled :
9 : create a virtual machine with the same speed as the corresponding job

10 : return the resulting schedule σ

smax(⌈log(1/δ)⌉λ + 1)
∞∑

r=L

br = smax(⌈log(1/δ)⌉λ + 1)
∞∑

k=L/λ

λ−1∑
ℓ=0

(2 − ℓ/λ)2−k

≤ δ3 · smax

log(1/δ) (⌈log(1/δ)⌉λ + 1)(1 + 3λ) < 5δsmax .

The last inequality holds for δ ≤ 1/35. Adding this much speed to a fastest machine results
in a schedule with makespan at most (1 + 5δ) · T . The run time needed to construct the
schedule is bounded by the number of machines times the effort per machine, resulting in

O(N · τ) = O(1/δ · N log(1/δ · N2)) ⊆ 2O(1/δ) + O(N log2(N)) . ◀

5 Faster Schedule Construction

The results of the previous section already give us an EPTAS for Q||Cmax with almost linear
run time of 2O(1/ε log3(1/ε) log(log(1/ε))) + O(N log2(N)). Interestingly, the bottleneck (with
respect to N) of this approach is the transformation from a valid MILP solution into a
feasible schedule. In this section, we give a more conventional Q||Cmax MILP formulation
(hybrid-MILP) using both configuration and assignment variables to improve the run time
in N . First, we give an algorithm to transform a solution of (recursive-MILP) into a solution
of (hybrid-MILP) in sublinear run time in N . Then, we show how to construct a schedule
from a solution to (hybrid-MILP) in linear time. This allows us to transform a solution of
(recursive-MILP) into a valid schedule in linear run time in N .

Note that Lemma 21 constructs a solution to (recursive-MILP) from a schedule to Q||Cmax.
Hence, both formulations are equivalent up to a multiplicative error of 1 + O(ε).

5.1 The Hybrid-MILP Formulation
Let C′

i := {γ ∈ Nτ | γ ·b ≤ bi and supp(γ) ⊆ Hi} be the set of configurations of long jobs with
range 1/δ for machine i. For any machine speed bi and corresponding configuration γ ∈ C′

i,
let free(i, γ) := bi − γ · b be the speed of the machine that is free after placing the jobs
specified by γ. Then (hybrid-MILP) is given by

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:15

∑
γ∈C′

i

xi,γ = µi for i = 1, . . . , τ (6)

τ∑
i=1

∑
γ∈C′

i

γj · xi,γ +
τ∑

i=1
yi,j = ηj for j = 1, . . . , τ (7)

∑
γ∈C′

i

free(i, γ) · xi,γ −
τ∑

j=1
bj · yi,j ≥ 0 for i = 1, . . . , τ (8)

xi,γ , yi,j ≥ 0 for i = 1, . . . , τ ; j = 1, . . . , τ ; γ ∈ Ci

yi,j = 0 for i = 1, . . . , τ ; j ∈ {min(Hi), . . . , τ}
xi,γ ∈ Z≥0 for i = 1, . . . , L ; γ ∈ Ci .

(hybrid-MILP)

In this formulation, there are no recursive configurations. Instead, we use configuration
variables xi,γ , indicating how often a configuration γ is used on machine i. Short jobs, taking
up speed less than δbi on machine i, are handled via assignment variables yi,j indicating how
many jobs of size bj are assigned to machines of speed bi. The constraints (6) enforce that
every machine is assigned a configuration, the constraints (7) guarantee that every job is
scheduled somewhere, and the constraints (8) make sure that the speed used by short jobs is
at most the speed left free by configurations.

We now convert a solution x⋆ of (recursive-MILP) into a solution (x, y) of (hybrid-MILP).

ConvertMILPsolution
Input: A feasible solution x⋆ to (recursive-MILP).
Output: A feasible solution x, y to (hybrid-MILP).

1 : for i = 1, . . . , τ :
2 : initialize η′

i := ηi and xi,γ = x⋆
i,γ for γ ∈ Ci, otherwise xi,γ = 0

3 : for decreasing machine speeds bi :

4 : decrease arbitrary xi,γ > 0 until
∑

γ∈C′
i

xi,γ = µi

5 : do count the number of jobs ζj in configurations xi,γ for j ∈ Hi

6 : for every job size bj with ζj ≥ η′
j :

7 : substitute ζj − η′
j many jobs in appropriate xi,γ with xj,γ′

8 : (that is, decrease xj,γ′ , xi,γ and increase xi,γ′′ , where γ′′ is γ with
9 : jobs j replaced with γ′ and jobs shorter than δbi in γ′ dropped)

10 : until there are no more ζj ≥ η′
j

11 : decrease every η′
i by ζj

12 : for increasing machine speeds bi :

13 : calculate the free machine speed zi :=
∑

γ∈C′
i

free(i, γ) · xi,γ

14 : starting with the shortest jobs bj , increase yi,j , decrease zi and η′
j

15 : until zi is 0, η′
j = 0 or j ∈ Hi

16 : return (x, y)

ISAAC 2023

13:16 New Support Size Bounds for Integer Programming

▶ Lemma 23. Algorithm ConvertMILPsolution converts a solution x⋆ of (recursive-MILP)
into a solution (x, y) of (hybrid-MILP) in time 2O(1/δ log2(1/δ)) logO(1)(N).

Proof. The algorithm guarantees that the sum of the configuration variables xi,γ for machines
with speed bi is exactly µi. Hence, constraints (6) are satisfied. Jobs are only replaced once
all original jobs have been accommodated and, by constraints (4), there are exactly as many
additional virtual machines, as there are additional jobs. Therefore, this step never reduces
the total number of configurations for any machine speed below µi. After the loop of lines
3-11 on machines with speed bi, only jobs of size bj ∈ (δbi, bi], or in other words j ∈ Hi, are
assigned via configurations. Additional short jobs would have been assigned via the recursive
configurations on these machines, which we neglect by stopping at δbi. Thus, these machines
have sufficient speed to handle these short jobs, which would have been assigned to them.
Instead of their original order, we assign the short jobs by increasing size. This does not
change the total load assigned, which therefore still remains sufficient. As the sorting ensures
that any short job assigned is smaller or equal to some short job that would have been
assigned by the original order, we do not assign jobs which are no longer tiny. Due to having
sufficient machine speed and not dropping jobs anywhere in the algorithm, we assign all real
jobs and hence satisfy constraints (7). Finally, constraints (8) are satisfied by construction,
as we never overfill the available speed. The number of configurations |C′

i| is bounded by
2O(1/δ log2(1/δ)) and all other quantities are bounded by O(1/δ log(1/δ · N)). That allows us
to analyze the run time of the algorithm to be within the claimed complexity. ◀

5.2 Constructing a Schedule
Now, we have an assignment for all small jobs, albeit with fractional variables. However, we
can assign the small jobs integrally faster than if we had to resolve recursive configurations.

▶ Lemma 24. Given a feasible solution of (hybrid-MILP), a schedule with makespan at
most (1 + 9δ)T can be constructed in time 2O(1/δ log2(1/δ)) + O(N).

Proof. For the configuration variables, we pursue the same strategy as in Lemma 22, that
is, rounding them down and assigning one configuration to a fastest machine for every
rounded variable. Through the use of basic solutions, we construct a schedule introducing a
multiplicative error of at most(1 + 5δ) in comparison to the optimal makespan. The process
takes time 2O(1/δ log2(1/δ)) logO(1)(N) with our increased number of configurations.

For the assignment variables of the short jobs, we first note that any machine speed bi

is assigned at most 2 fractional short jobs, as a variable only becomes fractional when the
preceding or current group runs out of speed. As in Lemma 23, we first sort the assignment
variables, in time O((1/δ log(1/δ · N))4). By increasing every machine speed by a factor
of (1 + 2δ), those two fractional jobs can be placed on an arbitrary machine of speed bi,
without exceeding the speed. We get another overhead of a factor of (1 + δ) by greedily
packing the assigned jobs to machines, overpacking each machine just slightly. This greedy
packing takes time O(N + (1/δ log(1/δ · N))2). In total the approximation error is bounded
by (1 + 5δ)(1 + 2δ)(1 + δ) ≤ (1 + 9δ) for δ < 1/35, as claimed. ◀

By Lemma 21 for an instance I with makespan OPT(I) the recursive-MILP with makespan
(1 + 17δ) · OPT(I) is feasible. We then converted a solution to one of hybrid-MILP with
Lemma 23. A solution for hybrid-MILP with makespan (1 + 17δ) · OPT(I) then gives a
schedule with makespan (1 + 9δ)(1 + 17δ) · OPT(I) by Lemma 24. Hence, for ε ≤ 1 we can
pick δ = ε/35 and obtain a schedule with makespan (1 + ε) OPT(I). All of the above steps
take linear run time in N . Therefore we have achieved Theorem 4.

S. Berndt, H. Brinkop, K. Jansen, M. Mnich, and T. Stamm 13:17

References
1 Iskander Aliev, Gennadiy Averkov, Jesús A. De Loera, and Timm Oertel. Sparse representation

of vectors in lattices and semigroups. Math. Program., 192(1-2, Ser. B):519–546, 2022.
doi:10.1007/s10107-021-01657-8.

2 Iskander Aliev, Jesús A. De Loera, Friedrich Eisenbrand, T. Oertel, and Robert Weismantel.
The support of integer optimal solutions. SIAM J. Optim., 28(3):2152–2157, 2018. doi:
10.1137/17M1162792.

3 Iskander Aliev, Jesús A. De Loera, Timm Oertel, and Christopher O’Neill. Sparse solutions
of linear Diophantine equations. SIAM J. Appl. Algebra Geom., 1(1):239–253, 2017. doi:
10.1137/16M1083876.

4 Yossi Azar and Leah Epstein. Approximation schemes for covering and scheduling in related
machines. Proc. APPROX 1998, 1444:39–47, 1998. doi:10.1007/BFb0053962.

5 Nikhil Bansal, Tim Oosterwijk, Tjark Vredeveld, and Ruben van der Zwaan. Approximating
vector scheduling: almost matching upper and lower bounds. Algorithmica, 76(4):1077–1096,
2016. doi:10.1007/s00453-016-0116-0.

6 Heinz Bauer. Minimalstellen von Funktionen und Extremalpunkte. II. Arch. Math., 11:200–205,
1960. doi:10.1007/BF01236933.

7 Sebastian Berndt, Hauke Brinkop, Klaus Jansen, Matthias Mnich, and Tobias Stamm. New
support size bounds for integer programming, applied to makespan minimization on uniformly
related machines, 2023. arXiv:2305.08432.

8 Sebastian Berndt, Max A. Deppert, Klaus Jansen, and Lars Rohwedder. Load balancing:
The long road from theory to practice. In Proc. ALENEX 2022, pages 104–116, 2022.
doi:10.1137/1.9781611977042.9.

9 Sebastian Berndt, Klaus Jansen, and Kim-Manuel Klein. New bounds for the vertices of the
integer hull. Proc. SODA 2021, pages 25–36, 2021. doi:10.1137/1.9781611976496.3.

10 Patrick Browne, Ronan Egan, Fintan Hegarty, and Padraig Ó Catháin. A survey of the
Hadamard maximal determinant problem. Electron. J. Combin., 28(4):Paper No. 4.41,35,
2021. doi:10.37236/10367.

11 Ioannis Chatzigeorgiou. Bounds on the Lambert function and their application to the outage
analysis of user cooperation. IEEE Comm. Lett., 17(8):1505–1508, 2013. doi:10.1109/LCOMM.
2013.070113.130972.

12 Lin Chen, Klaus Jansen, and Guochuan Zhang. On the optimality of exact and approximation
algorithms for scheduling problems. J. Comput. Syst. Sci., 96:1–32, 2018. doi:10.1016/j.
jcss.2018.03.005.

13 Yookun Cho and Sartaj Sahni. Bounds for list schedules on uniform processors. SIAM J.
Comput., 9(1):91–103, 1980. doi:10.1137/0209007.

14 Daniel Dadush, Arthur Léonard, Lars Rohwedder, and José Verschae. Optimizing low dimen-
sional functions over the integers. In Integer Programming and Combinatorial Optimization,
pages 115–126, 2023. doi:10.1007/978-3-031-32726-1_9.

15 Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Oper.
Res. Lett., 34(5):564–568, 2006. doi:10.1016/j.orl.2005.09.008.

16 Carlo Filippi and Giorgio Romanin-Jacur. Exact and approximate algorithms for high-
multiplicity parallel machine scheduling. J. Sched., 12(5):529–541, 2009. doi:10.1007/
s10951-009-0122-z.

17 Teofilo Gonzalez, Oscar H. Ibarra, and Sartaj Sahni. Bounds for LPT schedules on uniform
processors. SIAM J. Comput., 6(1):155–166, 1977. doi:10.1137/0206013.

18 Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discrete Math., 5:287–326, 1979. doi:10.1016/S0167-5060(08)70356-X.

19 Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, and Panos Pardalos. On ∆-modular
integer linear problems in the canonical form and equivalent problems. J. Glob. Optim., pages
1–61, 2022. doi:10.1007/s10898-022-01165-9.

ISAAC 2023

https://doi.org/10.1007/s10107-021-01657-8
https://doi.org/10.1137/17M1162792
https://doi.org/10.1137/17M1162792
https://doi.org/10.1137/16M1083876
https://doi.org/10.1137/16M1083876
https://doi.org/10.1007/BFb0053962
https://doi.org/10.1007/s00453-016-0116-0
https://doi.org/10.1007/BF01236933
https://arxiv.org/abs/2305.08432
https://doi.org/10.1137/1.9781611977042.9
https://doi.org/10.1137/1.9781611976496.3
https://doi.org/10.37236/10367
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1109/LCOMM.2013.070113.130972
https://doi.org/10.1016/j.jcss.2018.03.005
https://doi.org/10.1016/j.jcss.2018.03.005
https://doi.org/10.1137/0209007
https://doi.org/10.1007/978-3-031-32726-1_9
https://doi.org/10.1016/j.orl.2005.09.008
https://doi.org/10.1007/s10951-009-0122-z
https://doi.org/10.1007/s10951-009-0122-z
https://doi.org/10.1137/0206013
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/s10898-022-01165-9

13:18 New Support Size Bounds for Integer Programming

20 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization, volume 2 of Algorithms and Combinatorics: Study and Research Texts.
Springer Berlin, Heidelberg, 1988. doi:10.1007/978-3-642-97881-4.

21 Christoph Haase and Georg Zetzsche. Presburger arithmetic with stars, rational subsets of
graph groups, and nested zero tests. Proc. LICS 2019, pages 1–14, 2019. doi:10.1109/LICS.
2019.8785850.

22 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988. doi:10.1137/0217033.

23 Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation
with a constant number of integral variables. SIAM J. Discrete Math., 24(2):457–485, 2010.
doi:10.1137/090749451.

24 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In Proc.
SOFSEM 2012, volume 7147 of Lecture Notes Comput. Sci., pages 313–324, 2012. doi:
10.1007/978-3-642-27660-6_26.

25 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan scheduling
via sparsification techniques. In Proc. ICALP 2016, volume 55 of Leibniz Int. Proc. Informatics,
pages Art. No. 72,13, 2016. doi:10.4230/LIPIcs.ICALP.2016.72.

26 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the gap for makespan scheduling
via sparsification techniques. Math. Oper. Res., 45(4):1371–1392, 2020. doi:10.1287/moor.
2019.1036.

27 Klaus Jansen and Marten Maack. An EPTAS for scheduling on unrelated machines of few
different types. Algorithmica, 81(10):4134–4164, 2019. doi:10.1007/s00453-019-00581-w.

28 Klaus Jansen and Christina Robenek. Scheduling jobs on identical and uniform processors
revisited. In Proc. WAOA 2011, volume 7164 of Lecture Notes Comput. Sci., pages 109–122,
2012. doi:10.1007/978-3-642-29116-6_10.

29 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

30 Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for Boolean algebra
with Presburger arithmetic. In Proc. CADE 2021, volume 4603 of Lecture Notes Comput. Sci.,
pages 215–230, 2007. doi:10.1007/978-3-540-73595-3_15.

31 Hendrik W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

32 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Programming, 46(3, (Ser. A)):259–271, 1990. doi:10.
1007/BF01585745.

33 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense CSPs. Proc. ICALP 2017, 80:Art. No. 78,15, 2017. doi:10.4230/
LIPIcs.ICALP.2017.78.

34 Timm Oertel, Joseph Paat, and Robert Weismantel. Sparsity of integer solutions in the
average case. Proc. IPCO 2019, 11480:341–353, 2019. doi:10.1007/978-3-030-17953-3_26.

35 Ian Pratt-Hartmann. On the computational complexity of the numerically definite syllogistic
and related logics. Bull. Symbolic Logic, 14(1):1–28, 2008. doi:10.2178/bsl/1208358842.

36 Lars Rohwedder. Algorithms for Integer Programming and Allocation. phdthesis, Universität
Kiel, 2019. URL: https://macau.uni-kiel.de/receive/diss_mods_00026125.

37 Thomas Rothvoss. Integer optimization and lattices, 2016. Lecture Notes. URL: https:
//sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf.

38 Gerhard J. Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Oper. Res. Lett., 26(3):107–109, 2000. doi:10.1016/S0167-6377(99)
00076-0.

https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1137/0217033
https://doi.org/10.1137/090749451
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.4230/LIPIcs.ICALP.2016.72
https://doi.org/10.1287/moor.2019.1036
https://doi.org/10.1287/moor.2019.1036
https://doi.org/10.1007/s00453-019-00581-w
https://doi.org/10.1007/978-3-642-29116-6_10
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/978-3-540-73595-3_15
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1007/BF01585745
https://doi.org/10.1007/BF01585745
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1007/978-3-030-17953-3_26
https://doi.org/10.2178/bsl/1208358842
https://macau.uni-kiel.de/receive/diss_mods_00026125
https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf
https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf
https://doi.org/10.1016/S0167-6377(99)00076-0
https://doi.org/10.1016/S0167-6377(99)00076-0

Improved Guarantees for the A Priori TSP
Jannis Blauth #

Research Inst. for Discrete Mathematics, Hausdorff Center for Math., University of Bonn, Germany

Meike Neuwohner #

Research Inst. for Discrete Mathematics, Hausdorff Center for Math., University of Bonn, Germany

Luise Puhlmann #

Research Inst. for Discrete Mathematics, Hausdorff Center for Math., University of Bonn, Germany

Jens Vygen #

Research Inst. for Discrete Mathematics, Hausdorff Center for Math., University of Bonn, Germany

Abstract
We revisit the a priori TSP (with independent activation) and prove stronger approximation
guarantees than were previously known. In the a priori TSP, we are given a metric space (V, c)
and an activation probability p(v) for each customer v ∈ V . We ask for a TSP tour T for V that
minimizes the expected length after cutting T short by skipping the inactive customers.

All known approximation algorithms select a nonempty subset S of the customers and construct
a master route solution, consisting of a TSP tour for S and two edges connecting every customer
v ∈ V \ S to a nearest customer in S.

We address the following questions. If we randomly sample the subset S, what should be the
sampling probabilities? How much worse than the optimum can the best master route solution
be? The answers to these questions (we provide almost matching lower and upper bounds) lead to
improved approximation guarantees: less than 3.1 with randomized sampling, and less than 5.9 with
a deterministic polynomial-time algorithm.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases A priori TSP, random sampling, stochastic combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.14

Related Version Full Version: https://arxiv.org/abs/2309.10663

Supplementary Material Software: https://doi.org/10.60507/FK2/JCUIRI

1 Introduction

Many algorithms for stochastic discrete optimization problems sample a sub-instance, solve
the resulting deterministic problem (often by some approximation algorithm), and extend
this solution to the original instance [8, 11, 14, 15, 16, 25]. A nice and well-studied example
is the a priori Traveling Salesperson Problem (a priori TSP), which is the focus of
this paper. What guarantee can we obtain by such an approach, even if we take an optimal
sample? If we sample randomly, according to which distribution? What guarantee can we
obtain by a deterministic polynomial-time algorithm? These are the questions addressed in
this paper.

In the a priori TSP (with independent activation), we are given a (semi-)metric space
(V, c); the elements of V are called customers. Each customer v comes with an activation
probability 0 < p(v) ≤ 1, so it will be active independently with probablity p(v). However,
we need to design a TSP tour T (visiting all of V) before knowing which customers will be
active. After we know which customers are active we can cut the tour T short by skipping
the inactive customers. The goal is to minimize the expected cost of the resulting tour
(visiting the active customers).

© Jannis Blauth, Meike Neuwohner, Luise Puhlmann, and Jens Vygen;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blauth@dm.uni-bonn.de
https://orcid.org/0000-0001-5181-802X
mailto:neuwohner@dm.uni-bonn.de
https://orcid.org/0000-0002-3664-3687
mailto:puhlmann@dm.uni-bonn.de
https://orcid.org/0009-0001-0776-4586
mailto:vygen@dm.uni-bonn.de
https://doi.org/10.4230/LIPIcs.ISAAC.2023.14
https://arxiv.org/abs/2309.10663
https://doi.org/10.60507/FK2/JCUIRI
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Improved Guarantees for the A Priori TSP

Note that computing an optimum a priori tour is APX-hard as the metric TSP is
APX-hard [23], which is the special case where all activation probabilities are 1. We
study approximation algorithms. A ρ-approximation algorithm for the a priori TSP is a
polynomial-time algorithm that computes a tour of expected cost at most ρ · OPT for any
given instance, where OPT denotes the expected cost of an optimum a priori tour.

Shmoys and Talwar [25] devised a randomized 4-approximation algorithm and a determin-
istic 8-approximation algorithm. A randomized constant-factor approximation algorithm was
discovered independently by Garg, Gupta, Leonardi and Sankowski [11]. The randomized
Shmoys–Talwar algorithm easily improves to a 3.5-approximation by using the Christofides–
Serdyukov algorithm instead of the double tree algorithm as a subroutine for TSP (as
noted by [7]), and slightly better using the new Karlin–Klein–Oveis Gharan algorithm [20].
The deterministic algorithm was improved to a 6.5-approximation by van Zuylen [28]; a
slight improvement of this guarantee follows from the recent deterministic version of the
Karlin–Klein–Oveis Gharan algorithm [21].

All known approximation algorithms for the a priori TSP are of the following type.
Select a nonempty subset S of customers and find a TSP tour for S (the master tour).
Connect each other customer v ∈ V \ S with a pair of parallel edges to a nearest point µ(v)
in the master tour. We call this a master route solution. Once we know the set of active
customers, we pay for the entire master tour (pretending to visit also its inactive customers!)
and pay 2c(µ(v), v) for each active customer v outside S to cover the round trip visiting v

from µ(v). See Figure 1 for an example. Of course, we could cut the resulting tour shorter
(we visit some inactive customers, and we visit some customers several times), but we will
not account for this possible gain (unless fewer than two customers are active).

Figure 1 Left: A master route solution with a master tour (green, thick) and connections of the
other customers to that master tour (red, curved). Right: After knowing which customers are active
(filled), the master route solution reduces to a tour visiting all of the master tour and the other
active customers.

1.1 Motivating questions
We start by reviewing the randomized algorithm by Shmoys and Talwar [25]. If fewer than
two customers are active, any a priori tour can be cut short to a single point, resulting in cost
zero. The algorithm by Shmoys and Talwar [25] selects each customer v independently into
S with probability p(v): exactly the activation probability. Assuming that the resulting set
S is nonempty, there exists an associated master route solution with expected cost at most

MR(S) := EA∼p

[
1|A|≥2 ·

(
OPTtsp(S, c) + 2 ·

∑
v∈A

c(v, S)
)]

.

Here OPTtsp(S, c) denotes the length of an optimum TSP tour for S, and c(v, S) =
min{c(v, s) : s ∈ S} denotes the distance between v and a nearest customer in S (which is
zero if v ∈ S); moreover, EA∼p denotes the expectation when the set A of active customers is

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:3

sampled with respect to the given activation probabilities. Later on, PA∼p is used analogously.
We multiply with 1|A|≥2 (which is 1 if |A| ≥ 2 and 0 otherwise) because the cost of the
solution is zero if fewer than two customers are active.

If there is a customer d with p(d) = 1 (a depot), then S is never empty and we can bound

MR(S) ≤ OPTtsp(S, c) + 2 · EA∼p

 ∑
v∈A\{d}

c(v, S \ {v})

 .

Note that the above upper bound also accounts for connecting active customers in S to
the nearest other customer in S, which is not necessary but will allow the following. Taking
the expectation over the random choice of S, an upper bound on the expected cost of that
master route solution is

ES∼p [MR(S)] ≤ ES∼p [OPTtsp(S, c)] + 2 · ES∼p

 ∑
v∈S\{d}

c(v, S \ {v})

as the probability distributions to choose S and A are identical and the vertices are sampled in-
dependently. Since

∑
v∈S\{d} c(v, S\{v}) ≤ OPTtsp(S, c) for all S and ES∼p [OPTtsp(S, c)] ≤

OPT, where OPT again denotes the expected cost of an optimum a priori tour, this yields

ES∼p [MR(S)] ≤ 3 · OPT. (1)

The work of Shmoys and Talwar [25] implies that (1) also holds when there is no
depot and when we take the conditional expectation under the condition that |S| ≥ 2 (see
also [28]). The Shmoys–Talwar algorithm cannot find an optimum TSP tour for S but uses
the double tree algorithm with approximation guarantee 2. As noted by [7], one can as well
use the Christofides–Serdyukov algorithm with approximation guarantee 3

2 , or in fact any
α-approximation algorithm for TSP. Then the expected cost of the resulting master route
solution is at most (α + 2) · OPT.

This motivates the following questions:
(i) Is it optimal to sample S with exactly the activation probabilities (which is crucially

used in the above analysis), or can we improve on the factor α + 2 by sampling fewer
or more?

(ii) How bad can the best master route solution be? We will call this the master route
ratio: by the Shmoys–Talwar analysis, it is at most 3.

(iii) Can we obtain an approximation guarantee equal to the master route ratio by a master
route solution based on random sampling, assuming that we can find optimum TSP
tours? What is the best we can achieve with a 3

2 -approximation algorithm for TSP?
(iv) Can we obtain a better deterministic algorithm without a better TSP algorithm?

We give almost complete answers to all these questions.

1.2 Our results
The possibility that we sample the empty set or that no customer is active causes significant
complications. The previous works [25] and [28] gave ad hoc proofs that their algorithms
(which are also formulated with a depot) generalize to the non-depot case. We aim for a
general reduction, losing only an arbitrarily small constant: Fortunately, instances in which
the expected number of active customers is small can be solved easily with an approximation
factor 3 + ε (for any ε > 0; similar to [8]), and hence much better than the known guarantees.
For instances with a large expected number of active customers, one can assume without

ISAAC 2023

14:4 Improved Guarantees for the A Priori TSP

loss of generality (with an arbitrarily small loss) that there is a customer d that is always
active, i.e., p(d) = 1 (see full version of this paper [4]). So we assume this henceforth and
call d the depot. We summarize (and refer to the full version [4] for the proof):

▶ Theorem 1. Let ε > 0 and ρ ≥ 3 be constants. If there exists a (randomized) polynomial-
time ρ-approximation algorithm for instances (V, c, p) of the a priori TSP that have a
depot (i.e., a customer d with p(d) = 1), then there is a (randomized) polynomial-time
(ρ + ε)-approximation algorithm for general instances of the a priori TSP.

The Shmoys-Talwar algorithm [25] includes a customer v into S with probability p(v):
the sampling probability is exactly the activation probability. Although this is natural and
allows for the simple analysis in Section 1.1 (assuming a depot), we show that this is not
optimal. Decreasing the probability of including a customer into the master tour improves
the approximation guarantee. To be more precise, in Section 2, we analyze the following
sampling algorithm for a priori TSP instances with depot. Let f : (0, 1] → [0, 1] with
f(1) = 1.

(i) Sample a subset S ⊆ V by including every customer v independently with probability
f(p(v)).

(ii) Call an α-approximation algorithm for (metric) TSP in order to compute a TSP tour
for S, which serves as master tour.

(iii) Connect every customer outside S to the nearest customer in S by a pair of parallel
edges.

For a given instance this algorithm has expected approximation ratio at most

1
OPT · ES∼f◦p

[
α · OPTtsp(S, c) + 2 ·

∑
v∈V

p(v) · c(v, S)
]

(2)

(where 0
0 := 1). Shmoys and Talwar [25] used the identity function f(p) = p. It is easy to

construct examples where sampling less or more is better. For example, if c(v, w) = 1 for all
v, w ∈ V with v ̸= w (and all activation probabilities except for the depot are tiny), it is best
to include only the depot in the master tour: this yields an approximation ratio of 2 instead
of 3. On the other hand, if V = {v0, . . . , vn−1} and c(vi, vj) = min{j − i, n + i − j} for i < j

(i.e., (V, c) is the metric closure of a cycle), the more we sample, the better. However, even if
we choose f depending on the instance, there is a limit on what we can achieve:

▶ Theorem 2. No matter how f is chosen, even depending on the instance in an arbitrary
way, the sampling algorithm has no better approximation ratio than

2.655 even if it computes an optimum TSP tour on the sampled customers;
3.049 assuming that we never compute a TSP tour on the sampled customers of cost less
than 1.4999 times the cost of an optimum tour.

See the full version of our paper [4] for the proof. We do not have a matching upper
bound, but we come close. For α = 1.5 we prove (in Section 2):

▶ Theorem 3. For α = 1.5 and f(p) = 1 − (1 − p)σ with σ = 0.663, the sampling algorithm
for a priori TSP instances with depot has approximation guarantee less than 3.1.

Figure 2 shows this function f . Together with Theorem 1 this immediately implies one of
our main results:

▶ Corollary 4. There is a randomized 3.1-approximation algorithm for a priori TSP. ⌟

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:5

p0
0

1

1

Figure 2 The function p 7→ 1 − (1 − p)σ with σ = 0.663 (blue, solid) defines the sampling
probability in Theorem 3, which is always at most the identity function (green, dotted), and for
small p approximately equal to p 7→ σ · p (red, dashed).

We conjecture that the bounds in Theorem 2 are actually attained by the sampling
algorithm with f(p) = 1 − (1 − p)σ, independent of the instance, where σ is a positive
constant that depends on α only. See Comment 17 for details.

Having explored the limits of the random sampling approach, one might ask what is the
limit of choosing an optimal master route solution. By van Zuylen’s work [28], the answer to
this question is the key to obtain a better deterministic approximation algorithm. Let us
define:

▶ Definition 5 (master route ratio). The master route ratio is defined to be the supremum of

min {MR(S) : ∅ ̸= S ⊆ V }
OPT

taken over all a priori TSP instances (where 0
0 := 1).

It is very easy to see that the master route ratio is at least 2 (for example, if c(v, w) = 1
for all v, w ∈ V with v ̸= w). By the Shmoys–Talwar analysis, it is at most 3. We show in
the full version of our paper [4]:

▶ Theorem 6. The master route ratio for a priori TSP instances with depot is at least
1

1−e−1/2 > 2.541 and less than 2.6.

We conjecture that the master route ratio is exactly 1
1−e−1/2 .

As van Zuylen’s [28] analysis reveals (cf. [4]), her algorithm is a (2 + αρ)-approximation
algorithm if the master route ratio is ρ and we have an algorithm for TSP that guarantees
to produce a tour of cost at most α times the value of the subtour relaxation. So our new
upper bound on the master route ratio immediately implies a better guarantee (combining
Theorems 1 and 6 with α = 3

2 [27]):

▶ Corollary 7. There is a deterministic 5.9-approximation algorithm for a priori TSP. ⌟

1.3 Our techniques
The lower bounds (Theorem 2 and the lower bound in Theorem 6) are obtained by analyzing
simple examples. The main technical difficulty is in proving the upper bounds.

ISAAC 2023

14:6 Improved Guarantees for the A Priori TSP

To prove Theorem 3 and the upper bound in Theorem 6, we will show that it suffices to
consider instances in which all customers (except the depot) have the same tiny activation
probability. We call these instances normalized.

▶ Definition 8. Let ε > 0. An instance (V, c, p) of a priori TSP is called ε-normalized if
the instance contains a depot d ∈ V (with p(d) = 1), and p(v) = ε for all v ∈ V \ {d}.

Given an instance of a priori TSP with a depot d, one can transform it to a normalized
instance by replacing each customer v ∈ V \ {d} by many copies, each with the same tiny
activation probability, such that the probability that at least one of these copies is active
is roughly p(v). This way, the master route ratio and the approximation guarantee of the
sampling algorithm can only get worse. More precisely, we show in the full version of this
paper [4]:

▶ Lemma 9. Let (εi)i∈N ∈ (0, 1]N with limi→∞ εi = 0. Let I be the class of all ε-normalized
instances with ε = εi for some i ∈ N. Then

(i) The master route ratio is the same when restricting it to instances in I and when
restricting it to all instances with depot.

(ii) Let σ ∈ (0, 1). Every upper bound on (2) for f(p) = σp ∀p ∈ (0, 1) for all instances in
I implies the same upper bound on (2) for f(p) = 1 − (1 − p)σ for arbitrary instances
with depot.

On a high level, our proofs of Theorem 3 and Theorem 6 are similar. In both cases
we will design a linear program that encodes the metric c by variables and minimizes the
expected cost of an optimum a priori tour subject to (a relaxation of) the constraint that
the expected cost of the output of the sampling algorithm is at least 1 (for Theorem 3) or
the expected cost of any master route solution is at least 1 (for Theorem 6), respectively.
Then the reciprocals of the LP values yield the desired upper bounds.

However, this approach has to overcome several obstacles. First, it is not obvious how
to encode the metric c by finitely many variables, given that we need to consider arbitrary
instance sizes. We do this by fixing an optimum a priori tour T ∗ (a cyclic order of the
customers) and carefully aggregating distances of customer pairs with the same number of
hops in between on T ∗. Of course we exploit the structure of normalized instances.

In the end, we will (almost) ignore variables that correspond to a very large number of
hops (where it is very unlikely that none of the customers “in between” is active). These
variables have negligible impact because the probability that these edges occur decreases
exponentially with increasing number of hops on T ∗, whereas the average length of these
edges can only grow linearly due to the triangle inequality.

The next idea is to consider certain structured solutions only. Rather than connecting a
customer v that is not in the master tour to the nearest customer µ(v) in the master tour, we
consider only two possible members of the master tour: we traverse T ∗ from v in each of the
two possible directions, and consider the first customer that we meet and that is contained
in our master tour. None of these two may be a nearest one in the master tour, but we
still obtain an upper bound. For bounding the master route ratio, we will in addition only
consider master tours whose customers are equidistantly distributed on T ∗ (except for the
depot).

In this way, we obtain an optimization problem for a fixed uniform activation probability
p (i.e., for p-normalized instances). However, we must let p → 0 according to Lemma 9
and hence need a description that is independent of p. This is another major obstacle. To
overcome it, we use a second level of aggregation (buckets, rounding the number of hops to
integer multiples of, say, 1

100p). However, this causes several difficulties. In the case of the

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:7

sampling algorithm, describing the expected cost of the output of the sampling algorithm
in terms of the buckets is nontrivial. In case of the master route ratio, the same holds for
master route solutions and actually requires a third level of aggregation (bucket intervals).

In the end, we obtain (in both cases) a single, relatively compact, linear program that
yields an upper bound for all instance sizes and all activation probabilities from a sequence
that converges to zero. We solve the dual LP numerically and just need to check feasibility
to prove the desired upper bounds.

1.4 Further related work
The TSP has also been studied under the aspect of robust optimization, where the set of
customers that need to be visited is known in advance, but the edge lengths are chosen
probabilistically or even adversarially [10, 26]. The a priori optimization problem where the set
of customers is chosen adversarially is known as universal TSP [11, 13, 24]. The probabilistic
version that we consider was introduced by Jaillet [17] and Bertsimas [2]. Since then, various
aspects of the problem have been investigated, including the asymptotic behavior of random
instances [2, 3, 5, 17, 18], online variants [11], or exact algorithms [1]. Approximation
algorithms have also been studied for general probability distributions [6, 13, 24].

Other problems that have been considered in an a priori setting include vehicle routing,
traveling repairman, Steiner tree, and network design [7, 8, 9, 11, 14, 15, 16, 22]. However,
none of these works managed to determine the approximation guarantee of their algorithms
exactly.

Previous approaches to design a linear program that yields the approximation ratio of a
certain algorithm for some optimization problem (e.g., [12, 19]) typically required an infinite
family of linear programs and could not obtain a bound for general instances by just solving
a single linear program.

2 Upper bound on the approximation ratio of random sampling

In this section we will prove Theorem 3. As mentioned earlier, we will design a single
linear program such that the reciprocal of its optimum value is an upper bound on the
approximation ratio of the sampling algorithm for a certain class of normalized instances. For
this sake, let β, b0 > 0 be constants that we will choose later. We will consider ε-normalized
instances where ε is of the form ε = β

b for some odd integer b ≥ b0. The meaning of these
constants will become clear in Section 2.2. For such instances we will obtain an upper bound
on the approximation ratio of the sampling algorithm, when sampling each customer with
probability σp for σ = 0.663 (in addition to the depot). Combined with Lemma 9, this
immediately yields the same upper bound on the approximation guarantee of the sampling
algorithm that samples each customer v with probability 1 − (1 − p(v))σ for arbitrary a
priori TSP instances with depot.

2.1 An optimization problem to bound the approximation ratio
In this section, we first describe an upper bound for all p-normalized instances (for a fixed
uniform activation probability p) by a single optimization problem. We will consider the
algorithm that samples each customer with probability σp. Let T ∗ be a fixed optimum a
priori tour, with customers appearing in the order v0, v1, . . . , vn−1; here v0 denotes the depot.
Let vi := v0 for i < 0 or i > n − 1. For k ∈ Z≥1 we define

Ck := p2 ·
∑
j∈Z

c(vj , vj+k).

ISAAC 2023

14:8 Improved Guarantees for the A Priori TSP

Observe that only finitely many summands are nonzero. See Figure 3 for an example.
Since c is a metric, the numbers Ck are nonnegative and satisfy the triangle inequality, that
is, for all i, j ≥ 1

Ci+j ≤ Ci + Cj . (3)

Figure 3 The depot v0 is the white circle at the top; the tour T ∗ is drawn in black. Adding up
the costs of the edges marked in red gives C3

p2 .

Moreover, we can express the expected cost of T ∗ in terms of the Ci.

▶ Proposition 10. The expected cost of T ∗ is exactly
∞∑

i=1
(1 − p)i−1 · Ci. (4)

Proof. Let 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ n − i − 1. Then vj and vj+i are consecutive active
customers with probability p2 · (1 − p)i−1; note that the cost of the edge {vj , vj+i} is counted
with exactly the same coefficient in (4). Moreover, for 1 ≤ j ≤ n − 1, vj is the first active
customer after the depot with probability p · (1 − p)j−1, and the cost of the edge {v0, vj}
is counted

∑∞
i=j p2 · (1 − p)i−1 = p · (1 − p)j−1 times in (4). By symmetry, the terms also

match for the last active customer before the depot. ◀

We now consider the master route solution resulting from sampling each customer with
probability σp (in addition to the depot). Let α again denote the approximation guarantee
of the TSP algorithm that we use. We will now show that the expected cost of this master
route solution is at most

σ2
∞∑

k=1
(1 − σp)k−1 ·

(
α · Ck + 2p ·

k−1∑
i=1

min
{

Ci, Ck−i

})
. (5)

By the same argumentation as in the proof of Proposition 10, the master tour has expected
cost at most

α · ES∼q[c(T ∗[S])] = α · σ2 ·
∞∑

k=1
(1 − σp)k−1 · Ck,

where q(v) = σp for all v ∈ V \ {d} and q(d) = 1.
Next we bound the expected cost of connecting the active customers to the master tour.

Instead of connecting v to the nearest customer in the master tour, we consider only two
options: the first sampled customer that we meet when traversing T ∗ from v in either

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:9

direction. Note that sampling v0 with probability 1 is equivalent to sampling each vj with
j ≤ 0 and j ≥ n with probability σp. Now, for j ∈ Z and k ≥ 2, the probability that vj and
vj+k are sampled, but none of the intermediate customers is, equals (σp)2 · (1 − σp)k−1. In
this case, the total expected cost of connecting the intermediate active customers can be
bounded by 2p ·

∑k−1
i=1 min{c(vj , vj+i), c(vj+i, vj+k)}. Thus we can bound the expected cost

of connecting all active customers to the master tour by
∞∑

k=2
σ2p2 · (1 − σp)k−1 ·

∑
j∈Z

2p ·
k−1∑
i=1

· min
{

c(vj , vj+i), c(vj+i, vj+k)
}

≤ 2σ2p3 ·
∞∑

k=1
(1 − σp)k−1 ·

k−1∑
i=1

min

∑
j∈Z

c(vj , vj+i),
∑
j∈Z

c(vj+i, vj+k)

= 2σ2p3 ·

∞∑
k=1

(1 − σp)k−1 ·
k−1∑
i=1

min

∑
j∈Z

c(vj , vj+i),
∑
j∈Z

c(vj , vj+(k−i))

= 2σ2p ·

∞∑
k=1

(1 − σp)k−1 ·
k−1∑
i=1

min
{

Ci, Ck−i

}
.

We conclude that the ratio of (5) to (4) is an upper bound on the approximation guarantee
of the sampling algorithm for that instance. Note that the number of customers appears
neither in (4) nor in (5). In other words, minimizing (4) subject to the constraints that (5)
is equal to 1 and the Ci are nonnegative and satisfy the triangle inequality (3) yields the
reciprocal of an upper bound on the approximation guarantee of the sampling algorithm on
all p -normalized instances. We arrive at the following optimization problem:

min
∞∑

i=1
(1 − p)i−1 · Ci (Sampling-OP)

subject to Ci ≥ 0 for i ∈ N (6)
Ci + Cj ≥ Ci+j for i, j ∈ N (7)

∞∑
k=1

(1 − σp)k−1 ·

(
α · Ck + 2p ·

k−1∑
i=1

min
{

Ci, Ck−i

})
≥ σ−2. (8)

Note that in (8) we only require that (5) is at least 1 instead of exactly 1. This does not
change the infimum because we can always scale all the Ci’s. We have proved:

▶ Lemma 11. Let 0 < p < 1. The reciprocal of the value of (Sampling-OP) is an upper
bound on the approximation guarantee for the sampling algorithm with f(p) = σp for all
p-normalized instances. ⌟

2.2 Obtaining a single linear program
Note that we have an infinite set of optimization problems (one for each choice of p), and, in
view of Lemma 9, we have to consider the limit for p → 0.

In the following, we require that p is of the form p = β
b for some odd integer b ≥ b0. Note

that p → 0 as b → ∞. In order to obtain a single optimization problem for all such values of
p, we put subsequent Ci’s into buckets of size b. More precisely, we define buckets

Bi :=
ib+ b−1

2∑
j=max{1,ib− b−1

2 }

Cj (9)

ISAAC 2023

14:10 Improved Guarantees for the A Priori TSP

for i ≥ 0. In the following, we show that we can use the constraints in (Sampling-OP) to
generate (slightly relaxed) constraints that only depend on these buckets. First, we note that
the buckets are chosen such that they still satisfy the triangle inequality.
▶ Proposition 12. For all i, j ≥ 1,

Bi+j ≤ Bi + Bj .

Proof. Indeed, using (7), as illustrated in Figure 4,

Bi+j =
b−1

2∑
k=− b−1

2

C(i+j)b+k =
b−1

2∑
k=0

C(i+j)b− b−1
2 +2k +

b−1
2∑

k=1
C(i+j)b− b−1

2 +2k−1

≤

b−1
2∑

k=0

(
Cib− b−1

2 +k + Cjb+k

)
+

b−1
2∑

k=1

(
Cib+k + Cjb− b−1

2 +k−1

)

=
b−1

2∑
k=− b−1

2

Cib+k +
b−1

2∑
k=− b−1

2

Cjb+k = Bi + Bj . ◀

(a)
C9 C18 C27 C36 C45 C54 C63 C72 C81 C90

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

(b)

Figure 4 (a): The green dots stand for C1, C2, . . ., and the centers of the buckets (Cib for i ≥ 1)
are highlighted. Here the bucket size is b = 9, and the blue intervals show the buckets B0, B1, B2, . . .

(b): Combining the triangle inequalities for the Ci’s leads to triangle inequalities for the Bi’s; here
shown for Bi = B3 and Bj = B5: We add up all triangle inequalities for Ck from B3 and Cℓ from
B5 where Ck and Cℓ have the same color; illustrated with C26 + C48 ≤ C74 and C28 + C41 ≤ C69.

Next we aim for an upper bound on the left-hand side of (8) that only depends on the
buckets. First we show:

▶ Lemma 13.

∞∑
k=1

(1 − σp)k−1 ·
k−1∑
i=1

min
{

Ci, Ck−i

}
≤ b ·

∞∑
i=0

∞∑
j=0

e−(i+j−1)·σbp · min{Bi, Bj}.

Proof. For i ∈ Z≥0, let Ii = {max{1, ib − b−1
2 }, . . . , ib + b−1

2 } be the set of indices in the
i-th bucket. Then

∞∑
k=1

(1 − σp)k−1 ·
k−1∑
i=1

min
{

Ci, Ck−i

}
=

∞∑
k=1

∞∑
ℓ=1

(1 − σp)k+ℓ−1 · min
{

Ck, Cℓ

}

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:11

≤
∞∑

i=0

∞∑
j=0

(1 − σp)max{0,i+j−1}·b ·
∑
k∈Ii

∑
ℓ∈Ij

min{Ck, Cℓ}

≤
∞∑

i=0

∞∑
j=0

e−(i+j−1)·σbp ·
∑
k∈Ii

∑
ℓ∈Ij

min{Ck, Cℓ}.

In the last inequality we used 1 − x ≤ e−x for all x ∈ R. Now, for i, j ∈ Z≥0, consider the
complete bipartite graph H where one bipartition consists of |Ij | copies of every element of
Ii, and the other bipartition consists of |Ii| copies of every element of Ij . Then∑

(k,ℓ)∈E(H)

min{Ck, Cℓ} = |Ii| · |Ij | ·
∑
k∈Ii

∑
ℓ∈Ij

min{Ck, Cℓ}.

We can partition E(H) into t := |Ii| · |Ij | perfect matchings M1, . . . , Mt. Then

∑
(k,ℓ)∈E(H)

min{Ck, Cℓ} =
t∑

s=1

∑
(k,ℓ)∈Ms

min{Ck, Cℓ}

≤
t∑

s=1
min

 ∑
(k,ℓ)∈Ms

Ck,
∑

(k,ℓ)∈Ms

Cℓ

=

t∑
s=1

min

|Ij | ·
∑
k∈Ii

Ck, |Ii| ·
∑
ℓ∈Ij

Cℓ

= |Ii| · |Ij | · min {|Ij | · Bi, |Ii| · Bj} .

Note that the second equality follows from the fact that V (H) contains |Ij | copies of each
element in Ii and vice versa. Moreover, summing over the endpoints of the edges in a perfect
matching in M is the same as summing over V (H). Division by |Ii| · |Ij | yields∑

k∈Ii

∑
ℓ∈Ij

min{Ck, Cℓ} ≤ min {|Ij | · Bi, |Ii| · Bj} ≤ b · min{Bi, Bj}. ◀

Using Lemma 13 and β = bp, the left-hand side of (8) can be upper bounded by

α ·
∞∑

k=1
(1 − σp)k−1 · Ck + 2bp ·

∞∑
i=0

∞∑
j=0

e−(i+j−1)·σbp · min{Bi, Bj}

≤ α ·
∞∑

k=0
(1 − σp)max{0,kb− b−1

2 −1} · Bk + 2bp ·
∞∑

i=0

∞∑
j=0

e−(i+j−1)·σbp · min{Bi, Bj}

≤ α ·
∞∑

k=0
e−(k−1)·σβ · Bk + 2β ·

∞∑
i=0

∞∑
j=0

e−(i+j−1)·σβ · min{Bi, Bj}. (10)

The last inequality follows from (1 − σp)kb− b−1
2 −1 ≤ (1 − σp)kb−b and 1 + x ≤ ex for all

x ∈ R. Note that we still sum over infinitely many variables. Hence, in order to get a finite
linear program, we aim for an upper bound on (10) that only depends on the buckets Bi

with i ≤ N for some integer N that we will choose later. For this, we use the triangle
inequality (Proposition 12) to bound the terms depending on buckets Bi with i > N by some
term depending on B1, . . . , BN only. For large N this will result in a negligible error as the
coefficients in (10) decrease exponentially. In Section 2.4 we prove the following bound on
the error term:

ISAAC 2023

14:12 Improved Guarantees for the A Priori TSP

▶ Lemma 14. Let δ1 := 4β
eNσβ(eσβ−1) and δ2 :=

(
α + 2β

eNσβ(eσβ−1)

)
· e−Nσβ

(1−e−σβ)2 ·(1+N −e−σβN).
Then

α ·
∞∑

k=N+1
e−(k−1)·σβ · Bk + 2β ·

∑
i,j∈Z≥0:max{i,j}>N

e−(i+j−1)·σβ · min{Bi, Bj}

≤ δ1 ·
N∑

k=0
e−(k−1)·σβ · Bi + δ2 · B1.

Therefore, we get a lower bound on (Sampling-OP) by minimizing
∑∞

i=1(1 − p)i−1 · Ci

subject to (9) and Bi ≥ 0 for i ≥ 0, Bi+j ≤ Bi + Bj for i, j ≥ 1 with i + j ≤ N , and

(α + δ1) ·
N∑

k=0
e−(k−1)·σβ · Bk + 4β ·

N∑
j=0

j∑
i=0

e−(i+j−1)·σβ · min{Bi, Bj} + δ2 · B1 ≥ σ−2. (11)

Note that the objective still contains infinitely many variables and depends on p. The
first problem can easily be resolved by bounding

∞∑
i=1

(1 − p)i−1 · Ci ≥
∞∑

i=0
(1 − p)bi+ b−1

2 −1 · Bi ≥
N∑

i=0
(1 − p)(i+ 1

2)b · Bi. (12)

It remains to get rid of the dependence on b and p (recall that p = β
b). To this end, we

exploit that limb→∞(1 − β
b)(i+ 1

2)b = e−(i+ 1
2)β for all i = 0, . . . , N , and that by Lemma 9,

we can choose b0 arbitrarily large. This will allow us to conclude that we can replace the
objective by

∑N
i=0 e−(i+ 1

2)β · Bi and still obtain an upper bound (see the proof of Lemma 15
for the technical details). Putting everything together, we arrive at the following LP.

min
N∑

i=0

e−(i+ 1
2)β · Bi (Sampling-LP)

subject to (α + δ1) ·
N∑

k=0

e−(k−1)·σβ · Bk + δ2 · B1 + 4β ·
N∑

j=0

j∑
i=0

e−(i+j−1)·σβ · Mi,j ≥ σ−2 (13)

Bi + Bj ≥ Bi+j for 1 ≤ i ≤ j ≤ N with i + j ≤ N (14)
Bi ≥ Mi,j for 0 ≤ i ≤ j ≤ N (15)
Bj ≥ Mi,j for 0 ≤ i ≤ j ≤ N (16)

B, M ≥ 0. (17)

Recall that δ1 and δ2 were defined in Lemma 14. We conclude:

▶ Lemma 15. Let N be an integer and β > 0. The reciprocal of the optimum value of
(Sampling-LP) is an upper bound on the approximation guarantee of the sampling algorithm
for f(p) = 1 − (1 − p)σ (using an α-approximation algorithm for TSP), for all a priori
TSP instances with depot.

Proof. We compare the value of (Sampling-LP) to the value of (Sampling-OP). We showed
above that for any feasible solution C to (Sampling-OP) we obtain a feasible solution (B, M)
to (Sampling-LP) via (9) and Mi,j = min{Bi, Bj}.

Fix δ > 0. Then there exists b0 ∈ N such that for all odd integers b ≥ b0

N∑
i=0

e−(i+ 1
2)β · Bi ≤ (1 + δ) ·

N∑
i=0

(
1 − β

b

)(i+ 1
2)b

· Bi

(12)
≤ (1 + δ) ·

∞∑
i=0

(
1 − β

b

)i−1
· Ci.

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:13

Thus the value of (Sampling-LP) is at most (1 + δ) times the value of (Sampling-OP) with
p = β

b for all odd integers b ≥ b0. Hence, by Lemma 11, (1 + δ) times the reciprocal of the
optimum value of (Sampling-LP) is an upper bound on (2) for all β

b -normalized instances
for all odd integers b ≥ b0. By Lemma 9, the same bound then holds for all instances with
depot. Since this bound holds for all δ > 0, it also holds for δ = 0. ◀

2.3 The dual LP
In order to obtain a lower bound on the optimum value of (Sampling-LP), we provide a
feasible solution to the dual linear program. For the dual LP, we introduce variables xi,j for
the inequalities of type (14), variables vi,j and wi,j for the inequalities of type (15) and (16),
respectively, and a variable y for inequality (13). Using these variables, the dual LP looks as
follows:

max σ−2 · y (Dual-Sampling-LP)

subject to 4β · e−(i+j−1)·σβ · y ≤ vi,j + wi,j for 0 ≤ i ≤ j ≤ N (18)

(α + δ1) · e−(k−1)·σβ · y +
N∑

j=k

vk,j +
k∑

j=0

wj,k + 1k=1 · δ2 · y

+1k>0 ·

min{k,N−k}∑
i=1

xi,k +
N−k∑
i=k

xk,i −
∑

1≤i≤j≤N,
i+j=k

xi,j

 ≤ e−(k+ 1
2)β for 0 ≤ k ≤ N (19)

x, y, v, w ≥ 0. (20)
▶ Corollary 16. Let N be an integer and β > 0. For any feasible solution (x, y, v, w) to
(Dual-Sampling-LP), σ2/y is an upper bound on the approximation ratio of the sampling
algorithm with f(p) = 1 − (1 − p)σ restricted to a priori TSP instances with depot. ⌟

We have computed a dual solution using Gurobi 10.0.1 with α = 1.5, β = 1
100 , N = 2500,

and σ = 0.663, yielding an upper bound of 3.094 and thus proving Theorem 3. The dual
solution and a Python script that verifies that this is a feasible solution to (Dual-Sampling-LP)
can be found at https://doi.org/10.60507/FK2/JCUIRI. For α = 1, we get an upper
bound of 2.694.

▶ Comment 17. Solving (Sampling-LP) with the same values for α, β, N , and σ yields an a
priori TSP instance of the same shape as the lower bound example provided in [4]. Hence
we conjecture that the upper bound given by (Dual-Sampling-LP) converges to the lower
bound given in Theorem 2 for β → 0 and Nβ → ∞.

2.4 Bounding the error term (Proof of Lemma 14)
We first prove the following auxiliary lemma:

▶ Lemma 18. Let n ∈ N and q ∈ (0, 1). Then

∞∑
k=n+1

k · qk−1 = qn

(1 − q)2 · (1 + n − qn). (21)

Proof. By induction on n. For n = 0, the statement is equivalent to the well-known formula
∞∑

k=1
k · (1 − q) · qk−1 = 1

1 − q

ISAAC 2023

https://doi.org/10.60507/FK2/JCUIRI

14:14 Improved Guarantees for the A Priori TSP

for the expected value of a geometrically distributed random variable. Next, assume that
(21) holds for some n ∈ N. Then

∞∑
k=n+2

k · qk−1 =
∞∑

k=n+1
k · qk−1 − (n + 1) · qn (21)= qn

(1 − q)2 · (1 + n − qn) − (n + 1) · qn

= qn

(1 − q)2 · (1 + n − qn − (n + 1) · (1 − q)2) = qn+1

(1 − q)2 · (n + 2 − q(n + 1)),

which is (21) for n + 1. ◀

Now we are ready to prove Lemma 14:

Proof of Lemma 14. We compute

2β ·
∑

i,j∈Z≥0:max{i,j}>N

e−(i+j−1)·σβ · min{Bi, Bj}

≤ 4β ·
N∑

i=0

∞∑
j=N+1

e−(i+j−1)·σβ · Bi + 2β ·
∞∑

i=N+1

∞∑
j=N+1

e−(i+j−1)·σβ · Bi

= 4β ·
N∑

i=0
e−(i−1)·σβ · Bi ·

∞∑
j=N+1

e−jσβ + 2β ·
∞∑

i=N+1
e−(i−1)·σβ · Bi ·

∞∑
j=N+1

e−jσβ

= δ1 ·
N∑

i=0
e−(i−1)·σβ · Bi + 2β

eNσβ(eσβ − 1) ·
∞∑

i=N+1
e−(i−1)·σβ · Bi

Bounding Bi ≤ i · B1 for i > N by using to the triangle inequality (Proposition 12), we
obtain

α ·
∞∑

k=N+1
e−(k−1)·σβ · Bk + 2β ·

∑
i,j∈Z≥0:max{i,j}>N

e−(i+j−1)·σβ · min{Bi, Bj}

≤ δ1 ·
N∑

i=0
e−(i−1)·σβ · Bi +

(
α + 2β

eNσβ(eσβ − 1)

)
·

∞∑
k=N+1

e−(k−1)·σβ · Bk

≤ δ1 ·
N∑

i=0
e−(i−1)·σβ · Bi +

(
α + 2β

eNσβ(eσβ − 1)

)
·

∞∑
k=N+1

e−(k−1)·σβ · k · B1

= δ1 ·
N∑

i=0
e−(i−1)·σβ · Bi + δ2 · B1,

where we used Lemma 18 in the final equality with n = N and q = e−σβ . ◀

3 Discussion

We conjecture (but could not prove) that our lower bound examples (cf. [4]) are really
worst-case examples, and that the values of our linear programs converge to these bounds.

Another question is whether the master route ratio is 1
1−e−1/2 even for low-activity

instances. Currently we only know the upper bound of 3 from [25], but know no example
with master route ratio larger than 1

1−e−1/2 (and this value is attained by our example only
as the activity tends to infinity). The analogous question applies to the sampling algorithm:
whether we need to consider the low-activity case separately is an open question.

J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen 14:15

Finally, we hope that our approach can also help for proving a better bound for related
problems where similar random sampling techniques are used, or for showing that known
bounds are best possible.

References
1 Mohamed Abdellahi Amar, Walid Khaznaji, and Monia Bellalouna. An exact resolution for

the probabilistic traveling salesman problem under the a priori strategy. Procedia Computer
Science, 108:1414–1423, 2017. doi:10.1016/j.procs.2017.05.068.

2 Dimitris Bertsimas. Probabilistic combinatorial optimization problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1988. URL: https://dspace.mit.edu/handle/1721.1/
14386.

3 Dimitris J. Bertsimas, Patrick Jaillet, and Amedeo R. Odoni. A priori optimization. Operations
Research, 38(6):1019–1033, 1990. doi:10.1287/opre.38.6.1019.

4 Jannis Blauth, Meike Neuwohner, Luise Puhlmann, and Jens Vygen. Improved guarantees for
the a priori TSP, 2023. doi:10.48550/arXiv.2309.10663.

5 Neill E. Bowler, Thomas M. A. Fink, and Robin C. Ball. Characterization of the probabilistic
traveling salesman problem. Phys. Rev. E, 68:036703, 2003. doi:10.1103/PhysRevE.68.
036703.

6 Martijn van Ee, Leo van Iersel, Teun Janssen, and René Sitters. A priori TSP in the scenario
model. Discrete Applied Mathematics, 250:331–341, 2018. doi:10.1016/j.dam.2018.04.002.

7 Martijn van Ee and René Sitters. The a priori traveling repairman problem. Algorithmica,
80(10):2818–2833, 2018. doi:10.1007/s00453-017-0351-z.

8 Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvoß, and Guido Schäfer. Connected
facility location via random facility sampling and core detouring. Journal of Computer and
System Sciences, 76(8):709–726, 2010. doi:10.1016/j.jcss.2010.02.001.

9 Finn Fernstrøm and Teresa Anna Steiner. A constant approximation algorithm for the uniform
a priori capacitated vehicle routing problem with unit demands. Information Processing
Letters, 159-160:105960, 2020. doi:10.1016/j.ipl.2020.105960.

10 Arun Ganesh, Bruce M. Maggs, and Debmalya Panigrahi. Robust algorithms for TSP and
Steiner Tree. ACM Trans. Algorithms, 19(2), 2023. doi:10.1145/3570957.

11 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses
for online combinatorial optimization problems. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 942–951. SIAM, 2008. URL: https:
//dl.acm.org/doi/10.5555/1347082.1347185.

12 Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum
latency problem. Mathematical Programming, 82(1):111–124, 1998. doi:10.1007/BF01585867.

13 Igor Gorodezky, Robert D. Kleinberg, David B. Shmoys, and Gwen Spencer. Improved lower
bounds for the universal and a priori TSP. In Maria Serna, Ronen Shaltiel, Klaus Jansen,
and José Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 178–191. Springer, 2010. doi:10.1007/978-3-642-15369-3_
14.

14 Anupam Gupta, Amit Kumar, Martin Pál, and Tim Roughgarden. Approximation via cost
sharing: Simpler and better approximation algorithms for network design. J. ACM, 54(3),
2007. doi:10.1145/1236457.1236458.

15 Anupam Gupta, Amit Kumar, and Tim Roughgarden. Simpler and better approximation
algorithms for network design. In Proceedings of the Thirty-Fifth Annual ACM Symposium on
Theory of Computing, pages 365–372. ACM, 2003. doi:10.1145/780542.780597.

16 Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted sampling: Approximation
algorithms for stochastic optimization. In Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing, pages 417–426. ACM, 2004. doi:10.1145/1007352.
1007419.

ISAAC 2023

https://doi.org/10.1016/j.procs.2017.05.068
https://dspace.mit.edu/handle/1721.1/14386
https://dspace.mit.edu/handle/1721.1/14386
https://doi.org/10.1287/opre.38.6.1019
https://doi.org/10.48550/arXiv.2309.10663
https://doi.org/10.1103/PhysRevE.68.036703
https://doi.org/10.1103/PhysRevE.68.036703
https://doi.org/10.1016/j.dam.2018.04.002
https://doi.org/10.1007/s00453-017-0351-z
https://doi.org/10.1016/j.jcss.2010.02.001
https://doi.org/10.1016/j.ipl.2020.105960
https://doi.org/10.1145/3570957
https://dl.acm.org/doi/10.5555/1347082.1347185
https://dl.acm.org/doi/10.5555/1347082.1347185
https://doi.org/10.1007/BF01585867
https://doi.org/10.1007/978-3-642-15369-3_14
https://doi.org/10.1007/978-3-642-15369-3_14
https://doi.org/10.1145/1236457.1236458
https://doi.org/10.1145/780542.780597
https://doi.org/10.1145/1007352.1007419
https://doi.org/10.1145/1007352.1007419

14:16 Improved Guarantees for the A Priori TSP

17 Patrick Jaillet. Probabilistic traveling salesman problems. PhD thesis, Massachusetts Institute
of Technology, 1985. URL: https://dspace.mit.edu/handle/1721.1/15231.

18 Patrick Jaillet. A priori solution of a traveling salesman problem in which a random subset of the
customers are visited. Operations Research, 36(6):929–936, 1988. doi:10.1287/opre.36.6.929.

19 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J.
ACM, 50(6):795–824, 2003. doi:10.1145/950620.950621.

20 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Proceedings of the 53rd Annual ACM Symposium on Theory of
Computing, pages 32–45. ACM, 2021. doi:10.1145/3406325.3451009.

21 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A deterministic better-than-3/2
approximation algorithm for metric TSP. In Alberto Del Pia and Volker Kaibel, editors,
Integer Programming and Combinatorial Optimization, pages 261–274. Springer, 2023. doi:
10.1007/978-3-031-32726-1_19.

22 Fatemeh Navidi, Inge Li Gørtz, and Viswanath Nagarajan. Approximation algorithms for
the a priori traveling repairman. Operations Research Letters, 48(5):599–606, 2020. doi:
10.1016/j.orl.2020.07.009.

23 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993. doi:10.1287/
moor.18.1.1.

24 Frans Schalekamp and David B. Shmoys. Algorithms for the universal and a priori TSP.
Operations Research Letters, 36(1):1–3, 2008. doi:10.1016/j.orl.2007.04.009.

25 David Shmoys and Kunal Talwar. A constant approximation algorithm for the a priori
traveling salesman problem. In Andrea Lodi, Alessandro Panconesi, and Giovanni Rinaldi,
editors, Integer Programming and Combinatorial Optimization, pages 331–343. Springer, 2008.
doi:10.1007/978-3-540-68891-4_23.

26 Alejandro Toriello, William B. Haskell, and Michael Poremba. A dynamic traveling salesman
problem with stochastic arc costs. Operations Research, 62(5):1107–1125, 2014. doi:10.1287/
opre.2014.1301.

27 Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathe-
matical Programming Study, 13:121–134, 1980. doi:10.1007/BFb0120913.

28 Anke van Zuylen. Deterministic sampling algorithms for network design. Algorithmica,
60(1):110–151, 2011. doi:10.1007/s00453-009-9344-x.

https://dspace.mit.edu/handle/1721.1/15231
https://doi.org/10.1287/opre.36.6.929
https://doi.org/10.1145/950620.950621
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1007/978-3-031-32726-1_19
https://doi.org/10.1007/978-3-031-32726-1_19
https://doi.org/10.1016/j.orl.2020.07.009
https://doi.org/10.1016/j.orl.2020.07.009
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1016/j.orl.2007.04.009
https://doi.org/10.1007/978-3-540-68891-4_23
https://doi.org/10.1287/opre.2014.1301
https://doi.org/10.1287/opre.2014.1301
https://doi.org/10.1007/BFb0120913
https://doi.org/10.1007/s00453-009-9344-x

An FPT Algorithm for Splitting a Necklace Among
Two Thieves
Michaela Borzechowski #

Department of Mathematics and Computer Science, Freie Universität Berlin, Germany

Patrick Schnider #

Department of Computer Science, ETH Zürich, Switzerland

Simon Weber #

Department of Computer Science, ETH Zürich, Switzerland

Abstract
It is well-known that the 2-Thief-Necklace-Splitting problem reduces to the discrete Ham Sandwich
problem. In fact, this reduction was crucial in the proof of the PPA-completeness of the Ham Sandwich
problem [Filos-Ratsikas and Goldberg, STOC’19]. Recently, a variant of the Ham Sandwich problem
called α-Ham Sandwich has been studied, in which the point sets are guaranteed to be well-separated
[Steiger and Zhao, DCG’10]. The complexity of this search problem remains unknown, but it is
known to lie in the complexity class UEOPL [Chiu, Choudhary and Mulzer, ICALP’20]. We define
the analogue of this well-separation condition in the necklace splitting problem – a necklace is
n-separable, if every subset A of the n types of jewels can be separated from the types [n] \ A by at
most n separator points. Since this version of necklace splitting reduces to α-Ham Sandwich in a
solution-preserving way it follows that instances of this version always have unique solutions.

We furthermore provide two FPT algorithms: The first FPT algorithm solves 2-Thief-Necklace-
Splitting on (n − 1 + ℓ)-separable necklaces with n types of jewels and m total jewels in time
2O(ℓ log ℓ) + O(m2). In particular, this shows that 2-Thief-Necklace-Splitting is polynomial-time
solvable on n-separable necklaces. Thus, attempts to show hardness of α-Ham Sandwich through
reduction from the 2-Thief-Necklace-Splitting problem cannot work. The second FPT algorithm tests
(n − 1 + ℓ)-separability of a given necklace with n types of jewels in time 2O(ℓ2) · n4. In particular,
n-separability can thus be tested in polynomial time, even though testing well-separation of point
sets is co-NP-complete [Bergold et al., SWAT’22].

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Theory of
computation → Computational geometry; Theory of computation → Fixed parameter tractability

Keywords and phrases Necklace splitting, n-separability, well-separation, ham sandwich, FPT

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.15

Related Version Full Version: https://arXiv.org/abs/2306.14508

Funding Michaela Borzechowski: DFG within the Research Training Group GRK 2434 Facets of
Complexity.
Simon Weber : Swiss National Science Foundation under project no. 204320.

1 Introduction

The necklace splitting problem is one of the most famous problems in fair division. It is usually
illustrated by the following story: two thieves have stolen a valuable necklaces with n different
types of jewels (diamonds, rubies, etc.). They want to divide their bounty fairly between
them, that is, in such a way that both of them get the same number of jewels of each type.
As cutting through the necklace takes a lot of effort, they want to do this with as few cuts as
possible. A mathematically inclined thief who knows the necklace splitting theorem [1, 3, 12]
will realize that no matter how the jewels are ordered on the necklace, n cuts will always
suffice for this. However, all known proofs of this result are of a topological nature and do

© Michaela Borzechowski, Patrick Schnider, and Simon Weber;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michaela.borzechowski@fu-berlin.de
mailto:patrick.schnider@inf.ethz.ch
https://orcid.org/0000-0002-2172-9285
mailto:simon.weber@inf.ethz.ch
https://orcid.org/0000-0003-1901-3621
https://doi.org/10.4230/LIPIcs.ISAAC.2023.15
https://arXiv.org/abs/2306.14508
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 An FPT Algorithm for Splitting a Necklace Among Two Thieves

not give our thief any information on how to find the cuts. Thus, a more algorithmically
inclined thief might wonder whether a set of n cuts can be found efficiently. Unfortunately, it
turns out that the search problem of finding n cuts is in general PPA-complete [11], making
an efficient algorithm unlikely. In this paper, we study separability conditions under which
the thieves can find the cuts efficiently.

The ideas for the separability conditions stem from a variant of another famous fair
division problem, namely the Ham Sandwich problem. The Ham Sandwich theorem [19]
states that any d point sets (or mass distributions) in Rd can be simultaneously bisected by a
single hyperplane. Again, finding such a Ham Sandwich Cut is in general PPA-complete [11].
However, under the assumption that the point sets are well-separated (which we will formally
define in Section 2), the cut is unique [18] and the corresponding search problem lies in the
complexity class UEOPL [5]. UEOPL is a subclass of PPA. It is conjectured to be a strict
subclass, with a recent paper showing a black-box separation between the two classes [14].

The Ham Sandwich problem and the necklace splitting problem are intimately related.
In fact, the necklace splitting theorem can be proved by lifting the necklace with n types of
jewels to the moment curve in Rn, which is the curve parameterized by (t, t2, t3, . . . , tn), and
then applying the Ham Sandwich theorem. By the same idea, the PPA-hardness for the Ham
Sandwich problem follows from the PPA-hardness of the necklace splitting problem. In the
well-separated setting, no hardness result is known for finding the now unique Ham Sandwich
cut. A natural approach to show for example UEOPL-hardness of this problem would be to
show hardness for a necklace splitting variant whose lifts give well-separated point sets. This
leads to the definition of n-separable necklaces, which we again define formally in Section 2.

However, as we show in this paper, this approach will not work, as the necklace split-
ting problem on n-separable necklaces can be solved in polynomial time. Relaxing the
notion of separability further, we get an FPT algorithm for the necklace splitting problem,
parameterized by the separability:

▶ Theorem 1. 2-Thief-Necklace-Splitting can be solved in time 2O(ℓ log ℓ) + O(m2) on every
(n− 1 + ℓ)-separable necklace C with n types of jewels and m total jewels.

We also provide an FPT algorithm to check whether a necklace is (n− 1 + ℓ)-separable.
This is again in contrast to the Ham Sandwich problem, where it has been shown that
checking well-separation is co-NP-complete [4].

Our work provides the first FPT viewpoint on the necklace splitting problem, which so
far has only been studied from the viewpoint of approximation algorithms [2].

2 Preliminaries

2.1 Separability and Unique Solutions
▶ Definition 2 (Necklace). A necklace is a family C of disjoint finite point sets in R. The
sets in C are called colors.

Note that in the literature, the points in each color c ∈ C are also called beads or jewels
of color c. Furthermore, this kind of necklace is sometimes also called an open necklace, since
the colors are arranged in R and not on a cycle.

For simplicity, in the rest of this paper we assume that each color has an odd number of
points. All of our results can be adapted to the more general setting without this restriction,
or even to the setting where colors are finite unions of intervals. However, the definitions
and proofs have to be adjusted carefully. We discuss these possible extensions of our results
in the full version of the paper.

M. Borzechowski, P. Schnider, and S. Weber 15:3

Since colors in a necklace are disjoint, we can view our necklace as a string over the
alphabet C: each color defines one character and the sequence of characters is defined by the
order in which the colors appear when going from −∞ to ∞, with consecutive occurrences
of the same color yielding just one character. See Figure 1 for an example.

We call the number of occurrences of a color c in this string the number of components it
consists of. We say a color c ∈ C is an interval, if it consists of exactly one component. In
other words, a color c is an interval if its convex hull does not intersect any other color c′ ∈ C.
In Figure 1a, the green color c is an interval, whereas the red color a is not, it consists of
two components.

▶ Definition 3 (Separability). A necklace C is k-separable if for all A ⊆ C there exist k

separator points s1 < . . . < sk ∈ R that separate A from C \ A. More formally, if we
alternatingly label the intervals (−∞, s1], [s1, s2], . . . , [sk−1, sk], [sk,∞) with A and A, for
every interval I labelled A we have I ∩

⋃
c∈(C\A) c = ∅ and for every interval I ′ labelled A

we have I ′ ∩
⋃

c∈A c = ∅.
The separability sep(C) of a necklace C is the minimum integer k ≥ 0 such that C is

k-separable.

a
b

c

(a) “a b c a” is 2-separable.

a
b

c

(b) “a b a c” is 3-separable.

a
b

c

(c) “a b a b c” is 4-separable.

Figure 1 Necklace C with 3 colors a, b and c.

Note that for a necklace with n colors, sep(C) ≥ n− 1, and this is tight, as can be seen
in Figure 1a. Our definition of k-separability is strongly related to the well known notion of
well-separation.

▶ Definition 4. Let P1, . . . , Pk ⊂ Rd be point sets. They are well-separated if and only if for
every non-empty index set I ⊂ [k], the convex hulls of the two disjoint subfamilies

⋃
i∈I Pi

and
⋃

i∈[k]\I Pi can be separated by a hyperplane.

A set of two colors in R is 1-separable if and only if it is well-separated. Furthermore we
observe the following property.

▶ Lemma 5. Let C be a set of n colors in R. Let C ′ be the set of subsets of Rn obtained by
lifting each point in each color of C to the n-dimensional moment curve using the function
f(t) = (t, t2, . . . , tn). Then the set C is n-separable if and only if C ′ is well-separable.

Proof. If C is n-separable, for each subset A of C, there exist n points S = (s1, . . . , sn)
partitioning C into intervals alternatingly labelled A and A. Let H be the hyperplane that
goes through these separator points S lifted to the moment curve. By [15, Lemma 5.4.2], at
each separating point, the moment curve passes from one side of H to the other. The points
belonging to intervals labelled A lie on one side of the hyperplane and the points belonging
to intervals labelled A lie on the other side. Since this holds for all subsets of C, it follows
that C ′ is well-separated.

If C ′ is well-separated, for each subset A′ of colors, there exists a hyperplane that separates
A′ from C ′ \A′. By [15, Lemma 5.4.2], this hyperplane intersects the moment curve at at
most n points. These points define the separator points that show that C is n-separable. ◀

ISAAC 2023

15:4 An FPT Algorithm for Splitting a Necklace Among Two Thieves

The problem of Necklace Splitting is that two thieves want to split the necklace they stole
into equal parts with as few cuts as possible. Mathematically we partition the necklace into
several intervals which belong to each thief in turn.

▶ Definition 6 (2-Thief-Necklace-Splitting). Given a necklace C with n colors, find n split
points that split the necklace into n + 1 open intervals alternatingly labelled A+ and A−, such
that for each color c ∈ C, the union of all intervals labelled A+ contains the same number of
points of c as the union of all intervals labelled A−.

It is well known that there always exists a solution to this problem [1, 3, 12]. Note that
due to our assumption of every color containing an odd number of points, every solution
must contain exactly one point per color as a split point.

a
b

c

A+ A− A+ A−

(a) Solution for “a b c a”.

a
b

c

A+ A− A+ A−

(b) Solution for “a b a c”.

a
b

c

A+ A− A+ A−

(c) Solution for “a b a b c”.

Figure 2 Example of solutions to 2-Thief-Necklace-Splitting.

▶ Theorem 7. Let C be an n-separable necklace with n colors. There is a unique solution to
2-Thief-Necklace-Splitting on C.

In order to prove the above theorem, we consider the classical reduction of 2-Thief-
Necklace-Splitting to the Ham-Sandwich problem obtained by lifting the points to the
moment curve, as it appeared in many works before [7, 11, 15, 17]. However, since the
necklace we apply this reduction to is n-separable, by Lemma 5, the resulting points are
well-separated, which allows us to apply the following stronger version of the Ham-Sandwich
theorem due to Steiger and Zhao [18].

▶ Lemma 8 (α-Ham-Sandwich Theorem, [18]). Let P1, . . . , Pn ⊂ Rn be finite well-separated
point sets in weak general position1, and let α1, . . . , αn be positive integers with αi ≤ |Pi|, then
there exists a unique (α1, . . . , αn)-cut, i.e., a hyperplane H that contains a point from each
color and such that for the closed positive halfspace H+ bounded by H we have |H+∩Pi| = αi.

Proof of Theorem 7. We lift all the points in C to the moment curve. The points are in
general position [15] (and thus also in weak general position). By Lemma 5 if C is n-separable,
then the point sets lifted to the moment curve are well-separated.

By the α-Ham-Sandwich theorem there exists a unique (⌈ |c1|
2 ⌉, . . . , ⌈ |cn|

2 ⌉)-cut that halves
all colors. This cut is a hyperplane H that goes through n lifted points, one point of each
color. These points define a solution Q = (q1, . . . , qn) of 2-Thief-Necklace-Splitting.

Assume that the solution Q is not unique, i.e., there is another solution Q′ ̸= Q to C.
The points Q′ lifted to the moment curve define another hyperplane H ′ ≠ H with one point
of each color, which is also a (⌈ |c1|

2 ⌉, . . . , ⌈ |cn|
2 ⌉)-cut. But by Lemma 8 there is a unique

hyperplane with this property, so Q′ cannot exist. ◀

1 Weak general position is a condition that requires only subsets of the points of the form {p1, . . . , pn, pn+1}
for pi ∈ Pi for 1 ≤ i ≤ n and pn+1 ∈ P1 ∪ . . . ∪ Pn to be in general position.

M. Borzechowski, P. Schnider, and S. Weber 15:5

In this proof, we do not use the property that Lemma 8 guarantees that there is a solution
for every choice of α, we merely use it for the guaranteed uniqueness of a solution for a
halving cut.

Note that the opposite direction of Theorem 7 does not hold, i.e., there are necklaces with n

colors which are not n-separable but still have unique solutions for 2-Thief-Necklace-Splitting,
see Figure 2c for an example.

2.2 Graph-Theoretic Aspects
To argue about the separability of necklaces, we wish to think about graphs rather than
strings or even point sets. For every necklace, we thus define its walk graph:

▶ Definition 9 (Walk graph). Given a necklace C, the walk graph GC is the multigraph with
V = C and with every potential edge {a, b} ∈

(
V
2
)

having multiplicity equal to the number of
substrings “ab” plus the number of substrings “ba” in the string describing C.

The walk graphs of the example necklaces in Figure 1 can be seen in Figure 3.

a b

c

(a) Walk graph for “a b c a”.

a b

c

(b) Walk graph for “a b a c”.

a b

c

(c) Walk graph for “a b a b c”.

Figure 3 Walk graphs of the examples in Figure 1.

Note that given a necklace C as a set of point sets, both the string describing it as well
as the walk graph can be built in linear time in the size of the necklace

∑
c∈C |c| .

Recall that a graph is Eulerian if it contains a Eulerian tour, a closed walk that uses all
edges exactly once. A graph is semi-Eulerian if it contains a Eulerian path, a (not necessarily
closed) walk that uses all edges exactly once.

▶ Observation 10. The walk graph of a necklace is connected and semi-Eulerian.

Recall the following well-known fact about semi-Eulerian graphs.

▶ Lemma 11. In a semi-Eulerian (multi-)graph, at most two vertices have odd degrees.

The separability of a necklace turns out to be equivalent to the max-cut in its walk graph.

▶ Definition 12 (Cut). In a (multi-)graph G on the vertices V , a cut is a subset A ⊆ V .
The size µ(A) of a cut A is the number of edges {u, v} in G such that u ∈ A and v ̸∈ A. The
max-cut, denoted by µ(G), is the largest size of any cut A ⊆ V .

▶ Lemma 13. For every necklace C, we have sep(C) = µ(GC).

Proof. For every subset A ⊆ C, the number of separator points needed to separate the colors
in A from C \A is given by the size of the cut A in GC , since the edges going over this cut
correspond one to one to the points in the necklace where the necklace switches from a color
in A to a color not in A, or vice versa. Thus, the max-cut µ(GC) corresponds to the maximal
number of separator points we need to separate any two subsets of colors. ◀

ISAAC 2023

15:6 An FPT Algorithm for Splitting a Necklace Among Two Thieves

In our proofs we will often show that certain structures or properties do not appear in
walk graphs of necklaces with bounded separability. The general strategy for these proofs will
be to show that walk graphs with these structures or properties have a large max-cut, and
thus the corresponding necklaces cannot have the claimed separability. Our main tool for this
is the following bound, originally conjectured by Erdős [10] and proven by Edwards [8, 9].

▶ Theorem 14 (Edwards-Erdős bound). A simple connected graph G with n vertices and m

edges has a maximum cut µ(G) of at least ω(G) := m
2 + n−1

4 .

Since walk graphs are not simple graphs, we will use a corollary of the following strength-
ening, due to Poljak and Turzík [16]:

▶ Theorem 15 ([16]). For a connected graph G with weight function w : E → R+, there
exists a cut of weight at least∑

e∈E w(e)
2 + t(G, w)

4 ,

where t(G, w) is the weight of a minimum-weight spanning tree of G.

▶ Corollary 16. A connected (multi-)graph G with n vertices and m edges has a maximum
cut µ(G) of at least ω(G) := m

2 + n−1
4 .

For determining the separability of a necklace, we will use an algorithm due to Crowston,
Jones and Mnich [6] to decide max-cut beyond the Edwards-Erdős bound.

▶ Theorem 17 (FPT algorithm [6]). There exists an algorithm that decides whether for a
given simple connected graph G with n vertices and m edges the max-cut µ(G) is at most
ω(G) + k in time 2O(k) · n4.

This is a so-called fixed-parameter algorithm; for any fixed parameter k, the algorithm
runs in polynomial time in n, with the exponent not depending on k. Note again that this
algorithm only works on simple graphs, thus, we will need to alter the walk graphs to be
able to apply this algorithm.

3 An FPT Algorithm for 2-Thief-Necklace-Splitting

In this section we show Theorem 1:

▶ Theorem 1. 2-Thief-Necklace-Splitting can be solved in time 2O(ℓ log ℓ) + O(m2) on every
(n− 1 + ℓ)-separable necklace C with n types of jewels and m total jewels.

The algorithm we use is recursive, based on the following crucial observation.

▶ Theorem 18. Let C be an (n− 1 + ℓ)-separable necklace with n colors. If n ≥ 6ℓ + 2 there
must exist

(i) two neighboring colors that are both intervals, or
(ii) one color that only consists of exactly two components.

Proof. Since the walk graph is semi-Eulerian, it contains either 0 or 2 vertices with odd
degree (recall Observation 10 and Lemma 11). A color that is an interval has degree 2,
unless it is at the beginning or end of the necklace. A color that consists of more than
two components has degree at least 6 (or 5 or 4 if it is at the beginning and/or end of the
necklace).

M. Borzechowski, P. Schnider, and S. Weber 15:7

Let A ⊆ C be the set of intervals. Note that if no two intervals are neighboring, we can
pick all the intervals as a cut A, which has size at least µ(A) ≥ 2|A| − 2. Since we know that
µ(GC) ≤ n− 1 + ℓ, we must have that |A| ≤ n+1+ℓ

2 .
Assume that the theorem does not hold, and that there thus exist no neighboring intervals

and no color consisting of exactly two components. We can then bound the sum of degrees∑
c∈C deg(c) ≥ 2 · n+1+ℓ

2 + 6 · (n − n+1+ℓ
2) − 2 = 4n − 2ℓ − 4. Thus, the number of edges

|E| in GC is bounded |E| ≥ 4n−2ℓ−4
2 = 2n − ℓ − 2. Due to Corollary 16 we thus get that

µ(GC) ≥ 2n−ℓ−2
2 + n−1

4 = 5
4 n − ℓ

2 −
5
4 . By the assumption n ≥ 6ℓ + 2, we therefore have

µ(GC) ≥ n − 3
4 + ℓ, which is a contradiction to the assumption that µ(GC) ≤ n − 1 + ℓ.

Thus, the theorem follows. ◀

To use Theorem 18 to recursively solve smaller instances, we need to make sure that
the separability of the smaller instances translates back to the separability of the original
instance. The following two lemmas provide this necessary correspondence.

▶ Lemma 19. Let C be a necklace. Let C ′ be the necklace obtained by removing two
neighboring intervals c, c′ from C. Then, sep(C ′) = sep(C)− 2.

Proof. In the walk graph, removing two neighboring intervals corresponds to replacing a
path (a, c, c′, b) of length 3 by a direct edge connecting a and b.

Every cut A′ ⊆ C ′ in GC′ of size k can be extended to a cut A ⊆ C in GC of size k + 2:
For every vertex v ∈ C ′, we have v ∈ A′ iff v ∈ A. Furthermore, c ∈ A iff a ̸∈ A′ and c′ ∈ A

iff b ̸∈ A′. Thus, sep(C) ≥ sep(C ′) + 2.
Similarly, every cut A ⊆ C in GC of size k induces a cut A′ = A∩C ′ of size at least k− 2

in GC′ . Thus, sep(C ′) ≥ sep(C)− 2, and we get sep(C ′) = sep(C)− 2. ◀

▶ Lemma 20. Let C be a necklace on n colors that is (n− 1 + ℓ)-separable. The necklace C ′

obtained by reducing a color c ∈ C to a subset ∅ ⊂ c′ ⊂ c is still (n− 1 + ℓ)-separable.

Proof. By simplifying a necklace, we cannot increase its separability. ◀

We are now ready to present Algorithm 1, an FPT algorithm to solve 2-Thief-Necklace-
Splitting on (n−1+ℓ)-separable necklaces. The strategy is to reduce the given necklace either
by removing two neighboring intervals, or by removing one of the two components in a color
that consists of exactly two components. By Lemmas 19 and 20, if C is (n− 1 + ℓ)-separable,
the resulting necklace C ′ is again (n′ − 1 + ℓ)-separable (for n′ = |C ′|), and can thus be
solved recursively. The solution of the reduced case is then extended back to a solution of
the original necklace. A necklace can be reduced as long as Theorem 18 applies, and thus we
only need to solve the case n < 6ℓ + 2 directly.

For an example of the execution of the algorithm, see Figure 4 and Figure 5. Note
that these small instances would technically be solved by brute-force and merely serve as
illustrations.

Proof of Theorem 1. We first argue for correctness of Algorithm 1. By Theorem 18, if we
reach line 8 we can always find a color which consists out of exactly two components, so the
algorithm can never fail to finish.

We have to argue that our algorithm returns a correct solution in both line 6 and line 15.
(i) Line 6: The constructed solution splits the two neighboring intervals correctly. Since

we place two splits, the parity of the partition outside of these intervals does not change
in comparison to the solution Q obtained recursively. Thus, all other colors are also
split correctly.

ISAAC 2023

15:8 An FPT Algorithm for Splitting a Necklace Among Two Thieves

Algorithm 1 RecursiveNS.

Input: An (n− 1 + ℓ)-separable necklace C with n colors.
Output: n split points.

1: if n < 6ℓ + 2 then
2: Q← BruteForce(C)
3: return Q

4: else if there exist two neighboring intervals c, c′ ∈ C then
5: Q← RecursiveNS(C \ {c, c′})
6: return Q ∪ {median(c), median(c′)}
7: else
8: c← a color consisting of two components c1, c2
9: c′ ← largest component of c

10: if |c′| is even then
11: Add a median point to c′

12: Q← RecursiveNS((C \ {c}) ∪ {c′})
13: {q} ← Q ∩ c′

14: q′ ← q shifted right/left by ⌈min(|c1|,|c2|)
2 ⌉ points of c′ ▷ direction depending on parity

of number of split points in Q between c1 and c2
15: return Q \ {q} ∪ {q′}

(ii) Line 15: The constructed solution splits color c correctly, and q′ lies in the same
component of c as q, since c′ is the larger of the two components. Shifting the split
within the same component of c does not change the partition outside of this component
in comparison to the solution Q obtained recursively. Thus, all other colors are also
split correctly.

It remains to argue for the runtime of Algorithm 1. Clearly, we only use the brute-force
approach at line 2 once. In an (n− 1 + ℓ)-separable necklace with n < 6ℓ + 2, each color has
at most O(ℓ) components. For each guess of one component per color, it can be determined
in polynomial time in ℓ whether this guess admits a solution. There are at most ℓO(ℓ) guesses,
thus we can solve this base case in time 2O(ℓ log ℓ).

In the rest of the algorithm, on each level of the recursion we reduce the number of points
in the necklace by at least one, and we can make the necessary adjustments and find the
needed colors in linear time in the number of points. Thus, the total runtime of the algorithm
is 2O(ℓ log ℓ) + O(

∑
c∈C |c|)2, as claimed. ◀

a
b

c

(a) Original necklace.

a
b

c

A+ A−

(b) Reduced necklace.

a
b

c

A−A−A+ A+

(c) Solution.

Figure 4 Example step of Algorithm 1 using the reduction of removing two neighboring intervals
(b and c).

For the special case of n-separable necklaces, i.e., ℓ = 1, we get the following corollary:

▶ Corollary 21. Finding the unique solution for 2-Thief-Necklace-Splitting on an n-separable
necklace with n colors takes polynomial time.

M. Borzechowski, P. Schnider, and S. Weber 15:9

a
b

c

(a) Original necklace.

a
b

c

A− A+ A−A+

(b) Reduced necklace.

a
b

c

A+ A− A+ A−

(c) Solution.

Figure 5 Example step of Algorithm 1 using the reduction of removing a component from the
two-component color a.

Until now, both Theorem 1 and Corollary 21 work under the initial promise that C is
(n− 1 + ℓ)-separable (or n-separable respectively). If the algorithm fails because none of the
cases applies, this certifies that the input necklace was not (n−1+ ℓ)-separable. On the other
hand, Algorithm 1 may run successfully, even if the input necklace is not (n−1+ℓ)-separable,
and if it does run successfully, its output is always a correct solution. Since Algorithm 1
can produce these “false positives”, it cannot be used to decide (n− 1 + ℓ)-separability. We
tackle that problem in the next section.

4 Testing Separability

At first, it seems like finding a polynomial-time algorithm for deciding whether a necklace is
(n−1+ℓ)-separable may be futile, since we have the following theorem due to Guruswami [13]:

▶ Theorem 22 ([13]). Given a Eulerian graph G and an integer k, deciding whether the size
of the max-cut µ(G) ≥ k is NP-complete.

Since to compute the separability of a necklace we need to compute the max-cut of its
walk graph, and since every Eulerian graph is the walk graph of some necklace2, we get the
following corollary:

▶ Corollary 23. Given a necklace C of n colors and an integer k, deciding whether C is
k-separable is co-NP-complete.

However, not all hope is lost. To check whether a necklace is (n− 1 + ℓ)-separable, we do
not need to compute the max-cut of its walk graph, we merely need to check whether it is at
most (n− 1 + ℓ). We next provide an FPT algorithm that checks (n− 1 + ℓ)-separability for
fixed parameter ℓ. With ℓ = 1 this shows that testing n-separability of n colors is solvable in
polynomial time, even though both testing k-separability of n colors with k as input as well
as testing well-separation of point sets are co-NP-complete [4]. More generally, we show the
following theorem:

▶ Theorem 24. There exists an FPT algorithm for fixed parameter ℓ that can decide whether
the max-cut of a given semi-Eulerian multigraph GC with n vertices is at most n − 1 + ℓ,
i.e., it can decide whether µ(GC) ≤ n− 1 + ℓ in time 2O(ℓ2) · n4.

By Theorem 17, there exists an algorithm that decides whether a simple graph G with n

vertices and a fixed parameter k has a max-cut of size µ(G) ≤ ω(G) + k = |E(G)|
2 + n−1

4 + k

in 2O(k) · n4 time. But our input graph GC is a multigraph and we have no bound on its
number of edges, nor on the distance between ω(GC) and n − 1 + ℓ. In order to use this
algorithm to decide separability, we need the following:

2 Simply find a Eulerian path through the graph and place one point per character in the respective color.
If some color has an even number of points, add one more to an existing component.

ISAAC 2023

15:10 An FPT Algorithm for Splitting a Necklace Among Two Thieves

1. Derive a graph G′
C from GC such that we can lower bound |E(G′

C)| and thus ω(G′
C).

2. Prove that there is a bounded number of multi-edges in G′
C .

3. Transform G′
C into a simple graph G′′

C by blowing up its multi-edges by a constant factor.

In the following, we will use the term interval for intervals on necklaces as well as their
corresponding vertices interchangeably. The intervals in C correspond to the vertices in GC

with degree at most 2, except for possibly one vertex of degree 2 that is both the starting and
ending point of the fixed Eulerian path; this single vertex does not correspond to an interval.

▶ Lemma 25. Given a semi-Eulerian multigraph G on n vertices, we can either detect that
µ(G) > n−1+ℓ, or we can build a multigraph G′ on n′ vertices such that |E(G′)| ≥ 3

2 n′− ℓ
2−1,

and such that µ(G) ≤ n− 1 + ℓ if and only if µ(G′) ≤ n′ − 1 + ℓ.

Proof. Given a multigraph G, let G′ be the result of applying Lemma 19 on G exhaustively.
As long as there are two adjacent intervals in G, we can remove the two intervals, thus
reducing the maximum cut size by 2. In each such step we remove 2 vertices, 3 edges and
add 1 new edge. Thanks to Lemma 19, we have the desired correspondence between µ(G)
and µ(G′).

Assume there are at least n′+ℓ
2 + 1 intervals in G′. Then the cut A in G′ with all intervals

on one side and all other vertices on the other side has size µ(A) ≥ 2 ·(n′+ℓ
2 +1)−2 = n′ +ℓ. It

follows that µ(G′) ≥ µ(A) > n′− 1 + ℓ. In this case we can thus detect that µ(G) > n− 1 + ℓ.
In the other case, there are strictly fewer than n′+ℓ

2 + 1 intervals in G′. All other vertices
have degree at least 4 (excluding the start and end vertex). Therefore the sum of degrees in
G′ is ∑

v∈V (G′)

deg(v) ≥ n′ + ℓ

2 · 2 + n′ − ℓ

2 · 4− 2 = 3n′ − ℓ− 2.

Thus the number of edges in G′ is |E(G′)| ≥ 3
2 n′ − ℓ

2 − 1. ◀

We can now see the following.

▶ Observation 26. Given this bound on |E(G′)|, the bound ω(G′) given by Corollary 16 can
be bounded by

ω(G′) ≥
3
2 n′ − ℓ

2 − 1
2 + n′ − 1

4 = n′ − ℓ

4 −
3
4 .

Thus, by the process of eliminating neighboring intervals, we have managed to get the
difference between (n′ − 1 + ℓ) and ω(G′

C) to be a constant depending only on ℓ.
Next we show that the total multiplicity M of the multi-edges in G′

C cannot be too
large. We show that if G′

C has maximum cut size at most n′ − 1 + ℓ, the total multiplicity of
multi-edges can be bounded by a function solely depending on ℓ, and not n or |E(G′

C)|.

▶ Lemma 27. In a multigraph G on n vertices with µ(G) ≤ n− 1 + ℓ, the total multiplicity
of the multi-edges in G is at most 2ℓ2.

Proof. Let G′ be a weighted simple graph with an edge of weight m− 1 for every multi-edge
of multiplicity m ≥ 2 in the graph G. Note that the total weight of G′ is at least half of the
total multiplicity of multi-edges in G.

Let F be a spanning forest in G′ with total weight w. Given F , we can build a spanning
tree T of G of total weight n− 1 + w, since every edge of F of weight m′− 1 corresponds to a
multi-edge of multiplicity m′ in G, and all additional edges used to make F into a spanning

M. Borzechowski, P. Schnider, and S. Weber 15:11

tree have weight 1. Since every tree is bipartite, the weight of T is a lower bound on the
max-cut of G: µ(G) ≥ n − 1 + w. Thus, for a given G with µ(G) ≤ n − 1 + ℓ, the total
weight of F must be at most ℓ.

We thus only need to show that in a simple weighted graph (in our case, G′), in which
every weight is at least 1, and whose maximum-weight spanning forest has weight at most ℓ,
the total weight of the graph is at most ℓ2. To see this, we successively remove spanning
forests from G′ until G′ is empty. Every spanning forest we remove has weight at most ℓ. As
every edge has weight at least 1, every vertex in G′ has degree at most ℓ. Thus, we are done
after removing at most ℓ spanning forests. Thus, the total weight of G′ is at most ℓ2.

We conclude that the total multiplicity of multi-edges in G can be at most 2ℓ2. ◀

Finally, we show how G′
C can be transformed into a simple graph G′′

C . Let a and b be
vertices in G′

C with a multi-edge of multiplicity m between them. We construct the graph
G′′

C from G′
C by removing the multi-edge between a and b and introducing m paths of length

three from a to b, all going through separate vertices. See Figure 6 for an example application
of this process.

a b ⇒ a b

i1,1 i1,2

i2,1 i2,2

Figure 6 Example of blowing up a multi-edge of multiplicity 2 to make the graph simple.

This process is again constructed in such a way that the change of the max-cut is
predictable:

▶ Lemma 28. Let G be a multigraph on n vertices. Let a and b be vertices in G with a
multi-edge of multiplicity m between them. Let G′ be the result of blowing up the multi-edge
between a and b in G. Then, µ(G′) = µ(G) + 2m.

Proof. Let A ⊆ V (G) be some max-cut in G with µ(A) = µ(G).
We distinguish between two cases. If the multi-edge goes across the cut, i.e. a ∈ A and

b /∈ A, the same cut in G′ has m fewer edges (namely the multi-edge) and 3m edges more,
namely all of the newly introduced edges of the paths, see Figure 7a. If the multi-edge
between a and b is not in the max-cut of G, there is a cut in G′ that has 2m new edges,
namely one of each newly introduced path, see Figure 7b. Thus, a max-cut of size µ(G) in G

implies a cut of size µ(G) + 2m in G′, and thus µ(G′) ≥ µ(G) + 2m.
For the other direction, consider a max-cut A′ of G′. Since A′ is maximal, it must either

contain all 3m intermediate edges between a and b, and put a and b on different sides of the
cut, or it must put a and b on the same side of the cut, and contain exactly 2m intermediate
edges (see again Figure 7). Thus, there must exist a cut A in G which contains exactly 2m

fewer edges than A′, and we get µ(G) ≥ µ(G′)− 2m.
We conclude that µ(G′) = µ(G) + 2m. ◀

We are now ready to put this all together and describe the algorithm proving Theorem 24.

Proof of Theorem 24. We prove that Algorithm 2 is correct and runs in time 2f(ℓ) · n4.
Correctness follows from Lemma 25, Lemma 27 and Lemma 28. Clearly, all steps except
the invocation of the FPT algorithm of Theorem 17 in the last line can be performed in
O(n2 + ℓ2).

ISAAC 2023

15:12 An FPT Algorithm for Splitting a Necklace Among Two Thieves

a b ⇔

a

b

i1,1

i1,2 i2,1

i2,2

Graph G Graph G′

(a) Case 1: The multi-edge is in max-cut of G.

a

b

...

...
⇔

a

b

i1,1

i1,2

i2,1i2,2

...

...

Graph G Graph G′

(b) Case 2: The multi-edge is not in max-cut of G.

Figure 7 Change of max-cut size when blowing up a multi-edge of multiplicity 2.

Algorithm 2 FPT algorithm for testing µ(GC) ≤ n − 1 + ℓ with fixed parameter ℓ.

Input: A semi-Eulerian multigraph GC on n vertices.
Output: True iff µ(GC) ≤ n− 1 + ℓ.

1: G′
C ← GC

2: while there exist neighboring intervals in G′
C do

3: Remove two neighboring intervals from G′
C .

4: n′ ← |V (G′
C)|

5: i← The number of intervals in G′
C .

6: if i > n′+ℓ
2 then return false ▷ based on Lemma 25

7: M ← The total multiplicity of multi-edges in G′
C .

8: if M > 2ℓ2 then return false ▷ based on Lemma 27
9: G′′

C ← The result of applying Lemma 28 to every multi-edge in G′.
10: return µ(G′′

C) ≤ (n′ − 1 + ℓ) + 2M ▷ using FPT algorithm of Theorem 17.

We choose k such that when we call the FPT algorithm of Theorem 17 with G′′
C and k it

decides µ(G′′
C) ≤ (n′−1 + ℓ) +2M , i.e., we choose k such that (n′−1 + ℓ) +2M = ω(G′′

C) + k.
Therefore let k := ((n′ − 1 + ℓ) + 2M)− ω(G′′

C).
For bounding the runtime of this invocation, we need to check that k is dependent only

on ℓ. Recall that by Observation 26 we can bound (n′ − 1 + ℓ)−ω(G′
C) ≤ 5

4 ℓ− 1
4 , a quantity

depending only on our parameter ℓ. To relate ω(G′′
C) to ω(G′

C), we can see that blowing
up a multi-edge in G′ of multiplicity m adds 2m edges and 2m vertices and thus changes
ω by 2m

2 + 2m
4 = 3

2 m. Thus we have ω(G′′
C) = ω(G′

C) + 3
2 M . We can now put everything

together and get k ≤ 2M + 5
4 ℓ− 1

4 −
3
2 M = 1

2 M + 5
4 ℓ− 1

4 , and since M ≤ ℓ2, we get that k

is bounded by O(ℓ2). Thus, the final invocation of the algorithm of Theorem 17 runs in time
2O(ℓ2) · n4. ◀

5 Conclusion and Further Directions

In conclusion, we proved that 2-Thief-Necklace-Splitting on n-separable necklaces has a
unique solution and can be solved in polynomial time. Also n-separability can be tested in
polynomial time. Furthermore, we showed that 2-Thief-Necklace-Splitting, which in general
is known to be PPA-complete, admits an FPT algorithm for the parameter ℓ such that the
input necklace is (n− 1 + ℓ)-separable. Lastly, we showed that testing (n− 1 + ℓ)-separability
is also FPT, even though testing well-separation of point sets in Rn is co-NP-complete.

M. Borzechowski, P. Schnider, and S. Weber 15:13

The condition of n-separability is only sufficient for uniqueness of the solution to 2-Thief-
Necklace-Splitting. An interesting followup question is whether there also exist necessary
conditions for such uniqueness.

As our main open question we wonder how our algorithm for 2-Thief-Necklace-Splitting
can be extended to more general settings. Firstly, can we also find polynomial time algorithms
for k-Thief-Necklace-Splitting under the constraint of n-separability? Secondly, instead of
halving every color class, can we maybe find an algorithm to find any (α1, . . . , αn)-cut? The
existence of these cuts is also guaranteed by Lemma 8, however our algorithm really only
works for halving, since if we are not halving, the solution is not guaranteed to split a color
with two components in the bigger component.

Another interesting followup question is whether one can lift the definition of k-separability
into higher dimensions. In other words, for n point sets P = {P1, . . . , Pn} in Rd, can each
subset A of P be separated from P \ A by k hyperplanes? Well-separation then becomes
1-separability. Thus, deciding k-separability for k as input or even for the case k = 1 is
co-NP-hard. It is likely that special cases such as d-separability or n-separability are also hard
to decide. While well-separation is also contained in co-NP, this is not clear for k-separability
for k > 1. Like 2-Thief-Necklace-Splitting, which has a unique solution under the condition
of n-separability, one could also investigate whether there are other geometric problems
which gain interesting properties under the condition of the input being well-separated, or
k-separable for some k.

Finally, can we extend our FPT algorithm for deciding µ(G) ≤ n− 1 + ℓ on semi-Eulerian
multigraphs to work on all connected multigraphs? Furthermore, can we maybe also decide
µ(G) ≤ ω(G) + ℓ (to get a direct analogue of the algorithm of Crowston, Jones, and Mnich
for multigraphs) and not just µ(G) ≤ n− 1 + ℓ?

References
1 Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987. doi:10.1016/

0001-8708(87)90055-7.
2 Noga Alon and Andrei Graur. Efficient splitting of necklaces. In Nikhil Bansal, Emanuela

Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.14.

3 Noga Alon and Douglas B. West. The Borsuk-Ulam theorem and bisection of neck-
laces. Proceedings of the American Mathematical Society, 98(4):623–628, 1986. doi:
10.1090/S0002-9939-1986-0861764-9.

4 Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider.
Well-Separation and Hyperplane Transversals in High Dimensions. In Artur Czumaj and Qin
Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–
16:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.SWAT.2022.16.

5 Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational Complexity
of the α-Ham-Sandwich Problem. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming (ICALP
2020), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–
31:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICALP.2020.31.

6 Robert Crowston, Mark Jones, and Matthias Mnich. Max-cut parameterized above the
Edwards-Erdős bound. Algorithmica, 72(3):734–757, 2015. doi:10.1007/s00453-014-9870-z.

ISAAC 2023

https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.4230/LIPIcs.ICALP.2021.14
https://doi.org/10.1090/S0002-9939-1986-0861764-9
https://doi.org/10.1090/S0002-9939-1986-0861764-9
https://doi.org/10.4230/LIPIcs.SWAT.2022.16
https://doi.org/10.4230/LIPIcs.SWAT.2022.16
https://doi.org/10.4230/LIPIcs.ICALP.2020.31
https://doi.org/10.4230/LIPIcs.ICALP.2020.31
https://doi.org/10.1007/s00453-014-9870-z

15:14 An FPT Algorithm for Splitting a Necklace Among Two Thieves

7 Jesús De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil Mustafa. The discrete yet
ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bulletin of the
American Mathematical Society, 56(3):415–511, 2019. doi:10.1090/bull/1653.

8 Christopher S. Edwards. Some extremal properties of bipartite subgraphs. Canadian Journal
of Mathematics, 25(3):475–485, 1973. doi:10.4153/CJM-1973-048-x.

9 Christopher S. Edwards. An improved lower bound for the number of edges in a largest
bipartite subgraph. In Proc. 2nd Czechoslovak Symposium on Graph Theory, Prague, pages
167–181, 1975.

10 Paul Erdős. On some extremal problems in graph theory. Israel Journal of Mathematics,
3:113–116, 1965.

11 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 638–649, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3313276.3316334.

12 Charles H. Goldberg and Douglas B. West. Bisection of circle colorings. SIAM Journal on
Algebraic Discrete Methods, 6(1):93–106, 1985. doi:10.1137/0606010.

13 Venkatesan Guruswami. Maximum cut on line and total graphs. Discrete Applied Mathematics,
92(2):217–221, 1999. doi:10.1016/S0166-218X(99)00056-6.

14 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Separations in proof complexity and TFNP. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 1150–1161, Los Alamitos,
CA, USA, 2022. IEEE Computer Society. doi:10.1109/FOCS54457.2022.00111.

15 Jiří Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer New
York, 2002. doi:10.1007/978-1-4613-0039-7.

16 Svatopluk Poljak and Daniel Turzík. A polynomial time heuristic for certain subgraph
optimization problems with guaranteed worst case bound. Discrete Mathematics, 58(1):99–104,
1986. doi:10.1016/0012-365X(86)90192-5.

17 Sambuddha Roy and William Steiger. Some combinatorial and algorithmic applications
of the Borsuk–Ulam theorem. Graphs and Combinatorics, 23(1):331–341, June 2007. doi:
10.1007/s00373-007-0716-1.

18 William Steiger and Jihui Zhao. Generalized ham-sandwich cuts. Discrete & Computational
Geometry, 44(3):535–545, 2010. doi:10.1007/s00454-009-9225-8.

19 Arthur H. Stone and John W. Tukey. Generalized “sandwich” theorems. Duke Math. J.,
9(2):356–359, 1942. doi:10.1215/S0012-7094-42-00925-6.

https://doi.org/10.1090/bull/1653
https://doi.org/10.4153/CJM-1973-048-x
https://doi.org/10.1145/3313276.3316334
https://doi.org/10.1137/0606010
https://doi.org/10.1016/S0166-218X(99)00056-6
https://doi.org/10.1109/FOCS54457.2022.00111
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1016/0012-365X(86)90192-5
https://doi.org/10.1007/s00373-007-0716-1
https://doi.org/10.1007/s00373-007-0716-1
https://doi.org/10.1007/s00454-009-9225-8
https://doi.org/10.1215/S0012-7094-42-00925-6

Fast Convolutions for Near-Convex Sequences
Cornelius Brand #

Institute of Logic and Computation, Vienna University of Technology, Austria

Alexandra Lassota #

Max Planck Institute for Informatics, SIC, Saarbrücken, Germany

Abstract
We develop algorithms for (min, +)-Convolution and related convolution problems such as Super
Additivity Testing, Convolution 3-Sum and Minimum Consecutive Subsums which use the
degree of convexity of the instance as a parameter. Assuming the min-plus conjecture (Künnemann-
Paturi-Schneider, ICALP’17 and Cygan et al., ICALP’17), our results interpolate in an optimal
manner between fully convex instances, which can be solved in near-linear time using Legendre
transformations, and general non-convex sequences, where the trivial quadratic-time algorithm is
conjectured to be best possible, up to subpolynomial factors.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases (min, +)-convolution, fine-grained complexity, convex sequences

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.16

Funding The research leading to this article was partially carried out at EPFL, Lausanne, Switzer-
land, funded by the Swiss National Science Foundation project Complexity of integer Program-
ming (207365).
Cornelius Brand: Supported by FWF grant Y1329 in the START-Program (ParAI).
Alexandra Lassota: Funded by the Swiss National Science Foundation project Complexity of integer
Programming (207365).

1 Introduction

The (min, +)-convolution, also called tropical convolution, is an operation on sequences that
forms the analogue of polynomial multiplication in the tropical semiring: additions are
replaced by taking minima, whereas multiplications become additions.

Let R̄ = R ∪ {∞}. Formally, the (min, +)-convolution a ∗ b of two sequences a =
(a0, . . . , an) ∈ R̄n+1 and b = (b0, . . . , bn) ∈ R̄n+1 is defined as the sequence c = (c0, . . . , c2n) ∈
R̄2n+1 where

ck = min
i+j=k

ai + bj for k = 0, . . . , 2n. (1)

For computational purposes, the inputs are restricted to sequences over Z̄ = Z ∪ {∞}.
Associated with this operation is the following problem.

(min, +)-Convolution

Input: Two sequences a, b ∈ Z̄n+1

Output: All entries of c = a ∗ b

The trivial algorithm computing a ∗ b given a and b takes a quadratic number of steps in
n. Over the years, great efforts have been directed at improving substantially over this trivial
bound to no avail. Consequently, it has been conjectured that this is essentially optimal up
to subpolynomial factors:

▶ Conjecture 1 ([19, 25]). There is no algorithm solving (min, +)-Convolution in time
n2−ε · polylog(d) on integral inputs a, b of maximal absolute value d, for any constant ε > 0.

© Cornelius Brand and Alexandra Lassota;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cbrand@ac.tuwien.ac.at
https://orcid.org/0000-0002-1929-055X
mailto:alassota@mpi-inf.mpg.de
https://orcid.org/0000-0001-6215-066X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Fast Convolutions for Near-Convex Sequences

While polynomial improvements seem out of reach, there are faster algorithms for the
problem, shaving off subpolynomial factors [10, 31, 15].

However, some algorithms can solve the problem in truly subquadratic time, but do so
only on restricted input classes. Namely, Chan and Lewenstein [14] give an O(n1.87)-time
algorithm for inputs consisting of monotone sequences with numbers bounded by O(n). This
was recently improved to Õ(n1.5) by a break-through result by Chi et al. [16]. Further, there
is an algorithm that solves (min, +)-Convolution on convex input sequences in time Õ(n).
It can be formulated abstractly as an application of the so-called Legendre transformation,
which can even be implemented in linear instead of quasilinear time [27].

Tropical convolutions on general inputs are conjectured to need a least a quadratic running
time, whereas there is a linear-time algorithm if both sequences are convex. So far, no results
are known which interpolate between fully convex and non-convex sequences in a way that
reproduces the quadratic running time in the hardest cases, and the linear running time in
the easiest cases. This shows that the role convexity plays is not yet well understood and
raises the following question: Can this difference in complexity be quantified? In particular,
can the degree of convexity of a sequence be measured in a way that explains both the
linear and the quadratic running times in the “most convex” and “most non-convex” cases?
We answer these questions in the affirmative. We give two sensible measures to quantify
the convexity of an instance. Further, we use them to obtain algorithms which interpolate
between convex and non-convex instances.

This line of research can be understood as part of a recent branch of research in para-
meterized algorithms referred to as FPT-in-P algorithms [2, 22, 23, 24, 28].1 These are
algorithms that admit FPT-style running times of the form f(k) · nO(1), but for problems
that are polynomial-time solvable, with the goal of reducing the polynomial dependency on
n for small values of k.

Related Problems
Given that (min, +)-Convolution is a well-studied problem within fine-grained complexity
theory, there are many other, closely related problems that can either be reduced to (min, +)-
Convolution or that (min, +)-Convolution reduces to. The independent articles by
Cygan et al. [19] and Künnemann, Paturi and Schneider [25] give an excellent overview over
these problems and their relations to each other, and we make no attempt of recalling all of
them here.

Yet, there are some specific problems that are relevant in the context of this article. Let
us first address some obvious variations of (min, +)-Convolution. Consider the problem
obtained from (min, +)-Convolution after changing the min in the definition of a ∗ b for a
max, thereby obtaining the following problem.

(max, +)-Convolution

Input: Two sequences a, b ∈ Z̄n+1

Output: All entries of the sequence c ∈ Z̄2n+1, where ck = maxi+j=k ai + bj

For general inputs, these two cases are interreducible via a pointwise negation of the inputs.
Since we are concerned with convexity of inputs, we note that whatever applies to convex
sequences for (min, +)-Convolution applies equally to concave sequences for (max, +)-
Convolution, which are precisely the pointwise negations of convex sequences. In particular,

1 Of course, as with parameterized algorithms in general, there is a large number of works that fall into
the regime of FPT-in-P algorithms before the term had been coined.

C. Brand and A. Lassota 16:3

our algorithmic results and even our notion of measuring convexity translate in a direct
manner to algorithmic results about (max, +)-Convolution. For ease of exposition, we
thus only speak about (min, +)-Convolution in the remainder of this article.

Another very closely related problem studied in its maximization-guise in [19] is:

Super Additivity Testing
Input: A sequence a ∈ Z̄n+1

Output: Whether ak ≤ mini+j=k ai + aj for all k holds

This can be immediately reduced to the special case of (min, +)-Convolution where a = b

holds, and O(n) additional comparisons – in particular, all our algorithms for (min, +)-
Convolution yield also algorithms for Super Additivity Testing.

One more problem relevant for this article that is close in spirit to (min, +)-Convolution
is the following:

Convolution 3-Sum
Input: A sequence t ∈ Zn+1

Output: Whether there are 0 ≤ i ≤ j ≤ n such that ti + tj = ti+j

This problem is a variant of the well-known 3-Sum problem. Most relevant to our work
is the reduction from 3-Sum to Convolution 3-Sum, first appearing as a randomized
reduction [29]. Later, this reduction was made deterministic [13].

Finally, we deal with the following problem.

Minimum Consecutive Subsums
Input: A sequence t ∈ Zn

Output: For each length k = 1, . . . , n, mini=1,...,n−k+1
∑i+k−1

j=i
ti

In prose, we are looking for the minimum consecutive sum of every length in the sequence t.
The fine-grained equivalence between (min, +)-Convolution and Minimum Consecutive
Subsums was first observed in [26]. Like (min, +)-Convolution, the problem Minimum
Consecutive Subsums has an obvious maximization variant Maximum Consecutive
Subsums, which we also discuss.

Our Contribution
We present new measures to capture the degree of convexity of an instance of (min, +)-
Convolution, namely, the convex sequence number and the convex rank. We present
a linear-time algorithm to compute the convex sequence number of a sequence (and its
decomposition into convex sub-sequences). This measure can be large for a particular class
of inputs whose convexity can nevertheless be exploited efficiently. To handle such cases, we
introduce a generalization to the convex sequence number, which we call the convex rank
of a sequence. We prove that we can compute a sufficiently accurate approximation to this
parameter and output the corresponding convex sequences in polynomial time.

Secondly, we present efficient algorithms for (min, +)-Convolution, Super Additivity
Testing, Convolution 3-Sum, and Minimum Consecutive Subsums under both para-
meters. This yields Õ(sn) algorithms for each problem if the input sequence(s) have length
n and a convex sequence number of s. As for the convex rank, (min, +)-Convolution,
Super Additivity Testing, and Minimum Consecutive Subsums can be solved in
time Õ(r2n) for r being the convex rank of the input sequence(s). These algorithms con-
tribute to the understanding of the usefulness of convexity and the structural properties

ISAAC 2023

16:4 Fast Convolutions for Near-Convex Sequences

of instances with bounded convexity. Further, our observations also lead to the result
for (min, +)-Convolution on fully convex sequences but avoids the heavy machinery of
Legendre transformations.

Related Work
We have already pointed out related algorithmic results on (min, +)-Convolution. More
closely related to our bounded-convexity regime, there are other works that consider sequences
that are “near-convex” in other ways. For instance, Axiotis-Tzamos [4] consider k-step concave
sequences (and the extension to convexity is trivial); Bateni et al. [6] as well as a recent
preprint of Bringmann-Cassis [11] use so-called ∆-convexity; furthermore, Arkin et al. define
a convex partition number [3] in a different context. While all of these measures are well-
motivated in the respective papers, they do not meet the criterion that motivates the research
reported on in the present paper: they do not allow in a natural manner to interpolate
between maximally non-convex sequences (corresponding to parameter value roughly n) and
maximally convex (that is, plainly, convex) sequences (corresponding to parameter value 1).
It is this gap that this article addresses.

2 Preliminaries

A sequence a ∈ R̄n+1 is called convex if, for all i = 1, . . . , n − 1, it holds that

2ai ≤ ai−1 + ai+1.

This can be seen as a discretized version of the characterization that a differentiable function
is convex if and only if its derivative is monotonically increasing; in particular, the preceding
condition is equivalent to the slopes of the sequence satisfying

ai − ai−1 ≤ ai+1 − ai.

By convention, we regard every sequence of length less than three as convex. This is in
line with the characterization of convex sequences as those sequences whose piecewise-linear
interpolation epigraph is convex.

Let us formally define the matrix consisting of all possible index combinations a and b.

▶ Definition 2. Let [a, b] ∈ R̄(n+1)×(n+1) denote the tropical rank-1 matrix associated with
a ∈ R̄(n+1) and b ∈ R̄(n+1), defined through:

[a, b]i,j = ai + bj for i, j = 0, . . . , n.

▶ Remark 3. There are several inequivalent variants of the tropical rank of a matrix, each
stemming from a different characterization of matrix rank in the usual sense. The notion of
rank-1 matrices employed here corresponds to what is sometimes called the Barvinok rank of
a matrix [21].
Define the entries in the k-th antidiagonal for k = 0, . . . , 2n in [a, b] as

[a, b](k) =
{

([a, b]0,k, [a, b]1,k−1, . . . , [a, b]k,0) if 0 ≤ k ≤ n,

([a, b]n,k−n, [a, b]n−1,k−n+1, . . . , [a, b]n−(k−n),2k−2n) if n < k ≤ 2n.

Computing a ∗ b can be equivalently viewed as finding the minimum in each antidiagonal
in [a, b]i,j . In particular,

ck = min [a, b](k)

C. Brand and A. Lassota 16:5

and thus,

a ∗ b = c = (min [a, b](0), . . . , min [a, b](2n)).

The two following lemmas will come in handy for our algorithms.

▶ Lemma 4. Let a, b ∈ R̄n+1 be convex sequences. Then, for each k, the k-th antidiag-
onal [a, b](k) is also a convex sequence.

Proof. Let ãk = (a0, . . . , ak) for 0 ≤ k ≤ n and ãk = (ak−n, . . . , an) for n < k ≤ 2n,
i.e., the subsequence of a used to form the antidiagonal [a, b](k). We define analogously
b̃k = (bk, . . . , b0) for 0 ≤ k ≤ n and b̃k = (bn, . . . , bk−n) for n < k ≤ 2n. It is clear that ãk

is convex for all k. The convexity of b̃k for all k follows geometrically from the fact that
convexity of the epigraph is retained by reflection along a line parallel to the ordinate. The
sum of ãk and b̃k is convex since ãk and b̃k are, and this sum is precisely [a, b](k). ◀

▶ Lemma 5. The minimum of a convex sequence t ∈ R̄n+1 can be computed in time O(log n).

Proof. Convex sequences are characterized by the differences between the values at adjacent
positions increasing, and their minimum is attained where these differences pass from negative
to positive. Since there are n differences and they form a non-decreasing sequence, this can
be done in time O(log n) using binary search. ◀

▶ Remark 6. Note now that Lemmas 5 and 4 imply directly a Õ(n) algorithm for (min, +)-
Convolution on convex sequences, by computing the minima of the 2n + 1 anti-diagonals
in time O(log n). We extend this algorithm based on binary search on the anti-diagonals to
more general, non-convex sequences. The same principle will be useful for algorithms for
other problems related to (min, +)-convolutions.

In addition to this method, we use a second approach, recently described in [12, 4], that
can be employed to design a linear-time algorithm for convolving a convex sequence and an
arbitrary sequence, convex or not. This is based on a variant of the matrix [a, b], defined as
follows:

▶ Definition 7. Pad b with n + 1 ∞-entries to the left, by setting b−i = ∞ for 1 ≤ i ≤ n + 1,
and let [a, b] ∈ R̄(n+1)×(n+1)[a, b]k,i = ai + bk−i. We call [a, b] the shifted rank-1 matrix
associated to a and b.

We then make the following observation, as done in [12]:

▶ Lemma 8. Let b be convex. Then [a, b] is Monge, that is

[a, b]i,j + [a, b]i+1,j+1 ≤ [a, b]i+1,j + [a, b]i,j+1.

Proof. First, note that padding b with ∞-entries does not impact convexity. Then, we have
that

[a, b]i,j + [a, b]i+1,j+1 − [a, b]i+1,j − [a, b]i,j+1 =

ai + bj−i + ai+1 + bj−i − ai+1 − bj−i−1 − ai − bj−i+1 =
2bj−i − bj−i−1 − bj−i+1,

and 2bk ≤ bk−1 + bk+1 is precisely the definition of b being convex. ◀

▶ Remark 9. Note that instead of searching for minima of anti-diagonals in [a, b], the
equivalent task for [a, b] is finding the minimum of each row, which, for Monge matrices, can
be accomplished in linear time via the SMAWK algorithm [1].

ISAAC 2023

16:6 Fast Convolutions for Near-Convex Sequences

3 Convexity Measures

In the following, we introduce two related, natural definitions for quantifying convexity.
Both of these measures come with different advantages and can be used in different settings,
witnessing their independent relevance.

The first convexity measure called convex sequence number captures the smallest number
of cuts to divide a sequence t ∈ R̄n+1 into convex sub-sequences in a straightforward manner.
In turn, the convex rank of t is the number of convex sequences of length n + 1 such that
their index-wise minimum equals t. While the convex sequence number is easy to compute, it
may be large compared to the convex rank whenever the convex length-n + 1 sub-sequences
are “entangled.” We elaborate on an example below. However, we do not know how to
compute the convex rank exactly. Instead, we show how to efficiently compute an O(log(n))-
approximation algorithm for the convex rank, which is indeed sufficient to (nearly) maintain
the running time guarantees of our algorithms.

Convex Sequence Number
Let us define the convex sequence number s formally.

▶ Definition 10. Let t = (t0, . . . , tn) ∈ R̄n+1 be a sequence. If there exist indices I =
(i0, i1 . . . , is−2) with i0 < i1 < · · · < is−2 such that the sequences (t0, . . . , ti0), (ti0+1, . . . ti1),
. . . , (tis−2+1, . . . , tn) are convex and |I| is of minimum cardinality, then we call s = |I| + 1
the convex sequence number of t.

That is, the convex sequence number measures the smallest amount of cuts we have to
make in t such that all s sub-sequences are convex, which we believe to be a natural way of
measuring how convex a sequence is that is accessible on an intuitive level. We refer to the
indices in I as cuts. If it is not obvious from the context, we use the convention to denote
the convex sequence number of a sequence t by st.

Indeed, we can compute the convex sequence number efficiently.

▶ Theorem 11. There is a linear-time algorithm that outputs the minimum number of cuts
for a decomposition of a sequence t ∈ R̄n+1 into convex sub-sequences.

Proof. We proceed in a greedy fashion. That is, we pass through the sequence and check if
each new point added to the sequence satisfies the convexity property.

In detail, we start with the first sub-sequence. Every two next points can always be added
(or less, if we already arrived at the end of the instance). For every next new point with
index i + 1, we check whether the second-order difference ti−1 − 2ti + ti+1 is non-negative.
If so, we add the point and continue. Otherwise, we define i + 1 as the cut and repeat the
procedure.

Regarding minimality, this is indeed optimal as we cannot add any further point to the
current sub-sequence and each new point is independent of the points selected before the
direct two predecessors. As for correctness, note that the resulting sub-sequences are convex
by construction.

It is clear that this procedure takes a linear amount of steps in the input length. ◀

The following property is crucial for our algorithms.

▶ Lemma 12. Let a, b ∈ Z̄n+1. The parameter convex sequence number is subadditive on
each antidiagonal, that is,

s[a,b](k) ≤ sa + sb

holds for all k.

C. Brand and A. Lassota 16:7

Proof. Let I = i0 < . . . < isa−2 be the cuts of a decomposition into convex sub-sequences of
a, and similarly, J = j0 < · · · < jsb−2 for b.

Let ℓ0 < ℓ1 < . . . < ℓs−2 be the union of I and J in increasing order. Note that we can
still assume this arrangement to be strictly increasing, since taking the union of two sets
removes any potential duplicates. Then, clearly, it holds that s ≤ sa + sb.

It remains to show that ℓ0, . . . , ℓs−2 are indeed the cuts of [a, b](k) into convex sub-
sequences, and thus s ≥ s[a,b](k) . Since a and b are per definition convex on each of their
sub-sequences, they are also convex on every contiguous subset of them. That is, on each
sub-sequence induced by the breakpoints ℓ, a and b are both convex. Hence, [a, b](k) is convex
on these sub-sequences as well, which was to show. ◀

▶ Remark 13. We may at this point already observe the following generalization of the
convolution algorithm for purely convex sequences described in Remark 6: Namely, there
is an algorithm for (min, +)-Convolution on two sequences a, b ∈ Z̄n+1 running in time
Õ((sa + sb) · n), by employing Theorem 11 and Lemma 12, and observing that the merged
index sets in the proof of the latter can be computed in linear time in n.

Convex Rank
For convex sequences, also the procedure from the previous remark can be adapted to
use the SMAWK algorithm. To this end, let b(1), . . . , b(sb) ∈ R̄n+1 be the pieces of the
convex sequence decomposition of b, with each b(i) padded with ∞-entries outside the indices
corresponding to the i-th index interval in the decomposition of b. Let c = a ∗ b as before.
Then, observe that

ck = min
s=1,...,sb

(a ∗ b(s))k

holds for all k, that is, c is given as the point-wise minimum of a ∗ b(1), . . . , a ∗ b(sb). Using
the fact that b(s) is convex by definition for each s, we can then apply the SMAWK-based
algorithm from Remark 9 to compute c in time O(min{sa, sb} · n) This observation can be
generalized as follows.

▶ Lemma 14. Let a, b(1), . . . , b(r) ∈ R̄n+1 be any convex sequences, and let b ∈ R̄n+1 be
defined by setting bi = minρ b

(ρ)
i , that is, b is the point-wise minimum of the b(ρ). Let c = a∗ b

and c(ρ) = a ∗ b(ρ). Then,

ck = min
ρ

c
(ρ)
k

for all k, that is, c is the point-wise minimum of the c(ρ).

Proof. Follows directly from the fact that x + min{y, z} = min{x + y, x + z} for all x, y, z ∈
R̄. ◀

This observation motivates directly and naturally the following definition:

▶ Definition 15. Let t = (t0, . . . , tn) ∈ R̄n+1 be a sequence. If there exists a set T =
{t(0), t(1) . . . , t(r−1)} of convex sequences with ti ∈ R̄n+1 such that the index-wise minimum
satisfies tk = min{t

(0)
k , . . . , t

(r−1)
k }, then we call T a convex r-decomposition of t. The

minimum r such that there exists a convex r-decomposition for t we call the convex rank of t.

ISAAC 2023

16:8 Fast Convolutions for Near-Convex Sequences

Figure 1 The solid line is the piece-wise linear extension of a non-convex sequence c. The dashed
and dotted lines define the piece-wise linear extension of two convex sequences a and b whose
point-wise minimum is c (the values of a and b are indicated by disks and crosses, respectively).
Dashed, gray vertical lines signify the cut points of the convex sequence number of the sequence c.

Beyond the motivation through the structural observation in Lemma 14, it may require
further elaboration to make plausible the supposition that the convex rank is indeed a natural
measure of convexity. In essence, it can be viewed as one answer to the question: How many
convex sequences are needed to build t from them? Any answer to this question depends on
what operation constitutes the formal meaning of “building” a sequence from others.

In the general context of mathematical structures, this is formalized as having a set S with
a binary operation ⊕ (the “building” operation), such that S contains some distinguished
subset X ⊂ S of particular interest. Then, it is natural to ask for the X-rank of an arbitrary
element s ∈ S: If s ∈ X, its X-rank is one, and in general it is the minimum number r

needed to write s = x1 ⊕ · · · ⊕ xr with xi ∈ X for all 1 ≤ i ≤ r. Examples of this abound in
the familiar setting of ⊕ being ordinary addition over a linear space: If S is a linear space of
matrices, X can be taken to be the set of matrices of the form A = uvT for vectors u and v of
the appropriate dimension; in this case, X-rank recovers the ordinary matrix rank. A more
involved example from algebraic geometry is furnished by secant varieties of a variety X,
arising as (the closure of projectivized) ordinary sums of points on the variety X, recovering
symmetric, anti-symmetric and tensor (border) rank (when choosing X to be the Veronese,
Grassmannian and Segre, respectively), see [8] for ample background on this particular class
of examples.

In the more closely related context of tropical convolutions, the operation ⊕ being the
point-wise minimum of its operands is the natural “additive” operation, forming a semiring
together with the operation of tropical convolution. For example, the Barvinok rank of a
tropical matrix (see [5] and the treatment in [21]), is the smallest number of tropical rank-one
matrices needed to express a given matrix as their pointwise minimum. Work by Develin [20]
deepens the analogy to ordinary ranks through a tropical analogue of secant varieties. In all
of the cases outlined, X-rank corresponds to the complexity of some object with respect to a
representation (as a sum) by the set X. Given this mathematical context, it is a very natural
thing to measure the degree of convexity through the concept of X-rank of a sequence, where
X is the set of convex sequences.

C. Brand and A. Lassota 16:9

Relation to Convex Sequence Numbers

From its definition, it is clear that the convex rank of a sequence is at most its convex
sequence number. However, the two measures can be arbitrarily far apart: Roughly speaking,
the critical instances are those where two non-consecutive sub-sequences of t together form a
convex sub-sequence (padding the missing indices accordingly). In particular, two convex
sequences can be intertwined arbitrarily often. Choosing points which are always at the point-
wise minimum of the two sequences, we can produce an arbitrarily large convex sequences
number as every time the sequences are intertwined further, their intersection point defines a
new cut in the sense of convex sequence numbers. Indeed, consider any prefix of the infinite
sequences which are defined for i ≥ 0 as

a2i = i2 + (i mod 2),
b2i = i2 + 1 − (i mod 2),

b2i+1 = a2i+1 = i2 + i + 1.

An easy calculation shows that both a and b define convex sequences, but their point-wise
minimum has unbounded convex sequence number. See Figure 1 for an illustration.

Algorithms and Properties

An obvious question is how to compute the convex rank of a sequence. First, note the
following.

▶ Proposition 16. There is an algorithm running in time O(rn) to decide whether or not a
given sequence a ∈ Z̄n+1 has convex rank at most r.

Proof. Let a ∈ Z̄n+1 and r be given. By definition, for every i = 0, . . . , n in any convex
r-decomposition a(1), . . . , a(r) of a there must be some ρ such that ai = a

(ρ)
i . Now, we may

guess this ρ for every i and obtain r sequences â(1), . . . , â(r) defined partially only at those
indices i for which the current guess assumed a given â(ρ) to satisfy ai = â

(ρ)
i . However, it

is easy to extend these partial definitions in a piece-wise linear manner (and with ∞ from
the left and the right) and check if the resulting sequences are convex and define a as their
point-wise minimum. Clearly, if all â(ρ) are convex and yield a point-wise, a is of convex
rank at most r. If this is not the case for any guess of assignments, then a is of convex rank
at least r + 1. ◀

In addition to this brute-force approach, we now show how we can approximate the convex
rank of a sequence t with a greedy method efficiently, yielding the following theorem. For
the remainder of the paper, we write rt to denote the convex rank of a sequence t.

▶ Theorem 17. There is an O(log(n))-approximation algorithm running in time O(rt ·
n4 log n) that outputs for a sequence t ∈ R̄n+1 its decomposition into convex sequences of
length n + 1 such that their index-wise minimum equals t.

The algorithm is a greedy algorithm enriched with a dynamic program. The intuition is as
follows: We consider the problem as a sort of arithmetic variant of Set Cover. In particular,
we are given a sequence of numbers t, and the goal is to “cover” this sequence of numbers
with convex sequences t(0), . . . , t(r−1), such that for each index i, none of the elements t

(j)
i in

any sequences j in the covering can be strictly less than ti. The approach is similar to the
greedy approximation algorithm for Set Cover. However, making locally optimal decisions
in each step requires a separate dynamic program.

ISAAC 2023

16:10 Fast Convolutions for Near-Convex Sequences

Proof of Theorem 17. We make the assumption that t contains no ∞-entries: trailing and
leading ∞-entries can simply be removed from t without changing the optimum. Furthermore,
if there is an ∞ in the interior of t, this splits t into two disjoint parts, t(1) and t(2), such
that t = (t(1), ∞, t(2)). Any convex sequence t(i) that can contribute to a solution (that is,
has t

(i)
j = tj for at least one j) can be less than ∞ on at most one of t(1) or t(2), so we may

treat t(1) and t(2) as separate instances, and their optimal solutions are the unions of any
two optimal solutions of t(1) and t(2), respectively. This procedure can be repeated for any
remaining ∞-entries of t.

Now, at each step of our greedy algorithm, we aim to solve the following problem. Given
a set of indices I ⊆ {0, . . . , n}, we wish to compute a convex sequence t(j) ∈ R̄n+1 that
satisfies t

(j)
i ≥ ti for all i ∈ {0, . . . , n}, and furthermore, meets the following criterion: Let

Jj ⊆ {0, . . . , n} be the set of indices where equality holds, i.e., t
(j)
i = ti if and only if i ∈ Jj .

Then, our goal is to find a sequence t(j) maximizing |Jj \ I|. The set I will take on the
following role in the greedy procedure: At every step, we keep track of the indices in the
original sequence t that already have been covered by the selection of sequences up until this
point. The set Jj \ I is then the set of indices that are covered by the newly constructed
sequence t(j).

For this intermediate problem, we now construct a dynamic program that solves it
optimally. First, we argue that we can make the following assumption on any optimal
solution t(j) without loss of generality: Firstly, the piece-wise linear extension of t(j) is
not linear precisely at the indices Jj . Secondly, t

(j)
i = ∞ for all values of i outside of

[min Jj , max Jj]. Let us refer to such sequences t(j) as t-compatible. This can be seen as
follows. Consider some convex sequence t(j) that satisfies t

(j)
i ≥ ti at all i, and has t

(j)
i = ti

at indices i ∈ Jj = (j1, . . . , jp), where j1 < . . . < jp. Observe that replacing t
(j)
i with ∞ both

strictly before and after j1 and jp retains convexity of t(j). We further replace the segment
of the piece-wise linear extension of t(j) between jℓ and jℓ+1 with the straight line segment
connecting the points (jℓ, t

(j)
jℓ

) and (jℓ+1, t
(j)
jℓ+1

) contained in this epigraph. By the geometric
characterization of convexity of a sequence as convexity of the epigraph of its piece-wise linear
extension, and in turn by the definition of convexity as containing all line segments between
any pair of contained points, the sequence t(j′) obtained by this operation has t(j′) ≥ t(j) ≥ t

at every point. Moreover, replacing t(j) by t(j′) corresponds to intersecting the epigraph of
the piece-wise linear extension of t(j) with a collection of half-planes. Therefore, t(j′) is a
convex sequence satisfying t(j′) ≥ t(j) ≥ t (point-wise), and the restrictions of t(j′), t(j) and t

to Jj are all equal. By construction, t(j′) is t-compatible.
Consider now ∆, the set of normalized differences between any two (possibly non-

consecutive) values of t, that is, ∆ =
{

ti−tj

|i−j| | i ̸= j
}

∪ {±∞}. In our dynamic program,
we keep track of the following data: For each index i and every δ ∈ ∆, we are interested
in t-compatible sequences t(j) maximizing |Jj \ I| among all choices of t(j) such that the
following holds: (1) t

(j)
i = ti, t

(j)
ℓ = ∞ for all ℓ > i, and (2) t

(j)
i − t

(j)
i−1 ≤ δ if i > 0. For

each i > 0 and δ, let T [i, δ] contain such a sequence. If indeed these conditions are satisfied,
then

⋃
i T [i, ∞] contains an optimal solution. Now, towards constructing T that contains

such an optimal sequence at every index, let first T [0, δ] = (t0, ∞, . . . , ∞) for all δ > −∞,
and T [i, −∞] = (∞, . . . , ∞, ti, ∞, . . . , ∞) for all i. Note that the condition t

(j)
i − t

(j)
i−1 ≤ −∞

forces t
(j)
i < ∞ and t

(j)
i−1 = ∞. Compute then, for every i, the set V (i) of all indices visible

from i, that is, all indices j < i such that the straight line segment between ti and tj is
contained in the epigraph of the piece-wise linear extension of t. Then, for δ > −∞, T [i+1, δ]
is given by the optimum sequence t(j) contained in

⋃
j∈V (i+1) T [j, δ], extended between j and

i+1 with the straight-line segment connecting (j, tj) and (i, ti+1). In particular, t
(j)
i+1 −t

(j)
i = δ

in the sequence corresponding to this straight-line extension.

C. Brand and A. Lassota 16:11

The sequences are t-compatible by construction: The sequence has a possible leading and
trailing stretch of ∞, and at all points in between, it is constructed by forming straight-line
connections between points of the form (i, ti) and (j, tj). Furthermore, the sequences are
convex, because the slopes between consecutive line segments are chosen to be non-decreasing.
Optimality follows inductively. Now, applying this algorithm greedily yields the desired
approximation bound, with an identical analysis as for Set Cover [17].

As for the running time, the table T has O(n3) entries; computing the sets ∆, as well as
V (i) over all i, takes O(n2) time. Computing a single table entry therefore requires O(n)
time because each V (i) is of size O(n), and over all O(n3) table entries yields an algorithm
running time in O(n4). Performing this greedily at most O(rt log n) times gives the claimed
running time bound. ◀

▶ Remark 18. The greedy set cover approach has proved useful in a vast number of combinat-
orial and geometric problems. Notably, e.g. the so-called convex partition number [3] admits
a similar, if much more direct approximation via the greedy set cover heuristic, which is
however known to NP-hard to compute. Another concept related at least in spirit to convex
rank is the notion of Barvinok rank, where one asks for the minimum number of tropical
rank-one matrices needed to express a given matrix as their entry-wise minimum. This
quantity, in turn, is hard to compute (and even approximate) [30]. One pressing question
raised by these results is the complexity of exactly computing the convex rank of a sequence.
As it will turn out, the running time for computing the decomposition is the bottleneck
in the algorithms. The blow-up for the algorithms itself is negligible though, as it only
adds a factor of O(log n). So, to distinguish between computing the decomposition and the
running times of the algorithms, we suppose in the following that the decomposition is given.
Such assumptions are commonly used since at least 1993 [18] in the regime of fine-grained
complexity and fixed-parameter tractability to distinguish the running times with respect
to some parameter and the corresponding computation of the decomposition, see, e.g., the
parameters and algorithms for treewidth [9], cliquewidth [18], and twinwidth [7] (which is
even NP-hard to compute optimally) among others.

▶ Lemma 19. Let a, b ∈ Z̄n+1. It holds that

r[a,b](k) ≤ ra · rb

for all k.
Proof. Denote by A = {a(0), a(1) . . . , a(ra−1)} the convex sequences of the decomposition of
a, and similarly, B = {b(0), b(1) . . . , b(rb−1)} for b.

Set C = {a(ℓ) ∗ b(m) | a(ℓ) ∈ A, b(m) ∈ B)}. We claim that C corresponds to a decomposi-
tion of [a, b](k) into convex sequences.

Let [a, b](k) = c = (c0, . . . , c2n) be the entries of the antidiagonal. Each entry ck is a sum
of two sequences a

(ℓ)
i ∈ A and b

(m)
k−i ∈ B as all entries of a and, respectively, b are preserved

in (at least) one of the sequences of the decompositions.
All entries corresponding to one of such combinations a(ℓ), b(m) form a convex sequence

as adding two convex sequences remains convex.
It holds that |C|= ra · rb > r[a,b](k) . This concludes the proof. ◀

4 Convolution Problems

In this section, we present efficient algorithms for the convolution problems under the paradigm
of both convexity measures. Note that ra ≤ sa implies that, whenever the dependence on
ra in an algorithm is linear, this also implies an algorithm with linear dependence on sa.

ISAAC 2023

16:12 Fast Convolutions for Near-Convex Sequences

However, there are cases where the algorithms we obtain have running times depending on
ra e.g. quadratically, in which case a separate treatment of parameterizations by sa still
makes sense.

(min, +)-Convolution
We start with the (min, +)-Convolution problem with respect to the convex rank, expedit-
ing Lemma 14.

▶ Theorem 20. There is an algorithm for (min, +)-Convolution on two sequences a, b ∈
Z̄n+1 running in time O(ra · n), provided a convex rank decomposition a(1), . . . , a(ra) of a is
given.

Proof. From Lemma 14, it suffices to compute a(ρ) ∗ b for all ρ = 1, . . . , ra, which can
be accomplished in time O(n) using the SMAWK algorithm as pointed out in Remark 9.
Taking point-wise minima can be done in time O(ra · n), and this shows the claimed running
time. ◀

▶ Remark 21. This algorithm applies to the case of max-convolution of concave rank
decomposition, yielding the same running time bounds. In case the decomposition is not
given, we note that the overhead of applying the decomposition algorithm of Theorem 17 to
the entire input naively, adding a O(n4rt) preprocessing step, can be ameliorated to some
degree: Split a and b into nc consecutive parts of length n1−c each. Then, preprocess each
part separately in time O(n4(1−c)rt), and use the O(n1−crt)-time algorithm for each of the
n2c pairs of such parts to find the solution of the original instance in time O(n4−3c + nc+1),
which is minimized for c = 3/4, giving an algorithm running in time O(n7/4rt).

Observe that there is a direct lower bound under the (min, +)-convolution conjecture:
There is no algorithm solving (min, +)-Convolution in time less than ((sa + sb)n)1−ϵ ·
polylog(d) on integral inputs a, b of maximal absolute value d, for any constant ϵ > 0:
Suppose that there exists an algorithm solving (min, +)-Convolution in time ((sa +
sb)n)2−ϵ · polylog(d) on integral inputs a, b of maximal absolute value d, for any constant
ϵ > 0. As each sequence a (and b) can have a convex sequence number of at most n/2 (every
two consecutive points form one convex sub-sequence), this would mean that we can solve
(min, +)-Convolution in time

((sa + sb)n)1−ϵ · polylog(d) ≤ ((n/2 + n/2)n)1−ϵ ≤ n2−ϵ′
· polylog(d)

on integral inputs a, b of maximal absolute value d, for some constant ϵ′ > 0, contradicting
the (min, +)-convolution conjecture.

Minimum Consecutive Subsums
We consider the Minimum Consecutive Subsums problem on convex inputs. Even though
there exists a reduction to (min, +)-Convolution, see [26], it does not preserve the convexity
of the input. In particular, the reduction computes a such that the i-th entry is the sum of the
first i elements in the (in our case convex) input sequence t. For b, the reduction computes
the sum of the last i elements as its i-th entry. While the first sequence remains convex, the
second becomes concave. Convolving a convex with a concave sequence results in an arbitrary
output with respect to the convexity and thus, our algorithm for (min, +)-Convolution
cannot be used to obtain an algorithm with the desired running time bound. However, we
observe other structural properties of potential solutions, so that we can indeed solve this
problem optimally within the same running time bounds as above yielding the following two
theorems.

C. Brand and A. Lassota 16:13

▶ Theorem 22. There is an algorithm for Minimum Consecutive Subsums on a sequence
t ∈ Z̄n+1 running in time Õ(stn).

Proof. We first compute the decompositions of t into at most st convex sub-sequences in
time O(n) using Theorem 11. Next, we divide each convex sub-sequence into two parts (one
of which may be empty), namely a monotonically decreasing sub-sequence (preceding the
minimum), and a monotonically increasing part (following the minimum). Call the set of
monotone sequences t(1), . . . , t(k) with k ≤ 2st.

When executing the algorithm, we maintain a table M with n entries where the ith entry
corresponds to the best solution found so far for a consecutive subsum of length i. Initialize
each value with ∞ (or a sufficiently large value). We then sweep once through the whole
sequence t and compute for each point tj the minimum consecutive subsum starting at tj ,
but only for all reasonable lengths (defined below) i ∈ {1, . . . , n}.

More formally, for each point tj and each monotone sequence t(k), find its reasonable
interval I(k) = [t(k)

ℓ , t
(k)
ℓ+1, . . . , t

(k)
ℓk

] such that t
(k)
ℓ − tj−1 < 0 (shifting the whole sum one index

to the left is not improving) and tj − t
(k)
ℓk+1 < 0 (shifting the whole sum one index to the

right is not improving). Update all entries in the table M which corresponds to the length
of consecutive sums from tj to t

(k)
p for all j, k and t

(k)
p ∈ I(k) if they are smaller than the

current entry in M . Finally, output M as the solution. During execution, edge cases are
simulated by padding with ±∞ at the end/beginning of monotonically increasing/decreasing
sequences.

Correctness follows easily, as each potential interval holding the minimum is considered.
Regarding the running time, it is crucial to see that each monotone piece will be divided
into non-overlapping intervals by different tj . Thus, while considering all start points tj , we
overall go through all points once. Hence, computing the reasonable intervals for each tj and
k, and the corresponding consecutive subsum overall costs time Õ(stn) (using a standard
trick, we assume that we computed all initial partial sums of t in a single pass, which makes
the interval sums

∑i2
i=i1

ti accessible in time Õ(1)). ◀

▶ Theorem 23. There is an algorithm for Minimum Consecutive Subsums on a sequence
t ∈ Z̄n+1 running in time Õ(r2

t n) given the convex rank decomposition of t.

Proof. The algorithm proceeds basically as in Theorem 22. However, we now have to
deal with multiple convex sequences. This means that for every point tj , we consider the
reasonable intervals of all convex sequences. Again, there will be exactly one interval for
each convex sequence and they are non-overlapping. This leads to a blow-up of a factor of rt,
as we now have rtn instead of n points overall. Also note that once we determined the start
index and end index in the interval, we sum up the actual values in t and not the ones from
the decomposition into convex sequences. ◀

▶ Remark 24. As we only care about the monotone sub-sequences of the sequence, the
concave case can be solved equivalently. Further, by defining the reasonable intervals such
that t

(k)
ℓ − tj−1 > 0 and tj − t

(k)
ℓ+1 > 0, and initializing the table with −∞ entries, we can

also solve the maximising version of the problem called Maximum Consecutive Subsums.

Super Additivity Testing
Turning our attention to Super Additivity Testing, we can immediately deduce the
following by applying our previous results.

ISAAC 2023

16:14 Fast Convolutions for Near-Convex Sequences

▶ Theorem 25. There is an algorithm for Super Additivity Testing on a sequence
a ∈ Z̄n+1 running in time O(ra · n) given the convex rank decomposition of a.

Proof. This follows from choosing b = a, applying Theorem 20, and then checking whether
the result is at least ai for each i. ◀

▶ Remark 26. As (min, +)-Convolution is used as a subroutine, we can easily see that
these algorithms also work for concave inputs.

Convolution 3-Sum

While the previous problems relied on the SMAWK algorithm, we will now employ the
strategy laid out in Remarks 6 and 13.

▶ Theorem 27. There is an algorithm for Convolution 3-Sum on a sequence a ∈ Z̄n+1

running in time Õ(sa · n).

Proof. We first compute the decompositions of a, b into at most sa convex sub-sequences in
time O(n) using Theorem 11. Then, for every anti-diagonal [a, a](k) of [a, a], the breakpoints
of a decomposition of [a, a](k) into convex sub-sequences is immediate from the proof of Lemma
12. Instead of asking for the minimum (as for (min, +)-Convolution), the Convolution
3-Sum problem asks whether a specific element ak is contained in the k-th anti-diagonal
[a, a](k) (although finding the minimum of a convex sub-sequence is still part of our algorithm).
We can answer this question in O(log n) time for each of the O(sa) convex sub-sequences
of [a, a](k), by performing, first, a binary search to find the minimum of each convex sub-
sequences, as in the case of (min, +)-Convolution. Each convex sub-sequence is thereby
divided into two parts (one of which may well be empty), namely a monotonically decreasing
sub-sequence (preceding the minimum), and a monotonically increasing part (following the
minimum). On each of those (at most) two parts, we may then perform an ordinary binary
search in order to determine the presence or absence of the element ak in the current convex
sub-sequence of [a, a](k). Correctness and running time follow immediately. ◀

Interestingly, this algorithm cannot be adapted for the parameter convex rank as before.
This is due to the issue that we do preserve the real minimum values, but cannot guarantee
that each value in the kth antidiagonal corresponds to some sum ti + tj for i + j = k. Testing
this would give an increase in the running time by a factor of n as each antidiagonal could
have up to n positions of the desired value, which would be worse than the trivial known
algorithm for this problem. It remains an interesting question whether there exists an O(rtn)
algorithm for Convolution 3-Sum.

5 Open Questions

The results in the present paper suggest further research directions: Some of the algorithms
could not be shown to be tight as known reduction do not retain the convexity of the
instances, see [19]. Also, excluding a running time of the form O(n + k2) for both convexity
measures k would be of great interest. Further, whether or not the quadratic dependency on
the convex rank in the algorithms is necessary is yet to be determined. It remains open if we
can compute the convex rank exactly in polynomial time or if this problem is NP-hard.

C. Brand and A. Lassota 16:15

References
1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.

Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
doi:10.1007/BF01840359.

2 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with
k mismatches. J. Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)00097-X.

3 Esther M. Arkin, Sándor P. Fekete, Ferran Hurtado, Joseph S. B. Mitchell, Marc Noy, Vera
Sacristán, and Saurabh Sethia. On the reflexivity of point sets. In Frank K. H. A. Dehne,
Jörg-Rüdiger Sack, and Roberto Tamassia, editors, Algorithms and Data Structures, 7th
International Workshop, WADS 2001, Providence, RI, USA, August 8-10, 2001, Proceedings,
volume 2125 of Lecture Notes in Computer Science, pages 192–204. Springer, 2001. doi:
10.1007/3-540-44634-6_18.

4 Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack
and graph algorithms. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 19:1–19:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.19.

5 Alexander I. Barvinok, David S. Johnson, Gerhard J. Woeginger, and Russell Woodroofe.
The maximum traveling salesman problem under polyhedral norms. In Robert E. Bixby,
E. Andrew Boyd, and Roger Z. Ríos-Mercado, editors, Integer Programming and Combinatorial
Optimization, 6th International IPCO Conference, Houston, Texas, USA, June 22-24, 1998,
Proceedings, volume 1412 of Lecture Notes in Computer Science, pages 195–201. Springer,
1998. doi:10.1007/3-540-69346-7_15.

6 Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, Saeed Seddighin, and Cliff Stein.
Fast algorithms for knapsack via convolution and prediction. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 1269–1282. ACM, 2018. doi:10.1145/3188745.3188876.

7 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is
np-complete. In ICALP, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022.

8 Alessandra Bernardi, Enrico Carlini, Maria Virginia Catalisano, Alessandro Gimigliano, and
Alessandro Oneto. The hitchhiker guide to: Secant varieties and tensor decomposition.
Mathematics, 6(12), 2018. doi:10.3390/math6120314.

9 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ck n 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

10 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

11 Karl Bringmann and Alejandro Cassis. Faster 0-1-knapsack via near-convex min-plus-
convolution. CoRR, abs/2305.01593, 2023. doi:10.48550/arXiv.2305.01593.

12 Timothy M. Chan. Approximation schemes for 0-1 knapsack. In Raimund Seidel, editor, 1st
Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA,
USA, volume 61 of OASIcs, pages 5:1–5:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/OASIcs.SOSA.2018.5.

13 Timothy M. Chan and Qizheng He. Reducing 3sum to convolution-3sum. In Martin
Farach-Colton and Inge Li Gørtz, editors, SOSA, pages 1–7. SIAM, 2020. doi:10.1137/
1.9781611976014.1.

14 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combinatorics.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, STOC 2015, pages 31–40. ACM, 2015.
doi:10.1145/2746539.2746568.

ISAAC 2023

https://doi.org/10.1007/BF01840359
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1007/3-540-44634-6_18
https://doi.org/10.1007/3-540-44634-6_18
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.1007/3-540-69346-7_15
https://doi.org/10.1145/3188745.3188876
https://doi.org/10.3390/math6120314
https://doi.org/10.1007/s00453-012-9734-3
https://doi.org/10.48550/arXiv.2305.01593
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1137/1.9781611976014.1
https://doi.org/10.1145/2746539.2746568

16:16 Fast Convolutions for Near-Convex Sequences

15 Timothy M. Chan and R. Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.
doi:10.1145/3402926.

16 Shucheng Chi, Ran Duan, Tianle Xie, and Tianyi Zhang. Faster min-plus product for
monotone instances. In Stefano Leonardi and Anupam Gupta, editors, STOC. ACM, 2022.
doi:10.1145/3519935.3520057.

17 V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

18 Bruno Courcelle. Monadic second-order logic and hypergraph orientation. In LICS, pages
179–190. IEEE Computer Society, 1993.

19 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:
10.1145/3293465.

20 Mike Develin. Tropical secant varieties of linear spaces. Discrete & Computational Geometry,
35:117–129, 2006.

21 Mike Develin, Francisco Santos, and Bernd Sturmfels. On the rank of a tropical matrix.
Combinatorial and computational geometry, 52:213–242, 2005.

22 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. Theor. Comput. Sci.,
689:67–95, 2017. doi:10.1016/j.tcs.2017.05.017.

23 Jan M. Hochstein and Karsten Weihe. Maximum s-t-flow with k crossings in O(k3n log n)
time. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, SODA, pages 843–847. SIAM,
2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283473.

24 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for SDD
linear systems. In Rafail Ostrovsky, editor, FOCS, pages 590–598. IEEE Computer Society,
2011. doi:10.1109/FOCS.2011.85.

25 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, ICALP, volume 80 of LIPIcs, pages 21:1–21:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.21.

26 Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando Cicalese. On lower bounds
for the maximum consecutive subsums problem and the (min, +)-convolution. In IEEE, pages
1807–1811. IEEE, 2014. doi:10.1109/ISIT.2014.6875145.

27 Yves Lucet. Faster than the fast legendre transform, the linear-time legendre transform.
Numer. Algorithms, 16(2):171–185, 1997. doi:10.1023/A:1019191114493.

28 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-time
data reduction for maximum matching. Algorithmica, 82(12):3521–3565, 2020. doi:10.1007/
s00453-020-00736-0.

29 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Leonard J.
Schulman, editor, STOC, pages 603–610. ACM, 2010. doi:10.1145/1806689.1806772.

30 Yaroslav Shitov. The complexity of tropical matrix factorization. Advances in Mathematics,
254:138–156, 2014.

31 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys,
editor, STOC, pages 664–673. ACM, 2014. doi:10.1145/2591796.2591811.

https://doi.org/10.1145/3402926
https://doi.org/10.1145/3519935.3520057
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1016/j.tcs.2017.05.017
http://dl.acm.org/citation.cfm?id=1283383.1283473
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.1109/ISIT.2014.6875145
https://doi.org/10.1023/A:1019191114493
https://doi.org/10.1007/s00453-020-00736-0
https://doi.org/10.1007/s00453-020-00736-0
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1145/2591796.2591811

Matrix Completion: Approximating the Minimum
Diameter
Diptarka Chakraborty #

National University of Singapore, Singapore

Sanjana Dey #

National University of Singapore, Singapore

Abstract
In this paper, we focus on the matrix completion problem and aim to minimize the diameter over
an arbitrary alphabet. Given a matrix M with missing entries, our objective is to complete the
matrix by filling in the missing entries in a way that minimizes the maximum (Hamming) distance
between any pair of rows in the completed matrix (also known as the diameter of the matrix). It is
worth noting that this problem is already known to be NP-hard. Currently, the best-known upper
bound is a 4-approximation algorithm derived by applying the triangle inequality together with a
well-known 2-approximation algorithm for the radius minimization variant.

In this work, we make the following contributions:
We present a novel 3-approximation algorithm for the diameter minimization variant of the
matrix completion problem. To the best of our knowledge, this is the first approximation result
that breaks below the straightforward 4-factor bound.
Furthermore, we establish that the diameter minimization variant of the matrix completion
problem is (2 − ε)-inapproximable, for any ε > 0, even when considering a binary alphabet,
under the assumption that P ̸= NP. This is the first result that demonstrates a hardness of
approximation for this problem.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Incomplete Data, Matrix Completion, Hamming Distance, Diameter Mini-
mization, Approximation Algorithms, Hardness of Approximation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.17

Funding This work was supported by an MoE AcRF Tier 2 grant (MOE-T2EP20221-0009).

1 Introduction

With the advent of big data, the occurrence of missing values in data objects has become
increasingly common. These missing entries can arise due to various errors occurring at
different stages of data processing, including data collection, data transfer, and data cleaning,
and they often even occur arbitrarily. Handling such missing data is widely recognized as a
challenging task, and numerous methods, including heuristic, greedy, convex optimization,
and statistical approaches, have been proposed in the context of practical applications [1].
One such popular technique is data imputation, which, albeit finds extensive use in data
mining, machine learning, and computational biology, requires prior knowledge of the dataset
or the adoption of certain statistical assumptions [33].

Addressing the issue of incomplete matrices by filling in missing values is a fundamental
problem in data analysis, often approached as an optimization task [10, 20, 21, 29, 16, 17].
In the context of clustering, a popular objective function is to minimize the cluster diameter
(e.g., [25, 13, 24, 29, 17]), which represents the maximum pairwise distance among data
points within a cluster. When dealing with missing entries (or wildcards denoted by ∗),
a fundamental question arises: Given an incomplete matrix M ∈ (Σ ∪ {∗})n×d (over an
arbitrary alphabet Σ), how can we fill the ∗-entries with symbols from Σ to obtain a

© Diptarka Chakraborty and Sanjana Dey;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 17; pp. 17:1–17:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:info4.sanjana@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Matrix Completion: Approximating the Minimum Diameter

completion M̄ ∈ Σn×d that minimizes the maximum pairwise distance between rows? In
this paper, we consider the Hamming distance as the underlying distance measure, which is
arguably one of the most prevalent distance functions used in a wide range of applications.
This problem is known as the Minimum Diameter Matrix Completion (DMC) problem.

The DMC problem is a combinatorial matrix completion problem with numerous ap-
plications in coding theory, computational biology, and data science. For instance, in
computational biology, the DMC problem arises in assessing the degree of relatedness among
genome sequences, where missing entries represent missing data points. The DMC problem
is encountered in data science when completing entities with their attributes while satisfying
pairwise dissimilarity constraints. The stringology literature extensively explores several
consensus problems closely related to DMC [7, 4, 6, 10, 9, 11, 14, 26, 27, 37, 34, 32, 38].

The DMC problem, like most other variants of matrix completion problems, is known to
be NP-hard. Koana, Froese, and Niedermeier [29] conducted a comprehensive complexity
study on the DMC problem, considering diameter bounds and the maximum number of
missing entries, and identified various polynomial-time solvable cases and NP-hard cases. The
parameterized complexities of the DMC problem, specifically a more general k-clustering
version, have also been investigated in terms of various parameters [16, 17]. Regarding
approximation algorithms, only a 4-approximation algorithm is currently known for the DMC
problem. This approximation factor is derived from the result of another closely related matrix
completion problem called Minimum Radius Matrix Completion (RadMC) [28, 27]. In
the RadMC problem, the objective is to find a completion and a “center” string such that
the distance between each row of the completed matrix and the center string is minimized.
A straightforward application of the triangle inequality shows that any c-approximation
(for any c ≥ 1) to the RadMC problem implies a 2c-approximation to the DMC problem.
Since a simple (folklore) 2-approximation algorithm1 exists for the RadMC problem, it
immediately provides a 4-factor approximate solution for the DMC problem. However, it
has been proven that no (2 − ε)-approximation algorithm for the RadMC problem exists
unless P = NP [12], and thus there is no hope of getting a better factor than 4 to the DMC
problem by improving the approximation factor of the RadMC problem.

Currently, the possibility of improving the 4-factor approximation for the DMC problem
remains an open question. Moreover, there is no known inapproximability result for the
DMC problem, leaving room for the plausibility of achieving a polynomial-time approx-
imation scheme (PTAS). In this paper, we refute this possibility by demonstrating that
no polynomial-time (2 − ε)-approximation algorithm for the DMC problem exists unless
P = NP. Furthermore, we present a 3-approximation algorithm that surpasses the 4-factor
bound obtained from a direct application of the triangle inequality, along with a 2-factor
algorithm for the RadMC problem.

Our contributions and techniques. One of our primary contributions is a 3-approximation
algorithm for the DMC problem, which to the best of our knowledge, is the first one to
break below the straightforward 4-approximation bound.

▶ Theorem 1. There is a polynomial-time algorithm that, given an incomplete matrix
M ∈ (Σ ∪ {∗})n×d, computes a 3-approximate solution for the Minimum Diameter Matrix
Completion (DMC) problem over an arbitrary alphabet Σ.

1 The 2-approximation is attained by first solving the LP relaxation of the standard ILP formulation of
the RadMC problem and then applying a simple deterministic rounding. We use a similar argument
to get a 2-approximation for a restricted version of the DMC problem, namely the DRMC problem
(see Appendix A).

D. Chakraborty and S. Dey 17:3

To show our result, we consider an intermediate restricted variant of the DMC problem,
which we refer to as Minimum Diameter Restricted Matrix Completion (DRMC).
In this variant, we add a column restriction – all the missing entries of a column must be
filled in with the same symbol – for feasible completion of an incomplete matrix. The main
advantage of putting this restriction is that now we can formulate this restricted variant
as an ILP. Then we solve the corresponding LP relaxation, and finally, applying a simple
deterministic rounding, we get a 2-approximation for the DRMC problem (Theorem 5).

Since the only distinction between the DMC and the DRMC problem is the column
restriction imposed on feasible completions in the DRMC problem, any feasible solution to
the DRMC problem is also a feasible solution to the DMC problem. Surprisingly, we show
that for any input incomplete matrix M , the optimum objective value to the DRMC problem
is at most 3/2 times that of the DMC problem (Lemma 3). By leveraging this finding along
with the 2-approximation algorithm for the DRMC, we can effectively establish Theorem 1.

To build the relationship between the optimal solution of the DRMC and the DMC, we
consider an (arbitrary) optimal completion M̄∗ for the DMC problem, acknowledging that
this completion may not satisfy the column restriction requirement for the DRMC problem.
To overcome this, we modify the completion by taking any arbitrary row, say the first row
M̄∗

1 , and then for each column ℓ depending on the symbol at the ℓ-th coordinate of the row
M̄∗

1 fill in all the missing entries of that column in the whole input (incomplete) matrix. This
modification yields a completion M̃ that satisfies the column restriction and thus becomes
a feasible solution to the DRMC problem. Let ∆ and ∆R represent the diameters of the
completed matrices for DMC (M̄∗) and DRMC (M̃), respectively. We aim to demonstrate
that ∆R ≤ 3

2 · ∆. To provide a high-level idea, let us consider any two rows i, j. It is not
hard to see that by applying the triangle inequality, the distance between the rows M̃i and
M̃j is at most twice ∆. However, that only shows ∆R ≤ 2∆, which, when combined with a
2-approximation of the DRMC, only gives a 4-approximation to the DMC problem, which
is no better than the already known bound. Overcoming this challenge requires developing
an argument that surpasses this naive application of the triangle inequality. To tackle this
challenge, we divide the rows M̃i and M̃j into three parts: The first one comprises coordinates
where no missing entries are there in both the i-th and j-th row of the input matrix, the
second one contains all the coordinates with missing entries in the i-th row but no missing
entries in the j-th row, and the third one consists of all the coordinates with missing entries
in the j-th row but no missing entries in the i-th row (we disregard the coordinates with
missing entries in both the rows because these positions do not contribute to the Hamming
distance due to the column restriction). We emphasize that this partitioning is solely for
the sake of analysis. Next, we look into these three parts separately and analyze their
contributions to the overall Hamming distance. Finally, by using the fact that in M̄∗, all
the pairwise distances between the rows M̄∗

1 , M̄∗
i , and M̄∗

j are bounded by ∆, we establish
that the distance between the rows M̃i and M̃j is at most 3

2 · ∆. The detailed argument is
provided in Section 3.

Our next significant contribution is an inapproximability result for the DMC problem.
We show that it is NP-hard to get a (2 − ε)-approximation, the first inapproximability result
for the DMC problem.

▶ Theorem 2. Consider any ε > 0. There is no deterministic polynomial-time algorithm
that, given an incomplete matrix M ∈ {0, 1, ∗}n×d, computes a (2 − ε)-approximate solution
for the Minimum Diameter Matrix Completion (DMC) problem, unless P = NP.

We highlight that the aforementioned inapproximability result holds even for a binary
alphabet. To establish the inapproximability bound, we employ a reduction from the well-
known Label Cover problem to a gap version of the DMC problem (Definition 6). Informally

ISAAC 2023

17:4 Matrix Completion: Approximating the Minimum Diameter

speaking, in the label cover problem, we are presented with a (left and right-regular) bipartite
graph with each edge having a function (defined on a label set) as a constraint relation,
and the objective is to come up with an assignment (of labels to each vertex) that satisfies
“as many” edges as possible (see Definition 7). It is well-known that a gap version of
the label cover problem – deciding whether an assignment (of labels) satisfies all the edge
constraints or no assignment (of labels) can satisfy more than a small constant fraction of the
edges – is NP-hard, even for constant-sized label set and constant left/right-degree bipartite
graphs [2, 36]. Given such a label cover instance, we construct a “sparse” incomplete matrix
(DMC instance), i.e., a matrix with only a small number of non-∗ entries per row. For
the construction, we utilize the concept of a dictatorship gadget [3] (see Section 4 for the
reduction). The completeness of our reduction follows from the properties of the dictatorship
gadget. However, for soundness, we need more intricate arguments. The crux of the argument
lies in the fact that if the given label cover instance is a No instance (i.e., no assignment can
satisfy more than a small constant fraction of the edges), then in our constructed incomplete
matrix, for every possible completion we can find “a large” subset of rows where the sum of
pairwise distances is large and as a consequence, by averaging a “distant” pair of rows exists.

We remark that a similar proof provides the same inapproximability bound to the
restricted version of DMC, namely DRMC, that we consider as an intermediate problem to
show our 3-approximation result, establishing that our 2-approximation algorithm for the
DRMC is essentially optimal.

Other related works. Various optimization tasks with numerous applications have been
investigated in the matrix completion problem [5, 39, 19, 18]. In addition to minimizing the
diameter of a cluster, as in the case of the DMC problem, researchers have also studied the
problem of radius minimization, known as the Minimum Radius Matrix Completion
(RadMC) problem. Alternatively, the RadMC problem is also formulated as the closest
string with wildcards problem (or the 1-center in Hamming distance with wildcards). The
parameterized complexities of this problem have been explored in [27, 28]. A result of
(2 − ε)-inapproximability (for any ε > 0) was demonstrated in [12] under the assumption that
P ̸= NP, while a 2-approximation algorithm is commonly known. Notably, when there are no
missing entries (i.e., without wildcards), the closest string problem admits a polynomial-time
approximation scheme (PTAS) [31].

Both the DMC and the RadMC problems are specific variations of clustering problems.
In [16, 17], the authors considered a more general version of the clustering problem, where
the goal is to partition the rows of an incomplete matrix into clusters while minimizing
the diameter or radius of each cluster. Besides radius and diameter, [20] investigated the
minimization of rank and the number of distinct rows in the completed matrix. In [21], the
authors explore the complexity of completing an incomplete matrix in a way that satisfies
specific constraints and can be partitioned into low-rank subspaces. Within the clustering
literature, numerous variants of non-combinatorial matrix completion, such as k-center and
k-means clustering, have also been extensively studied from the perspective of designing
approximation algorithms [22, 23, 30, 35, 15, 8].

2 Preliminaries

Notations. Let [n] denote the set {1, 2, . . . , n}. For any n × d dimensional matrix M , we
use Mi to denote the i-th row of M , and Mi[j] (or sometimes for brevity Mij) to denote the
(i, j)-th entry of M . Further, for any subset of indices J = {j1, j2, . . . , jk} ⊆ [d], we use Mi[J]

D. Chakraborty and S. Dey 17:5

to denote the sequence Mi[j1]Mi[j2] · · · Mi[jk]. For two strings x, y ∈ Σd, we use H(x, y) to
denote the Hamming distance between x and y, which counts the number of coordinates
where the symbols of x and y do not match, i.e., H(x, y) := |{i ∈ [d] | x[i] ̸= y[i]}|.

Matrix Completion. For any incomplete matrix M ∈ (Σ ∪ {∗})n×d, we call M̄ ∈ Σn×d a
valid (feasible) completion iff for all i ∈ [n], j ∈ [d] with Mi[j] ̸= ∗, M̄i[j] = Mi[j]. Sometimes
we refer to M̄ as a complete matrix of M .

Given an incomplete matrix M ∈ (Σ ∪ {∗})n×d, for any feasible completion M̄ ∈ Σn×d

of M , we refer to the quantity maxi̸=j∈[n] H(M̄i, M̄j) as the objective value of M̄ , denoted
by Obj(M̄). For any completion M̄∗ that minimizes Obj(M̄), we denote Obj(M̄∗) by
OPTDMC(M) (or simply OPT(M) when the problem DMC is clear from the context). We
call a feasible solution M̄ a c-approximate solution (for c ≥ 1) of M iff Obj(M̄) ≤ c ·OPT(M).

3 Approximation Algorithm for DMC

In this section, we describe a 3-approximation algorithm for the Minimum Diameter
Matrix Completion (DMC) problem over an arbitrary alphabet Σ.

▶ Theorem 1. There is a polynomial-time algorithm that, given an incomplete matrix
M ∈ (Σ ∪ {∗})n×d, computes a 3-approximate solution for the Minimum Diameter Matrix
Completion (DMC) problem over an arbitrary alphabet Σ.

In proving the above theorem, we first consider a restricted version of the DMC problem,
namely Minimum Diameter Restricted Matrix Completion (DRMC), which, given
an incomplete matrix M ∈ (Σ ∪ {∗})n×d, asks to find a (valid) completion M̄ of M with a
restriction, referred to as column restriction, that

For each column ℓ ∈ [d], for all i, j ∈ [n], if Mi[ℓ] = Mj [ℓ] = ∗, then M̄i[ℓ] = M̄j [ℓ],
while minimizing the objective value maxi̸=j∈[n] H(M̄i, M̄j).

It is worth noting that the only difference between DMC and DRMC is that in a complete
matrix for DMC, the missing entries of a single column can be completed with different
symbols, whereas for DRMC, the missing entries of any particular column must be completed
with the same symbol. Thus, it is easy to observe that any feasible solution to the DRMC
problem is also a feasible solution to the DMC problem, although the converse may not be
true. We provide an LP-based 2-approximation algorithm for the DRMC problem and then
argue that it also gives us a 3-approximate solution to the DMC problem. The heart of the
argument lies in the relationship between the optimum solution of the DMC problem and
that of the DRMC problem.

Relationship between DMC and DRMC. For any incomplete matrix M ∈ (Σ ∪ {∗})n×d,
let us use OPTDMC(M) and OPTDRMC(M) to denote the optimum objective value of the
DMC and DRMC problem, respectively. Recall that no matter whether it is the DMC
or DRMC problem, the objective value of a (feasible) complete matrix M̄ is defined as
Obj(M̄) = maxi̸=j∈[n] H(M̄i, M̄j).

▶ Lemma 3. For any M ∈ (Σ ∪ {∗})n×d, OPTDMC(M) ≤ OPTDRMC(M) ≤ 3
2 ·OPTDMC(M).

Proof. First, observe that any feasible solution to the DRMC problem is also a feasible
solution to the DMC problem. It immediately implies that

OPTDMC(M) ≤ OPTDRMC(M).

ISAAC 2023

17:6 Matrix Completion: Approximating the Minimum Diameter

We now focus on proving that OPTDRMC(M) ≤ 3
2 ·OPTDMC(M). For that purpose, let us

first consider an (arbitrary) optimal completion M̄∗ of M with respect to the DMC problem.
Next, we use this solution to come up with a feasible solution (complete matrix) M̃ of M to
the DRMC problem. We construct M̃ using M̄∗ as follows:

Consider any arbitrary row, say the first row, of M̄∗, i.e., M̄∗
1 .

Next, for each i ∈ [n] and j ∈ [d], if Mi[j] = ∗, then set M̃i[j] = M̄∗
1 [j]; otherwise set

M̃i[j] = Mi[j].
It is straightforward to see that M̃ is a feasible completion of M for the DRMC problem.
Next, we claim the following.

▷ Claim 4. For all i, j ∈ [n], H(M̃i, M̃j) ≤ 3
2 · Obj(M̄∗).

This claim is pivotal in proving our lemma. We will prove this claim later, and let us now
conclude the proof of the lemma by assuming the above claim.

Obj(M̃) = max
i ̸=j∈[n]

H(M̃i, M̃j) ≤ 3
2 · Obj(M̄∗) (By Claim 4)

= 3
2 · OPTDMC(M) (Since M̄∗ is an optimal solution to DMC).

Now, since M̃ is a feasible completion of M for the DRMC problem,

OPTDRMC(M) ≤ Obj(M̃) ≤ 3
2 · OPTDMC(M),

which concludes the proof of the lemma. ◀

It now remains to prove Claim 4. Before proceeding with the proof, let us recall that
for any subset of indices J = {j1, j2, . . . , jk} ⊆ [d], we use Mi[J] to denote the sequence
Mi[j1]Mi[j2] · · · Mi[jk].

Proof of Claim 4. Consider any i, j ∈ [n]. Let us now consider the indices with ∗-entries in
the i-th and the j-th row of the matrix M ∈ (Σ ∪ {∗})n×d. Formally,

I := {ℓ ∈ [d] | Mi[ℓ] = ∗} , J := {ℓ ∈ [d] | Mj [ℓ] = ∗} , and K := [d] \ (I ∪ J) .

By the construction of M̃ ,

M̃i[I] = M̄∗
1 [I], M̃j [J] = M̄∗

1 [J], M̃i[K] = M̄∗
i [K], M̃j [K] = M̄∗

j [K]. (1)

Let us now focus on the Hamming distances between the subsequences induced by the index
sets I, J , and K of the rows M̄∗

1 , M̄∗
i , and M̄∗

j . Let

α1 := H(M̄∗
1 [I], M̄∗

i [I]), β1 := H(M̄∗
1 [J], M̄∗

i [J]), γ1 := H(M̄∗
1 [K], M̄∗

i [K]),
α2 := H(M̄∗

1 [I], M̄∗
j [I]), β2 := H(M̄∗

1 [J], M̄∗
j [J]), γ2 := H(M̄∗

1 [K], M̄∗
j [K]),

α3 := H(M̄∗
i [I], M̄∗

j [I]), β3 := H(M̄∗
i [J], M̄∗

j [J]), γ3 := H(M̄∗
i [K], M̄∗

j [K]).

See Figure 1 for a pictorial representation of the distances. The Hamming distance between
the rows M̃i and M̃j is

H(M̃i, M̃j) ≤ H(M̃i[I], M̃j [I]) + H(M̃i[J], M̃j [J]) + H(M̃i[K], M̃j [K])
= H(M̄∗

1 [I], M̄∗
j [I]) + H(M̄∗

i [J], M̄∗
1 [J]) + H(M̄∗

i [K], M̄∗
j [K]) (By Equation 1)

= α2 + β1 + γ3.

D. Chakraborty and S. Dey 17:7

0 1 1 0 11

i

j

...

...

n

...

· · ·
· · ·

* * *· · ·

* * *· · ·

· · · · · ·

· · ·

· · ·

· · ·
1

D1 D2D3 D4

D5 D6

R1

R2

R

0 1 1 0 11

i

j

...

...

n

...

· · ·

· · ·

* * *· · ·

* * *· · ·

· · · · · ·

· · ·

· · ·

· · ·

1

α1

α3

α2
β1

β3

β2
γ1

γ3

γ2

K I J

Figure 1 An example matrix M partitioned into coordinate sets I, J, K. For simplicity, in this
figure, we assume I and J are disjoint (however, our proof works in full generality).

Thus, to prove our claim, it suffices to argue that

α2 + β1 + γ3 ≤ 3
2 · Obj(M̄∗).

Observe that the Hamming distance between the rows M̄∗
1 and M̄∗

i is

H(M̄∗
1 , M̄∗

i) ≤ α1 + β1 + γ1 ≤ Obj(M̄∗)
=⇒ α1 + β1 ≤ Obj(M̄∗) − γ1. (2)

Similarly, the Hamming distance between the rows M̄∗
1 and M̄∗

j is

H(M̄∗
1 , M̄∗

j) ≤ α2 + β2 + γ2 ≤ Obj(M̄∗)
=⇒ α2 + β2 ≤ Obj(M̄∗) − γ2. (3)

Also, the Hamming distance between the rows M̄∗
i and M̄∗

j is

H(M̄∗
i , M̄∗

j) ≤ α3 + β3 + γ3 ≤ Obj(M̄∗)
=⇒ α3 + β3 ≤ Obj(M̄∗) − γ3. (4)

Next, the Hamming distance between M̄∗
i [K] and M̄∗

j [K] is

γ3 = H(M̄∗
i [K], M̄∗

j [K])
≤ H(M̄∗

i [K], M̄∗
1 [K]) + H(M̄∗

1 [K], M̄∗
j [K]) (By the triangle inequality)

= γ1 + γ2. (5)

Also, the Hamming distances between M̄∗
1 [I] and M̄∗

j [I] is

α2 = H(M̄∗
1 [I], M̄∗

j [I])
≤ H(M̄∗

1 [I], M̄∗
i [I]) + H(M̄∗

i [I], M̄∗
j [I]) (By the triangle inequality)

= α1 + α3 ≤ Obj(M̄∗) − γ1 − β1 + α3 (By Equation 2)

which in turn implies that

α2 + β1 ≤ Obj(M̄∗) − γ1 + α3. (6)

Similarly, from the Hamming distance between M̄∗
i [J] and M̄∗

j [J], we get the following

β1 ≤ β2 + β3 ≤ Obj(M̄∗) − γ2 − α2 + β3 (By Equation 3)

ISAAC 2023

17:8 Matrix Completion: Approximating the Minimum Diameter

which in turn implies that

α2 + β1 ≤ Obj(M̄∗) − γ2 + β3. (7)

Adding Equation 6 and Equation 7, we get

2(α2 + β1) ≤ 2 · Obj(M̄∗) − (γ1 + γ2) + (α3 + β3)
≤ 2 · Obj(M̄∗) − γ3 + (Obj(M̄∗) − γ3) (By Equation 5 and Equation 4)
≤ 3 · Obj(M̄∗) − 2γ3

which implies that α2 + β1 + γ3 ≤ 3
2 · Obj(M̄∗). This completes the proof. ◁

2-approximation for DRMC. In this subsection, we design a 2-approximation algorithm
for the DRMC problem, which, when combined with Lemma 3 provides a 3-approximation
guarantee for the DMC problem.

▶ Theorem 5. There is a polynomial-time algorithm that, given an incomplete matrix M ∈
(Σ ∪ {∗})n×d, computes a 2-approximate solution for the Minimum Diameter Restricted
Matrix Completion (DRMC) problem over an arbitrary alphabet Σ.

We first formulate the problem using an integer linear program (ILP), and then relax the
integer constraints to get a linear program (LP), and finally apply a simple (deterministic)
rounding scheme on an optimal solution to that LP. We defer the details to Appendix A.

Completing the proof of Theorem 1. Next, we combine Theorem 5 and Lemma 3 to get a
3-approximation algorithm for the DMC problem.

Proof of Theorem 1. Given an incomplete matrix M ∈ (Σ ∪ {∗})n×d, we run the algorithm
mentioned in Theorem 5 to get a complete matrix M̄ ∈ Σn×d. Since any feasible solution to
the DRMC problem is also a feasible solution to the DMC problem, M̄ is a feasible solution
to the DMC problem for the input (incomplete) matrix M . Further,

Obj(M̄) ≤ 2 · OPTDRMC(M) (By Theorem 5)

≤ 2 · 3
2 · OPTDMC(M) (By Lemma 3)

= 3 · OPTDMC(M).

Thus M̄ is a 3-approximate solution to the DMC problem, which completes the proof. ◀

4 Inapproximability of the DMC problem

In the previous section, we have seen a 3-approximation algorithm for the DMC problem.
On the hardness side, so far, we only know that the DMC problem is NP-hard. No
inapproximability result is known. In this section, we refute the possibility of getting better
than a 2-factor approximation algorithm unless P = NP, even when the alphabet Σ is binary,
i.e., Σ = {0, 1}. In particular, we prove Theorem 2.

▶ Theorem 2. Consider any ε > 0. There is no deterministic polynomial-time algorithm
that, given an incomplete matrix M ∈ {0, 1, ∗}n×d, computes a (2 − ε)-approximate solution
for the Minimum Diameter Matrix Completion (DMC) problem, unless P = NP.

D. Chakraborty and S. Dey 17:9

To show the (2 − ε)-inapproximability result, we consider the following gap-version of the
DMC problem.

▶ Definition 6. Consider an alphabet Σ and an ε > 0. Given an incomplete matrix
M ∈ (Σ ∪ {∗})n×d and a positive integer g, decide between the following two cases:

YES: OPT(M) ≤ g,
NO: OPT(M) > (2 − ε)g.

Label cover problem and dictatorship gadget. To show the inapproximability result, we
provide a reduction from the well-known label cover problem to the gap-version of the DMC
problem. Let us start by defining the label cover problem.

▶ Definition 7 (Label Cover Instance). A label cover instance Ψ = (U, V, E, Π) consists of
A bipartite graph G = (U, V, E) that is left and right regular. Let DU and DV be the
degrees of each vertex in U and V respectively,
Label sets LU and LV for U and V respectively,
For each edge e ∈ E, a function πe : LV → LU . Let Π = {πe : LV → LU | e ∈ E}.

A labelling σ is a mapping that assigns each u ∈ U a label σ(u) ∈ LU , and each v ∈ V a
label σ(v) ∈ LV . A labelling σ is said to satisfy an edge e = (u, v) ∈ E iff πe(σ(v)) = σ(u).
The value of a labelling σ, denoted by Val(Ψ, σ), is defined as the fraction of edges of E

satisfied by σ.

It is known that a gap version of the label cover problem is NP-hard.

▶ Theorem 8 ([2, 36]). For every δ ∈ (0, 1), there exists (1/δ)O(1)-sized label sets LU , LV

such that, given a label cover instance Ψ = (U, V, E, Π) with label sets LU and LV and the
left degree and the right degree of the instance (bipartite) graph being at most (1/δ)O(1), it is
NP-hard to decide between the following two cases:

There exists a labelling σ of Ψ such that Val(Ψ, σ) = 1,
For every labelling σ of Ψ, Val(Ψ, σ) ≤ δ.

One of the standard tools to provide a reduction from the label cover problem is the
dictatorship gadget. Here, we use a construction of a dictatorship gadget presented in [3].
Before presenting a brief description of the dictatorship construction, let us first introduce
a few notions. Let ¬ be a negation operator that works both on bits and strings, where
the negation of a string is obtained by negating each of its bits individually. A function
f : {0, 1}m → {0, 1} is said to be odd or folded if for every x, f(¬x) = ¬f(x). The oddness
of f allows us to store only the value of f(x) for every pair (x, ¬x). If f(¬x) is needed, we
use ¬f(x) instead.

Let us now describe the dictatorship gadget given in [3]. Consider a positive integer
k. A k-dictatorship gadget is a CNF formula defined over 2m (for some positive integer
m) variables, where an assignment can be viewed as a function f : {0, 1}m → {0, 1} and
assumed to be folded. The set of constraints C on f is the set of all the clauses of the form
(f(x1) ∨ f(x2) ∨ · · · ∨ f(x2k+1)), where x1, . . . , x2k+1 are such that for each ℓ ∈ [m],

2k+1∑
i=1

xi,ℓ ≥ k (8)

where xi,ℓ denotes the ℓ-th bit of the string xi.

ISAAC 2023

17:10 Matrix Completion: Approximating the Minimum Diameter

Before proceeding further, let us define a few basic notions. A function f : {0, 1}m → {0, 1}
is said to be a dictatorship function if there exists an ℓ ∈ [m] such that for every input
xi ∈ {0, 1}m, f(xi) = xi,ℓ. For a function f : {0, 1}m → {0, 1}, we call a coordinate ℓ ∈ [m]
relevant if there exists an input xi ∈ {0, 1}m such that f(xi) ̸= f(x⊕ℓ

i), where x⊕ℓ
i denotes

the input obtained by just flipping the ℓ-th bit of xi. A function f is said to depend on
r variables if there are r relevant coordinates. The following result about the dictatorship
gadget plays a crucial role in our reduction.

▶ Lemma 9 ([3]).
1. If f is a dictatorship function, then it satisfies at least k literals of every clause in the

constraint set C.
2. Any assignment f that is odd and satisfies all the clauses in the constraint set C depends

on at most 2k − 1 variables.

It is worth remarking that Item 1 of the above lemma follows immediately from the
construction of the dictatorship gadget, especially from Equation 8, whereas Item 2 of the
above lemma (which is a weaker converse of Item 1) was shown in [3].

Reduction from the label cover problem. Consider a δ ∈ (0, 1). Let us consider a label
cover instance Ψ = (U, V, E, Π), where Π = {πe : LV → LU | e ∈ E}. Let us assume that the
sizes of both the label set LV and LU are upper bounded by some L = (1/δ)Θ(1). Also, the
left degree and the right degree of the instance graph (U, V, E) are upper bounded by some
D = (1/δ)Θ(1). We associate a function fu : {0, 1}|LU | → {0, 1} (intended to be a dictator
of a label of u) to each vertex u ∈ U . Similarly, we associate fv : {0, 1}|LV | → {0, 1} to
each v ∈ V . Let us partition the set {0, 1}|LU | into two disjoint equal-sized sets TU and FU

(arbitrarily) such that for each x ∈ TU , ¬x ∈ FU . Similarly, partition the set {0, 1}|LV | into
two disjoint equal-sized sets TV and FV . (The purpose of this partitioning is that we store
the value of the functions only on TU (and TV) when the functions are folded.)

Let us consider a positive integer k = (min {L, D, 1/δ})1/3 (which is at most (1/δ)Θ(1),
and this choice of the value of k is used in the proof of Claim 13). We now construct an
incomplete matrix MΨ (for brevity, we drop Ψ and simply refer to it as M). For each
u ∈ U , consider the k-dictatorship gadget on fu, and similarly, for each v ∈ V , consider the
k-dictatorship gadget on fv. For each u ∈ U (resp., v ∈ V), there is a column corresponding
to each x ∈ TU (resp., x ∈ TV). (So each column is essentially indexed by either fu(xi) for
u ∈ U , xi ∈ TU , or fv(xi) for v ∈ V , xi ∈ TV .) Thus, the number of columns is

d = |U | · 2(|Lu|−1) + |V | · 2(|Lv|−1).

We create rows as follows:
Left Vertex Rows: For each u ∈ U , consider the k-dictatorship gadget on fu, and
let Cu be the corresponding constraint set. Then add a row for each clause C ∈ Cu as
follows: For each x ∈ TU , if the literal represented by fu(x) is present in C, then set the
corresponding entry in the row to be 1; if the literal represented by fu(¬x) is present in
C, then set the corresponding entry in the row to be 0; otherwise (none of fu(x) and
fu(¬x) is present in C), set the corresponding entry in the row to be ∗.
Right Vertex Rows: For each v ∈ V , consider the k-dictatorship gadget on fv, and let
Cv be the corresponding constraint set. Then add a row for each clause C ∈ Cv in a way
similar to the above.

D. Chakraborty and S. Dey 17:11

Edge Rows: For each edge e = (u, v) ∈ E, add rows as follows: For each possible k

inputs x1, . . . , xk ∈ {0, 1}|LU | on the U side, and k + 1 inputs y1, . . . , yk+1 ∈ {0, 1}|LV |

on the V side, we add a row if the following holds:

For each label ℓ ∈ LV ,
k∑

j=1
xj,πe(ℓ) +

k+1∑
j=1

yj,ℓ ≥ k. (9)

In this added row, we set the entries as: If xi ∈ TU , then set the entry corresponding
to the column fu(xi) to be 1; otherwise (xi = ¬x′

i for some x′
i ∈ TU), set the entry

corresponding to the column fu(x′
i) to be 0. Similarly, if yi ∈ TV , then set the entry

corresponding to the column fv(yi) to be 1; otherwise (yi = ¬y′
i for some y′

i ∈ TV), set
the entry corresponding to the column fv(y′

i) to be 0. All the remaining entries of the
row are set to ∗.

It is straightforward to observe that the number of rows n of the constructed matrix M

is at most polynomial in the size of the label cover instance (due to our choice of k). Before
arguing about the completeness and soundness of the above reduction, let us make a simple
observation that immediately follows from the construction of M .

▶ Observation 10. For any label cover instance Ψ, let M be the incomplete matrix constructed
as mentioned above. Then each row of M contains exactly 2k + 1 non-∗ entries.

Proof. For any left vertex row or right vertex row, by the construction of the k-dictatorship
gadget, it contains exactly 2k + 1 non-∗ entries. For any edge row, by the construction of
that row, it contains exactly 2k + 1 non-∗ entries. ◀

Let us now state the completeness of the reduction, the proof of which is relatively direct
from the construction and Lemma 9.

▶ Lemma 11 (Completeness). If there exists a labelling σ of Ψ such that Val(Ψ, σ) = 1, then
OPT(M) ≤ 2k + 2.

Proof. Let σ be a labeling such that Val(Ψ, σ) = 1, i.e., for all the edges e = (u, v) ∈ E,
πe(σ(v)) = σ(u). For each u ∈ U , let fu be the dictatorship function of the label σ(u), i.e.,
for every x ∈ {0, 1}|LU |, fu(x) is equal to the σ(u)-th bit of x. Similarly, for each v ∈ V , let
fv be the dictatorship function of the label σ(v). Then create a string s ∈ {0, 1}d as follows:
For each u ∈ U and x ∈ TU (resp., each v ∈ V and x ∈ TV), set the corresponding entry of s

to be equal to fu(x) (resp., fv(x)).
Let us now create a feasible completion M̄ by setting each ∗-entry of any column r of

M to be s[r] (i.e., the r-th entry of the string s). Next, observe, for each left vertex row or
right vertex row Mi, it immediately follows from Item 1 of Lemma 9 that H(M̄i, s) ≤ k + 1
(since by Observation 10, there are only 2k + 1 non-∗ entries in Mi). Also, for each edge row
Mi, by the construction (Equation 9), it follows from Observation 10 that H(M̄i, s) ≤ k + 1.
Hence, for any two i ̸= j, by the triangle inequality,

H(M̄i, M̄j) ≤ H(M̄i, s) + H(s, M̄j) ≤ 2k + 2. ◀

Next, we consider the more intriguing case of soundness.

▶ Lemma 12 (Soundness). For any δ ∈ (0, 1), there exists an ε ∈ (0, 1), such that if for
every labelling σ of Ψ, Val(Ψ, σ) ≤ δ, then OPT(M) > (2 − ε) · 2k.

We devote the rest of this section to proving the soundness.

ISAAC 2023

17:12 Matrix Completion: Approximating the Minimum Diameter

Proof of soundness. Let us fix a δ ∈ (0, 1), and set ε = (min {δ, 1/k})2 (which is δΘ(1) and
this choice of the value of ε is used in the proof of Claim 13). For each row Mi, let us denote
the set of coordinates with non-∗ entries by Ni, i.e.,

Ni := {r ∈ [d] | Mi[r] ̸= ∗} .

We now show the soundness in two steps. First, we argue that if for every labelling σ of
Ψ, Val(Ψ, σ) ≤ δ, then for every plausible completion (represented by a string s ∈ {0, 1}d)
of any particular row, there exists a “large” subset of rows with every pair of rows having
mutually disjoint sets of non-∗ coordinates. Formally,

▷ Claim 13. If for every labelling σ of Ψ, Val(Ψ, σ) ≤ δ, then for every row Mp of
M ∈ (Σ ∪ {∗})n×d (where Σ = {0, 1}), and for every (feasible) completion s ∈ {0, 1}d of that
row, there exists a subset Cs ⊆ [n] of rows of M such that

|Cs| ≥ 2/ε + 1,
For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
For every i ∈ Cs, Np ∩ Ni = ∅, and
For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.

Proof. We prove the claim in two parts.
A “large” subset of non-∗ disjoint rows exists. For a δ ∈ (0, 1), fix a suitably small
constant λ ∈ (0, 1) that depends on δ. First, we show that if for every labeling σ of Ψ,
Val(Ψ, σ) ≤ δ, then for every row Mp of M , and for every (feasible) completion s ∈ {0, 1}d

of that row, there exists a subset Ks ⊆ [n] of rows of M such that
|Ks| ≥ (1 − λ)n, and
For every i ∈ Ks and every index r ∈ Ni, Mi[r] ̸= s[r].

The proof of this part resembles the argument used in [3]. We prove the contrapositive
of the above statement. For that purpose, let us consider a row Mp, a feasible completion
s ∈ {0, 1}d of that row, and a subset Ks ⊆ [n] of size at least (1 − λ)n such that

For every i ∈ Ks, there exists r ∈ Ni, Mi[r] = s[r]. (10)

Let U ′ denote the set of all u ∈ U such that for all the left vertex rows i ∈ [n] corresponding
to u, there exists r ∈ Ni, such that Mi[r] = s[r]. Similarly, define V ′ ⊆ V . Also, let E′

denote the set of all e ∈ E such that for all the edge rows i ∈ [n] corresponding to e, there
exists r ∈ Ni, such that Mi[r] = s[r]. Recall that the label sets LU and LV are of size at
most L = (1/δ)O(1) ≤ poly(k) (for our choice of k), and thus the number of left vertex rows
(resp., right vertex rows) for each u ∈ U (resp., v ∈ V) is at most some constant that depends
only on k. Also, the left degree and the right degree of the instance graph (U, V, E) are
upper bounded by some D = (1/δ)O(1) ≤ poly(k) (for our choice of k), and thus the number
of edge rows is also at most r(k) · |U |, where r(k) is some constant that depends only on k.
Thus for small enough λ, there exists a constant λ′ > 0 such that

|U ′| ≥ (1 − λ′)|U |, |V ′| ≥ (1 − λ′)|V |, and |E′| ≥ (1 − λ′)|E|.

Observe, by the construction, for each u ∈ U ′ (resp., v ∈ V ′), the substring of s corresponding
to be positions of fu (resp., fv) (viewed as an assignment) satisfies the k-dictatorship gadget
for u (resp., v). For simplicity, we refer to these substrings of s as the assignment fu (resp.,
fv). Thus by Item 2 of Lemma 9, fu (resp., fv) depends on at most 2k − 1 variables. For
each u ∈ U ′ (resp., v ∈ V ′), let Su ⊆ LU (resp., Sv ⊆ LV) be the set of variables fu (resp.,
fv) depend on.

D. Chakraborty and S. Dey 17:13

Next, we focus on a subset of E′, which contains edges with both endpoints in U ′ and V ′.
Formally,

E′′ := {e = (u, v) ∈ E′ | u ∈ U ′, v ∈ V ′} .

It is not hard to observe that |E′′| ≥ (1 − 3λ′)|E|. Furthermore, we claim that for each
e ∈ E′′, Su ∩ πe(Sv) ̸= ∅. To see this, for the sake of contradiction, assume Su ∩ πe(Sv) = ∅.
Consider k inputs x1, . . . , xk ∈ {0, 1}|LU | on the U side such that fu(xj) = 0 and r-th bit
of xj is 1 for all r ∈ LU \ Su, and k + 1 inputs y1, . . . , yk+1 ∈ {0, 1}|LV | on the V side such
that fv(yj) = 0 and r-th bit of yj is 1 for all r ∈ LV \ Sv. It is easy to verify that this set of
inputs satisfies Equation 9. Thus, by the construction, all the bits of the corresponding row
in M are different from that of the string s, which is a contradiction.

Now, if we assign labels to each u ∈ U ′ and v ∈ V ′ by picking labels uniformly at
random from Su and Sv respectively, then each edge e = (u, v) ∈ E′′ is satisfied with
probability 1

|Su|·|Sv| ≥ 1
(2k−1)2 . This implies that there exists a labeling σ of Ψ such that

Val(Ψ, σ) ≥ (1 − 3λ′)/(2k − 1)2 ≥ δ (for our choice of k and λ).

A “large” subset of non-∗ pairwise-disjoint rows exists. Next, let us consider any row Mp

of M and any (feasible) completion s ∈ {0, 1}d of that row. We have already argued that
there exists a subset Ks ⊆ [n] of rows of M such that

|Ks| ≥ (1 − λ)n, and
For every i ∈ Ks and every index r ∈ Ni, Mi[r] ̸= s[r].

We now claim that there exists a subset Cs ⊆ Ks such that
1. |Cs| ≥ 2/ε + 1,
2. For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
3. For every i ∈ Cs, Np ∩ Ni = ∅, and
4. For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.
We construct a subset Cs ⊆ Ks as follows: Consider the row Mp. If the row Mp is a left/right
vertex row for a vertex u, then discard all other left/right vertex rows added for that vertex
u, and also all the edge rows corresponding to any of the incident edges of u. If the row Mp

is an edge row for an edge e = (u, v), then discard all the other edge rows corresponding
to that edge and all the edge rows corresponding to incident edges of u and v, and also
all the left/right vertex rows corresponding to u and v. Then, pick a row arbitrarily from
the remaining rows from Ks. Again, discard the rows as before and proceed unless we pick
2/ε + 1 rows.

Note, |Ks| ≥ (1 − λ)n. Further, recall the number of left vertex rows (resp., right vertex
rows) for each u ∈ U (resp., v ∈ V) is at most some constant that depends only on k, and
also the number of edge rows for each edge is at most some constant that depends only on k.
Thus, in the above construction of Cs, at each step, we discard at most some constant (that
depends only on k) many rows. Hence, the above construction process does not terminate
before picking 2/ε + 1 rows.

Item 1, 3 and 4 are immediate from the construction. Since Cs ⊆ Ks, Item 2 also follows.
This concludes the proof of the claim. ◁

Next, we argue that if for every string s ∈ {0, 1}d, such a subset Cs exists, then for every
feasible completion M̄ of M , Obj(M̄) ≥ (2 − ε) · 2k.

▷ Claim 14. Let n and d denote the number of rows and columns of M , respectively. If for
every row Mp, and any (feasible) completion s ∈ {0, 1}d of that row, there exists a subset
Cs ⊆ [n] of rows of M such that

ISAAC 2023

17:14 Matrix Completion: Approximating the Minimum Diameter

|Cs| ≥ 2/ε + 1,
For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
For every i ∈ Cs, Np ∩ Ni = ∅, and
For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.

then OPT(M) ≥ (2 − ε) · 2k.

Proof. Let us consider a feasible completion M̄ of M , and then consider any arbitrary row,
say the first row, of it. Let s = M̄1. Then, by the premise of the claim, there exists a subset
Cs ⊆ [n] such that
1. |Cs| = c ≥ 2/ε + 1 (the value to be fixed),
2. For every i ∈ Cs and every index r ∈ Ni, Mi[r] ̸= s[r],
3. For every i ∈ Cs, N1 ∩ Ni = ∅, and
4. For every i ̸= j ∈ Cs, Ni ∩ Nj = ∅.
Recall, for any subset of indices J = {j1, j2, . . . , jk} ⊆ [d], we use M̄i[J] to denote the
sequence M̄i[j1]M̄i[j2] · · · M̄i[jk]. For any i ≠ j ∈ Cs, let αij = H(M̄i[Ni], M̄j [Ni]) and
αji = H(M̄i[Nj], M̄j [Nj]). Thus for any i ̸= j ∈ Cs, we have that

H(M̄i, M̄j) ≥ H(M̄i[Ni], M̄j [Ni]) + H(M̄i[Nj], M̄j [Nj]) = αij + αji. (11)

Further, consider any i ̸= j ∈ Cs. Since M̄ is a feasible completion of M , by Item 2,
for every index r ∈ Nj , M̄j [r] ̸= M̄1[r]. Now, since M̄ ∈ {0, 1}n×d, for any index r ∈ Nj ,
M̄i[r] = M̄1[r] if and only if M̄i[r] ̸= M̄j [r]. Thus

H(M̄1[Nj], M̄i[Nj]) = |Nj | − αij . (12)

Hence, for any i ∈ Cs, we get that

H(M̄i, M̄1) ≥
∑

j∈Cs

H(M̄i[Nj], M̄1[Nj])

= |Ni| +
∑

j∈Cs:j ̸=i

(|Nj | − αij) (By Item 2 and Equation 12)

= (2k + 1)c −
∑

j∈Cs:j ̸=i

αij (By Observation 10). (13)

Now, if for some i ∈ Cs, H(M̄i, M̄1) ≥ 4k, then clearly Obj(M̄) ≥ 4k and we are done
with the proof. So let us assume that for all i ∈ Cs, H(M̄i, M̄1) ≤ 4k. Then by Equation 13,
for every i ∈ Cs,∑

j∈Cs:j ̸=i

αij ≥ (2k + 1)c − 4k = 2k(c − 2) + c. (14)

Then it follows from Equation 11,∑
i∈Cs

∑
j∈Cs:j ̸=i

H(M̄i, M̄j) ≥
∑
i∈Cs

∑
j∈Cs:j ̸=i

(αij + αji)

= 2
∑
i∈Cs

∑
j∈Cs:j ̸=i

αij

≥ 2c (2k(c − 2) + c) (By Equation 14).

Then, by a simple averaging, there must exist i ̸= j ∈ Cs such that

H(M̄i, M̄j) ≥ 2c (2k(c − 2) + c)
c(c − 1) > (2 − ε) · 2k

where the last inequality follows since c ≥ 2/ε + 1. So we have argued that for any feasible
completion M̄ of M , Obj(M̄) > (2 − ε) · 2k, and hence OPT(M) > (2 − ε) · 2k. ◁

D. Chakraborty and S. Dey 17:15

Finally, by combining Claim 13 and Claim 14, we get our desired soundness Lemma 12.

▶ Remark 15. We want to remark that our reduction also establishes (2−ε)-inapproximability
for the restricted variant of the DMC problem, namely the Minimum Diameter Restricted
Matrix Completion (DRMC) problem, for which we provide a 2-approximation algorithm
in Theorem 5. To understand why this is the case, first, observe that we indeed get a
solution to the DRMC problem in our completeness proof. For soundness, using a similar
(though much simpler) argument that is used in the proof of Lemma 12, we can show that
if Val(Ψ, σ) ≤ δ, then for every string s ∈ {0, 1}d, we get at least two rows whose non-∗
entries do not match with the corresponding entries of s and the set of non-∗ coordinates are
disjoint. Consequently, by an argument similar to that in Claim 14, their distance must be
at least (2 − ε) · 2k.

5 Conclusion

In this paper, we focus on the task of completing an incomplete matrix while minimizing
the diameter, which represents the maximum pairwise distance between any two rows.
Currently, the only known approach is a 4-factor approximation algorithm derived from a
straightforward utilization of the triangle inequality combined with a simple 2-approximation
algorithm for the radius minimization variant. Although the problem is known to be NP-hard,
no inapproximability result has been established until now. Our main contribution is the
development of a novel 3-approximation algorithm. Notably, this result surpasses the existing
4-factor approximation, marking the first improvement in approximating this problem.

Additionally, we demonstrate that the problem is (2 − ε)-inapproximable for any ε > 0,
even when considering a binary alphabet. This represents the first inapproximability result for
this problem. One of the intriguing open problems is to bridge the gap between the 3-factor
approximation and the (2 − ε)-inapproximability. Furthermore, it would be interesting to
extend our approximation approach to a more general variant of k-clustering, with a focus
on minimizing the diameter of each cluster.

References
1 Paul D Allison. Missing data. Sage publications, 2001.
2 S Arora, C Lund, R Motwani, M Sudan, and M Szegedy. Proof verification and intractability

of approximation problems. In Proceedings of the 33rd Annual IEEE Symposium on the
Foundations of Computer Science, IEEE, 1992.

3 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ε)-SAT is NP-hard. SIAM
Journal on Computing, 46(5):1554–1573, 2017.

4 Vineet Bafna, Sorin Istrail, Giuseppe Lancia, and Romeo Rizzi. Polynomial and apx-hard
cases of the individual haplotyping problem. Theoretical Computer Science, 335(1):109–125,
2005.

5 Laura Balzano, Arthur Szlam, Benjamin Recht, and Robert Nowak. K-subspaces with missing
data. In 2012 IEEE Statistical Signal Processing Workshop (SSP), pages 612–615. IEEE, 2012.

6 Manu Basavaraju, Fahad Panolan, Ashutosh Rai, MS Ramanujan, and Saket Saurabh. On the
kernelization complexity of string problems. Theoretical Computer Science, 730:21–31, 2018.

7 Christina Boucher, Christine Lo, and Daniel Lokshantov. Consensus patterns (probably)
has no eptas. In Algorithms-ESA 2015: 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, pages 239–250. Springer, 2015.

8 Vladimir Braverman, Shaofeng Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for
clustering with missing values. Advances in Neural Information Processing Systems, 34:17360–
17372, 2021.

ISAAC 2023

17:16 Matrix Completion: Approximating the Minimum Diameter

9 Laurent Bulteau, Vincent Froese, and Rolf Niedermeier. Tight hardness results for consen-
sus problems on circular strings and time series. SIAM Journal on Discrete Mathematics,
34(3):1854–1883, 2020.

10 Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier, et al. Multivariate
algorithmics for NP-hard string problems. Bulletin of EATCS, 3(114), 2014.

11 Laurent Bulteau and Markus L Schmid. Consensus strings with small maximum distance and
small distance sum. Algorithmica, 82(5):1378–1409, 2020.

12 Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha. Approximating the Center
Ranking Under Ulam. In 41st IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2021), volume 213, pages 12:1–12:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

13 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. In
Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages 1–10,
2001.

14 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
Lower bounds for approximation schemes for closest string. arXiv preprint arXiv:1509.05809,
2015.

15 Eduard Eiben, Fedor V Fomin, Petr A Golovach, William Lochet, Fahad Panolan, and
Kirill Simonov. Eptas for k-means clustering of affine subspaces. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2649–2659. SIAM, 2021.

16 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. The
parameterized complexity of clustering incomplete data. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 7296–7304, 2021.

17 Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Finding a
cluster in incomplete data. In 30th Annual European Symposium on Algorithms (ESA 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

18 Ehsan Elhamifar. High-rank matrix completion and clustering under self-expressive models.
Advances in Neural Information Processing Systems, 29, 2016.

19 Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and
applications. IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–
2781, 2013.

20 Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. Parameterized algorithms
for the matrix completion problem. In International Conference on Machine Learning, pages
1656–1665. PMLR, 2018.

21 Robert Ganian, Iyad Kanj, Sebastian Ordyniak, and Stefan Szeider. On the parameterized
complexity of clustering incomplete data into subspaces of small rank. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 3906–3913, 2020.

22 Jie Gao, Michael Langberg, and Leonard J Schulman. Analysis of incomplete data and an
intrinsic-dimension helly theorem. Discrete & Computational Geometry, 40:537–560, 2008.

23 Jie Gao, Michael Langberg, and Leonard J Schulman. Clustering lines in high-dimensional
space: Classification of incomplete data. ACM Transactions on Algorithms (TALG), 7(1):1–26,
2010.

24 Leszek Gasieniec, Jesper Jansson, and Andrzej Lingas. Approximation algorithms for hamming
clustering problems. Journal of Discrete Algorithms, 2(2):289–301, 2004.

25 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
computer science, 38:293–306, 1985.

26 Jens Gramm, Rolf Niedermeier, Peter Rossmanith, et al. Fixed-parameter algorithms for
closest string and related problems. Algorithmica, 37(1):25–42, 2003.

27 Danny Hermelin and Liat Rozenberg. Parameterized complexity analysis for the closest string
with wildcards problem. Theoretical Computer Science, 600:11–18, 2015.

28 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Parameterized algorithms for matrix
completion with radius constraints. arXiv preprint arXiv:2002.00645, 2020.

D. Chakraborty and S. Dey 17:17

29 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Binary matrix completion under
diameter constraints. In 38th International Symposium on Theoretical Aspects of Computer
Science (STACS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

30 Euiwoong Lee and Leonard J Schulman. Clustering affine subspaces: hardness and algorithms.
In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms,
pages 810–827. SIAM, 2013.

31 Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. Journal
of the ACM (JACM), 49(2):157–171, 2002.

32 Ross Lippert, Russell Schwartz, Giuseppe Lancia, and Sorin Istrail. Algorithmic strategies for
the single nucleotide polymorphism haplotype assembly problem. Briefings in bioinformatics,
3(1):23–31, 2002.

33 Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793.
John Wiley & Sons, 2019.

34 Christine Lo, Boyko Kakaradov, Daniel Lokshtanov, and Christina Boucher. Seesite: character-
izing relationships between splice junctions and splicing enhancers. IEEE/ACM transactions
on computational biology and bioinformatics, 11(4):648–656, 2014.

35 Yair Marom and Dan Feldman. k-means clustering of lines for big data. Advances in Neural
Information Processing Systems, 32, 2019.

36 Ran Raz. A parallel repetition theorem. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 447–456, 1995.

37 Markus L Schmid. Finding consensus strings with small length difference between input and
solution strings. ACM Transactions on Computation Theory (TOCT), 9(3):1–18, 2017.

38 Lusheng Wang, Ming Li, and Bin Ma. Closest String and Substring Problems, pages 321–324.
Springer New York, 2016.

39 Jinfeng Yi, Tianbao Yang, Rong Jin, Anil K Jain, and Mehrdad Mahdavi. Robust ensemble
clustering by matrix completion. In 2012 IEEE 12th international conference on data mining,
pages 1176–1181. IEEE, 2012.

A Approximation Algorithm for the DRMC Problem

Let us start by restating the theorem.

▶ Theorem 5. There is a polynomial-time algorithm that, given an incomplete matrix M ∈
(Σ ∪ {∗})n×d, computes a 2-approximate solution for the Minimum Diameter Restricted
Matrix Completion (DRMC) problem over an arbitrary alphabet Σ.

We now prove the above theorem. We first formulate the problem using an integer linear
program (ILP), and then relax the integer constraints to get a linear program (LP), and
finally apply a simple (deterministic) rounding scheme on an optimal solution to that LP. It is
worth mentioning that the argument used here is very similar to the folklore 2-approximation
algorithm for the RadMC problem.

LP relaxation and rounding. Let us first give an ILP formulation. For each column ℓ ∈ [d]
and symbol σ ∈ Σ, we consider a {0, 1}-variable xℓ,σ. The variable xℓ,σ denotes whether all
the ∗ entries of M in the ℓ-th column are set to the symbol σ. More specifically, if xℓ,σ = 1,
then all the ∗ entries of M in the ℓ-th column are set to σ.

Let us define δij to be the Hamming distance between the non-∗-entries of the i-th and
j-th row of M . More formally, let

Kij := {ℓ ∈ [d] | Mi[ℓ] ̸= ∗ and Mj [ℓ] ̸= ∗} .

ISAAC 2023

17:18 Matrix Completion: Approximating the Minimum Diameter

Then δij := H(Mi[Kij], Mj [Kij]). For each row i ∈ [n], let Ii denote the set of indices with
non-∗ entries in M . Formally,

Ii := {ℓ ∈ [d] | Mi[ℓ] ̸= ∗} .

We use these notations to describe our ILP formulation.

Minimize z

s.t.
∑

ℓ∈Ii\Kij

 ∑
σ ̸=Mi[ℓ]

xℓ,σ

 +
∑

ℓ∈Ij \Kij

 ∑
σ ̸=Mj [ℓ]

xℓ,σ

 + δij ≤ z ∀i, j ∈ [n] (15)

∑
σ∈Σ

xℓ,σ = 1 ∀ℓ ∈ [d] (16)

xℓ,σ ∈ {0, 1} ∀ℓ ∈ [d], ∀σ ∈ Σ
(17)

In the above ILP, the constraints 16 ensure that for each column, for all the ∗ entries, exactly
one symbol is selected. It is easy to observe that the constraints 15 ask the Hamming distance
between i-th and j-th row (for every pair of i, j ∈ [n]) of the output complete matrix to be
at most z, which we minimize in the ILP. Hence, the above ILP provides an optimal solution
to the DRMC problem on input M .

In order to convert it to LP, we relax the constraints 17 to

xℓ,σ ∈ [0, 1], ∀ℓ ∈ [d], ∀σ ∈ Σ.

Let us consider an optimal solution
(

x∗
ℓ,σ

)
ℓ∈[d],σ∈Σ

to the above LP. Next, we use the

following simple (deterministic) rounding: For each ℓ ∈ [d], if there exists a symbol σ ∈ Σ
such that x∗

ℓ,σ ≥ 1/2 (break ties arbitrarily), then set x̄ℓ,σ = 1, and set x̄ℓ,σ′ = 0 for all
σ′ ̸= σ. For an ℓ ∈ [d], if for all σ ∈ Σ, x∗

ℓ,σ < 1/2, then pick a symbol σ ∈ Σ arbitrarily and
set x̄ℓ,σ = 1, and set x̄ℓ,σ′ = 0 for all σ′ ̸= σ.

It is straightforward to see that by the above rounding, the following holds:

For each ℓ ∈ [d],
∑
σ∈Σ

x̄ℓ,σ = 1.

Thus, it provides us with a feasible completion of M for the DRMC problem.

Approximation guarantee. Now we argue that the solution (x̄ℓ,σ)ℓ∈[d],σ∈Σ obtained by the
rounding provides a 2-approximate solution to the DRMC problem for the incomplete input
matrix M .

Let z∗ be the value of z of any optimal solution to our LP formulation. Let z̄ be the
minimum integer such that

∑
ℓ∈Ii\Kij

 ∑
σ ̸=Mi[ℓ]

x̄ℓ,σ

 +
∑

ℓ∈Ij\Kij

 ∑
σ ̸=Mj [ℓ]

x̄ℓ,σ

 + δij ≤ z̄ ∀i, j ∈ [n].

We want to claim that z̄ ≤ 2z∗, and as a consequence, we get that the solution x̄ℓ,σ (for all
ℓ ∈ [d], σ ∈ Σ) obtained by the rounding, provides a 2-approximate solution to the DRMC
problem.

D. Chakraborty and S. Dey 17:19

To show that z̄ ≤ 2z∗, we analyze each term separately in the constraints 15. By our
rounding procedure, for any j ∈ [n], ℓ ∈ [d],

∑
σ ̸=Mj [ℓ] x̄ℓ,σ = 1 if and only if x∗

ℓ,Mj [ℓ] ≤ 1/2
that means

∑
σ ̸=Mj [ℓ] x∗

ℓ,σ ≥ 1/2. Hence,
∑

σ ̸=Mj [ℓ] x̄ℓ,σ ≤ 2 ·
∑

σ ̸=Mj [ℓ] x∗
ℓ,σ. Hence,

∑
ℓ∈Ii\Kij

 ∑
σ ̸=Mi[ℓ]

x̄ℓ,σ

 +
∑

ℓ∈Ij\Kij

 ∑
σ ̸=Mj [ℓ]

x̄ℓ,σ

 + δij ≤ 2z ∀i, j ∈ [n]

which implies z̄ ≤ 2z∗. This concludes the proof of Theorem 5.

ISAAC 2023

Distance Queries over Dynamic Interval Graphs
Jingbang Chen # Ñ

Cheriton School of Computer Science, University of Waterloo, Canada

Meng He # Ñ

Faculty of Computer Science, Dalhousie University, Halifax, Canada

J. Ian Munro # Ñ

Cheriton School of Computer Science, University of Waterloo, Canada

Richard Peng # Ñ

Cheriton School of Computer Science, University of Waterloo, Canada

Kaiyu Wu #

Cheriton School of Computer Science, University of Waterloo, Canada

Daniel J. Zhang #

School of Computer Science, Georgia Tech, Atlanta, GA, USA

Abstract
We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a
set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set
of intervals in which no interval is properly contained in another.

For proper interval graphs, we design a linear space data structure which supports distance
queries (computing the distance between two query vertices) and vertex insertion or deletion in
O(lg n) worst-case time, where n is the number of vertices currently in G. Under incremental
(insertion only) or decremental (deletion only) settings, we design linear space data structures
that support distance queries in O(lg n) worst-case time and vertex insertion or deletion in O(lg n)
amortized time, where n is the maximum number of vertices in the graph. Under fully dynamic
settings, we design a data structure that represents an interval graph G in O(n) words of space
to support distance queries in O(n lg n/S(n)) worst-case time and vertex insertion or deletion in
O(S(n) + lg n) worst-case time, where n is the number of vertices currently in G and S(n) is an
arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). This implies an O(n)-word solution
with O(

√
n lg n)-time support for both distance queries and updates. All four data structures can

answer shortest path queries by reporting the vertices in the shortest path between two query vertices
in O(lg n) worst-case time per vertex.

We also study the hardness of supporting distance queries under updates over an intersection
graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the
problem of computing the diameter of a dynamic connected interval graph.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Information systems → Data structures

Keywords and phrases interval graph, proper interval graph, intersection graph, geometric intersec-
tion graph, distance oracle, distance query, shortest path query, dynamic graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.18

Related Version Thesis Ch. 6 : https://uwspace.uwaterloo.ca/handle/10012/19686

1 Introduction

The computation of the shortest path and the distance between a pair of vertices in a graph
are fundamental problems in graph algorithms. The shortest path between two vertices x

and y in an unweighted graph is the path with the fewest number of edges with x and y as
endpoints, and the distance between x and y is the number of edges in this path.

© Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenjb1997@gmail.com
https://chenjb1997.github.io/
https://orcid.org/0000-0002-7279-0801
mailto:mhe@cs.dal.ca
https://web.cs.dal.ca/~mhe/
https://orcid.org/0000-0003-0358-7102
mailto:imunro@uwaterloo.ca
https://cs.uwaterloo.ca/~imunro/
https://orcid.org/0000-0002-7165-7988
mailto:y5peng@uwaterloo.ca
https://cs.uwaterloo.ca/about/people/y5peng
mailto:k29wu@uwaterloo.ca
https://orcid.org/0000-0001-7562-1336
mailto:dzhang381@gatech.edu
https://orcid.org/0000-0002-3867-9608
https://doi.org/10.4230/LIPIcs.ISAAC.2023.18
https://uwspace.uwaterloo.ca/handle/10012/19686
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Distance Queries over Dynamic Interval Graphs

The study of these problems has many applications including contextual searching [27],
social network analysis [28] and molecular topology indices [29].

To support online queries, shortest path oracles and distance oracles have been designed.
They are constructed by preprocessing the given n-vertex graph G, such that, given a pair
of vertices x and y of G, the shortest path query, which asks for the list of vertices on the
shortest path between x and y, or the distance query, which asks for the distance between x

and y, can be answered efficiently. A naive solution is to precompute information between
all pairs of vertices, but the space cost is quadratic. As this space cost is believed to be
necessary for fast distance queries, to improve space efficiency, much work has been done to
design approximate distance oracles [24, 1]. For example, given a pair of vertices x and y at
distance d, the O(n5/3)-word distance oracles of Pǎtraşcu and Roditty [24] can compute in
constant time an approximate distance in [d, 2d + 1].

These distance oracles often use O(n1+Ω(1)) space, so for modern applications processing
large graphs, they tend not to fit in main memory. Therefore, a trend in the design of
distance oracles is to take advantage of the structural properties of various classes of graphs
to design more space-efficient solutions. The classes of graphs considered include both
sparse graphs such as planar graphs [21, 20] and potentially dense graphs such as interval
graphs [17, 18] and chordal graphs [25, 23]. Among them, interval graphs are intersection
graphs of a set of intervals on the real line and have applications in operations research [5]
and bioinformatics [30].

The recent result of He et al. [18] is a succinct representation of interval graphs that
occupies n lg n + (5 + ϵ)n + o(n) bits of space (which is n + o(n) words) for any constant
positive ϵ and answers distance queries in constant time. It can also answer shortest path
queries using time linear in the length of the path. In addition, they show how to represent
a proper interval graph, which are interval graphs with no interval properly contained in
another, in 2n + o(n) bits to provide the same query support.

One reason why the above work on interval graphs is interesting is that, to achieve linear
space, it is not possible to store the edges explicitly; unlike planar graphs, the number of
edges in an interval graph can possibly be quadratic. Instead, researchers focus on designing
data structures over the intervals represented by the graph. Thus, this provides answers
to the question of whether one can get more efficient solutions to graph problems when
graphs are provided implicitly. In other words, this is an instance in which graphs cannot be
written down explicitly, and you want data structures that use linear or near linear space or
algorithms that work in linear or near linear time, without explicitly constructing all edges.
Other instances include the work of Alman et al. [3] on geometric graphs and that of Munro
and Sinnamon [22] on distributive lattices.

Previous work on distance oracles for interval graphs focused on static graphs, while
distance oracles for dynamic general graphs require Ω(n2) update time [14, 26]. Previous
results on dynamic interval graph data structures, worked under the update model of inserting
and deleting individual edges, with update times Θ(n) [13]. Hence, in this paper, we design
data structures that support distance and shortest path queries over dynamic interval and
proper interval graphs, under the model of updating the graph by the insertion and deletion
of an interval, along with all the corresponding edges. By working on these problems, we
hope to provide some answers to the following question: “What graphs allow more efficient
solutions to dynamic graph problems when the graphs are provided implicitly?”

Previous Work. To solve the all-pairs shortest paths problem over interval graphs, Chen et.
al [11] built an O(n)-word structure that answers distance queries in O(1) times. Further
work by Acan et. al [2] in reducing the space yielded n lg n + (3 + ε)n + o(n) (for constant

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:3

ε > 0) bits of space data structure for shortest paths, and further improvements of He et
al. [18] gave a n lg n + (5 + ε)n + o(n) bits of space data structure that also allows distance
queries in O(1) time. In the same work, Acan et al. [2] showed how to use 2n + o(n) bits of
space to support shortest path queries in proper interval graphs in O(1) time per vertex on
the path, and He et al.[18] showed how to support distance queries in the same 2n + o(n)
bits of space, in O(1) time 1.

In a slightly different model of distance labeling, the data structure is distributed among
the vertices, and we compute the distance between two vertices from only their labels. The
best known result is a 5 lg n-bit label of Gavoille and Paul [17] (so a total space of 5n lg n

bits), which computes the distance in O(1) time.
Interval graphs are a subset of circular arc graphs, which are intersection graphs of arcs

on a circle. The results on interval graphs can be extended to circular arc graphs by unrolling
the circular arc graph (twice) and reducing it to an interval graph instance on twice the
number of vertices. Interval graphs are also a subset of chordal graphs, which are intersection
graphs of subtrees in a tree. For chordal graphs, we have the approximate distance oracle
of Singh et. al [25] which uses O(n) words of space and computes in O(1) time a distance
between [d, 2d + 8] where d is the true distance. This was improved by Munro and Wu [23]
to compute a distance between [d, d + 1] using n + o(n) words. Munro and Wu also gave an
exact oracle using n2/4 + o(n2) bits of space with query time O(nf(n)) for any f(n) ∈ ω(1).

Another way of generalizing interval graphs is to define intersection graphs of line segments
or boxes in two or higher dimensions. Chan and Skrepetosz [9] solved the all-pairs shortest
path problem over several classes of geometric intersection graphs, including intersection
graphs of axis-aligned line segments, arbitrary line segments or axis-aligned boxes. Researchers
have also designed distance oracles for intersection graphs over unit disks [16, 10].

Our Results. We consider interval graphs given as a set of intervals with edges represented
implicitly by the intersections between these intervals. An update is performed by adding
a vertex represented by an interval, and this implies the insertions of all its incident edges
implicitly, or by deleting vertices represented by an interval which implies the removal of all
its incident edges. This is natural in our setting as our edges are implicit in this intersection
model, and adding or deleting arbitrary edges may give us a graph outside of our graph class.

Under this model, we design a data structure in Section 3 that represents a proper interval
graph G in O(n) words, where n is the number of vertices currently in G, to answer distance
queries and to support vertex insertion or deletion in O(lg n) worst-case time. The shortest
path query can also be answered in O(lg n) worst-case time per vertex on the path.

For general interval graphs, we first consider the incremental case, in which we start from
an empty graph and insert n vertices one by one, and the decremental case, in which we
start from an n-vertex graph and perform n vertex deletions.

Queries can be made at any time during these update sequences. For these settings,
we design in Section 4 an O(n)-word representation that supports distance queries in
O(lg n) worst-case time, and vertex insertions (in the incremental case) or deletions (in the
decremental case) in O(lg n) amortized time. The shortest path query can be answered in
O(lg n) worst-case time per vertex on the path.

1 Although their data structure uses 3n + o(n) bits if the graph is not connected, this is due to using n
additional bits to determine if vertices belong to the same component. A O(

√
n) additional bit solution

to detect components can be found using the equivalence class data structure of El-Zein et al [15].

ISAAC 2023

18:4 Distance Queries over Dynamic Interval Graphs

Under fully dynamic settings in which we can mix insertions and deletions, we further
design in Section 5 a data structure that represents a general interval graph G in O(n) words
of space to answer distance queries in O(n lg n/S(n)) worst-case time and to support the
insertion or deletion of a vertex into or from G in O(S(n) + lg n) worst-case times, where
n is the number of vertices currently in G and S(n) is an arbitrary function that satisfies
S(n) = Ω(1) and S(n) = O(n). It also answers a shortest path query in O(lg n) worst-case
time per vertex on the path. Thus, setting S(n) =

√
n lg n yields an O(n)-word solution with

O(
√

n lg n)-time support for both distance queries and updates. These solutions are the first
that support distance and shortest path queries over dynamic interval and proper interval
graphs efficiently.

In addition, we also study in Section 6 the hardness of the problem of supporting distance
queries under updates in an intersection graph of 3D axis-aligned line segments, which
generalizes our problem to 3D. We reduce the online Boolean Matrix vector multiplication
(OMv) problem [19] to it. Thus, for any constant ε > 0, the distance query and update times
over such a graph cannot be O(n1/2−ε) simultaneously, unless the OMv conjecture [19] is false.
This implies conditional lower bounds for more general graphs such as intersection graphs of
3D axis-aligned boxes and intersection graphs of arbitrary line segments in 3D [9, 7, 12, 8].

Due to space constraints, some details are omitted.

2 Definitions and Preliminaries

2.1 Definitions
Let G = (V, E) denote a graph with vertex set V and edge set E, and we consider unweighted
graphs only. We use n = |V | and m = |E| to refer to the number of vertices and edges,
respectively. As is standard, we assume the word-RAM model with Θ(lg n)-size words.

An intersection graph is formed from a finite family of non-empty sets. We associate
each vertex with a set, and two vertices are adjacent if and only if the corresponding sets
intersect. Then, an interval graph is an intersection graph of a set of intervals on the real
line, while a proper interval graph is an interval graph where we may associate each vertex
with an interval so that no interval is completely covered by another.

The representing interval of a vertex v of an interval graph is denoted by Iv = [lv, rv].
We use I to refer to the current interval set of the graph, and we say that I is an interval
representation of G. I may change when the graph is dynamic. We define the following
operators over an interval graph G:

insert(v): adds to G a vertex v given by the interval Iv.
delete(v): deletes from G a vertex v given the interval Iv.
dist(u, v): returns the distance between two vertices in G.

2.2 Static Data Structure for Distances in Interval Graphs
Here we will review some previous results for the static case [18, 2], which we will build upon.

For each interval v, we define the parent relationship parent(v) as the vertex u such that

u = arg min {lw | rw ≥ lv} (1)

▶ Definition 1. Let G be an interval graph, with a fixed interval representation. The distance
tree T (G) is defined under the parent relationship parent(v). For every vertex v, we order
the children of v in order of the left end point of the vertices. That is, if u, w are two children
of v with lu < lw, then u is to the left of w.

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:5

If G is disconnected, then we have a forest instead, with one tree per vertex v where
parent(v) = v. Furthermore, in the context of a vertex v, the distance tree T (G) of a
disconnected graph G refers to the tree in the forest that contains v.

5
4
3
2
1

6
1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4 5

6

1

2 3 4

5 6

Figure 1 An Interval Graph (middle) with Interval Representation (left), and distance tree
constructed (right).

For a tree T and a node v, the quantity posX
T (v) denotes the index of v in the X traversal of

T , where X could be level, pre, post indicating a breadth-first traversal, preorder traversal
and postorder traversal, respectively. We will omit the subscript when the tree being referred
to is clear. Then we have

▶ Lemma 2 (Lemma 7 of [18]). Let G be a proper interval graph with distance tree T (G)
and vertices u, v. poslevel(u) < poslevel(v) if and only if lu < lv. In the special case that
depth(u) = depth(v), posX(u) < posX(v) if and only if lu < lv for X = pre, post, level.

The main property of the distance tree is that it encodes distances between vertices.

▶ Lemma 3. Let G be an interval graph with distance tree T (G), and u, v be two vertices
in the same connected component of G with poslevel(u) > poslevel(v). Let the node to root
path of u be u = u1, . . . , uk = r, and i be the first index where lui

≤ rv. Then a shortest path
from u to v is u = u1, . . . , ui, v, and depth(ui) is depth(v)− 1, depth(v) or depth(v) + 1.

In the proper interval graph case, we may state it more succinctly as

▶ Lemma 4. Let G be a proper interval graph with distance tree T (G) and u, v be two vertices
in the same connected component of G with poslevel(u) > poslevel(v). Then dist(u, v) =
depth(u)− depth(v) + 1 (pospost(u) > pospost(v)), where the last term evaluates to 1 if the
expression inside the brackets is true and 0 otherwise.

3 Fully Dynamic Proper Interval Graphs

As proper interval graphs are a special class of interval graphs, we naturally modify the
insert(v) operation. If the interval [l, r] inserted is incompatible with the proper interval
graph - that is it either covers or is covered by another interval, we abort the operation.

Our dynamic solution modifies the distance tree of He et al. [18] so that it is more easily
maintainable. The distance tree T (G) (Definition 1) in general has an unbounded degree,
which makes updates difficult. To alleviate this, we will apply the well-known isomorphism
between ordinal trees and binary trees to ensure that the tree is binary. To preserve depths,
sibling edges in the binary tree will have a weight 0, while parent edges in the binary tree
will have a weight 1.

More formally, let T be an ordinal tree on n nodes. Define the weighted binary tree TB

also on n nodes as follows: For each vertex v in TB , the left child of v is its left sibling in T ,
the right child of v is its rightmost child in T . Left child edges have a weight 0, right child
edges have a weight 1. Using this convention, whenever we add a vertex as the left child of

ISAAC 2023

18:6 Distance Queries over Dynamic Interval Graphs

another vertex, it is implicit that we also set the weight of that edge to 0, similarly for right
child edges. This transformation preserves post-order traversal. Furthermore, when we talk
about node depth or path length in TB , we refer to weighted node depth or weighted path
length, respectively. Hence, any path length in T (G) is invariant under this transformation.

Thus Lemma 4 still holds under this transformation. Furthermore, we will use poslevel(u)
to refer to the level-order position of u in T (G) before the transformation as the level-
order position no longer has any meaning after the transformation. As concepts are more
easily stated on T (G), we will mainly use it for stating relationships between vertices, but
straightforwardly translate the operations on TB(G) which we will maintain.

Under this transformation, we also immediately have the analogous notion of ancestors.
For a vertex v, the node u = ancT (v, d) is the ancestor of v at depth d in T . The node u

in TB is the closest ancestor of v at depth d (as the edges may have 0 weights, there are
multiple ancestors at each depth). We will store the tree TB(G) as a top tree [4], which
allows us to make dynamic changes along with useful path queries in O(lg n) time.

▶ Lemma 5 (Top Tree [4]). Let T be a forest. A top tree data structure on T occupies
O(n) words of space and supports the following operations in O(lg n) time: link(u, v), where
u and v are in different trees, links these trees by adding the edge (u, v) to T ; cut(e),
removes the edge e from T ; update_weight(e, w), update the weight of the edge e to w;
weighted_distance(u, v), returns the weight of the path between u and v; anc(u, v, d),
returns the first node on the path from u to v at distance d from u.

For a proper interval graph G, with intervals I, we will maintain the following: 1)A
top tree of TB(G). For each component, we store a variable indicating the root r of that
component. 2)A mapping between the vertices v of G and the interval Iv = [lv, rv]. 3) A
mapping from the end points of intervals to the vertex itself. Note that no two intervals can
share left end points nor right end points in a proper interval graph, but the left end point of
one interval can be the right end point of another. 4) The left end points of all the intervals.
5) The right end points of all the intervals. For the last 4 items, we will use a red-black
tree, so that searches can be done in O(lg n) time. For the last 2 items, this also allows us
to support successor and predecessor queries, denoted by predL/succL, on the set of left
endpoints and predR/succR on the set of right endpoints. The total space is O(n) words.

Now we translate the distance calculation from T (G) into our data structure essentially
by translating the comparison between poslevel to a comparison between interval endpoints.

▶ Lemma 6. The data structures in this section can compute dist(u, v) in O(lg n) time
given two vertices, u, v of G.

Proof. In the case that depth(u) = depth(v), we retrieve the endpoints. Assume without
loss of generality that lu > lv. Since pospost(u) > pospost(v)⇔ poslevel(u) > poslevel(v)⇔
lu > lv, by lemma 4 we have that dist(u, v) = 1.

Now suppose that depth(u) > depth(v). By the property of a breadth-first traversal,
we also have poslevel(u) > poslevel(v). Using the top tree, we find w = anc(u, depth(v))
in O(lg n) time. Then pospost(u) > pospost(v) ⇔ pospost(w) > pospost(v) ⇔ lw > lv, so a
comparison between lw and lv is sufficient to apply lemma 4. ◀

Now we consider the maintaining of the distance tree T (G) (conceptually) and TB(G)
(concretely) under updates. To do so, we first characterize the parent relationship in TB(G).

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:7

▶ Lemma 7. Let G be a proper interval graph with distance tree TB(G). Let v be a vertex.
If v is not a root of one of the components, then parentTB(G)(v) is

arg min ({lw | lw ≥ lv} ∪ {rw | rw ≥ lv}) (2)

If two vertices u, w have endpoints such that ru = lw, break ties in the above quantity by
treating lw < ru. Furthermore, let v′ be the vertex such that lv′ = predL(lv). Then v is the
root of its component if and only if v′ is not adjacent to v.

Proof. First suppose that v′ is adjacent to v. Then, since lv′ < lv, we have rv′ ≥ lv, and
hence, v′ is a candidate in the parent (in T (G)) relationship of v. Therefore, v would have
a parent in T (G) and thus would not be the root. Conversely, let p denote the parent of v

in T (G). If v′ ̸= p, we have lp < lv′ < lv ≤ rp < rv′ . The first and third inequality comes
from p being the parent of v, while the others come from the fact that G is a proper interval
graph. Thus v′ is adjacent to v.

Now suppose that v is not the root of its component. By the construction of TB(G), v’s
parent in TB(G) is either its right sibling or, if it has no right sibling, its parent in T (G).
Let u = arg min{lw | lw ≥ lv} ∪ {rw | rw ≥ lv}. Suppose that u is obtained from the first set
which consists of left end points. Then as there are no right end points between lv and lu,
they have the same parent in T (G). Since lu = succL(lv), u must be the immediate right
sibling of v. If u is obtained from the second set which consists of right end points, then as
G is a proper interval graph, u = arg min{lw | rw ≥ lv}, so u is the parent of v in T (G). We
note that v is the rightmost child of u in T (G). This can be seen as there are no vertices v′

with lv ≤ lv′ ≤ ru which any right sibling of v must have. ◀

To support updates, we will first consider insertions. Let w be the vertex with interval
Iw = [l, r] be our insertion candidate. We will accomplish this in two steps: first, check
that w contains or is contained by some interval in G. If so, we stop immediately. Then,
determine the links of TB(G) that need to be updated. For step 1, we only need to check the
containment between the two immediate predecessor and successor of w.

▶ Lemma 8. Let G be a proper interval graph with intervals I. Let w = [l, r] such that l ̸= lv
is2 not the left end point of any interval Iv ∈ I. Let v be the vertex such that lv = predL(l)
and u be the vertex such that lu = succL(l).

Then w is contained in some interval Iv′ if and only if w is contained in Iv, and w

contains some interval Iu′ if and only if w contains Iu.

Proof. By assumption, lv ̸= lw ̸= lu. As v is the predecessor of w, lv′ ≤ lv. If w is
contained in Iv′ , then lv′ ≤ lv < lw < rw ≤ rv′ < rv, so w is also contained in Iv.
Conversely, we choose v′ = v. Now suppose that w contains some interval Iu′ . Then we have
lw < lu ≤ lu′ ≤ ru < ru′ < rw, so w contains u. ◀

We will now assume that G ∪ {w} is a proper interval graph.

▶ Lemma 9. O(1) links need to be updated to transform TB(G) to TB(G ∪ {w}).

Proof. By Lemma 7 for a vertex v, the parent in TB(G) is given by equation 2. By adding
lw and rw, we may need to add an edge between w and parentTB(G∪{w})(w), and we also
add links whenever w is the result of equation 2. Furthermore, as roots do not have parents,
if w becomes the new root of some component, the old root would need to relink as well.

2 If l = lv, then one of w and v contain the other, and we can easily handle this case by aborting.

ISAAC 2023

18:8 Distance Queries over Dynamic Interval Graphs

Thus by the analysis above, at most 4 links need to be updated. We note that to compute
the new parent of any node, equation 2 can be calculated using succL(lv) and succR(lv),
then taking the minimum of the result.

To be complete, we will explicitly state the vertices that need to be relinked. If w is
the new root of some component, then the old root is lr = succL(lw) if r is adjacent to w.
Otherwise, w is in a component by itself. In the case that r is adjacent to w, r will need to
recalculate its parent link. If w is not the new root of some component, then we calculate
the parent of w. The two children of w are the vertices whose left end points immediately
precede lw and rw. Let u, v be the vertices such that lu = predL(lw) and lv = predL(rw).
We may need to relink u and v as they may now be children of w. ◀

▶ Lemma 10. The insert operation has time complexity O(lg n).

Proof of Lemma 10. insert first checks that w is consistent with the other intervals in
O(lg n) time. The transformation from TB(G) to TB(G ∪ {w}) requires the relinking of O(1)
links, which takes O(lg n) time. Adding w to the maps between vertices and end points and
adding the end points of w to the trees require O(lg n) time. Thus in total, insert requires
O(lg n) time. ◀

The delete operation is in essence the reverse of insert. Details for it and the following
query, used in Section 4, are omitted. Given two vertices u, v (represented by intervals) not
in G, compute dist(u, v) in G ∪ {u, v} without requiring G ∪ {u, v} to be a proper interval
graph. The main idea is that if lu < ru < lv, then dist(u, v) depends only on ru and lv.
Thus we compute two vertices u′, v′ with ru = ru′ , lv = lv′ so that G ∪ {u′, v′} is a proper
interval graph, and the distance can be computed by replacing u, v with u′, v′. Thus we have:

▶ Theorem 11. A proper interval graph G can be represented in O(n) words of space, where
n is the number of vertices currently in G, to support insert, delete, dist in O(lg n) time,
and shortest_path in O(lg n) time per vertex on the path. Furthermore, dist supports
arguments not in the graph G: for intervals x = [lx, rx], y = [ly, ry] not necessarily in G,
distG∪{x,y}(x, y) is supported in O(lg n) time.

4 Dynamic Interval Graphs in Incremental and Decremental Settings

In this section, we will study dynamic interval graphs in the incremental and decremental
settings; Some details are omitted.

We do this by observing that any interval that is contained in some other interval can
be removed without changing the length of the shortest paths. By maintaining the set
of remaining intervals, which we will say are exposed, we reduce the problem to the fully
dynamic proper case. In the incremental setting, once an interval becomes contained by
another interval (that is, no longer exposed), it will remain so for the remaining operations;
in the decremental setting, once an interval is no longer contained by another interval (that
is, becomes exposed), it will remain so until it is deleted. Hence, the total number of updates
to the proper interval graph data structure will be O(n). The two main theorems for this
section are:

▶ Theorem 12 (Incremental). There is a data structure that maintains an interval graph G

in O(n) words of space, where n is the total number of vertices to be inserted into G, and
supports dist in O(lg n) worst-case time and insert in O(lg n) amortized time.

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:9

▶ Theorem 13 (Decremental). There is a data structure that starts with a given n-vertex
interval graph G and uses O(n) words to support dist in O(lg n) worst-case time and delete
in O(lg n) amortized time.

As we briefly explained, these will be solved (in an amortized fashion) by reducing to
the problem on dynamic proper interval graphs. Formally, for an interval graph G with
intervals I, we say that an interval x ∈ I is exposed if it is not contained by another interval
of I, and we let Iexposed(G) denote the set of all exposed interval of G. By the association
between vertices and intervals, we will use the terms interval and vertex interchangeably.
We note that by definition, the subgraph of G consisting of exposed vertices forms a proper
interval graph. Let x, y ∈ Iexposed(G) be two exposed vertices, and by symmetry suppose
that lx < ly. As x, y belong to a proper interval graph, we also have rx < ry. We will use
x < y to denote that lx < ly for two exposed vertices, and < defines a strict total order on
the exposed vertices of the interval graph G (i.e. < simply makes a comparison on the left
endpoints of the given vertices, which must be unique). The following lemma allows us to
reduce the distance query on interval graphs to the proper interval graph on the exposed
vertices only.

▶ Lemma 14. Given an interval graph G with fixed interval representation I, its exposed
intervals Iexposed(G) form a proper interval graph H with the following properties:

Any interval x is contained by an interval of G iff x is contained by an interval of H.
For any two vertices x, y ∈ G, distG(x, y) = distH∪{x,y}(x, y).

Intuitively, we only need exposed intervals because, by definition of parent (equation 1),
all parent intervals are exposed. Thus, Lemma 14 implies that, to support dist on interval
graphs, it suffices to maintain an instance of fully dynamic proper interval graphs using
Theorem 11, on the exposed vertices of G. Thus it remains to determine and maintain
exposed vertices. To do so, in addition to using an instance of the fully dynamic proper
interval graph structure, we will also store the exposed intervals in an auxiliary data structure:

▶ Lemma 15. There exists a data structure using O(n) words where n is the number of
intervals current in the data structure, that can store the exposed intervals and support the
following operations given an interval x in O(lg n) time: 1) determine whether x is contained
by some interval currently in the data structure. 2) report all intervals that are contained by
x and delete all of them, in O(k lg n) time, where k is the number of deleted intervals. 3)
If x does not contain and is not contained by any interval currently in the data structure,
insert it. 4) If x is in the data structure, return its predecessor or successor with respect to
<, or report that it doesn’t exist.

We can use a red-black tree to store the exposed intervals using the left end points as the
keys and the right end points as the values. This is sufficient to support the operations in
Lemma 15. We now sketch our support for dynamic interval graphs under only insertions.

Proof Sketch of Theorem 12. We maintain the fully dynamic proper interval graph struc-
ture of Theorem 11 on the graph H whose vertices are the exposed intervals of G. We also
maintain the binary search tree, TH in Lemma 15 on the same intervals. Upon the insertion
of an interval, if it is contained in some other interval, then we do nothing. If the new interval
is exposed, then any interval it contains will no longer be exposed and must be deleted. As
the deletion of intervals from the proper interval graph structure uses O(lg n) time and any
exposed interval can only be deleted once, the total time over n insertions is O(n lg n). ◀

ISAAC 2023

18:10 Distance Queries over Dynamic Interval Graphs

4.1 Data Structure for Decremental Interval Graphs
In this subsection, we consider the decremental case, where the updates are the deletion of
intervals. First, we investigate how the set of exposed intervals change after a deletion.

▶ Lemma 16. Let G be a proper interval graph, and G′ = G− x for some vertex x ∈ G. If
x is not exposed in G, then, Iexposed(G) = Iexposed(G′).

If x is exposed in G, then Iexposed(G) \ {x} ⊆ Iexposed(G′), and, for all y ∈ Iexposed(G′) \
Iexposed(G), y ⊆ x. Furthermore, Iexposed(G′) = (Iexposed(G) \ {x})∪̇{y ∈ Iexposed(G′) :
x− < y < x+} (∪̇ denotes a disjoint union), where x− and x+ are respectively the predecessor
and the successor of x in Iexposed(G) (if either x− or x+ does not exist, then that constraint
is omitted). That is, the newly added elements of Iexposed(G′) are between x− and x+.

In plain words, the lemma states that any new exposed intervals must fall between the
predecessor and successor of the removed exposed interval.

We will now assume that the deleted vertex x is exposed, as there is nothing to be done
if not. We wish to find set {y ∈ Iexposed(G′) : x− < y < x+}. To do so, we will iteratively
find these newly exposed intervals from the smallest to the largest.

▶ Lemma 17. Consider a set of intervals S, and let x ∈ S be an exposed interval. Let x′ ∈ S

be the interval with minimum lx′ (ties broken by largest rx′) such that rx′ > rx. Then, x′ is
exposed, and there does not exist any exposed interval z ∈ S such that x < z < x′. If no such
x′ exists, then there is no exposed interval w ∈ S such that x < w.

Next we give a data structure which applies the criteria given in Lemma 17.

▶ Lemma 18. There is an O(n)-word data structure that can maintain a set of intervals
(initially a given set, and not necessarily exposed) and support the following operations
1. Delete an interval in O(lg n) time;
2. Given any two exposed intervals x and y where x < y, report all exposed intervals z such

that x < z < y in O((k + 1) lg n) time, where k is the number of returned intervals. We
also allow x = −∞ and/or y =∞, in which case the constraint involving them is omitted.

The structure is an augmented red-black tree storing all intervals, where the keys are
the right endpoints of intervals (ties are broken by largest left end points of intervals), and
to support the second operation, at each node, we store the minimum left endpoint of all
the intervals in the subtree. Finally, we give a sketch of the data structure for supporting
delete.

Proof sketch of Theorem 13. We build the data structures for the incremental case and
also maintain TG, the binary search tree in Lemma 18 on all the intervals of G. If the vertex
x to be deleted is not exposed, then nothing needs to be done. If it is, then we find its
predecessor and successor in Iexposed(G) using TH , delete it, and find all the newly exposed
vertices using Lemma 17 and TG, and add them into the proper interval graph. As every
interval can become exposed at most once, it is added into the proper interval graph at most
once (and deleted at most once). Hence, over n deletes, the total run time is O(n lg n). ◀

5 Fully Dynamic Interval Graphs

The main goal of this section is to prove the following result:

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:11

▶ Theorem 19. An interval graph G can be represented in O(n) words to support dist in
O(n lg n/S(n)) time, shortest_path in O(lg n) time per vertex on the path, and insert
and delete in O(S(n)+lg n) time, where n is the number of vertices currently in G and S(n)
is an arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). Setting S(n) =

√
n lg n

yields an O(n)-word solution with O(
√

n lg n)-time support for dist, insert and delete.

To prove this result, we first design a data structure to compute parent under updates. We
decompose distance queries so that the structures can be more easily updated in Sections 5.1
and 5.2. Finally, we show how to update these in Section 5.3.

We define the jump of i as moving from the current vertex i to its parent(i) (as in
Lemma 3) 3. Then we can interpret Lemma 3 to a series of jumps from u to ui, then to v.
First, we give a data structure computing jump. By definition of parent (equation 1), the
parent of a vertex i is the vertex j = arg minrj≥li

lj . To compute this, we store all intervals
in a red-black tree with their right endpoints as keys. At each node, we store both the
minimal left endpoint among all intervals stored in the subtree rooted at that node and a
pointer to the node containing that interval. We call this the global interval tree, and it uses
O(n) words. Given an interval i, to find j, we search for li to obtain a path (i.e. the nodes
encountered on the standard binary search algorithm) and a set of subtrees (i.e. the subtrees
rooted at right children of any node on the path, given that path continues towards the
left child) containing the intervals v with rv ≥ li. For each we calculate the maximal left
endpoint contained in the node (for those on the path) or the subtree and take the minimum.
As the tree is balanced, this takes O(lg n) time. This tree can also be updated upon interval
insertion or deletion in O(lg n) time. This simple structure is also a dynamic shortest path
oracle for interval graphs.

5.1 Distance Computation
In this section, we will give an algorithm to compute the distance between two vertices x

and y that is compatible with updates. The main idea is to break the interval graph into
blocks of size S(n). If we take the naive approach of calculating a shortest path, then the
time complexity to compute the distance between two vertices x and y will depend on the
distance itself. To combat this, we will decompose the path into subpaths each residing
entirely within one of the blocks, and compute them quickly.

We sort the n given intervals by left endpoints, fix S(n) and then divide the vertices
(consecutively) into Θ(n

S(n)) blocks, with each block containing O(S(n)) vertices (intervals).
From left to right, we number blocks incrementally by B1, B2, For vertex i we say that
the jump i→ parent(i) is an in-block jump if both i and parent(i) belong to the same block,
and it is an out-of-block jump otherwise.

Figure 2 Depicting the parent relationship where the intervals are coloured to depict the
decomposition into blocks of size 3.

3 Though jump(i) = parent(i), it flows more naturally when we describe it as an action, as it is a verb.

ISAAC 2023

18:12 Distance Queries over Dynamic Interval Graphs

▶ Example 20. Consider figure 2. We see that any jump from the vertices represented by
the red intervals are in-block jump, while jumps from all other vertices are out-of-block
jumps. In particular, for any other vertex, since the jump is out-of-block, their parent in the
distance tree of their block Ti (to be constructed in Section 5.2) would be different than their
parent over all. However, for the red vertices these two parent relationships would coincide.

For any shortest path x = p1, . . . pk, y where pi+1 = parent(pi), we can decompose it
into a sequence of in-block jumps followed by an out-of-block jump - and repeat. To compute
the path length, we will compute the length of each of the in-block sequences and count the
out-of-block jumps using

compressed9in9block9jump(x, optional: y): Return the last vertex t such that all jumps
between x, . . . , t are all in-block jumps, together with the distance between x and t. If
y is given, also returns the distance between x and y or report that there is no path
between them in the block.
jump(x): given a vertex x, return its (global) parent.

Thus given two vertices x and y (with ly < lx so that the block of x comes no earlier
than the block of y) to the distance problem, we propose algorithm 1.

Algorithm 1 Compressed computation of the distance between vertices x and y.

1: p, dist← x, 0
2: while p and y are not in the same block do
3: q, d(p, q)← compressed9in9block9jump(p)
4: if q is adjacent to y then
5: return dist + d(p, q) + 1
6: p, dist← parent(q), dist + d(p, q) + 1
7: if p = q (i.e. q = parent(q)) then
8: return unreachable
9: if p is adjacent to y then

10: return dist + 1
11: q, d(p, q), d(p, y)← compressed9in9block9jump(p, y)
12: if ly < lq then
13: if parent(q) is adjacent to y then
14: return dist + d(p, q) + 1
15: else
16: return unreachable
17: return dist + d(p, y)

To show that this algorithm is correct, first we note that the blocks we visit is (weakly)
monotonic. That is, at each jump, the block number never increases. Hence after each cycle
of compressed9in9block9jump and jump the block number always decreases. This can be
seen as by definition, for any x, parent(x) has a smaller left endpoint, and as our blocks are
obtained by sorting the left endpoints, it cannot be in a larger numbered block.

Proof. (Correctness of Algorithm 1) Let s1 > s2 > s3 . . . be the sequence of block num-
bers in our jump sequence. Let pi be the first vertex in our path of block si and qi =
compressed9in9block9jump(pi) be the last vertex of block si. Let t be the block number
of y. We have two cases: If si > t > si+1 for some i, then either qi is adjacent to y or pi+1
is necessarily adjacent to y, the first we check on line 4, the second on line 9. The edge
case here is if si > t for all i, then at the end qi would have no parent (which we defined

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:13

as parent(qi) = qi) as it is the end of its component, at which point we return that it is
unreachable (on line 7-8). If t = si for some i, then once we hit pi, the while loop ends and
we compute the remaining distance within the block. If qi, y are in the same block with
lqi ≤ ly, then the distance computation between pi and y use only in-block jumps and thus is
correct (line 17). Otherwise, if lqi

> ly, then we have the same situation as above. If it has a
parent, then the parent must be adjacent to y (line 13-14). If it does not, then y cannot be
reached (line 16). ◀

Given this, the time complexity of the distance algorithm is upper bounded by the
time complexity of compressed9in9block9jump and parent multiplied by O(n

S(n)), as each
operation is called at most O(n

S(n)) (the number of blocks) times.

5.2 Data Structures for Analyzing Jumps in Block
Now, we will discuss how to implement the compressed9in9block9jump subroutine after
some preprocessing of each block. For each block Bi, we construct the distance tree, Ti

(which may be a forest) of the interval graph Gi induced by the intervals in Bi. We
precompute the depth, depth(Ti, x), of each node x in Ti and also preprocess Ti using the
approach of Bender and Farach-Colton [6] to provide constant-time support for the level
ancestor operator, anc(Ti, x, d), which, given a node x in Ti, returns the ancestor of x at
depth d of Ti. The preprocessing time is O(|Bi|), and Ti uses O(|Bi|) words of space after
preprocessing. By Lemma 3, depth and anc are sufficient to compute in constant time the
distance, dist(Gi, x, y), of two vertices x and y in Gi or determine that there is no path
between them (i.e. when the two vertices belong to different trees in the forest). We will
also store all the intervals of Bi using the left endpoint as keys in a red-black tree.

We propose the following compressed9in9block9jump algorithm (Algorithm 2).

Algorithm 2 compressed9in9block9jump(x, optional: y).

1: if y exists then
2: return dist(Gi, x, y) and also perform the below steps
3: Compute Llimit(i)
4: Compute vlimit(i)
5: if Llimit(i) ≥ x then
6: return x, 0 as x jumps out of block already
7: Apply Lemma 3 to obtain z (ui in Lemma 3) the last node before vlimit(i) on the path

between x and vlimit(i) - or unreachable if a path cannot be found (i.e. they are in
different subtrees).

8: if Line 7 is unreachable then
9: return anc(Ti, x, 0), depth(x)

10: if lz ≤ Llimit then
11: return z, depthTi

(x)− depthTi
(z)

12: else
13: return parentTi

(z), depthTi
(x)− depthTi

(z) + 1

Define Llimit(i) = max{rw | lw < min{lv | v ∈ Bi}} and, if Llimit(i) < min{lv | v ∈ Bi}, we
set it as −∞ for convenience. This has the property that, for any v ∈ Bi with lv < Llimit(i),
jump(v) is out-of-block as w (the interval achieving the maximum value in the definition
of Llimit(i)) is a candidate for parent(v) and is out-of-block. Conversely, jump(v) for any

ISAAC 2023

18:14 Distance Queries over Dynamic Interval Graphs

v with lv > Llimit(i) is in-block since any out of block jump from v would move Llimit(i)
to its right. Let vlimit(i) = arg max{v∈Bi|lv<Llimit(i)} lv be the last out-of-block jump vertex,
computed by searching for Llimit(i) over the left endpoints of the intervals in the block.

We may compute Llimit(i) by descending the global interval tree. First search for the
value min{lv | v ∈ Bi} to obtain a path and a set of subtrees as right children of nodes
on the path - these are all the intervals with right endpoint greater than min{lv | v ∈ Bi}.
For each subtree and node on the path (in reverse in-order: starting with the subtree/node
containing the interval with the largest right endpoint), we check if the minimal left endpoint
in the subtree (or the left endpoint of the interval for a node on the path) is less than
min{lv | v ∈ Bi}. If not, then we move on to the next subtree or node on the path. If so we
return this interval for a node, and for a subtree we traverse it: for any node, if the right
children’s minimal left endpoint is less than min{lv | v ∈ Bi}, we move to it. Otherwise, we
check the current node’s interval and return it if its left endpoint is less than min{lv | v ∈ Bi}.
If not, we move to the left child. If at the end, none of the subtrees nor nodes have a left
endpoint smaller than min{lv | v ∈ Bi}, we return −∞.

To find the first vertex with an out-of-block jump we compute Llimit(i) and vlimit(i).
Then we apply dist(vlimit(i), x) as in Lemma 3. Since vlimit(i) is the boundary between the
in-block jumps and out-of-block jumps, The penultimate vertex on the path to vlimit(i) (i.e.
ui in Lemma 3) will also be on the boundary between being in-block and out-of-block (i.e.
either it is the first out-of-block jump or it is the last in-block jump, and we check which by
its relative order with vlimit(i)).

Correctness of compressed9in9block9jump. For computing the distance between x and
y in the block, we call dist(Gi, x, y) directly, which has been analyzed in Lemma 3 as a
constant time operation with the constant-time support for depth and anc in Ti.

Furthermore, we want the number of jumps before we reach past vlimit(i). If x and
vlimit(i) are in different trees in the forest Ti, then either x jumps out of block already, or
we cannot reach vlimit(i) via in-block jumps starting from x and the sequence of jumps ends
at the root of the tree containing x. If they are in the same tree, we compute the path from
x to vlimit(i) and find the penultimate node on the path xd (i.e. ui in Lemma 3). If xd

jumps out of block, then xd−1 cannot, since otherwise it would also be adjacent to vlimit(i).
Similarly, if xd does not jump out of block, then, as parent(xd) ≤ vlimit(i) (vlimit(i) is a
candidate for the parent of xd), parent(xd) must jump out of block. ◀

The query time of compressed9in9block9jump is O(lg n) since, all steps taken, such
as the computation of Llimit(i) and parent, are O(lg n) time. As the time complexity of
the distance algorithm is the time complexity of compressed9in9block9jump and parent
multiplied by O(n

S(n)), Algorithm 1 uses O(n lg n/S(n)) time to answer a distance query.

5.3 Maintaining Data Structure under Update Operations
Update operations include vertex (interval) insertions and deletions. For any update, we
have to maintain the following structures:
1. The global data structure of parent computation (i.e. the global interval tree).
2. The local parent structure of each block (i.e Ti for each block Bi).
3. The block structure of the whole graph.

As discussed the global interval tree can be maintained in O(lg n) time for each update.
This part is independent of the block structure. As the structure for each local block only
uses the intervals of that block, for each update, we need only update the structures for the

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:15

block containing the inserted or deleted interval. Since the update will change the interval
set of this block, we rebuild the local structures in O(S(n)) time. Thus overall each update
has complexity O(S(n) + lg n).

Note that we assume the block size stays O(S(n)) for the previous analysis. However, the
block size will change whenever an update occurs in it. In the worst case, all updates would
occur in the same block, and thus we must be able to maintain our block sizes to be Θ(S(n)).
Moreover, the total number of intervals n will also change, and thus S(n) will also change.
The efficiency may not be guaranteed if the total number of intervals no longer correlates
with our block size. Therefore, we use two processes, Split and Rebuild, to maintain block
sizes of Θ(S(n)). In general, Split happens whenever a block’s size is too large, which might
degenerate the complexity of compressed9in9block9jump. A Rebuild will occur after a
certain number of updates in order to control the number of blocks and ensure that the block
size corresponds to the current S(n) value.

Split: The key part of the analysis is that we assume the block size is O(S(n)) all the time.
The Split process is for maintaining this property. After any insert, if the size of the block
containing the new vertex is 2S(n), we will split the block into two blocks, and each block
has S(n) intervals sorted by left endpoints. As we need to rebuild two blocks of size S(n),
the time needed is O(S(n)). Finally, we note that since every block begins with S(n) vertices
and has S(n) vertices after a split, at least S(n) inserts must occur in a block to split it.

Rebuild: This process denotes a complete rebuilding of the whole block structures, including
block dividing and all local preprocessing of blocks. Since the cost of building the structure
for each block is linear, the total cost is O(n). The motivation of this operation comes from
two causes. Firstly, when the number of blocks increases greatly, the compressed distance
computing, which is dominated by the number of blocks, will degenerate. Secondly, denoting
the number of intervals in the last Rebuild as n′, if n′ differs greatly from n, S(n) may also
be different enough from S(n′), so that our complexity will not be O(n lg n/S(n)) per query
or O(S(n) + lg n) per update (corresponding to the current S(n)). Therefore, we trigger a
Rebuild after every n′

2 updates. After all n′

2 updates, the current number of intervals n stays
within [n′

2 , 3n′

2], and at most n′

2S(n′) blocks are created or destroyed. To see this, to destroy
a block requires S(n) deletions and to add a block also needs S(n) insertions to trigger a
Split. Thus the number of blocks remains Θ(n′

S(n′)) = Θ(n
S(n)). Since S(n) is a function

that satisfies S(n) = O(n), the complexity of all these n′ updates and queries in between
stays the same corresponding to the previous S(n′).

To deamortize, whenever we Rebuild, we create a new structure over the next n
4 = Θ(n′)

updates containing the contents of the original structure (using the new S(n) as our block
size) and the n

4 updates. While we rebuild, we also perform the updates in the old structure
and answer queries using the old structure. Thus for each of the next n

4 updates, we incur an
extra O(S(n′)) time per update. Upon the completion of the rebuild, we switch to using the
newly created structure. Lastly, we summarize every part and prove the main theorem here.

Proof of Theorem 19. For an interval graph G that the number of vertices is currently n,
in our algorithm, we only maintain a global structure to maintain parents and do local
preprocessing for answering depth and anc in each block. The parent data structure takes
O(n) space. The preprocessing of each of the Θ(n

S(n)) blocks occupies O(T) words (T denotes
the number of intervals in this block). The aggregation gives O(n) space in total. Since
S(n) = O(n), the interval graph is therefore represented in O(n) words of space. Distance

ISAAC 2023

18:16 Distance Queries over Dynamic Interval Graphs

queries takes O(n lg n/S(n)) time. For any update, we showed in Section 5.3, that it takes
O(S(n) + lg n) time. Moreover, the extra Split and Rebuild processes only guarantee the
cost is not degenerated and does not affect the complexity per operation. Hence, we have
our proof for the main theorem. ◀

6 A Lower Bound for Axis-Aligned Line Segments in 3D

In this section, we show that the problem of supporting distance queries over dynamic
intersection graphs of 3D axis-aligned line segments is conditionally hard by reducing from
the online matrix-vector multiplication problem.

▶ Definition 21 (Online Boolean Matrix Vector Multiplication (OMv)). Let M be a n × n

boolean matrix, and let v1, . . . , vn be a set of n × 1 vectors. We must compute and output
Mvi for each i before receiving the next vector.

The corresponding hardness conjecture is by Henzinger et al. [19]. For any constant ε > 0,
there is no O(n3−ε)-time algorithm that solves OMv with error probability at most 1/3.

▶ Theorem 22. If updates and distance queries over an intersection graph of 3D axis-aligned
line segments can be respectively supported in O(Q(n)) and O(T (n)) time, then OMv can be
solved in O(n2(T (n) + Q(n))) time. Thus, for any constant ε > 0, T (n) and Q(n) can not
both be O(n1−ε), unless the OMv conjecture is false. Here n is the length of the vectors. If n̂

is the number of vertices of the graph, then T (n̂) and Q(n̂) cannot both be O(n̂1/2−ε).

Proof. For each i ∈ [1, n], define a line segment Xi between end points (0, i, 0) and (2n, i, 0),
and a segment Yi between (i, 0, 1) and (i, 2n, 1). For each entry Mi,j = 1 , we create a line
segment Zj,i between (j, i, 0) and (j, i, 1). We will refer to the 3 types of line segments as
type X, type Y and type Z segments. Furthermore, we add the line segment Xn+1 whose
end points are (0, n + 1, 0) and (2n, n + 1, 0) to represent the incoming vector. When given a
vector vi, we add the following type Z segments. For each entry vi(j) = 1, we add a type Z

segment Zj,n+1 with end points (j, n + 1, 0) and (j, n + 1, 1). By construction, both type X

and type Y segments are only adjacent to type Z segments, and each type Z segment Zi,j is
only adjacent to two other segments Xj and Yi.

We now claim that Mvi(j) = 1 if and only if dist(Xj , Xn+1) = 4. First suppose
that dist(Xj , Xn+1) = 4. Then by construction, there exists an index w such that the
path is Xj , Zw,j , Yw, Zw,n+1, Xn+1. This implies that M(j, w) = 1 and vi(w) = 1, and
thus Mvi(j) = 1. Conversely, suppose that Mvi(j) = 1. Then there exists an index w

such that M(j, w) = vi(w) = 1. Thus Xj , Zw,j , Yw, Zw,n+1, Xn+1 is a path of length 4, so
dist(Xj , Xn+1) ≤ 4. To see that it cannot be strictly less than 4, we note that, since each
type Z segment is adjacent to a single type X segment and a single type Y segment, we may
view it as a subdivision of an edge between its two incident segments. Since segments of
types X (and Y) are never adjacent to segments of the same type, if we contract vertices
representing type Z segments, we are left with a bipartite graph. If distG(Xj , Xn+1) < 4,
it must be 2 (by the subdivision of edges), but it cannot be 2 as that implies two type X

segments are adjacent.
Thus, the computation of a single Mvi operation is reduced to O(n) insertions and

deletions of segments of type Z, and n distance queries. Over all n operations, this incurs
O(n2) updates and O(n2) queries. Therefore, O(n2T (n) + n2Q(n)) cannot be O(n3−ε) for
any constant ε > 0 unless the OMv conjecture is false. Finally, we note that by construction,
the number of vertices in the graph is at most n̂ = O(n2) and the theorem follows. ◀

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:17

References
1 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes with

affine stretch. In David Peleg, editor, Distributed Computing – 25th International Symposium,
DISC 2011, Rome, Italy, September 20-22, 2011. Proceedings, volume 6950 of Lecture Notes
in Computer Science, pages 404–415. Springer, 2011. doi:10.1007/978-3-642-24100-0_39.

2 Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct
encodings for families of interval graphs. Algorithmica, 83(3):776–794, 2021. doi:10.1007/
s00453-020-00710-w.

3 Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for
linear algebra on geometric graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 541–552. IEEE, 2020. doi:10.1109/FOCS46700.2020.00057.

4 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully-dynamic trees with top trees. ACM Transactions on Algorithms, 1,
December 2003. doi:10.1145/1103963.1103966.

5 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A unified
approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090,
2001. doi:10.1145/502102.502107.

6 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

7 Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian. Towards sub-quadratic diameter computation in geometric intersection graphs. In
Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational
Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages
21:1–21:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SoCG.2022.21.

8 Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersection
graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023,
pages 1777–1805. SIAM, 2023. doi:10.1137/1.9781611977554.ch68.

9 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection
graphs. J. Comput. Geom., 10(1):27–41, 2019. doi:10.20382/jocg.v10i1a2.

10 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in
weighted unit-disk graphs. J. Comput. Geom., 10(2):3–20, 2019. doi:10.20382/jocg.v10i2a2.

11 Danny Z. Chen, D. T. Lee, R. Sridhar, and Chandra N. Sekharan. Solving the all-pair
shortest path query problem on interval and circular-arc graphs. Networks, 31(4):249–258,
1998. doi:10.1002/(SICI)1097-0037(199807)31:4<249::AID-NET5>3.0.CO;2-D.

12 Jonathan B. Conroy and Csaba D. Tóth. Hop-spanners for geometric intersection graphs. In
Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational
Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages
30:1–30:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
SoCG.2022.30.

13 Christophe Crespelle. Fully dynamic representations of interval graphs. Theoretical Computer
Science, 759:14–49, 2019. doi:10.1016/j.tcs.2019.01.007.

14 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

15 Hicham El-Zein, Moshe Lewenstein, J Ian Munro, Venkatesh Raman, and Timothy M Chan.
On the succinct representation of equivalence classes. Algorithmica, 78:1020–1040, 2017.

16 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.

17 Cyril Gavoille and Christophe Paul. Optimal distance labeling for interval graphs and related
graph families. SIAM J. Discret. Math., 22(3):1239–1258, 2008. doi:10.1137/050635006.

ISAAC 2023

https://doi.org/10.1007/978-3-642-24100-0_39
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1109/FOCS46700.2020.00057
https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1145/502102.502107
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.1137/1.9781611977554.ch68
https://doi.org/10.20382/jocg.v10i1a2
https://doi.org/10.20382/jocg.v10i2a2
https://doi.org/10.1002/(SICI)1097-0037(199807)31:4<249::AID-NET5>3.0.CO;2-D
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://doi.org/10.4230/LIPIcs.SoCG.2022.30
https://doi.org/10.1016/j.tcs.2019.01.007
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1137/050635006

18:18 Distance Queries over Dynamic Interval Graphs

18 Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Distance oracles for
interval graphs via breadth-first rank/select in succinct trees. In Yixin Cao, Siu-Wing Cheng,
and Minming Li, editors, 31st International Symposium on Algorithms and Computation,
ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181
of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.25.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, STOC ’15,
pages 21–30, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/
2746539.2746609.

20 Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 363–374. IEEE, 2021. doi:10.1109/FOCS52979.2021.00044.

21 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10–13, 2021, pages 2517–2537. SIAM, 2021. doi:
10.1137/1.9781611976465.149.

22 J. Ian Munro and Corwin Sinnamon. Time and space efficient representations of distributive
lattices. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 550–567. SIAM, 2018. doi:10.1137/1.9781611975031.36.

23 J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In Wen-Lian Hsu,
Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International Symposium on Algorithms
and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of
LIPIcs, pages 67:1–67:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

24 Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. SIAM J.
Comput., 43(1):300–311, 2014. doi:10.1137/11084128X.

25 Gaurav Singh, N. S. Narayanaswamy, and G. Ramakrishna. Approximate distance oracle
in o(n2) time and o(n) space for chordal graphs. In M. Sohel Rahman and Etsuji Tomita,
editors, WALCOM: Algorithms and Computation – 9th International Workshop, WALCOM
2015, Dhaka, Bangladesh, February 26-28, 2015. Proceedings, volume 8973 of Lecture Notes in
Computer Science, pages 89–100. Springer, 2015. doi:10.1007/978-3-319-15612-5_9.

26 Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles.
In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory – SWAT 2004, 9th
Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004, Pro-
ceedings, volume 3111 of Lecture Notes in Computer Science, pages 384–396. Springer, 2004.
doi:10.1007/978-3-540-27810-8_33.

27 Antti Ukkonen, Carlos Castillo, Debora Donato, and Aristides Gionis. Searching the wikipedia
with contextual information. In James G. Shanahan, Sihem Amer-Yahia, Ioana Manolescu,
Yi Zhang, David A. Evans, Aleksander Kolcz, Key-Sun Choi, and Abdur Chowdhury, editors,
Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM
2008, Napa Valley, California, USA, October 26-30, 2008, pages 1351–1352. ACM, 2008.
doi:10.1145/1458082.1458274.

28 Monique V. Vieira, Bruno M. Fonseca, Rodrigo Damazio, Paulo Braz Golgher, Davi
de Castro Reis, and Berthier A. Ribeiro-Neto. Efficient search ranking in social networks.
In Mário J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness,
Bjørn Olstad, Øystein Haug Olsen, and André O. Falcão, editors, Proceedings of the Sixteenth
ACM Conference on Information and Knowledge Management, CIKM 2007, Lisbon, Portugal,
November 6-10, 2007, pages 563–572. ACM, 2007. doi:10.1145/1321440.1321520.

https://doi.org/10.4230/LIPIcs.ISAAC.2020.25
https://doi.org/10.4230/LIPIcs.ISAAC.2020.25
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1109/FOCS52979.2021.00044
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1137/1.9781611975031.36
https://doi.org/10.1137/11084128X
https://doi.org/10.1007/978-3-319-15612-5_9
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1145/1458082.1458274
https://doi.org/10.1145/1321440.1321520

J. Chen, M. He, J. I. Munro, R. Peng, K. Wu, and D. J. Zhang 18:19

29 Harry Wiener. Structural determination of paraffin boiling points. J. Am. Chem. Soc.,
69(1):17–20, 1947.

30 Peisen Zhang, Eric A. Schon, Stuart G. Fischer, Eftihia Cayanis, Janie Weiss, Susan Kistler,
and Philip E. Bourne. An algorithm based on graph theory for the assembly of contigs
in physical mapping of DNA. Comput. Appl. Biosci., 10(3):309–317, 1994. doi:10.1093/
bioinformatics/10.3.309.

ISAAC 2023

https://doi.org/10.1093/bioinformatics/10.3.309
https://doi.org/10.1093/bioinformatics/10.3.309

FPT Approximation Using Treewidth: Capacitated
Vertex Cover, Target Set Selection and Vector
Dominating Set
Huairui Chu #

Nanjing University, China

Bingkai Lin #

Nanjing University, China

Abstract
Treewidth is a useful tool in designing graph algorithms. Although many NP-hard graph problems
can be solved in linear time when the input graphs have small treewidth, there are problems which
remain hard on graphs of bounded treewidth. In this paper, we consider three vertex selection
problems that are W[1]-hard when parameterized by the treewidth of the input graph, namely
the capacitated vertex cover problem, the target set selection problem and the vector dominating
set problem. We provide two new methods to obtain FPT approximation algorithms for these
problems. For the capacitated vertex cover problem and the vector dominating set problem, we
obtain (1 + o(1))-approximation FPT algorithms. For the target set selection problem, we give an
FPT algorithm providing a tradeoff between its running time and the approximation ratio.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases FPT approximation algorithm, Treewidth, Capacitated vertex cover, Target
set selection, Vector dominating set

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.19

1 Introduction

We consider problems whose goals are to select a minimum sized vertex set in the input graph
that can “cover” all the target objects. In the capacitated vertex cover problem (CVC), we
are given a graph G with a capacity function c : V (G) → N, the goal is to find a set S ⊆ V (G)
of minimum size such that every edge of G is covered1 by some vertex in S and each vertex
v ∈ S covers at most c(v) edges. This problem has application in planning experiments on
redesign of known drugs involving glycoproteins [24]. In the target set selection problem
(TSS), we are given a graph G with a threshold function t : V (G) → N. The goal is to
select a minimum sized set S ⊆ V (G) of vertices that can activate all the vertices of G.
The activation process is defined as follows. Initially, all vertices in the selected set S are
activated. In each round, a vertex v gets active if there are t(v) activated vertices in its
neighbors. The study of TSS has application in maximizing influence in social network [26].
Vector dominating set (VDS) can be regarded as a “one-round-spread” version of TSS, where
the input consists of a graph G and a threshold function t : V (G) → N, and the goal is to
find a set S ⊆ V (G) such that for all vertices v ∈ V , there are at least t(v) neighbors of
v in S.

Since CVC generalizes the vertex cover problem, while TSS and VDS are no easier than
the dominating set problem2, they are both NP-hard and thus have no polynomial time
algorithm unless P = NP . Polynomial time approximation algorithms for capacitated vertex

1 An edge e can be covered by a vertex v if v is an endpoint of e.
2 For VDS, when t(v) = 1 for every vertex v in the graph, VDS is the dominating set problem. For TSS,

a reduction from dominating set to TSS can be found in the work of Charikar et al. [8].
© Huairui Chu and Bingkai Lin;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:huairuichu@163.com
mailto:lin@nju.edu.cn
https://doi.org/10.4230/LIPIcs.ISAAC.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 FPT Approximation Using Treewidth: CVC, TSS and VDS

cover problem have been studied extensively [24, 12, 22, 34, 11, 36, 35]. The problem has a
2-approximation polynomial time algorithm [22]. Assuming the Unique Game Conjecture,
there is no polynomial time algorithm for the vertex cover problem with approximation ratio
better than 2 [27]. As for the TSS problem, it is known that the minimization version of TSS
cannot be approximated to 2log1−ϵ n assuming P ̸= NP , or n0.5−ϵ assuming the conjecture
on planted dense subgraph [10, 9]. Cicalese et al. proved that VDS cannot be approximated
within a factor of c ln n for some c unless P = NP [13].

Another way of dealing with hard computational problems is to use parameterized
algorithms. For any input instance x with parameter k, an algorithm with running time
upper bounded by f(k) · |x|O(1) for some computable function f is called FPT. A natural
parameter for a computational problem is the solution size. The first FPT algorithm with
running time 1.2k2 + n2 for capacitated vertex cover problem parameterized by solution size
was provided in [25]. In [17], the authors gave an improved FPT algorithm that runs in
k3k · |G|O(1). However, using the solution size as parameter might be too strict for CVC.
Note that CVC instances with sublinear capacity functions cannot have small sized solutions.
On the other hand, TSS parameterized by its solution size is W[P]-hard 3 according to [1].
VDS is W[2]-hard since it generalizes the dominating set problem.

In this paper, we consider these problems parameterized by the treewidth [33] of the
input graph. In fact, since the treewidth of a graph having k-sized vertex cover is also
upper-bounded by k [17], CVC parameterized by treewidth can be regarded as a natural
generalization of CVC parameterized by solution size. And it is already proved in [17] that
CVC parameterized only by the treewidth of its input graph has no FPT algorithm assuming
W [1] ̸= FPT . As for the TSS problem, it can be solved in nO(w) time for graphs with n

vertices and treewidth bounded by w and has no no(
√

w)-time algorithm unless ETH fails [3].
VDS is also W [1]-hard when parameterized by treewidth [4], however, it admits an FPT
algorithm with respect to the combined parameter (w + k)[32].

Recently, the approach of combining parameterized algorithms and approximation al-
gorithms has received increased attention [19]. It is natural to ask whether there exist FPT
algorithms for these problems with approximation ratios better than that of the polynomial
time algorithms. Lampis [29] proposed a general framework for approximation algorithms
on tree decomposition. Using his framework, one can obtain algorithms for CVC and VDS
which outputs a solution of size at most opt(I) on input instance I but may slightly violate
the capacity or the threshold requirement within a factor of (1 ± ϵ). However, the framework
of Lampis can not be directly used to find an approximation solution for these problems
satisfying all the capacity or threshold requirement. The situation becomes worse in the TSS
problem, as the error might propagate during the activation process. We overcome these
difficulties and give positive answer to the aforementioned question. For the CVC and VDS
problems, we obtain (1 + o(1))-approximation FPT algorithms respectively.

▶ Theorem 1. There exists an algorithm 4, which takes a CVC instance I = (G, c) and
a tree decomposition (T, X) with width w for G as input and outputs an integer k̂min ∈
[opt(I), (1 + O(1/(w2 log n)))opt(I)] in (w log n)O(w)nO(1) time.

▶ Theorem 2. There exists an algorithm running in time 2O(w5 log w log log n)nO(1) which takes
as input an instance I = (G, t) of VDS and a tree decomposition of G with width w, finds a
solution of size at most (1 + 1/(w log log n)Ω(1)) · opt(I).

3 The well known W-hierarchy is F P T ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ W [P], where F P T denotes the set
of problems which admits FPT algorithms. The basic conjecture on parameterized complexity is
F P T ̸= W [1]. We refer the readers to [18, 20, 15] for more details.

4 The algorithm can be modified to output a solution with size as promised. See the remark in Appendix B.

H. Chu and B. Lin 19:3

Notice that the running time stated in above theorems are FPT running time, because
(log n)f(w) ≤ f(w)O(f(w)) + nO(1).

For the TSS problem, we give an approximation algorithm with a tradeoff between the
approximation ratio and its running time.

▶ Theorem 3. For all C ∈ N, there is an algorithm which takes as input an instance
I = (G, t) of TSS and a tree decomposition of G with width w, finds a solution of size
(1 + (w + 1)/(C + 1)) · opt(I) in time nC+O(1).

Open problems and future work. Note that our FPT approximation algorithm for TSS
has ratio equal to the treewidth of the input graph. An immediate question is whether
this problem has parameterized (1 + o(1))-approximation algorithm. We remark that the
reduction from k-Clique to TSS in [3] does not preserve the gap. Thus it does not rule out
constant FPT approximation algorithm for TSS on bounded treewidth graphs even under
hypotheses such as parameterized inapproximablity hypothesis (PIH) [30] or GAP-ETH [16, 31].

In the regime of exact algorithms, we have the famous Courcelle’s Theorem which states
that all problems defined in monadic second order logic have linear time algorithm on graphs
of bounded treewidth [2, 14]. It is interesting to ask if one can obtain a similar algorithmic
meta-theorem [23] for approximation algorithms.

1.1 Overview of our techiniques
Capacitated Vertex Cover. Our starting point is the exact algorithm for CVC on graphs
with treewidth w in nΘ(w) time. The exact algorithm has running time nΘ(w) because it has
to maintain a set of (w + 1)-dimension vectors d : Xα → [n] for every node α in the tree
decomposition. One can get more insight by checking out the exact algorithm for CVC in
Section 3. To reduce the size of such a table, Lampis’ approach [29] is to pick a parameter
ϵ ∈ (0, 1) and round every integer to the closest integer power of (1 + ϵ). In other words,
an integer n is represented by (1 + ϵ)x with (1 + ϵ)x ≤ n < (1 + ϵ)x+1. Thus it suffices to
keep (log n)O(w) records for every bag in the tree decomposition. The price of this approach
is that we can only have approximate values for records in the table. Note that the errors
of approximate values might accumulate after addition (See Lemma 9). Nevertheless, we
can choose a tree decomposition with height O(w2 log n) and set ϵ = 1/poly(w log n) so that
if the dynamic programming procedure only involves adding and passing values of these
vectors, then we can have (1 + o(1))-approximation values for all the records in the table.

Unfortunately, in the forgetting node for a vertex v, we need to compare the value of
d(v) and the capacity value c(v). This task seems impossible if we do not have the exact
value of d(v). Our idea is to modify the “slightly-violating-capacity” solution, based on two
crucial observations. The first is that, in a solution, for any vertex v ∈ V , the number of
edges incident to v which are not covered by v presents a lower bound for the solution size.
The second observation is that one can test if a “slightly-violating-capacity” solution can be
turned into a good one in polynomial time. These observations are formally presented in
Lemma 10 and 11.

Target Set Selection and Vector Dominating Set. We observe that both of the TSS
and VDS problems are monotone and splittable, where the monotone property states that
any super set of a solution is still a solution and the splittable property means that for
any separator X of the input graph G, the union of X and solutions for components after
removing X is also a solution for the graph G. We give a general approximation for vertex

ISAAC 2023

19:4 FPT Approximation Using Treewidth: CVC, TSS and VDS

subset problems that are monotone and splittable. The key of our approximation algorithm
is an observation that any bag in a tree decomposition is a separator in G. As the problem is
splittable, we can design a procedure to find a bag, and remove it, which leads to a separation
of G and we then deal with the component “rooted” by this bag. We can use this procedure
repeatedly until the whole graph is done.

1.2 Organization of the Paper

In Section 2 the basic notations are given, and we formally define the problem we study. In
Section 3 we present the exact algorithm for CVC. In Section 4 we present the approximate
algorithm for CVC. In Section 5, we give the approximation algorithms for TSS and VDS.

2 Preliminaries

2.1 Basic Notations

We denote an undirected simple graph by G = (V, E), where V = [n] for some n ∈ N
and E ⊆

(
V
2
)
. Let V (G) = V and E(G) = E be its vertex set and edge set. For any

vertex subset S ⊆ V , let the induced subgraph of S be G[S]. The edges of G[S] are
E[S] = E(G) ∩

(
S
2
)
. For any S1, S2 ⊆ V , we use E[S1, S2] to denote the edge set between S1

and S2, i.e. E[S1, S2] = {e = (u, v) ∈ E | u ∈ S1, v ∈ S2}. For every v ∈ V (G), we use N(v)
to denote the neighbors of v, and d(v) := |N(v)|.

For an orientation O of a graph G, which can be regarded as a directed graph whose
underlying undirected graph is G, we use D+

O(v) to denote the outdegree of v and D−
O(v) its

indegree. In a directed graph or an orientation, an edge (u, v) is said to start at u and sink
at v. Reversing an edge is an operation, in which an edge (u, v) is replaced by (v, u).

In a graph G = (V, E), a separator is a vertex set X such that G[V \X] is not a connected
graph. In this case we say X separates V into disconnected parts C1, C2, ... ⊆ V \ X, where
Ci and Cj are disconnected for all i ̸= j in G[V \ X].

Let f : A → B be a mapping. For a subset A′ ⊆ A, let f [A′] denote the mapping with
domain A′ and f [A′](a) = f(a), for all a ∈ A′. Let f \ a be f [A \ {a}]. For all b ∈ B, let
f−1(b) be the set {a ∈ A′ | f(a) = b}.

Let γ ≥ 0 be a small value, we use Nγ to denote {0} ∪ {(1 + γ)x | x ∈ N}. For a, b ∈ R,
we use a ∼γ b to denote that b/(1 + γ) ≤ a ≤ (1 + γ)b. It’s easy to see this is a symmetric
relation. Further, we use [a]γ to denote maxx∈Nγ ,x≤a x. Notice that [a]γ ∼γ a.

2.2 Problems

Capacitated Vertex Cover. An instance of CVC consists of a graph G = (V, E) and a
capacity function c : V → N on the vertices. A solution is a pair (S, M) where S ⊆ V and
M : E → S is a mapping. If for all v ∈ S, |M−1(v)| ≤ c(v) and for all e ∈ E, M(e) ∈ e, then
we say that S is feasible. The size of a feasible solution is |S|. The goal of CVC is to find a
feasible solution of minimum size. An equivalent description of this problem is the following.
Let O be an orientation of all the edges in E. O is a feasible solution if and only if for all
v ∈ V, D−

O(v) ≤ c(v). The size of O is defined as |{v ∈ V | d−(v) > 0}|. Here we actually use
a directed edge (u, v) to represent that {u, v} is covered by v. We mainly use this definition
as it’s more convenient for organizing our proof and analysis.

H. Chu and B. Lin 19:5

Target Set Selection. Given a graph G = (V, E), a threshold function t : V → N, and a set
S ⊆ V , the set S′ ⊆ V which contains the vertices activated by S is the smallest set that:

S ⊆ S′;
For a vertex v, if |N(V) ∩ S′| ≥ t(v), then v ∈ S′.

One can find the vertices activated by S in polynomial time. Just start from S′ := S, as
long as there exists a vertex v such that |N(v) ∩ S′| ≥ t(v), add v to S′, until no such vertex
exists. A vertex set that can activate all vertices in V is called a target set. The goal of TSS
is to find a target set of minimum size.

Vector Dominating Set. Given a graph G = (V, E), a threshold function t : V → N, the
goal of Vector Dominating Set problem is to find a minimum vertex subset S ⊆ V such that
every vertex v ∈ V \ S satisfies |N(v) ∩ S| ≥ t(v).

2.3 Tree Decomposition

In this paper, we consider problems parameterized by the treewidth of the input graphs. A
tree decomposition of a graph G is a pair (T, X) such that

T is a rooted tree and X = {Xα : α ∈ V (T), Xα ⊆ V (G)} is a collection of subsets of
V (G);⋃

α∈V (T) Xα = V (G);
For every edge e of G, there exists an α ∈ V (T) such that e ⊆ Xα;
For every vertex v of G, the set {α ∈ V (T) | v ∈ Xα} forms a subtree of T .

The width of a tree decomposition (T, X) is maxα∈V (T) |Xα| − 1. The treewidth of a graph
G is the minimum width over all its tree decompositions.

The sets in X are called “bags”. For a node α ∈ V (T), let Tα denote the subtree of T

rooted by α. Let Vα ⊆ V denote the vertex set Vα = ∪α′∈V (Tα)Xα′ . Let Yα := Vα \ Xα.
For a node α, we use α1(, α2) to denote its possible children. By the definition of tree
decompositions, for a join node α, Yα1 ∩ Yα2 = ∅.

It is convenient to work on a nice tree decomposition. Every node α ∈ V (T) in this nice
tree decomposition is expected to be one of the following:

(i) Leaf Node: α is a leaf and Xα = ∅;
(ii) Introducing v Node: α has exactly one child α1, v /∈ Xα1 and Xα = Xα1 ∪ {v};
(iii) Forgetting v Node: α has exactly one child α1, v /∈ Xα and Xα ∪ {v} = Xα1 ;
(iv) Join Node: α has exactly two children α1, α2 and Xα = Xα1 = Xα2 .

Treewidth is a popular parameter to consider because tree decompositions with optimal or
approximate treewidth can be efficiently computed [28]. We refer the reader to [15, 6, 5] for
more details of treewidth and nice tree decomposition. Using the tree balancing technique [7]
and the method of introducing new nodes, we can transform any tree decomposition with
width w in polynomial time into a nice tree decomposition with width O(w), depth upper
bounded by O(w2 log n), and containing at most O(nw) nodes. Moreover, we can add O(w)
nodes so that the root α0 is assigned with an empty set Xα0 = ∅. Notice that in this case,
Yα0 = Vα0 = V . We assume all the nice tree decompositions discussed in this paper satisfy
these properties.

ISAAC 2023

19:6 FPT Approximation Using Treewidth: CVC, TSS and VDS

3 Exact Algorithm for CVC

We present the exact algorithm for two reasons. The first is that one can gain some basic
insights on the structure of the approximate algorithm by understanding the exact algorithm,
which is more comprehensible. The other is that we need to compare the intermediate
results of the exact algorithm and the approximate algorithm, so the total description of the
algorithm can also be regarded as a recursive definition of the intermediate results (which
are the sets Rα’s defined in the following).

3.1 Definition of the Tables
Given a tree decomposition (T, X), we run a classical bottom-up dynamic program to solve
CVC. That is, on each node α we allocate a record set Rα. Rα contains records of the form
(d, k). A record (d, k) consists of two elements: a mapping d : Xα → N and an integer k ∈ N.
At first, we present a definition of Rα by its properties. Then we define Rα according to the
Recursive Rules. If our goal is only to design an exact algorithm for CVC, then there could
be many different definitions of the tables which all work. However, here our definitions
are elaborated so that they fit in our analysis of the approximation algorithm. After these
definitions are given, later in Theorem 5 we prove that these two definitions coincide.

Let Gα denote the graph with vertex set Vα and edge set E[Vα] \ E[Xα]. We expect that
the table Rα has the following properties.

3.1.1 Expected Properties for Rα

A record (d, k) ∈ Rα if and only if there exists O, an orientation of Gα, such that
(1) For each v ∈ Xα, d(v) = D+

O(v) is just its out degree;
(2) D−

O(v) ≤ c(v) for all v ∈ Yα;
(3) |{v ∈ Yα | D−

O(v) > 0}| ≤ k ≤ |Yα|.
Intuitively, (d, k) ∈ Rα if there exists a vertex set S ⊆ Yα and a mapping M : E[Vα]\E[Xα] →
S ∪ Xα such that

all edges are covered correctly, i.e. M(e) ∈ e for all e ∈ E[Vα] \ E[Xα];
for each v ∈ Xα, there are d(v) edges from v to Yα that are covered by S, i.e. |E[{v}, Yα]∩
∪u∈SM−1(u)| = d(v);
M satisfies the capacity constraints for vertices in Yα, i.e. for all v ∈ Yα, |M−1(v)| ≤ c(v);
|S| ≤ k ≤ |Yα|.

One can imagine that S is a feasible solution for a spanning subgraph of Gα, where the
vector d governs the edges between Xα and Yα.

Note that the root node α0 satisfies Xα0 = ∅, and Gα0 = G. So if Rα0 is correctly
computed, then the k values in those records in Rα0 have a one-to-one correspondence to
all feasible solution sizes for the original instance. We output min(d,k)∈Rα0

k to solve the
instance.

3.1.2 Recursive Rules for Rα

Fix a node α ∈ V (T), if α is a introducing node or a forgetting node, let α1 be its child. If α

is a join node, let α1, α2 be its children. In case α is a:
Leaf Node. Rα = {(d, k)}, in which d is a mapping with empty domain and k := 0.
Introducing v Node. Note that by the properties of tree decompositions, there is no edge

between v and Yα in G. A record (d, k) ∈ Rα if and only if (d \ v, k) ∈ Rα1 and d(v) = 0.

H. Chu and B. Lin 19:7

Join Node. (d, k) ∈ Rα if and only if there exist (d1, k1) ∈ Rα1 and (d2, k2) ∈ Rα2 such that
for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2.

Forgetting v Node. (d, k) ∈ Rα if and only if there exists (d1, k1) ∈ Rα1 satisfying one of
the following conditions:

(1) k1 = k, d1(v) = |N(v) ∩ Yα| and d1 \ v = d. In this case, v is not “included in S”. All
the edges between v and Yα must be covered by other vertices in Yα.

(2) k1 = k−1 and there exist ∆(v) ⊆ N(v)∩Xα and A ∈ [|N(v)∩Yα|−c(v)+|∆(v)|, |N(v)∩
Yα|] such that d1(v) = A, d1(u) = d(u) − 1 for all u ∈ ∆(v), and d1(u) = d(u) for
all u ∈ Xα1 \ (∆(v) ∪ {v}). In this case, v is “included in S”. We enumerate a set
∆(v) ⊆ N(v)∩Xα of edges between v and Xα and let v cover these edges. Note that for
a record (d1, k1) ∈ Rα1 , there are |N(v) ∩ Yα| − d1(v) edges that are covered by v. To
construct (d, k) from (d1, k1), we need to check that c(v) ≥ |∆(v)|+ |N(v)∩Yα|−d1(v),
which is implicitly done by the setting d1(v) = A ≥ |N(v) ∩ Yα| − c(v) + |∆(v)|.

▶ Remark 4. In fact, one can find many different ways to define the dynamic programming
table for CVC. We use this definition because we want to upper bound the values of records
in Rα by the size of solution (Lemma 10), so we need to record “outdegrees” rather than
“indegrees” or “capacities”.

Valid certificate. Notice that all the rules are of the form (d1, k1) ∈ Rα1 ⇒ (d, k) ∈ Rα or
(d1, k1) ∈ Rα1 ∧ (d2, k2) ∈ Rα2 ⇒ (d, k) ∈ Rα, thus a rule can actually be divided in to two
parts: we found a “valid certificate” (d1, k1) ∈ Rα1 (and (d2, k2) ∈ Rα2 , for join nodes), then
we add a “product” (d, k) ∈ Rα based on the certificate. In fact, every record in Rα1 can be a
valid certificate in introducing nodes, and every pair of records ((d1, k1), (d2, k2)) ∈ Rα1 ×Rα2

can be a valid certificate in join nodes. But in forgetting v nodes, we further require that
d1(v) satisfies some condition. To be specific, in a forgetting node α1 we say (d1, k1) ∈ Rα1

is valid if it satisfies the following condition:

(⋆) d1(v) = |N(v) ∩ Yα| or ≥ |N(v) ∩ Yα| − c(v) + |∆(v)| for some ∆(v) ⊆ N(v) ∩ Xα.

▶ Theorem 5. The set {Rα : α ∈ V (T)} can be computed by the recursive rules above in
time nw+O(1), and the Expected Properties are satisfied.

The proof sketch of the correctness of these rules are presented in Appendix A. As |Rα| ≤ nw+2

for all α ∈ V (T) and the enumerating ∆(v) procedure in dealing with a forgetting node runs
in time wO(w), it’s not hard to see that this algorithm runs in time nw+O(1) (for w small
enough compared to n).

4 Approximation Algorithm for CVC

Let ϵ be a small value to be determined later. We try to compute an approximate record
set R̂α for each node α, still using bottom-up dynamic programming like what we do in the
exact algorithm. An approximate record is a pair (d̂, k̂), where k̂ ∈ N and d̂ is a mapping
from Xα to Nϵ = {0} ∪ {(1 + ϵ)x | x ∈ N}. As we can see, d̂ can take non-integer values.

Height of a Node. The height h of a node α is defined by the length of the longest path
from α to a leaf which is descendent to α. By this definition, the height of a node is 1 plus
the maximum height among the heights of its children. Let the height of the root node be
h0. According to the property of nice tree decompositions, h0 is at most O(w2 log n).

Let ϵh, δh be two non-negative values (which are functions of h, n and w) to be determined
later.

ISAAC 2023

19:8 FPT Approximation Using Treewidth: CVC, TSS and VDS

h-close records. If an exact record (d, k) and an approximate record (d̂, k̂) satisfy d(v) ∼ϵh

d̂(v) for all v ∈ Xα and k ∼δh
k̂, then we say these two records are h-close.

We expect that for each node α, R̂α satisfies the following. Let the height of α be h.
(A) If (d, k) ∈ Rα, then there exists (d̂, k̂) ∈ R̂α which is h-close to (d, k).
(B) If (d̂, k̂) ∈ R̂α, then there exists (d, k) ∈ Rα which is h-close to (d̂, k̂).
After R̂α0 is correctly computed (i.e. satisfying (A) and (B)), we output the value k̂min =
(1 + δh0) min(d̂,k̂)∈R̂α0

k̂. Let OPT be the size of the minimum solution, which equals to
min(d,k)∈Rα0

k. We claim that k̂min ∈ [OPT, (1 + δh0)2OPT].

Proof. By property (B), we have OPT ≤ (1 + δh0) min(d̂,k̂)∈R̂α0
k̂. By property (A), we have

min(d̂,k̂)∈R̂α0
k̂ ≤ (1 + δh0)OPT . The claim follows by combining these two inequalities. ◀

We need the following procedure to test in polynomial time if a sub-problem is solvable when
we are allowed to use all vertices to cover the edges.

▶ Lemma 6. Testing whether (d, |Yα|) ∈ Rα for any d can be done in nO(1) time.

Proof. Construct a directed graph with vertex set {s, t} ∪ (E[Vα] \ E[Xα]) ∪ Vα. For each
e ∈ (E[Vα] \ E[Xα]) add an edge (s, e) with capacity 1. For each e = (u, v) ∈ (E[Yα] \ E[Xα])
add an edge (e, u) and an edge (e, v) both with capacity 1. For each v ∈ Xα add an edge
(v, t) with capacity |N(v) ∩ Yα| − d(v). For each v ∈ Yα add an edge (v, t) with capacity
c(v). We claim that (d, |Yα|) ∈ Rα if and only if there is a flow from s to t with value
|E[Vα] \ E[Xα]|. For the ’if’ part, notice that by the well-known integrality theorem for
network flow, there exists a integral flow with the same value. Every integral flow with
this value can be transform to an O as expected in the Expected Properties: An edge
e ∈ E[Yα] \ E[Xα] is oriented so that it sinks at vertex v if (e, v) has flow value 1, then
for each vertex v ∈ Xα, reverse some edges in E[{v}, Yα] so that D+

O(v) = d(v), if the flow
carried in (v, t) is less than |N(v) ∩ Yα| − d(v). One can construct a flow with the value
based on an orientation O, too. Thus the ’only if’ part is easy to see, too. ◀

We first define {R̂α : α ∈ V (T)} using the following Recursive Rules. Then we
prove that these sets satisfy the properties (A) and (B). The basic idea of our approximate
algorithm is to run the exact algorithm in an “approximate way”. For a rule formed as
(d̂1, k̂1) ∈ R̂α1 ⇒ (d̂, k̂) ∈ R̂α or (d̂1, k̂1) ∈ R̂α1 ∧ (d̂2, k̂2) ∈ R̂α2 ⇒ (d̂, k̂) ∈ R̂α, we also call
(d̂1, k̂1) (and (d̂2, k̂2)) the certificate while (d̂, k̂) is the product.

4.1 Recursive Rules for R̂α

Fix a node α ∈ V (T) with height h, in case α is a:
Leaf Node. R̂α = {(d̂, k̂)}, in which d̂ is a mapping with empty domain and k̂ = 0.
Introducing v Node. A record (d̂, k̂) ∈ R̂α if and only if (d̂ \ v, k̂) ∈ R̂α1 and d̂(v) = 0.
Join Node. (d̂, k̂) ∈ R̂α if and only if there exists (d̂1, k̂1) ∈ R̂α1 , (d̂2, k̂2) ∈ R̂α2 such that

for each v ∈ Xα, d̂(v) = [d̂1(v) + d̂2(v)]ϵ and k̂ = k̂1 + k̂2.
Forgetting v Node. This case is the most complicated. Think in this way: we pick (d̂1, k̂1) ∈

R̂α1 and based on it we try to construct (d̂, k̂) to add into R̂α. Notice that in the
exact algorithm, not every (d1, k1) ∈ Rα1 can be used to generate a corresponding
product (d, k) ∈ Rα – it has to be the case that d1(v) = |N(v) ∩ Yα| or d1(v) ≥
|N(v) ∩ Yα| − c(v) + |∆(v)|, which is what we called to be a valid certificate. We have to
test both the validity of the certificate and its exact counterpart using an indirect way.
So there are three issues we need to address:

H. Chu and B. Lin 19:9

(a) The requirement for (d̂1, k̂1) being valid, i.e. satisfying the “approximate version” of
condition (⋆);

(b) There exists a valid exact counterpart (d1, k1) ∈ Rα1 of (d̂1, k̂1) satisfying condition
(⋆);

(c) How to construct (d̂, k̂).
(b) seems impossible since we do not compute Rα1 , we obtain this indirectly using
Lemma 6. Later we explain why such an approach reaches our goal. Formally, suppose
we have (d̂1, k̂1) ∈ R̂α1 , we consider two cases:

(1) v is not “included”.
(1a) See if d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|;
(1b) See if (dt, |Yα1 |) ∈ Rα1 , where dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ for all u ∈ Xα1 \ {v}

and dt(v) = |N(v) ∩ Yα| (This is polynomial-time tractable by Lemma 6);
(1c) If (a) and (b) are satisfied, then add (d̂, k̂) to R̂α, where d̂ = d̂1 \ v, k̂ = k̂1.

(2) v is “included”. We enumerate ∆(v) ⊆ N(v) ∩ Xα and integer A satisfying A ∈
[|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|].
(2a) See if d̂1(v) ≥ A/(1 + ϵh−1);
(2b) See if (dt, |Yα1 |) ∈ Rα1 , where dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ for all u ∈ Xα1 \ {v}

and dt(v) = A (By Lemma 6, this is still polynomial-time tractable);
(2c) If (a) and (b) are satisfied, then add (d̂, k̂) to R̂α, where d̂(u) = d̂1(u) for all

u ∈ Xα \ ∆(v), d̂(u) = [d̂(u) + 1]ϵ for all u ∈ ∆(v), k̂ = k̂1 + 1.

▶ Theorem 7. Set ϵ = 1
(w2 log n)3 , ϵh = 2hϵ and δh = 4(h + 1)hϵ. Suppose n is great enough.

When the dynamic programming is done, for all α, R̂α satisfies property (A) and (B).

Proof of Theorem 1. According to Theorem 7 and the above discussion, we immedi-
ately get k̂min ∈ [OPT, (1 + δh0)2OPT]. By the property of nice tree decomposition,
h0 is at most O(w2 log n), thus k̂min ∈ [OPT, (1 + O(1/(w2 log n)))2OPT] = [OPT, (1 +
O(1/(w2 log n)))OPT].

The space we need to memorize each R̂α is O((w6 log4 n)wnO(1)). Computing a leaf/in-
troduce/join node we need O((w6 log4 n)2wnO(1)) time. In a forgetting node, we may need to
enumerate some set ∆(v) ⊆ N(v) ∩ Xα, which requires time O(2|Xα|) = O(2w+1). So com-
puting a Forgetting node requires O((w6 log4 n)w2wnO(1)) time. The tree size is polynomial,
so the total running time is FPT. ◀

To prove Theorem 7, we need a few lemmas. The proof of Lemma 8 and Lemma 9
are presented in Appendix B. Lemma 8 and Lemma 9 are some simple observations. To
understand why we need Lemma 10 and Lemma 11, remember that we have a complicated
recursive rule for forgetting nodes in which we verifies (a) and (b). However, we cannot
directly verify if a valid exact record described in (b) exists, because we don’t have Rα1 . We
overcome this by verifies a feasible partial solution (e.g. (d1, |Yα1 |) in (1b)) rather than an
optimal one, which can be done by Lemma 6. When we are computing R̂α, we assume that
R̂α1 has been correctly computed, i.e. it satisfies (A) and (B). So there exists (d1, k1) ∈ rcds1
which is h − 1-close to (d̂1, k̂1). However, we don’t know if (d1, k1) is a so-called valid
certificate. Lemma 11 shows how to modify (d1, k1) so that it becomes we want in (b),
knowing (dt, |Yα1 |) ∈ Rα1 . We introduces some error like o(1)d1(v) on k1 in this procedure.
Lemma 10 helps us to rewrite it as o(1)k1.

▶ Lemma 8. If (d, k) ∈ Rα for some node α, then for every (d′, k′) with d(v) ≥ d′(v) for all
v ∈ Xα and k′ satisfying k ≤ k′ ≤ |Yα|, we have (d′, k′) ∈ Rα.

ISAAC 2023

19:10 FPT Approximation Using Treewidth: CVC, TSS and VDS

▶ Lemma 9. Let a, b, a′, b′ ∈ R, h ∈ N+, ϵh ∈ [0, 1], a′ ∼ϵh
a and b′ ∼ϵh

b. Then we have
[a′ + b′]ϵ ∼ϵh+1 (a + b).

▶ Lemma 10. For all (d, k) ∈ Rα and v ∈ Xα, k ≥ d(v).

Proof. Let O be the orientation. Let N+(v) = {u ∈ V (G) : (v, u) ∈ E(G)} be out neighbors
of v. By definition, we have d(v) = |N+(v)| ≤ |{u ∈ Yα | D−

O(u) > 0}| ≤ k. ◀

▶ Lemma 11. Fix some (d, k) ∈ Rα, v ∈ Xα and some integer p > 0 satisfying k + p ≤ |Yα|.
Let dm : Xα → N be a function such that dm(v) = d(v) + p and dm \ v = d \ v. We have
(dm, |Yα|) ∈ Rα if and only if (dm, k + p) ∈ Rα.

Proof. On one hand, the ’if’ part is obvious by Lemma 8. On the other hand, we prove that
(dm, |Yα|) ∈ Rα implies (d′, k + 1) ∈ Rα, where d′(v) = d(v) + 1, d′ \ v = d \ v. Then we
can repeatedly increase the value of k by 1 for p times to obtain the ’only if’ part. Let the
orientation corresponding to (d, k) and (dm, |Yα|) be O1, O2 respectively. Now let G′ be a
graph with vertex set Yα ∪ {v}. A directed edge (x, y) is in G′ if and only if (x, y) ∈ O2 and
(y, x) ∈ O1.

By picking O1 so that the number of edges in G′ is minimized, we can assume that G′

contains no cycle. Otherwise if G′ contains a cycle, we can reverse every edge along the cycle
in O1 so that it is still a valid orientation for (d, k) but the number of edges in G′ decreases.

As D+
O2

(v) > D+
O1

(v), there exists an non-empty path in G′ starting from v ending at,
say, v′ ̸= v such that v′ has no out edge in G′. This implies D−

O1
(v′) ≤ D−

O2
(v′) − 1, or

v′ will have an out edge in G′. We reverse the edges along this path in O1. Let the new
orientation be O3. D−

O3
(v′) ≤ D−

O1
(v′) + 1 ≤ D−

O2
(v′) ≤ c(v). Moreover, {u | D−

O3
(u) >

0} \ {u | D−
O1

(u) > 0} ⊆ {v′}. Thus, O3 is a valid orientation for (d′, k + 1). ◀

4.2 Theorem 7 Proof Sketch
Due to space limit, the complete proof is presented in Appendix B.2.

We use induction on nodes, following a bottom-up order on the tree decomposition. Leaf
nodes satisfy property (A) and (B), because Rα = R̂α for every leaf node. Fix a node α of
height h, by induction, we assume that every node descendent to α satisfies (A) and (B). We
only need to prove that α satisfies both (A) and (B). We make a case distinction based on
the type of α. The case where α is a forgetting node is the most complicated and requires
lemma 10 and 11. The other two types follow Lampis’ framework.

To show α satisfies (A), we need to prove the existence of some (d̂, k̂) ∈ R̂α for any
given (d, k) ∈ Rα such that (d̂, k̂) and (d, k) are h-close. This is done by first picking up the
certificate of (d, k), that is, the record (d1, k1) ∈ Rα1 (or a pair of records in the case α is a
join node, we omit join node case in the following sketch) which “produces” (d, k) based on
recursive rules for Rα. Then by induction hypothesis, there is an (h − 1)-close record (d̂1, k̂1)
in R̂α1 . If α is not a forgetting node, then according to recursive rules for R̂α, there exists
(d̂, k̂) ∈ R̂α. We prove that (d̂, k̂) and (d, k) are h-close. If α is a forgetting node, then we
verify (1b) or (2b) by applying Lemma 8 on (d1, k1).

To show α satisfies (B), if α is not a forgetting node, then we pick up and compare some
records in a different order: We start from (d̂, k̂) ∈ R̂α; Then we pick (d̂1, k̂1) ∈ R̂α1 according
to recursive rules for R̂α; Next we pick (d1, k1) ∈ Rα1 based on induction hypothesis; Finally
we find out (d, k) ∈ Rα using recursive rules for Rα. If α is a forgetting node, suppose the
record (d̂, k̂) ∈ R̂α is produced by (d̂1, k̂1). The main idea is to apply Lemma 11 on (dt, |Yα1 |),
the record verified by (1b) or (2b), and (d1, k1), the record (h − 1)-close to (d̂1, k̂1), so as to
show the existence of some (d, k) ∈ Rα. At the same time we use Lemma 10 to bound k.

H. Chu and B. Lin 19:11

5 Approximation algorithms for TSS and VDS

In this section, we introduce the vertex subset problem which is a generalization of many
graph problems. Then we present a sufficient condition for the existence of parameterized
approximation algorithms for such problems parameterized by the treewidth. Finally, we
apply our algorithm to target set selection problem (TSS) and vector dominating set problem
(VDS), which are both vertex subset problems satisfying this condition. The definitions
bellow are inspired by Fomin, et al. [21].

▶ Definition 12 (Vertex Subset Problem). A vertex subset problem Φ takes a string I ∈ {0, 1}∗

as an input, which encodes a graph GI = (VI , EI) and some possible additional information,
e.g. threshold values on vertices. Φ is identified by a function FΦ which maps a string
I ∈ {0, 1}∗ to a family of vertex subsets of VI , say FΦ(I) ⊆ 2VI . Any vertex set in FΦ(I) is
a solution of the instance I. The goal is to find a minimum sized solution.

We will often select a set of vertices and assume that it is included in a solution, and
then consider the remaining sub-problem. So we introduce the concept of partial instances.

▶ Definition 13 (Partial Vertex Subset Problem). Let Φ be a vertex subset problem. The
partial version of Φ takes a string I ∈ {0, 1}∗ appended with a vertex subset U ⊆ VI as input.
We call such a pair (I, U) a partial instance of Φ. Any vertex set W ⊆ VI \ U is a solution if
and only if W ∪ U ∈ FΦ(I). Still, the goal is to find a minimum sized solution.

We consider the following conditions of a vertex subset problem Φ.
Φ is monotone, if for any instance I, S ∈ FΦ(I) implies for all S′ satisfying S ⊆ S′ ⊆ VI ,
S′ ∈ FΦ(I).
Φ is splittable, if: for any instance I and any separator X of GI which separates VI \ X

into disconnected parts V1, V2, ..., Vp, if S1, S2, ..., Sp are vertex sets such that Si is a
solution for the partial instance (I, VI \ Vi), ∀1 ≤ i ≤ p, then X ∪

⋃
1≤i≤p Si is a solution

for I.

It is trivial to show the monotonicity for TSS and VDS. To see that they are splittable,
observe that given an instance I = (G, t) of VDS for example, fix some X ⊆ V (G), a set
S containing X is a solution for I if and only if S \ X is a solution for I ′ = (G′, t′), where
G′ = G[V \ X] and t′(v) = t(v) − |N(v) ∩ X| for all v ∈ V \ X. If X is a separator, then the
graph G′ is not connected, and the union of any solutions of each component in G′, with X

together forms a solution of I. This observation also works for TSS.
The main theorem in this section is to show the tractability, in the sense of parameterized

approximation, of monotone and splittable vertex subset problems on graphs with bounded
treewidth.

▶ Theorem 14. Let Φ be a vertex selection problem which is monotone and splittable. If there
exists an algorithm such that on input a partial instance of Φ appended with a corresponding
nice tree decomposition with width w, it can run in time f(ℓ, w, n) and

either output the optimal solution, if the size of it is at most ℓ;
or confirm that the optimal solution size is at least ℓ + 1

then there exists an approximate algorithm for Φ with ratio 1 + (w + 1)/(l + 1) and runs in
time f(l, w, n) · nO(1), for all l ∈ N.

We provide a trivial algorithm for the partial version of TSS. Given a partial instance
(I = (G, t), U), we search for a solution of size at most ℓ by brute-force. This takes time
f(ℓ, w, n) = nℓ+O(1). Setting l := C in Theorem 14, we simply get the following.

ISAAC 2023

19:12 FPT Approximation Using Treewidth: CVC, TSS and VDS

▶ Corollary 15 (Restated version of Theorem 3). For all constant C, TSS admits a 1 + (w +
1)/(C + 1)-approximation algorithm running in time nC+O(1).

As mentioned before, Raman et al.[32] showed that VDS is W [1]-hard parameterized by
w, but FPT with respect to the combined parameter (k + w) where k is the solution size.
The running time of their algorithm is kO(wk2)nO(1). A partial instance (I, U) of VDS can
be transformed to an equivalent VDS instance, in which the input graph is G[VI \ UI], so this
algorithm can also be used for the partial version of VDS. Set l := w2(log log n/ log log log n)0.5

in Theorem 14, we get Corollary 16.

▶ Corollary 16 (Restated version of Theorem 2). Vector Dominating Set admits a 1 +
1/(w log log n)Ω(1)-approximation algorithm running in time 2O(w5 log w log log n)nO(1).

Notice that we can’t obtain a (1 + o(1))-approximation for TSS using a similar approach,
because solving TSS in f(w + k)nO(1)-time is W [1]-hard [3].

One may also think of applying Theorem 14 to CVC, since CVC is FPT when para-
meterized by solution size [17]. However, CVC is not splittable. Think of a simple 3-
vertex graph with vertex set {a, b, c} and edge set {{a, b}, {b, c}}. The capacities are:
c(a) = 0, c(b) = 1, c(c) = 0. {b} is a separator in this graph and empty sets are two solutions
for the two partial instances. However, {b} cannot cover both two edges in the original graph.

5.1 The Algorithm Framework
To prove Theorem 14, we introduce the concept of l-good node.

▶ Definition 17 (l-good Node). Let I be an instance of a vertex selection problem Φ and
(T, X) be a nice tree decomposition of any subgraph of GI . A node α ∈ V (T) is an l-good
node if the partial instance (I, VI \ Yα) admits a solution of size at most l.

For a node α, let N−
α denote the set of all children of α. We present the pseudocode of

our algorithm in Algorithm 1. Figure 1 in Appendix C illustrates how the sets defined in
Algorithm 1 are related. Algorithm 1 solves the partial version of Φ. For the original version,
when we get an instance I, we just create an equivalent partial instance (I, ∅) appended with
a nice tree decomposition (T, X) and an integer l, then we run Solve((I, ∅), (T, X), l). The
analyze of Algorithm 1 is presented in Appendix C.

Main idea of Algorithm 1: Let Alg be an algorithm solving partial instances in time
f(l, w, n). Given a partial instance (I, D) and a nice tree decomposition (T, X) on G[I \ D],
we run Alg to test the goodness of each node. If the root node is l-good, then (I, D) has
a solution with size at most l, we use Alg to find the optimal solution. If a leaf node is
not l-good then by monotonicity I has no solution5.Otherwise, we can pick a lowest node α

which is not l-good. Then all its children are l-good. Such a node has nice properties.
On one hand, since all children of α are l-good, the partial instances (I, VI \ Yαc

) can be
optimally solved by Alg for each αc a child of α. Adding Xαc

and the optimal solution
Eαc for (I, VI \ Yαc) into the solution enables us to “discard” the whole subtree rooted
by αc and the corresponding vertices, i.e. Vαc

;

5 By our definition of vertex subset problem, the set of solutions can be empty. However any instance of
TSS or VDS admits at least one solution which is the whole vertex set.

H. Chu and B. Lin 19:13

On the other hand, as α is not l-good, by the splittable and monotone properties, we can
deduce that the optimal solution S∗ has an intersection of size at least (l + 1) with Yα i.e.
|S∗ ∩ Yα| ≥ l + 1.

Based on these properties, the algorithm iteratively finds one such node α and includes
Xαc

∪ Eαc
for its every child αc into the solution, then “removes” Vαc

from the graph. Once
we repeat this procedure, the optimal solution size decreases by at least |S∗ ∩ (

⋃
αc

Vαc)| ≥
|S∗ ∩ Yα| ≥ l + 1. For each αc, we use Alg to find the optimal solution Eαc

, so in each Yαc

we select at most |S∗ ∩ Yαc | vertices. The “non-optimal” part is
⋃

αc
Xαc , which is at most

O(w) = O(w/l)|S∗ ∩ (
⋃

αc
Vαc

)|. Therefore, the approximation ratio is upper bounded by

1 +
|
⋃

αc
Xαc |

l+1 ≤ 1 + O(w/l).

Algorithm 1 Subprocess Solve().

Input: A partial instance (I, D) of Φ, a nice tree decomposition (T, X) of GI [VI \ D]
with width w, l ∈ N an integer.

Output: A solution S to (I, D), or ’there exists no solution’.

1 for each node α do
2 Use Alg to test if α is an l-good node;
3 if α is l-good then
4 Eα := the minimum solution for (I, VI \ Yα);
5 end
6 end
7 if the root α0 is l-good then
8 Return Eα0 ;
9 end

10 Find a node α which is not l-good with minimum height;
11 if α is a leaf node then
12 Return ’there exists no solution’;
13 end
14 E′ := ∅;
15 F := ∅;
16 for each αc ∈ N−

α do
17 E′ := E′ ∪ Eαc

∪ Xαc
;

18 F := F ∪ Vαc ;
19 end
20 Find a nice tree decomposition (T ′, X ′) for GI [VI \ (D ∪ F)];
21 Return E′ ∪ Solve((I, D ∪ F), (T ′, X ′), l);

References
1 Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tractability

and completeness IV: on completeness for W[P] and PSPACE analogues. Ann. Pure Appl.
Log., 73(3):235–276, 1995. doi:10.1016/0168-0072(94)00034-Z.

2 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

3 Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth governs
the complexity of target set selection. Discrete Optimization, 8(1):87–96, 2011.

ISAAC 2023

https://doi.org/10.1016/0168-0072(94)00034-Z

19:14 FPT Approximation Using Treewidth: CVC, TSS and VDS

4 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-2):53–
60, 2012.

5 Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
226–234, 1993.

6 Hans L Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994.
7 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for bounded

treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/S0097539795289859.
8 Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set

selection. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, ed-
itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60
of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.APPROX-RANDOM.2016.4.

9 Moses Charikar, Yonatan Naamad, and Anthony Wirth. On approximating target set selection.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2016), 2016.

10 Ning Chen. On the approximability of influence in social networks. SIAM Journal on Discrete
Mathematics, 23(3):1400–1415, 2009.

11 Wang Chi Cheung, Michel X Goemans, and Sam Chiu-wai Wong. Improved algorithms for
vertex cover with hard capacities on multigraphs and hypergraphs. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1714–1726. SIAM,
2014.

12 Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities. SIAM Journal on
Computing, 36(2):498–515, 2006.

13 Ferdinando Cicalese, Martin Milanič, and Ugo Vaccaro. On the approximability and exact
algorithms for vector domination and related problems in graphs. Discrete Applied Mathematics,
161(6):750–767, 2013.

14 Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Formal Models and
Semantics, pages 193–242. Elsevier, 1990.

15 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

16 Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Electron.
Colloquium Comput. Complex., page 128, 2016. URL: https://eccc.weizmann.ac.il/report/
2016/128.

17 Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated domina-
tion and covering: A parameterized perspective. In International Workshop on Parameterized
and Exact Computation, pages 78–90. Springer, 2008.

18 Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

19 Andreas Emil Feldmann, Euiwoong Lee, and Pasin Manurangsi. A survey on approximation
in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020.

20 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
21 Fedor V Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via

monotone local search. Journal of the ACM (JACM), 66(2):1–23, 2019.
22 Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan. An

improved approximation algorithm for vertex cover with hard capacities. Journal of Computer
and System Sciences, 72(1):16–33, 2006.

https://doi.org/10.1137/S0097539795289859
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
https://eccc.weizmann.ac.il/report/2016/128
https://eccc.weizmann.ac.il/report/2016/128

H. Chu and B. Lin 19:15

23 Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and Thomas
Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 357–422. Amsterdam University Press, 2008.

24 Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering with
applications. In Symposium on Discrete Algorithms: Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, volume 6, pages 858–865. Citeseer, 2002.

25 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of generalized
vertex cover problems. In Workshop on Algorithms and Data Structures, pages 36–48. Springer,
2005.

26 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

27 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2- ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

28 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
184–192. IEEE, 2022.

29 Michael Lampis. Parameterized approximation schemes using graph widths. In International
Colloquium on Automata, Languages, and Programming, pages 775–786. Springer, 2014.

30 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020.

31 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 78:1–78:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.78.

32 Venkatesh Raman, Saket Saurabh, and Sriganesh Srihari. Parameterized algorithms for
generalized domination. In International Conference on Combinatorial Optimization and
Applications, pages 116–126. Springer, 2008.

33 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

34 Barna Saha and Samir Khuller. Set cover revisited: Hypergraph cover with hard capacities. In
International Colloquium on Automata, Languages, and Programming, pages 762–773. Springer,
2012.

35 Jia-Yau Shiau, Mong-Jen Kao, Ching-Chi Lin, and DT Lee. Tight approximation for partial
vertex cover with hard capacities. In 28th International Symposium on Algorithms and
Computation (ISAAC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

36 Sam Chiu-wai Wong. Tight algorithms for vertex cover with hard capacities on multigraphs
and hypergraphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2626–2637. SIAM, 2017.

A Proof Sketch of Theorem 5

It is easy to see that |Rα| ≤ nO(w) for all α. And one execution of a recursive rule
takes time at most polynomial of the size of some Rα. Thus the total running time is
nO(w) · O(w2 log n) = nO(w).

To prove the correctness, we need to show the record sets computed by the recursive rules
satisfy the expected properties. We use induction. Leaf nodes are trivial to verify. Fix a
node α, assume that for every node descendent to it, the corresponding record set is correctly

ISAAC 2023

https://doi.org/10.4230/LIPIcs.ICALP.2017.78

19:16 FPT Approximation Using Treewidth: CVC, TSS and VDS

computed. The proof then contains the ’if’ part and the ’only if’ part. For the ’if’ part we
have some O, (d, k) satisfying the expected properties and aim to prove (d, k) is included
into Rα by the recursive rules. The framework is to extract O1 and (d1, k1) (and O2, (d2, k2)
for join nodes) satisfying the expected properties for the child node(s) and shows that (d, k)
will be add into Rα because of (d1, k1) (and (d2, k2)). By induction, the extracted record will
be included by the algorithm because they satisfy the expected properties, so (d, k) will also
be included. For the ’only if’ part we have (d, k) included and aim to prove the existence of
a satisfying O. The framework is to take the record(s) based on which (d, k) is added. By
induction, the record(s) we take has corresponding orientation(s) that satisfies the expected
properties. We build O according to this(these) orientation(s).

B Proof of Theorem 7

Before the main proof, we prove Lemma 8 and Lemma 9. Remember that Lemma 8 states that
if (d, k) ∈ Rα then (d′, k′) ∈ Rα for all (d′, k′) with d(v) ≥ d′(v), ∀v ∈ Xα and k ≤ k′ ≤ |Yα|;
Lemma 9 states that [a′ + b′]ϵ ∼ϵh+1 (a + b) for a, b, a′, b′ ∈ R satisfying a′ ∼ϵh

a, b′ ∼ϵh
b for

ϵh ∈ [0, 1].

Proof (Lemma 8). Let O be the orientation for (d, k). For each v, we arbitrarily select
d(v) − d′(v) out neighbors of v and reverse each edge between one selected neighbor and v.
Let the obtained orientation be O1. We show that O1 and (d′, k′) satisfies the properties. (1)
and (3) are trivial. To see (2), observe that D−

O1
(v) ≤ D−

O(v) for all v ∈ Yα. ◀

Proof (Lemma 9). a′ +b′ ∈ [a/(1+ϵh)+b/(1+ϵh), a(1+ϵh)+b(1+ϵh)], that is, (a′ +b′) ∼ϵh

(a+b). As [a′+b′]ϵ ∼ϵ (a′+b′), we have max{[a′+b′]ϵ/(a+b), (a+b)/[a′+b′]ϵ} ≤ (1+ϵ)(1+ϵh) =
1 + ϵh+1 + ϵhϵ − ϵ ≤ 1 + ϵh+1. Thus [a′ + b′]ϵ ∼ϵh+1 (a + b). ◀

In the following we start the main proof. Leaf nodes satisfy property (A) and (B) since
Rα = R̂α for a leaf node α. Fix a node α of height h, by induction, we assume that every
node descendent to α satisfies (A) and (B). Now we prove α satisfies both (A) and (B).

B.1 Proof of (A)
Recall that we have some (d, k) ∈ Rα now and we aim to show the existence of some
(d̂, k̂) ∈ R̂α which is h-close to (d, k). The case for leaf node is trivial. There are three other
cases:

Introducing v Node. Suppose α is an introducing v node and α1 is its child, then we have
a certificate (d1, k1) ∈ Rα1 , where d1 = d \ v, k1 = k. By the induction hypothesis, there
exists a record (d̂1, k̂1) ∈ R̂α1 which is (h−1)-close to (d1, k1). By the recursive algorithm
for R̂, there exists (d̂, k̂) ∈ R̂α, where d̂ \ v = d̂1, d̂(v) = 0 and k̂ = k̂1. Note that for
all u ∈ Xα \ {v}, d̂(u) = d̂1(u) ∼ϵh−1 d1(u) = d(u), thus we have d̂(u) ∼ϵh

d(u). And
d̂(v) = 0 = d(v). Since k̂ = k̂1 ∼δh−1 k1 = k, we get k ∼δh

k̂. So (d̂, k̂) is h-close to (d, k).
Join Node. If α is a join node with children α1 and α2, then we have a certificate (d1, k1) ∈

Rα1 and (d2, k2) ∈ Rα2 , where for all v ∈ Xα, d1(v) + d2(v) = d(v) and k1 + k2 = k.
By the induction hypothesis, there exist (d̂1, k̂1) ∈ R̂α1 and (d̂2, k̂2) ∈ R̂α2 which are
(h − 1)-close to (d1, k1) and (d2, k2) respectively. Note that (d̂1, k̂1), (d̂2, k̂2) is a valid
certificate, so there exists (d̂, k̂) ∈ R̂α, where for all v ∈ Xα, d̂(v) = [d̂1(v) + d̂2(v)]ϵ and
k̂ = k̂1 + k̂2. By Lemma 9, for all v ∈ Xα, d̂(v) ∼ϵh

d(v) and k̂ ∼δh
k.

H. Chu and B. Lin 19:17

Forgetting Node. If α is a forgetting v node with child α1, then we have a certificate
(d1, k1) ∈ Rα1 which satisfies one of the following conditions:
(1) d1(v) = |N(v) ∩ Yα|, d1 \ v = d and k1 = k.
(2) There exist ∆(v) ⊆ N(v) ∩ Xα and A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]

such that for all u ∈ ∆(v), d1(u) = d(u) − 1 and for all u ∈ Xα1 \ (∆(v) ∪ {v}), d1(u) =
d(u), d1(v) = A and k1 = k − 1.

Notice that these two conditions just correspond to the recursive rules with the same
index. By the induction hypothesis, there exists an approximate counterpart of the
certificate. To be specific, there exists (d̂1, k̂1) ∈ R̂α1 which is (h − 1)-close to (d1, k1).
Consider two sub-cases:
Type (1) certificate. As (d̂1, k̂1) is (h − 1)-close to (d1, k1) and d1(v) = |N(v) ∩ Yα|, we

have d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|, which means (1a) is satisfied. Let (dt, |Yα1 |) be the
tested pair in (1b). By the definition of (dt, |Yα1 |), for all u ∈ Xα1 \ {v}, dt(u) =
⌈d̂1(u)/(1 + ϵh−1)⌉ ≤ ⌈(1 + ϵh−1)d1(u)/(1 + ϵh−1)⌉ = d1(u), and dt(v) = d1(v) =
|N(v) ∩ Yα|. Also observe that k1 ≤ |Yα1 |. Thus by Lemma 8, (dt, |Yα1 |) ∈ Rα1 , which
means (1b) is satisfied. As (1a), (1b) are satisfied, there exists (d̂, k̂) ∈ R̂α, where
d̂ = d̂1\v, k̂ = k̂1. Finally, observe that for all u ∈ Xα, d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u).
k = k1 ∼δh−1 k̂1 = k̂. So (d, k) and (d̂, k̂) are h-close.

Type (2) certificate. As (d̂1, k̂1) is (h − 1)-close to (d1, k1) and d1(v) = A, we have
d̂1(v) ≥ A/(1 + ϵh−1), which means (2a) is satisfied. Let (dt, |Yα1 |) be the tested
pair in (2b), i.e. for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ and dt(v) = A.
Similarly we have that d1(u) ≥ dt(u) for all u ∈ Xα while k1 ≤ |Yα1 |. Thus by Lemma
8, (dt, |Yα1 |) ∈ Rα1 , which means (2b) is satisfied. As (2a), (2b) are satisfied, there
exists (d̂, k̂) ∈ R̂α, where d̂(u) = [d̂1(u) + 1]ϵ for all u ∈ Xα \ ∆(v), d̂(u) = d̂1(u) for
all u ∈ ∆(v), and k̂ = k̂1 + 1. For each u ∈ ∆(v), d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u); for
all u ∈ Xα \ ∆(v), d(u) ∼ϵh

d̂(u) by Lemma 9; k − 1 = k1 ∼δh−1 k̂1 = k̂ − 1 and thus
k ∼δh

k̂. So (d, k) and (d̂, k̂) are h-close.

B.2 Proof of (B)
Now we have some (d̂, k̂) ∈ R̂α and we aim to show the existence of some (d, k) ∈ Rα which
is h-close to (d̂, k̂).

Introducing v Node. Suppose α is an introducing v node with α1 as its child, then by the
the recursive rules we have a certificate (d̂1, k̂1) ∈ R̂α1 , where d̂1 = d̂ \ v, k̂1 = k̂. By
induction hypothesis, there exists (d1, k1) ∈ Rα1 which is (h − 1)-close to (d̂1, k̂1). (d1, k1)
is a valid certificate, so there exists (d, k) ∈ Rα, where d \ v = d1, d(v) = 0 and k = k1.
For all u ∈ Xα \ {v}, d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u) so d̂(u) ∼ϵh

d(u); d̂(v) = 0 = d(v);
k = k1 ∼δh−1 k̂1 = k̂, so k ∼δh

k̂.
Join Node. If α is a join node with α1 and α2 as its children, then we have a certificate

(d̂1, k̂1) ∈ R̂α, (d̂2, k̂2) ∈ R̂α2 , where for all v ∈ Xα, [d̂1(v)+ d̂2(v)]ϵ = d̂(v) and k̂1 + k̂2 = k̂.
By induction hypothesis, there exist (d1, k1) ∈ Rα1 , (d2, k2) ∈ Rα2 which are (h − 1)-close
to (d̂1, k̂1) and (d̂2, k̂2) respectively. Since (d1, k1), (d2, k2) is a valid certificate, we have
there exists (d, k) ∈ Rα, where for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2. By
Lemma 9, for all v ∈ Xα, d(v) ∼ϵh

d̂(v). And k ∼δh
k̂.

Forgetting v Node. If α is a forgetting v node, then we have a certificate (d̂1, k̂1) ∈ R̂α1

and a tested pair (dt, |Yα1 |) ∈ Rα1 in (1b) or (2b) with one of the following types:
(1) d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|; d̂1 \ v = d̂; k̂1 = k̂; dt(v) = |N(v) ∩ Yα|;

ISAAC 2023

19:18 FPT Approximation Using Treewidth: CVC, TSS and VDS

(2) there exists ∆(v) ⊆ N(v) ∩ Xα and A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]
such that for all u ∈ ∆(v), d̂(u) = [d̂1(u) + 1]ϵ; for all u ∈ Xα1 \ ∆(v) ∪ {v}, d̂1(u) =
d̂(u); d̂1(v) ≥ A/(1 + ϵh−1); k̂1 = k̂ − 1; dt(v) = A.

In both types, for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉. Notice that these two
types just correspond to the recursive rules with the same index. By induction hypothesis,
there exists (d1, k1) ∈ Rα1 which is (h − 1)-close to (d̂1, k̂1). By the definition of (h − 1)-
closeness we have that for every u ∈ Xα1 \ {v}, d1(u) ≥ ⌈d̂1(u)/(1 + ϵh−1)⌉ = dt(u).
Consider the two cases:
Type (1) certificate and tested pair. In this case dt(v) = |N(v) ∩ Yα| and d̂1(v) ∼ϵh−1

|N(v) ∩ Yα|. Notice that for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ ≤ d1(u).
Consider the pair (dt, k∗

1) where k∗
1 = k1 + |N(v)∩Yα|−d1(v). As (d1, k1), (dt, |Yα1 |) ∈

Rα1 , by Lemma 8 and 11, we have (dt, k∗
1) ∈ Rα1 . This is a valid certificate as

dt(v) = |N(v) ∩ Yα|. So there exists (d, k) ∈ Rα, where d = dt \ v and k = k∗
1 .

Then we show that (d, k) is h-close to (d̂, k̂). Notice that k̂ = k̂1 ∼δh−1 k1, k = k∗
1 =

k1 + |N(v) ∩ Yα| − d1(v). As d1(v) ∼ϵh−1 d̂1(v), thus d1(v) ≥ |N(v) ∩ Yα|/(1 + ϵh−1)2,
thus we have that |N(v) ∩ Yα| − d1(v) ≤ ((1 + ϵh−1)2 − 1)d1(v) ≤ 3ϵh−1k1. Notice that
d1(v) ≤ k1 by Lemma 10. So k ∼3ϵh−1 k1 ∼δh−1 k̂1 = k̂. As (1 + 3ϵh−1)(1 + δh−1) =
1 + (4h + 6)(h − 1)ϵ + 24h(h − 1)2ϵ2 ≤ 1 + 4h(h + 1)ϵ, we have k̂ ∼δh

k.
For all u ∈ Xα, we just have d(u) = dt(u) ∼ϵh−1 d̂1(u) = d̂(u).

Type (2) certificate and tested pair. In this case, there exists ∆(v) ⊆ N(v) ∩ Xα and
A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|] such that dt(v) = A. Still we have
that for all u ∈ Xα1 \ {v}, dt(u) ≤ d1(u). Let k∗

1 := k1 + max{0, A − d1(v)}. As
(d1, k1), (dt, |Yα1 |) ∈ Rα1 , by Lemma 8 and 11, we have (dt, k∗

1) ∈ Rα1 . This is a valid
certificate as dt(v) = A. So there exists (d, k) ∈ Rα, where for all u ∈ Xα \∆(v), d(u) =
dt(u), for all u ∈ ∆(v), d(u) = dt(u) + 1 and k = k∗

1 + 1.
We use the same idea to show k̂ ∼δh

k. Still, we have k1 ≥ d1(v) ≥ A/(1 + ϵh−1)2. So
k∗

1 = k1 + max{0, A − d1(v)} ≤ 3ϵh−1k1 and obviously, k∗
1 ≥ k1. So k∗

1 ∼3ϵh−1 k1. As
k̂ − 1 = k̂1 ∼δh−1 k1, we have k̂ − 1 ∼δh

k∗
1 = k − 1. Thus k̂ ∼δh

k.
For all u ∈ Xα \ ∆(v), we have d(u) = d1

∗(u) ∼ϵh−1 d̂1(u) = d̂. For all u ∈ ∆(v), we
have d(u) − 1 = d1

∗(u) ∼ϵh−1 d̂1(u) and d̂(u) = [d̂1(u) + 1]ϵ, by Lemma 9 we have
d(u) ∼ϵh

d̂(u).

▶ Remark. The above proof actually provides the intuition of how to modify our algorithm
so that it outputs a solution of size at most (1 + δh0)2OPT . The idea is to, for all α ∈ V (T)
and all (d̂, k̂) ∈ R̂α, keep track of an exact h-close record (d, k) of (d̂, k̂) and its corresponding
orientation i.e. an orientation O with which (d, k) satisfies the expected properties. Still, this
is done by a bottom-up dynamic programming. Fix a non-leaf node α, suppose that for all
its children, this has been done. Now suppose we want to find that orientation for a record
(d̂, k̂) ∈ R̂α. According to the recursive rules, there exists (d̂1, k̂1) ∈ R̂α1 (and (d̂2, k̂2) ∈ R̂α2

for join nodes) from which we construct (d̂1, k̂1). Proof of (B) in fact shows that if the exact
h − 1-close exact counterpart and the corresponding orientation has been stored, then we
can construct the h-close record (d, k) ∈ Rα and its corresponding orientation. Notice that if
α is the forgetting node we may need Lemma 11 to prove the existence of such (d, k). But
fortunately, Lemma 11 is also constructive.

C Proof of Theorem 14

We first prove that for any bag Xα in a tree decomposition for a graph G = (V, E), vertex sets
Yα and V \ Vα are disconnected in G[V \ Xα] i.e. Xα separates V \ Xα into two disconnected
parts Yα and V \ Vα. Assume they are connected, then there exists u ∈ Yα and v ∈ V \ Vα

H. Chu and B. Lin 19:19

such that (u, v) ∈ E. So there exists some bag containing both u and v. This implies that
the nodes whose assigned bags containing u or v forms a subtree in the tree decomposition.
However, X divides apart some nodes whose assigned bags containing u or v, a contradiction.

Since (T, X) is a tree decomposition for GI [VI \ D], a corollary is that for any node
α ∈ V (T), Xα ∪ D separates VI \ (D ∪ Xα) into disconnected parts Yα and VI \ (Vα ∪ D).

Now we analyze Algorithm 1. We use induction. Firstly let’s consider basic cases. If
(I, D) has a minimum solution of size at most l, then the algorithm returns at line 8 an
optimal solution. If (I, D) contains no solution, which is equivalent to VI is not a solution
due to monotonicity, then any leaf node is not l-good since Yα′ = ∅ for a leaf node α′ and
the algorithm returns at line 12. So in these cases, the algorithm is correct. In the remaining
case, the algorithm picks a node α which is not l-good at line 10, then it adds some vertices
to the final output and creates a new instance to make a recursive call. Since α is the node
which is not l-good node with minimum height, its children are all l-good. Let the optimal
solution for (I, D) be S∗. Let S := Solve((I, D ∪ F), (T ′, X), l) and let S′ denote the optimal
solution for (I, D ∪ F).

▶ Lemma 18. As the problem is monotone and splittable, we have the following:

(i) S∗ ∩ Yα is a solution for (I, VI \ Yα).

(ii) For all αc a child of α, S∗ ∩ Yαc
is a solution for (I, VI \ Yαc

);

(iii) S∗ \ F is a solution for (I, D ∪ F);

(iv) E′ ∪ S is a solution for (I, D).

Proof.

(i) By the definition of partial instances, S∗ ∪ D is a solution for I. By monotonicity,
S∗ ∪ D ∪ (VI \ Yα) = S∗ ∩ Yα ∪ (VI \ Yα) is also a solution for I. So S∗ ∩ Yα is a solution
for (I, VI \ Yα) according to the definition of partial solution.

(ii) Similarly as above, by monotonicity, S∗ ∪ D ∪ (VI \ Yαc
) = S∗ ∩ Yαc

∪ (VI \ Yαc
) is also

a solution for I. So S∗ ∩ Yαc is a solution for (I, VI \ Yαc).

(iii) By monotonicity, S∗ ∪D∪F is also a solution for I. So S∗ \F is a solution for (I, D∪F).

(iv) We need to use the property that Φ is splittable. By the algorithm, E′ =
⋃

αc∈N−
α

Xαc ∪⋃
αc∈N−

α
Eαc

and F =
⋃

αc∈N−
α

Vαc
. Let X ′ denote ∪αc∈N−

α
Xαc

. To use the property
that Φ is splittable, observe that D ∪ X ′ is a separator. Each Yαc

is an isolated part
(not connected to the remaining graph) in GI [VI \ (D ∪ X ′)]. The remaining part in
GI [VI \ (D ∪ X ′)] is thus isolated and it is VI \ (D ∪ X ′ ∪

⋃
αc∈N−

α
Yαc

) = VI \ (D ∪ F).
Because each Eαc is a solution for (I, VI \ Yαc), and by induction hypothesis, S is a
solution for (I, D ∪ F), we get that Φ is splittable implies X ′ ∪ D ∪ S ∪

⋃
αc∈N−

α
Eαc

=
E′ ∪ D ∪ S is a solution for I. So E′ ∪ S is a solution for (I, D). ◀

By induction we assume that |S| ≤ (1 + (w + 1)/(l + 1))|S′|. The approximation ratio is

|S ∪ E′|
|S∗|

≤
|S| +

∑
αc∈N−

α
|Eαc

| + |
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F | + |S∗ \ F |
.

ISAAC 2023

19:20 FPT Approximation Using Treewidth: CVC, TSS and VDS

(a) T in a tree decomposition
(T, X).

(b) The vertex sets about α
and αc. Dotted part is Yα.

(c) Eαc is added, and F is the
lined part.

Figure 1 Venn diagram of sets defined in Algorithm 1.

Since |S|/|S∗ \ F | ≤ |S|/|S′| ≤ 1 + (w + 1)/(l + 1), we only need to show (
∑

αc∈N−
α

|Eαc
| +

|
⋃

αc∈N−
α

Xαc
|)/|S∗ ∩ F | ≤ 1 + (w + 1)/(l + 1). Notice that by the definition, Yα ⊆ F . Since

α is not l-good, (i) implies that |S∗ ∩ F | ≥ |S∗ ∩ Yα| ≥ l + 1. By (ii), for all αc ∈ N−
α ,

|Eαc
| ≤ |S∗ ∩ Yαc

|. We have∑
αc∈N−

α
|Eαc

| + |
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |

=
∑

αc∈N−
α

|Eαc
|

|S∗ ∩ F |
+

|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |

≤
∑

αc∈N−
α

|Eαc
|∑

αc∈N−
α

|S∗ ∩ Yαc
|

+
|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
(Yαc

’s are disjoint subsets of F)

≤1 +
|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
(By (ii) and the definition of Eαc

)

≤1 +
|
⋃

αc∈N−
α

Xαc |
l + 1 (By |S∗ ∩ F | ≥ l + 1).

In a nice tree decomposition, the only case that |N−
α | > 1 is that α is a join node, however

in this case, the bags of its two children are the same. So |
⋃

αc∈N−
α

Xαc
|/(l + 1) + 1 ≤

(w + 1)/(l + 1) + 1. The approximation ratio follows. Each time we make a recursive call,
the optimal solution size for the current instance decreases by at least 1. It follows that the
algorithm makes at most O(n) recursive calls, so the running time is f(l, w, n)nO(1). And
thus Theorem 14 is proved.

Improved Approximation for Two-Dimensional
Vector Multiple Knapsack
Tomer Cohen #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Hadas Shachnai #

Computer Science Department, Technion, Haifa, Israel

Abstract
We study the uniform 2-dimensional vector multiple knapsack (2VMK) problem, a natural
variant of multiple knapsack arising in real-world applications such as virtual machine placement.
The input for 2VMK is a set of items, each associated with a 2-dimensional weight vector and a
positive profit, along with m 2-dimensional bins of uniform (unit) capacity in each dimension. The
goal is to find an assignment of a subset of the items to the bins, such that the total weight of items
assigned to a single bin is at most one in each dimension, and the total profit is maximized.

Our main result is a (1 − ln 2
2 − ε)-approximation algorithm for 2VMK, for every fixed ε > 0,

thus improving the best known ratio of (1 − 1
e

− ε) which follows as a special case from a result of
[Fleischer at al., MOR 2011]. Our algorithm relies on an adaptation of the Round&Approx framework
of [Bansal et al., SICOMP 2010], originally designed for set covering problems, to maximization
problems. The algorithm uses randomized rounding of a configuration-LP solution to assign items
to ≈ m · ln 2 ≈ 0.693 · m of the bins, followed by a reduction to the (1-dimensional) Multiple
Knapsack problem for assigning items to the remaining bins.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases vector multiple knapsack, two-dimensional packing, randomized rounding,
approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.20

Related Version Full Version: https://arxiv.org/abs/2307.02137

Funding Ariel Kulik: Research supported by the European Reseach Concil (ERC) consolidator grant
no. 725978 SYSTEMATICGRAPH.

1 Introduction

The knapsack problem and its variants have attracted much attention in the past four
decades, and have been instrumental in the development of approximation algorithms. In this
paper we study a variant of knapsack which uses components of two well studied knapsack
problems: multiple knapsack and 2-dimensional knapsack.

An instance of uniform multiple knapsack consists of a set I of items of non-negative
profits and weights in [0, 1], as well as m uniform (unit size) bins. We seek a subset of
the items of maximal total profit which can be packed in the m bins. An instance of
2-dimensional knapsack is a set I of items, each has a 2-dimensional weight in [0, 1]2, and
a non-negative profit. The objective is to find a subset of the items whose total weight is at
most one in each dimension, such that the total profit is maximized. We study a variant of
uniform multiple knapsack where each bin is a 2-dimensional knapsack, thus generalizing
both problems.

© Tomer Cohen, Ariel Kulik, and Hadas Shachnai;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomerco20@cs.technion.ac.il
https://orcid.org/0009-0003-5241-1565
mailto:ariel.kulik@cispa.de
https://orcid.org/0000-0002-0533-3926
mailto:hadas@cs.technion.ac.il
https://orcid.org/0000-0002-6645-4350
https://doi.org/10.4230/LIPIcs.ISAAC.2023.20
https://arxiv.org/abs/2307.02137
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Two-Dimensional Vector Multiple Knapsack

Formally, an instance of uniform 2-dimensional multiple knapsack (2VMK) is a
tuple I = (I, w, p,m), where I is a set of items, w : I → [0, 1]2 is a 2-dimensional weight
function, p : I → R≥0 is a profit function, and m is the number of bins. For any k ∈ N, let
[k] = {1, 2, . . . , k}. A solution for the instance (I, w, p,m) is a collection of subsets of items
S1, . . . , Sm ⊆ I such that w(Sb) =

∑
i∈Sb

w(i) ≤ (1, 1) for all b ∈ [m].1 Our objective is to
find a solution S1, . . . , Sm which maximizes the total profit, given by p

(⋃
b∈[m] Sb

)
.

A natural application of 2VMK arises in the cloud computing environment. Consider a
data center consisting of m hosts (physical machines). Each host has an available amount of
processing power (CPU) and limited memory. For simplicity, these amounts can be scaled
to one unit. The data center administrator has a queue of client requests to assign virtual
machines (VMs) to the hosts.2 Each VM has a demand for processing power and memory,
and its execution is associated with some profit. The administrator needs to assign a subset
of the VMs to the hosts, such that the total processing power and memory demands on each
host do not exceed the available amounts, and the profit gained from the VMs is maximized
(see [5] for other optimization objectives in this setting). Another application of 2VMK
comes from spectrum allocation in cognitive radio networks [18].

Our goal is to develop an efficient polynomial-time approximation algorithm for 2VMK.
Let α ∈ (0, 1] be a constant. An algorithm A is an α-approximation algorithm for 2VMK
if for any instance I of 2VMK it returns in polynomial-time a solution of profit at least
α · OPT(I), where OPT(I) is the optimal profit for I. A polynomial-time approximation
scheme (PTAS) is an infinite family {Aε} of (1− ε)-approximation algorithms, one for each
ε > 0. A weaker notion is that of a randomized α-approximation algorithm, where the
algorithm always returns a solution, but the profit is at least α ·OPT(I) with some constant
probability.

As the classic Multiple Knapsack problem admits an efficient PTAS (EPTAS), even
for instances with arbitrary bin capacities [10, 11], and the single bin problem, i.e., 2-
dimensional Knapsack has a PTAS [9], a natural question is whether 2VMK admits a
PTAS as well. By a simple reduction from 2-dimensional vector bin packing (2VBP),
we show that such a PTAS is unlikely to exist.3

▶ Theorem 1. Assuming P ̸= NP there is no PTAS for 2VMK.

Thus, we focus on deriving the best constant factor approximation for the problem. For any
ε > 0, a randomized (1− e−1 − ε) ≈ 0.632-approximation algorithm for 2VMK follows from
a result of [8], as a special case of the separable assignment problem (SAP). Our main
result is an improved approximation ratio for the problem.

▶ Theorem 2. For every fixed ε > 0, there is a randomized
(
1− ln 2

2 − ε
)
≈ 0.653-

approximation algorithm for 2VMK.

1.1 Prior Work
The special case of 2VMK with a single bin, i.e., 2-dimensional Knapsack, admits a PTAS
due to Frieze and Clarke [9]. As shown in [14], an EPTAS for the problem is unlikely to exist.
The first PTAS for Multiple Knapsack was presented by Chekuri and Khanna [6] who

1 We say that (a1, a2) ≤ (b1, b2) if a1 ≤ b1 and a2 ≤ b2.
2 This is also known as virtual machine instantiation [5].
3 We give the proof of Theorem 1 in Section 4.

T. Cohen, A. Kulik, and H. Shachnai 20:3

also showed the problem is strongly NP-hard. The PTAS was later improved to an EPTAS
by Jansen [10, 11]. For comprehensive surveys of known results on knapsack problems, see,
e.g., [12, 4].

Both Multiple Knapsack and 2VMK are special cases of the Separable Assignment
Problem (SAP) studied in [8]. The input for SAP is a set of items I and m bins. Each
item i ∈ I has a profit pi,j if assigned to bin j ∈ [m]. Each bin j ∈ [m] is associated with a
collection of feasible assignments Fj ⊆ 2I . The feasible assignments are hereditary, that is, if
S ∈ Fj and T ⊆ S then T ∈ Fj for all T ⊆ S. The feasible assignments are given implicitly
via a β-optimization oracle which, given a value function v : I → R≥0 and j ∈ [m], finds a
β-approximate solution for maxS∈Fj

∑
i∈S v(i). A solution for the SAP instance is a tuple

of disjoint sets S1, . . . , Sm ⊆ I such that Sj ∈ Fj for all j ∈ [m]. The objective is to find a
solution S1, . . . , Sm of maximum profit

∑m
j=1

∑
i∈Sj

pi,j . A (1− e−1) · β-approximation for
SAP was given in [8].

Observe that 2VMK can be cast as SAP by setting pi,j = p(i) for every (i, j) ∈ I × [m],
and Fj = {S ⊆ I | w(S) ≤ (1, 1)} for every j ∈ [m]. That is, the profit of item i is p(i)
regardless of the bin to which it is assigned, and the feasible assignments of all bins are simply
all subsets of items which fit into a bin. For every fixed ε > 0, a (1− ε)-optimization oracle
for the bins can be implemented in polynomial time using the PTAS of [9] for 2-dimensional
knapsack. Hence, a (1− e−1 − ε)-approximation for 2VMK follows from the result of [8].

Parameterized algorithms for 2VMK were proposed in [15, 1]. We are not aware of earlier
works which directly study 2VMK from approximation algorithms viewpoint.

1.2 Technical Overview
Our algorithm combines the approximation algorithm of Fleischer et al. [8] with a simple
reduction of 2VMK to (1-dimensional) Multiple Knapsack.

The algorithm of [8] is based on randomized rounding of a configuration-LP solution.
Given an instance I = (I, w, p,m) of 2VMK, let wj(i) denote the weight of item i in the
jth coordinate, for all i ∈ I and j ∈ {1, 2}. Also, given f : I → Rd we use the notation
f(S) =

∑
i∈S f(i) for all S ⊆ I. A configuration of the instance I is C ⊆ I such that

w(C) ≤ (1, 1). Let C(I) be the set of all configurations of the 2VMK instance I. For any
i ∈ I, let C(I, i) be the set of configurations containing item i. We often omit I and use C
and C(i) when the instance I is known by context. Observe that a solution for the instance
I is a tuple of m configurations.

Given a 2VMK instance I = (I, w, p,m), let xC ∈ {0, 1} be an indicator for the selection
of configuration C ∈ C = C(I) for the solution. In the configuration-LP relaxation of the
problem, we have xC ≥ 0 ∀C ∈ C. Our algorithm initially solves the following.

(C-LP) max
∑
C∈C

∑
i∈C

xC · p(i)

subject to :
∑
C∈C

xC ≤ m (1)∑
C∈C(i)

xC ≤ 1 ∀i ∈ I (2)

xC ≥ 0 ∀C ∈ C

The next lemma follows from a result of [8].

▶ Lemma 3. There is a PTAS for C-LP.

ISAAC 2023

20:4 Two-Dimensional Vector Multiple Knapsack

Let x be a solution for C-LP. We say that a random configuration R ∈ C is distributed by x
if Pr[R = C] = xC

m .4
To obtain a

((
1− e−1) · (1− ε))-approximation for 2VMK, the algorithm of [8] finds a

(1− ε)-approximate solution x for C-LP, and then independently samples m configuration
R1, . . . , Rm ∈ C, where each of the configurations Rj is distributed by x. The returned
solution is the sampled configurations R1, . . . , Rm. For simplicity of this informal overview,
assume that

∑
C∈C

∑
i∈C xC · p(i) ≈ OPT(I).

It can be shown that

E [p(R1 ∪ . . . ∪Rj)] ≈
(

1− e− j
m

)
·
∑
C∈C

∑
i∈C

xC · p(i) ≈
(

1− e− j
m

)
·OPT(I) (3)

for all j ∈ [m], and in particular E [p(R1 ∪ . . . ∪Rm)] ≈
(
1− e−1) ·OPT(I). Define

qj = E [p(R1 ∪ . . . ∪Rj)− p(R1 ∪ . . . ∪Rj−1)]

to be the marginal expected profit of the jth sampled configuration. By (3) we have

qj ≈
((

1− e− j
m

)
−
(

1− e− j−1
m

))
·OPT(I) ≈ 1

m
· e− j

m ·OPT(I), (4)

where the last estimation follows from e− j−1
m ≈ e− j

m + 1
m · e

− j
m by a Taylor expansion of ex

at x = − j
m . Equation (4) implies that the marginal profit from each configuration decreases

as the sampling process proceeds. The first sampled configuration has a marginal profit of
≈ 1

m ·OPT(I), while the marginal profit of the mth configuration is ≈ e−1 · 1
m ·OPT(I) ≈

0.367 · 1
m ·OPT(I).

We note that a simple reduction to Multiple Knapsack can be used to derive a(1
2 − ε

)
-approximation for 2VMK. An instance J of uniform multiple knapsack (MK)

is a tuple J = (I, w, p,m), where I is a set of items, w : I → [0, 1] is a weight function,
p : I → R≥0 is a profit function, and m is the number of (unit size) bins. A configuration
of J is a subset of items C ⊆ I satisfying w(C) ≤ 1. We use C(J) to denote the set of all
configurations of J , and sometimes omit J from this notation if it is known by context. A
feasible solution for J is a tuple of m configurations C1, . . . , Cm ∈ C(J). The objective is
to find a solution C1, . . . Cm for which the total profit, given by p(

⋃
t∈[m] Ct), is maximized.

We note that uniform MK can be viewed as uniform 1-dimensional vector multiple
knapsack.

Let I = (I, w, p,m) be a 2VMK instance, and define an MK instance J = (I, w′, p,m)
where w′(i) = max {w1(i), w2(i)} for every i ∈ I. It can be easily shown that C(J) ⊆ C(I),
i.e., a configuration of the MK instance is a configuration of the 2VMK instance. Furthermore,
every C ∈ C(I) can be partitioned into C1, C2 ∈ C(J) (possibly with C1 = ∅). That is,
every configuration of the 2VMK instance can be split into two configurations of the MK
instance. Therefore OPT(J) ≥ 1

2 · OPT(I), as we can take the optimal solution of the
2VMK instance I, convert its configurations to 2m configurations of the MK instance J ,
and select the m most profitable ones. As MK admits a PTAS [6], we can find a (1 − ε)-
approximate solution for J in polynomial time. This leads to the following algorithm, to
which we refer as the reduction algorithm. Given the instance I, return a (1− ε)-approximate
solution for J . The above arguments can be used to show that the reduction algorithm is a(1

2 − ε
)
-approximation algorithm for 2VMK.

4 W.l.o.g we assume that ∥x∥ =
∑

C∈C xC = m.

T. Cohen, A. Kulik, and H. Shachnai 20:5

While this simple
(1

2 − ε
)
-approximation is inferior to the

(
1− e−1 − ε

)
-approximation

of Fleischer et al. [8], it is still useful for obtaining a better approximation for 2VMK, due to
the following property. Let T ⊆ I be a random subset of the items such that Pr(i ∈ T) ≤ α
for all i ∈ I, and T satisfies some concentration bounds. Then, if the reduction algorithm is
executed with the 2VMK instance (I \ T, p, w, (1− α)m), it returns with high probability a
solution of profit at least 1

2 · (1− α) ·OPT(I). In other words, if every item is removed from
the instance with probability at most α, then the algorithm can find a packing into (1−α) ·m
bins that yields 1

2 · (1−α) of the original profit OPT(I). This property resembles the notion
of subset oblivious algorithms used by [2] as part of their Round&Approx framework for set
covering problems. Indeed, we use a subset oblivious algorithm of [2] in our proof of this
property.

This suggests the following hybrid algorithm. First, solve C-LP and sample ℓ ≈ αm

configuration R1, . . . , Rℓ distributed by the C-LP solution x. Subsequently, define T =⋃ℓ
j=1 Rj , and use the reduction algorithm to find a solution S for the instance (I \T,w, p, (1−

α)m). The algorithm returns R1, . . . , Rℓ together with the m− ℓ = (1− α)m configurations
of S. It can be shown that Pr(i ∈ T) ≤ α for all T , and that T satisfies the required
concentration bounds; therefore, the expected profit of S is ≈ 1

2 · (1− α) ·OPT(I). Since S
uses (1−α)m configurations, this can be interpreted as a residual profit of 1

2·m ·OPT(I) per
configuration. This property suggests how to select α. We set the value of α such that the
marginal profit of the (αm)-th sampled configuration is equal to 1

2m ·OPT(I), the marginal
profit of a configuration in S. By (4), this is realized for α = ln 2.

We note that this hybrid approach is similar to the Round&Approx framework of Bansal
et al. [2], which solves set covering problems by sampling random configurations based on a
solution for a configuration-LP, followed by a subset oblivious algorithm which completes
the solution. Our algorithm can be viewed as an adaptation of the framework of [2] to
knapsack variants. To the best of our knowledge, this is the first application of ideas from
[2] to maximization problems.

Our proofs rely on a dimension-free concentration bound for self-bounding functions due
to Boucheron et al. [3] (see Section 3.1 for details). While our approach is conceptually similar
to the Round&Approx of [2], which uses McDiarmid’s bound [16] to show concentration, it
appears that McDiarmid’s bound does not suffice to guarantee concentration of the profits.
The bound of Boucheron et al. was previously used by Vondrák to show concentration
bounds for submodular functions [20]. We are not aware of other applications of this bound
in the context of combinatorial optimization.

1.3 Organization

In Section 2 we give some definitions and preliminary results. Section 3 presents our
approximation algorithm for 2VMK, and in Section 4 we give a proof of APX-hardness
(stated in Theorem 1). We conclude in Section 5 with a summary and some directions for
future work. Due to space constraints, some of the proofs are given in the full version of the
paper [7].

2 Preliminaries

For any function f : I → Rd where d ∈ {1, 2} we use the notation f(A) =
∑
i∈A f(i). We

note that in both MK and 2VMK an item selected for the solution may appear in more than
one configuration; however, the profit of each selected item is counted exactly once.

ISAAC 2023

20:6 Two-Dimensional Vector Multiple Knapsack

Let I be an instance of either 2VMK or MK. We say that a subset of items S ⊆ I can be
packed into q bins of I, for some 1 ≤ q ≤ m, if there are configurations C1, . . . , Cq ∈ C(I)
such that ∪qt=1Ct = S.

Finally, given n ∈ N and an arbitrary set X , define Xn to be the set of all vectors of
dimension n over X ; that is, Xn = {(x1, . . . , xn) | ∀t ∈ {1, . . . , n} : xt ∈ X}.

2.1 Associated Instances
Our approximation algorithm for 2VMK uses as a subroutine an approximation algorithm
for MK. To this end, we define for a given 2VMK instance an associated MK instance.
Formally, given a 2VMK instance I = (I, w, p,m), we define the k-associated MK instance
I ′ = (I ′, w′, p′,m′) as follows. The set of items is I ′ = I. The item weights are given by
w′(i) = max{w1(i), w2(i)}, for 1 ≤ i ≤ n; the profit of item i is p′(i) = p(i), and the number
of (unit size) bins is m′ = k ·m. The next result will be useful in analyzing our algorithm for
2VMK.

▶ Lemma 4. Let I = (I, w, p,m) be a 2VMK instance, and I ′ = (I ′, w′, p′,m′) its k-
associated instance. Then, any set S ⊆ I that can be packed in q bins of I, can be packed in
2 · q bins of I ′.

2.2 Restriction to ε-Nice Instances
The correctness proofs for our approach require the number of bins m to be large, and the
maximum profit for a single configuration to be relatively small. These properties are essential
for the concentration bounds that we use to ensure success with high probability. We show
that for instances in which m is small (i.e., bounded by some constant), a simple reduction to
d-dimensional knapsack with a matroid constraint yields a PTAS. This allows us to focus on
instances with a large number of bins. Furthermore, for such instances we use a simple greedy
pre-processing to ensure bounded maximal profit for a single configuration. Thus, we restrict
our attention to the following subclass of ε-nice instances. Let exp[k](x) = exp(exp[k−1](x)),
for any integer k ≥ 2, and exp[1](x) = exp(x).

▶ Definition 5. Given ε ∈ (0, 0.01), an instance I = (I, w, p,m) is ε-nice if m ≥ exp[3](ε−30)
and p(C) ≤ ε20 ·OPT(I) for every C ∈ C.5

We show that efficient approximation for 2VMK on ε-nice instances yields almost the
same approximation ratio for general instances.

▶ Lemma 6. For any ε ∈ (0, 0.01) and β ∈ (0, 1 − ε), if there is polynomial-time β-
approximation algorithm for 2VMK on ε-nice instances, then there is a polynomial-time
(1− ε) · β-approximation algorithm for 2VMK.

2.3 Two-dimensional Vector Bin Packing
An instance I of the 2-Dimensional Vector Bin Packing (2VBP) problem is a pair
(I, w), where I is a set of n items and w : I → [0, 1]2 is a two-dimensional weight function.
A solution for the instance (I, w) is a collection of subsets of items S1, . . . , Sm ⊆ I such that
w(Sb) =

∑
i∈Sb

w(i) ≤ (1, 1) for all b = 1, . . . ,m, and
⋃m
b=1 Sb = I. The size of the solution

is m. Our objective is to find a solution of minimum size.

5 We did not attempt to optimize the constants.

T. Cohen, A. Kulik, and H. Shachnai 20:7

An asymptotic polynomial-time approximation scheme (APTAS) is an infinite family
{Aε} of asymptotic (1− ε)-approximation algorithms, one for each ε > 0. Ray [17] showed
that 2VBP does not admit an asymptotic approximation ratio better than 600

599 , assuming
P ̸= NP ; thus, 2VBP does not admit an APTAS.

3 Approximation Algorithm for ε-Nice Instances

In this section we present an algorithm for ε-nice 2VMK instances. Our algorithm proceeds
by initially obtaining an approximate solution x for C-LP (as given in Section 1.2), and
then forming a partial solution by sampling 1 ≤ ℓ ≤ m configurations. The remaining
(m− ℓ) configurations are derived by solving the associated MK instance for the remaining
(unassigned) items. The pseudocode of our algorithm is given in Algorithm 1.

Algorithm 1 Approximation Algorithm for ε-nice instances.

configuration : ε ∈ (0, 0.01).
input : An ε-nice instance I = (I, w, p,m) of 2VMK.
output : A solution for the instance I.

1: Find a (1− ε)-approximate solution x for C-LP; let x∗ be its value.
2: for t = 1 to ℓ = ⌈m · ln 2⌉ do

Sample a random configuration Rt distributed by x
end

3: S ← I \ (∪t∈{1,...,l}Rt)
4: Let I ′ be the 1-associated MK instance of the 2VMK instance (S,w, p,m− ℓ).
5: Find a (1− ε)-approximate solution for the MK instance I ′; denote the solution

by Rℓ+1, . . . , Rm.
6: Return (R1, . . . , Rm).

Note that, by Lemma 3, Step 1 of Algorithm 1 can be implemented in polynomial time,
for any fixed ε > 0. Let ε ∈ (0, 0.01). and I be an ε-nice 2-VMK instance. Consider the
execution of Algorithm 1 configured by ε with I as its input. Let OPT be the set of items
selected by an optimal solution for I, and T =

⋃
t∈{1,...,ℓ} Rt the items selected in Step 2

in Algorithm 1. We use the next lemmas in the analysis of the algorithm. Lemma 7 lower
bounds the expected profit of R1, . . . , Rℓ, the configurations sampled in Step 2 of Algorithm 1.
Lemma 8 gives a lower bound on the profit of the MK solution Rℓ+1, . . . , Rm found in Step 5
of Algorithm 1. Lemma 9 lower bounds the profit of the solution returned by the algorithm
using the bounds in Lemmas 7 and 8, whose proofs are given in Sections 3.2 and 3.3.

▶ Lemma 7. Pr [p(T) ≤ (1− e−α − 2 · ε) · p(OPT)] ≤ exp
(
−ε−7).

▶ Lemma 8. Pr
[
p(
⋃m
t=ℓ+1 Rt) ≤

(1−α
2 − 3 · ε

)
· p(OPT)

]
≤ 1

4 .

▶ Lemma 9. Algorithm 1 returns a solution of profit at least
(
1− ln 2

2 − 5 · ε
)
· p(OPT) with

probability at least 1
2 .

For an event A, let Ā denote the complementary event.

Proof of Lemma 9. Let A be the event “p (T) > (1−e−α−2 ·ε) ·p(OPT)”, and B the event
“p
(⋃m

t=ℓ+1 Rt
)
>
(1−α

2 − 3ε
)
· p(OPT)”. If both A and B occur then Algorithm 1 returns a

solution of profit at least

p(T) + p

(
m⋃

t=ℓ+1

Rt

)
≥
(

1 − e−α − 2ε + 1 − α

2 − 3ε
)

p(OPT) =
(

1 − ln 2
2 − 5ε

)
p(OPT).

ISAAC 2023

20:8 Two-Dimensional Vector Multiple Knapsack

The inequality holds since both A and B occur. The equality holds since α = ln 2. The
probability that A and B occur is given by

Pr [A ∩B] = 1− Pr
[
Ā ∪ B̄

]
≥ 1−

(
Pr
[
Ā
]

+ Pr
[
B̄
])
≥ 1− exp

(
−ε−7)− 1

4 ≥
1
2

The first inequality follows from the union bound. The second inequality follows from
Lemmas 7 and 8, and since ε < 0.01. ◀

3.1 Self-Bounding Functions
Lemmas 7 and 8 we use a concentration bound for self-bounding functions.

▶ Definition 10. A non-negative function f : Xn → R≥0 is called self-bounding if there exist
n functions f1, . . . , fn : Xn−1 → R such that for all x = (x1, . . . , xn) ∈ Xn,

0 ≤ f(x)− ft(x(t)) ≤ 1, and
n∑
t=1

(
f(x)− ft(x(t))

)
≤ f(x),

where x(t) = (x1, . . . , xt−1, xt+1, . . . , xn) ∈ Xn−1 is obtained by dropping the t-th component
of x.

The next result is shown in [3].

▶ Lemma 11. Let f : Xn → R≥0 be a self-bounding function and let X1, . . . , Xn ∈ X be
independent random variables. Define Z = f(X1, . . . , Xn). Then the following holds:
1. Pr[Z ≥ E[Z] + t] ≤ exp

(
− t2

2·E[Z]+ t
3

)
, for every t ≥ 0.

2. Pr[Z ≤ E[Z]− t] ≤ exp
(
− t2

2·E[Z]

)
, for every 0 < t < E[Z].

We use the following construction of self-bounding functions several times in the paper.
Recall that C = C(I).

▶ Lemma 12. Let I = (I, w, p,m) be a dVMK instance, and h : I → R≥0. Define f : Cℓ → R

by f(C1, . . . , Cℓ) =
h(
⋃

i∈[ℓ]
Ci)

η , where η ≥ maxC∈C h(C). Then f is a self-bounding function.

3.2 Profit of the Sampled Configurations
In this section we prove Lemma 7; namely, we show that with high probability the profit
p(∪t∈{1,...,ℓ}Rt) is sufficiently large. We first prove the next lemma.

▶ Lemma 13. E[p(T)] ≥ (1− e−α − ε) · p(OPT).

Proof. Let C(i) = C(I, i) be the set of configurations containing item i ∈ I, then for every
i ∈ I, the probability that i is not contained in the sampled configurations is

Pr[i /∈ T] = Pr[i /∈ ∪t∈{1,...,ℓ}Rt] =
∏

t∈{1,...,ℓ}

Pr[i /∈ Rt] =

1−
∑

C∈C(i)

xC
m

ℓ

,

where third equality holds since Pr[i ∈ Rt] =
∑
C∈C(i)

xC

m , for all t ∈ {1, . . . , ℓ}. Hence,

Pr[i /∈ T] =

1 −
∑

C∈C(i)

xC

m

ℓ

≤

1 −
∑

C∈C(i)

xC

m

m·α·

∑
C∈C(i)

xC∑
C∈C(i)

xC

≤ exp

−α ·
∑

C∈C(i)

xC

 .

T. Cohen, A. Kulik, and H. Shachnai 20:9

The first inequality holds since ℓ ≥ α ·m. The second inequality holds by (1− 1
x)x ≤ e−1 for

x ≥ 1. Thus, we have

Pr[i ∈ T] = 1− Pr[i /∈ T] ≥

1− exp

−α · ∑
C∈C(i)

xC

 ≥ ∑
C∈C(i)

xC · (1− e−α)

For the second inequality, we used 1− e−x·α ≥ x · (1− e−α) for x, α ∈ [0, 1]. Therefore,

E[p(T)] =
∑
i∈I

p(i) · Pr[i ∈ T]

≥
∑
i∈I

p(i) ·
∑

C∈C(i)

xC · (1− e−α)

= (1− e−α) ·
∑
C∈C

∑
i∈C

xC · p(i)

= (1− e−α) · x∗

≥ (1− e−α − ε) · p(OPT).

The third equality follows from our definition of x∗ as the value of the solution x found in
Step 1 of Algorithm 1. The second inequality holds since x∗ ≥ (1− ε) · p(OPT). ◀

Proof of Lemma 7. Define f : Cℓ → R by f(C1, . . . , Cℓ) =
p(
⋃

t∈{1,...,ℓ}
Ct)

ε10·p(OPT) As the instance
I is ε-nice, we have that ε10 · p(OPT) ≥ maxC∈C p(C). By Lemma 12, f is a self-bounding
function. Hence, by Lemma 13 we have,

Pr
[
p(T) ≤ (1− e−α − 2 · ε) · p(OPT)

]
≤ Pr

[
p(T)

ϵ10 · p(OPT) ≤
E[p(T)]

ϵ10 · p(OPT) −
ε · p(OPT)
ϵ10 · p(OPT)

]
= Pr

[
f(R1, . . . , Rℓ) ≤ E[f(R1, . . . , Rℓ)]− ε−9]

≤ exp
(
− ε−18

2 · E[f(R1, . . . , Rℓ)]

)

≤ exp

− ε−18

2 · p(OPT)
ϵ10·p(OPT)

 ≤ exp
(
−ε−7) .

The first equality holds by the definition of f . The second inequality follows from Lemma 11,
by taking t = ε−9. The third inequality holds since f(R1, . . . , Rℓ) ≤ p(OPT)

ε10·p(OPT) , as R1, . . . , Rℓ
along with additional m− ℓ empty configurations is a solution for I. The fourth inequality
holds since 2 · ε ≤ 1. ◀

3.3 The Solution for the Residual Items
In this section we prove Lemma 8. Specifically, we show that the profit of the solution for
the MK instance constructed in Step 4 of Algorithm 1 is sufficiently high. Since we obtain a
(1− ε)-approximate solution for the MK instance I ′, we only need to derive a lower bound
for OPT(I ′). To this end, we show that there exists a set Q ⊆ OPT, such that the set Q \ T
has sufficiently high profit p(Q \ T), and Q \ T can be almost entirely packed in twice the
number of remaining bins. We choose among these bins the most profitable ones to obtain
the lower bound. In our analysis, we use the notion of subset-obliviousness, introduced
in [2]. The following is a simplified version of a definition given in [2] w.r.t. the bin packing
(BP) problem. Let BP-OPT(I, w) denote the size of an optimal solution for a BP instance
I = (I, w).

ISAAC 2023

20:10 Two-Dimensional Vector Multiple Knapsack

▶ Definition 14. Let ρ > 1. We say that Bin Packing is ρ-subset oblivious if, for any fixed
ε > 0, there exist k, ψ, δ (possibly depending on ε) such that, for any BP instance I = (I, w),
there exist functions g1, . . . , gk : 2I → R≥0 which satisfy the following.

(i) gt(C) ≤ ψ for any C ∈ C(I) and t ∈ {1, . . . , k};
(ii) BP-OPT(I, w) ≥ maxt∈{1,...,k} gt(I);
(iii) BP-OPT(S,w) ≤ ρ ·maxt∈{1,...,k} gt(S) + ε · BP-OPT(I, w) + δ, for all S ⊆ I.

We refer to the values k, ψ and δ as the (ρ, ε)-subset oblivious parameters of Bin Packing,
and the functions g1, . . . , gk as the (ρ, ε)-subset oblivious functions of I.

The next lemma follows from a result of [2].
▶ Lemma 15. For any fixed ε > 0, Bin Packing is (1 + ε)-subset oblivious, and the (1 + ε, ε)
parameters k, δ, ψ satisfy k ≤ exp[3](ε−1), δ ≤ 4

ε4 , and ψ ≤ 1.
Let J = (OPT, w′, p, 2 ·m) be the 2-associated MK instance of IOPT = (OPT, w, p,m). By
Lemma 15, Bin Packing is (1 + ε2)-subset oblivious. Thus, there exist k, ψ, δ which are
(1 + ε2, ε2) subset oblivious parameters of Bin Packing. Let g1, . . . , gk be the (1 + ε2, ε2)
subset-oblivious functions of the Bin Packing instance (OPT, w′). By Lemma 15, the values k,
ψ and δ satisfy, k ≤ exp[3](ε−2), δ ≤ 4

ε8 , ψ ≤ 1. Define α′ = ⌈α·m⌉
m , then as α′ ·m−α ·m ≤ 1,

we have that α′ − α ≤ 1
m ≤ ε.

▶ Lemma 16. There exists Q ⊆ OPT which satisfies the following.
1. Pr

[
gt(Q \ T) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ exp

(
− ε

21·m
ψ2

)
, for all t ∈

{1, . . . , k}.
2. Pr [p(Q \ T) ≤ (1− α′ − ε) · p(OPT)] ≤ exp

(
−ε−7).

Proof. To show the existence of the set Q satisfying the properties in the lemma, consider
first the following optimization problem. Given an optimal solution OPT for a 2VMK
instance I, find a subset of items Q ∈ OPT for which E [p(Q \ T)] is maximized, under the
constraint that E [gt(Q \ T)] ≤ (1−α′)gt(OPT) for all t ∈ [k]. Let yi ∈ {0, 1} be an indicator
for the inclusion of item i ∈ OPT in Q. We can formulate an integer program for the above
optimization problem. In the following LP relaxation we have 0 ≤ yi ≤ 1, ∀ i ∈ OPT.

(Q-LP) max
∑

i∈OPT
yi · p(i) · Pr[i /∈ T]

s.t.
∑

i∈OPT
yi · Pr[i /∈ T] · gt(i) ≤ (1− α′)gt(OPT) ∀t ∈ {1, . . . , k} (5)

0 ≤ yi ≤ 1 ∀i ∈ OPT

Let y∗ be a basic optimal solution for Q-LP. We define

Q = {i ∈ Q | y∗
i > 0} (6)

to be the set of all items with positive entries in y∗. We show that the set Q defined in (6)
satisfies E [p(Q \ T)] ≥ (1− α′)p(OPT). To this end, we prove the next claim.
▷ Claim 17.

∑
i∈OPT y

∗
i · p(i) · Pr[i /∈ T] ≥ (1− α′) · p(OPT).

Proof. For every i ∈ OPT, the following holds:

Pr[i ∈ T] = Pr [∃t ∈ {1, . . . , ℓ}, i ∈ Rt]

≤
∑

t∈{1,...,ℓ}

Pr [i ∈ Rt]

=
∑

t∈{1,...,ℓ}

∑
C∈C(i)

xC
m
≤

∑
t∈{1,...,ℓ}

1
m

= ℓ

m
.

T. Cohen, A. Kulik, and H. Shachnai 20:11

Consider the vector y′ = (y′
1, . . . , y

′
|OPT|) where y′

i = 1− α′

Pr[i /∈ T] for every i ∈ OPT. Then y′

is a feasible solution for Q-LP since the following holds:
1. For every i ∈ OPT, y′

i = 1−α′

Pr[i/∈T] satisfies the following,

0 ≤ 1− α′

Pr[i /∈ T] = 1− α′

1− Pr[i ∈ T] ≤
1− α′

1− ℓ
m

= 1− α′

1− α′·m
m

= 1.

Therefore 0 ≤ y′
i ≤ 1, for all i ∈ OPT.

2. For every t ∈ {1, . . . , k}, the following holds:∑
i∈OPT

y′
i · Pr[i /∈ T] · gt(i) = (1− α′) ·

∑
i∈OPT

gt(i) = (1− α′) · gt(OPT).

The objective value
∑
i∈OPT y

′
i · p(i) · Pr[i /∈ T] satisfies:∑

i∈OPT
y′
i · p(i) · Pr[i /∈ T] =

∑
i∈OPT

(1− α′) · p(i) = (1− α′) · p(OPT).

This implies that the objective value of an optimal solution for Q-LP is at least (1− α′) ·
p(OPT). Hence,

∑
i∈OPT y

∗
i · p(i) · Pr[i /∈ T] ≥ (1− α′) · p(OPT). ◁

▷ Claim 18. The subset Q satisfies the following properties.
1. E [gt(Q \ T)] ≤ (1− α′)gt(OPT) + k · ψ, for every t ∈ {1, . . . , k}.
2. E [p(Q \ T)] ≥ (1− α′)p(OPT).

Proof. The basic optimal solution y∗ has at least |OPT| tight constraints. Therefore, at least
|OPT| − k constraints of the form yi ≥ 0 or yi ≤ 1 are tight, i.e., we have at least |OPT| − k
variables yi with tight constraint. Let B = {i ∈ OPT | 0 < y∗

i < 1} the set of fractional
variables, then |B| ≤ k. For every t ∈ {1, . . . , k}, the following holds:

E [gt(Q \ T)] =
∑
i∈Q

1 · Pr[i /∈ T] · gt(i)

=
∑
i∈B

Pr[i /∈ T] · gt(i) +
∑
i∈Q\B

y∗
i · Pr[i /∈ T] · gt(i)

≤ k · ψ +
∑
i∈Q\B

y∗
i · Pr[i /∈ T] · gt(i)

≤ (1− α′) · gt(OPT) + k · ψ.

The second equality holds since y∗
i = 1, for every i ∈ Q \B. The first inequality holds since

C = {i} ∈ C(J) is a configuration, for every i ∈ B. Therefore, gt(C) ≤ ψ, and |B| ≤ k. The
second inequality follows from the constraints of Q-LP. Furthermore,

E [p(Q \ T)] =
∑
i∈Q

1 · p(i) · Pr[i /∈ T] ≥
∑
i∈Q

y∗
i · p(i) · Pr[i /∈ T] ≥ (1− α′) · p(OPT).

The first inequality holds since y∗
i ≤ 1, for every i ∈ Q. The second inequality follows from

Claim 17. ◁
We now show that the set Q defined in (6) satisfies properties 1. and 2. in the lemma.

▷ Claim 19. For every t ∈ {1, . . . , k},

Pr
[
gt (Q \ T) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ exp

(
−ε

21 ·m
ψ2

)
.

ISAAC 2023

20:12 Two-Dimensional Vector Multiple Knapsack

Proof. Let t ∈ {1, . . . , k}. Define q : C(I)→ C(IOPT) by q(C) = C ∩Q for every C ∈ C(I).
Also, define f : Cℓ → R by

f(C1, . . . , Cℓ) =
gt

(⋃
r∈{1,...,ℓ} q(Cr)

)
2 · ψ

for every (C1, . . . , Cℓ) ∈ Cℓ, where C = C(I). Since q(Cr) ∈ C(IOPT), for every r ∈
{1, . . . , ℓ}, by Lemma 4, there exists C1, C2 ∈ J , such that C1 ∪ C2 = q(Cr). Thus,
2 ·ψ ≥ gt(C1) + gt(C2) ≥ gt(q(C)). By Lemma 12, f is self-bounding function. We note that

E [gt(T ∩Q)] ≤ E [gt(OPT)] ≤ 2 ·m · ψ.

The first inequality holds since T ∩ Q ⊆ Q ⊆ OPT. By Lemma 4, there exist 2 · m
configurations in C(J), whose union is OPT, and each configuration C ∈ C(J) satisfies
gt(C) ≤ ψ; thus, the second inequality holds. Hence, we have

Pr
[
gt(Q \ T) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ Pr

[
gt(Q \ T) ≥ E [gt(Q \ T)] + ε10 ·m

]
= Pr

[
gt(T ∩Q)

2 · ψ ≤ E
[
gt(T ∩Q)

2 · ψ

]
− ε10 ·m

2 · ψ

]
= Pr

[
f(R1, . . . , Rℓ) ≤ E [f(R1, . . . , Rℓ)]−

ε10 ·m
2 · ψ

]
.

The first inequality holds by Claim 18. The first equality holds since g(Q\T) = g(Q)−g(Q∩T).
Thus,

Pr
[
gt(Q \ T) ≥ (1− α′) · gt(OPT) + k · ψ + ε10 ·m

]
≤ Pr

[
f(R1, . . . , Rℓ) ≤ E [f(R1, . . . , Rℓ)]−

ε10 ·m
2 · ψ

]

≤ exp

−
(
ε10·m

2·ψ

)2

2 · E[f(R1, . . . , Rℓ)]

 ≤ exp
(
− ε20 ·m2

2 · 2m · 4 · ψ2

)
≤ exp

(
−ε

21 ·m
ψ2

)
.

For the first inequality we used Lemma 11 with t = ε10·m
2·ψ . The second inequality holds since

E [f(R1, . . . , Rℓ)] = E[gt(T∩Q)]
2·ψ ≤ 2 ·m. The third inequality holds since ε · 16 ≤ 1. ◁

▷ Claim 20. Pr [p(Q \ T) ≤ (1− α′ − ε) · p(OPT)] ≤ exp
(
−ε−7).

Proof of Claim 20. Let p̃ : I → R≥0 such that p̃(i) = p(i) for i ∈ Q, and p̃(i) = 0 for i /∈ Q.
Define f : Cℓ → R by

f(C1, . . . , Cℓ) =
p̃(
⋃
i∈[ℓ] Ci)

ε10 · p(OPT)

for every (C1, . . . , Cℓ) ∈ Cℓ, where C = C(I). Since the instance I is ε-nice,

ε10 · p(OPT) ≥ max
C∈C(I)

p(C) ≥ max
C∈C(I)

p̃(C).

T. Cohen, A. Kulik, and H. Shachnai 20:13

Therefore, by Lemma 12, f is self bounding function. Now, we can use Lemma 11 and get
the following.

Pr [p(Q \ T) ≤ (1− α′) · p(OPT)− ε · p(OPT)]
≤ Pr [p(Q \ T) ≤ E [p(Q \ T)]− ε · p(OPT)]
= Pr [p̃(T) ≥ E [p̃(T)] + ε · p(OPT)]

= Pr
[

p̃(T)
ε10 · p(OPT) ≥ E

[
p̃(T)

ε10 · p(OPT)

]
+ ε−9

]
= Pr

[
f(R1, . . . , Rℓ) ≥ E [f(R1, . . . , Rℓ)] + ε−9] .

The first inequality holds by Claim 18. The first equality follows from subtracting p(Q) for
both sides and using p(Q \ T) = p(Q)− p(Q ∩ T). Thus,

Pr [p(Q \ T) ≤ (1− α′) · p(OPT)− ε · p(OPT)]
≤ Pr

[
f(R1, . . . , Rℓ) ≥ E [f(R1, . . . , Rℓ)] + ε−9]

≤ exp
(
− ε−18

2 · E[f(R1, . . . , Rℓ)] + ε−9

3

)

≤ exp

− ε−18

2 · p(OPT)
ε10·p(OPT) + ε−9

3

≤ exp

(
−ε−7) .

The first inequality follows from using Lemma 11 with t = ε−9. In the second inequality we
used the inequality E

[
p̃(T)

ε10·p(OPT)

]
≤ p(OPT)

ε10·p(OPT) . The third inequality holds since ε−10 ≥ ε−9

3
and ε · 3 ≤ 1. ◁

By Claim 19 and Claim 20, we have the statement of the lemma. ◀

Proof of Lemma 8. Let Q be the set defined in Lemma 16, and let Ft be the event “gt(Q \
T) ≤ (1 − α′) · gt(S) + k · ψ + ε10 ·m”, for every t ∈ {1, . . . , k}. Also, let Fp be the event
“p(Q \ T) ≥ (1− α′ − ε) · p(OPT)”. By Lemma 16, the following holds:
1. Pr[Ft] ≥ 1− exp(− ε

21·m
ψ2), for every t ∈ {1, . . . , k}.

2. Pr[Fp] ≥ 1− exp(−ε−7).
Therefore, by the union bound, we have

Pr

Fp ∩ ⋂
t∈{0,...,k}

Ft

 ≥ 1−

exp(−ε−7) +
∑

t∈{0,...,k}

exp
(
−ε

21 ·m
ψ2

)
= 1− exp(−ε−7)− k · exp

(
−ε

21 ·m
ψ2

)
≥ 3

4 .

The second inequality holds since k ≤ exp[3](ε−2), ψ ≤ 1, and m ≥ exp[3](ε−30).

▷ Claim 21. Assuming that Fp ∩
⋂
t∈{1,...,k} Ft occurs,

BP-OPT(Q \ T,w′) ≤
(
2 · (1− α′) + 6 · ε2) ·m.

Proof. We note that
max

t∈{1,...,k}
gt(Q \ T) ≤ (1− α′) · max

t∈{1,...,k}
{gt(OPT)}+ k · ψ + ε10 ·m

≤ (1− α′) · BP-OPT(OPT, w′) + k · ψ + ε10 ·m
≤
(
2 · (1− α′) + ε10) ·m+ k · ψ.

ISAAC 2023

20:14 Two-Dimensional Vector Multiple Knapsack

The first inequality holds since
⋂
t∈{1,...,k} Ft occurs. The second inequality holds since

g1, . . . , gk are the (1 + ε2, ε2)-subset oblivious functions of (OPT, w′). The third inequality
holds since there exist m configurations in C(I) whose union is OPT. Therefore, by Lemma 4,
there exist in C(J) 2 ·m configurations whose union is OPT. Thus, BP-OPT(OPT, w′) ≤ 2 ·m.
We have that

BP-OPT(Q \ T,w′) ≤ (1 + ε2) · max
t∈{1,...,k}

{gt(Q \ T)}+ ε2 · BP-OPT(OPT, w′) + δ

≤ (1 + ε2) ·
((

2 · (1− α′) + ε10) ·m+ k · ψ
)

+ ε2 · 2 ·m+ δ

≤
(
2 · (1− α′) + 5 · ε2) ·m+ 2 · k · ψ + δ

≤
(
2 · (1− α′) + 5 · ε2) ·m+ 2 · exp[3](ε−2) + 4

ε8

≤
(
2 · (1− α′) + 6 · ε2) ·m.

The first inequality follows from Definition 14. The second inequality follows from Lemma 4.
The fourth inequality holds since k ≤ exp[3](ε−2) and δ ≤ 4

ε8 . The fifth inequality holds since
ε2 ·m ≥ 2 · exp[3](ε−2) + 4

ε8 . ◁

By Claim 21, there exist
(
2 · (1− α′) + 6 · ε2) · m configurations in C(J) whose union is

Q \ T . Among these configurations, we choose the (1− α′) ·m most profitable. Let R be the
items chosen in these configurations. Then,

p(R) ≥ (1− α′) ·m
(2 · (1− α′) + 6 · ε2) ·m · p(Q \ T)

≥ (1− α′) ·m
(2 · (1− α′) + 6 · ε2) ·m · (1− α

′ − ε) · p(OPT)

= 1− α′

2 · (1− α′) + 6 · ε2 · (1− α
′ − ε) · p(OPT)

≥ 1− α′ − ε
2 + ε

· p(OPT) ≥
(

1− α− 2ε
2 − ε

4

)
· p(OPT) ≥

(
1− α

2 − 2 · ε
)
· p(OPT).

The third inequality holds since 6·ε2

1−α′ ≤ ε. The fourth inequality follows from

1− α′ − ε
2 + ε

≥ 1− α′ − ε
2 − (1− α′ − ε) · ε

4 ≥ 1− α′ − ε
2 − ε

4 ,

and by using α′ ≤ α+ ε. Therefore, with probability at least 3
4 , the optimal profit of the MK

instance (Q \ T,w′, p, (1−α′) ·m) is at least p(R). Since Q \ T ⊆ I \ T , the optimal profit of
the MK instance (I \T,w′, p, (1−α′) ·m) is at least p(R). As we obtain a 1−ε-approximation
for I ′ (using, e.g., [10]), the profit of Step 4 in Algorithm 1 is at least

(1− ε) · p(R) ≥
(

1− α
2 − 2 · ε

)
· (1− ε) · p(OPT) ≥

(
1− α

2 − 3 · ε
)
· p(OPT). ◀

4 APX-hardness

In this section we prove Theorem 1. We use a reduction from 2VBP to show that a PTAS
for 2VMK would imply the existence of an APTAS for 2VBP. We rely on the following result
of Ray [17], which addresses a flaw in an earlier proof of Woeginger [21].

▶ Theorem 22 ([17]). Assuming P ̸= NP, there is no APTAS for 2VBP.

T. Cohen, A. Kulik, and H. Shachnai 20:15

Proof of Theorem 1. Assume towards a contradiction that there is a PTAS {Aε} for 2VMK.
That is, for every ε > 0, Aε is a polynomial-time (1− ε)-approximation algorithm for 2VMK.

In Algorithm 2 we use {Aε} to derive an APTAS for 2VBP. The algorithm calls as a
subroutine algorithm First-Fit (FF). The input for FF is an instance I of 2VMK. The output
is a feasible packing of all items in I in a set of 2-dimensional bins with unit size in each
dimension. First-Fit proceeds by considering the items in arbitrary order and assigning
the next item in the list to the first bin which can accommodate the item. If no such bin
exists, FF opens a new bin and assigns the item to this bin. (For more details on FF and
its analysis see, e.g., [19].) Given a 2VBP instance, we use in Algorithm 2 the notion of
associated 2VMK instance.

▶ Definition 23. Given a 2VBP instance I = (I, w) and t ≥ 1, we define its t-associated
2VMK instance I ′ = (I ′, w′, p′,m′) as follows. The set of items is I ′ = I, and the weight
function is w′ = w. The profit of each item i ∈ I ′ is p′(i) = w1(i) + w2(i), and the number
of bins is m′ = t.

Algorithm 2 Reduction from 2VBP.

configuration : A PTAS {Aε} for 2VMK and ε > 0
input : A 2VBP instance I = (I, w).
output : A solution for I which uses at most (1 + ε) · BP-OPT(I) + 2 bins.

1 for t = 1 to |I| do
2 Let I ′ = (I ′, w′, p′,m′) be the t-associated 2VMK instance of I
3 Use Aε′ to solve I ′, where ε′ = ε

16 . Let C1, . . . , Cm′ ⊆ I be the returned solution.
4 Define S =

⋃m′

j=1 Cj and pack the residual items I \ S using First-Fit.
5 Add C1, . . . , Cm along with the packing of S to a list of candidate solutions.
6 end
7 Return the candidate solution with the smallest number of bins used.

▷ Claim 24. For any 2VBP instance I and ε > 0, Algorithm 2 returns a solution which
uses at most (1 + ε) · BP-OPT(I) + 2 bins.

Proof. Let R = BP-OPT(I) and let I ′ = (I ′, w′, p′,m′) be the R-associated instance of I.
Note that OPT(I ′) =

∑
i∈I p

′(i), since we can pack all the items I in R bins with the
weight function w. Consider the iteration of Step 1 in Algorithm 2 where t = R. We
show that the number of bins used by the solution is at most (1 + ε) · BP-OPT(I, w) + 2.
Observe that S, the set in Step 4 of Algorithm 2, satisfies p′(S) ≥ (1− ε

16) ·OPT(I ′). Thus,
p′(I \ S) ≤ ε

16 ·OPT(I ′). It follows that

w1(I \ S) + w2(I \ S) ≤ ε

16 ·OPT(I ′)

= ε

16 · (w1(I) + w2(I))

≤ ε

16 · 2 max{w1(I), w2(I)}

≤ ε · BP-OPT(I, w)
8 .

The third inequality holds since every bin b ∈ C(I ′) satisfies w1(b), w2(b) ≤ 1. In the
packing of the residual items I \ S using First-Fit, every two consecutive bins b1, b2 satisfy

ISAAC 2023

20:16 Two-Dimensional Vector Multiple Knapsack

w1(b1∪b2)+w2(b1∪b2) > 1. Assume the items in I\S are packed in at least ε·BP-OPT(I, w)+2
bins in Step 4 of Algorithm 2. Then,

w1(I \ S) + w2(I \ S) ≥
⌊

ε · BP-OPT(I, w) + 2
2

⌋
>

ε · BP-OPT(I, w) + 2
2 − 1 ≥ w1(I \ S) + w2(I \ S)

The first inequality holds since there are at least
⌊
ε·BP-OPT(I,w)+2

2

⌋
disjoint pairs of consecutive

bins, and each pair b1, b2 satisfies w1(b1 ∪ b2) + w2(b1 ∪ b2) ≥ 1. This is a contradiction.
Therefore, at most ε · BP-OPT(I, w) + 2 bins are used for the items I \ S. Hence, Algorithm 2
returns a solution with at most (1 + ε) · BP-OPT(I, w) + 2 bins. ◁

For every constant ε > 0, it also holds that Algorithm 2 runs in polynomial time. Thus,
by Claim 24, it follows that Algorithm 2 is an APTAS for 2VBP. ◀

5 Concluding Remarks

In this paper we present a randomized
(
1− ln 2

2 − ε
)
≈ 0.653-approximation algorithm for

2VMK, for every fixed ε > 0, thus improving the ratio of (1 − e−1 − ε) ≈ 0.632, which
follows from the results of [8] for the separable assignment problem. To the best of
our knowledge, this work is the first direct study of 2VMK in the arena of approximation
algorithms.

As an interesting direction for future work, we note that our approach, which combines a
technique of [8] with a solution for a residual (1-dimensional) MK instance, does not scale to
higher dimensions. Specifically, for dVMK instances where d ≥ 3, the residual algorithm will
obtain marginal profit of 1

d·m · OPT(I) per configuration, which is always lower than the
marginal profit obtained by the randomized rounding of [8], due to (4). Hence, for d ≥ 3,
a better approximation ratio is achieved by random sampling of the whole solution as in
[8]. We believe that this bottleneck can be resolved by an iterative randomized rounding
approach, similar to the approach used in [13] for 2-dimensional vector bin packing.
This approach can potentially lead also to an improved approximation for 2VMK.

References
1 Max Bannach, Sebastian Berndt, Marten Maack, Matthias Mnich, Alexandra Lassota, Malin

Rau, and Malte Skambath. Solving Packing Problems with Few Small Items Using Rainbow
Matchings. In Proc. of MFCS, pages 11:1–11:14, 2020.

2 Nikhil Bansal, Alberto Caprara, and Maxim. Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, pages 1256–1278, 2010.

3 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. A sharp concentration inequality
with applications. Random Structures & Algorithms, 16(3):277–292, 2000.

4 Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. Knapsack problems-
an overview of recent advances. part ii: Multiple, multidimensional, and quadratic knapsack
problems. Computers & Operations Research, 2022.

5 Ricardo Stegh Camati, Alcides Calsavara, and Luiz Lima Jr. Solving the virtual machine
placement problem as a multiple multidimensional knapsack problem. ICN 2014, 264, 2014.

6 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

7 Tome Cohen, Ariel Kulik, and Hadas Shachnai. Improved approximation for two-dimensional
vector multiple knapsack. arXiv preprint, 2023. arXiv:2307.02137.

https://arxiv.org/abs/2307.02137

T. Cohen, A. Kulik, and H. Shachnai 20:17

8 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approx-
imation algorithms for maximum separable assignment problems. Mathematics of Operations
Research, 36(3):416–431, 2011.

9 Alan M Frieze, Michael RB Clarke, et al. Approximation algorithms for the m-dimensional
0-1 knapsack problem: worst-case and probabilistic analyses. European Journal of Operational
Research, 15(1):100–109, 1984.

10 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
Journal on Computing, 39(4):1392–1412, 2010.

11 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages 313–324,
2012.

12 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
13 Ariel Kulik, Matthias Mnich, and Hadas Shachnai. Improved approximations for vector bin

packing via iterative randomized rounding. In Proc. of FOCS (to appear), 2023.
14 Ariel Kulik and Hadas Shachnai. There is no EPTAS for two-dimensional knapsack. Information

Processing Letters, 110(16):707–710, 2010.
15 Alexandra Lassota, Aleksander Łukasiewicz, and Adam Polak. Tight Vector Bin Packing

with Few Small Items via Fast Exact Matching in Multigraphs. In Proc. of ICALP, pages
87:1–87:15, 2022.

16 Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics,
141(1):148–188, 1989.

17 Arka Ray. There is no APTAS for 2-dimensional vector bin packing: Revisited. arXiv preprint,
2021. arXiv:2104.13362.

18 Yang Song, Chi Zhang, and Yuguang Fang. Multiple multidimensional knapsack problem
and its applications in cognitive radio networks. In MILCOM 2008-2008 IEEE Military
Communications Conference, pages 1–7. IEEE, 2008.

19 Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.
20 Jan Vondrák. A note on concentration of submodular functions. arXiv preprint, 2010.

arXiv:1005.2791.
21 Gerhard J Woeginger. There is no asymptotic PTAS for two-dimensional vector packing.

Information Processing Letters, 64(6):293–297, 1997.

ISAAC 2023

https://arxiv.org/abs/2104.13362
https://arxiv.org/abs/1005.2791

A Compact DAG for Storing and Searching
Maximal Common Subsequences
Alessio Conte #

Università di Pisa, Italy

Roberto Grossi #

Università di Pisa, Italy

Giulia Punzi #

National Institute of Informatics, Tokyo, Japan

Takeaki Uno #

National Institute of Informatics, Tokyo, Japan

Abstract
Maximal Common Subsequences (MCSs) between two strings X and Y are subsequences of both X

and Y that are maximal under inclusion. MCSs relax and generalize the well known and widely
used concept of Longest Common Subsequences (LCSs), which can be seen as MCSs of maximum
length. While the number both LCSs and MCSs can be exponential in the length of the strings,
LCSs have been long exploited for string and text analysis, as simple compact representations of all
LCSs between two strings, built via dynamic programming or automata, have been known since the
’70s. MCSs appear to have a more challenging structure: even listing them efficiently was an open
problem open until recently, thus narrowing the complexity difference between the two problems,
but the gap remained significant. In this paper we close the complexity gap: we show how to build
DAG of polynomial size – in polynomial time – which allows for efficient operations on the set of
all MCSs such as enumeration in Constant Amortized Time per solution (CAT), counting, and
random access to the i-th element (i.e., rank and select operations). Other than improving known
algorithmic results, this work paves the way for new sequence analysis methods based on MCSs.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Informa-
tion systems → Structured text search

Keywords and phrases Maximal common subsequence, DAG, Compact data structures, Enumeration,
Constant amortized time, Random access

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.21

Related Version Previous Version: https://arxiv.org/abs/2307.13695

Funding Alessio Conte: Partially supported by MUR PRIN Project n. 2022TS4Y3N – EXPAND.
Roberto Grossi: Work partially supported by MUR PRIN Project n. 2022TS4Y3N – EXPAND.
Giulia Punzi: Work partially supported by JSPS KAKENHI Grant Number JP20H05962.
Takeaki Uno: Work partially supported by JSPS KAKENHI Grant Numbers JP20H05962,
JP20H00595.

Acknowledgements We thank the anonymous Referees for their comments, leading us to the current
version of Theorem 13.

1 Introduction

The Longest Common Subsequence (LCS) [4,12,16,25] have thoroughly been studied in a
plethora of string comparison application domains, like spelling error correction, molecular
biology, and plagiarism detection, to name a few. The LCS is a special case of Maximal
Common Subsequence (MCS) for any two strings X, Y : it is a string S that is a subsequence
of both X and Y , and is inclusion-maximal, namely, no other string S′ containing S is

© Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alessio.conte@unipi.it
https://orcid.org/0000-0003-0770-2235
mailto:roberto.grossi@unipi.it
https://orcid.org/0000-0002-7985-4222
mailto:punzi@nii.ac.jp
https://orcid.org/0000-0001-8738-1595
mailto:uno@nii.ac.jp
https://orcid.org/0000-0001-7274-279X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.21
https://arxiv.org/abs/2307.13695
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 A Compact DAG for Storing and Searching Maximal Common Subsequences

also a common subsequence of X and Y . The set of all MCSs for X and Y is denoted
by MCS(X, Y). For example, MCS(X, Y) = {TACA, G} for X = TCACAG and Y = GTACTA,
whereas TCA ̸∈ MCS(X, Y) as it is contained in TACA, and the latter is also the only LCS. A
crucial observation is the following: if S is a common subsequence, it is always contained in
some MCS but this is not necessarily true for LCS (e.g. S = G is not contained in TACA).

In general, LCSs only provide us with information about the longest possible alignment
between two strings, while MCSs offer a different range of information, possibly revealing
slightly smaller but alternative alignments. For very long strings an MCS may be just slightly
shorter than an LCS but provide information on parts of the strings not found by LCSs. In
principle, MCS could provide helpful information in all the applications where LCS are used.

While there is a quadratic conditional lower bound for the computation of LCS, based on
the Strong Exponential Time Hypothesis [1], no such bound exists for MCS: actually, an
MCS between two strings of length n can be extracted in O(n

√
log n/ log log n) time [22].

Moreover it is NP-hard to compute the LCS of an arbitrary number of strings [15], whereas a
recent polynomial-time algorithm for extracting an MCS from multiple strings exists [11]. It
is worth noting that even though there are a few more different approaches in the literature to
find LCS or common subsequences with some kind of constraints (e.g. common subsequence
trees [13], common subsequence automata [7]), the above observations motivate further
investigation to directly deal with MCS.

In this paper we proceed along that direction, and consider the problem of storing
and searching the set MCS(X, Y). The main hurdle is that MCS(X, Y) could contain
an exponential number of distinct strings [6]: consequently, any trie-based or immediate
automaton representation would require exponential time and space for its construction.
We improve significantly over this direction as we list in our contributions, where n =
max{|X|, |Y |} and σ is the size of the alphabet Σ for X and Y :

We introduce a labeled compact direct acyclic graph MDAG(X, Y) (for MCS DAG) that
represents the strings in MCS(X, Y) in polynomial space O(n3σ) and can be built in
polynomial time O(n3σ log n). The previously mentioned conditional lower bound for
LCS applies, since the longest path here is an LCS of X and Y .
For any string P , we show how MDAG(X, Y) can search the strings with prefix P from
MCS(X, Y) and report them in lexicographic order, in O(|P | log σ + occ) time, where occ
is the number of reported strings.
We can list all the strings from MCS(X, Y) lexicographically in constant amortized time
(CAT), namely, O(|MCS(X, Y)|) time.
By adding O(n)-bits per node, we show how MDAG(X, Y) with input i (where 1 ≤ i ≤
|MCS(X, Y)|) can select the ith string S in lexicographic order from MCS(X, Y), in
O(|S| log σ) operations on O(n)-bit integers; the inverse operation of rank for input S is
supported in the same complexity, where i is returned.

In Section 3 we implement MDAG(X, Y) as a direct acyclic graph (DAG) where the only
zero indegree node is the source s and the only zero outdegree node is the target t. Each
edge is labeled with a character from the alphabet, so that any two outgoing edges from the
same node have different characters as labels. Moreover, each st-path corresponds to a string
in MCS(X, Y), obtained by concatenating the characters on the edge traversed along the
st-path; vice versa, each string in MCS(X, Y) is spelled out by an st-path. In order to define
and build MDAG(X, Y) we use some properties on MCSs previously introduced in [6] and
described in Section 2, plus some new ideas to keep the size of MDAG polynomial. As a result,
after MDAG has been built and its unary paths have been compacted, the aforementioned
operations can be implemented in a simple way, as discussed in Section 4.

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:3

s t

A
C

C

C

T

G

A

G

A

A

A

A

G
G

G

G G
G

G
G

$
$
$

$
$

s t

A

C

C

C

T
A G

G
A

GG

A
G

G A G
$

G $
s t

AC
CC

TAGG$

AGG$

GAG$
AGG$

GAG$

Figure 1 Left: edge-labeled DAG for strings X = TCACAGAGA and Y = ACCCGTAGG, where each
st-path corresponds to a string in MCS(X, Y) = {ACAGG, ACGAG, CCAGG, CCGAG, TAGG}. Center: MDAG
for the same strings X and Y ; for instance, the two shaded nodes in the left graph were compacted
into one, shaded in the right. Right: its compact MDAG, where MCS(X, Y) is incrementally output
as push(AC), push(AGG), pop(), push(GAG), pop(), pop(), push(CC), push(AGG), pop(), push(GAG), pop(),
pop(), push(TAGG), pop(), and constant-space references to string labels are the arguments of push().
Note that before each pop() immediately following a push(), we find on the stack the string labels
whose concatenation gives a string from MCS(X, Y).

An example of MDAG and compact MDAG is shown in Figure 1, where MCS(X, Y) is
enumerated in CAT using constant-space references to the strings that label the edges in
MDAG(X, Y), by simply using a stack [23]. As formalized by Frank Ruskey [20, Section 1.7]
in the “Don’t Count the Output Principle”, we account for the amount of data change that
takes place, and the latter takes CAT per solution.

Related work. Maximal common subsequences were first introduced in [9], in the context
of LCS approximation. The first algorithm for finding an MCS between two strings was
presented in [21], and subsequently refined in [22]. The latter algorithm finds an MCS
between two strings of length n in O(n

√
log n/ log log n). These algorithms can be also used

to extend a given sequence to a maximal one in the same time, and to check whether a given
subsequence is maximal in O(n) time. In [11] the authors considered the problem of finding
an MCS of m > 2 strings of total length n, and were able to solve this in O(mn log n) time
and O(n) space. As for MCS enumeration, [6] showed that this task can be performed in
O(n log n) delay and quadratic space.

The automaton approach has been used in literature to deal with subsequence-related
problems. The Directed Acyclic Subsequence Graph (DASG) introduced in [3] is an automaton
which accepts all subsequences of a given string S. Given a set of strings, it can also be
generalized to accepting subsequences of any string in the set. Later, the common subsequence
automata (CSA) was introduced [7, 8, 24], which instead accepts common subsequences of a
set of strings. Such automaton is similar to the common subsequence tree of [13], and it can
also be used to find a longest common subsequence between two strings [17]. Binary decision
diagrams such as ZDD [18] and SeqBDD [14] could potentially be employed to compactly
store MCS(X, Y) but their worst-case behaviour typically involves exponential construction
time and space.

We stress that it is not straightforward to efficiently adapt all of these structures to the
MCS problem: indeed, figuring out which of the accepted strings are subsequences of each
other is not an immediate task. We therefore opted for a different approach, directly defining
and constructing an MCS automaton, based on combinatorial properties specific to MCSs
(during the review period of this manuscript, a pre-print on MCS automata appeared [10].)

ISAAC 2023

21:4 A Compact DAG for Storing and Searching Maximal Common Subsequences

Preliminaries. [String notation] A string S over an alphabet Σ (of size σ = |Σ|) is a
concatenation of any number of its characters. The empty string is denoted with ε. For
i ∈ [0, |S| − 1], character S[i] occurs at position i of string S, and position nextS(c, i)
denote the next occurrence of character c after position i in string S, if it exists (otherwise,
nextS(c, i) = |S| − 1). The notation S<i indicates S[0, i − 1], and S≤i indicates S[0, i].
We say that S is a subsequence of a string X, denoted S ⊂ X, if there exist indices
0 ≤ i0 < ... < i|S|−1 < |X| such that X[ik] = S[k] for all k ∈ [0, |S| − 1]. In this case
we also say that X contains S. Given two strings X and Y , a string S is a common
subsequence if S ⊂ X and S ⊂ Y . Furthermore, S is a Maximal Common Subsequence,
denoted S ∈ MCS(X, Y), if it is a common subsequence which is inclusion-maximal : there
is no string T ̸= S such that S ⊂ T ⊂ X, Y . [Graph notation] Given a directed graph
G = (V, E), we define the in-neighbors of a node v ∈ V as N−(v) = {u ∈ V | (u, v) ∈ E}, and
the out-neighbors as N+(v) = {z ∈ V | (v, z) ∈ E}; the in-degree is d−(v) = |N−(v)| and
the out-degree is d+(v) = |N+(v)|. A subgraph of graph G = (V, E) is a graph H = (W, F)
such that W ⊆ V and F ⊆ E. A path P in a graph G = (V, E) is a sequence of distinct
adjacent nodes: P = u1...uk where ui ∈ V for all i, ui ̸= uj for all i ̸= j, and (ui, ui+1) ∈ E

for all i. P is called an u1uk-path. A path where the first and last nodes coincide is called a
cycle. A directed graph with no cycles is called a directed acyclic graph, or DAG.

2 Structure of MCSs

In this section, we show known properties of MCSs which will be at the base of MDAG.
Firstly, we show how to naturally represent all the strings in MCS(X, Y) for any two given
strings X and Y , using a finite-state automaton A corresponding to a DAG with a single
source s and a single target t, where each edge is labeled with a character of the alphabet Σ;
we show that st-paths in A have a one-to-one correspondence with the strings in MCS(X, Y).
Secondly, we recall and contextualize some useful properties of MCSs proven in [6].

2.1 Modeling MCS as an Exponentially Large DAG
We here define a deterministic finite-state automaton A that accepts the strings in MCS(X, Y).
It is more convenient to define it directly as an equivalent DAG, using the extended alphabet
Σ′ = Σ ∪ $, where the dollar sign is a new special character to identify the end of an MCS.

▶ Definition 1. The edge-labeled DAG A = (V ∪{s, t}, E, ℓ(·)) is defined for two input strings
X and Y to store their set MCS(X, Y), as follows:

Every node in V ∪ {s} corresponds to a distinct prefix of a string in MCS(X, Y), with s

called source node corresponding to the empty string prefix.
For any two nodes u, u′ ∈ V , let P, P ′ be their corresponding two prefixes, and let c ∈ Σ
be a character. Then, P ′ = P c iff (u, u′) ∈ E with label ℓ(u, u′) = c.
For any node u ∈ V , if its corresponding prefix is a whole string P ∈ MCS(X, Y), then
(u, t) ∈ E with label ℓ(m, t) = $.

Given DAG A, we have a bijection between the strings in MCS(X, Y) and the labeled
st-paths (see the left of Figure 1 for an example). Indeed, it is immediate that any such
path corresponds to a string in MCS(X, Y) due to the way edges are placed. Vice versa,
by definition, we cannot have two out-going edges from the same node that share the same
label. Therefore, each MCS has exactly one corresponding st-path. Note that the property
of the outgoing labels also implies that d+(u) ≤ σ for all u ∈ V , and therefore |E| ≤ σ|V |.
As the number of nodes in A is Ω(|MCS(X, Y)|), its size is exponential in the worst case.

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:5

▶ Remark 2. A can be seen as an acyclic deterministic finite-state automaton that accepts
the set MCS(X, Y). We have one state for each prefix of a string in MCS(X, Y). Given
two states q, q′, respectively corresponding to prefixes P, P ′ of strings in MCS(X, Y), the
transition function δ is given by δ(q, c) = q′ if and only if P ′ = P c.

2.2 Concepts Borrowed from MCS Enumeration

We now present a summary of some concepts introduced in [6], which will be used for
our results. Let string P be called a valid prefix if there exists a string Q such that their
concatenation is PQ ∈ MCS(X, Y). Given a valid prefix P , the set of characters c such that
P c is still a valid prefix are called valid extensions.

Finding valid extensions of P is not straightforward. Let P be a valid prefix, and let X≤l

and Y≤m be respectively the shortest prefixes of X and Y that contain P as a subsequence.
Consider a pair of positions i > l and j > m, respectively in X and Y , corresponding to the
same character, say, c ∈ Σ. In order to assess whether c is a valid extension, checking if P c

is a maximal common subsequence of X≤i and Y≤j is necessary, but not sufficient:

▶ Example 3. Consider X = TCACAG and Y = TACGAT, with MCS(X, Y) = {TACA, TACG}.

X T
l

C
i

A C A G

Y T
m

A C

j

G A T

Consider the valid prefix T, for which l = 0 and m = 0. Let i = 1 and j = 2: these correspond
to character C, and clearly TC ∈ MCS(X≤i, Y≤j) = MCS(TC, TAC). Still, C is not a valid
extension of valid prefix T, as TC is not a prefix of any MCS.

To circumvent this problem, the set Extl,m of candidate extensions is defined in [6]: this
is a set of pairs of positions (i, j), with i ≥ l and j ≥ m, whose definition relies solely on
the pair (l, m). The membership of (i, j) to Extl,m completes the characterization of valid
extensions (see Theorem 3 in [6]):

Let P be a valid prefix, and let X≤l and Y≤m be respectively the shortest prefixes of X

and Y that contain P as a subsequence. Note that P ∈ MCS(X≤l, Y≤m).
Then P c is a valid prefix if and only if the following two conditions hold:

1. There exists i and j such that c = X[i] = Y [j] and P ∈ MCS(X<i, Y<j);
2. This pair of positions satisfies (i, j) ∈ Extl,m.

More details on the construction of set Extl,m are beyond the scope of this paper, but they
can be found in [6, Section 2.3], along with a O(σ log n) time method for its computation. In
Example 3, it is (i, j) ̸∈ Extl,m.

The notion of swings is a key concept to quickly verify the first condition above. Swings
characterize the amount by which we can “move” a given character occurrence while retaining
maximality (see Figure 2, right). Let X≤l and Y≤m be respectively the shortest prefixes of X

and Y that contain P as a subsequence. The swing of P , denoted ⋉(P), is a pair of integers
⋉T (P) and ⋉B(P), called respectively top and bottom swings, given by

⋉T (P) = min{i > l | P ̸∈ MCS(X≤i, Y≤m)}
⋉B(P) = min{j > m | P ̸∈ MCS(X≤l, Y≤j)}.

ISAAC 2023

21:6 A Compact DAG for Storing and Searching Maximal Common Subsequences

X T A T C
l

G A C

⋉T

T C

Y T G A C
m

G C T A C

⋉B

T C A C A G
l

A T G

⋉T

A C T C T G
m

G T A G

⋉B

Figure 2 Left: Swings (⋉T ,⋉B) for valid prefix TAC in strings X = TATCGACTC and Y = TGACGCTAC.
Consider swing ⋉T : TAC ̸∈ MCS(X≤⋉T , Y≤m) since TGAC is a common subsequence (dashed). Note
how the bottom swing ⋉B is not given by the next occurrence of C after m, since TAC is still maximal
for strings TATC and TGACGC. Right: Two prefixes, TCG (solid blue) and ACG (dashed orange), both
ending at solid red positions (l, m), and having the same swings (⋉T ,⋉B). The valid extensions are
the same (dotted green): A and T.

It follows from the definition that P ∈ MCS(X<i, Y<j) ⇐⇒ i ≤ ⋉T (P) and j ≤ ⋉B(P).
Given the swings, condition 1 can thus be checked in constant time [6]. Note that the
definition of top swing necessarily implies X[i] = X[l].1 The symmetric holds for the bottom
swing.

We briefly also recall how to incrementally compute the swings of a prefix, first described
in [6], as it will be useful in our proofs. We only describe the procedure for the top swing as
the bottom swing is symmetrical:

If P is composed of a single character c, with first occurrence in X at position l and
in Y at position m, then it suffices to compute, for every character d in Y<m, the first
occurrence of d in X>l, and take the minimum of these. The swing then corresponds to
the first occurrence of c after such minimum.

Let P = p1 · · · pN be a valid prefix with N > 1, and let l1, ..., lN (resp. m1, ..., mN) be
the positions of X (resp. Y) such that X≤li

(resp. Y≤mi
) is the shortest prefix containing

p1 · · · pi. The personal top swing ⋉T (lN , mN) of the last position is the top swing of
character pN when seen as a prefix over the strings X>lN−1 , Y>mN−1 , instead of over
the whole strings (and thus computed as above). The personal bottom swing is defined
analogously. In other words, the personal swing of a character expresses the change
necessary to have an insertion between itself and the previous character of the prefix (
see Figure 3 for an example). The top swing of P is the minimum between the personal
swing of (lN , mN), and the first occurrence of Y [mN] = pN after the top swing of prefix
p1 · · · pN−1. This second swing indicates the change required for an insertion in the
previous part of the prefix.

Updating the swings when a character is added can be done in O(σ) time, provided that
we can find in constant time the next occurrence of a character c after a given position in
the strings; more importantly, this update does not need knowledge of the whole prefix, but
just the positions its final character (lN , mN) and their current swings.

1 Consider any h > l such that P ̸∈ MCS(X≤h, Y≤m). Since P = p1 · · · ps ∈ MCS(X≤l, Y≤m) and we are
only extending string X, P can only become non-maximal if an insertion occurs between pi and pi+1,
for i < s. If h′ is the last occurrence of ps = X[l] before h, it is P ̸∈ MCS(X≤h′ , Y≤m), as the substring
of X between h′ and h does not contain a suffix of P as subsequence. The minimum index i > l such
that P ̸∈ MCS(X≤i, Y≤m) must satisfy X[i] = X[l].

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:7

X T

l1
G A

l2
C

l3
T C G C

↓
⋉T (l3, m3)

Y T
m1

T A
m2

G C
m3

G A C

Figure 3 Personal top swing for edge (l3, m3), corresponding to the last character of the leftmost
mapping of prefix TAC. Indeed, such swing allows for insertion of character G after (l2, m2).

3 Polynomial-Size MDAG

The construction of DAG A satisfying the conditions of Definition 1 would require exponential
time and space: the number of nodes of A is between Ω(|MCS(X, Y)|) and O(n|MCS(X, Y)|),
so it can be exponential in n. In this section, we show how to obtain MDAG, where we still
have a bijection between st-paths and MCS, but which can instead always be constructed in
O(n3σ log n) time and O(n3σ) space, as per Theorem 13. Intuitively, the relevant information
discussed for A are the quadruples (l, m, t, b), where X≤l and Y≤m are some prefixes and
pair t, b is some swing: these quadruples are the candidates for being nodes in MDAG.

The formal definition of MDAG is based on an equivalence relation over the nodes of
A, given in Section 3.1. Afterwards, in Section 3.2, we describe an algorithm for directly
constructing MDAG. We present the complexity bounds for the construction in Section 3.3.

3.1 Equivalence Relation for Defining MDAG
Let A be a DAG as defined in Definition 1. Our construction algorithm for MDAG is based
on the concepts from Section 2.2. The idea is to use the characterization of valid extensions
to identify the out-neighbors of a given node of DAG A. We identify an equivalence relation
over the prefixes of MCS(X, Y), and thus on the nodes of A, that allow us to always build
MDAG in polynomial time and space. We begin with the following lemma:

▶ Lemma 4. Given any valid prefix P , let X≤l and Y≤m be the shortest prefixes containing
P , and ⋉(P) = ⟨t, b⟩ be its swing. Consider another valid prefix P ′ ̸= P with the same
shortest prefixes X≤l, Y≤m and swing ⋉(P ′) = ⋉(P) as P . Then, the set of valid extensions
is the same for both P and P ′, and for each valid extension c ∈ Σ, the swings of P c are the
same as the ones of P ′ c.

Proof. The definition of Extl,m only depends on the value of l and m, therefore such set
is the same for both P and P ′. Since the swings for P and P ′ are equal, the set of valid
extensions is necessarily the same. Let now c ∈ Σ be a valid extension for P and P ′. Let
X≤lc

and Y≤mc
respectively be the shortest prefixes of X and Y containing P c. These are

also the shortest prefixes containing P ′ c: the shortest prefixes containing P and P ′ were the
same, and lc is simply the first occurrence of c after l, analogously for mc and m. The swings
of P c are given by the minimum of the swings of P , and the personal swing ⋉(lN , mN)
obtained by adding the new character c. The latter personal swing is the same for both P c

and P ′ c, since we are considering the same positions lc, mc. Since the previous swings where
also equal, this means that the swings of P c and P ′ c are indeed the same. ◀

Lemma 4 has an implication for prefixes P and P ′ that share the same swing: if
M1, ..., MN are strings extending as PMi ∈ MCS(X, Y), and M ′

1, ..., M ′
M extending as

P ′M ′
i ∈ MCS(X, Y), then they are equal: {Mi | i = 1, ..., N} = {M ′

i | i = 1, ..., M}.

ISAAC 2023

21:8 A Compact DAG for Storing and Searching Maximal Common Subsequences

Given a node u of A, let P be the corresponding prefix. We assign u the quadruple of
parameters ID(u) = ⟨l, m,⋉T (P),⋉B(P)⟩, where l and m are such that X≤l and Y≤m are
the shortest prefixes containing P . By Lemma 4, this tuple completely identifies the valid
extensions of P , which means that it completely identifies the neighbors of node u.

▶ Corollary 5. Let u ̸= u′ with ID(u) = ID(u′). Then, for each v ∈ N+(u) there exists
exactly one v′ ∈ N+(u′) such that ID(v) = ID(v′) and ℓ(u, v) = ℓ(u′, v′).

Therefore, we can define the following equivalence relation on the nodes of A: u ∼ u′ if
and only if ID(u) = ID(u′). We can then identify a class of equivalent nodes in the DAG,
choosing one representative for it. Because of Corollary 5, this does not change the set of
labeled st-paths of the DAG: the nodes that are identified as one have the same labelled
out-edges, leading to the same out-neighbors. Our data structure MDAG is then defined as
the DAG resulting from this identification:

▶ Definition 6. Data structure MDAG is a node- and edge-labelled DAG built as follows:
1. Start from DAG A (Definition 1). For each node u, consider its (unique) corresponding

prefix P , and let X≤l and Y≤m be the shortest prefixes of X and Y containing P , and
⋉(P) = (t, b). Assign to node u the node-label ID(u) = ⟨l, m, t, b⟩.

2. Merge every pair of nodes u ̸= u′ with the same label ID(u) = ID(u′) into one node.
An example of such DAG is shown in the right of Figure 1.

It is possible to further compress the MDAG, as detailed in the next section, by compacting
nodes of out-degree 1. This will not change its worst-case size, but will impact the efficiency
of our method.

3.2 Direct and Incremental Construction of MDAG
We build MDAG directly, without the intermediate DAG A. We apply the incremental
procedure below, in a DFS fashion, using the node IDs to avoid repeated computation. At
any moment we have built a node- and edge-labeled DAG H = (W, F). A node u ∈ W

corresponds to a set of prefixes P1, ..., Pk, given by the concatenation of the edge-labels of all
su-paths using edges of F . All prefixes Pi share the same ending positions of the shortest
prefixes of X and Y that contain them, and the corresponding swings; these four values form
the label ID(u) assigned to u.

Every recursive call buildDAG(u) takes as input a node u which belongs to the current
DAG H, and expands DAG H accordingly as follows:
1. Let ID(u) = ⟨l, m, t, b⟩. First, compute set Extl,m, and use it to compute the valid

extensions: select characters c that have a corresponding pair (i, j) ∈ Extl,m, with i ≤ t

and j ≤ b.
2. For such character c, compute the positions (lc, mc) such that X≤lc

and Y≤mc
are the

shortest prefixes containing P c, and update the swings tc, bc.
3. Now, check if the DAG H generated so far already has a node with label ⟨lc, mc, tc, bc⟩:

a. If such a node v ∈ W exists, then simply add edge (u, v) with label c to the edges F

of H, without recursing. Indeed, a recursive call for v has been previously performed.
b. Otherwise, add node v to W , with ID(v) = ⟨lc, mc, tc, bc⟩, and add edge (u, v) to F ,

with label c. Then, perform the recursive call buildDAG(v).

▶ Corollary 7 (Correctness). buildDAG(s) correctly builds MDAG(X, Y) starting from
H = ({s}, ∅).

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:9

Proof. We show that, at every step, H is a subgraph of DAG A where nodes with equal
ID() values have been identified. This is true at the beginning, when H = {s}. If this holds
at the beginning of a recursive call for a node u, then it must hold at the end. Indeed, we
use valid extensions to identify neighbors of a given node, which is also the definition of
neighbors for a node of A. For each valid extension c, we compute the label ⟨lc, mc, tc, bc⟩ of
the corresponding node. Now, if there already exists a node v with such label, we add an
edge between u and v, with label c. This correctly identifies the two nodes with equal labels
as being the same node, as per operation 2. Otherwise, the new node must be added, with
the correct label ⟨lc, mc, tc, bc⟩ as per operation 1, since it represents a new prefix. ◀

Once we have built MDAG, we can easily compute compact MDAG in linear time in the
size of MDAG, in the following way. Let us proceed in topological order of the nodes; when a
node v with N+(v) = {w} (i.e. out-degree 1) is encountered, we perform the following:
1. For each u ∈ N−(v), remove edge (u, v) and add edge (u, w) with label ℓ(u, v)ℓ(v, w).
2. After all in-neighbors have been processed, remove node v and edge (v, w) from MDAG.
Clearly, the minimum out-degree of is 2, and nodes s and t are never removed.

Complexity. Let us now study the time and space complexity of the procedure. As mentioned
before, finding Extl,m requires O(σ log n) time (see [6] for details). Checking whether each c

corresponding to an element of Extl,m satisfies the swings’ condition requires constant time
per character. For each such c, computing positions (lc, mc) can be done in constant time,
using appropriate data structures as outlined next. In order to attain our goal, we only need
to ensure constant-time queries for the next occurrence of character c after a given position i.
To this end, let us keep two bit-vectors for each c ∈ Σ, one for X and one for Y , indicating
the positions in which c occurs in the strings. By equipping these vectors with rank and
select data structures, which employ O(nσ) space, we can find in constant time the next
occurrence of any character after a given position [19]. Performing this operation in constant
time also allows us to update the swings in O(σ) time, as we have explained in Section 2.2.
All operations described so far are performed exactly once per node. Therefore, the total
time required for Steps 1 and 2 is O(|V |σ log n).

Let us now consider Step 3. We need to check if a node v belongs to the current DAG,
and add it if it does not. To be able to efficiently perform these operations, let us keep
and dynamically update a bit matrix for pairs l, m, where 1 occurs if that pair currently
corresponds to at least one node. Then, each cell filled with a one has an associated balanced
binary search tree, which indexes the pairs of swings (t, b) such that there currently is a
node u ∈ W with ID(u) = ⟨l, m, t, b⟩. These pairs are ordered according to the total order:
(t, b) < (t′, b′) if and only if t < t′ or t = t′ and b < b′. Lookup and insertions in such
data structure require O(log n) each, and the total space employed is O(|V |). Now, note
that we perform a membership check, with subsequent possible insertion, exactly once per
edge of the DAG. Recalling that |E| ≤ σ|V |, the total time required for Step 3 is again
O(|E| log n) = O(|V |σ log n). Thus, summing the time required for Steps 1, 2 and 3 yields
O(|V |σ log n) total time for the algorithm.

To be able to give final complexity bounds, we therefore need bounds on the size of the
DAG we constructed. Trivially, we can bound |V | = O(n4), since no two nodes share the
same ID, and the number of different IDs is bounded by n4. Therefore, we surely have a
polynomial-time and space algorithm for building a DAG. We can actually do better than
this: thanks to some properties of the swings, in the next section we show that |V | = O(n3),
leading to the complexity bounds given in Theorem 13.

ISAAC 2023

21:10 A Compact DAG for Storing and Searching Maximal Common Subsequences

3.3 Cubic Size of the MCS DAG
To conclude the proof of Theorem 13, we need to study the size of MDAG(X, Y) as constructed
in Section 3.2. We prove a monotonicity property of the swing values, which will allow us to
show that the number of nodes of MDAG(X, Y) is bounded by O(n3).

In Section 2.2, we saw that the top swing of a valid prefix P is defined as ⋉T (P) = min{i >

l | P ̸∈ MCS(X≤i, Y≤m)}, where X≤l and Y≤m are the shortest prefixes of respectively X

and Y containing P . In other words, if we start from strings X≤l, Y≤m (where P is obviously
maximal), it is the minimum extension of string X that ensures at least one insertion in P .
Symmetrical definition holds for bottom swings, by switching the two strings.

Recall that, as seen in Section 2.2, if ⋉T (P) = t then X[t] = Y [m] = X[l]: the swings’
positions are occurrences of the last character of the prefix. We also note the following, which
follows from the definition of swings:

▶ Remark 8. Let P = p1 · · · pN a valid prefix with swings ⟨t, b⟩. Let X≤li
and Y≤mi

be the
shortest prefixes respectively of X and Y that contain p1 · · · pi. Then, there is at least one
match between Y [mN−1, mN) and X(lN , t). More specifically, there can either be a match
between Y (mN−1, mN) and X(lN , t), or between Y [mN−1] and X(l, t) which will lead to an
insertion in a previous part of the prefix.

We now present some new swing properties. This lemma proves that, when two prefixes
are extended with a valid extension that occurs at the same pair of positions, then the
relative order of the swings remains unchanged during the extension:

▶ Lemma 9. Let u and u′ be two nodes of MDAG, with ID(u) = ⟨x, y,⋉T (P),⋉B(P)⟩
and ID(u′) = ⟨x′, y′,⋉T (P ′),⋉B(P ′)⟩ such that x ̸= x′ or y ̸= y′, where P (resp.
P ′) is any prefix associated to u (resp. u′). Assume that we have v ∈ N+(u) with
ID(v) = ⟨l, m,⋉T (P c),⋉B(P c)⟩, and v′ ∈ N+(u′) with ID(v′) = ⟨l, m,⋉T (P ′ c),⋉B(P ′ c)⟩
(i.e. same positions l, m corresponding to character c). Then, the swings change monotonic-
ally:

⋉T (P) < ⋉T (P ′) ⇒ ⋉T (P c) ≤ ⋉T (P ′ c)
⋉B(P) < ⋉B(P ′) ⇒ ⋉B(P c) ≤ ⋉B(P ′ c)

Proof. We prove the result for top swings. Let ⋉T (P) = t and ⋉T (P ′) = t′, with t <

t′. We note that for (l, m) to be a valid extension for both prefixes, we must have l ≤
t < t′ (Swing condition 1 for valid extensions’ characterization in Section 2.2). By the
incremental computation of swings, the swings of P c and P ′ c are computed by taking the
minimum between the personal swing ⋉(l,m)

T of the new positions, and the next occurrence
of the corresponding character after the top swings t, t′. More specifically, ⋉T (P c) =
min{⋉(l,m)

T , nextX(c, t)} and ⋉T (P ′ c) = min{⋉(l,m)
T , nextX(c, t′)}. Since the first component

of the minimum is the same, it suffices to prove that nextX(c, t) ≤ nextX(c, t′) to conclude
⋉T (P c) ≤ ⋉T (P ′ c). Indeed, since t < t′ are positions in the same string, the next occurrence
of a given character after t cannot be strictly bigger than the next occurrence of the same
character after t′. Thus, we have proved the claim for top swings; bottom swings are
symmetrical. ◀

The next corollary shows that the opposite implication holds for strict inequalities:

▶ Corollary 10. Under the same hypotheses of Lemma 9, we have
⋉T (P c) < ⋉T (P ′ c) ⇒ ⋉T (P) < ⋉T (P ′)
⋉B(P c) < ⋉B(P ′ c)) ⇒ ⋉B(P) < ⋉B(P ′)

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:11

Proof. We reverse the proof of Lemma 9. Consider top swings, and recall ⋉T (P c) =
min{⋉(l,m)

T , nextX(c, t)} and ⋉T (P ′ c) = min{⋉(l,m)
T , nextX(c, t′)}, where t = ⋉T (P) and

t′ = ⋉T (P ′). Since the first part of the minimum is the same, and ⋉T (P c) < ⋉T (P ′ c), we
have two options
1. nextX(c, t) ≤ ⋉(l,m)

T ≤ nextX(c, t′), where at most one inequality can be an equality; or
2. nextX(c, t) < nextX(c, t′) ≤ ⋉(l,m)

T .
In any case, we have nextX(c, t) < nextX(c, t′). Since t and t′ are positions in the same
string, this relationship between the next occurrence of the same character immediately also
implies t < t′, which concludes the proof. ◀

We are now ready to prove our main result:

▶ Theorem 11. For any two nodes u ̸= u′ of MDAG, let ID(u) = ⟨l, m, t, b⟩ and ID(u′) =
⟨l, m, t′, b′⟩. Then swing pairs for the same l, m do not dominate each other; namely, if t > t′,
then b ≤ b′.

Proof. Consider any v ∈ N−(u), and v′ ∈ N−(u′). Let ID(v) = ⟨x, y, tv, bv⟩ and ID(v′) =
⟨x′, y′, tv′ , bv′⟩. Let us first assume that x ̸= x′ or y ̸= y′, i.e. they are not the same pair of
positions. If we look at positions (x, y) and (x′, y′) we must have either x ≤ x′ and y > y′,
or x > x′ and y ≤ y′. Indeed, assume by contradiction that x ≤ x′ and y ≤ y′. Since both
of these nodes have a valid extension corresponding to positions (l, m), we must also have
x ≤ x′ < l < tv, tv′ and y ≤ y′ < m < bv, bv′ . Then, (l, m) would not be a valid extension
for v: the corresponding prefix is not maximal until the positions given by the swings, since
we have an insertion corresponding to the character occurring at positions (x′, y′).

We now show that t > t′ implies y > y′. By Remark 8, t is the smallest value such that
a match occurs between X[l + 1, t) and Y [y, m − 1]. That is, there is no τ < t such that
X[l + 1, τ) and Y [y, m − 1] have a match. Let t > t′, and assume by contradiction that
y ≤ y′. Then, Y [y′, m − 1] ⊆ Y [y, m − 1]. By definition of t′, there is a match between
X[l + 1, t′) and Y [y′, m − 1] ⊆ Y [y, m − 1]. This is a contradiction on the minimality of t:
there is a smaller τ = t′ < t which yields a match. Now, since we cannot have both y′ ≤ y

and x′ ≤ x, we must have x ≤ x′. By a symmetrical reasoning, we show that the bottom
swings must satisfy b′ ≤ b. Indeed, recall that b is the minimum value for which a match
occurs between X[x, l − 1] and Y [m + 1, b], and assume by contradiction that b > b′. Since
we have X[x′, l − 1] ⊆ X[x, l − 1], we have a match between X[x, l − 1] and Y [m + 1, b′] for
a smaller value b′ < b: contradiction.

Let us now consider the case where the in-neighbors v and v′ have the same pair of
positions in their IDs: x = x′ and y = y′. Let us inductively consider wi+1 ∈ N−(wi)
and w′

i+1 ∈ N−(w′
i), where w0 = v and w′

0 = v′. We stop at the first j such that
ID(wj) = ⟨xj , yj , tj , bj⟩ and ID(w′) = ⟨x′

j , y′
j , t′

j , b′
j⟩ with xj ̸= x′

j or yj ≠ y′
j . Such pair

satisfies the conditions of the first part of the proof, since xj+1 = x′
j+1 and yj+1 = y′

j+1
by hypothesis. Nodes wj and w′

j are obtained by going backwards in the DAG for j steps,
starting respectively from nodes u and u′. Since j is the first index such that the corresponding
positions for extensions differ, we have ℓ(wk+1, wk) = ℓ(w′

k+1, w′
k) for all k = 1, ..., j − 1. By

iterating Corollary 10, we thus have that t > t′ implies tj > t′
j . By the first part of the proof,

we therefore have bj ≤ b′
j . By Lemma 9, this propagates to the end of the path in the MCS

DAG, to also yield b ≤ b′. ◀

From Theorem 11, we can derive the following result, which proves that the number of
swings for a fixed pair of positions (l, m) is linear:

ISAAC 2023

21:12 A Compact DAG for Storing and Searching Maximal Common Subsequences

▶ Corollary 12. For any given choice of l, m, there are just O(n) nodes of MDAG(X, Y)
having the form ID() = ⟨l, m, ·, ·⟩.

Proof. Let us fix l, m, and consider the swings’ set Sl,m ⊆ {0, ..., n − 1} × {0, ..., n − 1},
where (a, b) ∈ Sl,m if and only there exists u such that ID(u) = ⟨l, m, a, b⟩. By Theorem 11,
if two pairs (a, b) and (c, d) belong to Sl,m, then it cannot be a ≤ c and c ≤ d (or vice versa).
So one pair cannot dominate the other.

We observe that the size of |Sl,m| is the size of the classical Pareto frontier: for an
arbitrary set of points in the {0, ..., n − 1} × {0, ..., n − 1} grid, the number of points in a
Pareto frontier is less than 2n. The observation is folklore: each point in the frontier either
increases the x-coordinate or decreases the y-coordinate (possibly both). Hence, there cannot
be more points on the frontiers as the sum of the n possible x-coordinates plus the n possible
y-coordinates. Hence, |Sl,m| = O(n). ◀

Therefore, the number of nodes of the MDAG is cubic, as we have O(n2) choices for
l, m, and every such choice gives at most a linear amount of swings (t, b). Furthermore,
it is immediate by construction of MDAG that the out-degree of every node is at most σ

(the characters that are valid extensions the given prefix). This gives O(n3σ) nodes and
edges in MDAG. When obtaining the compact MDAG, the number of nodes and edges do
not increase, and a suitable representation of the string labels gives the space occupancy of
O(n3σ) memory words stated in Theorem 13.

4 Efficient Operations on MDAG

We describe here how to support some operations on compact MDAG(X, Y), which has source
s, target t, and no unary nodes. We assume that each node u stores the number p(u) of
ut-paths. As compact MDAG(X, Y) is a DAG of O(n3σ) edges, we can computed p(u) for
each node u in total O(n3σ) time by running a DFS, as p(u) is the sum of the p(v)’s for the
out-neighbors v’s of u.

4.1 CAT Enumeration of MCSs
The strings in MCS(X, Y) can be listed in lexicographic order by enumerating the (labeled)
st-paths in compact MDAG, which can be done in Constant Amortized Time with a simple
DFS algorithm where the out-neighbors of each node are visited in increasing order of
the labels of their outgoing edges. Although folklore, for completeness we sketch the DFS
algorithm here.

Consider a node u, where initially u = s, and denote the set of all ut-paths in G =
compact MDAG(X, Y) by Pu,t(G). The central idea is that any ut-path starts with u,
followed by an element of Pv,t(G \ u), i.e., a path in G \ u (i.e. u and its incident edges
removed) from an out-neighbor v of u to t. Since G is a DAG, we can go a step further: a
path from u cannot reach u again, therefore it is not even necessary to remove u (and its
incident edges) from the DAG. We can thus represent Pu,t(G) as the following disjoint union:
Pu,t(G) =

⋃
v∈N(u){ℓ(u, v)P | P ∈ Pv,t(G)}, where ℓ(u, v) denotes the character(s) labeling

edge u, v. From this, it is immediate that enumeration can be performed by keeping a current
path prefix which we expand by traversing the DAG, backtracking every time computation
terminates for all children of a node.

This recursive procedure runs in constant amortized time. Consider its calls and observe
that they form a recursion tree with the following properties:

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:13

Each leaf in the recursion tree is a distinct st-path (and all st-paths are in these leaves
without any duplication).
Each internal node in the recursion tree always generates at least two children, due to
the path compression in G: hence the number of internal nodes is not greater than the
number of leaves.
In each node we spend just constant time per recursive call. In each leaf we spend
constant time, not accounting for explicitly printing its whole st-path.

Letting N be the number of st-paths, there are N leaves and at most N internal nodes
in the recursion tree. Each call takes constant time to generate its node in the recursion tree,
which means O(1) time per node/leaf. This gives a total of O(N) time for listing all the
st-paths when starting from G, recalling that G has no unary node (except possibly t). This
provides a CAT enumeration as we can charge O(1) time per solution to cover this cost.

4.2 Searching, Selecting, and Ranking
We observe that each node u has at most σ out-neighbors and the edges towards them are
distinct (each must start with a different character of Σ): this constitutes a “lexicographical
partition” of the paths from u to t since, after a common prefix, a path starting with a larger
character will lead to a lexicographically larger string.

Searching a string P as a prefix of strings from MCS(X, Y) traverses compact MDAG
starting from s and matching the characters in P along the labels for the edges in the path.
Either the search fails before reaching the end of P , or it succeeds and leads to a node u (or
to an arc with endpoint u). At this point, we can run the CAT enumeration (Section 4.1)
starting from u to list all the ut-paths and so all the extensions of P to strings in MCS(X, Y).

Selecting the ith string in lexicographic order from MCS(X, Y) is similar but uses the
O(n)-bit information p(v) in each traversed node v, that is, p(v) is the number of vt-paths
and requires O(n) bits as the number of MCS can be O(2n). The select operation scans the
outgoing edges in order of their labels, and checks the corresponding p(v): whenever the
edges scanned have the largest partial sum i, it follows the current edge e and subtracts from
i the partial sum of the edges examined before e. It stops at node t. Let S be the string thus
found by concatenating the labels on the traced path from s to t. The number of traversed
nodes is at most |S| + 1, and in each node we will consider up to σ edges, for a total cost
of O(|S| log σ), as this can be further optimized by storing, for each edge, the sum of the
annotations of the previous edges, and using binary search on these O(σ) sums. Ranking S

is like searching S and using the partial sums as mentioned above to get a total sum of i

when t is reached.

▶ Theorem 13. Given two strings X and Y of length n on an alphabet of size σ, compact
MDAG(X, Y) stores MCS(X, Y) in space O(n3σ) and can be built in O(n3σ log n) time. It
supports the following operations:

List all strings in MCS(X, Y) in O(|MCS(X, Y)|) time, i.e., Constant Amortized Time.
For a given string P , report just the strings from MCS(X, Y) that have prefix P , in
O(|P | log σ + occ) time, where occ is the number of reported strings.

The MCS(X, Y) can be augmented with O(n) bits per node, so that two further operations
are supported, where each operation handles O(n)-bit integers:

For any integer 1 ≤ i ≤ |MCS(X, Y)|, select the ith string S in lexicographic order from
MCS(X, Y), in O(|S| log σ) operations.
For any string S ∈ MCS(X, Y), return its rank i among the strings in lexicographic order
from MCS(X, Y), in O(|S| log σ) operations.

ISAAC 2023

21:14 A Compact DAG for Storing and Searching Maximal Common Subsequences

It is worth noting that (compact) MDAG can be stored in a succinct way, for example,
using some recent methods introduced for automata [5].

5 Conclusions

In this paper we considered the problem of storing and searching the Maximal Common
Subsequences of two input strings, as they may reveal further common structures in sequence
analysis with respect to the LCSs. Our main contribution is that of reducing time and space
from exponential bounds, using the current state of the art, to polynomial bounds, using our
new compact DAG, which efficiently supports CAT (constant amortized time) enumeration,
counting, and random access to the i-th element (i.e., rank and select operations). As future
work, we plan to improve the time and space bounds for rank and select in Theorem 13
by storing the number of paths in each node in a more refined way, so as the space does
not increase asymptotically, and the time bounds reduce from O(|S| log σ) operations on
O(n)-bit integers to O(|S| log σ + n) time, borrowing ideas from [2].

References
1 A. Abboud, A. Backurs, and V. V. Williams. Tight hardness results for LCS and other

sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 59–78, October 2015. doi:10.1109/FOCS.2015.14.

2 Amihood Amir, Gianni Franceschini, Roberto Grossi, Tsvi Kopelowitz, Moshe Lewenstein,
and Noa Lewenstein. Managing unbounded-length keys in comparison-driven data structures
with applications to online indexing. SIAM J. Comput., 43(4):1396–1416, 2014. doi:10.1137/
110836377.

3 Ricardo A Baeza-Yates. Searching subsequences. Theoretical Computer Science, 78(2):363–376,
1991.

4 L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algorithms. In
Proceedings Seventh International Symposium on String Processing and Information Retrieval.
SPIRE 2000, pages 39–48, September 2000. doi:10.1109/SPIRE.2000.878178.

5 Sankardeep Chakraborty, Roberto Grossi, Kunihiko Sadakane, and Srinivasa Rao Satti.
Succinct representation for (non)deterministic finite automata. J. Comput. Syst. Sci., 131:1–
12, 2023. doi:10.1016/j.jcss.2022.07.002.

6 Alessio Conte, Roberto Grossi, Giulia Punzi, and Takeaki Uno. Enumeration of maximal
common subsequences between two strings. Algorithmica, pages 1–27, 2022.

7 Maxime Crochemore, Bořivoj Melichar, and Zdeněk Troníček. Directed acyclic subsequence
graph – Overview. Journal of Discrete Algorithms, 1(3-4):255–280, 2003.

8 Maxime Crochemore and Zdeněk Troníček. Directed acyclic subsequence graph for multiple
texts. Rapport IGM, pages 99–13, 1999.

9 C. B. Fraser, R. W. Irving, and M. Middendorf. Maximal common subsequences and minimal
common supersequences. Information and Computation, 124(2):145–153, 1996. doi:10.1006/
inco.1996.0011.

10 Miyuji Hirota and Yoshifumi Sakai. Efficient algorithms for enumerating maximal common
subsequences of two strings. CoRR, abs/2307.10552, 2023. doi:10.48550/arXiv.2307.10552.

11 Miyuji Hirota and Yoshifumi Sakai. A fast algorithm for finding a maximal common subsequence
of multiple strings. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, page 2022DML0002, 2023.

12 D. S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM, 24(4):664–
675, October 1977. doi:10.1145/322033.322044.

13 W. J. Hsu and M. W. Du. Computing a longest common subsequence for a set of strings. BIT
Numerical Mathematics, 24(1):45–59, 1984.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1137/110836377
https://doi.org/10.1137/110836377
https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1016/j.jcss.2022.07.002
https://doi.org/10.1006/inco.1996.0011
https://doi.org/10.1006/inco.1996.0011
https://doi.org/10.48550/arXiv.2307.10552
https://doi.org/10.1145/322033.322044

A. Conte, R. Grossi, G. Punzi, and T. Uno 21:15

14 Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram based approach
for mining frequent subsequences. Knowl. Inf. Syst., 24(2):235–268, 2010. doi:10.1007/
s10115-009-0252-9.

15 David Maier. The complexity of some problems on subsequences and supersequences. Journal
of the ACM (JACM), 25(2):322–336, 1978.

16 W. J. Masek and M. S. Paterson. A faster algorithm computing string edit distances. Journal
of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)90002-1.

17 Bořivoj Melichar and Tomáš Polcar. The longest common subsequence problem a finite
automata approach. In Implementation and Application of Automata: 8th International
Conference, CIAA 2003 Santa Barbara, CA, USA, July 16–18, 2003 Proceedings, pages
294–296. Springer, 2003.

18 Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Proceedings of the 30th International Design Automation Conference, DAC ’93, pages 272–277,
New York, NY, USA, 1993. Association for Computing Machinery. doi:10.1145/157485.
164890.

19 R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3(4):43–es, November
2007. doi:10.1145/1290672.1290680.

20 Frank Ruskey. Combinatorial generation. Preliminary working draft. University of Victoria,
Victoria, BC, Canada, 11:20, 2003.

21 Yoshifumi Sakai. Maximal common subsequence algorithms. In Gonzalo Navarro, David
Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial Pattern Matching
(CPM 2018), volume 105 of Leibniz International Proceedings in Informatics (LIPIcs), pages
1:1–1:10, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CPM.2018.1.

22 Yoshifumi Sakai. Maximal common subsequence algorithms. Theoretical Computer Science,
793:132–139, 2019. doi:10.1016/j.tcs.2019.06.020.

23 Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical Computer Science,
363(1):28–42, 2006. Computing and Combinatorics.

24 Zdeněk Troníček. Common subsequence automaton. In International Conference on Imple-
mentation and Application of Automata, pages 270–275. Springer, 2002.

25 R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168–
173, January 1974. doi:10.1145/321796.321811.

ISAAC 2023

https://doi.org/10.1007/s10115-009-0252-9
https://doi.org/10.1007/s10115-009-0252-9
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.4230/LIPIcs.CPM.2018.1
https://doi.org/10.1016/j.tcs.2019.06.020
https://doi.org/10.1145/321796.321811

Prefix Sorting DFAs: A Recursive Algorithm
Nicola Cotumaccio #

Gran Sasso Science Institute, L’Aquila, Italy
Dalhousie University, Halifax, Canada

Abstract
In the past thirty years, numerous algorithms for building the suffix array of a string have been
proposed. In 2021, the notion of suffix array was extended from strings to DFAs, and it was shown
that the resulting data structure can be built in O(m2 + n5/2) time, where n is the number of states
and m is the number of edges [SODA 2021]. Recently, algorithms running in O(mn) and O(n2 log n)
time have been described [CPM 2023].

In this paper, we improve the previous bounds by proposing an O(n2) recursive algorithm
inspired by Farach’s algorithm for building a suffix tree [FOCS 1997]. To this end, we provide insight
into the rich lexicographic and combinatorial structure of a graph, so contributing to the fascinating
journey which might lead to solve the long-standing open problem of building the suffix tree of a
graph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Pattern matching

Keywords and phrases Suffix Array, Burrows-Wheeler Transform, FM-index, Recursive Algorithms,
Graph Theory, Pattern Matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.22

Related Version Full Version: https://arxiv.org/abs/2305.02526

Funding This work was partially funded by Dante Labs.

Acknowledgements I thank Nicola Prezza for pointing out the paper [22].

1 Introduction

The suffix tree [31] of a string is a versatile data structure introduced by Weiner in 1973
which allows solving a myriad of combinatorial problems, such as determining whether a
pattern occurs in the string, computing matching statistics, searching for regular expressions,
computing the Lempel-Ziv decomposition of the string and finding palindromes. The book
by Gusfield [18] devotes almost 150 pages to the applications of suffix trees, stressing the
importance of these applications in bioinformatics. However, the massive increase of genomic
data in the last decades requires space-efficient data structures able to efficiently support
pattern matching queries, and the space consumption of suffix trees is too high. In 1990,
Manber and Myers invented suffix arrays [25] as a space-efficient alternative to suffix trees.
While suffix arrays do not have the full functionality of suffix trees, they still allow solving
pattern matching queries. Suffix arrays started a new chapter in data compression, which
culminated in the invention of data structures closely related to suffix arrays, notably, the
Burrows-Wheeler Transform [4] and the FM-index [14, 16], which have heavily influenced
sequence assembly [30].

The impact of suffix arrays has led to a big effort in the attempt of designing efficient
algorithms to construct suffix arrays, where “efficient” refers to various metrics (worst-case
running time, average running time, space, performance on real data and so on); see [28] for
a comprehensive survey on the topic. Let us focus on worst-case running time. Manber and
Myers build the suffix array of a string of length n in O(n log n) by means of a prefix-doubling
algorithm [25]. In 1997, Farach proposed a recursive algorithm to build the suffix tree of a

© Nicola Cotumaccio;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.cotumaccio@gssi.it
https://orcid.org/0000-0002-1402-5298
https://doi.org/10.4230/LIPIcs.ISAAC.2023.22
https://arxiv.org/abs/2305.02526
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Prefix Sorting DFAs: A Recursive Algorithm

string in linear time for integer alphabets [12]. In the following years, the recursive paradigm
of Farach’s algorithm was used to developed a multitude of linear-time algorithms for building
the suffix array [23, 20, 21, 26]. All these algorithms carefully exploit the lexicographic
struture of the suffixes of a string, recursively reducing the problem of computing the suffix
array of a string to the problem of computing the suffix array of a smaller string (induced
sorting).

The problem of solving pattern matching queries not only on strings, but also on labeled
graphs, is an active topic of research. Recently, Equi et al. showed that no algorithm can solve
pattern matching queries on arbitrary graphs in O(m1−ϵ|P |) time or O(m|P |1−ϵ) (where m is
the number of edges, P is the pattern and ϵ > 0), unless the Orthogonal Vectors hypothesis
fails [11, 10]. On the other hand, over the years the idea of (lexicographically) sorting the
suffixes of a string has been generalized to graphs, thus leading to compact data structures
that are able to support pattern matching queries on graphs. The mechanism behind the suffix
array, the Burrows-Wheeler Transform and the FM-index was first generalized to trees [13, 15];
later on, it was generalized to De Brujin graphs [3, 24] (which can be used for Eulerian
sequence assembly [19]). Subsequently, it was extended to the so-called Wheeler graphs [17, 1],
and finally to arbitrary graphs and automata [9, 6]. The idea of lexicographically sorting
the strings reaching the states of an automaton has also deep theoretical consequences in
automata theory: for example, it leads to a parametrization of the powerset construction,
which implies fixed-parameter tractable algorithms for PSPACE-complete problems such as
deciding the equivalence of two non-deterministic finite automata (NFAs) [8].

The case of deterministic finite automata (DFAs) is of particular interest, because in this
case the notion of “suffix array” of a DFA has a simple interpretation in terms of strings.
Assume that there is a fixed total order ⪯ on the alphabet Σ of a DFA A, and extend ⪯
lexicographically to the set of all infinite strings on Σ. Assume that each state has at least
one incoming edge. If u is a state, consider the set Iu of all infinite strings that can be
read starting from u and following edges in a backward fashion, and let minu and maxu

be the lexicograpically smallest (largest, respectively) string in Iu (see Figure 1). Consider
the partial order ⪯A on the set of all states Q such that for every u, v ∈ Q, with u ̸= v, it
holds u ≺A v if and only if maxu ⪯ minv. Then, the partial order ⪯A induces a (partial)
permutation of the set of all states that plays the same role of the permutation of text
positions induced by the suffix array of a string [9, 22], so ⪯A is essentially the “suffix array”
of the DFA. If we are able to compute the partial order ⪯A (and a minimum-size partition
of Q into sets such that the restriction of ⪯A to each set is a total order), then we can
efficiently and compactly solve pattern matching queries on the DFA by means of techniques
that extend the Burrows-Wheeler transform and the FM-index from strings to graphs. As a
consequence, we now have to solve the problem of efficiently building the “suffix array” of a
DFA, that is, the problem of computing ⪯A.

The first paper on the topic [9] presents an algorithm that builds ⪯A in O(m2 +n5/2) time,
where n is the number of states and m is the number of edges. In a recent paper [22], Kim
et al. describe two algorithms running in O(mn) and O(n2 log n) time. The key observation
is that, if we build the min/max-partition of the set of all states, then we can determine the
partial order ⪯A in linear time by means of a reduction to the interval partitioning problem.
Determining the min/max-partition of the set of all states means picking the string minu

and maxu for every state u ∈ Q, and sorting these 2|Q| strings (note that some of these
strings may be equal, see Figure 1 for an example). As a consequence, we are only left with
the problem of determining the min/max-partition efficiently.

N. Cotumaccio 22:3

1start

2

3

4

5

6

7

a

b

c

c

a

c

a

c

c

#
i mini maxi

1 ##### . . . ##### . . .

2 a#### . . . a#### . . .

3 b#### . . . b#### . . .

4 c#### . . . c#### . . .

5 ca### . . . ccccc . . .

6 ab### . . . ac### . . .

7 cc### . . . ccccc . . .

Figure 1 A DFA A, with the minimum and maximum string reaching each state (we assume
≺ a ≺ b ≺ c). The min/max partition is given by {(1, min), (1, max)} < {(2, min), (2, max)} <

{(6, min)} < {(6, max)} < {(3, min), (3, max)} < {(4, min), (4, max)} < {(5, min)} < {(7, min)} <

{(5, max), (7, max)}, meaning that min1 = max1 ≺ min2 = max2 ≺ min6 ≺ max6 ≺ min3 =
max3 ≺ min4 = max4 ≺ min5 ≺ min7 ≺ max5 = max7.

The O(n2 log n) algorithm builds the min/max-partition by generalizing Manber and
Myers’s O(n log n) algorithm from strings to DFAs. However, since it is possible to build
the suffix array of a string in O(n) time, it is natural to wonder whether it is possible to
determine the min/max-partition in O(n2) time.

In this paper, we show that, indeed, it is possible to build the min/max-partition in O(n2)
time by adopting a recursive approach inspired by one of the linear-time algorithms that
we have mentioned earlier, namely, Ko and Aluru’s algorithm [23]. As a consequence, our
algorithm is asymptotically faster than all previous algorithms.

A long-standing open problem is whether it is possible to define a suffix tree of a graph.
Some recent work [5] suggests that it is possible to define data structures that simulate the
behavior of a suffix tree by carefully studying the lexicographic structure of the graph (the
results in [5] only hold for Wheeler graphs, but we believe that they can be extended to
arbitrary graphs). More specifically, it is reasonable to believe that it is possible to generalize
the notion of compressed suffix tree of a string [29] to graphs. A compressed suffix tree is a
compressed representation of a suffix tree which consists of some components, including a
suffix array. We have already seen that ⪯A generalizes the suffix array to a graph structure,
and [5] suggests that the remaining components may also be generalized to graphs. The
complements of the suffix tree of a string heavily exploit the lexicographic and combinatorial
structure of a string. Since the algorithm that we present in this paper deeply relies on the
richness of the lexicographic structure (which becomes even more challenging and surprising
when switching from a string setting to a graph setting), we believe that our results also
provide a solid conceptual contribution towards extending suffix tree functionality to graphs.

We remark that, a few days after we submitted this paper to arXiv, a new arXiv preprint
showed how to determine the min/max partition in O(m log n) time, where n is the number
of states and m is the number of edges (this new arXiv preprint was also accepted for
publication [2]). If the graph underlying the DFA is sparse, then the algorithm in [2] improves
our O(n2) algorithm. Since the O(m log n) algorithm uses different techniques (it is obtained
by adapting Paige and Tarjan’s partition refinement algorithm [27]), we are left with the
intriguing open problem of determining whether, by possibly combining the ideas behind our
algorithm and the algorithm in [2], it is possible to build the min/max partition in O(m)
time.

Due to space constraints, all proofs can be found in the full version of this paper [7].

ISAAC 2023

22:4 Prefix Sorting DFAs: A Recursive Algorithm

2 Preliminaries

2.1 Relation with Previous Work

In the setting of the previous works on the topic [1, 9, 22], the problem that we want to solve
is defined as follows. Consider a deterministic finite automaton (DFA) such that (i) all edges
entering the same state have the same label, (ii) each state is reachable from the initial state,
(iii) each state is co-reachable, that is, it is either final or it allows reaching a final state, (iv)
the initial state has no incoming edges. Then, determine the min/max partition of the set of
states (see Section 2.2 for the formal definition of min/max partition, and see Figure 1 for
an example).

Assumptions (ii) and (iii) are standard assumptions in automata theory, because all states
that do not satisfy these assumptions can be removed without changing the accepted
language.

In this setting, all the non-initial states have an incoming edge, but the initial state
has no incoming edges. This implies for some state u it may hold Iu = ∅ (remember
that Iu is the set of all infinite strings that can be read starting from u and following
edges in a backward fashion, see the introduction), so Kim et al. [22] need to perform a
tedious case analysis which also takes finite strings into account in order to define the
min/max-partition (in particular, the minimum and maximum strings reaching the initial
state are both equal to the empty string). However, we can easily avoid this complication
by means of the same trick used in [5]; we can add a self-loop to the initial state, and the
label of the self-loop is a special character # smaller than any character in the alphabet.
Intuitively, # plays the same role as the termination character in the Burrows-Wheeler
transform of a string, and since # is the smallest character, adding this self-loop does
not affect the min/max-partition (see [22] for details).

Notice that the initial state and the set of all final states play no role in the definition
of the min/max partition; this explains why, more generally, it will be expedient to
consider deterministic graphs rather than DFAs (otherwise we would need to artificially
add an initial state and add a set of final states when we recursively build a graph in
our algorithm). Equivalently, one may assume to work with semiautomata in which the
transition function is not necessarily total. This justifies the assumptions that we will
make in Section 2.2.

Some recent papers [6, 8] have shown that assumptions (i) and (iv) can be removed. The
partial order ⪯A is defined analogously, and all the algorithms for building ⪯A that we
have mentioned still work. Indeed, if a state u is reached by edges with the distinct labels,
we need to only consider all edges with the smallest label when computing minu and
all edges with the largest label when computing maxu; moreover, we once again assume
that the initial state has a self loop labeled #. The only difference is that assumption
(i) implies that m ≤ n2 (n being the number of states, m being the number of edges)
because each state can have at most n incoming edges, but this is no longer true if we
remove assumption (i). As a consequence, the running time of our algorithm is no longer
O(n2) but O(m + n2) (and the running time of the O(n2 log n) algorithm in [22] becomes
O(m + n2 log n)) because we still need to process all edges in the DFA.

To sum up, all the algorithms for computing ⪯A work on arbitrary DFAs.

N. Cotumaccio 22:5

2.2 Notation and First Definitions

Let Σ be a finite alphabet. We consider finite, edge-labeled graphs G = (V, E), where V is
the set of all nodes and E ⊆ V × V × Σ is the set of all edges. Up to taking a subset of Σ, we
assume that all c ∈ Σ label some edge in the graph. We assume that all nodes have at least
one incoming edge, and all edges entering the same node u have the same label λ(u) (input
consistency). This implies that an edge (u, v, a) ∈ E can be simply denoted as (u, v), because
it must be a = λ(v). In particular, it must be |E| ≤ |V |2 (and so an O(|E|) algorithm is
also a O(|V |2) algorithm). If we do not know the λ(u)’s, we can easily compute them by
scanning all edges. In addition, we always assume that G is deterministic, that is, for every
u ∈ V and for every a ∈ Σ there exists at most one v ∈ V such that (u, v) ∈ E and λ(v) = a.

Let Σ∗ be the set of all finite strings on Σ, and let Σω be the set of all (countably)
right-infinite strings on Σ. If α ∈ Σ∗ ∪ Σω and i ≥ 1, we denote by α[i] ∈ Σ the ith character
of α (that is, α = α[1]α[2]α[3] . . .). If 1 ≤ i ≤ j, we define α[i, j] = α[i]α[i+1] . . . α[j −1]α[j],
and if j < i, then α[i, j] is the empty string ϵ. If α ∈ Σ∗, then |α| is length of α; for every
0 ≤ j ≤ |α| the string α[1, j] is a prefix of α, and if 0 ≤ j < |α| it is a strict prefix of α;
analogously, one defines suffixes and strict suffixes of α. An occurrence of α ∈ Σ∗ starting
at u ∈ V and ending at u′ ∈ V is a sequence of nodes u1, u2, . . . , u|α|+1 of V such that (i)
u1 = u, (ii) u|α|+1 = u′, (iii) (ui+1, ui) ∈ E for every 1 ≤ i ≤ |α| and (iv) λ(ui) = α[i] for
every 1 ≤ i ≤ |α|. An occurrence of α ∈ Σω starting at u ∈ V is a sequence of nodes (ui)i≥1
of V such that (i) u1 = u, (ii) (ui+1, ui) ∈ E for every i ≥ 1 and (iii) λ(ui) = α[i] for every
i ≥ 1. Intuitively, a string α ∈ Σ∗ ∪ Σω has an occurrence starting at u ∈ V if we can read α

on the graph starting from u and following edges in a backward fashion.

In the paper, occurrences of strings in Σω will play a key role, while occurrences of strings
in Σ∗ will be used as a technical tool. For every u ∈ V , we denote by Iu the set of all strings
in Σω admitting an occurrence starting at u. Since every node has at least one incoming
edge, then Iu ̸= ∅.

A total order ≤ on a set V if a reflexive, antisymmetric and transitive relation on V . If
u, v ∈ V , we write u < v if u ≤ v and u ̸= v.

Let ⪯ be a fixed total order on Σ. We extend ⪯ to Σ∗ ∪ Σω lexicographically. It is easy to
show that in every Iu there is a lexicographically smallest string minu and a lexicographically
largest string maxu (for example, it follows from [22, Observation 8]).

We will often use the following immediate observation. Let u ∈ V , and let (ui)i≥1
be an occurrence of minu. Fix i ≥ 1. Then, (uj)j≥i is an occurrence of minui , and
minu = minu[1, i − 1] minui

.

Let V ′ ⊆ V . Let A be the unique partition of V ′ and let ≤ be the unique total order on A
such that, for every I, J ∈ A and for every u ∈ I and v ∈ J , (i) if I = J , then minu = minv

and (ii) if I < J , then minu ≺ minv. Then, we say that (A, ≤), or more simply A, is the
min-partition of V ′. The max-partition of V ′ is defined analogously. Now, consider the set
V ′ × {min, max}, and define ρ((u, min)) = minu and ρ((u, max)) = maxu for every u ∈ V ′.
Let B be the unique partition of V ′ × {min, max} and let ≤ be the unique total order on B
such that, for every I, J ∈ B and for every x ∈ I and y ∈ J , (i) if I = J , then ρ(x) = ρ(y)
and (ii) if I < J , then ρ(x) ≺ ρ(y). Then, we say that (B, ≤), or more simply B, is the
min/max-partition of V ′.

The main result of this paper will be proving that the min/max partition of V can be
determined in O(|V |2) time.

ISAAC 2023

22:6 Prefix Sorting DFAs: A Recursive Algorithm

2.3 Our Approach
Let G = (V, E) be a graph. We will first show how to build the min-partition of V in O(n2)
time, where n = |V | (Section 4); then, we will show how the algorithm can be adapted so
that it builds the min/max-partition in O(n2) time (Section 5).

In order to build a min-partition of V , we will first classify all minima into three categories
(Section 3), so that we can split V into three pairwise-disjoint sets V1, V2, V3. Then, we will
show that in O(n2) time:

we can compute V1, V2, V3 (Section 4.1);
we can define a graph Ḡ = (V̄ , Ē) having |V3| nodes (Section 4.2);
assuming that we have already determined the min-partition of V̄ , we can determine the
min-partition of V (Section 4.3).

Analogously, in O(n2) time we can reduce the problem of determining the min-partition of
V to the problem of determining the min-partition of the set of all nodes of a graph having
|V1| (not |V3|) nodes (Section 4.4). As a consequence, since min{|V1|, |V3|} ≤ |V |/2 = n/2,
we obtain a recursive algorithm whose running time is given by the recurrence:

T (n) = T (n/2) + O(n2)

and we conclude that the running time of our algorithm is O(n2).

3 Classifying Strings

In [23], Ko and Aluru divide the suffixes of a string into two groups. Here we follow an
approach purely based on stringology, without fixing a string or a graph from the start.
We divide the strings of Σω into three groups, which we call group 1, group 2 and group 3
(Corollary 3 provides the intuition behind this choice).

▶ Definition 1. Let α ∈ Σω. Let a ∈ Σ and α′ ∈ Σω such that α = aα′. Then, we define
τ(α) as follows:
1. τ(α) = 1 if α′ ≺ α.
2. τ(α) = 2 if α′ = α.
3. τ(α) = 3 if α ≺ α′.

We will constantly use the following characterization.

▶ Lemma 2. Let α ∈ Σω. Let a ∈ Σ and α′ ∈ Σω such that α = aα′. Then:
1. τ(α) = 2 if and only if α′ = aω, if and only if α = aω.
2. τ(α) ̸= 2 if and only if α′ ̸= aω, if and only if α ̸= aω.
Assume that τ(α) ̸= 2. Then, there exist unique c ∈ Σ \ {a}, α′′ ∈ Σω and i ≥ 0 such that
α′ = aicα′′ (and so α = ai+1cα′′). Moreover:
1. τ(α) = 1 if and only if c ≺ a, if and only if α′ ≺ aω, if and only if α ≺ aω.
2. τ(α) = 3 if and only if a ≺ c, if and only if aω ≺ α′, if and only if aω ≺ α,

The following corollary will be a key ingredient in our recursive approach.

▶ Corollary 3. Let α, β ∈ Σω. Let a, b ∈ Σ and α′, β′ ∈ Σω such that α = aα′ and β = bβ′.
Then:
1. If a = b and τ(α) = τ(β) = 2, then α = β.
2. If a = b and τ(α) < τ(β), then α ≺ β. Equivalently, if a = b and α ⪯ β, then τ(α) ≤ τ(β).

N. Cotumaccio 22:7

1

2

3

4

5

6

7

a

b

c

c

a

c

a

c

c

#
i mini τ(i) (= τ(mini))
1 ##### . . . 2
2 a#### . . . 1
3 b#### . . . 1
4 c#### . . . 1
5 ca### . . . 1
6 ab### . . . 3
7 cc### . . . 1

Figure 2 The graph from Figure 1, with the values mini’s and τ(i)’s.

4 Computing the min-partition

Let G = (V, E) be a graph. We will prove that we can compute the min-partition of V in
O(|V |2) time. In this section, for every u ∈ V we define τ(u) = τ(minu) (see Figure 2).

Let u ∈ V , and let (ui)i≥1 be an occurrence of minu starting at u. It is immediate to
realize that (i) if τ(u) = 1, then λ(u2) ⪯ λ(u1), (ii) if τ(u) = 2, then λ(uk) = λ(u1) for every
k ≥ 1 and (iii) if τ(u) = 3, then λ(u1) ⪯ λ(u2).

As a first step, let us prove that without loss of generality we can remove some edges from
G without affecting the min/max-partition. This preprocessing will be helpful in Lemma 23.

▶ Definition 4. Let G = (V, E) be a graph. We say that G is trimmed if it contains no edge
(u, v) ∈ E such that τ(v) = 1 and λ(v) ≺ λ(u).

In order to simplify the readability of our proofs, we will not directly remove some edges
from G = (V, E), but we will first build a copy of G where every node u is a mapped to a
node u∗, and then we will trim the graph. In this way, when we write minu and minu∗ it
will be always clear whether we refer to the original graph or the trimmed graph. We will
use the same convention in Section 4.2 when we define the graph Ḡ = (V̄ , Ē) that we will
use for the recursive step.

▶ Lemma 5. Let G = (V, E) be a graph. Then, in O(|E|) time we can build a trimmed graph
G∗ = (V ∗, E∗), with V ∗ = {u∗ | u ∈ V }, such that for every u ∈ V it holds minu∗ = minu.
In particular, τ(u∗) = τ(u) for every u ∈ V .

4.1 Classifying Minima
Let us first show how to compute all u ∈ V such that τ(u) = 1.

▶ Lemma 6. Let G = (V, E) be a graph, and let u, v ∈ V .
1. If (u, v) ∈ E and λ(u) ≺ λ(v), then τ(v) = 1.
2. If (u, v) ∈ E, λ(u) = λ(v) and τ(u) = 1, then τ(v) = 1.

▶ Corollary 7. Let G = (V, E) be a graph, and let u ∈ V . Then, τ(u) = 1 if and only if
there exist k ≥ 2 and z1, . . . , zk ∈ V such that (i) (zi, zi+1) ∈ E for every 1 ≤ i ≤ k − 1, (ii)
zk = u, (iii) λ(z1) ≺ λ(z2) and (iv) λ(z2) = λ(z3) = · · · = λ(zk).

Corollary 7 yields an algorithm to decide whether u ∈ V is such that τ(u) = 1.

▶ Corollary 8. Let G = (V, E) be a graph. We can determine all u ∈ V such that τ(u) = 1
in time O(|E|).

ISAAC 2023

22:8 Prefix Sorting DFAs: A Recursive Algorithm

Now, let us show how to determine all u ∈ V such that τ(u) = 2. We can assume that
we have already determined all u ∈ V such that τ(u) = 1.

▶ Lemma 9. Let G = (V, E) be a graph, and let u ∈ V such that τ(u) ̸= 1. Then, we have
τ(u) = 2 if and only if there exist k ≥ 2 and z1, . . . , zk ∈ V such that (i) (zi+1, zi) ∈ E

for every 1 ≤ i ≤ k − 1, (ii) z1 = u, (iii) zk = zj for some 1 ≤ j ≤ k − 1 and (iv)
λ(z1) = λ(z2) = · · · = λ(zk).

In particular, such z1, . . . , zk ∈ V must satisfy τ(zi) = 2 for every 1 ≤ i ≤ k.

▶ Corollary 10. Let G = (V, E) be a graph. We can determine all u ∈ V such that τ(u) = 2
in time O(|E|).

From Corollary 8 and Corollary 10 we immediately obtain the following result.

▶ Corollary 11. Let G = (V, E) be a graph. Then, in time O(|E|) we can compute τ(u) for
every u ∈ V .

4.2 Recursive Step
Let us sketch the general idea to build a smaller graph for the recursive step. We consider
each u ∈ V such that τ(u) = 3, and we follow edges in a backward fashion, aiming to
determine a prefix of minu. As a consequence, we discard edges through which no occurrence
of minu can go, and by Corollary 3 we can restrict our attention to the nodes v such that
τ(v) is minimal. We proceed like this until we encounter nodes v′ such that τ(v′) = 3.

Let us formalize our intuition. We will first present some properties that the occurrences
of a string minu must satisfy.

▶ Lemma 12. Let G = (V, E) be a graph. Let u, v ∈ V be such that minu = minv. Let
(ui)i≥1 be an occurrence of minu and let (vi)i≥1 be an occurrence of minv. Then:
1. λ(ui) = λ(vi) for every i ≥ 1.
2. minui = minvi for every i ≥ 1.
3. τ(ui) = τ(vi) for every i ≥ 1.
In particular, the previous results hold if u = v and (ui)i≥1 and (vi)i≥1 are two distinct
occurrences of minu.

▶ Lemma 13. Let G = (V, E) be a graph. Let u ∈ V and let (ui)i≥1 an occurrence of minu

starting at u. Let k ≥ 1 be such that τ(u1) = τ(u2) = · · · = τ(uk−1) = τ(uk) ̸= 2. Then,
u1, . . . , uk are pairwise distinct. In particular, k ≤ |V |.

The previous results allow us to give the following definition.

▶ Definition 14. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3. Let ℓu to be the
smallest integer k ≥ 2 such that τ(uk) ≥ 2, where (ui)i≥1 is an occurrence of minu starting
at u.

Note that ℓu is well-defined, because (i) it cannot hold τ(uk) = 1 for every k ≥ 2 by
Lemma 13 (indeed, if τ(u2) = 1, then (ui)i≥2 is an occurrence of minu2 starting at u2, and
by Lemma 13 there exists 2 ≤ k ≤ |V | + 2 such that τ(uk) ̸= 1) and (ii) ℓu does not depend
on the choice of (ui)i≥1 by Lemma 12. In particular, it must be ℓu ≤ |V | + 1 because
u1, u2, . . . , uℓu−1 are pairwise distinct (u1 is distinct from u2, . . . , uℓu−1 because τ(u1) = 3
and τ(u2) = τ(u3) = . . . τ(uℓu−1) = 1 by the minimality of ℓu).

▶ Lemma 15. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3. Then, minu[i+1] ⪯
minu[i] for every 2 ≤ i ≤ ℓu − 1. In particular, if 2 ≤ i ≤ j ≤ ℓu, then minu[j] ⪯ minu[i].

N. Cotumaccio 22:9

If R ⊆ Q is a nonempty set of nodes such that for every u, v ∈ R it holds λ(u) = λ(v), we
define λ(R) = λ(u) = λ(v). If R ⊆ Q is a nonempty set of nodes such that for every u, v ∈ R

it holds τ(u) = τ(v), we define τ(R) = τ(u) = τ(v).
Let R ⊆ Q be a nonempty set of states. Let F(R) = arg minu∈R′ τ(u), where R′ =

arg minv∈R λ(v). Notice that F(R) is nonempty, and both λ(F(R)) and τ(F(R)) are well-
defined. In other words, F(R) is obtained by first considering the subset R′ ⊆ F(R) of all
nodes v such that λ(v) is as small as possible, and then considering the subset of R′ of all
nodes v such that τ(v) is as small as possible. This is consistent with our intuition on how
we should be looking for a prefix of minu.

Define:

Gi(u) =
{

{u} if i = 1;
F({v′ ∈ Q | (∃v ∈ Gi−1(u))((v′, v) ∈ E)}) \

⋃i−1
j=2 Gj(u) if 1 < i ≤ ℓu.

Notice that we also require that a node in Gi(u) has not been encountered before.
Intuitively, this does not affect our search for a prefix of minu because, if we met the same
node twice, then we would have a cycle where all edges are equally labeled (because by
Lemma 15 labels can only decrease), and since τ(Gi(u)) = 1 for every 2 ≤ i ≤ ℓu − 1, then
no occurrence of the minimum can go through the cycle because if we remove the cycle from
the occurrence we obtain a smaller string by Lemma 2.

The following technical lemma is crucial to prove that our intuition is correct.

▶ Lemma 16. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3.
1. Gi(u) is well-defined and nonempty for every 1 ≤ i ≤ ℓu.
2. Let (ui)i≥1 be an occurrence of minu starting at u. Then, ui ∈ Gi(u) for every 1 ≤ i ≤ ℓu.

In particular, τ(ui) = τ(Gi(u)) and minu[i] = λ(ui) = λ(Gi(u)) for every 1 ≤ i ≤ ℓu.
3. For every 1 ≤ i ≤ ℓu and for every v ∈ Gi(u) there exists an occurrence of minu[1, i − 1]

starting at u and ending at v.

Let u ∈ V such that τ(u) = 3. We define:
γu = minu[1, ℓu];
tu = τ(Gℓu

(u)) ∈ {2, 3}

Now, in order to define the smaller graph for the recursive step, we also need a new
alphabet (Σ′, ⪯′), which must be defined consistently with the mutual ordering of the minima.
The next lemma yields all the information that we need.

▶ Lemma 17. Let G = (V, E) be a graph. Let u, v ∈ V such that τ(u) = τ(v) = 3. Assume
that one of the following statements is true:
1. γu is not a prefix of γv and γu ≺ γv.
2. γu = γv, tu = 2 and tv = 3.
3. γv is a strict prefix of γu.

Then, minu ≺ minv.
Equivalently, if minu ⪯ minv, then one the following is true: (i) γu is not a prefix of γv

and γu ≺ γv; (ii) γu = γv and tu ≤ tv; (iii) γv is a strict prefix of γu.

Now, let Σ′ = {(γu, tu) | u ∈ V, τ(u) = 3}, and let ⪯′ be the total order on Σ′ such that
for every distinct (α, x), (β, y) ∈ Σ′, it holds (α, x) ≺′ (β, y) if and only if one of the following
is true:
1. α is not a prefix of β and α ≺ β.
2. α = β, x = 2 and y = 3.
3. β is a strict prefix of α.

ISAAC 2023

22:10 Prefix Sorting DFAs: A Recursive Algorithm

It is immediate to verify that ⪯′ is a total order: indeed, ⪯′ is obtained (i) by first comparing
the γu’s using the variant of the (total) lexicographic order on Σ∗ in which a string is smaller
than every strict prefix of it and (ii) if the γu’s are equal by comparing the tu’s, which are
elements in {2, 3}.

Starting from G = (V, E), we define a new graph Ḡ = (V̄ , Ē) as follows:
V̄ = {ū | u ∈ V, τ(u) = 3}.
The new totally-ordered alphabet is (Σ′, ⪯′).
For every ū ∈ V̄ , we define λ(ū) = (γu, tu).
Ē = {(v̄, v̄) | tv = 2} ∪ {(ū, v̄) | tv = 3, u ∈ Gℓv

(v)}.

Note that for every v̄ ∈ V̄ such that tv = 3 and for every u ∈ Gℓv
(v) it holds τ(u) =

τ(Gℓv (v)) = tv = 3, so ū ∈ V̄ and (ū, v̄) ∈ E. Moreover, Ḡ = (V̄ , Ē) satisfies all the
assumptions about graphs that we use in this paper: (i) all edges entering the same node have
the same label (by definition), (ii) every node has at least one incoming edge (because if v̄ ∈ V̄ ,
then Gℓv (v) ̸= ∅ by Lemma 16) and (iii) Ḡ is deterministic (because if (ū, v̄), (ū, v̄′) ∈ Ē

and λ(v̄) = λ(v̄′), then γv = γv′ and tv = tv′ , so by the definition of Ē if tv = tv′ = 2 we
immediately obtain v̄ = ū = v̄′, and if tv = t′

v = 3 we obtain u ∈ Gℓv (v) ∩ Gℓv′ (v′); since by
Lemma 16 there exist two occurrences of minv[1, ℓv − 1] = γv[1, ℓv − 1] = γv′ [1, ℓv′ − 1] =
minv′ [1, ℓv′ − 1] starting at v and v′ and both ending at u, the determinism of G implies
v = v′ and so v̄ = v̄′).

Notice that if v̄ ∈ V̄ is such that tv = 2, then Iv̄ contains exactly one string, namely,
λ(v̄)ω; in particular, minv̄ = maxv̄ = λ(v̄)ω.

When we implement G = (V, E) and Ḡ = (V̄ , Ē), we use integer alphabets Σ =
{0, 1, . . . , |Σ| − 1} and Σ′ = {0, 1, . . . , |Σ′| − 1}; in particular, we will not store Σ′ by
means of pairs (γu, tu)’s, but we will remap Σ′ to an integer alphabet consistently with the
total order ⪯′ on Σ′, so that the mutual order of the minū’s is not affected.

Let us prove that we can use Ḡ = (V̄ , Ē) for the recursive step. We will start with some
preliminary results.

▶ Lemma 18. Let G = (V, E) be a graph. Let u, v ∈ V be such that τ(u) = τ(v) = 3, γu = γv

and tu = tv = 2. Then, minu = minv.

▶ Lemma 19. Let G = (V, E) be a graph. Let u ∈ V , and let (ui)i≥1 be an occurrence of
minu starting at u. Then, exactly one of the following holds true:
1. There exists i0 ≥ 1 such that τ(ui) ̸= 2 for every 1 ≤ i < i0 and τ(ui) = 2 for every

i ≥ i0.
2. τ(ui) ̸= 2 for every i ≥ 1, and both τ(ui) = 1 and τ(ui) = 3 are true for infinitely many

i’s.

Crucially, the next lemma establishes a correspondence between minima of nodes in
G = (V, E) and minima of nodes in Ḡ = (V̄ , Ē).

▶ Lemma 20. Let G = (V, E) be a graph. Let u ∈ V such that τ(u) = 3. Let (ui)i≥1 be an
occurrence of minu starting at u. Let (u′

i)i≥1 be the infinite sequence of nodes in V obtained
as follows. Consider L = {k ≥ 1 | τ(uk) = 3}, and for every i ≥ 1, let ji ≥ 1 be the ith

smallest element of L, if it exists. For every i ≥ 1 such that ji is defined, let u′
i = uji

, and if
i ≥ 1 is such that ji is not defined (so L is a finite set), let u′

i = u′
|L|. Then, (ū′

i)i≥1 is an
occurrence of minū starting at ū in Ḡ = (V̄ , Ē).

The following theorem shows that our reduction to Ḡ = (V̄ , Ē) is correct.

N. Cotumaccio 22:11

▶ Theorem 21. Let G = (V, E) be a graph. Let u, v ∈ V be such that τ(u) = τ(v) = 3.
1. If minu = minv, then minū = minv̄.
2. If minu ≺ minv, then minū ≺′ minv̄.

Since ⪯ is a total order (so exactly one among minu ≺ minv, minu = minv and minv ≺
minu holds true), from Theorem 21 we immediately obtain the following result.

▶ Corollary 22. Let G = (V, E) be a graph. Let u, v ∈ V be such that τ(u) = τ(v) = 3.
1. It holds minu = minv if and only if minū = minv̄.
2. It holds minu ≺ minv if and only if minū ≺′ minv̄.
In particular, if we have the min-partition of V̄ (with respect to Ḡ), then we also have the
min-partition of {u ∈ V | τ(u) = 3} (with respect to G).

Lastly, we show that our reduction to Ḡ = (V̄ , Ē) can be computed within O(n2) time.

▶ Lemma 23. Let G = (V, E) be a trimmed graph. Then, we can build Ḡ = (V̄ , Ē) in
O(|V |2) time.

4.3 Merging
We want to determine the min-partition A of V , assuming that we already have the min-
partition B of {u ∈ V | τ(u) = 3}.

First, note that we can easily build the min-partition B′ of {u ∈ V | τ(u) = 2}. Indeed, if
τ(u) = 2, then minu = λ(u)ω by Lemma 2. As a consequence, if τ(u) = τ(v) = 2, then (i)
minu = minv if and only if λ(u) = λ(v) and (ii) minu ≺ minv if and only if λ(u) ≺ λ(v), so
we can build B′ in O(|V |) time by using counting sort.

For every c ∈ Σ and t ∈ {1, 2, 3}, let Vc,t = {v ∈ V | λ(v) = c, τ(v) = t}. Consider
u, v ∈ V : (i) if λ(u) ≺ λ(v), then minu ≺ minv and (ii) if λ(u) = λ(v) and τ(u) < τ(v), then
minu ≺ minv by Corollary 3. As a consequence, in order to build A, we only have to build
the min-partition Ac,t of Vc,t, for every c ∈ Σ and every t ∈ {1, 2, 3}.

A possible way to implement each Ac,t is by means of an array Ac,t storing the elements
of Vc,t, where we also use a special character to delimit the border between consecutive
elements of Ac,t.

It is immediate to build incrementally Ac,3 for every c ∈ Σ, from its smallest element
to its largest element. At the beginning, Ac,3 is empty for every c ∈ Σ. Then, scan the
elements I in B from smallest to largest, and add I to Ac,3, where c = λ(u) for any u ∈ I

(the definition of c does not depend on the choice of u). We scan B only once, so this step
takes O(|V |) time. Analogously, we can build Ac,2 for every c ∈ Σ by using B′.

We are only left with showing how to build Ac,1 for every c ∈ Σ. At the beginning, each
Ac,1 is empty, and we will build each Ac,1 from its smallest element to its largest element.
During this step of the algorithm, we will gradually mark the nodes u ∈ V such that τ(u) = 1.
At the beginning of the step, no such node is marked, and at the end of the step all these
nodes will be marked. Let Σ = {c1, c2, . . . , cσ}, with c1 ≺ c2 ≺ · · · ≺ cσ. Notice that it must
be Vc1,1 = ∅, because if there existed u ∈ Vc1,1, then it would be minu ≺ cω

1 by Lemma 2
and so c1 would not be the smallest character in Σ. Now, consider Vc1,2; we have already
fully computed Ac1,2. Process each I in Ac1,2 from smallest to largest, and for every ck ∈ Σ
compute the set Jk of all non-marked nodes v ∈ V such that τ(v) = 1, λ(v) = ck, and
(u, v) ∈ E for some u ∈ I. Then, if Jk ̸= ∅ add Jk to Ack,1 and mark the nodes in Jk. After
processing the elements in Ac1,2, we process the element in Ac1,3, Ac2,1, Ac2,2, Ac2,3, Ac3,1
and so on, in this order. Each Aci,t is processed from its (current) smallest element to its
(current) largest element. We never remove or modify elements in any Ac,t, but we only

ISAAC 2023

22:12 Prefix Sorting DFAs: A Recursive Algorithm

add elements to the Ac,1’s. More precisely, when we process I in Ac,t, for every ck ∈ Σ
we compute the set Jk of all non-marked nodes v ∈ V such that τ(v) = 1, λ(v) = ck, and
(u, v) ∈ E for some u ∈ I and, if Jk ≠ ∅, then we add Jk to Ack,1 and we mark the nodes
in Jk.

The following lemma shows that our approach is correct. Let us give some intuition. A
prefix of a min-partition C is a subset C′ of C such that, if I, J ∈ C, I < J and J ∈ C′, then
I ∈ C′. Notice that every prefix of A is obtained by taking the union of Ac1,2, Ac1,3, Ac2,1,
Ac2,2, Ac2,3, Ac3,1, . . . in this order up to some element Ac,t, where possibly we only pick a
prefix of the last element Ac,t. Then, we will show that, when we process I in Ac,t, we have
already built the prefix of A whose largest element is I. This means that, for every v ∈ Jk

and for any any occurrence (vi)i≥1 of minv starting at v, it must hold that v2 is in I.

▶ Lemma 24. Let G = (V, E) be a graph. If we know the min-partition of {u ∈ V | τ(u) = 3},
then we can build the min-partition of V in O(|E|) time.

4.4 The Complementary Case

We have shown that in O(n2) time we can reduce the problem of determining the min-
partition of V to the problem of determining the min-partition of the set of all nodes of
a graph having |{u ∈ V | τ(u) = 3}| nodes. Now, we must show that (similarly) in O(n2)
time we can reduce the problem of determining the min-partition of V to the problem of
determining the min-partition of the set of all nodes of a graph having |{u ∈ V | τ(u) = 1}|
nodes. The merging step will be more complex, because the order in which we will process
the Ac,t will be from largest to smallest (Acσ,2, Acσ,1, Acσ−1,3, Acσ−1,2, Acσ−1,1, Acσ−2,3 and
so on) so we will need to update some elements of some Ac,t’s to include the information
about minima that we may infer at a later stage of the algorithm. We provide the details in
the full version of the paper [7].

5 Computing the min/max-partition

Let G = (V, E) be a graph. We can build the max-partition of V by simply considering the
transpose total order ⪯∗ of ⪯ (the one for which a ⪯∗ b if and only if b ⪯ a) and building
the min-partition. As a consequence, the algorithm to build the max-partition is entirely
symmetrical to the algorithm to build the min-partition.

Let G = (V, E) be a graph. Let us show how we can build the min/max-partition of
V in O(|V |2) time. Assume that we have two graphs G1 = (V1, E1) and G2 = (V2, E2) on
the same alphabet (Σ, ⪯), with V1 ∩ V2 = ∅ (we allow G1 and G2 to possibly be the null
graph, that is, the graph without vertices). Let V ′

1 ⊆ V1, V ′
2 ⊆ V2, W = V ′

1 ∪ V ′
2 , and for

every u ∈ W define ρ(u) = minu if u ∈ V ′
1 , and ρ(u) = maxu if u ∈ V ′

2 . Let A be the unique
partition of W and let ≤ be the unique total order on A such that, for every I, J ∈ A and
for every u ∈ I and u ∈ J , (i) if I = J , then ρ(u) = ρ(u) and (ii) if I < J , then ρ(u) ≺ ρ(u).
Then, we say that (A, ≤), or more simply A, is the min/max-partition of (V ′

1 , V ′
2). We will

show that we can compute the min/max partition of (V1, V2) in O((|V1| + |V2|)2) time. In
particular, if G1 = (V1, E1) and G2 = (V1, E2) are two (distinct) copies of the same graph
G = (V, E), then we can compute the min/max-partition of V in O(|V |2) time.

N. Cotumaccio 22:13

We compute τ(minu) for every u ∈ V1 and we compute τ(maxu) for every u ∈ V2. If the
number of values equal to 3 is smaller than the number of values equal to 1, then (in time
O(|V1|2 + |V2|2) = O((|V1| + |V2|)2)) we build the graphs Ḡ1 = (V̄1, Ē1) and Ḡ2 = (V̄2, Ē2)
as defined before, where V̄1 = {ū | u ∈ V1, τ(minu) = 3} and V̄2 = {ū | u ∈ V2, τ(maxu) = 3},
otherwise we consider the complementary case (which is symmetrical). When building
Ḡ1 = (V̄1, Ē1) and Ḡ2 = (V̄2, Ē2), we define a unique alphabet (Σ′, ⪯′) obtained by jointly
sorting the (γminu

, tminu
)’s and the (γmaxu

, tmaxu
)’s, which is possible because Lemma 17

also applies to maxima. Note that |V̄1| + |V̄2| ≤ (|V1| + |V2|)/2.
Assume that we have recursively obtained the min/max-partition of (V̄1, V̄2) with respect

to Ḡ1 and Ḡ2. This yields the min/max-partition of ({u ∈ V1 | τ(minu) = 3}, {u ∈
V2 | τ(maxu) = 3}). Then, we can build the min/max-partition of (V1, V2) by jointly
applying the merging step, which is possible because both the merging step for minima
and the merging step for maxima require to build the Ac,1’s by processing Ac1,2Ac1,3, Ac2,1,
Ac2,2, Ac2,3, Ac3,1 and so on in this order.

Since we obtain the same recursion as before, we conclude that we can compute the
min/max partition of (V1, V2) in O((|V1| + |V2|)2) time.

References
1 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular languages

meet prefix sorting. In Shuchi Chawla, editor, Proc. of the 31st Symposium on Discrete
Algorithms, (SODA’20), pages 911–930. SIAM, 2020. doi:10.1137/1.9781611975994.55.

2 Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco
Olivares, and Nicola Prezza. Sorting Finite Automata via Partition Refinement. In Inge Li
Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual
European Symposium on Algorithms (ESA 2023), volume 274 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 15:1–15:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2023.15.

3 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn
graphs. In Ben Raphael and Jijun Tang, editors, Algorithms in Bioinformatics, pages 225–235,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

4 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Systems Research Center, 1994.

5 Alessio Conte, Nicola Cotumaccio, Travis Gagie, Giovanni Manzini, Nicola Prezza, and Mar-
inella Sciortino. Computing matching statistics on Wheeler DFAs. In 2023 Data Compression
Conference (DCC), pages 150–159, 2023. doi:10.1109/DCC55655.2023.00023.

6 Nicola Cotumaccio. Graphs can be succinctly indexed for pattern matching in O(|E|2 + |V |5/2)
time. In 2022 Data Compression Conference (DCC), pages 272–281, 2022. doi:10.1109/
DCC52660.2022.00035.

7 Nicola Cotumaccio. Prefix sorting dfas: a recursive algorithm, 2023. arXiv:2305.02526.
8 Nicola Cotumaccio, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Co-

lexicographically ordering automata and regular languages - part i. J. ACM, 70(4), August
2023. doi:10.1145/3607471.

9 Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite automata. In
Dániel Marx, editor, Proc. of the 32nd Symposium on Discrete Algorithms, (SODA’21), pages
2585–2599. SIAM, 2021. doi:10.1137/1.9781611976465.153.

10 Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. In Tomáš Bureš,
Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdziński, Claus Pahl, Florian
Sikora, and Prudence W.H. Wong, editors, SOFSEM 2021: Theory and Practice of Computer
Science, pages 608–622, Cham, 2021. Springer International Publishing.

ISAAC 2023

https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.4230/LIPIcs.ESA.2023.15
https://doi.org/10.1109/DCC55655.2023.00023
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1109/DCC52660.2022.00035
https://arxiv.org/abs/2305.02526
https://doi.org/10.1145/3607471
https://doi.org/10.1137/1.9781611976465.153

22:14 Prefix Sorting DFAs: A Recursive Algorithm

11 Massimo Equi, Veli Mäkinen, Alexandru I. Tomescu, and Roberto Grossi. On the complexity of
string matching for graphs. ACM Trans. Algorithms, 19(3), April 2023. doi:10.1145/3588334.

12 M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 137–143, 1997. doi:10.1109/SFCS.
1997.646102.

13 P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness, and beyond. In proc. 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’05), pages 184–193, 2005. doi:10.1109/SFCS.2005.69.

14 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. 41st
Annual Symposium on Foundations of Computer Science (FOCS’00), pages 390–398, 2000.
doi:10.1109/SFCS.2000.892127.

15 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1), November 2009. doi:10.1145/
1613676.1613680.

16 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
July 2005. doi:10.1145/1082036.1082039.

17 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for BWT-
based data structures. Theoretical Computer Science, 698:67–78, 2017. Algorithms, Strings
and Theoretical Approaches in the Big Data Era (In Honor of the 60th Birthday of Professor
Raffaele Giancarlo). doi:10.1016/j.tcs.2017.06.016.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

19 Ramana M. Idury and Michael S. Waterman. A new algorithm for DNA sequence assembly.
Journal of computational biology: A journal of computational molecular cell biology, 2 2:291–306,
1995.

20 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, November 2006. doi:10.1145/1217856.1217858.

21 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Constructing suffix arrays
in linear time. Journal of Discrete Algorithms, 3(2):126–142, 2005. Combinatorial Pattern
Matching (CPM) Special Issue. doi:10.1016/j.jda.2004.08.019.

22 Sung-Hwan Kim, Francisco Olivares, and Nicola Prezza. Faster prefix-sorting algorithms for
deterministic finite automata. In Laurent Bulteau and Zsuzsanna Lipták, editors, 34th Annual
Symposium on Combinatorial Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-
Vallée, France, volume 259 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPIcs.CPM.2023.16.

23 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2):143–156, 2005. Combinatorial Pattern Matching (CPM) Special
Issue. doi:10.1016/j.jda.2004.08.002.

24 Veli Mäkinen, Niko Välimäki, and Jouni Sirén. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11:375–388, 2014.

25 U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM J.
Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

26 Joong Chae Na. Linear-time construction of compressed suffix arrays using o(n log n)-bit
working space for large alphabets. In Alberto Apostolico, Maxime Crochemore, and Kunsoo
Park, editors, Combinatorial Pattern Matching, pages 57–67, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

27 Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973–989, 1987. doi:10.1137/0216062.

28 Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39(2):4–es, July 2007. doi:10.1145/1242471.1242472.

https://doi.org/10.1145/3588334
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.4230/LIPIcs.CPM.2023.16
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0216062
https://doi.org/10.1145/1242471.1242472

N. Cotumaccio 22:15

29 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/s00224-006-1198-x.

30 Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph using
the FM-index. Bioinformatics, 26(12):i367–i373, June 2010. doi:10.1093/bioinformatics/
btq217.

31 P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Annual Symposium on
Switching and Automata Theory, pages 1–11, 1973. doi:10.1109/SWAT.1973.13.

ISAAC 2023

https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1093/bioinformatics/btq217
https://doi.org/10.1109/SWAT.1973.13

Clustering in Polygonal Domains
Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Leyla Biabani #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Morteza Monemizadeh #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Leonidas Theocharous #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
We study various clustering problems for a set D of n points in a polygonal domain P under
the geodesic distance. We start by studying the discrete k-median problem for D in P . We
develop an exact algorithm which runs in time poly(n, m) + nO(

√
k), where m is the complexity of

the domain. Subsequently, we show that our approach can also be applied to solve the k-center
problem with z outliers in the same running time. Next, we turn our attention to approximation
algorithms. In particular, we study the k-center problem in a simple polygon and show how to
obtain a (1 + ε)-approximation algorithm which runs in time 2O(k log k/ε)(n log m + m). To obtain
this, we demonstrate that a previous approach by Bădoiu et al. [5, 4] that works in Rd, carries over
to the setting of simple polygons. Finally, we study the 1-center problem in a simple polygon in the
presence of z outliers. We show that a coreset C of size O(z) exists, such that the 1-center of C is
a 3-approximation of the 1-center of D, when z outliers are allowed. This result is actually more
general and carries over to any metric space, which to the best of our knowledge was not known so
far. By extending this approach, we show that for the 1-center problem under the Euclidean metric
in R2, there exists an ε-coreset of size O(z/ε).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases clustering, geodesic distance, coreset, outliers

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.23

Funding MdB and LT are supported by the Dutch Research Council (NWO) through Gravitation-
grant NETWORKS-024.002.003.

1 Introduction

Given a set D of n points in Rd, the 1-center problem asks to find a point p ∈ Rd that
minimizes the maximum distance from p to the points in D. The problem dates back to 1857,
when Sylvester posed this question for the Euclidean plane [20]. A linear-time algorithm for
the problem was first proposed by Megiddo [15], thus refuting an earlier conjecture of Shamos
and Hoey that it cannot be solved faster than O(n log n) [19]. A natural way to generalise
the 1-center problem, is to instead ask for a set S ⊂ Rd of k centers that minimizes the
maximum distance of points in D from their closest center in S. The 1-center problem serves
as a basic example of a facility location problem and is thus directly related to clustering.

In this paper, we are interested in studying this and similar clustering problems for sets of
points in simple polygons and polygonal domains under the geodesic distance, that is, when
the distance between any two points is the Euclidean length of a shortest path between them.
In the literature, the term obstructed distance has also been used in the past to highlight
that a polygonal domain can be used to model a physical environment where obstacles
may obstruct or delay communication between different locations of the environment. For

© Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:M.T.d.Berg@tue.nl
https://orcid.org/0000-0001-5770-3784
mailto:l.biabani@tue.nl
mailto:M.Monemizadeh@tue.nl
mailto:l.theocharous@tue.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2023.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Clustering in Polygonal Domains

example, as mentioned in [23], when a bank decides where to place ATMs, it is important to
take into account the existence of highways which act as obstacles for pedestrians. Motivated
by such applications, various practical clustering algorithms for realistic scenarios have been
proposed [10, 21, 23, 24, 25]. Thus, the use of geodesic distance is well motivated from an
application point of view.

We first study the discrete k-median and k-center problems in a polygonal domain,
i.e. a polygon P with holes. The discrete k-median problem asks to find a set S ⊂ D of k

center points such that the quantity
∑

d∈D{mins∈S{∥π(d, s)∥}} is minimized, where ∥π(p, q)∥
denotes the length of the shortest path π(p, q) between two points p, q in P . The k-center
problem asks to find a set S ⊂ Rd of k center points such that the maximum distance of
points in D to their nearest center in S is minimized (so here, in contrast with k-median,
we consider the continuous version of the problem). An outlier can significantly increase
the maximum distance to the nearest center, so we also study the k-center problem with
z outliers, which asks to minimize the maximum distance of all but z points of D to their
nearest center. Our interest here lies in developing an exact algorithm for these problems,
whose running time is polynomial in n and m (for fixed k), and whose dependency on k is
subexponential. (Note that the Euclidean problem in the plane is already NP-hard when
k is part of the input [16], so an algorithm that is also polynomial in k is not possible,
assuming p ̸= np.) The k-center problem in the plane has been studied extensively, for
general k [9, 13] and also for the special case k = 2 [1, 22]. Most relevant to our approach is
the work by Hwang et al. [12], who presented algorithms with running time nO(

√
k) for the

Euclidean version of the problems in R2. Their approach works with the Voronoi diagram
of the (unknown) optimal solution, and “guesses” a cycle separator of its dual graph. The
separator splits the problem into two subproblems, which are then solved recursively. This
is an idea that we also make use of. The same approach was employed more recently by
Marx and Pilipczuk [14] to solve a wide range of covering and packing problems defined
on planar graphs. This includes k-center, which they solve in nO(

√
k). To the best of our

understanding, their approach cannot be used to tackle k-median and also cannot directly
handle outliers. Thus, in Section 2 we develop an exact algorithm for the discrete k-median
problem in a polygonal domain. The running time is poly(n, m) + nO(

√
k), where m is the

complexity of the domain. With our approach, we can also solve the k-center problem with
z outliers in the same running time.

Next, we develop an FPT approximation algorithm for the k-center problem in a simple
polygon, that is, an algorithm whose running time is O(f(k, ε) · poly(n, m)), for some
computable function f . Towards this algorithm, we first study the 1-center problem. Exact
algorithms for the 1-center problem in a simple polygon have been developed before. More
specifically, Ahn et al. [2] studied the problem of computing the geodesic center of a (weakly)
simple polygon P , where the task is to find the point s ∈ P that minimizes the maximum
geodesic distance from any other point in P . They developed a linear-time algorithm for
this problem. Their algorithm can be used to compute the 1-center of a set D of n points
in P because the 1-center of D coincides with the geodesic center of rchP (D), the relative
convex hull of D in P . Since the geodesic convex hull is a weakly simple polygon that can be
computed in time O(n log n + m), where m is the complexity of P), the 1-center of D can be
computed in the same time.

Here, however, we study this problem through the lens of coresets. In general, a coreset is
a small subset of the input to a problem, such that the solution of the problem on the coreset
is a good approximation of the solution on the whole input. Coresets can be categorised in
strong coresets and weak coresets, depending on the kind of guarantee they provide. Roughly

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:3

speaking, a strong coreset provides error guarantees for any candidate solution on the coreset,
while a weak coreset only guarantees that an optimal solution on the coreset is a good
approximation of an optimal solution on the whole set. All coresets presented in this paper
are weak coresets, so from now on we will just use the term coreset.

Most related to our work are previous approaches for constructing coresets for the 1-center
problem in Rd. Bădoiu et al. [5] showed the existence of a coreset C ⊂ D of size O(1

ε2), such
that the 1-center of the coreset is a (1 + ε)-approximation to the 1-center of a set of points
D ⊂ Rd. The time to construct this coreset is O

(
dn
ε2 + 1

εO(1)

)
. They then showed that their

approach can be extended to obtain a (1 + ε)-approximation for the k-center problem, for
k > 1 in time 2O(k log k/ε2)dn. By providing a better analysis of the approach in [5], Bădoiu
and Clarkson [4] showed that the coreset obtained actually has size O(1/ε), which is tight.
We show that these approaches also work when the underlying space is a simple polygon.
A priori this is not at all clear, because the geodesic metric in a simple polygon does not
have bounded doubling dimension. Specifically, in Section 3 we show the existence of an
ε-coreset of size O (1/ε) for the 1-center problem for a set of points in a simple polygon. The
time to construct this is O

(
n log m+m

ε + 1
ε2 log 1

ε

)
, where m is the complexity of the polygon.

Note that a coreset of size two or three always exists in the plane (both in the Euclidean
setting as well as in a polygon), since the minimum enclosing (geodesic) ball of a set of points
in P is defined by two or three of the points. Thus it can be computed in the same time
it takes to compute the 1-center of D, which, as mentioned, is O(n log n + m). Hence, for
constant m the construction takes O(n log n) time, whereas our coreset can be constructed
in O

(
n/ε + 1/ε2 log(1/ε)

)
time. More importantly, our coreset can be combined with the

approach by Bădoiu et al. [5] to approximately solve the k-center problem for k > 1, in
2O(k log k/ε)(n log m + m) time.

Finally, we study the 1-center problem with z outliers through the lens of coresets in
Section 4. We show that in any metric space, there exists a coreset of size 2z + 2 that is
a 3-approximation for the 1-center problem with z outliers. In the Euclidean plane, we
can generalize our result and obtain an ε-coreset of size O(z/ε). Coresets for the k-center
problem with z outliers have been studied for the metrics of bounded doubling dimension
[7, 6]. Particularly, De Berg et al. [7] present an ε-coreset of size O(k/εd + z), where d is the
doubling dimension. In the plane, their construction can give an ε-coreset of size O(k/ε2 + z).
Note that the dependency on 1/ε in their bound is quadratic, while our coreset only has a
linear dependency on 1/ε. (On the downside, in our case this is multiplied by z, while [7]
has an additive term in z.) They also show that under some natural conditions, any coreset
with a constant approximation ratio is of size Ω(k + z).

2 k-Median and k-center with outliers in a polygonal domain

In this section, we study the discrete k-median problem in a polygonal domain P . We will
develop a subexponential exact algorithm for this problem, which depends exponentially on
k and not on the complexity of the polygonal domain. We will then show that our algorithm
can also be used to solve the k-center problem with outliers in a polygonal domain. We start
by introducing some notation.

Notation. We denote the outer polygon of our polygonal domain P by P0, and we use H to
denote the collection of holes in P . Recall that π(p, q) denotes the shortest path between two
points p, q in P . For a finite set D ⊂ P , the geodesic Voronoi diagram of D in P , denoted
gvd(D), is the partition of P into |D| Voronoi cells, where the Voronoi cell V (q) of a point

ISAAC 2023

23:4 Clustering in Polygonal Domains

p

q
b(p, q)

x(p, q)

xH(p, q)

H

Figure 1 Illustration for the definition of b(p, q), x(p, q) and xH(p, q).

p(i) (ii)

Figure 2 (i) An example where the dual of the geodesic Voronoi diagram corresponds to a tree.
(ii) Adding p to the outside face of P and connecting it to cells incident to ∂P0 via the intervals Ii.

q ∈ D is defined as VD(q) := {x ∈ P : ∥π(x, q)∥ ⩽ ∥π(x, p)∥ for all p ∈ D}. When the set
D is clear from the context, we may simply write V (q). For two points p, q ∈ P , let b(p, q)
denote their geodesic bisector and let bD(p, q) denote the part of b(p, q) which appears in
gvd(D). Let B(p, q) = {x ∈ P : ∥π(p, x)∥ ⩽ ∥π(q, x)∥}. We will denote by x(p, q) the first
point of b(p, q) that is met during a clockwise transversal of ∂P0 which starts from a point of
∂P0 ∩B(p, q). Finally, we will denote by xH(p, q) the first point of b(p, q) that is met during
a clockwise transversal of hole H, starting from a point of H ∩B(p, q); see Figure 1.

The main idea. The idea is to extend the approach by Hwang et al. [12], which worked for
R2, to a polygonal domain. We therefore start by considering the geodesic Voronoi diagram
of our (unknown) optimal solution S. In the Euclidean case, the dual of this diagram is
called the Delaunay triangulation, denoted by dt(S). Every inner face of dt(S) is a triangle,
and one can add a set I of three extra points to S sufficiently far away, such that the outside
face of dt(S ∪ I) also becomes a triangle. This results in a maximal planar graph. Hence, by
Miller’s separator theorem [17] there exists a simple cycle separator C of dt(S ∪ I) of size
O(
√

k) which is (2/3)-balanced with respect to S ∪ I. (The latter means that at most 2/3 of
the points in S ∪ I lie inside C and at most 2/3 of the points in S ∪ I lie outside C.) In our
setting, it is not guaranteed that the dual of gvd(S) is an (almost) triangulated graph. See
Figure 2(i) for an example where it corresponds to a tree. Therefore we will need a few extra
steps before we can apply a separator theorem.

Transforming the dual of gvd(S). Let G = (V, E) denote the dual graph of gvd(S). The
goal is to transform G to a graph G∗ = (V ∗, E∗) such that any face of G∗ has size at most
three. The Voronoi cells of gvd(S) that are incident to ∂P0, induce a decomposition of ∂P0
into disjoint intervals. Note that it is possible for a Voronoi cell to contribute to more than
one interval. The following lemma gives a linear bound on the number of these intervals.

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:5

(i) (ii) (iii)

H1 H2

p

Figure 3 Holes H1 and H2 are essential, so we add a vertex for each of them. In (iii), observe
that every face has bounded size.

▶ Lemma 2.1. Let I1, . . . , Ir denote the intervals along ∂P0 induced by gvd(S), enumerated
in clockwise order. Then r = O(k).

Proof. For 1 ⩽ i ⩽ r, let si ∈ S be the center in the optimal solution S whose Voronoi cell
has Ii on its boundary. Note that the si need not all be distinct. For i = 1, ...r − 1, we
charge Ii to b(si, si+1). Any bisector can be charged at most two times. Moreover, a bisector
uniquely corresponds to an edge of G and we know that G is a planar graph. Therefore
r ⩽ 2|E| ⩽ 6k − 12. ◀

Now let p denote an arbitrary point in the outside face of P . We connect p to each si via
any arbitrary interior point of Ii. Let {e1, . . . , er} denote the set of these extra edges. Then
we have so far, V ∗ = V ∪ {p} and E∗ = E ∪ {ei}r

i=1. It’s easy to see that we can embed
these edges such that: (i) they are pairwise non-crossing and (ii) any face of the resulting
graph incident to p is a triangle. See Figure 2(ii) for an example.

Handling the faces that do not contain p. Now we need to handle the faces of G∗ that are
not incident to p. By construction, the outer face of G∗ contains p and thus is a triangle.
Therefore, the only way G∗ can contain a face of size at least four is if there exists a cycle of
size four “around” a hole as in Figure 3(i).

We define an essential hole to be a hole H ∈ H which is incident to at least four Voronoi
cells of gvd(S). Since every essential hole corresponds to a face of G (or G∗), the number of
essential holes is O(k). Let H∗ denote the set of essential holes and for every H ∈ H∗ let
pH be an arbitrary point in H. We add the set {pH}H∈H∗ to V ∗ and we connect pH to the
vertices of the Voronoi cells that are incident to H. If V (q) is such a Voronoi cell, then, as
before, we can embed the edge (pH , q) by going through any interior point of H ∩ V (q). At
the end of this process, G∗ is a graph where every face is a triangle. See Figure 3(iii).

2.1 Applying the Separator Theorem to G∗

We now want to apply Miller’s Separator Theorem to G∗. One thing that prevents us
from doing so, is that G∗ could be a multigraph, because p may be connected to the same
Voronoi vertex more than once. (Recall that a Voronoi cell may contribute to more than one
interval Ii). To deal with this, we can add a “dummy vertex” to each edge which has p as an
endpoint; see Figure 2(ii). This way we only increase the number of vertices and edges by
O(k). Moreover, the faces of the resulting graph still have bounded size, which ensures that
a separator theorem can still be applied (see below). Note that we want our separator to
be balanced with respect to V . To ensure that, we employ the cost-balanced version of the
Planar Separator Theorem, proven by Djidjev and Venkatesan [8].

ISAAC 2023

23:6 Clustering in Polygonal Domains

Figure 4 An example of three points and two holes, such that all three pairwise bisectors between
the points intersect both holes.

Planar Separator Theorem. Let G = (V, E) be a maximal planar graph with n

nodes. Let each node v ∈ V have a non-negative weight, denoted weight(v), with∑
v∈V weight(v) = 1. Then V can be partitioned in O(n) time into three sets A, B, C

such that (i) C is a simple cycle of size O(
√

n), (ii) G has no arcs between a node in
A and a node in B, and (iii)

∑
v∈A weight(v) ⩽ 2/3 and

∑
v∈B weight(v) ⩽ 2/3.

The theorem is stated for maximal planar graphs, but as pointed out in [8], it can be extended
to graphs with faces of bounded size (as is our case). In our application, we give weight zero
to the intermediate vertices as well as all vertices in V ∗ \ V , and weight 1

|V | to each vertex
in V . Thus we obtain a simple-cycle separator C, which we can turn into a separator for G∗

by ignoring any of the dummy vertices appearing on it. We obtain the following lemma.

▶ Lemma 2.2. There exists a separator C for G∗ with the following properties: 1. C is a
simple cycle, 2. C has size O(

√
k) and 3. C is (2/3)-balanced with respect to V .

2.2 Guessing and embedding the separator
What we would like to do now, is guess the separator C of G∗. Regarding the essential holes,
note that we know that |H∗| = O(k), but we don’t have any bound on H in terms of n, the
size of the input point set D. This is problematic for the running time because we will need
to “guess” what the essential holes are. However, we will argue that only O(n3) holes are
good candidates for being essential. We start with the following lemma.

▶ Lemma 2.3. Let P be a polygon and let H = {H1, H2, ..., Hm} be the set of holes in P .
Let T = {p, q, r} be a set of three points in P . Then there are at most two holes in H that
are incident to all three Voronoi cells VT (p), VT (q), VT (r).

Proof. Assume for contradiction that there exist three holes Hi, Hj , Hk incident to all three
cells VT (p), VT (q), VT (r) . Since Voronoi cells are connected, for each x ∈ {p, q, r} and for
each H ∈ {Hi, H,j , Hk}, there exists a path connecting x to H which stays inside V (x).
In this way, we get a planar embedding of K3,3, which is a contradiction. (Note that it is
possible to have two holes bordering VT (p), VT (q), VT (r), see Figure 4.) ◀

Now we define the set of candidate essential holes R as follows: for every triplet of points
in D we identify at most two holes which are incident to all three pairwise bisectors between
the points. We then place these holes in R. Clearly, |R| = O(n3). Therefore we can afford
to guess O(

√
k) essential holes on our separator C.

Now we give a more detailed description of how our algorithm works. Recall that each
node in G∗ (and, hence, each node on the separator we are looking for) corresponds to either
a point in D, or to the extra point p we added, or to an essential hole. Thus, to find the

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:7

separator, we guess all ordered subsets of size O(
√

k) from the set R ∪D ∪ p. This results in
nO(

√
k) candidate separators. We then would like to use each separator to split our problem

into two independent subproblems, one for the inside and one for the outside of the separator.
To do that, we have to make sure that for every demand point d ∈ D its closest center point
in the optimal solution, is located at the same side of the separator as d. For this, it suffices
to embed the edges of the separator such that no edge crosses a Voronoi cell of a point which
is not one of its endpoints. We have three categories of edges:

Edges that connect p to a Voronoi site s. Clearly if (p, s) ∈ E∗, then there exists
some r ∈ S such that (s, r) ∈ E and then we can embed such an edge using the shortest
paths π(p, x(s, r)), π(x(s, r), s). Note that we don’t know r, but we can afford to guess it
from D and therefore there are n options.
Edges that connect a Voronoi site s to a pH for some H ∈ R. If (s, pH) ∈ E∗,
then again there exists some r ∈ S such that s, r ∈ E and then we can embed such an
edge by going through xH(s, r), again using shortest paths. We can guess r from D and
there are n options.
Edges that connect two Voronoi sites s and r. Note that then one of the following
holds if (s, r) ∈ E:
1. there exists a t ∈ S, such that VS(s), VS(r), VS(t) meet at a point c in P or at a hole

H ∈ H∗

2. bS(s, r) intersects ∂P0 at two points.
Therefore we can check for all t ∈ D whether 1. holds and if yes we embed (s, r) as
π(s, c) ∪ π(c, r) or as π(s, xH(s, r)) ∪ π(xH(s, r), r). Otherwise, we can embed (s, r) via
x(s, r). Again we have at most n guesses.

Since we are using shortest paths to embed the edges, we know that they will stay inside
the Voronoi cells of the sites they connect and thus we get a good embedding. Assuming
our guessed separator is correct, the points on the separator have to be part of the optimal
solution that we seek. Therefore in the two subproblems, these points have to be passed on
as part of the input. If we assume that our separator has size i then we also need to guess
how many of the remaining k − i optimal centers lie in the inside and how many lie in the
outside subproblem. In terms of running time, this is clearly not a problem since it can only
give an extra factor of O(k) = O(n). The base case of our algorithm is when k = 1, where
we simply try all possible options.

A word on precomputing shortest paths. Our algorithm will need to make use of shortest
paths between points in the set D∪{p}∪{pH}H∈R∪{x(p, q), xH(p, q)}(p,q,H)∈D×D×R. Note
that this set has size poly(n) and thus all necessary shortest paths can be precomputed in
poly(n, m) time. The only information about these paths our algorithm will need during
the recursion is their length and whether two paths cross or not. Indeed, this is enough to
determine, for a guessed separator C, which are its two corresponding subproblems; two
points p, q not on C will be on different sides of C if and only if π(p, q) crosses C an odd
number of times. Therefore, the complexity of the polygon does not appear during the
recursion. Note that the same idea was used for the preprocessing step in [3].

Given the above discussion, the recursive formula of our algorithm is of the form T (k) =
nO(

√
k)T (2k/3), which solves to T (k) = nO(

√
k). The following theorem summarises our

result, where the poly(n, m) term comes from precomputing shortest paths.

▶ Theorem 2.4. Let D be a set of n points inside a polygonal domain P with m vertices
and let k be a given positive integer. Then the discrete k-median problem for D in P can be
solved in time poly(n, m) + nO(

√
k).

ISAAC 2023

23:8 Clustering in Polygonal Domains

2.3 The k-Center problem with outliers
To solve the k-center problem with z outliers, we first show that the same approach as our
k-median algorithm works to solve the so-called (k, r)-coverage problem, and then we show
how to reduce the k-center problem with z outliers to the (k, r)-coverage problem. Let P be
a polygonal domain, D denote a set of n demand points in P , and k, r be two parameters.
We define a (k, r)-coverage of D as a set of k balls of radius at most r, such that the number
of outliers (that is, points in D not covered by the balls) is minimized.

The divide-and-conquer algorithm we presented earlier for k-median clustering has a base
case of k = 1. Our algorithm relies on the n candidates for the optimal centers in k-median,
and has a running time of nO(

√
k). However, we only use the properties of k-median to solve

for the base case and determine the candidate centers when guessing the separator in an
optimal solution. Note that above we solved the discrete k-median problem, where the set of
candidate centers is given (namely, it is the same as the set D of demand points, although
our algorithm would also work if a different discrete set of candidate centers is given). For
the k-center problem, we wish to solve the continuous version, where the set of candidate
centers is not given. It is well known, however, that in the continuous k-center problem,
we can still restrict our attention to a discrete set of candidates, namely the centers of the
smallest enclosing (geodesic) balls of every triple and pair of points in D. Thus there are
O(n3) candidate centers. We denote the set of candidate centers by C∗. Therefore, the same
approach can be applied to solve the (k, r)-coverage problem, where for the base case, we can
consider all O(n3) balls of radius r centered at a point in C∗ and find the one that covers the
maximum number of points in D. This means that our algorithm can compute an optimal
(k, r)-coverage in nO(

√
k) time.

It remains to reduce the k-center problem with z outliers to the (k, r)-coverage problem.
Observe that if r is at least the optimal radius for k-center clustering with z outliers, then
the number of outliers for (k, r)-coverage is at most z. Moreover, there are at most O(n3)
candidates for the optimal radius (namely the radii of the smallest enclosing balls of the
triples and pairs of points in D). By performing a binary search over these O(n3) possible
radii, we can find the minimum radius r∗ such that the (k, r∗)-coverage covers all but at
most z outliers. This (k, r∗)-coverage is an optimal solution for the k-center problem with z

outliers, and the running time to find it is O(nO(
√

k) · log (n3)) = nO(
√

k).

▶ Theorem 2.5. Let D be a set of n points inside a polygonal domain P with m vertices
and let k, z be two given integers. Then the k-center problem for D with z outliers can be
solved in time poly(n, m) + nO(

√
k).

3 A coreset for the k-center of points in a simple polygon

In this section, we turn our attention to the k-center problem in a simple polygon. As already
mentioned, here we are interested in coresets for this problem. We will start by studying
the 1-center. In itself, a coreset for the 1-center in a simple polygon is not so interesting,
since the minimum enclosing (geodesic) ball of a set D of points inside P is always defined
by two or three points, and so there exists a coreset of size two or three. However, the
technique that we use (which is borrowed from Bădoiu and Clarkson [4]) forms the basis
of the result for k-center. For a set S of points, let cS denote the center of the minimum
enclosing geodesic ball of S (that is, its 1-center) and let rS be its radius. We denote the
ball of radius r centered at a point c be B(c, r), so B(cS , rS) is the minimum enclosing ball
of S. Note that these definitions apply in the standard Euclidean case, but also for geodesic

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:9

distances in a simple polygon. Our algorithm to compute a coreset C for the 1-center of a
point set D inside a simple polygon P uses the approach of Bădoiu et al. [5, 4], which works
as follows. First, we place in C an arbitrary point p ∈ D. Then we repeat the following
procedure: we check whether there exists a point q ∈ D such that ∥cCq∥ > (1 + ε)rC and if
yes, we add in C the point of D furthest from cC . Otherwise, we have our desired coreset.
The analysis of the number of iterations of the above procedure relies on two key lemmas.
Note that any chord in a simple polygon P (that is, any segment inside P connecting two
points on ∂P) splits P into two sub-polygons, which we call half-polygons.

▶ Lemma 3.1. Let B(cD, rD) denote the minimum enclosing geodesic ball for a set D of
points inside a simple polygon P . Then any closed half-polygon containing cD also contains
a point p ∈ D such that ∥π(p, cD)∥ = rD.

Proof. We proceed in the same way as in the Euclidean case. Namely, suppose there exists
a chord s of P through cD, such that one of the two defined half-polygons does not contain
a point p ∈ D such that ∥π(p, cD)∥ = rD. Let H1 denote this half-polygon. Then we can
slightly move cD to the direction perpendicular to s and to the interior of P \H1. In this way,
every point of D will now be fully contained in the interior of B(cD, rD). The reason is that
any shortest path π(cD, q), for q ∈ P \H1 is contained in P \H1 and thus this translation
of cD can only decrease ∥π(cD, q)∥. As a result the ball B(cD, rD) can be slightly shrunk,
contradicting its minimality. ◀

The second lemma we need is as follows.

▶ Lemma 3.2. Let B(cD, rD) denote the minimum enclosing geodesic ball for a set D of
points inside a simple polygon P . For any point q ∈ P , there exists a point p ∈ D at distance
rD from cD such that ∥π(p, q)∥ ⩾

√
∥π(p, cD)∥2 + ∥π(cD, q)∥2.

The corresponding lemma in the Euclidean case (that is when P = R2) follows directly
from (the Euclidean version of) Lemma 3.1, by using the Pythagorean Inequality. For geodesic
triangles however, we were not able to find in the literature an analog of the Pythagorean
Inequality. Thus we prove now that the following property still holds for geodesic triangles in
a simple polygon. Note that Lemma 3.3 together with Lemma 3.1 imply Lemma 3.2. Indeed,
let s be the chord through cD that is perpendicular to the first edge of π(cD, p). Then by
applying Lemma 3.1 to the closed half-polygon defined by s and not containing q, we get that
there exists a point p ∈ D such that ∥π(p, cD)∥ = rD. The result follows by observing that
in the geodesic triangle △πpcDq, the angle at cD is at least π

2 and thus Lemma 3.3 applies.

▶ Lemma 3.3. Let p, q, r denote three points in a simple polygon P , such that in the geodesic
triangle △πpqr, the angle at q is at least π

2 . Then we have ∥π(p, r)∥2 ⩾ ∥π(p, q)∥2+∥π(q, r)∥2.

Proof. For the following, refer to Figure 5. Let qq1, qq2 denote the first edges of the paths
π(q, p), π(q, r) respectively. We extend qq1, qq2 to the interior of △πpqr and let q′

1, q′
2 denote

the points where these extensions intersect π(p, r) respectively. By the triangle inequality we
have

∥π(p, q)∥ ⩽ |qq′
1|+ ∥π(q′

1, p)∥ and ∥π(r, q)∥ ⩽ |qq′
2|+ ∥π(q′

2, r)∥.

Moreover, since the angle at q is at least π/2 and the Euclidean triangle ∆(qq′
1q′

2) satisfies
the Pythagorean Inequality, and ∥π(q′

1, q′
2) ⩾ |q′

1q′
2|, we have

∥π(q′
1, q′

2)∥2 ⩾ |qq′
1|2 + |qq′

2|2.

ISAAC 2023

23:10 Clustering in Polygonal Domains

q

q1 q2

q′1
q′2

p

r

Figure 5 Illustration for the proof of Lemma 3.3. Here, the red points represent the points where
the paths π(p, r), π(p, q) and π(r, q), π(r, p) split.

Finally, observe that for any numbers a, b, c ⩾ 0 we have

(a + b + c)2 ⩾ a2 + b2 + c2 + 2ab + 2ac.

Hence,

∥π(p, q)∥2 + ∥π(r, q)∥2 ⩽ (|qq′
1|+ ∥π(q′

1, p)∥)2 + (|qq′
2|+ ∥π(q′

2, r))2

= |qq′
1|2 + 2|qq′

1| · ∥π(q′
1, p)∥+ ∥π(q′

1, p)∥2 + |qq′
2|2 + 2|qq′

2| · ∥π(q′
2, r)∥+ ∥π(q′

2, r)∥2

= ∥π(q′
1, q′

2)∥2 + ∥π(q′
1, p)∥2 + ∥π(q′

2, r)∥2 + 2|qq′
1| · ∥π(q′

1, p)∥+ 2|qq′
2| · ∥π(q′

2, r)∥

⩽ (∥π(q′
1, q′

2)∥+ ∥π(q′
1, p)∥+ ∥π(q′

2, r)∥)2

= ∥π(p, r)∥2. ◀

We can now prove the following theorem.

▶ Theorem 3.4. Let D be a set of n points inside a simple polygon P with m vertices. For
any ε > 0 there is an ε-coreset C ⊂ D of size O(1/ε) for the 1-center problem. The coreset
can be constructed in time O

(
n log m+m

ε + 1
ε2 log 1

ε

)
.

Proof. The proof is similar to that of Badoiu et al. [4]: let Ci denote our coreset after i

points have been added to it and let B(ri, ci) denote its minimum enclosing ball. Observe
that r2 is a constant approximation for the optimal radius. Therefore, if one can show that
ri+1 ⩾

(
1 + ε

α

)
ri, for some constant α, it will follow that after O(1/ε) iterations, rC ⩾ rD.

By applying Lemma 3.2 we get ri+1 ⩾
√

r2
i + ∥π(ci+1, ci)∥2. By the triangle inequality we

get ri+1 > (1 + ε)ri − ∥π(ci+1, ci)∥. Using these two lower bounds for ri+1, one can indeed
get the desired relation between ri+1 and ri. For further details, refer to the proof in [4].

Regarding the construction of the coreset, if we follow the procedure described, then we
need to solve the 1-center problem O

(1
ε

)
times for a set of O(1

ε) points in a simple polygon
with m vertices. This can be done in O

(1
ε

(
m + 1

ε log 1
ε

))
time [18]. In each iteration, we also

need to find the point in D that is furthest from our current center. This takes O(n log m)
time per iteration [11]. Hence, the total running time is O

(
n log m+m

ε + 1
ε2 log 1

ε

)
. ◀

Extension to k-center. Theorem 3.4 combined with the methods from [5] yields a (1 + ε)-
approximate k-center for D. The algorithm starts with k, initially empty, sets S1, S2, ..., Sk.
In each iteration, the point p ∈ D furthest from cS1 , cS2 , ..., cSk

is found and added to

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:11

one of the sets. However, we do not know beforehand to which set the point p should
be added, so we simply guess (that is, try all possibilities). After O(k/ε) iterations, the
algorithm will terminate in the branch where all guesses of where the furthest point should
be added are correct. Therefore we also need to guess to which set to add p. We obtain
the following theorem, whose proof is the same as the proof of the corresponding result of
Bădoiu, Har-Peled, and Indyk [5].

▶ Theorem 3.5. Let D be a set of n points inside a simple polygon P with m vertices. For any
1 > ε > 0, a (1+ε)- approximate k-center for D can be found in time 2O(k log k/ε)(n log m+m).

4 Coresets for 1-center clustering with outliers

We now study the 1-center problem with outliers for points in the Euclidean plane (so, not
inside a polygon). We will prove that there is an ε-coreset of size O(z/ε) for this problem. To
obtain such a coreset, our algorithm will need a constant-factor approximation as a starting
point. To this end, we first show how to construct a coreset of size 2z + 2 that gives a
3-approximation. Interestingly, this latter algorithm works in any metric space, so also for
points inside a polygonal domain.

A coreset giving a 3-approximation in general metric spaces. Let D be a set of points
in a metric space with distance function d(·, ·). We show in Algorithm 1 how to compute a
coreset of size 2z + 2 that 3-approximates the 1-center problem on D with z outliers.

Note that if the size of D is at most 2z + 2, we return D in Algorithm 1 as the coreset.
Therefore, without loss of generality, we can assume that the size of D is greater than 2z + 2
for the rest of this section. We define optz(A) as the radius of an optimal solution for the
1-center problem on D with z outliers, where A represents any given set.

Algorithm 1 FindCoreset(D, z).

1: ▷ An algorithm to find a coreset for 1-center problem on D with z outliers
2: if |D| ⩽ 2z + 2 then
3: return D

4: C1 ← {an arbitrary point of D}
5: for i = 2 to 2z + 1 do
6: Let B(oi−1, ri−1) be a minimum-radius ball containing all points of Ci−1 but z outliers
7: Let fi be a point of D \ Ci−1 that is furthest away from oi−1
8: Ci ← Ci−1 ∪ {fi}
9: return C2z+2

▶ Lemma 4.1. For any 1 ⩽ i ⩽ 2z + 2, at least one of the following properties holds for the
set Ci constructed by Algorithm FindCoreset(D, z).

(i) optz(Ci) ⩾ optz(D)/3, or
(ii) for all r < optz(D)/3, any ball of radius r contains at most z + 1 points of Ci.

Proof. For i = 1, property (ii) is trivially satisfied since we have |Ci| = 1 and z + 1 ⩾ 1. For
i > 1, we prove the lemma by contradiction. Suppose the lemma is false, and let t ∈ [2, 2z +2]
be the smallest number such that properties (i) and(ii) do not hold for Ct. Then, there exists
a ball B(o′, r′) such that |B(o′, r′) ∩ Ct| > z + 1 and r′ < optz(D)/3.

Let ft be the point added to the coreset in line 8 of the algorithm, in the t-th iteration.
We first prove that ft ∈ B(o′, r′) and |B(o′, r′) ∩ Ct−1| = z + 1. Since Ct ⊃ Ct−1, we have
optz(Ct−1) ⩽ optz(Ct). Moreover, we assumed that property (i) does not hold for Ct,

ISAAC 2023

23:12 Clustering in Polygonal Domains

which means optz(Ct) < optz(D)/3. Therefore, rt−1 = optz(Ct−1) < optz(D)/3, which
means property (i) does not hold for Ct−1. As t is the smallest number such that both
properties do not hold for Ct, we conclude that property (ii) holds for Ct−1, which implies
|B(o′, r′)∩Ct−1| ⩽ z + 1. Adding it to |B(o′, r′)∩Ct| > z + 1 and Ct = Ct−1 ∪ {ft} we have
ft ∈ B(o′, r′) and also |B(o′, r′) ∩ Ct−1| = z + 1.

B(ot−1, rt−1) is a solution for the 1-center problem on Ct−1 with z outliers, and |B(o′, r′)∩
Ct−1| = z + 1. Then, there exists a point p∗ ∈ B(ot−1, rt−1) ∩ (Ct−1 ∩B(o′, r′)). Moreover,
by the triangle inequality we have d(ot−1, ft) ⩽ d(ot−1, p∗) + d(p∗, ft). As p∗ ∈ B(ot−1, rt−1),
we have d(ot−1, p∗) ⩽ rt−1, and as both p∗ and ft are in B(o′, r′) we have d(p∗, ft) ⩽ 2r′.
Thus, d(ot−1, ft) ⩽ rt−1 + 2r′, and since rt−1 < optz(D)/3 and r′ < optz(D)/3 we have
d(ot−1, ft) < optz(D).

On the other hand, we have d(ot−1, ft) ⩾ d(ot−1, p) for any p ∈ D \ Ct−1 since ft is
the furthest point in D/Ct−1 to ot−1. Furthermore, all but at most z points of Ct−1 are
in B(ot−1, rt−1). Also, d(ot−1, ft) ⩾ rt−1, since otherwise rt−1 = optz(Ct−1) ⩾ optz(D),
which is a contradiction to optz(Ct−1) < optz(D)/3. Therefore, B(ot−1, d(ot−1, ft)) is a
solution for the 1-center problem on D with z outliers, which implies optz(D) ⩽ d(ot−1, ft).
Hence, optz(D) ⩽ d(ot−1, ft) < optz(D), which is a contradiction. ◀

▶ Theorem 4.2. Let D be a set of n points in a metric space. Then there exists a coreset
C ⊂ D of size at most 2z + 2 such that optz(D)/3 ⩽ optz(C) ⩽ optz(D).

Proof. Let C be the coreset returned by FindCoreset(D, z), and assume |D| > 2z + 2 so
that C = C2z+2. Since C2z+2 ⊆ D, then optz(C2z+2) ⩽ optz(D) trivially holds. To prove
the other side of the inequality, suppose for a contradiction that optz(C) < optz(D)/3. Let
B(o, optz(C2z+2)) be the optimal solution for the 1-center problem on C2z+2 with z outliers.
Then, as |C2z+2| = 2z + 2 and at most z points are outliers, B(o, optz(C2z+2)) contains
at least z + 2 points. However, since we assume optz(C) < optz(D)/3, then B(o, C2z+2)
contains at most z + 1 points by Lemma 4.1, which is a contradiction. ◀

A (1 + ε)-coreset in the plane. The algorithm above works for any metric space, giving
a 3-approximation. Now we explain that if D is a set of points in R2, we can improve the
approximation ratio and obtain an ε-coreset, for any given ε > 0. To accomplish this, we add
O(z/ε) extra points to the coreset as follows. Let C2z+2 be the output of FindCoreset(D, z)
and B(o2z+2, r2z+2) be an optimal solution for the 1-center problem on C2z+2 with z outliers.
We partition the plane into ℓ =

⌈ 12π
ε

⌉
cones K1, K2, ..., Kℓ centered at o2z+2 with an opening

angle of at most ε/6 each. Then, for each cone, we add 2z +2 additional points to the coreset,
namely the z + 1 nearest points and the z + 1 furthest points to o2k+2 from the points in
D/C2k+2 that are located within that cone. Let A be the set of at most (12π/ε) · (2z + 2)
points selected in these cones, and define C := C2z+2 ∪A. We will show that C is an ε-coreset.

▶ Theorem 4.3. Let D be a set of points in R2. There exists an ε-coreset for the 1-center
problem with z outliers for D of size O(z/ε).

Proof. Consider the set C defined above and let B(ô, r̂) be an optimal solution for the
1-center problem on C with z outliers. It suffices to show that, for any point q ∈ D \ C, we
have that ∥ôq∥ ⩽ (1 + ε)r̂. Suppose for a contradiction that ∥ôq∥ > (1 + ε)r̂. Let K1, . . . , Kℓ

be the cones defined above, and recall that each cone has an angle of at most ε
6 . As already

mentioned, we place in our coreset the z + 1 furthest and z + 1 closest points to o2z+2.
Observe that |ôo2z+2| ⩽ 2r̂, since B(o2z+2, r2z+2) and B(ô, r̂) have to intersect (otherwise
there would be more than z outliers outside B(ô, r̂)). Note that this means that for any

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:13

point p ∈ ∂B(ô, r̂), we have that |o2z+2p| ⩽ 3r̂. Let Kj denote the cone containing q. Since
q /∈ A, there exist z + 1 points closer to o2z+2 than q and z + 1 points further to o2z+2 than
q. We denote the set of closer points by Aclose and the set of further points by Afar. We have
the following cases:

Case I: Kj does not intersect B(ô, r̂). Then we clearly have a contradiction since |Kj ∩A| ⩾
2z + 2 while we are allowed at most z outliers.

Case II: Kj contains B(ô, r̂). Then the opening angle of Kj is smallest when both of its
sides are tangent to B(ô, r̂). Let t denote one of the points of tangency. Then in the right
triangle △o2z+2ot we have ε

6 > sin
(

ε
6
)

= r̂
|o2z+2o| ⩾

1
2 , which is a contradiction.

Case III: Otherwise, at least one of the sides of Kj intersects B(ô, r̂). Let e1 denote this side
and e2 denote the other side. Also, let e denote the half-line through o2z+2, ô. Clearly e1
will then also intersect B(ô, (1 + ε)r̂). We will now show the following claim.

▷ Claim 1. The side e2 of Kj also has to intersect B(ô, (1 + ε)r̂).

Proof. Suppose for a contradiction that the claim is false. Then the opening angle of Kj is
smallest when both e1 and e2 are tangent to B(ô, r̂) and B(ô, (1 + ε)r̂), respectively. Let
p1, p2 denote the points of tangency as in Figure 6(i). Let p denote the point where the line
through ô and p1 intersects e2. Then since p has to lie outside B(ô, (1 + ε)r̂), we have that
|p1p| > εr̂. Moreover, |o2z+2p1| < |o2z+2ô| < 2r̂ and so in the right triangle △o2z+2p1p we
get tan

(
ε
6
)

= |p1p|
|o2z+2p1| > εr̂

2r̂ = ε
2 , which is a contradiction, as tan θ < 2θ for small enough θ.

◁

Since both sides of Kj intersect B(ô, (1 + ε)r̂), we can partition Kj in two or three regions,
depending on the location of o2z+2. Namely, if o2z+2 lies inside B(ô, (1 + ε)r̂), then Kj can
be partitioned in a region inside B(ô, (1 + ε)r̂) and a region outside B(ô, (1 + ε)r̂). If o2z+2
lies outside B(ô, (1 + ε)r̂), then Kj can be partitioned in three regions as in Figure 6(ii).
Since the latter case is the most general, we will prove that one. The former case can be
handled similarly. Without loss of generality, we will assume that e2 lies above ô and that
the angle between e2 and e is at least ε

12 . The proof is slightly different, but essentially the
same, depending on whether e is contained in Kj . To handle both at the same time, from
now on we will let e3 ≡ e when e is contained in Kj and e3 ≡ e1 otherwise. Note that q has
to lie either in region R1 or R3. We will now consider these two subcases.
Subcase I: q ∈ R1. Observe that then the point x, where e2 enters B(ô, (1 + ε)r̂) is the

furthest q can be from o2z+2. To derive a contradiction, it suffices to show that every
point in Aclose lies outside B(ô, r̂). Since the point of Kj ∩B(ô, r̂) closest to o2z+2, is the
point where e3 enters B(ô, r̂) (denoted by y), it suffices to show that |o2z+2x| < |o2z+2y|.
We define ϕ = ∠xyo2z+2. Then, by the Law of Sines in the triangle △o2z+2xy we get
sin(ε/6)

|xy| = sin(ϕ)
|o2z+2x| . Therefore, sin ϕ < ε/6

εr |o2z+2x| = |o2z+2x|
6r̂ .

Now notice that |o2z+2x| < |o2z+2ô| < 2r̂. To see this, consider the tangent from o2z+2
to B(ô, r̂) that lies above (o2z+2, o) and let t be the point of tangency. Then x has to lie in
the triangle △o2z+2tô and so ∠o2z+2xô ⩾ π/2. Therefore we get that sin ϕ < 1

3 , which gives
us that ϕ < π

6 . Since we can assume ε < 1, we get that ∠o2z+2xy > π − π
6 −

ε
6 > π/2 and

therefore we have that |o2z+2x| < |o2z+2y|.

Subcase II: q ∈ R3. The approach is similar. The point x̂ where e2 exits B(ô, (1 + ε)r̂) is
the closest q can be to o2z+2. To derive a contradiction, it suffices to show that in that
case every point in Afar lies outside B(ô, r̂). Since the point of Kj ∩B(ô, r̂) furthest from

ISAAC 2023

23:14 Clustering in Polygonal Domains

o2z+2 ô

p2
p1

Kj

r̂

εr̂

e1
e2

p(i) (ii)

o2z+2 ô

r̂

εr̂

R1
x

y

R3

e2

e1 ≡ e3

x̂

ŷ

e

Figure 6 Illustrations for the proof of Theorem 4.3. Note that in (ii), e is not contained in the
cone and therefore here we have e3 ≡ e1.

o2z+2, is the point where e3 exits B(ô, r̂) – we denote this by ŷ – it suffices to show that
|o2z+2x̂| > |o2z+2ŷ|. We define ϕ̂ = ∠ŷx̂o2z+2. Then, by the Law of Sines in the triangle
△o2z+2x̂ŷ we have sin(ε/6)

|x̂ŷ| = sin(ϕ̂)
|o2z+2ŷ| . Hence, sin ϕ̂ < ε/6

εr |o2z+2ŷ| = |o2z+2ŷ|
6r̂ .

Now notice that |o2z+2ŷ| < 3r̂, as observed in the first paragraph of this proof. Therefore
we get that sin ϕ̂ < 1

2 , which gives us that ϕ̂ < π
6 . Since we can assume ε < 1, we get that

∠o2z+2ŷx̂ > π − π+1
6 > π

2 and therefore we have that |o2z+2x̂| > |o2z+2ŷ|. This again gives
a contradiction and concludes the proof. ◀

References
1 Pankaj K. Agarwal and Micha Sharir. Planar geometric location problems. Algorithmica,

11(2):185–195, 1994. doi:10.1007/BF01182774.
2 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and Eunjin

Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discret. Comput.
Geom., 56(4):836–859, 2016. doi:10.1007/s00454-016-9796-0.

3 Henk Alkema, Mark de Berg, Morteza Monemizadeh, and Leonidas Theocharous. TSP in a
Simple Polygon. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman,
editors, 30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2022.5.

4 Mihai Bâdoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pages 801–802, 2003.

5 Mihai Bâdoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proc. 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pages 250–257,
2002. doi:10.1145/509907.509947.

6 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering
(with outliers) in mapreduce and streaming, almost as accurately as sequentially. Proc. VLDB
Endow., 12(7):766–778, 2019. doi:10.14778/3317315.3317319.

7 Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in
the MPC and streaming model. In Proc. 37th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2023), pages 853–863, 2023. doi:10.1109/IPDPS54959.2023.
00090.

8 Hristo Djidjev and Shankar M. Venkatesan. Reduced constants for simple cycle graph
separation. Acta Informatica, 34(3):231–243, 1997. doi:10.1007/s002360050082.

9 Zvi Drezner. The p-centre problem-heuristic and optimal algorithms. The Journal of the
Operational Research Society, 35(8):741–748, 1984. URL: http://www.jstor.org/stable/
2581980.

https://doi.org/10.1007/BF01182774
https://doi.org/10.1007/s00454-016-9796-0
https://doi.org/10.4230/LIPIcs.ESA.2022.5
https://doi.org/10.1145/509907.509947
https://doi.org/10.14778/3317315.3317319
https://doi.org/10.1109/IPDPS54959.2023.00090
https://doi.org/10.1109/IPDPS54959.2023.00090
https://doi.org/10.1007/s002360050082
http://www.jstor.org/stable/2581980
http://www.jstor.org/stable/2581980

M. de Berg, L. Biabani, M. Monemizadeh, and L. Theocharous 23:15

10 Yunjun Gao and Baihua Zheng. Continuous obstructed nearest neighbor queries in spa-
tial databases. In Proc. ACM SIGMOD International Conference on Management of Data
(SIGMOD 2009), pages 577–590, 2009. doi:10.1145/1559845.1559906.

11 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
Journal of Computer and System Sciences, 39(2):126–152, 1989. doi:10.1016/0022-0000(89)
90041-X.

12 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

13 R. Z. Hwang, Richard C. T. Lee, and R. C. Chang. The slab dividing approach to solve the
Euclidean p-center problem. Algorithmica, 9(1):1–22, 1993. doi:10.1007/BF01185335.

14 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. ACM Trans. Algorithms, 18(2), 2022. doi:
10.1145/3483425.

15 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
In Proc. 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pages
329–338, 1982. doi:10.1109/SFCS.1982.24.

16 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM Journal on Computing, 13(1):182–196, 1984. doi:10.1137/0213014.

17 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal of
Computer and System Sciences, 32(3):265–279, 1986. doi:10.1016/0022-0000(86)90030-9.

18 Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn. Computing a geodesic two-center of points in
a simple polygon. Computational Geometry, 82:45–59, 2019. doi:10.1016/j.comgeo.2019.
05.001.

19 Michael Ian Shamos and Dan Hoey. Closest-point problems. In Proc. 16th Annual Symposium
on Foundations of Computer Science (FOCS 1975), pages 151–162, 1975. doi:10.1109/SFCS.
1975.8.

20 J. J. Sylvester. A question in the geometry of situation. Quarterly Journal of Pure and Applied
Mathematics, 1857.

21 A.K.H. Tung, J. Hou, and Jiawei Han. Spatial clustering in the presence of obstacles.
In Proc. 17th International Conference on Data Engineering, pages 359–367, 2001. doi:
10.1109/ICDE.2001.914848.

22 Haitao Wang. On the planar two-center problem and circular hulls. Discrete & Computational
Geometry, 68(4):1175–1226, 2022. doi:10.1007/s00454-021-00358-5.

23 Xin Wang and Howard J. HHamilton. Clustering spatial data in the presence of ob-
stacles. International Journal on Artificial Intelligence Tools, 14:177–198, 2005. doi:
10.1142/S0218213005002053.

24 Chenyi Xia, David Hsu, and Anthony K. H. Tung. A fast filter for obstructed nearest neighbor
queries. In Key Technologies for Data Management, pages 203–215, 2004.

25 O.R. Zaiane and Chi-Hoon Lee. Clustering spatial data in the presence of obstacles: a density-
based approach. In Proc. International Database Engineering and Applications Symposium,
pages 214–223, 2002. doi:10.1109/IDEAS.2002.1029674.

ISAAC 2023

https://doi.org/10.1145/1559845.1559906
https://doi.org/10.1016/0022-0000(89)90041-X
https://doi.org/10.1016/0022-0000(89)90041-X
https://doi.org/10.1007/BF01228511
https://doi.org/10.1007/BF01185335
https://doi.org/10.1145/3483425
https://doi.org/10.1145/3483425
https://doi.org/10.1109/SFCS.1982.24
https://doi.org/10.1137/0213014
https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1016/j.comgeo.2019.05.001
https://doi.org/10.1016/j.comgeo.2019.05.001
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/ICDE.2001.914848
https://doi.org/10.1109/ICDE.2001.914848
https://doi.org/10.1007/s00454-021-00358-5
https://doi.org/10.1142/S0218213005002053
https://doi.org/10.1142/S0218213005002053
https://doi.org/10.1109/IDEAS.2002.1029674

Finding Diverse Minimum s-t Cuts
Mark de Berg #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Andrés López Martínez #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Frits Spieksma #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
Recently, many studies have been devoted to finding diverse solutions in classical combinatorial
problems, such as Vertex Cover (Baste et al., IJCAI’20), Matching (Fomin et al., ISAAC’20)
and Spanning Tree (Hanaka et al., AAAI’21). Finding diverse solutions is important in settings
where the user is not able to specify all criteria of the desired solution. Motivated by an application
in the field of system identification, we initiate the algorithmic study of k-Diverse Minimum s-t
Cuts which, given a directed graph G = (V, E), two specified vertices s, t ∈ V , and an integer k > 0,
asks for a collection of k minimum s-t cuts in G that has maximum diversity. We investigate the
complexity of the problem for two diversity measures for a collection of cuts: (i) the sum of all
pairwise Hamming distances, and (ii) the cardinality of the union of cuts in the collection. We prove
that k-Diverse Minimum s-t Cuts can be solved in strongly polynomial time for both diversity
measures via submodular function minimization. We obtain this result by establishing a connection
between ordered collections of minimum s-t cuts and the theory of distributive lattices. When
restricted to finding only collections of mutually disjoint solutions, we provide a more practical
algorithm that finds a maximum set of pairwise disjoint minimum s-t cuts. For graphs with small
minimum s-t cut, it runs in the time of a single max-flow computation. These results stand in
contrast to the problem of finding k diverse global minimum cuts – which is known to be NP-hard
even for the disjoint case (Hanaka et al., AAAI’23) – and partially answer a long-standing open
question of Wagner (Networks 1990) about improving the complexity of finding disjoint collections
of minimum s-t cuts.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases S-T MinCut, Diversity, Lattice Theory, Submodular Function Minimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.24

Related Version Full Version: https://arxiv.org/abs/2303.07290 [6]

Funding This research was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement no. 945045, and by the NWO
Gravitation project NETWORKS under grant no. 024.002.003.

Acknowledgements We thank Martin Frohn for bringing the theory of lattices to our attention, and
for fruitful discussions on different stages of this work.

1 Introduction

The Minimum s-t Cut problem is a classic combinatorial optimization problem. Given a
directed graph G = (V, E) and two special vertices s, t ∈ V , the problem asks for a subset
S ⊆ E of minimum cardinality that separates vertices s and t, meaning that removing these
edges from G ensures there is no path from s to t. Such a set is called a minimum s-t cut
or s-t mincut, and it need not be unique. This problem has been studied extensively and
has numerous practical and theoretical applications. Moreover, it is known to be solvable
in polynomial time. Several variants and generalizations of the problem have been studied;

© Mark de Berg, Andrés López Martínez, and Frits Spieksma;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.t.d.berg@TUE.nl
mailto:a.lopez.martinez@tue.nl
mailto:f.c.r.spieksma@tue.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2023.24
https://arxiv.org/abs/2303.07290
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Finding Diverse Minimum s-t Cuts

we mention the global minimum cut problem and the problem of enumerating all minimum
s-t cuts in a graph. In this paper, we initiate the algorithmic study of computing diverse
minimum s-t cuts. Concretely, we introduce the following optimization problem.

k-Diverse Minimum s-t Cuts (k-DMC). Given are a directed graph G = (V, E), vertices
s, t ∈ V , and an integer k > 0. Let ΓG(s, t) be the set of minimum s-t cuts in G, and
let Uk be the set of k-element multisets of ΓG(s, t). We want to find C ∈ Uk such that
d(C) = maxS∈Uk

d(S), where d : Uk → N is a measure of diversity.

Informally, given a directed graph G, vertices s and t, and an integer k, we are interested
in finding a collection of k s-t mincuts in G that are as different from each other as possible;
that is, a collection having maximum diversity. Finding diverse solution sets is important in
settings where the user is not able to specify all criteria of the desired solution. We mention
the synthesis problem as an application of diverse minimum s-t cuts [27, 28].

To formally capture the notion of diversity of a collection of sets, several measures have
been proposed (e.g., [30, 2, 15, 1, 13]). In this work, we choose two natural and general
measures as our notions of diversity. Given a collection (X1, X2, . . . , Xk) of subsets of
a set A (not necessarily distinct), we define dsum(X1, . . . , Xk) =

∑
1≤i<j≤k |Xi△Xj | and

dcov(X1, . . . , Xk) =
∣∣ ⋃

1≤i≤k Xi

∣∣, where Xi△Xj = (Xi ∪Xj) \ (Xi ∩Xj) is the symmetric
difference (or Hamming distance) of Xi and Xj . We call dsum and dcov the pairwise-sum and
coverage diversity measures, respectively.

Our results. We investigate the complexity of the following two variants of k-Diverse
Minimum s-t Cuts: (i) Sum k-Diverse Minimum s-t Cuts (Sum-k-DMC), and (ii)
Cover k-Diverse Minimum s-t Cuts (Cov-k-DMC). These are the problems obtained
when defining function d in k-DMC as diversity measures dsum and dcov, respectively. For a
graph G, we use n to denote the number of nodes and m to denote the number of edges.

Contrary to the hardness of finding diverse global mincuts in a graph [13], we show that
both Sum-k-DMC and Cov-k-DMC can be solved in polynomial time. We show this via a
reduction to the submodular function minimization problem (SFM) on a lattice, which is
known to be solvable in strongly polynomial time when the lattice is distributive [10, 16, 26].

▶ Theorem 1. Sum-k-DMC and Cov-k-DMC can be solved in strongly polynomial time.

At the core of this reduction is a generalization of an old result establishing a connection
between minimum s-t cuts and distributive lattices [7]. As will be elaborated in Section 3,
we obtain our results by showing that the pairwise-sum and coverage diversity measures
(reformulated as minimization objectives) are submodular functions on the lattice L∗ defined
by left-right ordered collections of s-t mincuts and that this lattice is in fact distributive.
Using the current fastest algorithm for SFM [17], together with an appropriate representation
of the lattice L∗, we can obtain an algorithm that solves these problems in O(k5n5) time.

In Section 4, we obtain better time bounds for the special case of finding collections of
s-t mincuts that are pairwise disjoint. Similar to SUM-k-DMC and COV-k-DMC, our
approach exploits the partial order structure of s-t mincuts. We use this to efficiently solve
the following optimization problem, which we call k-Disjoint Minimum s-t Cuts: given
a graph G = (V, E), vertices s, t ∈ V , and an integer k ≤ kmax, find k pairwise disjoint s-t
mincuts in G. Here, kmax denotes the maximum number of disjoint s-t mincuts in G. Our
algorithm is significantly simpler than the previous best algorithm by Wagner [29], which
runs in the time of a poly-logarithmic number of calls to any min-cost flow algorithm. Our
algorithm takes O(F (m, n)+mλ) time, where F (m, n) is the time required by a unit-capacity

M. de Berg, A. López Martínez, and F. Spieksma 24:3

max-flow computation, and λ is the size of an s-t mincut in the graph. By plugging in the
running time of the current fastest deterministic max-flow algorithms [21, 18], we obtain the
following time bounds. When λ ≤ m1/3+o(1), our algorithm improves upon the previous best
runtime for this problem.

▶ Theorem 2. k-Disjoint Minimum s-t Cuts can be solved in time O(m4/3+o(1) + mλ).

Related Work. Many efforts have been devoted to finding diverse solutions in combinatorial
problems. In their seminal paper [20], Kuo et al. were the first to explore this problem from
a complexity-theoretic perspective. They showed that the basic problem of maximizing a
distance norm over a set of elements is already NP-hard. Since then, the computational
complexity of finding diverse solutions in many other combinatorial problems has been
studied. For instance, diverse variants of Vertex Cover, Matching and Hitting Set
have been shown to be NP-hard, even when considering simple diversity measures like
the pairwise-sum of Hamming distances, or the minimum Hamming distance between sets.
This has motivated the study of these and similar problems from the perspective of fixed-
parameter tractable (FPT) algorithms [1, 2, 8]. Along the same line, Hanaka et al. [13]
recently developed a framework to design approximation algorithms for diverse variants of
combinatorial problems. On the positive side, diverse variants of other classic problems are
known to be polynomially solvable, such as Spanning Tree [15], Shortest Path [14, 30],
and Bipartite Matching [14], but not much is known about graph partitioning problems
in light of diversity.

The problem of finding multiple minimum cuts has received considerable attention
[13, 25, 29]. Picard and Queyranne [25] initiated the study of finding all minimum s-t cuts in
a graph, showing that these can be enumerated efficiently. They observe that the closures of
a naturally-defined poset over the vertices of the graph, correspond bijectively to minimum
s-t cuts. An earlier work of Escalante [7] already introduced an equivalent poset for minimum
s-t cuts, but contrary to Picard and Queyranne, no algorithmic implications were given.
Nonetheless, Escalante shows that the set of s-t mincuts in a graph, together with this poset,
defines a distributive lattice. Similar structural results for stable matchings and circulations
have been shown to have algorithmic implications [11, 19], but as far as we know, the lattice
structure of s-t mincuts has been seldomly exploited in the algorithmic literature.

Wagner [29] studied the problem of finding k pairwise-disjoint s-t cuts of minimum total
cost in an edge-weighted graph. He showed that this problem can be solved in polynomial
time by means of a reduction to a transshipment problem; where he raised the question of
whether improved complexity bounds were possible by further exploiting the structure of
the problem, as opposed to using a general purpose min-cost flow algorithm for solving the
transshipment formulation. In sharp contrast, Hanaka et al. [13] recently established that
the problem of finding k pairwise-disjoint global minimum cuts in a graph is NP-hard (for k

part of the input). We are not aware of any algorithm for minimum s-t cuts that runs in
polynomial time with theoretical guarantees on diversity.

2 Preliminaries

2.1 Distributive Lattices
In this paper, we use properties of distributive lattices. Here we introduce some basic concepts
and results. For a more detailed introduction to lattice theory see e.g., [3, 5, 9].

A partially ordered set (poset) P = (X,⪯) is a ground set X together with a binary
relation ⪯ on X that is reflexive, antisymmetric, and transitive. For a poset P = (X,⪯), an
ideal is a set U ⊆ X where u ∈ U implies that v ∈ U for all v ⪯ u. We use D(P) to denote

ISAAC 2023

24:4 Finding Diverse Minimum s-t Cuts

the family of all ideals of P . When the binary operation ⪯ is clear from the context, we use
the same notation for a poset and its ground set. We consider the standard representation of
a poset P as a directed graph G(P) containing a node for each element and edges from an
element to its predecessors. In terms of G(P) = (V, E), a subset W of V is an ideal if and
only if there is no outgoing edge from W .

A lattice is a poset L = (X,⪯) in which any two elements x, y ∈ X have a (unique)
greatest lower bound, or meet, denoted by x ∧ y, as well as a (unique) least upper bound, or
join, denoted by x∨y. Hence, a lattice can also be identified by the tuple (X,∨,∧). A lattice
L′ is a sublattice of L if L′ ⊆ L and L′ has the same meet and join operations as L. In this
paper, we only consider distributive lattices, which are lattices whose meet and join operations
satisfy distributivity; that is, x∨ (y ∧ z) = (x∨ y)∧ (x∨ z) and x∧ (y ∨ z) = (x∧ y)∨ (x∧ z),
for any x, y, z ∈ L. Note that a sublattice of a distributive lattice is also distributive.

Suppose we have a collection L1, . . . , Lk of lattices Li = (Xi,∨i,∧i) with i ∈ {1, ..., k}.
The (direct) product lattice L1×· · ·×Lk is a lattice with ground set X = {(x1, . . . , xk) : xi ∈
Xi} and join ∨ and meet ∧ acting component-wise; that is, x ∨ y = (x1 ∨1 y1, . . . , xk ∨k yk)
and x∧ y = (x1 ∧1 y1, . . . , xk ∧k yk) for any x, y ∈ X. The lattice Lk is the product lattice of
k copies of L and is called the kth power of L. If L is distributive, then Lk is also distributive.

A crucial notion in this work is that of join-irreducibles. An element x of a lattice L is
called join-irreducible if it cannot be expressed as the join of two elements y, z ∈ L with
y, z ≠ x. In a lattice, any element is equal to the join of all join-irreducible elements lower
than or equal to it. The set of join-irreducible elements of L is denoted by J(L). Note
that J(L) is a poset whose order is inherited from L. Due to Birkhoff’s representation
theorem every distributive lattice L is isomorphic to the lattice D(J(L)) of ideals of its
poset of join-irreducibles, with union and intersection as join and meet operations. Hence, a
distributive lattice L can be uniquely recovered from its poset J(L).

▶ Theorem 3 (Birkhoff’s Representation Theorem [3]). Any distributive lattice L can be
represented as the poset of its join-irreducibles J(L), with the order induced from L.

For a distributive lattice L, this implies that there is a compact representation of L as
the directed graph G(L) that characterizes its set of join-irreducibles. (The graph G(L) is
unique if we remove transitive edges.) This is useful when designing algorithms, as the size
of G(L) is O(|J(L)|2), while L can have as many as 2|J(L)| elements.

2.2 Submodular Function Minimization
Let f be a real-valued function on a lattice L = (X,⪯). We say that f is submodular on
L if f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y), for all x, y ∈ X. If −f is submodular in L, then
we say that f is supermodular in L and just modular if f is both sub and supermodular.
The submodular function minimization problem (SFM) on lattices is, given a submodular
function f on L, to find an element x ∈ L such that f(x) is minimum. An important fact
that we use in our work is that the sum of submodular functions is also submodular. Also,
note that minimizing f is equivalent to maximizing −f .

Consider the special case of a lattice whose ground set X ⊆ 2U is a family of subsets of a
set U , and meet and join are intersection and union of sets, respectively. It is known that
any submodular function f on such a lattice can be minimized in polynomial time in |U |
[10, 16, 26], assuming that for any Y ⊆ U , the value of f(Y) is given by an evaluation oracle
that also runs in polynomial time in |U |. The current fastest algorithm for SFM on sets runs
in O(|U |3TEO) time [17], where TEO is the time required for one call to the evaluation oracle.

M. de Berg, A. López Martínez, and F. Spieksma 24:5

Due to Birkhoff’s theorem, the seemingly more general case of SFM on distributive lattices
can be reduced to SFM on sets (see [4, Sec. 3.1] for details). Hence, any polynomial-time
algorithm for SFM on sets can be used to minimize a submodular function f defined on a
distributive lattice L. An important remark is that the running time now depends on the
size of the set J(L) of join-irreducibles.

▶ Theorem 4 ([24, Note 10.15] & [22, Thm.1]). For any distributive lattice L, given by
its poset of join-irreducibles J(L), a submodular function f : L → R can be minimized in
polynomial time in |J(L)|, provided a polynomial time evaluation oracle for f .

2.3 Minimum Cuts
Throughout this paper, we restrict our discussion to directed graphs. All our results can be
extended to undirected graphs by means of well-known transformations. Likewise, we deal
only with edge-cuts, although our approach can be easily adapted to vertex-cuts as well.

Let G be a directed graph with vertex set V (G) and edge set E(G). As usual, we define
n := |V (G)| and m := |E(G)|. Given a source s ∈ V (G) and target t ∈ V (G) in G, we call a
subset X ⊂ E(G) an s-t cut if the removal of X from the graph ensures that no path from s

to t exists in G \X. The size of a cut is the total number of edges it contains. If an s-t cut
in G has smallest size λ(G), we call it a minimum s-t cut, or an s-t mincut. Note that such
a cut need not be unique (in fact, there can be exponentially many). To denote the set of all
s-t mincuts of G, we use ΓG(s, t).

A (directed) path starting in a vertex u and ending in a vertex v is called a u-v path. By
Menger’s theorem, the cardinality of a minimum s-t cut in G is equal to the maximum number
of internally edge-disjoint s-t paths in the graph. Let Ps,t(G) denote a maximum-sized set of
edge-disjoint paths from s to t in G. Note that any minimum s-t cut in G contains exactly
one edge from each path in Ps,t(G). For two distinct edges (resp. vertices) x and y in
a u-v path p, we say that x is a path-predecessor of y in p and write x ≺p y if the path
p meets x before y. We use this notation indistinctly for edges and vertices. It is easily
seen that the relation ≺p extends uniquely to a non-strict partial order. We denote this
partial order by x ⪯p y. Consider now any subset W ⊆ ΓG(s, t) of s-t mincuts in G. We
let E(W) =

⋃
X∈W X. Two crucial notions in this work are those of leftmost and rightmost

s-t mincuts. The leftmost s-t mincut in W consists of the set of edges Smin(W) ⊆ E(W)
such that, for every path p ∈ P(s, t), there is no edge e ∈ E(W) satisfying e ≺p f for any
f ∈ Smin(W). Similarly for the rightmost s-t mincut Smax(W) ⊆ E(W). Note that both
Smin(W) and Smax(W) are also s-t mincuts in G (see the proof of Proposition 5 in the full
version of the paper [6]). When W consists of the entire set of s-t mincuts in G, we denote
these extremal cuts by Smin(G) and Smax(G).

On the set of s-t cuts (not necessarily minimum), the following predecessor-successor
relation defines a partial order: an s-t cut X is a predecessor of another s-t cut Y , denoted
by X ≤ Y , if every path from s to t in G meets an edge of X at or before an edge of Y . The
set of s-t mincuts together with relation ≤ defines a distributive lattice L [7, 23]. Moreover,
a compact representation G(L) can be constructed from a maximum flow in linear time [25].
These two facts play a crucial role in the proof of our main result in the next section.

3 A Polynomial Time Algorithm for SUM-k-DMC and COV-k-DMC

This section is devoted to proving Theorem 1 by reducing SUM-k-DMC and COV-k-DMC
to SMF on distributive lattices. First, we show that the domain of solutions of SUM-k-DMC
and COV-k-DMC can be restricted to the set of k-tuples that satisfy a particular order, as
opposed to the set of k-sized multisets of s-t mincuts (see Corollary 6 below). The reason

ISAAC 2023

24:6 Finding Diverse Minimum s-t Cuts

for doing so is that the structure provided by the former set can be exploited to assess the
“modularity” of the total-sum and coverage objectives. Next, we introduce the notions of
left-right order and edge multiplicity, which are needed throughout the section.

Consider a graph G with specified s, t ∈ V (G), and let Uk be the set of all k-tuples
over ΓG(s, t). An element C ∈ Uk is a (ordered) collection or sequence [X1, . . . , Xk] of cuts
Xi ∈ ΓG(s, t), where i runs over the index set {1, . . . , k}. We say that C is in left-right
order if Xi ≤ Xj for all i < j. Let us denote by Uk

lr ⊆ Uk the set of all k-tuples over
ΓG(s, t) that are in left-right order. Then, for any two C1, C2 ∈ Uk

lr, with C1 = [X1, . . . , Xk],
C2 = [Y1, . . . , Yk], we say that C1 is a predecessor of C2 (and C2 a successor of C1) if Xi ≤ Yi

for all i ∈ [k], and denote this by C1 ⪯ C2. Now, consider again a collection C ∈ Uk. The
set of edges

⋃
X∈C X is denoted by E(C). We define the multiplicity of an edge e ∈ E(G)

with respect to (w.r.t.) C as the number of cuts in C that contain e and denote it by µe(C).
We say that an edge e ∈ E(C) is a shared edge if µe(C) ≥ 2. The set of shared edges in C is
denoted by Eshr(C). We make the following proposition, the proof of which is in the full
version of the paper [6].

▶ Proposition 5. For every C ∈ Uk there exists Ĉ ∈ Uk
lr such that µe(C) = µe(Ĉ) ∀e ∈ E(G).

In other words, given a k-tuple of s-t mincuts, there always exists a k-tuple on the
same set of edges that is in left-right order; each edge occurring with the same multiplicity.
Consider now the total-sum and the coverage diversity measures first introduced in Section 1.
We can rewrite them directly in terms of the multiplicity of shared edges as

dsum(C) = 2
[
λ(G)

(
k

2

)
−

∑
e∈Eshr(C)

(
µe(C)

2

)]
and (1)

dcov(C) = kλ(G)−
∑

e∈Eshr(C)
(µe(C)− 1) , (2)

where terms outside the summations are constant terms. Then, combining eq. (1) (resp. (2))
with Proposition 5, we obtain the following corollary. (For simplicity, we state this only for
the dsum diversity measure, but an analogous claim holds for the dcov measure.)

▶ Corollary 6. Let C ∈ Uk such that dsum(C) = maxS∈Uk dsum(S). Then there exists
C ′ ∈ Uk

lr such that dsum(C ′) = dsum(C).

This corollary tells us that in order to solve SUM-k-DMC (resp. COV-k-DMC) we do
not need to optimize over the set Uk of k-element multisets of ΓG(s, t). Instead, we can look
at the set Uk

lr ⊆ Uk of k-tuples that are in left-right order. Moreover, it follows from Eqs. (1)
and (2) that the problem of maximizing dsum(C) and dcov(C) is equivalent to minimizing

d̂sum(C) =
∑

e∈Eshr(C)

(
µe(C)

2

)
, and (3)

d̂cov(C) =
∑

e∈Eshr(C)
(µe(C)− 1) , (4)

respectively. In turn, the submodularity of d̂sum(C) (resp. d̂cov(C)) implies the supermodu-
larity of dsum(C) (resp. dcov(C)) and vice versa. In the remaining of the section, we shall
only focus on the minimization objectives d̂sum and d̂cov.

We are now ready to show that both SUM-k-DMC and COV-k-DMC can be reduced
to SFM. We first show that the poset L∗ = (Uk

lr,⪯) is a distributive lattice (Section 3.1).
Next we prove that the diversity measures d̂sum and d̂cov are submodular functions on L∗

(Section 3.2). Lastly, we show that there is a compact representation of the lattice L∗ and
that it can be constructed in polynomial time, concluding with the proof of Theorem 1
(Section 3.3).

M. de Berg, A. López Martínez, and F. Spieksma 24:7

3.1 Proof of Distributivity
We use the following result of Escalante [7] (see also [12] or [23, Thm. 4]). Recall that ≤
denotes the predecessor-successor relation between two s-t mincuts.

▶ Lemma 7. The set ΓG(s, t) of s-t mincuts of G together with the binary relation ≤ forms
a distributive lattice L. For any two cuts X, Y ∈ L, the join and meet operations are given
by X ∨ Y := Smax(X ∪ Y), and X ∧ Y := Smin(X ∪ Y), respectively.

By the definition of product lattice, we can extend this result to the relation ⪯ on the set
Uk

lr of k-tuples of s-t mincuts that are in left-right order.

▶ Lemma 8. The set Uk
lr, together with relation ⪯, defines a distributive lattice L∗. For any

two elements C1 = [X1, . . . , Xk] and C2 = [Y1, . . . , Yk] in L∗, the join and meet operations
are given by C1 ∨ C2 = [Smax(X1 ∪ Y1), . . . , Smax(Xk ∪ Yk)] and C1 ∧ C2 = [Smin(X1 ∪
Y1), . . . , Smin(Xk ∪ Yk)], respectively.

Proof. This follows directly from Lemma 7 and the definition of product lattice (see Section
2.1). Let Lk = (Uk,⪯) be the kth power of the lattice L = (ΓG(s, t),≤) of minimum s-t
cuts, and let L∗ = (Uk

lr,⪯) with Uk
lr ⊆ Uk be the sublattice of left-right ordered k-tuples of

minimum s-t cuts. We know from Section 2 that since L is distributive, then so is the power
lattice Lk. Moreover, any sublattice of a distributive lattice is also distributive. Hence, it
follows that the lattice L∗ is also distributive. ◀

3.2 Proof of Submodularity
Now we prove that the functions d̂sum and d̂cov are submodular on the lattice L∗. We start
with two lemmas that establish useful properties of the multiplicity function µe(C) on L∗.
Due to space constraints, we defer the proofs to the full version of the paper [6].

▶ Lemma 9. The multiplicity function µe : Uk
lr → N is modular on L∗.

▶ Lemma 10. For any two C1, C2 ∈ L∗ and e ∈ E(C1) ∪ E(C2), it holds that max(µe(C1 ∨
C2), µe(C1 ∧ C2)) ≤ max(µe(C1), µe(C2)).

Lemma 10 plays an important role in the submodularity of d̂sum and d̂cov. In contrast to
Lemma 9, it does not hold on the kth power lattice of the distributive lattice L of Lemma 7.

Submodularity of d̂sum. Recall the definition of d̂sum(C) in equation (3), and let Be :
Uk

lr → N be the function defined by Be(C) =
(

µe(C)
2

)
. We can rewrite equation (3) as

d̂sum(C) =
∑

e∈Eshr(C) Be(C). The following is an immediate consequence of Lemmas 9–10
and the convexity of Be(C).

▷ Claim 11. For any two C1, C2 ∈ L∗ and e ∈ E(G), we have Be(C1 ∨C2) + Be(C1 ∧C2) ≤
Be(C1) + Be(C2).

In other words, the function Be(C) is submodular in the lattice L∗. Now, recall that the
sum of submodular functions is also submodular. Then, taking the sum of Be(C) over all
edges e ∈ E(G) results in a submodular function. From here, notice that Be(C) = 0 for
unshared edges; that is, when µe(C) < 2. This means that such edges do not contribute to
the sum. It follows that, for any two C1, C2 ∈ L∗, we have∑
e∈Eshr(C1∨C2)

Be(C1∨C2)+
∑

e∈Eshr(C1∧C2)

Be(C1∧C2) ≤
∑

e∈Eshr(C1)

Be(C1)+
∑

e∈Eshr(C2)

Be(C2).

ISAAC 2023

24:8 Finding Diverse Minimum s-t Cuts

Observe that each sum in the inequality corresponds to the definition of d̂sum applied to the
arguments C1 ∨C2, C1 ∧C2, C1 and C2, respectively. Hence, by definition of submodularity,
we obtain our desired result.

▶ Theorem 12. The function d̂sum : Uk
lr → N is submodular on the lattice L∗.

Submodularity of d̂cov. Consider the function Fe(C) : Uk
lr → N defined by Fe(C) =

µe(C)− 1. It is an immediate corollary of Lemma 9 that Fe(C) is modular in L∗. Then, the
sum

∑
e Fe(C) taken over all edges e ∈ E(G) is also modular. Notice that only shared edges

in C contribute positively to the sum. The contribution of unshared edges is either neutral or
negative. We can split this sum into two parts: the sum over shared edges e ∈ Eshr(C), and
the sum over e ∈ E(G) \Eshr(C). The latter can be further simplified to |E(C)| − |E(G)| by
observing that only the edges e ∈ E(G) \E(C) make a (negative) contribution. Therefore,
we write∑

e∈E(G)
Fe(C) =

(∑
e∈Eshr(C)

(µe(C)− 1)
)

+ |E(C)| − |E(G)|. (5)

We know
∑

e Fe(C) to be a modular function on L∗, hence for any two C1, C2 ∈ L∗ we have∑
e∈E(G) Fe(C1 ∨ C2) +

∑
e∈E(G) Fe(C1 ∧ C2) =

∑
e∈E(G) Fe(C1) +

∑
e∈E(G) Fe(C2), which,

by equation (5), is equivalent to ∑
e∈Eshr(C1∨C2)

(µe(C1 ∨ C2)− 1) +
∑

e∈Eshr(C1∧C2)

(µe(C1 ∧ C2)− 1)

+ |E(C1 ∨ C2)|+ |E(C1 ∧ C2)| =

=

 ∑
e∈Eshr(C1)

(µe(C1)− 1) +
∑

e∈Eshr(C2)

(µe(C2)− 1)

 + |E(C1)|+ |E(C2)|. (6)

Now, from Lemmas 9 and 10, we have the following result, whose proof can be found in
the full version [6].

▷ Claim 13. For any two C1, C2 ∈ L∗ we have |E(C1∨C2)|+|E(C1∧C2)| ≥ |E(C1)|+|E(C2)|.

Given Claim 13, it is clear that to satisfy equality in equation (6) it must be that:∑
e∈Eshr(C1∨C2)

(µe(C1 ∨ C2)− 1) +
∑

e∈Eshr(C1∧C2)

(µe(C1 ∧ C2)− 1)

≤
∑

e∈Eshr(C1)

(µe(C1)− 1) +
∑

e∈Eshr(C2)

(µe(C2)− 1),

from which the submodularity of d̂cov immediately follows.

▶ Theorem 14. The function d̂cov : Uk
lr → N is submodular on the lattice L∗.

3.3 Finding the Set of Join-Irreducibles
We now turn to the final part of the reduction to SFM. By Lemma 8, we know that the
lattice L∗ of left-right ordered collections of s-t mincuts is distributive. Moreover, it follows
from Theorems 12 and 14 that the objective functions d̂sum and d̂cov are submodular in L∗.
As discussed in Section 2.2, it now suffices to find an appropriate (compact) representation
of L∗ in the form of its poset of join-irreducibles J(L∗).

M. de Berg, A. López Martínez, and F. Spieksma 24:9

Recall the distributive lattice L of s-t mincuts of a graph G defined in Lemma 7. The
leftmost cut Smin(G) can be seen as the meet of all elements in L. In standard lattice
notation, this smallest element is often denoted by 0L :=

∨
x∈L x. We use the following result

of Picard and Queyranne.

▶ Lemma 15 ([25]). Let L be the distributive lattice of s-t mincuts in a graph G, there is a
compact representation G(L) of L with the following properties:
1. The vertex set is J(L) ∪ 0L,
2. |G(L)| ≤ |V (G)|,
3. Given G as input, G(L) can be constructed in F (n, m) + O(m) time.

In other words, the set J(L) is of size O(n) and can be recovered from G in the time
of a single max-flow computation. Moreover, each element of J(L) corresponds to an s-t
mincut in G. From this lemma, we obtain the following result for the poset J(L∗), the proof
of which is in the full version [6].

▶ Lemma 16. The set of join-irreducibles of L∗ is of size O(kn) and is given by

J(L∗) =
⋃k

i=1 Ji, where Ji := {(0L, . . . , 0L︸ ︷︷ ︸
i−1 times

, p, . . . , p︸ ︷︷ ︸
k−i+1 times

) : p ∈ J(L)}.

Given Lemma 16, a compact representation of the lattice L∗ can be obtained as the
directed graph G(L∗) that characterizes its poset of join-irreducibles J(L∗) in polynomial
time (since |J(L∗)| is polynomial). It is also clear that the functions d̂sum and d̂cov can be
computed in polynomial time. Then, by Theorem 4, the reduction to SFM is complete.

▶ Theorem 1. Sum-k-DMC and Cov-k-DMC can be solved in strongly polynomial time.

Due to space limitations, we refer the reader to the full version [6] for details on designing
O(k5n5)-time algorithms for these problems.

4 A Simple Algorithm for Finding Disjoint Minimum s-t Cuts

In the previous section, we looked at the problem of finding the k most diverse minimum s-t
cuts in a graph. Here, we consider a slightly different problem. Observe that for diversity
measures dsum and dcov, the maximum diversity is achieved when the elements of a collection
are all pairwise disjoint. Thus, it is natural to ask for a maximum cardinality collection of s-t
mincuts that are pairwise disjoint; i.e., that are as diverse as possible. We call this problem
Maximum Disjoint Minimum s-t Cuts (or Max-Disjoint MC for short).

Max-Disjoint MC. Given a graph G = (V, E) and vertices s, t ∈ V (G), find a set S ⊆
ΓG(s, t) such that X ∩ Y = ∅ for all X, Y ∈ S, and |S| is as large as possible.

Observe that a solution to Max-Disjoint MC immediately yields a solution to k-
Disjoint Minimum s-t Cuts. In this section, we prove Theorem 2 by giving an algorithm
for Max-Disjoint MC that runs in O(F (m, n) + λ(G)m) time, where F (m, n) is the time
required by a max-flow computation. First, we look at a restricted case when the input graph
can be decomposed into a collection of edge-disjoint s-t paths and (possibly) some additional
edges – we refer to such a graph as an s-t path graph – and devise an algorithm that handles
such graphs. Then, we use this algorithm as a subroutine to obtain an algorithm that makes
no assumption about the structure of the input graph.

ISAAC 2023

24:10 Finding Diverse Minimum s-t Cuts

s t

1
2
3

4

1

2

3

4

2

1

3

4

2

1

3

4

2

3
4

Figure 1 Example of an s-t path graph of height 4. Edges are labeled by integers corresponding
to the path they belong to. Path edges are drawn in black and non-path edges in gray.

4.1 When the input is an s-t path graph
Let Hs,t be a graph with designated vertices s and t. We call Hs,t an s-t path graph (or
path graph for short) if there is a collection P of edge-disjoint s-t paths such that P covers
all vertices in V (Hs,t). The height of Hs,t, denoted by λ(Hs,t), is the maximum number of
edge-disjoint s-t paths in the graph. For fixed P , we call the edges of Hs,t in P path edges
and edges of Hs,t not in P non-path edges. Two vertices in Hs,t are path neighbors if they are
joined by a path edge, and non-path neighbors if they are joined (exclusively) by a non-path
edge. See Figure 1 for an illustration.

Two remarks are in order. The first is that, by Menger’s theorem, the size of a minimum
s-t cut in an s-t path graph coincides with its height. The second remark is that, from a
graph G, one can easily obtain a path graph Hs,t of height λ(G) by finding a maximum-sized
set Ps,t of edge-disjoint s-t paths in G and letting Hs,t be the induced subgraph of their
union. Recall that, by Menger’s theorem, a minimum s-t cut in G must contain exactly one
edge from each path p ∈ Ps,t. Thus, every minimum s-t cut of G is in Hs,t. However, the
reverse is not always true. In the above construction, there could be multiple new minimum
s-t cuts introduced in Hs,t that arise from ignoring the reachability between vertices of Ps,t

in G. We will come back to this issue when discussing the general case in Section 4.2.

The algorithm. The goal in this subsection is to find a maximum cardinality collection Ĉ

of pairwise disjoint s-t mincuts in a path graph Hs,t. We now explain the main ideas behind
the algorithm. Without loss of generality, assume that the underlying set of edge-disjoint s-t
paths that define Hs,t is of maximum cardinality.

Let X be an s-t mincut in Hs,t, and suppose we are interested in finding an s-t mincut
Y disjoint from X such that X < Y . Consider any two edges e = (u, u′) and f = (v, v′) in
X, and let g = (w, w′) be a path successor of f ; that is f ≺p g with p ∈ Ps,t. If there is a
non-path edge h = (u′, z) such that w′ ≤ z, we say that h is crossing w.r.t. g, and that g is
invalid w.r.t. X (see Figure 2 for an illustration). The notions of crossing and invalid edges
provide the means to identify the edges that cannot possibly be contained in Y . Let Einv(X)
denote the set of invalid edges w.r.t. X. We make the following observation.

▶ Observation 17. Let Y > X. Then Y cannot contain an edge from Einv(X).

Proof. For the sake of contradiction, suppose there exists an edge g = (w, w′) in Einv(X)∩Y .
Consider the path p1 ∈ Ps,t, and let f be the predecessor of g on p1 that is in X. Since
g ∈ Einv(X), there is a crossing edge h = (u′, z) w.r.t. g. Let p2 ∈ Ps,t be the path containing
u′, and let (u, u′) be the edge of p2 that is in X. Let p3 be the s-t path that follows p2 from
s to u, then follows the crossing edge h, and then continues along p1 to t. Since Y is an s-t

M. de Berg, A. López Martínez, and F. Spieksma 24:11

.

. . . e . . .

. . .
f g

. . .

h

Figure 2 Example illustrating the notions of crossing and invalid edges for an s-t mincut X.
Path and non-path edges are drawn in black and gray, respectively. Edges e, f ∈ X are highlighted
in blue. The edge g is invalid w.r.t. X since the edge h is crossing with respect to it.

cut it must contain an edge from this path. Since Y must contain exactly one edge from
each path in Ps,t, it cannot contain h. Moreover, Y already contains edge g from p1. Then Y
must contain an edge from the part of p2 from s to u′. But this contradicts our assumption
that Y > X. ◀

If we extend the definition of Einv(X) to also include all the edges that are path prede-
cessors of edges in X, we obtain that, for any s-t path p ∈ Ps,t, the set of invalid edges along
p is a prefix of the path. As a result, if we can identify the (extended) set Einv(X), then
we can restrict our search of cut Y to the set of valid edges Eval(X) := E(Hs,t) \ Einv(X).
This motivates the following iterative algorithm for finding a pairwise disjoint collection of
s-t mincuts: (1) Find the leftmost s-t mincut X in Hs,t, (2) identify the set Einv(X) and
find the leftmost s-t mincut Y amongst Eval(X), (3) set X = Y and repeat step (2) until
Eval(X) ∩ p = ∅ for any one path p ∈ Ps,t, and finally (4) output the union of identified cuts
as the returned collection Ĉ. Informally, notice that the s-t mincut identified at iteration i

is a successor of the mincuts identified at iterations j < i. Hence, the returned collection
will consist of left-right ordered and pairwise disjoint s-t mincuts. Moreover, picking the
leftmost cut at each iteration prevents the set of invalid edges from growing unnecessarily
large, which allows for more iterations and thus, a larger set returned. Next, we give a more
formal description of the algorithm, the details of which are presented in Algorithm 1.

Algorithm 1 Obtain a Maximum Set of Disjoint Minimum s-t Cuts.

Input: Path graph Hs,t.
Output: A maximum set Ĉ of disjoint s-t mincuts in Hs,t.

1: Initialize collection Ĉ ← ∅ and set M ← {s}.
2: while t is unmarked do ▷ Traverse the graph from left to right.
3: while M is not empty do ▷ Marking step.
4: for each vertex v ∈M do
5: for each path p ∈ Ps,t do ▷ Identify invalid edges.
6: Identify the rightmost neighbor u ∈ p of v reachable by a non-path edge.
7: if u is unmarked then
8: Mark u and all (unmarked) vertices that are path-predecessors of u.
9: Set M to the set of newly marked vertices.

10: X ←
⋃
{(x, y) ∈ Ps,t : x is marked, y is unmarked}. ▷ Cut-finding step.

11: Ĉ ← Ĉ ∪ {X}.
12: for each (x, y) ∈ X do ▷ Mark the head node of cut edges.
13: Mark y.
14: M ←

⋃
(x,y)∈X y. ▷ Newly marked vertices.

15: Return Ĉ.

ISAAC 2023

24:12 Finding Diverse Minimum s-t Cuts

The algorithm works by traversing the graph from left to right in iterations while marking
the vertices it visits. Initially, all vertices are unmarked, except for s. Each iteration consists
of two parts: a marking, and a cut-finding step. In the marking step (Lines 3-9), the
algorithm identifies currently invalid edges by marking the non-path neighbors – and their
path-predecessors – of currently marked vertices. (Observe that a path edge becomes invalid
if both of its endpoints are marked.) In Algorithm 1, this is realized by a variable M that
keeps track of the vertices that have just been marked as a consequence of the marking of
vertices previously present in M . In the cut-finding step (Lines 10-14), the algorithm then
finds the leftmost minimum s-t cut amongst valid path edges. Notice that, for each s-t path
in Ps,t, removing its first valid edge prevents s from reaching t via that path. This means
that our leftmost cut of interest is the set of all path edges that have exactly one of their
endpoints marked. Following the identification of this cut, the step concludes by marking the
head vertices of the identified cut edges. Finally, the algorithm terminates when the target
vertex t is visited and marked. See Figure 3 for an example execution of the algorithm.

▷ Claim 18. The complexity of Algorithm 1 on an m-edge, n-vertex path graph is O(m log n).

Due to space limitations, we defer the proof of Claim 18 to the full version [6].

Correctness of Algorithm 1. We note an important property of collections of s-t mincuts.
(We use d(C) to denote any of dsum(C) or dcov(C).)

▷ Claim 19. Let C be a left-right ordered collection of minimum s-t cuts in a graph G,
the collection C̃ obtained by replacing Smin(

⋃
X∈C X) (resp. Smax(

⋃
X∈C X)) with Smin(G)

(resp. Smax(G)) has cost d(C̃) ≤ d(C).

Proof. We prove this only for Smin(·) as the proof for Smax(·) is analogous. For simplicity, let
us denote Smin(C) := Smin(

⋃
X∈C X). By definition, we know that no edge of

⋃
X∈C X lies

to the left of Smin(G). Then replacing Smin(C) with Smin(G) can only decrease the number
of pairwise intersections previously present between Smin(C) and the cuts in C \ Smin(C).
Notice that our measures of diversity only penalize edge intersections. Hence, the cost of
collection C̃ cannot be greater than that of C. ◁

Now, consider an arbitrary collection of k edge-disjoint s-t mincuts in a path graph
Hs,t. Corollary 6 implies that there also exists a collection of k edge-disjoint s-t mincuts
in Hs,t that is in left-right order. In particular, this is true for a collection of maximum
cardinality kmax. Together with Claim 19, this means that there always exists a collection
Ĉ of edge-disjoint s-t mincuts in Hs,t with the following properties:

I Ĉ has size kmax,
II Ĉ is in left-right order,

III Ĉ contains the leftmost s-t mincut of Hs,t, and
IV The set Smax(Ĉ) ∩ Smax(Hs,t) is not empty.

We devote the rest of the subsection to proving the following lemma, which serves to prove
the correctness of Algorithm 1.

▶ Lemma 20. Algorithm 1 returns a collection of edge-disjoint minimum s-t cuts that
satisfies Properties I–IV.

Let Ĉ denote the solution returned by the algorithm. First, we show that Ĉ contains
only disjoint cuts. This follows from the fact that a cut can only be found amongst valid
edges at any given iteration, and once an edge has been included in a cut, it becomes invalid

M. de Berg, A. López Martínez, and F. Spieksma 24:13

at every subsequent iteration. Similarly, Properties II and III are consequences of the notion
of invalid edges. We start by proving the latter. Let X1 denote the leftmost cut in Ĉ. For
the sake of contradiction, assume there is a minimum s-t cut Y such that e ≺p f . Here,
e ∈ Y , f ∈ X1 and w.l.o.g. p is an s-t path from any arbitrary maximum collection of s-t
paths in Hs,t. For the algorithm to pick edge f = (u, u′) as part of X1 it must be that vertex
u is marked and u′ is not. We know that the predecessors of marked vertices must also
be marked. Hence we know that both endpoints of edge e are marked. But by definition,
this means that edge e is invalid, and cannot be in a minimum s-t cut. This gives us the
necessary contradiction, and X1 must be the leftmost cut in the graph.

We continue with Property II. This property follows from the fact that, at any given
iteration, the posets of invalid path-edges on each path of Hs,t are ideals of the set of path
edges. This means that the edges in the cut found by the algorithm at iteration i are all path
predecessors of an edge in the cut found at iteration i + 1. Carrying on with Property IV, we
prove that it follows from the fact that the algorithm terminates when the target node t is
marked. Suppose, for the sake of contradiction, that the cuts Smax(Ĉ) and Smax(Hs,t) do not
intersect. Then, given that Smax(Ĉ) is the last cut found by our algorithm, to mark node t

there must exist a non-path edge connecting the endpoint v of some edge e = (u, v) ∈ Smax(Ĉ)
to t. But this implies that no path-successor of edge e can be in an s-t mincut, which makes
e the rightmost edge on its path that belongs to an s-t mincut. Therefore, e must also be
contained in Smax(Hs,t), a contradiction.

It only remains to show Property I, which states that the collection Ĉ is of maximum
cardinality kmax. For this, we make the following claim, whose proof is analogous to the
proof of Property III. Let Ĉi be the collection of s-t mincuts maintained by the algorithm at
the end of iteration i.

▷ Claim 21. Consider set Ĉi−1 and let Xi be the minimum s-t cut found by the algorithm
at iteration i. Then, there is no minimum s-t cut Y such that: (i) Y is disjoint from each
X ∈ Ĉi−1, and (ii) Y contains an edge that is a path predecessor of an edge of Xi.

In other words, as the algorithm makes progress, no minimum s-t cut – that is disjoint
from the ones found so far by the algorithm – has edges to the left of the minimum s-t
cut found by the algorithm at the present iteration. Next, we show that this implies the
maximality of the size of the solution returned by the algorithm.

Let Cmax be a maximum-sized collection of s-t mincuts in the graph. Without loss of
generality, assume that Cmax is in left-right order (otherwise, by Corollary 6 we can always
obtain an equivalent collection that is left-right ordered) and that Smin(Hs,t) ∈ Cmax and
Smax(Hs,t) ∈ Cmax. For the sake of contradiction, suppose that the collection Ĉ returned by
our algorithm is of cardinality |Ĉ| = ℓ < kmax.

▶ Observation 22. There exists at least one minimum s-t cut Y ∈ Cmax such that Xi < Y

and Y contains at least one edge that is a path predecessor of an edge in Xi+1, with Xi and
Xi+1 two consecutive cuts in Ĉ.

Proof. Let Cmax = {Y1, Y2, . . . , Ykmax}, where Y1 = Smin(Hs,t) and Ykmax = Smax(Hs,t), and
let Ĉ = {X1, . . . , Xℓ}. We know by Property III that X1 = Smin(Hs,t). Hence, there is
always an s-t mincut in Cmax that is a strict successor of a cut in Ĉ, namely Y2 > X1. For
the sake of contradiction, suppose that the observation is false. Then, every cut Y ∈ Cmax
that is a strict successor of a cut Xi ∈ Ĉ is also a (not necessarily strict) successor of the cut
Xi+1 ∈ Ĉ, for i ∈ {1, . . . , ℓ− 1}. Let this be true for the first ℓ− 1 cuts of Ĉ. Then, the last
kmax − ℓ cuts of Cmax must be disjoint from the first ℓ− 1 cuts of Ĉ. The last cut Xℓ of Ĉ

ISAAC 2023

24:14 Finding Diverse Minimum s-t Cuts

s t

1
2
3

4

1

2

3

4

2

1

3

4

2

1

3

4

2

3
4

s t

1
2
3

4

1

2

3

4

2

1

3

4

2

1

3

4

2

3
4

Figure 3 Example illustrating the first two iterations of Algorithm 1 on a path graph of height 4.
The black- and gray-shaded vertices represent vertices marked at the previous and current iterations,
respectively. The red edges correspond to the s-t mincut found at the end of the first (left) iteration.
Similarly, the blue edges correspond to the s-t mincut found at the second (right) iteration.

must then be located in or before the gap between the first ℓ cuts in Cmax and its remaining
k − ℓ cuts. But we know by Property IV that Xℓ ∩ Ykmax ̸= ∅, which gives the necessary
contradiction. ◀

Observation 22 stands in contrast with Claim 21, which states that such a cut Y cannot
exist. Hence, we obtain a contradiction, and the collection Ĉ returned by the algorithm must
be of maximum cardinality. This completes the proof of Lemma 20.

4.2 Handling the general case
We now consider Max-Disjoint MC in general graphs. Recall from the previous subsection
that, from a graph G, one can construct a path graph Hs,t such that every minimum s-t
cut in G is also a minimum s-t cut in Hs,t. We could propose to use Algorithm 1 in Hs,t to
solve Max-Disjoint MC in G. But, as we argued previously, the path graph Hs,t may not
have the same set of s-t mincuts as G. We can, however, solve this challenge by augmenting
Hs,t with edges such that its minimum s-t cuts correspond bijectively to those in G.

▶ Definition 23. An augmented s-t path graph of G is a path graph Hs,t(G) of height λ(G),
with additional non-path edges between any two vertices u, v ∈ V (Hs,t(G)) such that v is
reachable from u in G by a path whose internal vertices are exclusively in V (G) \V (Hs,t(G)).

In view of this definition, the following claim and lemma serve as the correctness and
complexity proofs of the proposed algorithm for the general case.

▷ Claim 24. An augmented s-t path graph of G has the same set of s-t mincuts as G.

Proof. By Menger’s theorem, we know that a minimum s-t cut in G must contain exactly
one edge from each path in Ps,t(G), where |Ps,t(G)| = |λ(G)|. W.l.o.g., let Hs,t(G) be the
augmented s-t path graph of G such that each path p ∈ Ps,t(G) is also present in Hs,t(G).
We now show that a minimum s-t cut in G is also present in Hs,t(G). The argument in the
other direction is similar and is thus omitted.

Consider an arbitrary minimum s-t cut X in G. For the sake of contradiction, assume
that X is not a minimum s-t cut in Hs,t(G). Then, after removing every edge of X in
Hs,t(G), there is still at least one s-t path left in the graph. Such a path must contain an
edge (u, v) such that u ≤ w and w′ ≤ v, where w and w′ are the tail and head nodes of two
(not necessarily distinct) edges in X, respectively. By definition of Hs,t(G), there is a path
from u to v in G that does not use edges in Ps,t(G). But then removing the edges of X

in G still leaves an s-t path in the graph. Thus X cannot be an s-t cut, and we reach our
contradiction. ◁

M. de Berg, A. López Martínez, and F. Spieksma 24:15

▶ Lemma 25. An augmented s-t path graph H of a graph G can be constructed in time
O(F (m, n) + mλ(G)), where F (m, n) is the time required by a max-flow computation.

Proof. The idea of the algorithm is rather simple. First, we find a maximum cardinality
collection of edge-disjoint s-t paths in G and take their union to construct a “skeleton” graph
H . Then, we augment the graph by drawing an edge between two path vertices u, v ∈ H if v

is reachable from u in G by using exclusively non-path vertices. By definition, the resulting
graph is an augmented s-t path graph of G.

Now we look into the algorithm’s implementation and analyze its running time. It is
folklore knowledge that the problem of finding a maximum-sized collection of edge-disjoint
s-t paths in a graph with n vertices and m edges can be formulated as a maximum flow
problem. Hence, the first step of the algorithm can be performed in F (m, n) time. Let
Ps,t(G) denote such found collection of s-t paths.

The second step of the algorithm could be computed in O(mn) time by means of an
all-pairs reachability algorithm. Notice, however, that for a path vertex v all we require for
a correct execution of Algorithm 1 is knowledge of the rightmost vertices it can reach on
each of the λ(G) paths (Line 6 of Algorithm 1). Hence, we do not need to draw every edge
between every pair of reachable path vertices, only λ(G) edges per vertex suffice. This can
be achieved in O(mλ(G)) time as follows.

In the original graph, first equip each vertex u ∈ V (G) with a set of λ(G) variables
R(p, u), one for each path p ∈ Ps,t(G). These variables will be used to store the rightmost
vertex v ∈ p that is reachable from u. Next, consider a path p ∈ Ps,t(G) represented as
a sequence [v1, v2, . . . , vp] of internal vertices (i.e., with s and t removed). For each vertex
v ∈ p, in descending order, execute the following procedure propagate(v, p): Find the set
N(v) of incoming neighbors of v in G and, for each w ∈ N(v) if R(p, w) has not been set,
let R(p, w) = v and mark w as visited. Then, for each node w ∈ N(v), if w is an unvisited
non-path vertex, execute propagate(w, p); otherwise, do nothing. Notice that, since we
iterate from the rightmost vertex in p, any node u such that R(u, p) = vi cannot change its
value when executing propagate(vj) with j < i. In other words, each vertex only stores
information about the rightmost vertex it can reach in p. Complexity-wise, every vertex v in
G will be operated upon at most deg(v) times. Hence, starting from an unmarked graph,
a call to propagate(v, p) takes O(m) time. Now, we want to execute the above for each
path p ∈ Ps,t(G) (unmarking all vertices before the start of each iteration). This then gives
us our claimed complexity of O(mλ(G)). The claim follows from combining the running time
of both steps of the algorithm. ◀

The following is an immediate consequence of Lemma 25 and Claim 18.

▶ Corollary 26. There is an algorithm that, given a graph G and two specified vertices
s, t ∈ V (G), in O(F (m, n) + mλ(G)) time finds a collection of maximum cardinality of
pairwise disjoint s-t mincuts in G.

By replacing F (m, n) in Corollary 26 with the running time of the current best algorithms
for finding a maximum flow [21, 18], we obtain the desired running time of Theorem 2.

5 Concluding remarks

We showed that k-DMC can be solved efficiently when considering two natural measures for
the diversity of a set of solutions. There exist, however, other sensible measures of diversity.
One that often arises in literature is that of maximizing the minimum pairwise Hamming
distance of a solution set. The complexity of k-DMC when considering this objective is still
open. It is not immediately clear how to apply our ordering results to this variant.

ISAAC 2023

24:16 Finding Diverse Minimum s-t Cuts

For the special case of k-Disjoint Minimum s-t Cuts, we showed that faster algorithms
exist when compared to solving k-DMC on the total-sum and coverage diversity measures. It
is thus natural to ask whether there are faster algorithms for Sum-k-DMC and Cov-k-DMC
(or other variants of k-DMC) that do not require the sophisticated framework of submodular
function minimization. In this work, we relied on the algebraic structure of the problem
to obtain a polynomial time algorithm. We believe it is an interesting research direction
to assess whether the notion of diversity in other combinatorial problems leads to similar
structures, which could then be exploited for developing efficient algorithms.

References
1 Julien Baste, Michael R. Fellows, Lars Jaffke, Tomáš Masařík, Mateus de Oliveira Oliveira,

Geevarghese Philip, and Frances A. Rosamond. Diversity of solutions: An exploration through
the lens of fixed-parameter tractability theory. Artificial Intelligence, 303:103644, 2022.
doi:10.1016/j.artint.2021.103644.

2 Julien Baste, Lars Jaffke, Tomáš Masařík, Geevarghese Philip, and Günter Rote. Fpt algorithms
for diverse collections of hitting sets. Algorithms, 12(12):254, 2019.

3 Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.
4 Mohammadreza Bolandnazar, Woonghee Tim Huh, S Thomas McCormick, and Kazuo Murota.

A note on “order-based cost optimization in assemble-to-order systems”. University of Tokyo
(February, Techical report), 2015.

5 Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge University
Press, 2002.

6 Mark de Berg, Andrés López Martínez, and Frits Spieksma. Finding diverse minimum s-t cuts,
2023. arXiv:2303.07290.

7 Fernando Escalante. Schnittverbände in graphen. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 38, pages 199–220. Springer, 1972.

8 Fedor V. Fomin, Petr A. Golovach, Lars Jaffke, Geevarghese Philip, and Danil Sagunov.
Diverse Pairs of Matchings. In 31st International Symposium on Algorithms and Computation
(ISAAC 2020), volume 181 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:12, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ISAAC.2020.26.

9 George Gratzer. Lattice theory: First concepts and distributive lattices. Courier Corporation,
2009.

10 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Com-
binatorial Optimization, volume 2. Springer Science & Business Media, 2012.

11 D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algorithms.
Foundations of computing. MIT Press, 1989.

12 R Halin. Lattices related to separation in graphs. In Finite and Infinite Combinatorics in
Sets and Logic, pages 153–167. Springer, 1993.

13 Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita,
and Yota Otachi. A framework to design approximation algorithms for finding diverse solutions
in combinatorial problems. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 3968–3976, 2023.

14 Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, See Woo Lee, and Yota Otachi.
Computing diverse shortest paths efficiently: A theoretical and experimental study. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 36(4):3758–3766, June 2022.
doi:10.1609/aaai.v36i4.20290.

15 Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, and Yota Otachi. Finding diverse trees,
paths, and more. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3778–3786, 2021.

https://doi.org/10.1016/j.artint.2021.103644
https://arxiv.org/abs/2303.07290
https://doi.org/10.4230/LIPIcs.ISAAC.2020.26
https://doi.org/10.1609/aaai.v36i4.20290

M. de Berg, A. López Martínez, and F. Spieksma 24:17

16 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777,
2001.

17 Haotian Jiang. Minimizing convex functions with integral minimizers. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 976–985. SIAM, 2021.

18 Tarun Kathuria. A potential reduction inspired algorithm for exact max flow in almost Õ(m4/3)
time, 2020. arXiv:2009.03260.

19 Samir Khuller, Joseph Naor, and Philip Klein. The lattice structure of flow in planar graphs.
SIAM Journal on Discrete Mathematics, 6(3):477–490, 1993.

20 Ching-Chung Kuo, Fred Glover, and Krishna S Dhir. Analyzing and modeling the maximum
diversity problem by zero-one programming. Decision Sciences, 24(6):1171–1185, 1993.

21 Yang P. Liu and Aaron Sidford. Faster divergence maximization for faster maximum flow,
2020. arXiv:2003.08929.

22 George Markowsky. An overview of the poset of irreducibles. Combinatorial And Computational
Mathematics, pages 162–177, 2001.

23 Bernd Meyer. On the lattices of cutsets in finite graphs. European Journal of Combinatorics,
3(2):153–157, 1982.

24 Kazuo Murota. Discrete Convex Analysis. Society for Industrial and Applied Mathematics,
2003. doi:10.1137/1.9780898718508.

25 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a
network and applications. Mathematical Programming Studies, 13:8–16, 1980.

26 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

27 Shengling Shi, Xiaodong Cheng, and Paul M.J. Van den Hof. Generic identifiability of
subnetworks in a linear dynamic network: The full measurement case. Automatica, 137:110093,
2022. doi:10.1016/j.automatica.2021.110093.

28 Shengling Shi, Xiaodong Cheng, and Paul M.J. Van den Hof. Personal communication, October
2021.

29 Donald K Wagner. Disjoint (s, t)-cuts in a network. Networks, 20(4):361–371, 1990.
30 Si-Qing Zheng, Bing Yang, Mei Yang, and Jianping Wang. Finding minimum-cost paths

with minimum sharability. In IEEE INFOCOM 2007-26th IEEE International Conference on
Computer Communications, pages 1532–1540. IEEE, 2007.

ISAAC 2023

https://arxiv.org/abs/2009.03260
https://arxiv.org/abs/2003.08929
https://doi.org/10.1137/1.9780898718508
https://doi.org/10.1016/j.automatica.2021.110093

Efficient Algorithms for Euclidean Steiner Minimal
Tree on Near-Convex Terminal Sets
Anubhav Dhar #

Indian Institute of Technology Kharagpur, India

Soumita Hait #

Indian Institute of Technology Kharagpur, India

Sudeshna Kolay #

Indian Institute of Technology Kharagpur, India

Abstract
The Euclidean Steiner Minimal Tree problem takes as input a set P of points in the Euclidean
plane and finds the minimum length network interconnecting all the points of P. In this paper, in
continuation to the works of [5] and [15], we study Euclidean Steiner Minimal Tree when P is
formed by the vertices of a pair of regular, concentric and parallel n-gons.

We restrict our attention to the cases where the two polygons are not very close to each other.
In such cases, we show that Euclidean Steiner Minimal Tree is polynomial-time solvable, and
we describe an explicit structure of a Euclidean Steiner minimal tree for P.

We also consider point sets P of size n where the number of input points not on the convex hull
of P is f(n) ≤ n. We give an exact algorithm with running time 2O(f(n) log n) for such input point
sets P. Note that when f(n) = O(n

log n
), our algorithm runs in single-exponential time, and when

f(n) = o(n) the running time is 2o(n log n) which is better than the known algorithm in [9].
We know that no FPTAS exists for Euclidean Steiner Minimal Tree unless P = NP [6]. On

the other hand FPTASes exist for Euclidean Steiner Minimal Tree on convex point sets [14].
In this paper, we show that if the number of input points in P not belonging to the convex hull of
P is O(log n), then an FPTAS exists for Euclidean Steiner Minimal Tree. In contrast, we show
that for any ϵ ∈ (0, 1], when there are Ω(nϵ) points not belonging to the convex hull of the input set,
then no FPTAS can exist for Euclidean Steiner Minimal Tree unless P = NP.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Steiner minimal tree, Euclidean Geometry, Almost Convex point sets, FPTAS,
strong NP-completeness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.25

Related Version Full Version: https://arxiv.org/abs/2307.00254

1 Introduction

The Euclidean Steiner Minimal Tree problem asks for a network of minimum total
length interconnecting a given finite set P of n points in the Euclidean plane. Formally, we
define the problem as follows, taken from [2]:

Euclidean Steiner Minimal Tree
Input: A set P of n points in the Euclidean plane
Question: Find a connected plane graph T such that P is a subset of the vertex set
V (T), and for the edge set E(T), Σe∈E(T)e is minimized over all connected plane graphs
with P as a vertex subset.

Note that the metric being considered is the Euclidean metric, and for any edge e ∈ E(T),
e denotes the Euclidean length of the edge. Here, the input set P of points is often called a
set of terminals, the points in S = V (T) \ P are called Steiner points. A solution graph T is
referred to as a Euclidean Steiner minimal tree, or simply an SMT.

© Anubhav Dhar, Soumita Hait, and Sudeshna Kolay;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anubhavdhar@kgpian.iitkgp.ac.in
mailto:soumitahait7321@gmail.com
mailto:skolay@cse.iitkgp.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2023.25
https://arxiv.org/abs/2307.00254
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 ESMT on Near-Convex Terminal Sets

The Euclidean Steiner Minimal Tree problem is a classic problem in the field of
Computational Geometry. The origin of the problem dates back to Fermat (1601-1665) who
proposed the problem of finding a point in the plane such that the sum of its distance from
three given points is minimized. This is equivalent to finding the location of the Steiner
point when given three terminals as input. Torricelli proposed a geometric solution to this
special case of 3 terminal points. The idea was to construct equilateral triangles outside on
all three sides of the triangle formed by the terminals, and draw their circumcircles. The
three circles meet at a single point, which is our required Steiner point. This point came to
be known as the Torricelli point. When one of the angles in the triangle is at least 120◦, the
minimizing point coincides with the obtuse angle vertex of the triangle. In this case, the
Torricelli point lies outside the triangle and no longer minimizes the sum of distances from
the vertices. However, when vertices of polygons with more than 3 sides are considered as
a set of terminals, a solution to the Fermat problem does not in general lead to a solution
to the Euclidean Steiner Minimal Tree problem. For a more detailed survey on the
history of the problem, please refer to [2, 9]. For convenience, we refer to the Euclidean
Steiner Minimal Tree problem as ESMT.

ESMT is NP-hard. In [6], Garey et al. prove a discrete version of the problem (Discrete
ESMT) to be strongly NP-complete via a reduction from the Exact Cover by 3-Sets
(X3C) problem. Although it is not known if the ESMT problem is in NP, it is at least as
hard as any NP-complete problem. So, we do not expect a polynomial time algorithm for
it. A recursive method using only Euclidean constructions was given by Melzak in [11] for
constructing all the Steiner minimal trees for any set of n points in the plane by constructing
full Steiner trees of subsets of the points. Full Steiner trees are interconnecting trees having
the maximum number of newly introduced points (Steiner points) where all internal junctions
are of degree 3. Hwang improved the running time of Melzak’s original exponential algorithm
for full Steiner tree construction to linear time in [8]. Using this, we can construct an
Euclidean Steiner minimal tree in 2O(n log n) time for any set of n points. This was the first
algorithm for Euclidean Steiner Minimal Tree. The problem is known to be NP-hard
even if all the terminals lie on two parallel straight lines, or on a bent line segment where
the bend has an angle of less than 120◦ [13]. Since the above sets of terminals all lie on the
boundary of a convex polygon (or, are in convex position), this shows that ESMT is NP-hard
when restricted to a set of points that are in weakly convex position.

Although the ESMT problem is NP-hard, there are certain arrangements of points in
the plane for which the Euclidean Steiner minimal tree can be computed efficiently, say in
polynomial time. One such arrangement is placing the points on the vertices of a regular
polygon. This case was solved by Du et al. [5]. Their work gives exact topologies of the
Euclidean Steiner minimal trees. Weng et al. [15] generalized the problem by incorporating
the centre point of the regular polygon as part of the terminal set, along with the vertices.
This case was also found to be polynomial time solvable.

Tractability in the form of approximation algorithms for ESMT has been extensively
studied. It was proved in [6] that a fully polynomial time approximation scheme (FPTAS)
cannot exist for this problem unless P = NP. However, we do have an FPTAS when the
terminals are in convex position [14]. Arora’s celebrated polynomial time approximation
scheme (PTAS) for the ESMT and other related problems is described in [1]. Around
the same time, Rao and Smith gave an efficient polynomial time approximation scheme
(EPTAS) in [12]. In recent years, an EPTAS with an improved running time was designed
by Kisfaludi-Bak et al. [10].

A. Dhar, S. Hait, and S. Kolay 25:3

Our Results

In this paper, we first extend the work of [5] and [15]. We state this problem as ESMT on
k-Concentric Parallel Regular n-gons.

▶ Definition 1 (k-Concentric Parallel Regular n-gons). k-Concentric Parallel Regular n-gons
are k regular n-gons that are concentric and where the corresponding sides of polygons are
parallel to each other.

Please refer to Figure 1(a) for an example of a 2-Concentric Parallel Regular 12-gon. We
call k-Concentric Parallel Regular n-gons as k-CPR n-gons for short.

We consider terminal sets where the terminals are placed on the vertices of 2-CPR n-gons.
In the case of k = 2, the n-gon with the smaller side length will be called the inner n-gon
and the other n-gon will be called the outer n-gon. Also, let a be the side length of the
inner n-gon, and b be the side length of the outer n-gon. We define λ = b

a and refer to it as
the aspect ratio of the two regular polygons. In Section 3, we derive the exact structures
of the SMTs for 2-CPR n-gons when the aspect ratio λ of the two polygons is greater than

1
1−4 sin (π/n) and n ≥ 13.

Next, we consider ESMT on an f(n)-Almost Convex Point Set.

▶ Definition 2 (f(n)-Almost Convex Point Set). An f(n)-Almost Convex Point Set P is a
set of n points in the Euclidean plane such that there is a partition P = P1 ⊎ P2 where P1
forms the convex hull of P and |P2| = f(n).

Please refer to Figure 1(b) for an example of a 5-Almost Convex Set of 13 points. In Section 4,
we give an exact algorithm for ESMT on f(n)-Almost Convex Sets of n terminals. The
running time of this algorithm is 2O(f(n) log n). Thus, when f(n) = O(n

log n), then our
algorithm runs in 2O(n) time, and when f(n) = o(n) then the running time is 2o(n log n). This
is an improvement on the best known algorithm for the general case [9].

Next in Section 5, for f(n) = O(log n), we give an FPTAS. On the other hand we show
that, for all ϵ ∈ (0, 1], when f(n) ∈ Ω(nϵ), there cannot exist any FPTAS unless P = NP.

Due to paucity of space, we omit certain proofs that can be found in the full version of
the paper.

(a) 2-CPR 12-gons. (b) f(n)-Almost Convex Point Set for
n = 13, f(n) = 5.

Figure 1 Examples for Definition 1 and Definition 2.

2 Preliminaries

Notations. For a given positive integer k ∈ N, the set of integers {1, 2, . . . , k} is denoted for
short as [k]. Given a graph G, the vertex set is denoted as V (G) and the edge set as E(G).
Given two graphs G1 and G2, G1 ∪ G2 denotes the graph G where V (G) = V (G1) ∪ V (G2)
and E(G) = E(G1) ∪ E(G2).

ISAAC 2023

25:4 ESMT on Near-Convex Terminal Sets

In this paper, a regular n-gon is denoted by A1A2A3...An or B1B2B3...Bn. For conveni-
ence, we define An+1 := A1, Bn+1 := B1, A0 := An and B0 := Bn. We use the notation {Ai}
to denote the polygon A1A2A3 . . . An and {Bi} to denote the polygon B1B2B3 . . . Bn. For any
regular polygon A1A2A3...An, the circumcircle of the polygon is denoted as (A1A2A3...An).

Given two points P , Q in the Euclidean plane, we denote by dist(P, Q) the Euclidean
distance between P and Q. Given a line segment AB in the Euclidean plane, AB = dist(A, B).
For two distinct points A and B, LAB denotes the line containing A and B; and −−→

AB denotes
the ray originating from A and containing B.

When we refer to a graph G in the Euclidean plane then V (G) is a set of points in the
Euclidean plane, and E(G) is a subset of the family of line segments {P1P2|P1, P2 ∈ V (G)}.
For any tree T in the Euclidean plane, we denote by the notation |T | the value of Σe∈E(T)e.
A path in a tree T is uniquely specified by the sequence of vertices on the path; therefore,
P1, P2, P3, . . . , Pk (where Pi ∈ V (T), ∀i ∈ [k] and PiPi+1 ∈ E(T), ∀i ∈ [k − 1]) denotes
the path starting from the vertex P1, going through the vertices P2, P3, . . . , Pk−1 and
finally ending at Pk. Equivalently, we can specify the same path as the path from P1 to
Pk, since T is a tree. Consider the graph T such that V (T) = {vP |P ∈ V (T)}, E(T) =
{vP1vP2 |P1P2 is a line segment in E(T)}. Then T is said to be the topology of T while T is
said to realize the topology T . Given two trees T1, T2 in the Euclidean plane, T ′ = T1 ∪ T2
is the graph where V (T ′) = V (T1) ∪ V (T2) and E(T ′) = E(T1) ∪ E(T2).

Given any graph G, a Steiner minimal tree or SMT for a terminal set P ⊆ V (G) is the
minimum length connected subgraph G′ of G such that P ⊆ V (G′). The Steiner Minimal
Tree problem on graphs takes as input a set P of terminals and aims to find a minimum
length SMT for P. For the rest of the paper, we also refer to a Euclidean Steiner minimal
tree as an SMT. Given a set of points P in the Euclidean plane, the convex hull of P is
denoted as CH(P).

Properties of a Euclidean Steiner minimal tree. A Euclidean Steiner minimal tree (SMT)
has certain structural properties as given in [3]. We state them in the following Proposition.

▶ Proposition 3. Consider an SMT on n terminals.
1. No two edges of the SMT intersect with each other.
2. Each Steiner point has degree exactly 3 and the incident edges meet at 120◦ angles. The

terminals have degree at most 3 and the incident edges form angles that are at least 120◦.
3. The number of Steiner points is at most n − 2, where n is the number of terminals.

A full Steiner tree (FST) is a Steiner tree (need not be minimal, but may include Steiner
points) having exactly n − 2 Steiner points, where n is the number of terminals. In an FST,
all terminals are leaves and Steiner points are interior nodes. When the length of an FST is
minimized, it is called a minimum FST.

All SMTs can be decomposed into FST components such that, in each component a
terminal is always a leaf. This decomposition is unique for a given SMT [9]. A topology for
an FST is called a full Steiner topology and that of a Steiner tree is called a Steiner topology.

Steiner Hulls. A Steiner hull for a given set of points is defined to be a region which is
known to contain an SMT. We get the following propositions from [9].

▶ Proposition 4. For a given set of terminals, every SMT is always contained inside the
convex hull of those points. Thus, the convex hull is also a Steiner hull.

The next two propositions are useful in restricting the structure of SMTs and the location
of Steiner points.

A. Dhar, S. Hait, and S. Kolay 25:5

▶ Proposition 5 (The Lune property). Let UV be any edge of an SMT. Let L(U, V) be the
lune-shaped intersection of circles of radius |UV| centered on U and V. No other vertex of
the SMT can lie in L(U, V), except U and V themselves.

▶ Proposition 6 (The Wedge property). Let W be any open wedge-shaped region having angle
120◦ or more and containing none of the points from the input terminal set P. Then W

contains no Steiner points from an SMT of P.

Fully Polynomial Time Approximation Scheme (FPTAS). An algorithm is called a fully
polynomial time approximation scheme (FPTAS) for a problem if it takes an input instance
and a parameter ϵ > 0, and outputs a solution with approximation factor (1 + ϵ) for a
minimization problem in time (1/ϵ)O(1)nO(1) where n is the input size.

3 Polynomial cases for Euclidean Steiner Minimal Tree

In this section, we consider the Euclidean Steiner Minimal Tree problem for 2-CPR
n-gons. Throughout the section, we denote the inner n-gon as {Ai} and the outer n-gon
as {Bi}. First, we consider the configuration of an Euclidean Steiner minimal tree in a
subsection of the annular area between {Ai} and {Bi}, which will form an isosceles trapezoid.

Then we prove our result for all 2-CPR n-gons.

3.1 Isosceles Trapezoids and Vertical Forks
In this section, we discuss one particular Steiner topology when the terminal set is formed
by the four corners of a given isosceles trapezoid. However, we will limit the discussion to
only the isosceles trapezoids such that the angle between the non-parallel sides is of the form
2π
n where n ∈ N, n ≥ 4. The reason is that given 2-CPR n-gons {Ai}, {Bi}, for n ≥ 4 and

for any j ∈ {1, . . . , n − 1}, the region AjAj+1BjBj+1 is an isosceles trapezoid such that the
angle between the non-parallel sides is of the form 2π

n .

(a) Isosceles trapezoid with ∠AOB = 2π
8 . (b) The Vertical Fork, Tvf .

Figure 2 Isosceles Trapezoids and Vertical Forks.

Let ABQP be an isosceles trapezoid with AB, PQ as the parallel sides, and AP , BQ as
the non-parallel sides. Assume without loss of generality that AB is shorter than PQ. Let
AB = 1 and PQ = λ, where λ ≥

√
3+tan π

n√
3−tan π

n

. For brevity, we say λv =
√

3+tan π
n√

3−tan π
n

. Let LP A and
LQB be the lines containing the line segments PA and QB respectively. Also let O be the
point of intersection of LP A and LQB . Further, let M and N be the midpoints of AB and
PQ respectively (as in Figure 2(a)). As mentioned earlier, ∠AOB = 2π

n where n ∈ N, n ≥ 4.

ISAAC 2023

25:6 ESMT on Near-Convex Terminal Sets

Now, we explore the following Steiner topology of the terminal set {A, B, P, Q}:
1. A and B are connected to a Steiner point S1.
2. P and Q are connected to another Steiner point S2.
3. S1 and S2 are directly connected (Please see Figure 2(b)).
We call such a topology a vertical fork topology and the Steiner tree realising such a topology,
the vertical fork. Note that in a vertical fork topology the only unknowns are the locations
of the two Steiner points S1, S2. Therefore, we have the vertical fork topology as Tvf , with
E(Tvf) = {AS1, BS1, S1S2, S2P, S2Q}. We show the existence of a vertical fork and calculate
its total length in the following lemma.

▶ Lemma 7. A vertical fork Tvf can be constructed for any n ≥ 4 and for any λ ≥ λv, where

λv =
√

3 + tan π
n√

3 − tan π
n

such that the length of the vertical fork

|Tvf | = (λ − 1)
2 tan π

n

+
√

3(λ + 1)
2

3.2 Euclidean Steiner Minimal Tree and Large Polygons with Large
Aspect Ratios

In this section, we consider the Euclidean Steiner Minimal Tree problem when the
terminal set is formed by the vertices of 2-CPR n-gons, namely {Ai} and {Bi}. As mentioned
earlier, {Ai} is the inner polygon and {Bi} is the outer polygon of this set of 2-CPR n-gons.
In particular, we consider the case when n ≥ 13; for n ≤ 12 these are constant sized input
instances and can be solved using any brute-force technique. We also require that the aspect
ratio λ has a lower bound λ1, i.e. we do not want the two polygons to have sides of very
similar length. The exact value of λ1 will be clear during the description of the algorithm.
Intuitively, when λ is very large, the SMT should look similar to what was derived in [15].
We call the topology of such an SMT a singly connected topology, as in Figure 3.

▶ Definition 8. A Steiner topology of {Ai} ∪ {Bi} is a singly connected topology, if it
has the following structure:

A vertical gadget i.e. five edges {AjSa, Aj+1Sa, SaSb, SbBj , SbBj+1} for some 1 ≤ j ≤ n,
where Sa and Sb are newly introduced Steiner points contained in the isosceles trapezoid
{Aj , Aj+1, Bj , Bj+1}.
All (n − 2) polygon edges of {Ai} excluding the edge AjAj+1
All (n − 2) polygon edges of {Bi} excluding the edge BjBj+1

For the rest of this section, we consider the SMTs for a large enough aspect ratio, λ and
show that there is an SMT that must be a realisation of a singly connected topology. We
refer to an SMT for the terminal set defined by the vertices of {Ai} and {Bi} as the SMT
for {Ai} ∪ {Bi} .

Without loss of generality, we consider the edge length of any side AiAi+1 in {Ai} to be
1 and that of any side BiBi+1 of {Bi} to be λ.

We define the notion of a path in an SMT for the vertices of {Ai} and {Bi} where the
starting point is in {Ai} and the ending point is in {Bi}.

▶ Definition 9. An A-B path is a path in a Steiner tree of {Ai} ∪ {Bi} which starts from
a vertex in {Ai} and ends at a vertex in {Bi} with all intermediate nodes (if any) being
Steiner points.

A. Dhar, S. Hait, and S. Kolay 25:7

(a) SMT of 2-CPR 13-gons. (b) SMT of 2-CPR 20-gons.

Figure 3 Singly connected topology of 2-CPR n-gons n = 13 and n = 20.

The following Definition and Figure 4 is useful for the design of our algorithm.

▶ Definition 10. A counter-clockwise path is a path P1, P2, ...Pm in a Steiner tree
such that for all i ∈ {2, . . . , m − 1},∠Pi−1PiPi+1 = 2π

3 in the counter-clockwise direction.
Similarly, a clockwise path is a path P1, P2, ...Pm in a Steiner tree such that for all
i ∈ {2, . . . , m − 1},∠Pi−1PiPi+1 = 4π

3 in the counter-clockwise direction.

Figure 4 ∠Pi−1PiPi+1 = α in the counter-clockwise direction and ∠Pi−1PiPi+1 = β in the
z, as in Definition 10.

Now, we consider any Steiner point S in any SMT. Let P and Q be two neighbours of S.
We now prove that there is no point of the SMT inside the triangle PSQ.

▶ Observation 11. Let S be a Steiner point in any SMT for {Ai} ∪ {Bi}, with neighbours
P and Q. Then, no point of the SMT lies inside the triangle PSQ.

Next, we show that in an SMT for {Ai} ∪ {Bi} there cannot be any Steiner point, in
the interior of the polygon {Ai}, that is a direct neighbour of some point Bk in the polygon
{Bi}.

▶ Observation 12. For any SMT for {Ai} ∪ {Bi} , there cannot exist a Steiner point S lying
in the interior of the polygon {Ai} such that SBk is an edge in an SMT for some Bk ∈ {Bi}.

Proof. For the sake of contradiction, we assume that for some SMT for {Ai} ∪ {Bi} there
exists a Steiner point S lying in the interior of the polygon {Ai} such that SBk is an
edge in the SMT for some Bk ∈ {Bi}. Let AmAm+1 be the edge such that SBk intersects
AmAm+1. Without loss of generality, assume that Am is closer to Bk than Am+1. Therefore
∠BkAmS > ∠BkAmAm+1 ≥ π

2 + π
n > π

2 . This means that BkS is the longest edge in the
triangle BkSAm. Therefore we can remove the edge BkS from the SMT and replace it with
either BkAm or SAm to get another tree connecting the terminal set with a shorter total
length than what we started with, which is a contradiction. ◀

ISAAC 2023

25:8 ESMT on Near-Convex Terminal Sets

We further analyze SMTs for {Ai} ∪ {Bi}.

▶ Observation 13. Let V = {Aj , Aj+1, . . . , Ak} be the interval of consecutive vertices of
{Ai} lying between Aj and Ak (which includes Aj+1) such that Aj is distinct from Ak+1.
Let U be any point on the line segment AkAk+1. Then an SMT of V ∪ {U} is T , with
E(T) = {AjAj+1, Aj+1Aj+2, . . . , Ak−1Ak} ∪ {AkU}.

We proceed by showing that in any SMT for {Ai} ∪ {Bi} there exists at least one A-B
path which is also a counter-clockwise path. Symmetrically, we also show that for any SMT
for {Ai} ∪ {Bi} there exists another clockwise A-B path which consists of only clockwise
turns. We can intuitively see that this is true because, if all clockwise paths starting at a
vertex in {Ai} also ended in a vertex in {Ai}, there would be enough paths to form a cycle,
which is not possible in a tree.

▶ Lemma 14. In any SMT for {Ai} ∪ {Bi} , there exists an A-B path which is also a
clockwise path and there exists an A-B path which is also a counter-clockwise path.

Our next step is to bound the number of “connections” that connect the inner polygon
{Ai} and the outer polygon {Bi} for a large aspect ratio, λ. As λ increases, the area
of the annular region between the two polygons increases as well. Therefore, an increase
in the number of connections would lead to a longer total length of the SMT considered.
Consequently, we will prove that after a certain positive constant λ1, for λ > λ1 any SMT
for {Ai} ∪ {Bi} will have a single “connection” between the two polygons. Moreover, [15]
gives us an evidence that as λ → ∞, there will indeed be a single connection connecting the
outer polygon and the inner polygon for n ≥ 12. We can formalize this notion of existence of
a single “connection” with the following lemma.

▶ Lemma 15. For any SMT for {Ai} ∪ {Bi} with n ≥ 13 and λ > λ1, the number of edges
needed to be removed in order to disconnect {Ai} and {Bi} is 1, where

λ1 = 1
1 − 4 sin π

n

We now proceed to further investigate the connectivity of {Ai} and {Bi}.

▶ Lemma 16. Consider an SMT for {Ai} ∪ {Bi} for n ≥ 13 and λ ≥ λ1. There must exist
j ∈ [n] and a Steiner point S1, such that terminals Aj , Aj+1 form a path Aj, S1, Aj+1 in
the SMT and each A-B path passes through S1.

Proof Sketch. From Lemma 14, we know that there exists one clockwise A-B path and one
counterclockwise A-B path in any SMT of {Ai} ∪ {Bi}. Let a clockwise A-B path start
from Ar and a counter-clockwise A-B path start from Al. Further following from Lemma 15,
as there is one edge common to all A-B paths, the clockwise A-B path from Ar and the
counter-clockwise A-B path from Al must share a common edge S1S2. Therefore, each A-B
path must pass through S1 and S2. Without loss of generality we assume that point S1 is
closer to the polygon {Ai} than S2. This means S1 is either a Stiener point or a terminal
vertex of {Ai}.

▷ Claim 17. S1 is not a vertex in {Ai}.

Therefore, S1 must be a Steiner point. Let P and Q be the neighbours of S1 other than
S2, such that ∠PS1S2 is a clockwise turn while ∠QS1S2 is a counter-clockwise turn. This
means that the clockwise A-B path from Ar passes through P and the counter-clockwise
A-B path from Al passes through Q. We prove the following for P and Q.

A. Dhar, S. Hait, and S. Kolay 25:9

▷ Claim 18. P and Q are consecutive vertices of {Ai} in any SMT of {Ai} ∪ {Bi}.

Therefore, P and Q are consecutive vertices Aj , Aj+1 of the polygon {Ai}, for some
j ∈ [n] such that Aj , S1, Aj+1 is a path in the SMT, where S1 is a Steiner point lying on all
A-B paths. ◀

Our next step is to investigate some more structural properties of an SMT for {Ai}∪{Bi}.
From [5], we may guess that there would be a lot of polygon edges of both {Ai} and {Bi} in
an SMT. We prove the following Lemma, stating that there is an SMT of {Ai} ∪ {Bi} which
contains (n − 2) polygon edges of {Ai}.

▶ Lemma 19. For an SMT for {Ai} ∪ {Bi} with aspect ratio λ, λ > λ1 = 1
1−4 sin π

n
, let S1

be the Steiner point such that all A-B paths pass through S1. Let Aj and Aj+1 be vertices of
{Ai} which are connected to S1. Then, there exists an SMT of {Ai} ∪ {Bi} having n − 2
polygon edges of {Ai} other than AjAj+1.

With these set of results in hand, we can now show that there exists an SMT of {Ai}∪{Bi}
following a singly connected topology. To show this, we start with any SMT for {Ai} ∪ {Bi} ,
T0, that satisfies all the results derived so far and transform it into a Steiner tree of singly
connected topology having total length not longer than the initial Steiner tree T0.

▶ Theorem 20. There exists an SMT for {Ai} ∪ {Bi} following a singly connected topology
for n ≥ 13 and λ ≥ λ1, where

λ1 = 1
1 − 4 sin π

n

Proof. Let T0 be any SMT of {Ai} ∪ {Bi} which satisfies the properties of Lemma 19.
Further, from Lemma 16, there is a Steiner point S1 which lies on all A-B paths, and there
are two consecutive vertices Aj , Aj+1 such that Aj , S1, Aj+1 is a path in T0. As T0 satisfies
the property of Lemma 19, T0 has n − 2 polygon edges of {Ai} excluding the edge AjAj+1.

Let H be the point in the interior of the polygon {Ai} such that HAjAj+1 form an
equilateral triangle. As n > 6, the common centre O of {Ai} and {Bi} does not lie inside
the triangle HAjAj+1. Now, we modify T0 as follows:
1. Remove edges AjS1, S1Aj+1 and add edge S1H to get the forest T1. We know from [9]

that S1, S2 and H are collinear and this transformation does not change the total length.
Therefore |T0| = |T1|. Here, |T1| denotes the sum of the lengths of edges present in T1.

2. Add edge HO and remove all polygon edges of {Ai} to get T2. Therefore |T2| =
|T1| + HO − (n − 2) = |T0| + HO − (n − 2). We observe that T2 is a tree connecting the
points in {Bi} ∪ {O}.

3. Let S0 be the Torricelli point of the triangle OBjBj+1. Let T3 be the Steiner tree of
{Bi} ∪ {O} with edges S0O, S0Bj , S0Bj+1 and other points in {Bi} connected through
(n − 2) polygon edges of the polygon {Bi}. From [15], we know that T3 is the SMT of
{Bi} ∪ {O}. Therefore |T3| ≤ |T2| = |T0| + HO − (n − 2). Further we know that H lies
on the edge OS0 (as O, S0 and H lie on the perpendicular bisector of Bj and Bj+1).

4. Remove edge S0O and add edge S0H to get T4. As H lies on the edge OS0, we have
|T4| = |T3| − OH ≤ |T0| − (n − 2).

5. Let S3 be the intersection of the circumcircle of triangle AjHAj+1 (from Lemma 7 the
intersection exists as λ1 ≥ λv for n ≥ 13). Remove the edge S3H and add the edges S3Aj

and S3Aj+1 to get T5. Again, from [9] we know that this transformation does not change
the total length. Hence |T5| = |T5| ≤ |T0| − (n − 2). Moreover, as λ > λv, we observe that
{Aj , Bj , Aj+1, Bj+1, S3, S0} form the vertices of the vertical gadget and points O, H , S3,
S0 appear in that order on the perpendicular bisector of Bj and Bj+1.

ISAAC 2023

25:10 ESMT on Near-Convex Terminal Sets

6. Add back the (n − 2) polygon edges of {Ai} which were removed in the second step to
get T6. Therefore |T4| = |T5| + (n − 2) ≤ |T0|. We further observe that T6 is a Steiner
tree connecting the points {Ai} ∪ {Bi} with a singly connected topology.

Therefore we started with an arbitrary SMT T0 and transformed it into a Steiner tree
T6 with a singly connected topology (where {Aj , Bj , Aj+1, Bj+1, S3, S0} form the vertices of
the vertical gadget) which has a total length not worse than T0. Hence T6 must be an SMT
of {Ai} ∪ {Bi}. This proves the theorem. ◀

▶ Remark 21. Theorem 20 determines the exact structure of the SMT for {Ai} ∪ {Bi} .
Further from Section 3.1 we determine the exact method to construct the two additional
Steiner points in O(1) steps - note that this construction time is independent of the integer
n or the real number λ. Therefore, SMT for {Ai} ∪ {Bi} for n ≥ 13 and λ ≥ λ1 is solvable
in polynomial time.

Interestingly, λ1 converges to 1 very quickly with increasing n:

n 13 20 40 100 500
λ1 23.3987 2.6719 1.4574 1.1437 1.0258

4 Euclidean Steiner Minimal Tree on f(n)-Almost Convex Point Sets

In this section, we design an exact algorithm for Euclidean Steiner Minimal Tree on
f(n)-Almost Convex Point Sets running in time 2O(f(n) log n). Note that f(n) ≤ n is always
true. Therefore, we are given as input a set P of n points in the Euclidean Plane such that
P can be partitioned as P = P1 ⊎ P2, where P1 is the convex hull of P and |P2| = f(n).

We know that the SMT of P can be decomposed uniquely into one or more full Steiner
subtrees, such that two full Steiner subtrees share at most one node [9]. In the following
lemma, we further characterize one full Steiner subtree, which we refer to as a leaf full Steiner
subtree.

▶ Lemma 22. Let F be the full Steiner decomposition of an SMT of P. Then there exists a
full Steiner subtree F ∈ F such that F has at most one common node with at most one other
full Steiner subtree in F.

Using the above Lemma, along with the bounds on the number of FSTs from [9], we can
obtain the following theorem (details can be found in the full version).

▶ Theorem 23. An SMT TP of a k-Almost Convex Set P of terminals can be computed in
O(nk · 5n) time.

The above theorem gives us several improvements in special classes of inputs.

▶ Corollary 24. Let P be a f(n)-Almost Convex Point Set. Then, then there is an algorithm
A for Euclidean Steiner Minimal Tree such that, A runs in 2O(n+f(n) log n) time. In
particular,
1. When f(n) = O(n), A runs in 2O(n log n) time.
2. When f(n) = Ω(n

log n) and f(n) = o(n), A runs in 2o(n log n).
3. When f(n) = O(n

log n), A runs in 2O(n) time.

Therefore, for f(n) = o(n), our algorithm for Euclidean Steiner Minimal Tree does
better on f(n)-Almost Convex Points Sets than the current best known algorithm [8].

A. Dhar, S. Hait, and S. Kolay 25:11

5 Approximation Algorithms for Euclidean Steiner Minimal Tree

The Euclidean Steiner Minimal Tree problem is NP-hard as shown by Garey et al.
in [6]. Garey et al. also prove that there cannot be an FPTAS (fully polynomial time
approximation scheme) for this problem unless P = NP . At the same time, the case when
all the terminals lie on the boundary of a convex region admits an FPTAS as given in [14]. In
this section, we aim to conduct a more fine-grained analysis for the problem by considering
f(n)-Almost Convex Point Sets of n terminals and studying the existence of FPTASes for
different functions f(n).

First, we present an FPTAS for Euclidean Steiner Minimal Tree on f(n)-Almost
Convex Sets of n terminals, when f(n) = O(log n). The FPTAS follows the strategy of [14]
and uses a variant of the Dreyfus-Wagnus Steiner tree algorithm [4] as a subroutine.

▶ Theorem 25. There exists an FPTAS for Euclidean Steiner Minimal Tree on an
f(n)-Almost Convex Set of n terminals, where f(n) = O(log n).

On the other hand, we prove in the next section that no FPTAS exists for the case when
f(n) = Ω(nϵ), where ϵ ∈ (0, 1].

5.1 Hardness of Approximation for Euclidean Steiner Minimal Tree on
Cases of Almost Convex Sets

In this section, we consider the Euclidean Steiner Minimal Tree problem on f(n)-
Almost Convex Sets of n terminal points, where f(n) = Ω(nϵ) for some ϵ ∈ (0, 1]. We
show that this problem cannot have an FPTAS. The proof strategy is similar to that in [6].
First, we give a reduction for the problem Exact Cover by 3-Sets (defined below) to
our problem to show that our problem is NP-hard. Next, we consider a discrete version
of our problem and reduce our problem to the discrete version. The discrete version is in
NP. Therefore, this chain of reductions imply that the discrete version of our problem is
Strongly NP-complete and therefore cannot have an FPTAS, following from [6]. Similar to
the arguments in [6], this also implies that our problem cannot have an FPTAS.

Before we describe our reductions, we take a look at the NP-hardness reduction of the
Euclidean Steiner Minimal Tree problem from the Exact Cover by 3-Sets (X3C)
problem in [6]. In the X3C problem, we are given a universe of elements U = {1, 2, . . . , 3n}
and a family F of 3-element subsets F1, F2, . . . , Ft of the 3n elements. The objective is to
decide if there exists a subcollection F′ ⊆ F such that: (i) the elements of F′ are disjoint,
and (ii)

⋃
F ′∈F′ F ′ = U . The X3C problem is NP-complete [7].

In [6], various gadgets are constructed, i.e. particular arrangements of a set of points.
These are then arranged on the plane in a way corresponding to the given X3C in-
stance. Figure 5 shows the reduced ESMT instance obtained for U = {1, 2, 3, 4, 5, 6} and
F = {{1, 2, 4}, {2, 3, 6}, {3, 5, 6}} (taken from [6]). The squares, hexagons (crossovers), shaded
circles (terminators) and lines (rows) all represent specific arrangements of a subset of points.
Let X(F) denote the reduced instance. The number of points in X(F) is bounded by a
polynomial in n and t. Let this polynomial be O(tγ), as we can assume t ≥ n since otherwise
it trivially becomes a NO instance. Here γ is some constant.

We restate Theorem 1 in [6].

▶ Proposition 26. Let S∗ denote an SMT of X(F), the instance obtained by reducing the X3C
instance (n,F), and |S∗| denote its length. If F has an exact cover, then |S∗| ≤ f(n, t, Ĉ),
otherwise |S∗| ≥ f(n, t, Ĉ)+ 1

200nt , where t = |F|, Ĉ is the number of crossovers, i.e. hexagonal
gadgets, and f is a positive real-valued function of n, t, Ĉ.

ISAAC 2023

25:12 ESMT on Near-Convex Terminal Sets

Figure 5 Reduced instance of ESMT from X3C (taken from [6]).

We extend this construction to prove NP-hardness for instances of Euclidean Steiner
Minimal Tree where the terminal set P has Ω(nϵ) points inside CH(P). Here, ϵ ∈ (0, 1]
and n is the number of terminals.

Let us call the length of a gadget to be the maximum horizontal distance between any
two points in that gadget. Similarly, we define the breadth of a gadget to be the maximum
vertical distance between any two points in that gadget.

(a) The
Upward

Terminator
symbol.

(b) The
Downward
Terminator

symbol.

(c) The Downward Terminator
symbol.

Figure 6 The Terminator gadget symbol and arrangement of points.

The terminator gadget used is shown in Figure 6. The straight lines represent a row of
at least 1000 points separated at distances of 1/10 or 1/11. The angles between them are as
shown. The upward terminator has the point A above the other points in the terminator,
whereas the downward terminator has the point A below the other points. Firstly, we adjust
the number of points in the long rows, such that the length and breadth of the terminators
is same as that of the hexagonal gadgets (crossovers). We can fix this length and breadth
to be some constants, such that the number of points in each gadget is also bounded by
some constant. In our construction, we modify the terminators Ω0, Ω1, and Ω2 as shown
in Figure 5 enclosed in squares. Ω1 is the terminator corresponding to the first occurrence
of the element 3n ∈ U in some set in F and Ω2 is the terminator corresponding to the last
occurrence of 3n in some set in F (if there are more than one occurrences of 3n). If there
are no occurrences of 3n, then it is trivially a no-instance. The modified gadgets are shown
in Figure 7. All the other gadgets remain unaltered.

A. Dhar, S. Hait, and S. Kolay 25:13

We define a Conic Set of points.

▶ Definition 27. A Conic Set is a set of points consisting of a point T , called the tip of the
cone, and the remaining points denoted by S. Let C be the circle with T as centre and radius
r. All the points in S lie on C, such that the angle at the tip formed by the two extreme
points L, R ∈ S, i.e. ∠LTR = 30◦ in the anticlockwise direction. So, we have TL = TR = r.
The distance between any two consecutive points in S is the same, say d. Let the number of
points in S be n. We denote the Conic Set as Cone(T, r, n) and S as Circ(T, r, n). We call
TL as the left slope of the Conic Set and TR as the right slope of the Conic Set.

(a) Ω′
0. (b) Ω′

1. (c) Ω′
2.

Figure 7 The modified terminator gadgets.

We use the Conic Set in the reduction for our problem (please see Figure 8). Now, we
give a sketch of the reduction of an X3C instance (n,F) to an instance X ′(F, ϵ) of ESMT.

Algorithm A for construction of ESMT instance X′(F, ϵ) from X3C instance (n, F):
Reduce the input X3C instance to the points configuration X(F) according to the
reduction given in [6].
Let DQCP be the smallest axis-parallel rectangle bounding X(F) after certain modi-
fications of gadgets described in [6] (details in the full version).
Take α = 1

ϵ . Define r = ctα = O(tα) and n′ = c′tγα = O(tγα), where t = |F| and c and
c′ are constants. Add the Cone(D, r, n′), such that D is the tip of the Conic Set, and
the left slope DE makes an angle of 120◦ with DP . The right slope DF also makes
an angle of 120◦ with DQ.

Figure 8 The reduced instance X ′(F, ϵ).

Now we state a few properties of the constructed instance X ′(F, ϵ) (detailed proofs can
be found in the full version).

ISAAC 2023

25:14 ESMT on Near-Convex Terminal Sets

▶ Lemma 28. All the points in Circ(D, r, n′) (according to Definition 27) lie on the convex
hull of the reduced ESMT instance X ′(F, ϵ) constructed by Algorithm A, where ϵ ∈ (0, 1].

Let us denote the convex hull of X ′(F, ϵ) by CH(X ′(F, ϵ)) and that of the points lying
inside or on the bounding rectangle PDQC, i.e. X ′(F, ϵ) \ Circ(D, r, n′) by CH(X ′(F, ϵ) \
Circ(D, r, n′)).

▶ Lemma 29. The reduced ESMT instance X ′(F, ϵ) constructed by Algorithm A has Ω(N ϵ)
points inside the convex hull, where ϵ ∈ (0, 1] and N is the total number of terminals in
X ′(F, ϵ).

We further state structural properties of SMTs of the reduced instance X ′(F, ϵ) when
considering the modified gadgets Ω′

0, Ω′
1, and Ω′

2.

▶ Lemma 30. Consider an SMT S∗ of the ESMT instance X(F) obtained via reduction
from the X3C instance (n,F) as per [6]. Consider a tree S ′∗ on the terminal set of X ′(F, ϵ)
obtained from S∗ as follows: Consider the modified terminator gadgets Ω′

i, i ∈ {0, 1, 2} as in
Algorithm A. For each i ∈ {0, 1, 2}, the edge BiOi is excluded from S∗ and the edge DiOi is
included to form S ′∗. S ′∗ is an SMT for the terminal set of X ′(F, ϵ).

Now we focus on the structure of the SMT of X ′(F , ϵ). The SMT is basically the union
of the SMT S ′∗ of the points in the bounding rectangle PDQC as stated in Lemma 30 and
the SMT of the set of points Cone(D, r, n′).

CH(X ′(F, ϵ) \ Circ(D, r, n′)) is enclosed by the bounding rectangle PDQC and D must
lie on CH(X ′(F, ϵ) \ Circ(D, r, n′)). We label the vertices of CH(X ′(F, ϵ) \ Circ(D, r, n′)) as
D, P1, P2, . . . , Pk in the counter-clockwise order. Let CH(X ′(F, ϵ)) be the convex hull of all
the points. By Lemma 28, all the points in Circ(D, r, n′) lie on CH(X ′(F, ϵ)). Let EPi and
FPj be edges in CH(X ′(F, ϵ)), such that Pi, Pj /∈ Circ(D, r, n′).

The SMT of X ′(F, ϵ) clearly lies inside its convex hull, CH(X ′(F, ϵ)). We show that the
Steiner hull can be further restricted to the bounding rectangle PDQC and the convex
polygon formed by the points in Cone(D, r, n′). For this we use Theorem 1.5 in [9], as stated
below.

▶ Proposition 31 ([9]). Let H be a Steiner hull of N . By sequentially removing wedges abc
from the remaining region, where a, b, c are terminals but △abc contains no other terminal,
a and c are on the boundary and ∠abc ≥ 120◦, a Steiner hull H ′ invariant to the sequence
of removal is obtained.

▶ Lemma 32. The region comprising of the bounding rectangle PDQC according to Algorithm
A and the convex polygon formed by the set of points Cone(D, r, n′) is a Steiner hull of
X ′(F, ϵ).

Given the nature of the above Steiner hull, we show that we can treat X(F) and
Cone(D, r, n′) separately.

▶ Lemma 33. There is an SMT of X ′(F, ϵ) that is the union of an SMT of X(F) and an
SMT of the points in Cone(D, r, n′), with D being common to both of them.

We can identify a structure for an SMT of the points in Cone(D, r, n′) using [15].

▶ Lemma 34. There is an SMT of the points in Cone(D, r, n′) that is as shown in Figure 9.
In the SMT, D is connected to the two middle points in Circ(D, r, n′) via a Steiner point St.
The other points in Circ(D, r, n′) are connected along the circumference.

A. Dhar, S. Hait, and S. Kolay 25:15

Figure 9 SMT of Cone(D, r, n′).

Finally, we prove the NP-hardness of Euclidean Steiner Minimal Tree on f(n)-
Almost Convex Sets of n terminals, when f(n) = Ω(nϵ) for some ϵ ∈ (0, 1].

▶ Theorem 35. Let S∗
F,ϵ denote an SMT of X ′(F, ϵ) and |S∗

F,ϵ| denote its length. If F has an
exact cover, then |S∗

F,ϵ| ≤ f(n, t, Ĉ) + |T1|, otherwise |S∗
F,ϵ| ≥ f(n, t, Ĉ) + 1

200nt + |T1|, where
Ĉ is the number of crossovers, i.e. hexagonal gadgets, and f is a positive real-valued function
of n, t, Ĉ as stated in Proposition 26.

Since it is not known if the ESMT problem is in NP, Garey et al. [6] show the NP-
completeness of a related problem called the Discrete Euclidean Steiner Minimal
Tree (DESMT) problem, which is in NP. We define the DESMT problem as given in [6].
The DESMT problem takes as input a set X of integer-coordinate points in the plane and a
positive integer L, and asks if there exists a set Y ⊇ X of integer-coordinate points such that
some spanning tree T for Y satisfies |T |d ≤ L, where |T |d = Σe∈E(T)⌈e⌉, i.e. we round up
the length of each edge to the least integer not less than it.

In order to show that DESMT is NP-hard, the same reduction as that of the ESMT
problem can be used, followed by scaling and rounding the coordinates of the points. Theorem
4 of [6] proves that the DESMT problem is NP-Complete. Moreover, since it is Strongly
NP-Complete, the DESMT problem does not admit any FPTAS. Finally in Theorem 5 of [6],
Garey et al. show that as a consequence, the ESMT problem does not have any FPTAS as
well.

Now we show that the DESMT problem is NP-hard even on f(n)-Almost Convex Sets of
n terminals, when f(n) = Ω(nϵ) and where ϵ ∈ (0, 1].

In Section 7 of [6], the reduced instance X(F) of ESMT is converted into an instance
Xd(F) of DESMT. The conversion is as follows:
Xd(F) = {(⌈12M · 200nt · x1⌉, ⌈12M · 200nt · x2⌉) : x = (x1, x2) ∈ X(F)}, where M = |X(F)|.

We apply a similar conversion to the reduced ESMT instance X ′(F, ϵ), to convert it into
a DESMT instance of an Ω(nϵ)-Almost Convex Set. The conversion goes as follows:
X ′

d(F, ϵ) = {(⌈12N · 200nt · x1⌉, ⌈12N · 200nt · x2⌉) : x = (x1, x2) ∈ X ′(F, ϵ)}, where
N = |X ′(F, ϵ)|.

The next two lemmas establish the validity of X ′
d(F, ϵ) as an instance of DESMT and the

upper bounds on the size of the constructed instance. Note that the reduction from X3C
followed by the conversion can be done in polynomial time.

▶ Lemma 36. The instance X ′
d(F, ϵ) constructed above is a valid DESMT instance.

▶ Lemma 37. The reduced DESMT instance X ′
d(F, ϵ) has N distinct points, where N =

|X ′(F, ϵ)|.

ISAAC 2023

25:16 ESMT on Near-Convex Terminal Sets

Now we present the following lemma for the constructed DESMT instance X ′
d(F, ϵ)

analogous to Lemma 29 for the ESMT instance X ′(F, ϵ).

▶ Lemma 38. The reduced DESMT instance X ′
d(F, ϵ) constructed is an Ω(N ϵ)-Almost

Convex Set, where N = |X ′
d(F, ϵ)|.

We get the following theorem from Lemmas 36–38.

▶ Theorem 39. The instance X ′
d(F, ϵ) constructed is a valid DESMT instance on an Ω(N ϵ)-

Almost Convex Set, where |X ′
d(F, ϵ)| = |X ′(F, ϵ)| = N .

Following Theorems 3 and 4 in [6], we get that the DESMT problem is NP-Complete
for Ω(N ϵ)-Almost Convex Sets, where N is the total number of terminals. Since we get the
reduced instance X ′

d(F, ϵ) from the X3C instance (n,F), the DESMT problem is strongly
NP-complete for Ω(N ϵ)-Almost Convex Sets, and does not admit any FPTAS.

Using Theorem 5 of [6], we get that if the ESMT problem has an FPTAS, then the
X3C problem can be solved in polynomial time. The Theorem also applies for our case of
Ω(N ϵ)-Almost Convex Sets. Therefore, we get the following theorem,

▶ Theorem 40. There does not exist any FPTAS for the ESMT problem on f(n)-Almost
Convex Sets of n terminals, where f(n) = Ω(nϵ) and ϵ ∈ (0, 1], unless P = NP.

6 Conclusion

In this paper, we first study ESMT on vertices of 2-CPR n-gons and design a polynomial
time algorithm. It remains open to design a polynomial time algorithm for ESMT on k-CPR
n-gons, or show NP-hardness for the problem. Next, we study the problem on f(n)-Almost
Convex Sets of n terminals. For this NP-hard problem, we obtain an algorithm that runs in
2O(f(n) log n) time. We also design an FPTAS when f(n) = O(log n). On the other hand, we
show that there cannot be an FPTAS if f(n) = Ω(nϵ) for any ϵ ∈ (0, 1], unless P = NP. The
question of existence of FPTASes when f(n) is a polylogarithmic function remains open.

References
1 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998.
2 Marcus Brazil, Ronald L Graham, Doreen A Thomas, and Martin Zachariasen. On the history

of the Euclidean Steiner tree problem. Archive for history of exact sciences, 68(3):327–354,
2014.

3 EJ Cockayne. On the Steiner problem. Canadian Mathematical Bulletin, 10(3):431–450, 1967.
4 Stuart E Dreyfus and Robert A Wagner. The Steiner problem in graphs. Networks, 1(3):195–

207, 1971.
5 Ding-Zhu Du, Frank K. Hwang, and JF Weng. Steiner minimal trees for regular polygons.

Discrete & Computational Geometry, 2(1):65–84, 1987.
6 Michael R Garey, Ronald L Graham, and David S Johnson. The complexity of computing

Steiner minimal trees. SIAM Journal on Applied Mathematics, 32(4):835–859, 1977.
7 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman

San Francisco, 1979.
8 FK Hwang. A linear time algorithm for full Steiner trees. Operations Research Letters,

4(5):235–237, 1986.
9 FK Hwang, DS Richards, and P Winter. The Steiner tree problem. Annals of Discrete

Mathematics series, vol. 53, 1992.

A. Dhar, S. Hait, and S. Kolay 25:17

10 Sándor Kisfaludi-Bak, Jesper Nederlof, and Karol Węgrzycki. A gap-ETH-tight approximation
scheme for Euclidean TSP. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 351–362. IEEE, 2022.

11 Zdzislaw Alexander Melzak. On the problem of Steiner. Canadian Mathematical Bulletin,
4(2):143–148, 1961.

12 Satish B Rao and Warren D Smith. Approximating geometrical graphs via “spanners” and
“banyans”. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 540–550, 1998.

13 J Hyam Rubinstein, Doreen A Thomas, and Nicholas C Wormald. Steiner trees for terminals
constrained to curves. SIAM Journal on Discrete Mathematics, 10(1):1–17, 1997.

14 J Scott Provan. Convexity and the Steiner tree problem. Networks, 18(1):55–72, 1988.
15 Jia Feng Weng and Raymond Sydney Booth. Steiner minimal trees on regular polygons with

centre. Discrete Mathematics, 141(1-3):259–274, 1995.

ISAAC 2023

Rectilinear-Upward Planarity Testing of Digraphs
Walter Didimo # Ñ

Department of Engineering, University of Perugia, Italy

Michael Kaufmann #

Department of Computer Science, University of Tübingen, Germany

Giuseppe Liotta # Ñ

Department of Engineering, University of Perugia, Italy

Giacomo Ortali #

Department of Engineering, University of Perugia, Italy

Maurizio Patrignani # Ñ

Department of Civil, Computer and Aeronautical Engineering, Roma Tre University, Italy

Abstract
A rectilinear-upward planar drawing of a digraph G is a crossing-free drawing of G where each
edge is either a horizontal or a vertical segment, and such that no directed edge points downward.
Rectilinear-Upward Planarity Testing is the problem of deciding whether a digraph G admits
a rectilinear-upward planar drawing. We show that: (i) Rectilinear-Upward Planarity Testing
is NP-complete, even if G is biconnected; (ii) it can be solved in linear time when an upward planar
embedding of G is fixed; (iii) the problem is polynomial-time solvable for biconnected digraphs of
treewidth at most two, i.e., for digraphs whose underlying undirected graph is a series-parallel graph;
(iv) for any biconnected digraph the problem is fixed-parameter tractable when parameterized by
the number of sources and sinks in the digraph.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Dynamic programming; Theory of computation → Graph algorithms
analysis

Keywords and phrases Graph drawing, orthogonal drawings, upward drawings, rectilinear planarity,
upward planarity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.26

Funding Walter Didimo: Project AIDMIX – Artificial Intelligence for Decision Making: Methods
for Interpretability and eXplainability – Ricerca di Base 2021.
Giuseppe Liotta: MUR of Italy, PRIN Project n. 2022TS4Y3N – EXPAND: scalable algorithms for
EXPloratory Analyses of heterogeneous and dynamic Networked Data.

Acknowledgements We thank Ignaz Rutter for conversations about the problem 1-2-Switch-Flow.

1 Introduction

A rectilinear planar drawing of a graph G is a crossing-free drawing of G where vertices
are placed at distinct points in the plane (possibly at grid points) and edges are drawn as
either horizontal segments or vertical segments. Rectilinear Planarity Testing is the
problem of deciding whether a planar graph admits a rectilinear planar drawing. Besides
the theoretical beauty of the problem, which belongs to the vast literature about graph
planarity testing (see, e.g. [10, 38, 39] for books and surveys), the question is at the heart of
those technologies that display networked data by means of orthogonal layouts, which find
applications in a variety of fields, from software engineering to bioinformatics, from data
bases to computer networks (see, e.g., [21, 36]).

© Walter Didimo, Michael Kaufmann, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:walter.didimo@unipg.it
http://mozart.diei.unipg.it/didimo/
https://orcid.org/0000-0002-4379-6059
mailto:mk@informatik.uni-tuebingen.de
https://orcid.org/0000-0001-9186-3538
mailto:giuseppe.liotta@unipg.it
http://mozart.diei.unipg.it/liotta/
https://orcid.org/0000-0002-2886-9694
mailto:giacomo.ortali@unipg.it
https://orcid.org/0000-0002-4481-698X
mailto:maurizio.patrignani@uniroma3.it
https://compunet.ing.uniroma3.it/#!/people/titto
https://orcid.org/0000-0001-9806-7411
https://doi.org/10.4230/LIPIcs.ISAAC.2023.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Rectilinear-Upward Planarity Testing of Digraphs

Rectilinear Planarity Testing has been proved to be NP-complete [29]. However,
polynomial-time solutions are known both for constrained versions of the problem and for
restricted families of graphs. Namely, Rectilinear Planarity Testing can be solved in
polynomial time in the so-called fixed-embedding setting, that is when the input is given with
a planar embedding and the testing algorithm is not allowed to change the embedding (see,
e.g. [42]). Also, polynomial-time solutions are known for graphs of bounded treewidth and
for sub-cubic graphs (see, e.g., [11, 12, 13, 22, 27, 31, 40, 41]).

In this paper we study rectilinear planar drawings of directed graphs (digraphs). We want
to test whether a digraph G admits a rectilinear planar drawing with the additional constraint
that no directed edge points downward. We call such a drawing a rectilinear-upward planar
drawing and the testing problem Rectilinear-Upward Planarity Testing. It may
be worth recalling that the problem of testing whether a digraph admits an upward planar
drawing, i.e., a planar drawing where each edge is monotonically increasing in the upward
direction according to its orientation, is NP-complete [29]. See also [1, 3, 4, 5, 7, 15, 32, 34]
for polynomial-time solutions and parameterized approaches on restricted graph families
or scenarios. Figure 1 shows an example of a digraph that admits both an upward planar
drawing and a rectilinear planar drawing, but that does not admit a rectilinear-upward
planar drawing. Our contributions can be summarized as follows.

We prove that Rectilinear-Upward Planarity Testing is NP-complete, even if the
input digraph is biconnected (Section 3).
We show that Rectilinear-Upward Planarity Testing can be solved in linear-time
when an upward planar embedding of G is fixed as part of the input (Section 4). We
remark that both the problem of testing rectilinear planarity and of testing upward
planarity in linear time in the fixed-embedding setting are among of the most famous
and long-standing open problems in graph drawing (see, e.g., [6, 43]).
We consider the variable-embedding setting, where the algorithm is free to chose the
planar embedding of the input graph, and we focus on families of biconnected digraphs
(Section 5). We show that Rectilinear-Upward Planarity Testing can be solved
in polynomial time for biconnected digraphs with treewidth at most two, i.e., when the
underlying undirected graph is series-parallel. We recall that polynomial-time testing
algorithms for series-parallel graphs are known in the literature both in the context of
upward planarity testing only and in the context of rectilinear planarity testing only (see,
e.g., [8, 19, 16]). We also show that Rectilinear-Upward Planarity Testing is FPT
when parameterized by the number k of sources and sinks of the digraph. Namely, for any
n-vertex digraph our FPT algorithm is single-exponential in k and has a quadratic factor
in n. We remark that parameterized complexities of upward and rectilinear planarity
testing are topics that have been receiving increasing attention (see, e.g., [7, 14, 35]).

From a technical point of view, our linear-time algorithm in the fixed-embedding setting
exploits a 2-SAT formulation, instead of using network-flow models as done in the standard
approaches for testing both rectilinear and upward planarity (see, e.g., [1, 3, 9, 28, 42]). In
the variable-embedding setting, we rely on the concept of rectilinear-upward spirality. It
combines the notion of spirality introduced in [11] to measure how much a triconnected
component of a rectilinear drawing can be “rolled up”, with additional information about
the orientation of the edges incident to the poles of the triconnected components.

For space restrictions some proofs are sketched or omitted. Full proofs will appear in an
extended journal version of the paper.

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:3

1

2

3

4
5

6

8

7

(a)

1 27

8

6 5

4
3

(b)

8

65

4

3

72
1

(c)

Figure 1 A graph G that is upward planar, rectilinear planar, but not rectilinear-upward planar.
(a) An upward planar drawing of G. (b) A rectilinear planar drawing of G. (c) A rectilinear-upward
planar drawing of G without edge (6, 8).

2 Basic Definitions and Properties

For basic definitions on graph drawing and planarity refer to [10]. We assume to work
with connected graphs, as otherwise we can treat each connected component of the graph
independently. A 4-graph is a graph with vertex-degree at most four.

Upward planar drawings. In an upward drawing of a digraph G each edge is represented as
a Jordan arc monotonically increasing in the upward direction, according to its orientation;
see Figure 1a. A digraph G is upward planar if it admits an upward planar drawing. Clearly,
a necessary (but not sufficient) condition for G to be upward planar is that G is acyclic.

Orthogonal drawings and representations. Let G be a planar (undirected or directed)
4-graph, and let Γ be a planar drawing of G. We say that Γ is an orthogonal planar drawing
of G if each edge is drawn as a sequence of horizontal and vertical segments. A bend
on an edge is the contact point between a horizontal and a vertical segment of the edge.
An orthogonal planar representation H of a planar graph G is a class of shape equivalent
orthogonal planar drawings; namely, H describes the planar embedding of G, the sequence
of left/right bends along the edges, and the angles at every vertex of G, each angle formed
by two (possibly coincident) consecutive edges around the vertex and expressed as a value
in the set {90◦, 180◦, 270◦, 360◦}. If H is the orthogonal representation of an orthogonal
planar drawing Γ, we also say that Γ preserves H and that Γ is a drawing of H. A drawing
of H can be computed in linear time [42], thus we can concentrate on computing orthogonal
representations rather than drawings.

Orthogonal planar drawings (resp. representations) without bends are called rectilinear
planar drawings (resp. rectilinear planar representations); see, e.g., Figure 1b. A graph G is
rectilinear planar if it admits a rectilinear planar drawing (or representation). We say that a
rectilinear planar representation H is oriented if it also specifies for each edge (u, v) of G

the relative position of u with respect to v, i.e., whether u must be to the left, to the right,
above, or below v in every rectilinear drawing of H ; in particular, this information establishes
for each edge e of G if e is horizontal or vertical in H (it is actually enough to specify
the relative position of the end-vertices of one edge of H to establish the relative position
of the end-vertices for every other edge). Note that the definition of oriented rectilinear
representation H of G has nothing to do with the orientation of the edges when G is a
digraph. For a given rectilinear representation of G there are always four different oriented
versions of it, obtained by rotating one of them by an angle of k · 90◦, for k = 0, 1, 2, 3.

ISAAC 2023

26:4 Rectilinear-Upward Planarity Testing of Digraphs

Rectilinear-upward planar representations. In this paper we deal with drawings of digraphs
that are at the same time rectilinear and upward. More precisely, we do not require that an
edge is strictly upward (which would prevent us from drawing it as a horizontal segment), but
rather we exclude that it is drawn downward. Formally, let G be an acyclic planar 4-digraph
and let Γ be a planar drawing of G. We say that Γ is a rectilinear-upward planar drawing of G

if Γ is a rectilinear planar drawing of G with no directed edge that points downward; see, e.g.,
Figure 1c. This corresponds to saying that a rectilinear upward planar drawing Γ induces an
oriented rectilinear planar representation H of G with the property that for each directed
edge (u, v) of G, vertex u is never above vertex v. We say that H is a rectilinear-upward
planar representation of G. As for rectilinear representations, H describes a class of shape
equivalent rectilinear-upward planar drawings. A digraph G is rectilinear-upward planar if
it admits a rectilinear-upward planar drawing, or equivalently, a rectilinear-upward planar
representation. Clearly, rectilinear planarity is necessary for rectilinear-upward planarity.
The next property implies that also upward planarity is necessary for rectilinear-upward
planarity. As already observed, both rectilinear planarity and upward planarity are not
sufficient conditions when considered independently (see Figure 1).

▶ Property 1. If Γ is a rectilinear-upward planar drawing of a digraph G, then Γ can be
transformed into an upward planar drawing of G with the same planar embedding as Γ.

In the remainder we only consider planar 4-digraphs, thus we often omit the term “planar”
and we avoid to specify that the vertex-degree is at most four. Also, we often use the
abbreviation “RU” in place of “rectilinear-upward”. Finally, we implicitly assume that the
input digraphs are acyclic, as otherwise an upward drawing, and hence an RU drawing,
cannot exist. Acyclicity can be tested in linear time, by a classical depth first search.

3 NP-Completeness of Rectilinear-Upward Planarity Testing

To prove the hardness of Rectilinear-Upward Planarity Testing, we use a reduction
from the following 1-2-Switch-Flow problem, introduced in this paper and that may be
considered of independent interest. The hardness of 1-2-Switch-Flow can be proved with
a reduction from the problem Flow Orientation, which is shown to be NP-complete even
if edge capacities are O(

√
n), where n is the number of vertices of the graph [23].

Problem: 1-2-Switch-Flow (12SW)
Instance: A planar undirected graph G = (V, E) where each edge e ∈ E is labeled

with a value fe ∈ {1, 2}.
Question: Does there exist an orientation for the edges in E such that for each

vertex the sum of the values of the incoming edges equals the sum of
values of the outgoing edges?

We now sketch the reduction from 1-2-Switch-Flow (12SW) to Rectilinear-Upward
Planarity Testing. Let G = (V, E) be an instance of 12SW. We first compute a planar
embedding of G and planarly add extra edges with label [0] (called [0]-edges) in such a way
to obtain a maximal plane graph G+ (see Figure 2a). Second, we compute the dual plane
graph G∗ of G+ and label the edges of G∗ with the values of the corresponding edges of
G+ (see Figures 2b and 2c). Third, we compute an orthogonal drawing ΓG∗ of G∗ such
that each edge has at least one vertical segment (see Figure 3a). Fourth, we transform ΓG∗

into an auxiliary positive instance F of Rectilinear-Upward Planarity Testing by
replacing orthogonal and vertical segments with rectangular boxes. In particular, each edge

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:5

A

B

C

D

E

[2]

[2]

[1]

[1]

[1]

[1]

[0]

[0]

[0]

(a) Graph G+.

A

B

C

D

E

[2]

[2]

[1]

[1]

[1]

[1]

[0]

[0]

[0]

(b) Graph G+ and its dual G∗.

[2]

[2]

[1]

[1]

[1]

[1]

[0]

[0]

[0]

E

A

B

C

D

(c) Graph G∗.

Figure 2 The first two steps of the reduction from 12SW to Rectilinear-Upward Planarity
Testing.

A

E

C

B

D

[0]

[1]

[0]

[0]

[1]

[2]

[1]

[1]

[2]

(a) Drawing ΓG∗ of G∗.

A

E

C

D

[0]

[1]

[0]

[0]

[1]

[2]

[1]

[1]

[2]

B

(b) Instance F .

A

E

C

D

T2

T2

T1

T1

T1

T1

B

(c) Instance IRUPT.

Figure 3 The last steps of the reduction from 12SW to Rectilinear-Upward Planarity
Testing.

segment of ΓG∗ is replaced with three parallel edges and each vertex or bend is replaced
with a 3 × 3 grid (see Figure 3b). Edges of the instance F are oriented so that F admits a
unique rectilinear-upward planar representation HF up to a horizontal flip. Fifth, for each
edge e of G∗ labeled [1] (labeled [2], respectively), we identify the three parallel edges of
F corresponding to a vertical segment of ΓG∗ belonging to e and replace them with the
subgraph T1 (the subgraph T2, respectively). Subgraphs T1 and T2, called tendrils, are
depicted in Figure 7a and Figure 7b, respectively. Finally, we add a framework all around
the graph and attach it to a vertex or bend in the upper part of ΓG∗ (as in Figure 3c) to
obtain the desired instance IRUPT of Rectilinear-Upward Planarity Testing.

▶ Theorem 1. Rectilinear-Upward Planarity Testing is NP-complete.

Sketch of Proof. The problem is in NP since the recognition of an RU representation is
polynomial-time solvable. As for the hardness, we show that the above described reduction
from 1-2-Switch-Flow constructs an instance IRUPT of Rectilinear-Upward Planarity
Testing that admits an RU representation if and only if its tendrils are embedded in such a
way that, for each face of ΓG∗ , the number of extra 270◦ angles provided by some tendrils
equals the number of extra 90◦ angles provided by the remaining tendrils of the same face and
this is equivalent to finding a feasible flow for the original 1-2-Switch-Flow instance. ◀

ISAAC 2023

26:6 Rectilinear-Upward Planarity Testing of Digraphs

4 Testing Upward Plane Digraphs in Linear Time

If we have in input a rectilinear planar representation H of a digraph G, testing whether H

is also an RU representation for one of the four possible orientations of H is a trivial problem.
On the contrary, given a plane graph G with a prescribed “upward planar embedding”,
testing whether it admits an RU representation is a relevant problem. In this section we
address this problem and present a linear-time algorithm to test whether an upward plane
digraph G admits an RU representation. We recall that an early paper in the graph drawing
literature [26] claims the result of this section. Unfortunately, that paper only gives a sketch
about the algorithm to test RU planarity without giving sufficient details and simultaneously
referring to a much more restrictive model [25].

Before describing our algorithm, we formalize the concept of upward plane digraph. In
any RU representation H of a digraph G each vertex v is bimodal, i.e., all the incoming edges
of v (as well as all the outgoing edges of v) are consecutive around v. More specifically, H

induces: (a) a planar embedding of G and, (b) for each vertex v of G, a linear left-to-right
(possibly empty) list of the incoming edges of v and a linear left-to-right (possibly empty)
list of the outgoing edges of v. The information (a) and (b) together are called an upward
planar embedding of G. A digraph G is upward plane if it comes with a given upward
planar embedding. An RU representation of an upward plane digraph G (if any) is an RU
representation of G that preserves its upward planar embedding. Note that, given information
(a) and (b) for a planar digraph G, it can be easily checked in linear time whether this pair
correctly defines an upward plane embedding, i.e., if there exists an upward planar drawing
of G whose upward plane embedding coincides with (a) and (b) (see e.g. [3]).

The main ingredient of our approach is a 2-SAT formulation of the testing problem. It
consists of three phases, summarized hereunder and then described in more detail.

Phase 1: For each vertex w and for each edge e outgoing w, we assign a set λout(e) of
labels to e, encoding the sides by which e can leave w. Each of these labels is chosen
in the set {E, W, N} (East, West, or North). Similarly, for each edge e incoming w, we
assign to e a set λin(e) of {E, W, S} (East, West, or South), encoding the sides by which
e can enter w.
Phase 2: Based on λout(e) and λin(e) for each directed edge e = (u, v), we compute a set
λ(e) of labels, each label taken in the set {L, U, R}, such that |λ(e)| ≤ 2. The set λ(e)
encodes the possible directions (L=leftward, U=upward, R=rightward, respectively) that
an edge can have in an RU representation. If λ(e) is an empty set then the input graph
does not have an RU representation. The function λ is a candidate set of labels for the
edges of G.
Phase 3: By exploiting the labels associated with the edges, RU planarity is modeled as a
2-SAT formula ϕ, which is then solved in linear time [37].

Details for Phase 1. We describe how to define the sets λout(·) and λin(·) for every edge
outgoing or incoming a vertex w of G. (i) If w has three outgoing (resp. incoming) edges
e1, e2, e3, in this left-to-right order in the upward planar embedding of G, then the sides
from which these edges are incident to w can be uniquely fixed. Namely, λout(e1) = {W},
λout(e2) = {N}, λout(e3) = {E} (resp. λin(e1) = {W}, λin(e2) = {S}, λin(e3) = {E}). (ii)
If w has two outgoing (resp. incoming) edges e1 and e2, in this left-to-right order, we set
λout(e1) = {W, N}, λout(e2) = {N, E} (resp. λin(e1) = {W, S}, λin(e2) = {S, E}). (iii) If

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:7

w has one outgoing edge e1 we set λout(e1) = {W, N, E} in all cases except when w has
three incoming edges, in which case λout(e1) = {N}. (iv) If w has one incoming edge e1 we
set λin(e1) = {W, S, E} in all cases except when w has three outgoing edges, in which case
λin(e1) = {S}.

Details for Phase 2. For each edge e, given the label sets λout(e) and λin(e) for e, we first
initialize λ(e) as the empty set. If S ∈ λin(e) and N ∈ λout(e), we add label U to λ(e). If
E ∈ λout(e) and W ∈ λin(e), we add label R to λ(e). If W ∈ λout(e) and E ∈ λin(e), we add
label L to λ(e). We say that λ is a good labeling if it exists an RU representation H of G

such that each edge e ∈ H has a direction that corresponds to one of the labels of λ(e); if so,
H is said to be compatible with λ. Note that the labeling λ constructed as described above is
such that, for each edge e = (u, v), |λ(e)| ≤ 3. Also, if |λ(e)| = 3 then λ(e) = {L, U, R}, and
e is the only outgoing edge of u and the only incoming edge of v. Consider another labeling
λ′, derived from λ as follows: If |λ(e)| ≤ 2, let λ′(e) = λ(e); if |λ(e)| = 3, let λ′(e) = {U}.
Clearly, λ′ is constructed in linear time from λ and |λ′(e)| ≤ 2, for every edge e of the graph.
We call λ′ the reduction of λ. The following lemma is crucial for our 2-SAT model.

▶ Lemma 2. λ is a good labeling if and only if its reduction λ′ is a good labeling.

Proof. Clearly, if λ′ is a good labeling then λ is, because λ(e) is a superset of λ′(e). Suppose,
vice versa, that λ is a good labeling. We prove that λ′ is a good labeling by induction on the
number k of edges e for which |λ(e)| = 3. If k = 0, λ and λ′ coincides, and the statement is
obvious. Suppose that the statement is true for any k ≥ 1, and let e be any edge for which
|λ(e)| = 3. Let λ′′ be the labeling obtained from λ′ by setting λ′′(e) = λ(e) = {L, U, R}.
By the inductive hypothesis λ′′ is a good labeling. Consider an RU representation H of G

compatible with λ and let d be the direction of e in H. If d is the upward direction, then H

is also compatible with λ′, because λ′(e) = {U}. Otherwise (i.e., d is either the rightward or
the leftward direction) there is neither an edge of H that leaves u from North nor an edge of
H that enters v from South (because e is the only outgoing edge of u and the only incoming
edge of v). Hence, we can derive from H another RU representation H ′ such that e points
upward while all other edges of H ′ have the same direction as in H. The representation H ′

is now compatible with λ′, which implies that λ′ is a good labeling. ◀

Details for Phase 3. By Lemma 2, we can always assume that the labeling λ determined
in the previous phase is such that λ(e) contains either one or two labels, for each edge e of
G. Indeed, if this is not the case, we can restrict to consider its reduction λ′, obtained from
λ in linear time. Let w be a vertex of G and let e1 and e2 be two edges of G that are either
both outgoing w or both incoming w. Two labels X ∈ λ(e1) and Y ∈ λ(e2) are conflicting if
X = Y . This is true, because there cannot exist an RU representation of G such that the
directions of e1 and e2 coincide. Let e1 be an edge outgoing w and let e2 be an edge incoming
w. Two labels X ∈ λ(e1) and Y ∈ λ(e2) are conflicting if X and Y represent opposite
directions (i.e., X = L and Y = R or X = R and Y = L). This phase aims to assign a single
label to each edge, in such a way that there is no conflicting labels. Such an assignment (if
any) is a non-conflicting label assignment within λ. We use the notation L(λ) to denote any
non-conflicting assignment within λ. The next lemma establishes an equivalence between
non-conflicting label assignments and RU representations of G compatible with λ.

▶ Lemma 3. Let λ be a candidate set of labels for the edges of G. There exists an RU
representation H that is compatible with λ if and only if there exists a non-conflicting label
assignment within λ. The edge directions defined by H correspond to those defined by the
label assignment, and H preserves the planar embedding of G.

ISAAC 2023

26:8 Rectilinear-Upward Planarity Testing of Digraphs

Proof. If there exists an RU representation H that is compatible with λ, then choosing for
each edge e the label of λ(e) that corresponds to the direction of e in H immediately yields
a non-conflicting label assignment within λ.

Suppose vice versa that there exists a non-conflicting label assignment L(λ). We show
that from L(λ) we can derive an RU representation H of G that is compatible with λ. Since
by hypothesis G is upward planar and comes with an upward-planar embedding, there exists
a straight-line upward planar drawing Γ′ of G that preserves its upward planar embedding [2].
We can construct from Γ′ an orthogonal-upward drawing Γ′′ of G such that for each edge
e = (u, v): (i) the directions of the segments of e that are incident to u and v are coherent
with the label of e in L(λ); and (ii) moving from u to v along e, the number of right bends
equals the number of left bends.

U

L
U

R

e

v

δ(v, e)

Cε(v)

u

Cε(u)

(a)

U

L
U

R

(b)

U

L
U

R

(c)

Figure 4 An illustration for the proof of Lemma 3.

To construct Γ′′, proceed as follows. Let ε > 0 be a length such that the circular area
of radius ε around each vertex v does not intersect any other vertex and any other edge
that is not incident to v in Γ′. For each vertex v of Γ′, draw a circle Cε(v), centered at v,
of radius ε (see Figure 4a). Let e be an edge incident to v. Denote by δ(v, e) the smallest
vertical distance between v and the intersection of e with Cϵ(v) (see Figure 4a). Let δ be
the minimum of all δ(v, e). Draw a circle Cδ(v) of radius δ around each vertex v. Now
construct a drawing of G such that each edge e = (u, v) is non-decreasing with respect to
the y-coordinate, leaves the u vertex and enters vertex v with a straight segment of length δ

directed as prescribed by λ. This is possible because δ = minv,e{δ(v, e)} (see Figure 4b). To
finally obtain Γ′′, we replace each edge e by a sequence of horizontal and vertical segments
that follows the drawing of e at a distance that is small enough to guarantee that it does
not intersect any other edge or vertex of the drawing (see Figure 4a). Since the sequence of
horizontal and vertical segments of each edge e starts and ends with a segment that goes in
the same direction and is non-decreasing, the numbers of right and left turns are the same.

To construct the final RU representation H , consider the orthogonal representation H ′′ of
Γ′′. Since each edge of H ′′ has the same number of left and right turns, by [42] there exists
an orthogonal representation H of G without bends (i.e., a rectilinear representation of G)
such that H has the same embedding as H ′′ and such that each edge in H is incident to its
end-vertices from the same side as in H ′′. ◀

Given a non-conflicting label assignment L(λ) of G, an RU representation H of G

compatible with λ and whose edge directions correspond to the edge labels of L(λ), can be
easily constructed in linear time. Namely, since H preserves the planar embedding of G,

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:9

for each vertex w of H the angles at w can be easily determined by the label assignment
L(λ) for the edges incident to w. Also, H is oriented in such a way that the directions of the
edges are coherent with λ. We now give the main result of this section.

▶ Theorem 4. Let G be an n-vertex upward plane digraph. There exists an O(n)-time
algorithm that tests whether G admits an RU representation, and that computes one in the
positive case.

Proof. Let λ be a candidate set of labels for the edges of G, computed as described in Phase
1 and Phase 2. By Lemma 2, we also assume that, for each edge e of G, λ(e) contains at most
two labels. Based on Lemma 3, deciding whether G admits an embedding-preserving RU
representation is equivalent to deciding whether G admits a non-conflicting labeling L(λ).
We model this problem as a 2-SAT problem, which is defined as follows.

For each edge e and for each label X ∈ λ(e), define a Boolean variable bX
e ; this variable

will be set to True if we select label X for edge e, and it will be set to False otherwise. We
define a formula cl(e) for every edge e and a formula cl(v) for every vertex v that has at
least one incident edge e with |λ(e)| = 2. Our 2-SAT formula Φ is the conjunction of all the
formulas defined for the edges and for the vertices of G.

For each edge e of G we define cl(e) as either the conjunction of two clauses or as a single
clause in Φ, depending on whether |λ(e)| = 2 or |λ(e)| = 1. More precisely, if λ(e) = {X, Y }
we have cl(e) = (bX

e ∨ bY
e) ∧ (¬bX

e ∨ ¬bY
e). This ensures that in order to satisfy Φ we have to

select exactly one of the two labels X and Y . If λ(e) = {X}, we have cl(e) = (bX
e ∨ bX

e). For
cl(v) we have two cases: (i) v is a source or a sink; (ii) v is neither a source nor a sink.

Case (i). If v is a source (resp. a sink), let e1 and e2 be the two outgoing (resp. incoming)
edges from v, respectively. We set:

cl(v) = ¬bU
e1

∨ ¬bU
e2

Case (ii). We have four subcases: (a) deg(v) = 2; (b) deg(v) = 3 and v has two incoming
edges; (c) deg(v) = 3 and v has two outgoing edges; (d) deg(v) = 4 and v has two incoming
and two outgoing edges.
(a) Let e1 and e2 be the incoming edge and the outgoing edge of v, respectively. Suppose

λ(e1) = {U, X} and λ(e2) = {U, Y }, where X, Y ∈ {R, L}. If X = Y , we do not add any
clause associated with v, because any two labels for e1 and e2 in λ(e1) and in λ(e2) are
non-conflicting. If X ̸= Y , we set:

cl(v) = ¬bX
e1

∨ ¬bY
e2

.

(b) Let e1 and e2 be the two incoming edges of v, in this left-to-right order, and let e3
be the outgoing edge of v. We have λ(e1) = {U, R}, λ(e2) = {L, U}, and either
(1) λ(e3) = {L, U} or (2) λ(e3) = {U, R}. We define cl(v) as follows, depending on the
two sub-cases:

(1) cl(v) = (¬bU
e1

∨ ¬bU
e2

) ∧ (¬bR
e1

∨ ¬bL
e3

)

(2) cl(v) = (¬bU
e1

∨ ¬bU
e2

) ∧ (¬bL
e2

∨ ¬bR
e3

)

(c) Symmetric to (b).
(d) Let e1 and e2 be the two outgoing edges of v, and let e3 and e4 be the two incoming edges

of v, in this left-to-right order. We have: λ(e1) = {L, U}, λ(e2) = {U, R}; λ(e3) = {L, U},
λ(e4) = {U, R}. We define cl(v) as follows:

cl(v) = (¬bU
e1

∨ ¬bU
e2

) ∧ (¬bR
e2

∨ ¬bL
e3

) ∧ (¬bU
e3

∨ ¬bU
e4

) ∧ (¬bL
e1

∨ ¬bR
e4

)

ISAAC 2023

26:10 Rectilinear-Upward Planarity Testing of Digraphs

Observe that, if a vertex is incident to an edge e with |λ(e)| = 1, we use the clauses
defined above, but in these cases they are simplified since the values bX

e are fixed (either to
True or to False) for any possible value of X. ◀

5 Testing in the Variable Embedding Setting

In this section we deal with biconnected planar digraphs whose embedding is not fixed. In
Section 5.1 we define the notion of rectilinear-upward spirality. In Section 5.2 we describe a
polynomial-time testing algorithm for digraphs whose underlying undiracted graph is series-
parallel. In Section 5.3 we consider the general case, and give a FPT algorithm parameterized
by the the number of sources and sinks in the digraph.

5.1 Rectilinear-Upward Spirality
We introduce the new concept of rectilinear-upward spirality, which specializes the notion of
orthogonal spirality defined in [11]. While the orthogonal spirality is a measure of how much
a given subgraph of an undirected graph G is rolled-up in an orthogonal representation of G,
our notion of spirality is for directed graphs and incorporates additional information about
the sides to which edges are incident to the poles of the triconnected components.

SPQR-trees. As in [11], our definition of spirality exploits the popular SPQR-tree data
structure introduced by Di Battista and Tamassia [10]. The SPQR-tree T of a biconnected
(di)graph G represents the decomposition of G into its triconnected components [33], and it
can be computed in linear time [10, 30]. Refer to Figure 8. Each triconnected component
corresponds to a non-leaf node ν of T ; the triconnected component itself is the skeleton of
ν and is denoted as skel(ν). Node ν can be: (i) an S-node (series composition), if skel(ν)
is a simple cycle of length at least three; (ii) a P-node (parallel composition), if skel(ν) is
a bundle of at least three parallel edges; (iii) an R-node (rigid composition), if skel(ν) is a
triconnected graph. A degree-1 node of T is a Q-node and represents a single edge of G.
A real edge (resp. virtual edge) in skel(ν) corresponds to a Q-node (resp., to an S-, P-, or
R-node) adjacent to ν in T . Let e be a designated edge of G, called the reference edge of
G, let ρ be the Q-node of T corresponding to e, and let T be rooted at ρ. For any P-, S-,
or R-node ν of T distinct from the root child, skel(ν) has a virtual edge, called reference
edge of skel(ν) and of ν, associated with a virtual edge in the skeleton of its parent. The
reference edge of the root child of T is the edge corresponding to ρ. For every node ν ≠ ρ,
the pertinent graph Gν of ν is the subgraph of G whose edges correspond to the Q-nodes in
the subtree of T rooted at ν. We also say that Gν is a component of G. The pertinent graph
Gρ of the root ρ coincides with the reference edge of G. If H is a rectilinear representation or
an RU rectilinear representation of G, its restriction Hν to Gν is a rectilinear component or
an RU rectilinear component of H. As in [7, 11, 15, 16, 18, 20, 23], we implicitly assume to
work with a normalized SPQR-tree, in which every S-node has exactly two children. Every
SPQR-tree can be normalized in O(n) time by recursively splitting an S-node with more
than two children into multiple S-nodes with two children. If G has n vertices, a normalized
SPQR-tree of G still has O(n) nodes.

RU-Spirality. Let G be a biconnected planar digraph and consider an SPQR-tree T of G

rooted at a Q-node ρ, corresponding to a reference edge (s, t). Assume for convenience that
the vertices of G are labeled with an st-numbering [24] of G (see, e.g., Figure 8a). Let H

be an orthogonal representation of G with the reference edge Gρ = (s, t) in the external

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:11

Gν
v

u

e
d

c
b

a

Gρ

(a) G

u

v

a

b c d

e

Gρ

σν = 3

(b) H

v

u

a b c

d

e

σν = 3

Gρ

(c) H ′

Figure 5 Illustration of the concept of RU-spirality. The two representations in (b) and (c) have
the same value of σν but different RU spiralities.

face, let Hν be a component of H (i.e., the restriction of H to Gν), and let {u, v} be the
poles of ν, where u precedes v in the st-numbering. We say that u and v are the first-pole
and the second-pole of ν, respectively. Note that we are not assuming any relationship
between the st-numbering and the orientation of the edges of G. For each pole w ∈ {u, v},
let intdegν(w) and extdegν(w) be the degree of w inside and outside Hν , respectively. We
define two (possibly coincident) alias vertices of w, denoted by w′ and w′′, as follows: (i)
if intdegν(w) = 1, then w′ = w′′ = w; (ii) if intdegν(w) = extdegν(w) = 2, then w′ and
w′′ are dummy vertices, each splitting one of the two distinct edge segments incident to w

outside Hν ; (iii) if intdegν(w) > 1 and extdegν(w) = 1, then w′ = w′′ is a dummy vertex
that splits the edge segment incident to w outside Hν .

Let Aw be the set of distinct alias vertices of a pole w. Let P uv be any simple undirected
path from u to v inside Hν and let u′ ∈ Au and v′ ∈ Av be two alias vertices of u and of v,
respectively. The path Su′v′ obtained concatenating (u′, u), P uv, and (v, v′) is a spine of Hν .
Denote by n(Su′v′) the number of right turns minus the number of left turns encountered
along Su′v′ moving from u′ to v′. The rectilinear spirality σ(Hν) of Hν is either an integer or
a semi-integer number, defined based on the following cases: (i) If Au = {u′} and Av = {v′}
then σ(Hν) = n(Su′v′). (ii) If Au = {u′} and Av = {v′, v′′} then σ(Hν) = n(Su′v′

)+n(Su′v′′
)

2 .
(iii) If Au = {u′, u′′} and Av = {v′} then σ(Hν) = n(Su′v′

)+n(Su′′v′
)

2 . (iv) If Au = {u′, u′′}
and Av = {v′, v′′} assume, without loss of generality, that (u, u′) succeeds (u, u′′) clockwise
around u and that (v, v′) precedes (v, v′′) clockwise around v; then σ(Hν) = n(Su′v′

)+n(Su′′v′′
)

2 .
For brevity, in the following we often denote by σν the rectilinear spirality of an RU

representation of Gν . Let {S, N, W, E} denote the set of the four possible sides (North,
South, East, West) by which an edge can be incident to a vertex in an RU representation.
The rectilinear-upward spirality (RU-spirality for short) of Hν , denoted by τ(Hν) (or simply
by τν), is a tuple ⟨σν , φu, φv⟩, where σν is the rectilinear spirality of Hν and where φw =
(Sw, Nw, Ww, Ew) specifies the arrangement of the internal and external edges of Hν incident
to a pole w ∈ {u, v}, with respect to the four sides S (South), N (North), W (West), and
E (East). Precisely, for each D ∈ {S, N, W, E} and w ∈ {u, v}, we have Dw ∈ {free, int, ext}
in such a way that: Dw = free if no edge is incident to w from side D; Dw = int if
there is an edge of Hν (i.e., an edge internal to Hν) incident to w from side D; Dw = ext
if there is an edge of H not in Hν (i.e., an edge external to Hν) incident to w from
side D. We call σν the rectilinear spirality of τν ; φu and φv the pole side specifications
of τν . Figure 5 shows an illustration of the concept of RU-spirality. In Figure 5a there
is a digraph G with a highlighted S-component Gν with first-pole u and second-pole v.

ISAAC 2023

26:12 Rectilinear-Upward Planarity Testing of Digraphs

1 2

3 4

5 6 7

8 9

10

11

1213 14

1516 17

18H

Hν

(a) G

1

2

3

4 5

6

8

7

910

11

1213
14

15

16 17

18H ′

H ′
ν

(b) H

7

8 9

10

11

1213 14

1516 17

18

1

2

3

4 5

6

H ′
ν

H ′′

(c) H ′

Figure 6 Illustration of the concept of substitution. The RU representation H ′′ in (c) is obtained
by substituting Hν with H ′

ν in H. The first-pole of ν is vertex 1 and the second-pole of ν is vertex
6. We have τ(Hν) = τ(H ′

ν) = ⟨− 1
2 , (free, int, ext, int), (int, ext, int, ext)⟩.

Figure 5b and Figure 5c show two different RU representations H and H ′ of G. In H we have
τν = ⟨3, φu = (free, ext, int, ext), φv = (ext, int, ext, free)⟩ and in H ′ we have τν = ⟨3, φu =
(ext, int, free, ext), φv = (free, ext, ext, int)⟩.

Note that, denoted by G′ the subgraph of G consisting of Gν plus the external edges
incident to the poles of ν, the RU-spirality for an RU representation Hν of Gν can also be
defined referring to an RU representation of G′ that contains Hν , rather than to an RU
representation of G. If we are able to construct an RU representation H ′ of G′ such that
its restriction Hν to Gν has RU-spirality τν , then we say that Gν (or simply ν) admits
RU-spirality τν . Observe that, even if Hν admits RU-spirality τν , it might not exist an RU
representation of G whose restriction to Gν has spirality τν .

Substituting components with the same RU-spirality. We extend the results in [11, 18]
to show that components with the same RU spirality are “interchangeable”. Let H and H ′

be two different RU representations of G with the same reference edge Gρ on the external
face. Also let Hν and H ′

ν be the restrictions of H and H ′ to the same component Gν . If
τ(Hν) = τ(H ′

ν), the operation Sub(Hν , H ′
ν) of substituting Hν with H ′

ν in H defines a new
plane digraph H ′′ with an angle labeling such that the restriction of H ′′ to Gν coincides
with H ′

ν , while the restriction of H ′′ to G \ Gν stays as in H. More formally, let u and v be
the first-pole and second-pole of ν, respectively. The external boundary of Hν contains a left
path pl and a right path pr, such that pl (resp. pr) goes from u to v traversing the external
boundary of Hν clockwise (resp. counterclockwise). Let fl and fr be the faces of H outside
Hν and incident to pl and pr, respectively. With respect to H ′

ν and H ′, define p′
l, p′

r, f ′
l , f ′

r

analogously. Since τ(Hν) = τ(H ′
ν), the circular sequence of angles at each pole w ∈ {u, v} is

the same in H and in H ′, namely the angles at w internal and external to Gν are the same
in H and H ′. The digraph H ′′ is defined as follows:

H ′′ has the same set of vertices and edges as G.
The planar embedding of H ′′ is such that: all the faces of H outside Hν and distinct
from fl and fr, as well as all faces of H ′

ν , are also faces of H ′′. Further, H ′′ has two faces
f ′′

l and f ′′
r obtained by replacing pl with p′

l and pr with p′
r in the boundary of fl and of

fr, respectively.
The angle labeling of H ′′ is such that: (i) all the angles at the vertices of G not belonging
to Gν are those in H; (ii) all the angles at the vertices of Gν distinct from u and v are
those in H ′

ν ; (iii) for each pole w ∈ {u, v}, the internal and external angles at w are
defined as in H or, equivalently, as in H ′ (they are the same as τ(Hν) = τ(H ′

ν)).

The following result proves that H ′′ is an RU representation.

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:13

▶ Theorem 5. Let G be a biconnected planar digraph, T be an SPQR-tree of G with respect
to a given reference e, and ν be a non-root node of T . Let H and H ′ be two different RU
representations of G with e on the external face, and let Hν and H ′

ν be the restrictions of H

and of H ′ to Gν , respectively. If τ(Hν) = τ(H ′
ν) then the graph H ′′ defined by Sub(Hν , H ′

ν)
is an RU representation of G.

Proof. The fact that the planar embedding and the labeling of H ′′ describe a rectilinear
planar representation of G is proved in [11, 18], as a consequence that Hν and H ′

ν have the
same rectilinear spirality. We now orient H ′′ in such a way that, for an arbitrarily chosen
edge e = (x, y) of H ′

ν , the vertices x and y have the same relative positions as in H ′
ν . This

implies that for each edge e′ of Gν , the relative position of the end-vertices of e′ in H ′′

remains the same as in H ′. Also, for each side {S, N, W, E} of w, either this side is free in
both H and H ′, or it is occupied either by an edge internal to Gν or by an edge external to
Gν in both H and H ′. This implies that, with the chosen orientation, for each edge e′′ of
G \ Gν the relative position of the end-vertices of e′′ in H ′′ is the same as in H. It follows
that, with the chosen orientation, no edge of H ′′ is downward. ◀

Based on Theorem 5, in order to test RU planarity of a biconnected digraph G with
a given reference edge on the external face, we exploit a dynamic programming technique
that visits a rooted SPQR-tree T of G bottom-up. At each visited node ν of T , and for
each RU spirality τν admitted by ν, we store at ν a pair ⟨τν , Hν⟩, where Hν is just one RU
representation of Gν with spirality τν , called a representative of τν . The set of all pairs
⟨τν , Hν⟩ is the feasible set of ν and is denoted by Σν . Observe that, if Gν has nν vertices
and if τν ∈ Σν , the rectilinear spirality σν in τν cannot exceed nν , as we can make at most
nν right or nν left turns. Also, for each value σν , the number of RU spiralities τν in Σν with
rectilinear spirality σν is bounded by a constant. Hence, we have the following.

▶ Property 2. For any component Gν with nν vertices, |Σν | = O(nν). Also, for each τν ∈ Σν ,
the corresponding rectilinear spirality σν belongs to the interval [−nν , nν].

5.2 Testing Series-Parallel Digraphs in Polynomial Time
When the SPQR-tree T of a biconnected graph G does not have R-nodes, G is a series-parallel
graph, or simply an SP-graph. Also, T is called the SPQ-tree of G. In this section we assume
that G is an SP-digraph, i.e., a digraph whose underlying undirected graph is an SP-graph.
We also assume that T is normalized. We prove the following lemmas.

▶ Lemma 6. Let ν be a Q-node of T . We can compute Σν in O(1) time.

Proof. Gν is a directed edge e = (u, v) of G. In any RU representation of G, edge e is either
leftward, or rightward, or upward. For each of these three possibilities, we have to consider
the O(1) possible arrangements of the edges incident to e on the different sides of u and v,
each of them defining a different spirality τν . Thus Σν is constructed in O(1) time. ◀

▶ Lemma 7. Let ν be an S-node of T with children µ1 and µ2, and let nν
1 and nν

2 be the
number of nodes in Gµ1 and Gµ2 , respectively. If Σµ1 and Σµ2 are given, then we can compute
Σν in O(nν

1 · nν
2) time.

Sketch of Proof. For each pair τµ1 ∈ Σµ1 and τµ2 ∈ Σµ2 , let Hµ1 and Hµ2 be the rep-
resentatives of τµ1 and τµ2 , respectively. Let ui and vi be the first-and second-pole of µi,
respectively, with i = 1, 2. Clearly v1 = u2. Suppose that for each side D ∈ {S, N, W, E}

ISAAC 2023

26:14 Rectilinear-Upward Planarity Testing of Digraphs

one of these three cases holds: (i) Dv1 = free in τµ1 and Du2 = free in τµ2 ; (ii) Dv1 = int
in τµ1 and Du2 = ext in τµ2 ; (iii) Dv1 = ext in τµ1 and Du2 = int in τµ2 . If so the pole side
specifications of τµ1 and τµ2 are compatible, and we can construct an RU representation Hν

by gluing together Hµ1 and Hµ2 at the common pole v1 = u2; the rectilinear spirality σν in
τν is computed based on σµ1 , σµ2 , and on the pole side specifications in τµ1 and τµ2 . ◀

The next structural lemma, which is proven by induction on the depth of a normalized
rooted SPQ-tree T , is given in [17]. Corollary 9 follows by combining Lemma 7 and Lemma 8.

▶ Lemma 8 ([17]). Let T be a normalized rooted SPQ-tree of an n-vertex SP-digraph G, and
let S be the set of all S-nodes of T . We have

∑
ν∈S nν

1 · nν
2 = O(n2), where nν

1 and nν
2 are

the number of vertices in the pertinent graphs of the two children of ν.

▶ Corollary 9. Let T be a normalized rooted SPQ-tree of an n-vertex SP-digraph G. Assume
that T is visited bottom-up and that when we visit a node the feasible sets of its children are
known. Then, the feasible sets of all S-nodes of T can be computed in overall O(n2) time.

The next lemma is about the feasible sets of P-nodes. Theorem 11 summarizes the main
result of this subsection.

▶ Lemma 10. Let ν be a P-node of T with children µ1, µ2, . . . µh (h = 2, 3). If Σµ1 and Σµ2

are given, then we can compute Σν in O(n) time.

Proof. Let u and v be the first-pole and the second-pole of v, respectively. By definition of
P-node, u and v are also the first-pole and the second-pole of each child of ν. Denote by nν

the number of vertices of Gν . Suppose first that ν is a P-node with three children µ1, µ2,
and µ3. Any planar embedding of G defines a planar embedding of skel(ν). If for simplicity
we topologically imagine v above u, in any given embedding of skel(ν) the three children of ν

(namely, the edges of skel(ν) that correspond to these children) occur from left to right in some
order (equivalently, this order coincides with the circular order in which these children are
encountered around v moving counterclockwise from the reference edge of skel(ν)). Suppose
that for a given embedding ϕ of skel(ν), we rename the three children of ν as µl, µc, and µr,
if they occur in this left-to-right order in ϕ. Let H be any rectilinear representation of G that
induces for skel(ν) the embedding ϕ. Also denote by σν , σµl

, σµc
, and σµr

the rectilinear
spirality values of the restrictions of H to Gν , Gµl

, Gµc
, and Gµr

, respectively. It is proved
in [11] that the following relationship holds: σν = σµl

− 2 = σµc = σµr + 2. Clearly, since an
RU representation is in particular a rectilinear representation, then the same relationship
must be verified for any RU representation that induces the embedding ϕ for skel(ν). Hence,
as done in [11], for each candidate rectilinear spirality value σν ∈ [−nν , nν] (see Property 2)
and for each possible embedding ϕ of skel(ν), one can check in O(1) time whether there exist
three elements τµl

∈ Σµl
, τµc

∈ Σµc
, and τµr

∈ Σµr
such that the corresponding rectilinear

spiralities σµl
, σµc

, and σµr
satisfy the above relationship. If not, then the target rectilinear

spirality value σν is not feasible, otherwise suppose that such elements τµl
, τµc , and τµr exist.

To check whether we can combine them into an RU spirality τν having rectilinear spirality
σν , we have to test the compatibility of the pole side specifications for each pole w ∈ {u, v}.
This compatibility can be checked with the following simple considerations. Since ν has
three children, w has degree four in G. Also, each of the three components Gµl

, Gµc
, and

Gµr
contains exactly one edge incident to w, while the fourth edge incident to w is external

to all the three components. Hence, to have compatibility, we must have that in the pole
specification of each τµj (j = l, c, r) there is exactly one side of w with value int and each
other side of w with value ext. In particular, call Dw the side of w in the pole specification

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:15

of τµl
for which Dw = int. To fix the ideas, assume that Dw = Ww, i.e., the edge of Gµl

incident w occupies the West side of w (the cases Dw = Sw, Dw = Nw, and Dw = Ew are
treated in a similar way). This means that φw = (ext, ext, int, ext) in τµl

. Thus, in order to
have compatibility at w it must be φw = (int, ext, ext, ext) in τµc and φw = (ext, ext, ext, int)
in τµr

. If there is compatibility at the pole u and at the pole v, we can glue together the
representatives Hµl

, Hµc , Hµr into an RU representation Hν with rectilinear spirality σν ,
and we insert τν = ⟨σν , Hν⟩ in Σν ; otherwise we discard the triplet τµl

, τµc
, τµr

.
The described procedure for constructing Σν takes O(n) time because: (i) by Property 2

there are O(n) possible target rectilinear spirality values to consider; (ii) for each target
spirality value, skel(ν) has 6 distinct planar embeddings to consider; (iii) for each embedding
of skel(ν) we can check in O(1) time which triplets τµl

, τµc
, τµr

that satisfy the relation
σν = σµl

− 2 = σµc
= σµr

+ 2 (see also [11]), and for each of these triplets we can also check
in O(1) time the compatibility of the pole side specifications.

If ν is a P-node with two children, the strategy for constructing Σν is exactly the same.
However in this case, skel(ν) has only two embeddings to consider for each target value of
rectilinear spirality σν . Also, for each of these two embeddings, the relationship between σν

and the rectilinear spiralities of the children of ν, as well as the compatibility conditions for
the pole side specifications, may require to analyze more cases, whose number is however
still bounded by a constant (see [11] for details about the relationships between a rectilinear
representation of ν and those of its two children). ◀

▶ Theorem 11. Let G be an n-vertex SP-digraph. There exists an O(n3)-time algorithm that
tests whether G admits an RU representation, and that computes one in the affirmative case.

Sketch of Proof. Let T be the SPQ-tree of G. For each Q-node ρ of T , the algorithm
considers T rooted at ρ and performs a post-order visit of T to tests whether G admits an
RU representation with the reference edge Gρ on the external face. It first computes Σν

for each leaf ν of T , that is, for each Q-node of T distinct from ρ. Then, for each internal
node ν of T distinct from ρ the algorithm computes Σν by using the feasible sets of the
children of ν, by means of Lemma 7 or of Lemma 10 depending on whether ν is an S-node
or a P-node. If Σν is empty then G does not have an RU representation with Gρ on the
external face, and the algorithm starts visiting T rooted at another Q-node. Suppose vice
versa that the algorithm achieves the root child ν and that Σν is not empty. The algorithm
checks if there is τν ∈ Σν whose Hν can be glued together with a straight-line representation
of the reference edge Gρ, which is oriented either upward, or leftward, or rightward.

Regarding the time complexity, the algorithm has to test O(n) rooted SPQ-trees. For
each tree, the feasible sets of all Q-nodes can be computed in overall O(n) time by Lemma 6,
those of all S-nodes can be computed in O(n2) time by Corollary 9, and those of all P-nodes
can be computed in O(n2) time by Lemma 10. Finally, the condition at the root can be
checked in O(n) time. Hence, the whole algorithm can be executed in O(n3) time. ◀

5.3 FPT Testing Algorithm by the Number of Sources and Sinks
Let G be a biconnected digraph. A vertex of G that is either a source or a sink of G is called
a switch [10]. We sketch the description of an FPT algorithm for Rectilinear-Upward
Planarity Testing parameterized by the number k of switches of G.

Let T be a rooted SPQR-tree of G and let ν be any node of T . It can be shown that:
(i) if Gν does not contain any switches of G, then it can only admit a constant number of
rectilinear spirality values, and hence a constant number of RU spiralities; (ii) otherwise, the
possible values of rectilinear spirality admitted by Gν is a linear function of k.

ISAAC 2023

26:16 Rectilinear-Upward Planarity Testing of Digraphs

The FPT algorithm extends the dynamic programming of Section 5.2 so to handle R-nodes.
When an R-node ν of a rooted SPQR-tree is visited, we consider the two possible planar
embeddings of its skeleton, and for each of these two embeddings we consider every possible
upward planar embedding and every possible target RU spirality τν ; then, we test whether
Gν admits τν . If so, as for S-nodes and P-nodes, we construct an RU representation Hν

and we insert ⟨τν , Hν⟩ in Σν ; otherwise, τν is discarded. To perform the test for each target
value τν , we partition the children of ν into two sets A and B. Namely, a child µ of ν is
inserted in A if Gµ contains at least one switch of G, otherwise we insert µ in B. Clearly
|A| = O(k), while for each element in B the size of the feasible set is constant. Then, for
each combination of fixed RU spiralities in the feasible sets of the elements in A, we solve a
constrained RU planarity testing problem that: (a) forces Gν to have the target rectilinear
spirality σν (associated with τν); (b) preserves the chosen combination of RU spiralities for
the elements of A; and (c) guarantees that the pertinent graphs of the nodes in B have one
of the constantly many RU spiralities in their feasible sets. We prove that this test can be
executed in O(n) time by using the 2-SAT model of Section 4, enriched with O(n) number
of constraints. Since there are O(kk) = 2O(k log k) combinations of RU spiralities for the
elements in A, and since there are O(4k) = O(22k) upward planar embeddings for each of
the two possible planar embeddings of an R-node, we get the following.

▶ Lemma 12. Let ν be an R-node of T and let µ1, . . . , µh be its children. Given the feasible
set Σµi for each i ∈ {1, . . . , h}, we can compute Σν in 2O(k·log k+2k) · O(n) time.

By Lemma 12, for processing all R-nodes of T we spend in total 2O(k·log k+2k) · O(n2).
For an S-node or a P-node ν, we use exactly the same strategy as in Section 5.2. However,
since the sizes of the feasible sets of all children of ν, and of ν itself, are now O(k), Σν can
be constructed in O(k2) time if ν is an S-node and in time O(k) if ν is a P-node; hence we
spend O(nk2) for processing all S- and P-nodes of T . Finally, since every RU representation
of G has at least one source and one sink in its external face, it suffices to test O(k) possible
rooted SPQR-trees, thus saving the extra O(n) factor of Theorem 11. The following holds.

▶ Theorem 13. Let G be a planar digraph with k switches. There exists an 2O(k·log k+2k) ·
O(n2)-time algorithm that tests whether G is rectilinear-upward planar and that computes an
RU representation of G in the positive case.

A byproduct of the previous theorem is the following corollary for the well-known family
of st-digraphs, i.e., digraphs with a single source and a single sink.

▶ Corollary 14. The Rectilinear-Upward Planarity Testing problem can be solved in
O(n2) time for planar st-digraphs with n vertices.

6 Open Problems

The NP-hardness of Rectilinear-Upward Planarity Testing holds when the embed-
ding can vary while the linear-time solution holds for upward plane digraphs. Also the testing
is trivial if a rectilinear embedding is given. Establishing the complexity of the problem
when a planar embedding (neither rectilinear nor upward) is fixed remains an open question.
Moreover, our results in the variable embedding setting consider biconnected graphs; extend-
ing these results to simply connected instances is a topic for future exploration. Lastly, there
is potential for future research in improving the time complexity for series-parallel digraphs.

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:17

References
1 Sarmad Abbasi, Patrick Healy, and Aimal Rextin. Improving the running time of embedded

upward planarity testing. Inf. Process. Lett., 110(7):274–278, 2010. doi:10.1016/j.ipl.2010.
02.004.

2 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci., 61:175–198, 1988. doi:10.1016/0304-3975(88)90123-5.

3 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/BF01188716.

4 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM J. Comput., 27(1):132–169, 1998.
doi:10.1137/S0097539794279626.

5 Carla Binucci, Walter Didimo, and Maurizio Patrignani. Upward and quasi-upward planarity
testing of embedded mixed graphs. Theor. Comput. Sci., 526:75–89, 2014. doi:10.1016/j.
tcs.2014.01.015.

6 Franz-Josef Brandenburg, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,
Giuseppe Liotta, and Petra Mutzel. Selected open problems in graph drawing. In Giuseppe
Liotta, editor, Graph Drawing, 11th International Symposium, GD 2003, Perugia, Italy,
September 21-24, 2003, Proceedings, volume 2912 of Lecture Notes in Computer Science, pages
515–539. Springer, 2003. doi:10.1007/978-3-540-24595-7_55.

7 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Rafto-
poulou, and Kirill Simonov. Parameterized algorithms for upward planarity. In Xavier Goaoc
and Michael Kerber, editors, 38th International Symposium on Computational Geometry,
SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 26:1–26:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.2022.26.

8 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Rafto-
poulou, and Kirill Simonov. Testing upward planarity of partial 2-trees. In Patrizio An-
gelini and Reinhard von Hanxleden, editors, Graph Drawing and Network Visualization –
30th International Symposium, GD 2022, Tokyo, Japan, September 13-16, 2022, Proceed-
ings, volume 13764 of Lecture Notes in Computer Science, pages 175–187. Springer, 2022.
doi:10.1007/978-3-031-22203-0_13.

9 Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. J. Graph
Algorithms Appl., 16(3):635–650, 2012. doi:10.7155/jgaa.00265.

10 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

11 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal
drawings. SIAM J. Comput., 27(6):1764–1811, 1998. doi:10.1137/S0097539794262847.

12 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Sketched representations and
orthogonal planarity of bounded treewidth graphs. In Daniel Archambault and Csaba D. Tóth,
editors, Graph Drawing and Network Visualization – 27th International Symposium, GD 2019,
Prague, Czech Republic, September 17-20, 2019, Proceedings, volume 11904 of Lecture Notes
in Computer Science, pages 379–392. Springer, 2019. doi:10.1007/978-3-030-35802-0_29.

13 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing
of bounded treewidth graphs. J. Comput. Syst. Sci., 125:129–148, 2022. doi:10.1016/j.jcss.
2021.11.004.

14 Walter Didimo, Emilio Di Giacomo, Giuseppe Liotta, Fabrizio Montecchiani, and Giacomo
Ortali. On the parameterized complexity of bend-minimum orthogonal planarity. CoRR,
abs/2308.13665, 2023. doi:10.48550/arXiv.2308.13665.

15 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward
planarity testing. SIAM J. Discret. Math., 23(4):1842–1899, 2009. doi:10.1137/070696854.

16 Walter Didimo, Michael Kaufmann, Giuseppe Liotta, and Giacomo Ortali. Rectilinear planarity
of partial 2-trees. In Patrizio Angelini and Reinhard von Hanxleden, editors, Graph Drawing
and Network Visualization – 30th International Symposium, GD 2022, Tokyo, Japan, September
13-16, 2022, Proceedings, volume 13764 of Lecture Notes in Computer Science, pages 157–172.
Springer, 2022. doi:10.1007/978-3-031-22203-0_12.

ISAAC 2023

https://doi.org/10.1016/j.ipl.2010.02.004
https://doi.org/10.1016/j.ipl.2010.02.004
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1007/BF01188716
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.4230/LIPIcs.SoCG.2022.26
https://doi.org/10.1007/978-3-031-22203-0_13
https://doi.org/10.7155/jgaa.00265
https://doi.org/10.1137/S0097539794262847
https://doi.org/10.1007/978-3-030-35802-0_29
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.48550/arXiv.2308.13665
https://doi.org/10.1137/070696854
https://doi.org/10.1007/978-3-031-22203-0_12

26:18 Rectilinear-Upward Planarity Testing of Digraphs

17 Walter Didimo, Michael Kaufmann, Giuseppe Liotta, and Giacomo Ortali. Rectilinear planarity
of partial 2-trees. CoRR, abs/2208.12558, 2022. doi:10.48550/arXiv.2208.12558.

18 Walter Didimo, Michael Kaufmann, Giuseppe Liotta, and Giacomo Ortali. Computing bend-
minimum orthogonal drawings of plane series–parallel graphs in linear time. Algorithmica,
2023. doi:10.1007/s00453-023-01110-6.

19 Walter Didimo, Michael Kaufmann, Giuseppe Liotta, and Giacomo Ortali. Rectilinear planarity
of partial 2-trees. J. of Graph Algorithms Appl., special issue on GD 2022., 2023. to appear.

20 Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embedding
setting. In Kyung-Yong Chwa and Oscar H. Ibarra, editors, Algorithms and Computation,
9th International Symposium, ISAAC ’98, Taejon, Korea, December 14-16, 1998, Proceedings,
volume 1533 of Lecture Notes in Computer Science, pages 79–88. Springer, 1998. doi:
10.1007/3-540-49381-6_10.

21 Walter Didimo and Giuseppe Liotta. Graph Visualization and Data Mining, chapter 3, pages
35–63. John Wiley & Sons, Ltd, 2006. doi:10.1002/9780470073049.ch3.

22 Walter Didimo, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani. Optimal orthogonal
drawings of planar 3-graphs in linear time. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 806–825. SIAM, 2020. doi:10.1137/1.9781611975994.49.

23 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. HV-planarity: Algorithms and
complexity. J. Comput. Syst. Sci., 99:72–90, 2019. doi:10.1016/j.jcss.2018.08.003.

24 Shimon Even and Robert Endre Tarjan. Corrigendum: Computing an st-numbering. TCS
2(1976):339-344. Theor. Comput. Sci., 4(1):123, 1977.

25 Uli Fossmeier and Michael Kaufmann. An approach to bend-minimal upward drawing. In
Graph Drawing, 1th International Symposium, GD 1993, Paris, France, pages 27–29, 1993.

26 Ulrich Fößmeier and Michael Kaufmann. On bend-minimum orthogonal upward drawing of
directed planar graphs. In Roberto Tamassia and Ioannis G. Tollis, editors, Graph Drawing,
DIMACS International Workshop, GD ’94, Princeton, New Jersey, USA, October 10-12, 1994,
Proceedings, volume 894 of Lecture Notes in Computer Science, pages 52–63. Springer, 1994.
doi:10.1007/3-540-58950-3_356.

27 Fabrizio Frati. Planar rectilinear drawings of outerplanar graphs in linear time. Comput.
Geom., 103:101854, 2022. doi:10.1016/j.comgeo.2021.101854.

28 Ashim Garg and Roberto Tamassia. A new minimum cost flow algorithm with applications to
graph drawing. In Stephen C. North, editor, Graph Drawing, Symposium on Graph Drawing,
GD ’96, Berkeley, California, USA, September 18-20, Proceedings, volume 1190 of Lecture
Notes in Computer Science, pages 201–216. Springer, 1996. doi:10.1007/3-540-62495-3_49.

29 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/S0097539794277123.

30 Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-trees. In Joe
Marks, editor, Graph Drawing, 8th International Symposium, GD 2000, Colonial Williamsburg,
VA, USA, September 20-23, 2000, Proceedings, volume 1984 of Lecture Notes in Computer
Science, pages 77–90. Springer, 2000. doi:10.1007/3-540-44541-2_8.

31 Md. Manzurul Hasan and Md. Saidur Rahman. No-bend orthogonal drawings and no-bend
orthogonally convex drawings of planar graphs (extended abstract). In Ding-Zhu Du, Zhenhua
Duan, and Cong Tian, editors, Computing and Combinatorics – 25th International Conference,
COCOON 2019, Xi’an, China, July 29-31, 2019, Proceedings, volume 11653 of Lecture Notes
in Computer Science, pages 254–265. Springer, 2019. doi:10.1007/978-3-030-26176-4_21.

32 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing
upward planarity. Int. J. Found. Comput. Sci., 17(5):1095–1114, 2006. doi:10.1142/
S0129054106004285.

33 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

https://doi.org/10.48550/arXiv.2208.12558
https://doi.org/10.1007/s00453-023-01110-6
https://doi.org/10.1007/3-540-49381-6_10
https://doi.org/10.1007/3-540-49381-6_10
https://doi.org/10.1002/9780470073049.ch3
https://doi.org/10.1137/1.9781611975994.49
https://doi.org/10.1016/j.jcss.2018.08.003
https://doi.org/10.1007/3-540-58950-3_356
https://doi.org/10.1016/j.comgeo.2021.101854
https://doi.org/10.1007/3-540-62495-3_49
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/978-3-030-26176-4_21
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1137/0202012

W. Didimo, M. Kaufmann, G. Liotta, G. Ortali, and M. Patrignani 26:19

34 Michael D. Hutton and Anna Lubiw. Upward planning of single-source acyclic digraphs. SIAM
J. Comput., 25(2):291–311, 1996. doi:10.1137/S0097539792235906.

35 Bart M. P. Jansen, Liana Khazaliya, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montec-
chiani, and Kirill Simonov. Upward and orthogonal planarity are W[1]-hard parameterized by
treewidth. CoRR, abs/2309.01264, 2023. doi:10.48550/arXiv.2309.01264.

36 Michael Jünger and Petra Mutzel, editors. Graph Drawing Software. Springer, 2004. doi:
10.1007/978-3-642-18638-7.

37 M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are
binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967. doi:10.1002/malq.19670130104.

38 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture Notes
Series on Computing. World Scientific, 2004. doi:10.1142/5648.

39 Maurizio Patrignani. Planarity testing and embedding. In Roberto Tamassia, editor, Handbook
on Graph Drawing and Visualization, pages 1–42. Chapman and Hall/CRC, 2013.

40 Md. Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal drawings
of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inf. Syst., 88-D(1):23–
30, 2005. URL: http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&
year=2005&lang=E&abst=.

41 Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal drawings of plane
graphs without bends. J. Graph Algorithms Appl., 7(4):335–362, 2003. doi:10.7155/jgaa.
00074.

42 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

43 Roberto Tamassia and Giuseppe Liotta. Graph drawing. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, Second Edition, pages
1163–1185. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.ch52.

A Appendix

f g
f g

(a) Tentril T1.

f g

f g

(b) Tendril T2.

Figure 7 Tendrils T1 (a) and T2 (b). Red vertices have three outgoing edges. Green vertices have
three incoming edges. Solid edges are incident either to a red or to a green vertex (or both).

ISAAC 2023

https://doi.org/10.1137/S0097539792235906
https://doi.org/10.48550/arXiv.2309.01264
https://doi.org/10.1007/978-3-642-18638-7
https://doi.org/10.1007/978-3-642-18638-7
https://doi.org/10.1002/malq.19670130104
https://doi.org/10.1142/5648
http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&year=2005&lang=E&abst=
https://doi.org/10.7155/jgaa.00074
https://doi.org/10.7155/jgaa.00074
https://doi.org/10.1137/0216030
https://doi.org/10.1201/9781420035315.ch52

26:20 Rectilinear-Upward Planarity Testing of Digraphs

34

6

8

7

9

10
12

14

11

5

13

1

2

(a)

1

2 3

4 5 6

7

8 11
13

14

129

10

(b)

S S S S S

1,2 5,6 13,14

6,10 9,10 10,11 11,13

9,12 12,13 6,7 7,9 6,8 8,11 2,4 4,5 2,3 3,5

1,14

2

5
1

14

2

5

6

13

6

13

9
10 11

R

S

P

(c)

Figure 8 (a) A digraph G with three highlighted components (an S-, an R- and a P-component);
(b) an RU representation of G. (c) The SPQR-tree of G with reference edge (1, 14); the skeletons of
the highlighted components are shown: dashed edges are virtual and the reference edge is thicker.
Q-nodes are labeled with the end-vertices of their corresponding edges.

A Unified Worst Case for Classical Simplex and
Policy Iteration Pivot Rules
Yann Disser #

TU Darmstadt, Germany

Nils Mosis #

TU Darmstadt, Germany

Abstract
We construct a family of Markov decision processes for which the policy iteration algorithm needs
an exponential number of improving switches with Dantzig’s rule, with Bland’s rule, and with the
Largest Increase pivot rule. This immediately translates to a family of linear programs for which the
simplex algorithm needs an exponential number of pivot steps with the same three pivot rules. Our
results yield a unified construction that simultaneously reproduces well-known lower bounds for these
classical pivot rules, and we are able to infer that any (deterministic or randomized) combination of
them cannot avoid an exponential worst-case behavior. Regarding the policy iteration algorithm,
pivot rules typically switch multiple edges simultaneously and our lower bound for Dantzig’s rule
and the Largest Increase rule, which perform only single switches, seem novel. Regarding the
simplex algorithm, the individual lower bounds were previously obtained separately via deformed
hypercube constructions. In contrast to previous bounds for the simplex algorithm via Markov
decision processes, our rigorous analysis is reasonably concise.

2012 ACM Subject Classification Theory of computation → Linear programming; Mathematics of
computing → Markov processes

Keywords and phrases Bland’s pivot rule, Dantzig’s pivot rule, Largest Increase pivot rule, Markov
decision process, policy iteration, simplex algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.27

Related Version Full Version: http://arxiv.org/abs/2309.14034

1 Introduction

Since the simplex algorithm for linear programming was proposed by Dantzig in 1951 [12], it
has been a central question in discrete optimization whether it admits a polynomial time
pivot rule. A positive answer to this question would yield an efficient combinatorial algorithm
for solving linear programs, and thus resolve an open problem on Smale’s list of mathematical
problems for the 21st century [41]. It would also resolve the polynomial Hirsch conjecture [11],
which states that every two vertices of every polyhedron with n facets are connected via a
path of O(poly(n)) edges. At this point, the best known pivot rules are randomized and
achieve subexponential running times in expectation [21, 27, 31, 36].

For the most natural, memoryless and deterministic, pivot rules, exponential worst-
case examples based on distorted hypercubes were constructed early on [4, 25, 30, 35, 38].
Amenta and Ziegler [3] introduced the notion of deformed products to unify several of these
constructions. However, while this unification defines a class of polytopes that generalizes
distorted hypercubes, it does not yield a unified exponential worst-case construction to
exclude all pivot rules based on these deformed products, and neither does it yield new lower
bounds for additional pivot rules.

Randomized and history-based pivot rules resisted similar approaches, and it was a major
breakthrough in 2011 when Friedmann et al. were able to prove the first subexponential
lower bound for several randomized pivot rules [20, 21, 26]. They introduced a new technique

© Yann Disser and Nils Mosis;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:disser@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-2085-0454
mailto:mosis@mathematik.tu-darmstadt.de
https://orcid.org/0000-0002-0692-0647
https://doi.org/10.4230/LIPIcs.ISAAC.2023.27
http://arxiv.org/abs/2309.14034
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

based on a connection [39] between Howard’s policy iteration algorithm [28] for Markov
decision processes (MDPs) and the simplex algorithm for linear programs (LPs). The same
technique was later used to prove exponential lower bounds for history-based pivot rules that
had been candidates for polynomial time rules for a long time [5, 15]. While the approach via
MDPs has proven powerful, the resulting analyses are often very technical (the full version
of [15] with all details of the proof has 197 pages).

In this paper, we apply the MDP-based technique to classical (memoryless and determin-
istic) pivot rules and obtain a unified construction that excludes several pivot rules at the
same time, and any combination of them, while being relatively simple.

Our results. We give a unified worst-case construction for the policy iteration algorithm for
MDPs that simultaneously applies to three of the most classical pivot rules. The rigorous
analysis of the resulting MDPs is reasonably concise. We note that the exponential lower
bounds for Dantzig’s rule and the Largest Increase rule seem novel for the considered version
of the policy iteration algorithm, while the result for Bland’s rule is known [37].

▶ Theorem 1. There is a family (Dn)n∈N of Markov decision processes Dn of size O(n)
such that policy iteration performs Ω(2n) improving switches with Dantzig’s rule, Bland’s
rule, and the Largest Increase pivot rule.

In fact, all three pivot rules apply the same set of improving switches with only slight
differences in the order in which they get applied. Because of this, the result still holds if we
allow to change pivot rules during the course of the algorithm.

▶ Corollary 2. For any (deterministic or randomized) combination of Dantzig’s, Bland’s, or
the Largest Increase rule, the policy iteration algorithm has an exponential running time.

A well-known connection between policy iteration and the simplex method, allows to
immediately translate our result to the simplex algorithm with the same pivot rules. In
particular, we obtain an exponential lower bound construction that holds even if, in every
step, the entering variable is selected independently according to Dantzig’s rule, Bland’s rule,
or the Largest Increase pivot rule, i.e., even if we change pivot rules during the course of the
algorithm. In other words, we obtain a lower bound for a family of pivot rules that results
from combining these three rules.

▶ Corollary 3. There is a family (Ln)n∈N of linear programs Ln of size O(n) such that the
simplex algorithm performs Ω(2n) pivot operations for any (deterministic or randomized)
combination of Dantzig’s, Bland’s, or the Largest Increase pivot rule.

Related work. Policy iteration for MDPs has been studied extensively for a variety of pivot
rules. In its original version [28], the algorithm applies improving switches to the current
policy in all states simultaneously in every step. Fearnley [18] showed an exponential lower
bound for a greedy pivot rule that selects the best improvement in every switchable state. In
this paper, we focus on pivot rules that only apply a single switch in each iteration. Most of
the MDP constructions for randomized or history-based pivot rules [5, 15, 21, 26] consider
this case, and Melekopoglou and Condon [37] gave exponential lower bounds for several
such deterministic pivot rules. We emphasize that their constructions already include an
exponential lower bound for Bland’s rule [8]. Since policy iteration is traditionally considered
with simultaneous switches, to the best of our knowledge, no exponential lower bounds
are known for Dantzig’s rule [12] and the Largest Increase rule [11] in the setting of single
switches.

Y. Disser and N. Mosis 27:3

There is a strong connection between policy iteration and the simplex algorithm, which,
under certain conditions (see below), yields that worst-case results for policy iteration carry
over to the simplex method [39]. This connection was used to establish subexponential
lower bounds for randomized pivot rules, namely Randomized Bland [26] and Random-Edge,
RaisingTheBar and Random-Facet [21]. It also lead to exponential lower bounds for history-
based rules, namely Cunningham’s rule [5] and Zadeh’s rule [15]. Conversely, lower bounds
for the simplex algorithm with classical pivot rules were obtained via deformed hypercubes [3]
and do not transfer to MDPs. Such results include lower bounds for Dantzig’s rule [35],
the Largest Increase rule [30], Bland’s rule [4], the Steepest Edge rule [25], and the Shadow
Vertex rule [38]. We provide an alternate lower bound construction for the first three of
these rules via a family of MDPs. As far as we can tell, as a side product, this yields the first
exponential lower bound for policy iteration with Dantzig’s rule and the Largest Increase
rule.

While it remains open whether LPs can be solved in strongly polynomial time, there are
several, both deterministic [32, 34] and randomized [7, 17, 33], algorithms that solve LPs in
weakly polynomial time. A (strongly) polynomial time pivot rule for the simplex algorithm
would immediately yield a strongly polynomial algorithm.

There have been different attempts to deal with the worst-case behavior of the simplex
method from a theoretical perspective. For example, the excessive running time was justified
by showing that the simplex algorithm with Dantzig’s original pivot rule is NP-mighty [16],
which means that it can be used to solve NP-hard problems. This result was subsequently
strengthened by establishing that deciding which solution is computed and whether a given
basis will occur is PSPACE-complete [2, 19]. On the positive side, there are different
results explaining the efficiency of the simplex method in practice, such as average-case
analyses [1, 9, 44]. Spielman and Teng [42] introduced smoothed analysis as a way of bridging
the gap between average-case and worst-case analysis. They showed that the simplex
algorithm with the shadow vertex pivot rule [24] has a polynomial smoothed complexity, and
their results were further improved later [10, 14, 29, 45].

Another approach to derive stronger lower bounds on pivot rules is to consider combina-
torical abstractions of LPs, such as Unique Sink Orientations (USOs) [23]. There is still a
large gap between the best known deterministic algorithm for finding the unique sink, which
is exponential [43], and the almost quadratic lower bound [40]. Considering randomized
rules, the Random-Facet pivot rule, which is the best known simplex rule [27], is also the
best known pivot rule for acyclic USOs [22], achieving a subexponential running time in both
settings.

2 Preliminaries

Markov Decision Processes
A Markov decision process is an infinite duration one-player game on a finite directed
graph G = (VA, VR, EA, ER, r, p). The vertex set V = VA ∪ VR of the graph is divided into
agent vertices VA and randomization vertices VR. Every agent edge e ∈ EA ⊆ VA × V is
assigned a reward r(e) ∈ R, while every randomization edge ê ∈ ER ⊆ VR × V is assigned
a transition probability p(ê) ∈ [0, 1]. Outgoing transition probabilities add to one in every
randomization vertex.

A process starts in an arbitrary starting vertex. If this is an agent vertex, the agent
moves along one of the outgoing edges of this vertex (we assume that all vertices have at
least one outgoing edge) and collects the corresponding reward. Otherwise, it gets randomly
moved along one of the outgoing edges according to the transition probabilities. The process
continues in this manner ad infinitum.

ISAAC 2023

27:4 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

An agent vertex s ∈ VA whose only outgoing edge is a self-loop with reward zero is
called sink of G if it is reachable from all vertices. A policy for G is a function π : VA → V

with (v, π(v)) ∈ EA for all v ∈ VA, determining the behavior of the process in agent vertices.
A policy π for G is called weak unichain if G has a sink s such that π reaches s with a
probability of one from every starting vertex.

The value of a vertex v w.r.t. a policy π for a Markov decision process G is given by
the expected total reward that the agent collects with policy π when the process starts
in v. More formally, the value function Valπ,G : V → R is defined by the following system of
Bellman [6] equations

Valπ,G(u) =

 r((u, π(u))) + Valπ,G(π(u)), if u ∈ VA,∑
v∈Γ+(u)

p((u, v)) Valπ,G(v), if u ∈ VR,

together with Valπ,G(s) = 0 if G has a sink s. The policy π is optimal (w.r.t. the expected total
reward criterion) if Valπ,G(v) ≥ Valπ̃,G(v) for all v ∈ VA and all policies π̃ for G. Whenever
the underlying process G is clear from the context, we write Valπ instead of Valπ,G.

We say that the agent edge (u, v) ∈ EA is an improving switch for the policy π for
process G if it satisfies zπ,G(u, v) := r((u, v)) + Valπ,G(v)−Valπ,G(u) > 0, where zπ,G(u, v)
are the reduced costs of (u, v) with respect to π. Again, we usually write zπ instead of zπ,G.

If we apply an improving switch s = (u, v) ∈ EA to a policy π, we obtain a new policy πs

which is given by πs(u) = v and πs(w) = π(w) for all w ∈ VA \ {u}. The improving switch s

increases the value of u without decreasing the value of any other vertex.

Policy Iteration for Markov Decision Processes

Howard’s [28] policy iteration algorithm receives as input a finite Markov decision process G

and a weak unichain policy π for G. It then iteratively applies a set of improving switches
to the current policy until there are none left. In the remainder of this paper, we consider
a version of this algorithm that applies a single switch in every iteration, cf. Algorithm 1.
Due to monotonicity of the vertex values, this procedure visits every policy at most once. As
there are only finitely many policies, the algorithm thus terminates after a finite number of
iterations for every initial policy.

Algorithm 1 PolicyIteration(G, π).

input: a weak unichain policy π for a Markov decision process G

while π admits an improving switch :
s̄← improving switch for π

π ← πs̄

return π

We know that the policy iteration algorithm returns an optimal policy if there is an
optimal policy which is weak unichain.

▶ Theorem 4 ([20]). Let π be a weak unichain policy for a Markov decision process G.
If G admits a weak unichain, optimal policy, then PolicyIteration(G, π) only visits weak
unichain policies and returns an optimal policy w.r.t. the expected total reward criterion.

Y. Disser and N. Mosis 27:5

In this paper, we consider the following three pivot rules, i.e., rules that determine the
choice of PolicyIteration(G, π) in each iteration:

Bland’s pivot rule assigns a unique number to every agent edge of G. Then, in every
iteration, it chooses the improving switch with the smallest number.
Dantzig’s pivot rule chooses an improving switch s̄ maximizing the reduced costs zπ(s̄).
The Largest Increase rule chooses an improving switch s̄ maximizing

∑
v∈VA

Valπs̄(v).

A Connection between Policy Iteration and the Simplex Method
Given a Markov decision process, we can formulate a linear program such that the application
of the simplex method is in some sense equivalent to the application of policy iteration. We
refer to [20] for more details and the derivation of the following result.

▶ Theorem 5 ([20]). Let π be a weak unichain policy for a Markov decision process G.
Assume that there is an optimal, weak unichain policy for G and that PolicyIteration(G, π)
with a given pivot rule takes N iterations. Then, there is an LP of linear size such that the
simplex algorithm with the same pivot rule takes N iterations.

In terms of the simplex method, Bland’s pivot rule chooses the entering variable of smallest
index [8], Dantzig’s rule chooses an entering variable maximizing the reduced costs [12], and
the Largest Increase rule greedily maximizes the objective function value.

The linear program in the previous theorem has one variable for every agent edge of
the Markov decision process such that the reduced costs of a given edge equal the reduced
costs of the corresponding variable, and the objective function equals the sum over all vertex
values as given in the Largest Increase rule for policy iteration [5, 15, 26]. Therefore, the
choices of each pivot rule in the two settings are consistent.

Additionally, we want to mention that the linear program from Theorem 5 is always
non-degenerate. Therefore, we cannot reduce the number of required iterations on these
programs by combining a given pivot rule with the Lexicographic pivot rule [13].

Notation
Let n ∈ N be fixed. We write [n] = {1, 2, . . . , n} and [n]0 = {0, 1, . . . , n}. Then, the set of all
numbers that can be represented with n bits is [2n − 1]0.

For every x ∈ [2n − 1]0 and i ∈ [n], let xi denote the i-th bit of x, i.e., x =
∑

i∈[n] xi2i−1,
and let L(i, x) = max{j ∈ [i − 2] | xj = 1 or j = 1} for i ≥ 3. Finally, for x ∈ [2n − 1],
we denote the least significant set bit of x by ℓ1(x) = min{i ∈ [n] : xi = 1}, and the most
significant set bit of x by m1(x) = max{i ∈ [n] : xi = 1}.

Let G = (VA, VR, EA, ER, r, p) be a Markov decision process. For v ∈ VA ∪ VR, we
write Γ+

G(v) = {w ∈ VA ∪ VR : (v, w) ∈ EA ∪ER}. If the underlying process is clear from the
context, we just write Γ+(v).

3 An Exponential Lower Bound for Bland’s pivot rule

In this section, we consider a family (Bn = (VBn
, EBn

, rBn
))n∈N of Markov decision processes,

which do not involve any randomization. Consider Figure 1a for a drawing of B4. Every
process Bn consists of n separate levels, together with a global transportation vertex t, a
sink s, and a dummy vertex d. Each level ℓ ∈ [n] comprises two vertices, called aℓ and bℓ.
For convenience, we sometimes denote the sink by an+1 and the dummy vertex by bn+1.

ISAAC 2023

27:6 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

a1

b1

2

a2

b2 0.75

4

a3

b3 0.75

8

a4

b4 0.75

16

s

d 0.75

t

-0.75

-2.75-6
.7
5

-14
.75

(a)

a1

b1

5

a2

b2

6

8

910

a3

b3

11

14

13

15

a4

b4

16

19

18

20

s

d

21

24

23

25

26

t

7

1

12

2

17
3

22

4

(b)

Figure 1 Two drawings of the Markov decision process B4. In (a), edge labels denote rewards
and unlabeled edges have a reward of zero. In (b), edge labels define the Bland numbering NB4 .

Table 1 Edge names and the definition of the Bland numbering NBn , where i ∈ [n].

e ∈ EBn NBn(e)

(t,ai) travel(i) i
(ai, bi) enter(i) n+ 1 + 5(i− 1)

(ai, ai+1) skip(i) n+ 2 + 5(i− 1)
(ai, t) board(i) n+ 3 + 5(i− 1)

(bi, bi+1) stay(i) n+ 4 + 5(i− 1)
(bi, ai+1) leave(i) n+ 5 + 5(i− 1)

In vertex aℓ, the agent can either enter level ℓ by going to vertex bℓ, skip this level by going
to vertex aℓ+1, or board the transportation vertex by going to t. From the transportation
vertex, the agent travels to one of the vertices ai with i ∈ [n]. In bℓ, the agent can decide
between leaving the set

⋃
i∈[n+1]{bi} by going to aℓ+1 and staying in this set by going to bℓ+1.

We will simply say that the agent leaves level ℓ or stays in level ℓ, respectively.
Finally, when the agent reaches the dummy vertex d, it must go to the sink, and the only

outgoing edge of the sink s is the self-loop (s, s).
The function rBn

grants the agent a reward of 2ℓ for entering level ℓ, a reward of 0.75 for
staying in level ℓ, and a (negative) reward of (−2ℓ + 1.25) for boarding t from aℓ; all other
rewards are zero.

The Bland numbering NBn : EBn → |EBn | of the edges of Bn is defined in Table 1, together
with NBn

((d, s)) = 6n + 1 and NBn
((s, s)) = 6n + 2(= |EBn

|). This table also contains
alternative names for the edges, which match the description above and which we will use to
simplify the exposition. Consider Figure 1b for the Bland numbering of B4.

In the following, consider Bn for some arbitrary but fixed n ∈ N. The aim of this section
is to show that PolicyIteration with Bland’s pivot rule, cf. Algorithm 2, applies Ω(2n)
improving switches when given Bn, a suitable initial policy, and NBn

as input.

Algorithm 2 Bland(G, π, N).

input: Markov decision process G, weak unichain policy π, edge numbering N

while π admits an improving switch :
s̄← the improving switch s for π that minimizes N (s)
π ← πs̄

return π

More precisely, we will see that the algorithm visits all of the following policies.

Y. Disser and N. Mosis 27:7

▶ Definition 6. The policy π0 for Bn such that travel(1) is active, and skip(i) and leave(i)
are active for all i ∈ [n] is the canonical policy for 0. For x ∈ [2n − 1], the policy πx for Bn

is the canonical policy for x if it satisfies the following conditions:
<1> The policy travels from t to the least significant set bit, i.e., travel(ℓ1(x)) is active.
<2> It collects no reward above the most significant set bit, i.e., leave(m1(x)), skip(i),

and leave(i) are active for all m1(x) < i ≤ n.
<3> Every set bit xi = 1 determines the behavior of the policy down to the next, less

significant set bit or, if i = ℓ1(x), down to the first bit:
<a> enter(i) is active.
 if i = 2, then leave(1) is active. If additionally x1 = 0, then skip(1) is active.
<c> if i ≥ 3 and xi−1 = 1, then leave(i− 1) is active.
<d> if i ≥ 3 and xi−1 = 0:

<d1> stay(i− 1), skip(i− 1), and leave(i− 2) are active.
<d2> if L(i, x) < i−2, then for all j ∈ {L(i, x)+1, . . . , i−2}, the edges board(j)

and stay(j − 1) are active; if L(i, x) = 1 and x1 = 0, then board(1) is
active. ⌟

Consider Figure 2a and Figure 2d for examples of canonical policies. Note that canonical
policies exist and are unique as the definition contains precisely one condition on every agent
vertex with more than one outgoing edge. Further, the 2n canonical policies are pairwise
different as enter(i) is active in πx if and only if xi = 1.

We will now analyze the behavior of Bland(Bn, π0,NBn
), i.e., we choose the canonical

policy for zero as our initial policy. Since this policy visits every vertex except the sink only
once, it is weak unichain.

▶ Observation 7. The canonical policy π0 is a weak unichain policy for Bn.

Thus, according to Theorem 5, the following result will allow us to transfer our results
for the policy iteration algorithm to the simplex method.

▶ Lemma 8. Let the policy π∗ for Bn be determined as follows: stay(n) and travel(1) are
active, enter(i) is active for all i ∈ [n], and leave(j) is active for all j ∈ [n− 1]. Then, π∗ is
weak unichain and optimal for Bn.

Proof. Since π∗ visits every vertex, besides the sink, only once, it is weak unichain. For
optimality, note that t travels to a1 and that, when starting in a vertex aℓ, policy π∗ enters
level ℓ and all levels above and collects the reward of stay(n). The policy is thus clearly
optimal among the set of policies that do not use boarding edges.

Further, we have rBn(board(ℓ)) = −2ℓ + 1.25 = −(
∑ℓ−1

i=1 2i + 0.75). That is, the costs
of board(ℓ) equal the maximum reward that can be collected in the first ℓ−1 levels. Thus, we
cannot increase vertex values by using boarding edges, which yields that π∗ is optimal. ◀

The following technical result will be helpful in the upcoming proofs.

▶ Lemma 9. Let x ∈ [2n − 1]0 and i ∈ [n]. Then, travel(i) is not improving for πx.

Proof. All vertex values with respect to π0 are zero, and rBn
(travel(i)) = 0. Thus, the claim

holds for x = 0, so we assume x ∈ [2n − 1] in the following.
Let the vertices ak and aℓ either correspond to successive set bits, i.e., xk = xℓ = 1

and xj = 0 for all k < j < ℓ, or let k = m1(x) and ℓ = n + 1. Either way, Definition 6
implies that πx includes a path from ak to aℓ, which does not contain any boarding edge.

ISAAC 2023

27:8 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

Hence, we have Valπx(aα) ≥ Valπx(aβ) ≥ 0 for all set bits xα = xβ = 1 with α ≤ β. Since
the transportation vertex chooses the least significant set bit in πx, this yields that travel(i)
is not improving if xi = 1.

Further, Definition 6 yields that xj = 1 if and only if enter(j) is active in πx. Thus, when
starting in some vertex ai with xi = 0, policy πx either boards t from ai or it skips levels
until reaching a node that boards t, a level corresponding to a set bit, or the sink. In all four
cases, travel(i) is not improving. This completes the proof. ◀

We will show in two steps that, when using the initial policy π0, Bland visits all of the
other canonical policies. Firstly, given the canonical policy for an arbitrary even integer x, we
see that the algorithm applies improving switches until reaching the canonical policy πx+1.

▶ Lemma 10. Let x ∈ [2n − 2]0 be even. Then, Bland(Bn, πx,NBn
) visits πx+1.

Proof. According to Lemma 9, no travel edges are improving for πx, so the Bland number-
ing NBn yields that the algorithm applies the switch enter(1) to πx if it is improving. This
edge is improving for π0, and one can easily check that its application results in the canonical
policy π1. Hence, it suffices to consider x ̸= 0 in the following. This yields ℓ1 := ℓ1(x) > 1
as x is even. Influenced by condition <3> from Definition 6, we consider two cases.

Firstly, if ℓ1 = 2, conditions <1> and state that travel(2), skip(1) and leave(1)
are active in πx. Hence, enter(1) is improving for πx and gets applied by Bland. The
edge travel(1) becomes improving and gets applied next as it minimizes NBn .

Secondly, if ℓ1 ≥ 3, conditions <1> and <d> yield that πx includes the paths (a1, t, aℓ1)
and (b1, b2, . . . , bℓ1−2, aℓ1−1, aℓ1) =: P . Hence, Valπx(a1) ≤ Valπx(aℓ1) ≤ Valπx(b1). There-
fore, as enter(1) has a positive reward, it is improving and gets applied to πx. The new
policy walks from a1 to b1 and then follows the path P , so a1 has a higher value than aℓ1 .
Since travel(ℓ1) is active in πx, the edge travel(1) is improving and gets applied next.

Let π denote the policy resulting from the application of enter(1) and travel(1) to πx. It
now suffices to show that π satisfies the conditions of Definition 6 for x + 1.

As x + 1 is odd, we have ℓ1(x + 1) = 1, so π satisfies the first condition. Further, the
second condition remains satisfied as both applied switches are below the most significant
set bit. Finally, the third condition now requires that enter(1) is active – instead of skip(1)
if ℓ1 = 2, or board(1) if ℓ1 ≥ 3 – and otherwise contains the same requirements. Hence, π is
the canonical policy for x + 1. ◀

Secondly, we need to show that the algorithm also transforms the canoncial policy πx

for an arbitrary odd number x into the next canonical policy πx+1. We will see that the
algorithm does this by applying the following sequence of improving switches.

▶ Definition 11. Let x ∈ [2n − 3] be odd and write ℓ := ℓ0(x) > 1. Then, the canonical
phases with respect to x are:
1. If xℓ+1 = 1, activate leave(ℓ).
2. If xℓ+1 = 1 or ℓ > m1(x), activate stay(ℓ− 1).
3. Activate enter(ℓ) and travel(ℓ).
4. If ℓ ≥ 3, activate board(j) for all j ∈ [ℓ− 2] in increasing order.
5. Activate skip(ℓ− 1).
6. If ℓ ≥ 4, activate stay(j) for all j ∈ [ℓ− 3] in decreasing order.
7. If ℓ = 2, activate leave(1). ⌟

Y. Disser and N. Mosis 27:9

(a) The canonical policy π7 for B4. (b) The policy that results from applying the first
two canonical phases w.r.t. 7 to π7.

(c) The policy that results from applying the first
three canonical phases w.r.t. 7 to π7.

(d) The canonical policy π8 for B4, which results
from applying all canonical phases w.r.t. 7 to π7.

Figure 2 An example that illustrates how the canonical phases transform one canonical policy
into the next one. Active edges are depicted in a bold blue color, while inactive edges are slightly
transparent. Note that π7 enters the first three levels, which correspond to the set bits in the binary
representation of 7; analogously, π8 only enters the fourth level.

The following Lemma shows that if the algorithm applies the canonical phases to the
corresponding canonical policy, it reaches the next canonical policy.1 Consider Figure 2 for
an example.

▶ Lemma 12. Let πx be the canonical policy for some odd x ∈ [2n − 3]. Applying the
canonical phases with respect to x to πx results in the canonical policy πx+1.

Finally, we show that Bland actually applies the canonical phases when given the
corresponding canonical policy.

▶ Lemma 13. Let x ∈ [2n − 3] be odd. Then, Bland(Bn, πx,NBn
) visits πx+1.

According to Lemma 10, Bland transforms every even canonical policy πx into πx+1, and
by Lemma 13, the same holds for odd canonical policies. Since the initial policy is canonical
for zero, this yields that Bland(Bn, π0,NBn) visits all canonical policies πi with i ∈ [2n − 1].
Since these are pairwise different, this proves the main result of this section.

▶ Theorem 14. There is an initial policy such that the policy iteration algorithm with Bland’s
pivot rule performs Ω(2n) improving switches when applied to Bn.

We close this section with two technical observations that help us later.

▶ Observation 15. For every i ∈ [n], whenever Bland(Bn, π0,NBn) applies the improving
switch skip(i), this edge has higher reduced costs than board(i); whenever it applies enter(i),
this edge has higher reduced costs than skip(i) and board(i).

▶ Observation 16. At any point during the execution of Bland(Bn, π0,NBn), at most one
of the edges travel(i) with i ∈ [n] is improving.

1 All missing proofs can be found in the full version.

ISAAC 2023

27:10 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

4 A Combined Exponential Bound

In this section, we consider a family (Dn = (V A
n , V R

n , EA
n , ER

n , rDn , pDn))n∈N of Markov
decision processes such that each process Dn results from the process Bn = (VBn

, EBn
, rBn

) of
the previous section by replacing every edge, besides the sink-loop, with the construction given
in Figure 3; note that the construction uses a probability pv ∈ (0, 1] for every v ∈ VBn

\ {s},
which we will choose later.

v xv,w yv,w

1− pv

zv,w
pv

w
rBn((v, w))

Figure 3 The construction that replaces every edge (v, w) ∈ EBn \ {(s, s)} in Dn. Circular
vertices are agent vertices, square ones are randomization vertices. Edge labels denote rewards and
probabilities, where pv ∈ (0, 1]. Note that, since v and w remain in the process, we have VBn ⊆ V A

n .

In the following, consider Dn for some arbitrary but fixed n ∈ N. The aim of this section
is to show that policy iteration with Bland’s rule, with Dantzig’s rule, and with the Largest
Increase rule performs Ω(2n) improving switches to a suitable initial policy for Dn.

Before we can analyze the behavior of Bland on Dn, we need to specify the Bland
numbering NDn

: EA
n → |EA

n | for Dn. It is constructed as follows: starting from the number-
ing NBn

, replace every edge (v, w) ∈ EBn
\ {(s, s)} by the edges (xv,w, yv,w) and (v, xv,w).

Then, insert all edges of the form (xu,·, u) with u ∈ VBn \ {s} at the beginning of the
numbering (the internal order of these edges can be chosen arbitrarily). We do not need to
specify the Bland numbers of edges that are the unique outgoing edge of a vertex.

Now that we have a Bland numbering, we want to transfer our results from the previous
section to the new Markov decision process Dn. The following definition extends policies
for Bn to policies for Dn.

▶ Definition 17. Let π and π′ be policies for Bn and Dn, respectively, and let v ∈ VBn
\ {s}.

Assume there is a w ∈ Γ+
Bn

(v) such that (v, xv,w), (xv,w, yv,w), and (xv,u, v) are active in π′

for all u ∈ Γ+
Bn

(v) \ {w}. Then, we say that v is (w-)oriented w.r.t. π′. We call π′ the twin
policy of π if every vertex v ∈ VBn \ {s} is π(v)-oriented w.r.t. π′. ⌟

Let π′
0 denote the twin policy of the canonical policy π0 for Bn. We could start by showing

that Bland(Dn, π′
0,NDn) visits the twin policy of every policy that Bland(Bn, π0,NBn)

visits. Note that this would immediately imply the desired exponential number of improving
switches. However, we prefer to gather some general results first, which then allows for a
more unified treatment of the three pivot rules.

Starting in a w-oriented vertex v ∈ VBn
\ {s}, the agent reaches vertex w with probability

one (due to pv > 0), while collecting a reward of rBn
((v, w)). This immediately yields the

following result.

▶ Observation 18. Let π be a policy for Bn with twin policy π′ for Dn. Then, for every
vertex v ∈ VBn

, we have Valπ,Bn
(v) = Valπ′,Dn

(v).

By the same argument, twin policies of weak unichain policies are weak unichain, and
the proof idea of Lemma 8 carries over.

Y. Disser and N. Mosis 27:11

▶ Observation 19. The twin policy of every weak unichain policy for Bn is a weak unichain
policy for Dn. The twin policy of the optimal policy for Bn is optimal for Dn.

By Theorem 4, this guarantees the correctness of PolicyIteration(Dn, π′
0). Further,

Theorem 5 will allow us to carry our results over to the simplex method.
Since twin policies are central in our analysis, it comes in handy that only a certain type

of edges might be improving for them.

▶ Observation 20. Let π′ be the twin policy of some policy for Bn. Then, all improving
switches for π′ are of the form (xv,w, yv,w) ∈ EA

n for some (v, w) ∈ EBn .

Proof. Since every vertex u ∈ VBn
\ {s} is oriented w.r.t π′, edges of the form (xu,·, u)

or (u, xu,·) are either active or their application creates a zero-reward cycle of length two.
Hence, none of these edges is improving for π′. ◀

The following Lemma shows how the probabilities (pv)v∈VBn \{s} affect the reduced costs
of these potentially improving edges. Further, it yields a connection between the improving
switches for a policy for Bn and those for its twin policy.

▶ Lemma 21. Let π be a policy for Bn with twin policy π′, and let (v, w) ∈ EBn
\ {(s, s)}.

Then, zπ′,Dn(xv,w, yv,w) = pv · zπ,Bn(v, w). In particular, (xv,w, yv,w) is improving for π′ if
and only if (v, w) is improving for π.

Proof. For convenience, we write x, y, and z instead of xv,w, yv,w, and zv,w. If (v, w) is
active in π, vertex v is w-oriented w.r.t. π′. Thus, (x, y) is active in π′ as well. Hence, both
edges are not improving as they have reduced costs of zπ′(x, y) = zπ(v, w) = 0.

Now assume that (v, w) is inactive in π, which yields that (x, v) is active in π′. We obtain

zπ′,Dn
(x, y) = Valπ′(y)−Valπ′(x) = Valπ′(y)−Valπ′(v)

= pv Valπ′(z) + (1− pv) Valπ′(v)−Valπ′(v)
= pv(Valπ′(w) + rBn((v, w))−Valπ′(v)) = pvzπ,Bn(v, w),

(1)

where we used Observation 18 for the last equality. The equivalence holds since pv > 0. ◀

Note that we can transform a given twin policy with three switches into a different one
by changing the orientation of an agent vertex v ∈ VBn

\ {s}. The following Lemma shows
that, if applied consecutively, these switches all have the same reduced costs.

▶ Lemma 22. Let (v, w) ∈ EBn
\ {(s, s)} and let the policy π for Dn be the twin policy of

some weak unichain policy for Bn. If the edge (xv,w, yv,w) is improving for π, we have

zπ(xv,w, yv,w) = zπ′(v, xv,w) = zπ′′(π(v), v),

where π′ denotes the policy that results from applying (xv,w, yv,w) to π and π′′ denotes the
policy that results from applying (v, xv,w) to π′.

It is essential for the proofs of Lemma 10 and Lemma 13 that Bland(Bn,NBn
) prefers

switches in vertices appearing early in the vertex numbering NV : VBn
→ |VBn

| given
by (t, a1, b1, a2, b2, . . . , an, bn, d, s), i.e., let NV (t) = 1, NV (a1) = 2, and so on. Using
the following definition, we can observe a similar behavior of policy iteration with Dantzig’s
rule, cf. Algorithm 3, on Dn.

ISAAC 2023

27:12 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

▶ Definition 23. The edge e ∈ EA
n belongs to vertex v ∈ VBn

\ {s} if

e ∈ B(v) :=
⋃

w∈Γ+
Bn

(v)

{(xv,w, yv,w), (v, xv,w), (xv,w, v)}. ⌟

We obtain the following bounds on the reduced costs.

▶ Lemma 24. Let v ∈ VBn
\ {s} and e ∈ B(v) be arbitrary. Let π be a weak unichain policy

for Dn such that all vertex values w.r.t. π are non-negative. If e is improving for π, then its
reduced costs are bounded by pv · 0.25 ≤ zπ(e) ≤ pv · 2n+2.

Proof. Since e ∈ B(v), we have e ∈ {(xv,w, yv,w), (v, xv,w), (xv,w, v)} for some w ∈ Γ+
Bn

(v).
For convenience, we write x, y, and z instead of xv,w, yv,w, and zv,w.

Firstly, assume that e = (x, y). Then, since e is improving, (x, v) is active in π. As in
equation (1), we obtain zπ(x, y) = pv(Valπ(w) + rBn((v, w))−Valπ(v)) =: pv · δ(π, v, w).

Secondly, assume that e = (v, x). Then, (x, y) is active in π as otherwise e would not be
improving due to zπ(v, x) = Valπ(x)−Valπ(v) = 0. This yields

zπ(v, x) = Valπ(x)−Valπ(v) = Valπ(y)−Valπ(v) = pv · δ(π, v, w). (2)

Lastly, assume e = (x, v). Then, as before, (x, y) is active in π. We can thus conclude
from (2) that zπ(x, v) = Valπ(v)−Valπ(x) = −pv · δ(π, v, w).

By assumption, every vertex has a non-negative value with respect to π. Further, all
vertex values are bounded from above by the maximum vertex value w.r.t. the optimal policy
for Dn. By Lemma 8, Observation 18, and Observation 19, this is Valπ′

∗
(t) = 2n+1 − 1.25.

Since the absolute value of any edge reward is at most 2n, we obtain

|δ(π, v, w)| ≤
(
2n+1 − 1.25 + 2n

)
≤ 2n+2.

Hence, we have an upper bound of zπ(e) ≤ pv · 2n+2.
As all edge rewards are integer multiples of 0.25, also Valπ(u) is an integer multiple

of 0.25 for every u ∈ VBn (starting in u, policy π visits every edge that has a non-zero reward
either exactly once or never). This yields that |δ(π, v, w)| is a multiple of 0.25 as well, which
concludes the proof. ◀

Note that, by Theorem 4 and as all vertex values w.r.t. π′
0 are zero, Dantzig(Dn, π′

0)
only visits weak unichain policies with non-negative vertex values. Therefore, if we choose the
probabilities (pv)v∈VBn \{s} for increasing vertex numbers NV (v) fast enough decreasing, then
the previous lemma yields that Dantzig prefers improving switches that belong to vertices
appearing early in the vertex numbering NV . We use this in the proof of Theorem 28.

The following technical result holds independently of the chosen pivot rule.

Algorithm 3 Dantzig(G, π).

input: Markov decision process G, weak unichain policy π for G

while π admits an improving switch :
s̄← an improving switch s for π maximizing zπ(s)
π ← πs̄

return π

Y. Disser and N. Mosis 27:13

▶ Lemma 25. Let (v, w) ∈ EBn be an improving switch that gets applied to a policy π

during the execution of Bland(Bn, π0,NBn
). Let π̄′ denote the policy for Dn that results

from applying the switches (xv,w, yv,w) and (v, xv,w) to the twin policy π′ of π. Then,
the edge (xv,π(v), v) is improving for π̄′ and it remains improving during the execution
of PolicyIteration(Dn, π̄′) until it gets applied or until an improving switch of the
form (xu,·, yu,·) with NV (u) > NV (v) gets applied.

With this, we can show that a certain class of pivot rules, including Bland’s, Dantzig’s,
and the Largest Increase rule, yield an exponential number of improving switches on Dn.

▶ Lemma 26. Assume that PolicyIteration(Dn, π′
0), where π′

0 denotes the twin policy
of π0, gets applied with a pivot rule that satisfies the following conditions:
(a) For every improving switch (v, w) ∈ EBn that Bland(Bn, π0,NBn) applies to some

policy π, PolicyIteration applies (xv,w, yv,w) and (v, xv,w) to the twin policy of π.
(b) While an edge of the form (xv,·, v) is improving for some v ∈ VBn , PolicyIteration

does not apply an improving switch of the form (xu,·, yu,·) with NV (u) > NV (v).
Then, PolicyIteration(Dn, π′

0) performs Ω(2n) improving switches.

Proof. Let π be a policy for Bn occurring during the execution of Bland(Bn, π0,NBn
),

where we allow π = π0, and let (v, w) ∈ EBn
denote the switch that Bland applies to π.

Let π′ be the twin policy of π, and let π̃ = π(v,w).
By condition (a), PolicyIteration applies (xv,w, yv,w) and (v, xv,w) to π′. Denote the

resulting policy by π̄′.
According to Lemma 25, the edge (xv,π(v), v) now stays improving until it gets applied as an

improving switch or until an improving switch of the form (xu,·, yu,·) withNV (u) > NV (v) gets
applied. With condition (b), this yields that (xv,π(v), v) gets applied by PolicyIteration
at some point, and that it is constantly improving until then.

Note that, as long as (v, xv,π(v)) is inactive, the policy’s choice in xv,π(v) only affects the
reduced costs of its unique incidental edge (v, xv,π(v)). This edge is not active in π̄′ and is not
improving until the application of (xv,π(v), v). Therefore, if we were to force the algorithm to
apply (xv,π(v), v) to π̄′, this would not alter the remaining behavior of the algorithm. The
policy resulting from this forced switch is the twin policy of π̃.

Hence, without changing the total number of applied improving switches (we only
rearrange them), we can assume that PolicyIteration(Dn, π′

0) visits the twin policy of
every policy visited by Bland(Bn, π0,NBn). By Theorem 14, this yields that the algorithm
needs to perform an exponential number of improving switches, which concludes the proof. ◀

Now it suffices to check the conditions given in Lemma 26 for each pivot rule.

▶ Proposition 27. Let π′
0 denote the twin policy of π0. Then, Bland(Dn, π′

0,NDn
) per-

forms Ω(2n) improving switches.

Proof. We check the two conditions from Lemma 26. For condition (a), let π be a policy
for Bn visited by Bland(Bn, π0,NBn

), including the case π = π0, and let π′ be the twin
policy of π. Assume that Bland applies the improving switch (v, w) ∈ EBn

to π.
By Observation 20, all improving switches for π′ are of the form (x·, y·). According

to Lemma 21, the edge (xv,w, yv,w) is improving for π′. As (v, w) is the improving switch
for π with the smallest Bland number in NBn

, we know that, by construction of NDn
, the

algorithm applies the switch (xv,w, yv,w) to π′.
Further, since π is weak unichain due to Theorem 4, Lemma 22 yields that (v, xv,w) is

improving after this switch. As it is the successor of (xv,w, yv,w) in NDn
and as no other

egde became improving due to the first switch, the algorithm applies (v, xv,w) next. That is,
Bland’s rule satisfies condition (a).

ISAAC 2023

27:14 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

Additionally, condition (b) holds since the edge (xv,π(v), v) precedes any switch of the
form (xu,·, yu,·) with NV (u) > NV (v) in the Bland numbering NDn

. ◀

As motivated above, the choice of the probabilities (pv)v∈VBn \{s} in the following theorem
yields that Dantzig prefers improving switches that belong to vertices appearing early in
the vertex numbering NV .

▶ Theorem 28. Let pv = 2−NV (v)(n+5) for all v ∈ VBn \ {s}, and let π′
0 denote the twin

policy of π0. Then, Dantzig(Dn, π′
0) performs Ω(2n) improving switches.

Proof. We check the two conditions from Lemma 26. For condition (b), we compute that
the choice of the probabilities pv yields that Dantzig prefers improving switches belonging
to vertices with a small vertex number.

Let u, v ∈ VBn
\ {s} with NV (u) > NV (v). Let further eu ∈ B(u) and ev ∈ B(v) be

improving switches for some policy π for Dn, which gets visited by PolicyIteration(Dn, π′
0).

Then, π is weak unichain and only induces non-negative vertex values, so Lemma 24 yields

zπ(ev) ≥ pv · 0.25 = 2−NV (v)(n+5)−2 ≥ 2−NV (u)(n+5)+(n+5)−2 = pu · 2(n+3) > zπ(eu).

Hence, Dantzig’s rule prefers switches belonging to v over those belonging to u, so it satisfies
condition (b).

For condition (a), let π be a policy for Bn visited by Bland(Bn, π0,NBn), including the
case π = π0, and let (v, w) ∈ EBn

denote the switch that Bland applies to π. Let π′ be the
twin policy of π.

By Observation 20, all improving switches for π′ are of the form (x·, y·). By construction
of NDn

, we know that Bland prefers those switches (x·, y·) that belong to vertices with
a small vertex number. In the proof of Proposition 27, we see that Bland(Dn, π′,NDn)
applies (xv,w, yv,w) to π′. Since Dantzig also prefers switches belonging to vertices with a
small vertex number, we conclude that Dantzig(Dn, π′

0,NDn) applies an improving switch
to π′ that belongs to v. However, there might be multiple such switches.

Recall that all improving switches for π′ are of the form (x·, y·). If v = bi for some i ∈ [n],
then only two of these (possibly improving) edges belong to v, one of which is active in π′.
Therefore, in this case, Dantzig applies the improving switch (xv,w, yv,w).

Now assume v = ai for some i ∈ [n]. Then, Observation 15 and Lemma 21 yield

zπ′(xai,bi
, yai,bi

) > max{zπ′(xai,ai+1 , yai,ai+1), zπ′(xai,t, yai,t)}

if (v, w) = enter(i), and

zπ′(xai,ai+1 , yai,ai+1) > zπ′(xai,t, yai,t)

if (v, w) = skip(i). Therefore, the edge (xv,w, yv,w) has higher reduced costs than the other
edges that belong to v, so Dantzig applies it to π′.

Finally, if v = t, then Observation 16 and Lemma 21 yield that (xv,w, yv,w) is the only
improving switch that belongs to t. Thus, it gets applied by Dantzig.

We conclude that, in all cases, Dantzig applies the switch (xv,w, yv,w) to π′, which is
the unique edge with the highest reduced costs. According to Lemma 22, the edge (v, xv,w)
has now the same reduced costs as (xv,w, yv,w) had before its application. Since (v, xv,w) is
the only edge that became improving during the last switch, Dantzig applies this edge next.
Therefore, Dantzig’s rule also satisfies condition (a), which concludes the proof. ◀

Y. Disser and N. Mosis 27:15

Algorithm 4 LargestIncrease(G, π).

input: Markov decision process G, weak unichain policy π for G

while π admits an improving switch :
s̄← an improving switch s for π maximizing

∑
v∈V A

n
Valπs(v)

π ← πs̄

return π

Finally, we turn to policy iteration with the Largest Increase pivot rule, cf. Algorithm 4.
In the most general sense, consider an arbitrary improving switch s = (v, w) for some
policy π. Assume that no ingoing edges of v are active in π. Then, the reduced costs
of s coincide with the increase of the sum over all vertex values, that is, we obtain the
equality zπ(s) =

∑
v∈V A

n
Valπs(v) −

∑
v∈V A

n
Valπ(v). Further, the induced increase of the

sum is always at least as large as the reduced costs.
From this, using the structure of Dn, we can conclude that LargestIncrease mirrors

the behavior of Dantzig if we choose the probabilities pv as before.

▶ Theorem 29. Let pv = 2−NV (v)(n+5) for all v ∈ VBn \ {s}, and let π′
0 denote the twin

policy of π0. Then, LargestIncrease(Dn, π′
0) performs Ω(2n) improving switches.

Proof. We check the two conditions from Lemma 26. For condition (a), let π be a policy
for Bn occurring during the execution of Bland(Bn, π0,NBn

), where we allow π = π0, and
let (v, w) ∈ EBn denote the switch that Bland applies to π. Let π′ be the twin policy of π.

According to the proof of Theorem 28, Dantzig applies the improving switches (xv,w, yv,w)
and (v, xv,w) to π′. By Observation 20, all improving switches for π′ are of the form (x·, y·),
where π′ does not reach x· when starting in any other vertex. Therefore, since the prob-
abilities (pv)v∈VBn \{s} are chosen as in Theorem 28, the reduced costs of each of these
improving switches coincide with the induced increase of the sum over all vertex values.
Hence, LargestIncrease also applies the improving switch (xv,w, yv,w) to π′.

This switch only increases the reduced costs of the edge (v, xv,w), which, by Lemma 22,
coincide with the previous reduced costs. Therefore, the induced increase of the sum over all
vertex values is for (v, xv,w) now at least as large as it was for (xv,w, yv,w) before. Hence,
LargestIncrease also applies (v, xv,w) next. We conclude that the Largest Increase pivot
rule satisfies condition (a).

Note that the reduced costs of the edges from condition (b) again coincide with the
induced increase of the sum over all vertex values. Further, by the proof of Theorem 28, we
know that Dantzig’s rule prefers switches belonging to vertices with a small vertex number.
Therefore, the Largest Increase rule also satisfies condition (b). ◀

Note that Theorem 1 is now a direct consequence of Theorems 27, 28, and 29. Moreover,
we have seen in the proofs of these theorems that Bland’s rule, Dantzig’s rule, and the
Largest Increase rule satisfy the conditions from Lemma 26. Thus, any combination of these
rules also satisfies the conditions, which immediately yields Corollary 2. Finally, Corollary 3
follows from Theorem 5 together with Obervation 7, Lemma 8, and Observation 19.

References
1 Ilan Adler, Richard M Karp, and Ron Shamir. A simplex variant solving an m× d linear

program in o (min (m2, d2) expected number of pivot steps. Journal of Complexity, 3(4):372–
387, 1987.

ISAAC 2023

27:16 A Unified Worst Case for Classical Simplex and Policy Iteration Pivot Rules

2 Ilan Adler, Christos Papadimitriou, and Aviad Rubinstein. On simplex pivoting rules and com-
plexity theory. In Integer Programming and Combinatorial Optimization: 17th International
Conference, IPCO 2014., pages 13–24. Springer, 2014.

3 Nina Amenta and Günter M Ziegler. Deformed products and maximal shadows of polytopes.
Contemporary Mathematics, 223:57–90, 1999.

4 David Avis and Vasek Chvátal. Notes on Bland’s pivoting rule. Polyhedral Combinatorics:
Dedicated to the memory of D.R. Fulkerson, pages 24–34, 1978.

5 David Avis and Oliver Friedmann. An exponential lower bound for Cunningham’s rule.
Mathematical Programming, 161:271–305, 2017.

6 Richard Bellman. Dynamic Programming. Princeton University Press, 1957.
7 Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. Journal

of the ACM, 51(4):540–556, 2004.
8 Robert G Bland. New finite pivoting rules for the simplex method. Mathematics of Operations

Research, 2(2):103–107, 1977.
9 Karl-Heinz Borgwardt. The average number of pivot steps required by the simplex-method is

polynomial. Zeitschrift für Operations Research, 26:157–177, 1982.
10 Daniel Dadush and Sophie Huiberts. A friendly smoothed analysis of the simplex method.

In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages
390–403, 2018.

11 George Dantzig. Linear programming and extensions. Princeton university press, 1963.
12 George B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.

Activity analysis of production and allocation, 13:339–347, 1951.
13 George B. Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method for

minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics,
5(2):183–195, 1955.

14 Amit Deshpande and Daniel A Spielman. Improved smoothed analysis of the shadow vertex
simplex method. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 349–356. IEEE, 2005.

15 Yann Disser, Oliver Friedmann, and Alexander V. Hopp. An exponential lower bound for
zadeh’s pivot rule. Mathematical Programming, 199(1-2):865–936, 2023.

16 Yann Disser and Martin Skutella. The simplex algorithm is NP-mighty. ACM Transactions
on Algorithms (TALG), 15(1):1–19, 2018.

17 John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm for solving
linear programs. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 315–320, 2004.

18 John Fearnley. Exponential lower bounds for policy iteration. In Proceedings of the 37th
International Colloquium on Automata, Languages and Programming (ICALP), pages 551–562,
2010.

19 John Fearnley and Rahul Savani. The complexity of the simplex method. In Proceedings of
the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 201–208, 2015.

20 Oliver Friedmann. Exponential lower bounds for solving infinitary payoff games and linear
programs. PhD thesis, LMU Munich, 2011.

21 Oliver Friedmann, Thomas D. Hansen, and Uri Zwick. Subexponential lower bounds for
randomized pivoting rules for the simplex algorithm. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing (STOC), pages 283–292, 2011.

22 Bernd Gärtner. The random-facet simplex algorithm on combinatorial cubes. Random
Structures & Algorithms, 20(3):353–381, 2002.

23 Bernd Gärtner and Ingo Schurr. Linear programming and unique sink orientations. In
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
749–757, 2006.

24 Saul Gass and Thomas Saaty. The computational algorithm for the parametric objective
function. Naval research logistics quarterly, 2(1-2):39–45, 1955.

Y. Disser and N. Mosis 27:17

25 Donald Goldfarb and William Y. Sit. Worst case behavior of the steepest edge simplex method.
Discrete Applied Mathematics, 1(4):277–285, 1979.

26 Thomas D. Hansen. Worst-case analysis of strategy iteration and the simplex method. PhD
thesis, Aarhus University, 2012.

27 Thomas D. Hansen and Uri Zwick. An improved version of the random-facet pivoting rule
for the simplex algorithm. In Proceedings of the 47th Annual ACM Symposium on Theory of
Computing (STOC), pages 209–218, 2015.

28 Ronald A. Howard. Dynamic programming and Markov processes. John Wiley, 1960.
29 Sophie Huiberts, Yin Tat Lee, and Xinzhi Zhang. Upper and lower bounds on the smoothed

complexity of the simplex method. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC), pages 1904–1917, 2023.

30 Robert G. Jeroslow. The simplex algorithm with the pivot rule of maximizing criterion
improvement. Discrete Mathematics, 4(4):367–377, 1973.

31 Gil Kalai. A subexponential randomized simplex algorithm. In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing (STOC), pages 475–482, 1992.

32 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the 16th Annual ACM Symposium on Theory of Computing (STOC), pages 302–311, 1984.

33 Jonathan A Kelner and Daniel A Spielman. A randomized polynomial-time simplex algorithm
for linear programming. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 51–60, 2006.

34 Leonid G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

35 Victor Klee and George J Minty. How good is the simplex algorithm? Inequalities, 3(3):159–175,
1972.

36 Jiří Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming.
Algorithmica, 16(4/5):498–516, 1996.

37 Mary Melekopoglou and Anne Condon. On the complexity of the policy improvement algorithm
for Markov decision processes. ORSA Journal on Computing, 6(2):188–192, 1994.

38 Katta G. Murty. Computational complexity of parametric linear programming. Mathematical
Programming, 19(1):213–219, 1980.

39 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 1994.

40 Ingo Schurr and Tibor Szabó. Finding the sink takes some time: An almost quadratic lower
bound for finding the sink of unique sink oriented cubes. Discrete & Computational Geometry,
31(4):627–642, 2004.

41 Steve Smale. Mathematical problems for the next century. Mathematics: frontiers and
perspectives, pages 271–294, 2000.

42 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

43 Tibor Szabó and Emo Welzl. Unique sink orientations of cubes. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 547–555, 2001.

44 Michael J Todd. Polynomial expected behavior of a pivoting algorithm for linear comple-
mentarity and linear programming problems. Mathematical Programming, 35(2):173–192,
1986.

45 Roman Vershynin. Beyond hirsch conjecture: walks on random polytopes and smoothed
complexity of the simplex method. SIAM Journal on Computing, 39(2):646–678, 2009.

ISAAC 2023

Exact Matching: Correct Parity and FPT
Parameterized by Independence Number
Nicolas El Maalouly #

Department of Computer Science, ETH Zürich, Switzerland

Raphael Steiner #

Department of Computer Science, ETH Zürich, Switzerland

Lasse Wulf #

Institute of Discrete Mathematics, TU Graz, Austria

Abstract
Given an integer k and a graph where every edge is colored either red or blue, the goal of the exact
matching problem is to find a perfect matching with the property that exactly k of its edges are
red. Soon after Papadimitriou and Yannakakis (JACM 1982) introduced the problem, a randomized
polynomial-time algorithm solving the problem was described by Mulmuley et al. (Combinatorica
1987). Despite a lot of effort, it is still not known today whether a deterministic polynomial-time
algorithm exists. This makes the exact matching problem an important candidate to test the
popular conjecture that the complexity classes P and RP are equal. In a recent article (MFCS 2022),
progress was made towards this goal by showing that for bipartite graphs of bounded bipartite
independence number, a polynomial time algorithm exists. In terms of parameterized complexity,
this algorithm was an XP-algorithm parameterized by the bipartite independence number. In this
article, we introduce novel algorithmic techniques that allow us to obtain an FPT-algorithm. If the
input is a general graph we show that one can at least compute a perfect matching M which has the
correct number of red edges modulo 2, in polynomial time. This is motivated by our last result,
in which we prove that an FPT algorithm for general graphs, parameterized by the independence
number, reduces to the problem of finding in polynomial time a perfect matching M with at most k

red edges and the correct number of red edges modulo 2.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Perfect Matching, Exact Matching, Independence Number, Parameterized
Complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.28

Related Version Full Version: https://arxiv.org/abs/2207.09797

Funding Raphael Steiner : Supported by an ETH Zurich Postdoctoral Fellowship.
Lasse Wulf : Supported by the Austrian Science Fund (FWF): W1230.

1 Introduction

In the Exact Matching Problem (denoted from now on by EM), we are given a graph G

together with a fixed coloring of its edges in two colors (red and blue). The question is,
for a given integer k, to decide whether there exists a perfect matching M of G with the
additional property that exactly k of the edges of the perfect matching M are red. Clearly,
if we have the special case that all edges of the graph are red and k = |V (G)|/2 then this
problem is simply to decide whether there exists a perfect matching in the graph, which is
well-known to be decidable in polynomial time [7]. However, when the coloring of the edges
is heterogeneous, the problem difficulty seems to increase significantly (see below).

© Nicolas El Maalouly, Raphael Steiner, and Lasse Wulf;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.elmaalouly@inf.ethz.ch
https://orcid.org/0000-0002-1037-0203
mailto:raphaelmario.steiner@inf.ethz.ch
https://orcid.org/0000-0002-4234-6136
mailto:wulf@math.tugraz.at
https://orcid.org/0000-0001-7139-4092
https://doi.org/10.4230/LIPIcs.ISAAC.2023.28
https://arxiv.org/abs/2207.09797
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

Papadimitriou and Yannakakis [28] initially introduced EM in 1982 and conjectured it
to be NP-hard. However, a randomized polynomial-time algorithm solving the problem
was described by Mulmuley, Vazirani and Vazirani in 1987 in the course of their celebrated
isolation lemma [26]. Given standard complexity theoretic hypotheses, this makes it unlikely
for EM to be NP-hard. Despite the existence of a polynomial-time randomized algorithm, as
of today it is still not known whether EM can also be solved in deterministic polynomial
time. The algorithm of Mulmuley et al. uses polynomial identity testing and is based on
the Schwartz-Zippel Lemma [29,35], which has resisted all attempts of derandomization so
far. Indeed, EM is one of the few natural problems which has a randomized polynomial-time
algorithm (i.e. it is contained in the complexity class RP) but for which it is not known
whether it admits a deterministic polynomial-time algorithm (i.e. it is contained in P). It is
a major open conjecture that RP=P, and so EM becomes a natural candidate to test this
hypothesis.

For this reason, EM has been cited in several papers as an open problem. This includes
recent breakthrough papers such as the seminal work on the parallel computation complexity
of the matching problem [31], works on planarizing gadgets for perfect matchings [17],
works on budgeted, color bounded, or constrained matching problems [3,22,24,25,30], on
multicriteria optimization problems [16] and on matroid intersection problems [5]. It is further
known that several different problems relate directly or indirectly to EM. The following is a
non-exhaustive list of examples: EM is polynomial-time equivalent to the DNA sequencing
problem [4]. EM is equivalent to a variant of the problem of finding a solution of a binary
linear equation system with small Hamming weight [2]. EM can be reduced to a special case
of the recoverable robust assignment problem [12].

Previous work. Progress in finding deterministic algorithms for EM (and therefore finding
positive evidence for the conjecture P=RP) has only been made for restricted graph classes:
It is known that EM can be solved in determinisitic polynomial time for planar and more
generally K3,3-minor free graphs [34], as well as graphs of bounded genus [13]. These works
use Pfaffian orientations to derandomize the algebraic technique from [26]. EM can also be
solved for graphs of bounded treewidth using a dynamic programming approach [8,32]. In
contrast to these classes of sparse graphs, EM on dense graphs seems to be even harder:
Already solving the problem on complete graphs and complete bipartite graphs is highly
nontrivial. In fact, at least 4 articles just dealing with this special case have appeared
in the literature [14, 18, 21, 33]. Recent work [9] made a step forward by showing how to
solve EM on graphs of constant independence number, where the independence number of
a graph G is defined as the largest number α such that G contains an independent set of
size α, and bipartite graphs of constant bipartite independence number, where the bipartite
independence number of a bipartite graph G equipped with a bipartition of its vertices is
defined as the largest number β such that G contains a balanced independent set of size 2β,
i.e., an independent set using exactly β vertices from both color classes. This generalizes
previous results for complete and complete bipartite graphs which correspond to the special
cases α = 1 and β = 0. The authors presented an XP-algorithm, i.e. an algorithm running in
time O(nf(α)), for the problem. The existence of an FPT algorithm, i.e. an algorithm with
running time f(α)nO(1), was left as an open question. The authors also conjectured that
counting perfect matching is #P-hard for this class of graphs. This conjecture was later
proven in [11] already for α = 2 or β = 3. As a consequence, the Pfaffian derandomization
technique is unlikely to work for this class of graphs, because this technique implicitly
counts the number of perfect matchings. This makes the graph class of graphs of bounded

N. El Maalouly, R. Steiner, and L. Wulf 28:3

independence number a promising frontier to push the limits of deterministic techniques. To
the best of our knowledge, these are the only results from the last 40 years showing that EM
can be solved in deterministic poly-time for restricted graph classes.

Apart from restricted graph classes, one can also consider parameterized algorithms for
EM, using the natural parameter k. Note that an XP-algorithm in this case is trivial to
obtain using brute-force guessing (guess the red edges that go in a solution and complete
the perfect matching using only blue edges). An FPT algorithm would, however, be highly
desirable as it is likely provide a lot of insight into EM. The only progress towards that goal
can be found in [8] where some color coding tools were developed but only applied to the
almost trivial case of bounded circumference graphs.

Another direction of progress towards solving EM is the study of relaxed versions of
it. A first such relaxation would be to lift the requirement for a perfect matching. In [34],
however, it was shown that there is a simple deterministic polynomial time algorithm such
that given a “Yes” instance of EM, computes an almost perfect matching (i.e. of size at least
n
2 − 1) containing k red edges. This result is as close to optimal as possible for this type
of relaxation. The study of the other type of relaxation, i.e. relaxing the color constraints,
was only recently initiated in [8]. It was shown that there is a deterministic polynomial time
algorithm which given a “Yes”-instance of EM outputs a perfect matching with k′ red edges,
such that k/2 ≤ k′ ≤ 3k/2.

Exact matchings modulo 2. A crucial tool in this paper is to consider matchings with k′ red
edges, where k′ ≡2 k, that is, matchings of the correct parity. Let r(M) denote the number
of red edges in a matching M . We define the Correct Parity Matching Problem (CPM),
where given a red-blue edge-colored graph and an integer k, the goal is to find a perfect
matching M such that r(M) ≡2 k. Note that parity problems (and more general congruency-
constrained problems) have been studied in the context of other graph algorithms [19,27],
but are not well studied for the perfect matching problem. A more challenging version of the
problem, Bounded Correct Parity Matching (BCPM), requires finding a perfect matching M

such that r(M) ≡2 k and r(M) ≤ k. In [20] the complexity of the EM problem was even
further highlighted by showing that the Exact Matching polytope has exponential extension
complexity even when restricted to the bipartite case and to the parity constraint (i.e. CPM
in bipartite graphs has exponential extension complexity).

Our results. From now on, when we say that an algorithm has polynomial running time, we
mean a deterministic algorithm, whose running time is bounded by poly(n), even if α, β, k

are not bounded by a constant. We show in this paper how BCPM can be used to solve EM.
Precisely, our results are the following:

We show that EM reduces to BCPM in FPT time parameterized by α in the following
sense: There exists an algorithm, which performs a single oracle call to BCPM, and solves
EM on general graphs, in running time f(α)nO(1). (The result holds analogously for the
bipartite independence number β). Without access to the BCPM oracle, the algorithm
outputs a perfect matching with either k − 1 or k red edges or deduces that the answer
of the given EM-instance is “No” (Section 3).
CPM can be solved in polynomial time for all graphs (Section 4). This insight is based
on a deep result by Lovász [23].
On bipartite graphs, the more difficult problem BCPM can be solved in polynomial time
(Theorem 17). As a consequence, there is an FPT algorithm parameterized by β which
solves EM on bipartite graphs (Theorem 2).

ISAAC 2023

28:4 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

Due to space restrictions, proofs of statements marked ⋆ can be found in the extended
version of this paper [10].

2 Preliminaries

All graphs considered are simple. For G = (V, E), we let V (G) := V and E(G) := E. We
always use the letter n to denote the number of vertices of a graph G, i.e. n = |V (G)|. An
edge-colored graph is a tuple (G, col), where col : E → {red, blue} prescribes a color to each
edge. An instance of EM is a tuple (G, col, k). Given an instance of EM and a perfect
matching (abbreviated PM) M , we define edge weights wM : E → N as follows: We have
wM (e) = 0 if e is a blue edge, wM (e) = +1 if e is a red non-matching edge and wM (e) = −1
if e is a red matching edge. The weight function wM plays a critical role in many arguments
in this paper. When the PM M can be deduced from context, we may write w instead of
wM . In this case, the weight of edge e is wM (e). For G′ a subgraph of G, we define R(G′)
(resp. B(G′)) to be the set of red (resp. blue) edges in G′, r(G′) := |R(G′)| to be the number
of red edges of G′ and wM (G′) to be the sum of the weights of edges in G′. If C is a set of
vertex-disjoint cycles, then we define wM (C) =

∑
C∈C wM (C).

We say that a set of disjoint cycles or paths is M -alternating if for any two adjacent
edges in the set, one of them is in M and the other is not. Undirected cycles are considered
to have an arbitrary orientation. For a cycle C and u, v ∈ C, C[u, v] is defined as the path
from u to v along C (in the fixed but arbitrarily chosen orientation). The term Ram(r, s)
refers to the Ramsey number, i.e. every graph on Ram(r, s) vertices contains either a clique
of size r or an independent set of size s. For simplicity we will use the following upper bound:
Ram(s + 1, s + 1) < 4s [15].

3 Reducing EM to BCPM in FPT time

The goal of this section is to prove our two main theorems:

▶ Theorem 1. EM can be reduced to BCPM in FPT time parameterized by the independence
number of the graph.

▶ Theorem 2. There exists an FPT algorithm for EM on bipartite graphs parameterized by
the bipartite independence number of the graph.

We will first introduce the algorithm and then prove Theorem 1 in Section 3.4 and
Theorem 2 in Section 3.5. Finally, in Section 3.6 we will discuss the case where a BCPM
oracle can not be used.

3.1 Tools from Prior Work
The algorithm we develop to prove Theorems 1 and 2 will rely on many of the tools developed
in [9] and [8]. We start with the two main propositions that we aim to use. The setting of
both propositions is the same: We are given some PM M explicitly, and we know that there
is another PM M ′ which we know exists, but we do not know explicitly. We are given the
PM M and the number r(M ′) as input and would like to find either M ′ itself, or at least
another PM M ′′ with r(M ′′) = r(M ′).

▶ Proposition 3 (from [9]). Let M and M ′ be two PMs in G such that |B(M∆M ′)| ≤ L or
|R(M∆M ′)| ≤ L, for L ≥ 1. Then there exists a deterministic algorithm running in time
nO(L) such that given M and r(M ′), it outputs a PM M ′′ with r(M ′′) = r(M ′).

N. El Maalouly, R. Steiner, and L. Wulf 28:5

▶ Proposition 4 (adapted from [8]). (⋆) Given a graph G = (V, E) with edge colors red and
blue, let M and M ′ be two PMs in G such that |E(M∆M ′)| ≤ L, for L ≥ 1. Then there
exists an algorithm running in time f(L)nO(1) (for f(L) = LO(L)) such that given M and
r(M ′), it outputs a PM M ′′ with r(M ′′) = r(M ′).

The algorithm from Proposition 4 is faster (FPT instead of XP when parameterized by
L), but it requires more assumptions on M ′. The algorithm from Proposition 3 works by
guessing which L edges are in R(M∆M ′) (respectively B(M∆M ′)) and then checks if the
red (blue) edges can be completed to a PM by using only blue (red) edges. The algorithm
from Proposition 4 works using color-coding technique (see [6, Chapter 5] for more details
on color coding).

In [9] the authors show that for graphs of small independence number, one could use
Proposition 3 to get an XP algorithm (parameterized by the independence number) by
bounding either the number of red edges or the number of blue edges in the symmetric
difference with a target matching M ′. Our aim is to show that we can use the stronger
Proposition 4 from [8] to get an FPT algorithm, which would require that we bound both
color classes (i.e. the entire symmetric difference). This turns out to be much more difficult
to achieve and requires novel algorithmic techniques that we describe in the next section.
Our algorithm does, however, start by bounding one of the color classes before bounding the
second. For that we simply rely on the tools developed in [9] to avoid starting from scratch.
Due to the technicality of some of the used tools, some readers might want to skip the details
of the tools from previous work and jump ahead to the next section, only coming back to
these definitions and lemmas when needed.

A crucial concept to understand the tools from prior work is a property of the weight
function w = wM as defined in Section 2. Let M and M ′ be two perfect matchings. It
is well-known that the symmetric difference C := M∆M ′ is a set of edges that forms a
vertex-disjoint union of M -alternating cycles. An easy observation is now that wM (C) counts
the difference of red edges between M and M ′, that is, we have r(M ′) = r(M) + wM (C).
This follows directly from the definition of wM . The second crucial concept is the concept of
a skip.

v1

v′1 v2
v′2

e1 e2

Figure 1 A skip formed by two non-matching edges e1 and e2 (in black). Matching edges are
normal lines, non-matching edges are dashed. The bold lines represent subpaths.

▶ Definition 5 (from [9]). Let M be a PM and C an M -alternating cycle. A skip S is a set of
two non-matching edges e1 := (v1, v2) and e2 := (v′

1, v′
2) with e1, e2 /∈ C and v1, v′

1, v2, v′
2 ∈ C

(appearing in this order along C) such that C ′ = e1 ∪ e2 ∪ C \ (C[v1, v′
1] ∪ C[v2, v′

2]) is an
M -alternating cycle, |C| − |C ′| > 0 and |wM (S)| ≤ 4 where wM (S) := wM (C ′)− wM (C) is
called the weight of the skip.

Let M, C, S, C ′ be as above. We say that using the skip S is the action of replacing
the alternating cycle C by the alternating cycle C ′. If furthermore M ′ is another PM
and C ∈ M∆M ′, then we say that using S also modifies M ′ the following way: We let
M ′

new = M ′∆C∆C ′ = M∆(((M∆M ′) \ C) ∪ C ′). In other words, M ′
new is the matching

which has the same symmetric difference from M as M ′, except that C was replaced by C ′.
It is an easy observation that M ′

new is again a PM and r(M ′
new) = r(M ′) + w(S). This means

ISAAC 2023

28:6 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

that using a positive skip (i.e. a skip of strictly positive weight) increases the cycle weight,
using a negative skip decreases it and using a 0-skip (i.e. a skip of weight 0) does not change
the cycle weight. Using a skip always results in a cycle of smaller cardinality. If P ⊆ C is a
path and C[v1, v′

2] ⊆ P , then we say that P contains the skip S. Two skips {(v1, v2), (v′
1, v′

2)}
and {(u1, u2), (u′

1, u′
2)} are called disjoint if they are contained in disjoint paths along the

cycle. Note that two disjoint skips can be used independently. Finally, observe that iterating
over all skips of a given alternating cycle C can be done in polynomial time by trying all
possible combinations of two chords from the cycle C and checking whether they form a skip.
This means that if a skip with certain properties is shown to exist, it can also be found in
polynomial time.

▶ Definition 6 (from [9]). Let M be a PM and C a set of disjoint M -alternating cycles. A
0-skip set with respect to C is a set of disjoint skips on cycles of C such that the total weight
of the skips is 0.

▶ Definition 7 (from [9]). Let M be a PM and C a set of disjoint M -alternating cycles. A
0-skip-cycle set with respect to C is a set of disjoint skips on cycles of C and/or cycles from
C, such that the total weight of the skips minus the total weight of the cycles is 0.

We say that using a skip-cycle set S means to change C by removing all cycles in S from C
and by using all skips in S (i.e. for every S ∈ S that is a skip, locate the corresponding cycle
C ∈ C with S in C and use S on C). A perfect matching M ′

new is defined in an analogous
way as M ′

new is defined for using a single skip (i.e., such that M ′
new = M∆Cnew). If S was a

0-skip-cycle set, then we have r(M ′
new) = r(M ′). Using a 0-skip-cycle set always decreases the

total size of C. In this paper, it will be a common strategy to locate 0-skip-cycle sets contained
in the symmetric difference M∆M ′ of two PMs. If we manage to find such a 0-skip-cycle
set, then using it on M∆M ′ will produce a new PM M ′

new such that r(M ′
new) = r(M ′), but

|M∆M ′
new| < |M∆M ′|. Hence we make progress in the sense that we reduce the symmetric

difference M∆M ′ while maintaining r(M ′).
The following lemmas are taken and adapted from [9]. They show that under certain

assumptions 0-skip sets or 0-skip-cycle sets always exist. They are adapted to also include
a proof that the desired objects can be found in polynomial time. We leave their adapted
proofs to the appendix.

▶ Lemma 8 (adapted from [9]). (⋆) Let M be a PM and P an M-alternating path with
wM (P) ≥ 2t · 4α (resp. wM (P) ≤ −2t · 4α), for t ≥ 1, then P contains at least t disjoint
negative (resp. positive) skips. If P and M are given, then we can also find t such skips in
polynomial time.

▶ Lemma 9 (adapted from [9]). (⋆) Let t ≥ 8 · 4α and t′ = 4t2. Let M be a PM and C a
set of disjoint M-alternating cycles and C ∈ C such that |wM (C)| ≤ t′ and |wM (C)| ≥ 2t′,
then C contains a 0-skip-cycle set. If C, M are given, we can also find a 0-skip-cycle set in
polynomial time.

▶ Lemma 10 (adapted from [9]). (⋆) Let t ≥ 3. Let M be a PM and C a set of disjoint
M-alternating cycles such that |wM (C)| ≤ t, |wM (C)| ≤ 2t for all C ∈ C and |C| ≥ 10t3,
then C contains a 0-skip-cycle set. If C, M are given, we can also find a 0-skip-cycle set in
polynomial time.

▶ Lemma 11 (adapted from [9]). (⋆) Let t ≥ 8 · 4α. Let M be a PM and C a set of disjoint
M-alternating cycles such that |C| ≤ 10t3, |wM (C)| ≤ 2t for all C ∈ C and C contains at
least 1000t6 blue edges and 1000t6 red edges, then C contains a 0-skip set. If C, M are given,
then we can also find a 0-skip set in polynomial time.

N. El Maalouly, R. Steiner, and L. Wulf 28:7

3.2 The Main Algorithm

The aim of this section is to present the algorithm which reduces EM to BCPM in time
f(α)nO(1). We first sketch the idea of the algorithm: We assume that the algorithm receives
two PMs M and M ′ as input, such that r(M) < k < r(M ′) and such that both M and M ′

already have the correct parity, i.e. r(M) ≡2 r(M ′) ≡2 k. We will later show how this can
be done with an oracle call to BCPM. But even in the case where the BCPM oracle can not
be used and M, M ′ are just some arbitrary PMs with r(M) < k < r(M ′), our algorithm
still computes something meaningful: We show that in this case a PM with k or k − 1 red
edges will be output, or it will be deduced that the given EM-instance has answer “No”. This
variant of the algorithm is further discussed in Section 3.6.

Our algorithm modifies the PMs M and M ′ many times. But the invariant is maintained
that during the whole execution of the algorithm, both the PMs M and M ′ will never change
their parity. The basic idea of the algorithm is to have many iterations, where in each
iteration either M is modified such that r(M) increases by 2, or M ′ is modified such that
r(M ′) decreases by two. Clearly, if we can do such a modification in every iteration, we will
eventually arrive at a PM with k red edges. One might ask why we consider modifications of
the kind +2 and −2, instead of the kind +1 and −1. The reason for this is that a change
of ±1 might not always be possible, even in complete graphs. To see this, consider the
smallest possible modification of a PM. It consists in taking its symmetric difference with an
alternating cycle of length four. Such a cycle may add or remove up to two red edges from
the matching and it is possible that we only find such cycles adding or removing exactly
two red edges. On the converse, if all small cycles add or remove one red edge, we can still
achieve a change of two by simply considering two such cycles.

However, reality is more complicated and even a ±2 modification might not always be
possible. The first hurdle is that such a modification might not be possible if r(M)≪ r(M ′).
To combat this hurdle, the algorithm splits into three phases, where in the first phase the
PMs M, M ′ are modified such that they keep their parity and after their modification we
have that r(M), r(M ′) are close to k. Details for phase 1 will be provided in Lemma 12. In
the second phase, we will do many iterations, such that in each iteration the algorithm tries
to (i) increase r(M) by 2, or (ii) decrease r(M ′) by 2, or (iii) strictly decrease the cardinality
of the symmetric difference |E(M∆M ′)|. Finally, it can still happen that neither (i), (ii), or
(iii) are possible. However, we prove a key lemma which states that in this situation (and if
the given EM-instance is a “Yes” instance), we can use color coding techniques to find a PM
M∗ in time f(α)nO(1) which is a solution to EM, i.e. r(M∗) = k. The algorithm then enters
phase 3, where it either finds M∗ or deduces that the given EM-instance is a “No”-instance.
We now provide the formal description of the algorithm:

Input: A red-blue edge-colored graph (G, col), a nonnegative integer k. Two PMs M and
M ′ with r(M) < k < r(M ′).

Phase 1: Find two PMs Mnew and M ′
new such that

k − 8 · 4α ≤ r(Mnew) ≤ k ≤ r(M ′
new) ≤ k + 8 · 4α,

and such that the parity is maintained, i.e. r(Mnew) ≡2 r(M) and r(M ′
new) ≡2 r(M ′).

Set M ←Mnew and M ′ ←M ′
new. If this step fails, output “EM-instance has no solution”.

Phase 2: If either M or M ′ is a solution matching we are done. Otherwise repeat the
following three steps until either M or M ′ is a solution matching or until every step
(i),(ii), and (iii) fails in the same iteration:

ISAAC 2023

28:8 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

(i) Invoke the algorithm of Proposition 3 with respect to the matching M and L = 2 in
order to try to find a PM Mnew with r(Mnew) = r(M) + 2. If such a PM is found, let
M ←Mnew, otherwise do not modify M and consider step (i) as failed.

(ii) Invoke the algorithm of Proposition 3 with respect to the matching M ′ and L = 2 in
order to try to find a PM M ′

new with r(M ′
new) = r(M ′)− 2. If such a PM is found, let

M ′ ←M ′
new, otherwise do not modify M ′ and consider step (ii) as failed.

(iii) Invoke the algorithms of Lemma 9, Lemma 10 or Lemma 11 (with t = 256 · 42α), to
try to find a 0-skip or a 0-skip-cycle set in M∆M ′. If such an object is found, then
use it (i.e. change M ′ accordingly) to reduce |E(M∆M ′)|. Otherwise do not modify
M, M ′ and consider step (iii) as failed.

Phase 3: If either M or M ′ is a solution matching we are done. Otherwise invoke the
algorithm of Proposition 4 with L = 2αO(1) (for appropriately large constants) on the
matching M to try to find a PM M∗ with r(M∗) = k. If such a PM M∗ is found, then
output it. Otherwise output “EM-instance has no solution”.

This completes the description of the algorithm. The remainder of this section is dedicated
to its proof. First, we prove that phase 1 can be completed correctly in polynomial time
(Lemma 12). It is not so difficult to prove that phase 2 requires only polynomial time (as
there are at most n2 iterations). Finally, we prove in our main lemma (Lemma 15) that if
steps (i),(ii),(iii) all fail simultaneously, then phase 3 is guaranteed to succeed. This is the
most difficult lemma to prove. In Section 3.4 we summarize the proof and explain how to
obtain the two initial matchings M and M ′ required as input for phase 1.

Finally, we describe the modifications necessary for bipartite graphs (Section 3.5) and for
cases where the BCPM oracle is not available (Section 3.6).

3.3 Proof of the main lemmas
The following lemmas help us prove the correctness and polynomial running time of the
algorithm.

▶ Lemma 12. Given a “Yes” instance of EM and two PMs M and M ′ with r(M) ≤ k ≤
r(M ′), there exists a deterministic polynomial time algorithm that outputs two PMs M1 and
M2 with r(M1) ≡2 r(M), r(M2) ≡2 r(M ′) and k− 8 · 4α ≤ r(M1) ≤ k ≤ r(M2) ≤ k + 8 · 4α.

Proof. As long as r(M) < k − 8 · 4α we will consider two cases:
All cycles C ∈ M∆M ′ have weight wM (C) ≤ 4 · 4α. In this case M∆M ′ must contain
at least two strictly positive cycles C1 and C2. If wM (C1) ≡2 0 then we replace M by
M∆C1 and iterate (note that r(M) < r(M∆C1) ≤ k and r(M∆C1) ≡2 r(M)). The case
wM (C2) ≡2 0 is similar. Otherwise we replace M by M∆(C ∪ C ′) and iterate (note that
r(M) < r(M∆(C ∪ C ′)) ≤ k and r(M∆(C ∪ C ′)) ≡2 r(M)).
There exists C ∈M∆M ′ with wM (C) > 4 · 4α. Observe that C ∈M ′∆M and wM ′(C) =
−wM (C) ≤ −4 · 4α. By Lemma 8 applied to M ′ and wM ′ , we have that C contains two
positive skips (with respect to M ′ and wM ′). If any of the skips has even weight, we use
it to increase the weight of wM ′(C) and iterate (note that r(M) increases since using a
skip in M ′∆M modifies M). Otherwise we use both skips. In either case, r(M) increases
and its parity is preserved. Note that r(M) can increase by at most 8 given that a skip
must have weight at most 4 by definition.

In both cases r(M) increases after every iteration. So there can be at most O(n) iterations,
each running in polynomial time, until k − 8 · 4α ≤ r(M) ≤ k. Now we apply a similar
procedure to decrease r(M ′). As long as r(M ′) > k + 8 · 4α we will consider two cases:

N. El Maalouly, R. Steiner, and L. Wulf 28:9

All cycles in M ′∆M have weight wM ′ more than −4 · 4α. In this case M ′∆M must
contain at least two strictly negative cycles C1 and C2. If wM ′(C1) ≡2 0 then we replace
M ′ by M ′∆C1 and iterate (note that k ≤ r(M ′∆C1) < r(M ′) and r(M ′∆C1) ≡2 r(M ′)).
The case wM ′(C2) ≡2 0 is similar. Otherwise we replace M ′ by M ′∆(C ∪C ′) and iterate
(note that k ≤ r(M∆(C ∪ C ′)) < r(M ′) and r(M∆(C ∪ C ′)) ≡2 r(M ′)).
There exists C ∈ M ′∆M with wM ′(C) < −4 · 4α. Observe that C ∈ M∆M ′ with
wM (C) = −wM ′(C) ≥ 4 · 4α. By Lemma 8 applied to M and wM , C contains two
negative skips (with respect to M and wM). If any of the skips has even weight, we use
it to reduce wM (C) and iterate (note that r(M ′) decreases since using a skip in M∆M ′

modifies M ′). Otherwise we use both skips. In either case, r(M ′) decreases and its parity
is preserved. Note that r(M ′) can decrease by at most 8 given that a skip must have
weight at least −4 by definition.

In both cases r(M ′) decreases after every iteration. So there can be at most O(n) iterations,
each running in polynomial time, until k ≤ r(M ′) ≤ k + 8 · 4α. Finally the algorithm
terminates by outputting M1 := M and M2 := M ′. ◀

▶ Lemma 13. Let M be a PM and C a set of disjoint M -alternating cycles with the following
properties:
C does not contain monochromatic cycles.
|E(C)| ≥ 2t3.
|R(C)| ≤ t (resp. |B(C)| ≤ t).

Then C contains a blue (resp. red) M -alternating path of length at least t.

Proof. We will consider the case when |R(C)| ≤ t. The case |B(C)| ≤ t is proven similarly
by swapping the two colors. First observe that if C contains at most t red edges and no
monochromatic cycles, then |C| ≤ t. So by the pigeonhole principle, C must contain a cycle
C with |E(C)| ≥ 2t2. Consider the set of maximal blue subpaths of C and let pB be the
number of these paths. As every such path is accompanied by a red edge, we have pB ≤ t.
Finally, C has at least 2t2− t blue edges, so by the pigeonhole principle one of the blue paths
must have length at least (2t2 − t)/t ≥ t. ◀

The above lemma simply shows that if only one color class is bounded, there must be
long monochromatic paths of the other color. The next lemma shows that the existence of
long monochromatic paths in turn implies the existence of small cycles.

▶ Lemma 14. Let M be a PM and C an M-alternating cycle. Let P ⊆ C be a blue (resp.
red) M -alternating path of length at least 6 Ram(Ram(4, α + 1), α + 1), starting with a non-
matching edge and not containing 0-skips. Then there must be two edges e1 := (b1, b2) and
e2 := (w1, w2) with endpoints on P , at least one of which must be red (resp. blue), such that
C ′ = e1 ∪ e2 ∪ C[b1, w1] ∪ C[b2, w2] is an M-alternating cycle with 0 < wM (C ′) ≤ 2 (resp.
−2 ≤ wM (C ′) < 0) and containing a number of red (resp. blue) edges equal to the absolute
value of its weight.

Proof. We will only deal with the case when P is blue, the other case is treated similarly
(by switching the roles of the two colors in the proof). We assume that P has an arbitrary
orientation which is used to define the start and end vertices of subpaths of P . First, we divide
P into a set of consecutive paths P of length 6 each, starting with the first non-matching
edge. Let P1 be the set of paths formed by the first 3 edges of each path in P. The set of
start vertices of paths in P1 has size at least Ram(Ram(4, α + 1), α + 1) so it must contain
a clique Q of size Ram(4, α + 1). Let P2 be the set of paths in P1 with start vertices in Q.
The set of end vertices of paths in P2 must contain a clique Q′ of size 4 (see Figure 2). Let

ISAAC 2023

28:10 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

P3 := {P1, P2, P3, P4} be the set of paths in P1 with end vertices in Q′. Let si and ti be the
start and end vertices of path Pi for i ∈ {1, 2, 3, 4}. Observe that any two distinct paths
Pi, Pj ∈ P3 have their endpoints connected by the edges (si, sj) and (ti, tj) and a skip is
created this way. If both edges were blue, we would get a 0-skip (since the whole path P has
only blue edges). Letting i = 2, j = 3, we see that one of the edges (s2, s3) or (t2, t3) must
be red. Suppose (s2, s3) is red. Observe that (t1, t2) ∪ (s2, s3) ∪C[t1, s2] ∪C[t2, s3] is a cycle
of weight +1 or +2 (depending on whether (t1, t2) is red or blue, since all other edges are
blue) and containing at most 2 red edges. Similarly, suppose (t2, t3) is red. Observe that
(t2, t3) ∪ (s3, s4) ∪ C[t2, s3] ∪ C[t3, s4] is a cycle of weight +1 or +2 (depending on whether
(s3, s4) is red or blue) and the number of red (resp. blue) edges it contains is equal to the
absolute value of its weight. ◀

Q s1
s2
s3
s4

t1

t2
t3
t4

Q′
s2

t2 s3
t3

t1

s1

s4

t4

Figure 2 Left: The set of paths P2, of size Ram(4, α + 1), and the cliques Q and Q′. Right:
The paths from P3 along the blue path P and the vertices si, tj . Matching edges are normal lines,
non-matching edges are dashed. The bold lines between ti and si+1 represent subpaths. Observe
that {(s2, s3), (t2, t3)} forms a skip and (t1, t2) ∪ (s2, s3) ∪ C[t1, s2] ∪ C[t2, s3] is an alternating cycle.

Finally, we are ready to prove our main lemma. Roughly speaking, it states that if all
steps (i),(ii) and (iii) in phase two of the algorithm fail, then phase 3 is guaranteed to succeed.
More specifically, it states that if we cannot make small progress towards a solution then
we are ready to apply Proposition 4 and find one in FPT time. Small progress here means
either getting the number of red edges in M or M ′ closer to k, or making their symmetric
difference smaller.

▶ Lemma 15. Let M and M ′ be two PMs with the following properties:
(a) r(M) < k − 1, r(M ′) > k.
(b) |wM (M∆M ′)| ≤ t for t = 256 · 42α.
(c) There is no PM M1 such that r(M1) = r(M) + 2 and |R(M∆M1)| = 2.
(d) There is no PM M ′

1 such that r(M ′
1) = r(M ′)− 2 and |B(M ′∆M ′

1)| = 2.
(e) M∆M ′ does not contain any 0-skip.
(f) The algorithms of Lemma 9, Lemma 10 and Lemma 11 all fail to find a 0-skip-cycle set

in M∆M ′.
If there is at least one PM with k red edges, then there exists a PM M∗ such that r(M∗) = k

and |E(M∆M∗)| = 2αO(1) .

N. El Maalouly, R. Steiner, and L. Wulf 28:11

Proof. We start by giving a high level overview and the intuition behind the proof. First we
note that properties (a) and (b) will be guaranteed after phase 1 of the algorithm and they
state that both M and M ′ are close to k in terms of number of red edges. Second, properties
(c) and (d) state that our algorithm is unable to make small progress in terms of getting
the number of red edges in M or M ′ closer to k. Finally properties (e) and (f) state that
our algorithm is unable to make small progress in term of making the symmetric difference
between M and M ′ smaller.

Our final goal is to bound the symmetric difference between M and some solution M∗.
We will do that by contradiction to one of the given properties. Observe that if the conditions
for Lemma 14 are met, i.e. there is a long blue only M -alternating path, then the lemma
guarantees that small progress towards getting the number of red edges closer to k is possible.
The same holds for long red only M ′-alternating paths. Note, however, that we might need
to apply the lemma twice in order to ensure that the progress is in increments or decrements
of two, thus contradicting either property (c) or (d). This way we can bound the length
of blue only M -alternating paths. Then if red only M -alternating paths are also bounded,
Lemma 13 implies that either both colors are bounded, in which case we are done, or none of
them is. In the latter case, we use the machinery developed in [9] (see Section 3.1) to reach
the contradiction (remember that the goal there was to bound one color class), and this
requires properties (a) and (b) to hold. The same holds if blue only M ′-alternating paths
are bounded.

The only remaining obstacles are long red only M -alternating or blue only M ′-alternating
paths. To deal with that, we try to reduce the symmetric difference between M and M ′ such
that long monochromatic M -alternating paths are also M ′-alternating (and the contradiction
above can again be reached) since the two matchings do not differ by that many edges.
Bounding the symmetric difference between M and M ′ relies on a contradiction to properties
(e) or (f). It follows the same steps as bounding the symmetric difference between M

and M∗, but with the added benefit that paths in this symmetric difference are both M

and M ′-alternating, which avoids the problem of long red only M -alternating or blue only
M ′-alternating paths.

To summarise, we start by bounding |E(M∆M ′)| (first bounding one color class, then
the second). Then we are able to bound |E(M∆M∗)| (again one color class at a time).

Detailed proof. We will start by showing that one color class of M∆M ′ must be bounded.
This allows us to then bound |E(M∆M ′)|. We then consider the solution matching M∗

that minimizes |E(M∆M∗)| and start by bounding the number of blue edges in M∆M∗.
Finally, we also show that the number of red edges in M∆M∗ is bounded, thus bounding
|E(M∆M∗)|.

Bounding one color class of M∆M ′. Since we failed to reduce |E(M∆M ′)| using the
algorithm of Lemma 9, the weight of all cycles in M∆M ′ must be bounded: |w(C)| ≤ 2t for
all C ∈ M∆M ′. Since we failed to reduce |E(M∆M ′)| using the algorithm of Lemma 10,
the number of cycles in M∆M ′ must be bounded: |M∆M ′| ≤ 10t3. Finally, since we
failed to reduce |E(M∆M ′)| using the algorithm of Lemma 11, |B(M∆M ′)| or |R(M∆M ′)|
must be bounded (by 1000t6). Let t′ = max(1000t6, 20 Ram(Ram(4, α + 1), α + 1)) (note
that 1000t6 = 2O(α), Ram(4, α + 1) = αO(1) and Ram(Ram(4, α + 1), α + 1)) = 2αO(1) so
t′ = 2αO(1)).

ISAAC 2023

28:12 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

Bounding |E(M∆M ′)|. First, we show that property (c) implies that there is no blue
M -alternating path of length at least t′ in the graph. Suppose such a path exists. Divide the
path into two blue paths P1 and P2 of length at least t′/2 each. From Lemma 14 applied to
each of the paths P1 and P2, we get that there exists two disjoint M -alternating cycles C1
and C2 with 0 < wM (C1) ≤ 2, 0 < wM (C2) ≤ 2 and each containing a number of red edges
equal to the absolute value of their weight. If C1 contains two red edges, let M1 := M∆C1.
Otherwise if C2 contains two red edges, let M1 := M∆C2. Finally, if both C1 and C2
contain only one red edge, let M1 := M∆(C1 ∪ C2). Observe that |R(M∆M1)| = 2 and
r(M1) = r(M) + 2, contradicting property (c).

Next we show that property (d) implies that there is no red M ′-alternating path of length
at least t′ in the graph. Divide the path into two red paths P1 and P2 of length at least
t′/2 each. From Lemma 14 applied to each of the paths P1 and P2, we get that there exists
two disjoint M -alternating (with respect to M ′) cycles C1 and C2 with −2 ≤ wM ′(C1) < 0,
−2 ≤ wM ′(C2) < 0 and and each containing a number of blue edges equal to the absolute
value of their weight. If C1 contains two blue edges, let M ′

1 := M ′∆C1. Otherwise if C2
contains two blue edges, let M ′

1 := M ′∆C2. Finally, if both C1 and C2 contain only one blue
edge, let M ′

1 := M ′∆(C1 ∪ C2). Observe that |B(M ′∆M ′
1)| = 2 and r(M ′

1) = r(M ′) − 2,
contradicting property (d).

Suppose |R(M∆M ′)| ≥ 2t′3. Then by the previous paragraph |B(M∆M ′)| ≤ t′. Note
that M∆M ′ contains no monochromatic cyle, as this would be a 0-skip cycle set, therefore
by Lemma 13, M ′∆M contains a red M ′-alternating path of length at least t′. But this
contradicts property (c). Now suppose |B(M∆M ′)| ≥ 2t′3. Then |R(M∆M ′)| ≤ t′ and by
Lemma 13, M∆M ′ contains a blue M -alternating path of length at least t′, contradicting
property (c). So we get |E(M∆M ′)| = |B(M∆M ′)|+ |B(M∆M ′)| ≤ 4t′3.

Bounding |B(M∆M∗)|. Now let M∗ among all those PMs with k red edges be the
one which minimizes |E(M∆M∗)|. Note that |wM (M∆M∗)| ≤ |wM (M∆M ′)| ≤ t. Since
|E(M∆M∗)| is minimal, M∆M∗ cannot contain a 0-skip-cycle set. By Lemma 9, the
weight of all cycles in M∆M∗ must be bounded: |w(C)| ≤ 2t for all C ∈ M∆M∗. By
Lemma 10, the number of cycles in M∆M∗ must be bounded: |M∆M∗| ≤ 10t3. Finally,
by Lemma 11, |B(M∆M∗)| or |R(M∆M∗)| must be bounded (by 1000t6 ≤ t′). Suppose
|B(M∆M∗)| > 2t′3. So |R(M∆M∗)| ≤ t′ and by Lemma 13, M∆M∗ contains a blue
M -alternating path of length t′, contradicting property (c). So |B(M∆M∗)| ≤ 2t′3.

Bounding |E(M∆M∗)|. Let t′′ = 4t′4. Suppose |R(M∆M∗)| > 2t′′3, by Lemma 13
M∗∆M contains a red path P with |P | ≥ t′′. Observe that M ′∆M∗ = (M∆M∗)∆(M∆M ′)
and P ⊆M∆M∗ so

P ∩ (M ′∆M∗) = P\(P ∩ (M∆M ′)).

We have |P ∩ (M∆M ′)| ≤ |E(M∆M ′)| < 4t′3, so if all paths in P ∩ (M ′∆M∗) have length
at most t′ then |P | < 4t′4, a contradiction. So there must be a path P ′ ⊆ P ∩ (M ′∆M∗) of
length at least t′. Note that P ′ is a red M ′-alternating path, contradicting property (d). So
we have |E(M∆M∗)| ≤ 4t′′3 = t′′O(1) = t′O(1) = 2αO(1) . ◀

3.4 Main theorem for general graphs
Proof of Theorem 1. Suppose we have a polynomial time oracle for BCPM. We start by
solving CPM on the given instance. This can be done in polynomial time (as we prove later
in Theorem 19) and will give us a PM Mp with r(Mp) ≡2 k. If r(Mp) ≥ k, let M ′ := Mp

N. El Maalouly, R. Steiner, and L. Wulf 28:13

and use an oracle call to BCPM to get M with r(M) ≡2 k and r(M) ≤ k. Otherwise,
if r(Mp) ≥ k, let M := Mp and use an oracle call to BCPM to get M ′ with r(M ′) ≡2 k

and r(M ′) ≥ k (this can simply be done by swapping the red and blue colors and using
k′ = n/2− k as parameter for the BCPM oracle). In both cases, we obtain PMs M, M ′ such
that r(M) ≡2 k ≡2 r(M ′) and r(M) ≤ k ≤ r(M ′).

Note that if this step fails (in the sense that the CPM or BCPM call returns “false”),
then the EM instance has no solution. Otherwise we apply the algorithm of Section 3.2 on
the EM-instance with M and M ′ as input. Our goal now is to prove that if the EM-instance
is a “YES” instance, then the following must be true:
(a) Phase 1 runs in polynomial time and outputs two PMs M and M ′ such that k− 8 · 4α ≤

r(M) ≤ k ≤ r(M ′) ≤ k + 8 · 4α, r(M) ≡2 r(M ′) ≡2 k.
(b) Phase 2 runs in polynomial time and either outputs a PM with k red edges (and the

algorithm terminates) or a PM M such that there exists a PM M∗ with r(M∗) = k and
|E(M∆M∗)| ≤ 2αO(1) (for appropriately large constants).

(c) If the algorithm did not terminate in Phase 2, then Phase 3 runs in time f(α)nO(1) and
outputs a PM with k red edges.

It is easy to see that if all the above items hold, then the algorithm runs in time f(α)nO(1)

and always outputs a PM with k red edges if one exists. Note that (a) and (c) follow directly
from Lemma 12 and Proposition 4 respectively.

To prove (b) first observe that as long as r(M) ̸= k and r(M ′) ̸= k, all steps in phase
2 maintain the following invariants: r(M) ≤ k ≤ r(M ′) and r(M) ≡2 r(M ′) ≡2 k. To see
this, note that r(M) and r(M ′) can only change by 2 every step and they start with the
same parity as k. So in order for r(M) to go above k or r(M ′) to go below k they would
need to pass by k, at which point the algorithm terminates. Also observe that if any of
the steps does not fail, then either r(M ′)− r(M) decreases or |E(M∆M ′)| decreases while
r(M ′)− r(M) remains unchanged. So if we consider as a measure of progress r(M ′)− r(M)
and |E(M∆M ′)| ordered lexicographically (where progress is towards smaller values of the
measure), then we always make progress (i.e. the measure strictly decreases). Note that
r(M ′) − r(M) ≤ n and is always non-negative and the same holds for |E(M∆M ′)|. So
the algorithm can perform at most n2 iterations in phase 2. Since every iteration runs in
polynomial time (this is true for steps (i) and (ii) by Proposition 3 and for step (iii) by
Lemma 9, Lemma 10 and Lemma 11), we get that phase 2 runs in polynomial time. Now
observe that the algorithm only terminates in phase 2 if either M or M ′ is a solution (i.e.
it has k red edges). So it remains to show that if the algorithm does not terminate in this
phase then there exists a PM M∗ with r(M∗) = k and |E(M∆M∗)| ≤ 2αO(1) . Observe that
in case of non-termination, all the conditions of Lemma 15 are met:
(a) r(M) < k − 1, r(M ′) > k: follows from the invariants and M , M ′ not being solutions.
(b) |wM (M∆M ′)| ≤ 256 · 42α: follows from r(M ′)− r(M) ≤ 16 · 4α.
(c) There is no PM M1 such that r(M1) = r(M) + 2 and |R(M∆M1)| = 2: follows from the

failure of (i).
(d) There is no PM M ′

1 such that r(M ′
1) = r(M ′)− 2 and |B(M ′∆M ′

1)| = 2: follows from
the failure of (ii).

(e) M∆M ′ does not contain any 0-skip: follows from the failure of (iii).
(f) The algorithms of Lemma 9, Lemma 10 and Lemma 11 all fail to find a 0-skip-cycle set

in M∆M ′: follows from the failure of (iii).
So by Lemma 15 we get the desired result. ◀

ISAAC 2023

28:14 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

3.5 Main theorem for bipartite graphs
In order to prove the main theorem for the bipartite case (Theorem 2), we start by proving
a similar result to the main theorem on general graph that is adapted to bipartite graphs,
i.e., we use the bipartite independence number of the graph (the proof can be found in the
extended version [10]).

▶ Lemma 16. (⋆) EM on bipartite graphs can be reduced to BCPM on bipartite graphs in
FPT time parameterized by the bipartite independence number of the graph.

It remains to show that there is a deterministic polynomial time algorithm for BCPM on
bipartite graphs. This result can be derived from the more general result of [1] on network
matrices, as noted in [20], even for the more general weighted version of the problem. To
make it more accessible, we reprove it using a standard dynamic programming techniques.
The high level approach, as briefly described in [20], is the following: start by computing a
minimum weight perfect matching, in our case a perfect matching with minimum number of
red edges, and if the number of red edges is even then find a minimum odd weight alternating
cycle and output the symmetric difference. We could not find formal proof of correctness and
running time for this algorithm in the literature, therefore we provide one in the extended
version of this paper [10].

▶ Theorem 17. (⋆) There is a deterministic polynomial time algorithm for BCPM on
bipartite graphs.

3.6 Main theorem without oracle access
Although an FPT algorithm parameterized by the independence number for general graphs
still requires an algorithm for BCPM, the following theorem shows that without relying on
BCPM the algorithm developed in this section can still output a PM that is very close to
optimal, i.e. it contains either k or k− 1 red edges (the proof is similar to that of Theorem 1
and left for the extended version [10]).

▶ Theorem 18. (⋆) There exists an algorithm such that given a “Yes” instance of EM, it
outputs a perfect matching with either k − 1 or k red edges in time f(α)nO(1).

This strengthens the results of [8] by reducing the constraint violation to at most one red
edge at the expense of an FPT (parameterized by the independence number) instead of a
polynomial running time.

4 Correct Parity Matching for General Graphs

While solving BCPM for general graphs remains an open problem, in this section we present
a solution to the easier problem of CPM which is only concerned with the parity of the
number of red edges.

▶ Theorem 19. (⋆) There is a deterministic polynomial time algorithm for CPM.

We will establish Theorem 19 as a consequence of a deep result by Lovász [23] on the
linear hull of perfect matchings of a graph. We first need to introduce some notation which
we adopt from [23]. Let a (not necessarily bipartite) graph G = (V, E) and a field F be given,
and let us denote by M the set of perfect matchings of G. Then the linear hull of perfect
matchings linF(M) is the linear subspace of FE , generated by the characteristic vectors of

N. El Maalouly, R. Steiner, and L. Wulf 28:15

perfect matchings in G. Concretely, linF(M) is the linear span of {1M |M ∈M}, where for
every perfect matching M the vector 1M ∈ FE is defined by 1M (e) = 1 for every e ∈M and
1M (e) = 0 for every e ∈ E \M .

We will make use of the following result of Lovász [23].

▶ Theorem 20 ([23]). For every finite field F there is a deterministic polynomial-time
algorithm that, given as input a graph G, returns a linear basis of linF(M).

The importance of this result by Lovász for solving the CPM is explained through the
following lemma. As usual, for two vectors x, y ∈ FE we denote by ⟨x, y⟩ :=

∑
e∈E xeye ∈ F

their scalar product.

▶ Lemma 21. Let G = (V, E) be a graph equipped with a coloring of its edges with colors
red and blue. Let F2 denote the 2-element field and let {x1, . . . , xd} ⊂ FE

2 be a linear basis of
linF2(M). Let r ∈ FE

2 be defined by re := 1 for all red edges e ∈ E and re = 0 for all blue
edges e ∈ E. Then the following two statements are equivalent:
1. There exists a perfect matching M in G containing an odd number of red edges.
2. There exists i ∈ {1, . . . , d} such that ⟨xi, r⟩ = 1.

Proof. Suppose first that there exists a perfect matching M in G containing an odd number
of red edges. Then the incidence vector 1M ∈ linF2(M) can be represented as a linear
combination of the basis elements x1, . . . , xd, in other words, there exists I ⊆ {1, . . . , d} such
that

1M =
∑
i∈I

xi.

Taking scalar products with r we get

⟨1M , r⟩ =
∑
i∈I

⟨xi, r⟩.

Note that the scalar product on the left hand side equals the number of red edges in M

taken modulo 2, and hence it equals 1. But then at least one of the scalar products on the
right hand side must also be non-zero, i.e., there exists i ∈ I with ⟨xi, r⟩ = 1, as desired.

Conversely, suppose there exists i ∈ {1, . . . , d} such that ⟨xi, r⟩ = 1. Then by virtue
of linF2(M) being spanned by the characteristic vectors of perfect matchings in M , there
exists a list of perfect matchings M1, . . . , Mt in G such that xi =

∑t
j=1 1Mj

. Using the same
argument as above, i.e., by taking scalar products with r and using that ⟨xi, r⟩ = 1, we find
that there must exist j ∈ {1, . . . , t} with ⟨1Mj

, r⟩ = 1, which means that Mj is a perfect
matching of G with an odd number of red edges. This concludes the proof. ◀

We may now deduce the following.

▶ Corollary 22. There exists a deterministic polynomial-time algorithm, that, given as input
a red-blue edge-colored graph G = (V, E) and a number k ∈ Z, decides whether or not G

contains a perfect matching M with r(M) ≡2 k.

Proof. Suppose first that k is odd. We use Theorem 20 to compute in deterministic
polynomial time a linear basis x1, . . . , xd of linF2(M). Note that since linF2(M) is a subspace
of FE

2 , its dimension satisfies d ≤ |E|. Next we generate the incidence vector r of red edges as
in the previous lemma, and compute the scalar products ⟨xi, r⟩ for i = 1, . . . , d in polynomial
time. If at least one of these products equals 1, we return that a perfect matching M

with r(M) ≡2 k exists, and otherwise we return that such a matching does not exist. The
correctness of this output follows by Lemma 21.

ISAAC 2023

28:16 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

Next suppose k is even. Let G′ be the red, blue-edge colored graph which is obtained as
the disjoint union of G with its given edge-coloring and a disjoint new edge of color red. The
perfect matchings of G′ are exactly the perfect matchings of G together with the additional
new red edge, and hence G contains a perfect matching M with r(M) ≡2 k if and only if G′

contains a perfect matching with and odd number of red edges. Thus we can decide whether
such a matching exists by invoking the algorithm from the case k = 1 described above with
G′ as the input. ◀

It is now easy to use the above decision-version of the CPM to solve the CPM itself by a
standard edge-deletion procedure.

Proof of Theorem 19. Let G = (V, E) be the input graph with a given red, blue-edge
coloring, and let further k ∈ Z be given. We use Corollary 22 to decide if G contains a perfect
matching M with r(M) ≡2 k. If it does not, then the algorithm stops with this conclusion.
Otherwise, we search through the edges e ∈ E one by one, and for each such edge test (again
using Corollary 22) whether G− e contains a perfect matching M with r(M) ≡2 k.

Suppose first we find an edge e ∈ E such that G− e contains a perfect matching M with
r(M) ≡2 k. In this case we make a recursive call of the algorithm to G− e, which will return
a perfect matching with the correct parity in G− e. We can then return this matching, as it
is also a perfect matching in G with the correct parity of red edges.

Otherwise, we find that there exists no e ∈ E such that G− e contains a perfect matching
M with r(M) ≡2 k. But as we know that G does contain a perfect matching M with
r(M) ≡2 k, this means that all edges of G are contained in M , and hence we may return the
set of edges of G and thereby find a solution to the CPM. ◀

5 Conclusion and Open Problems

So far, EM has only been solved for very sparse graphs (i.e. bounded tree-width and bounded
genus graphs) and very dense graphs (i.e. bounded independence number graphs). The
techniques used are quite different between these two cases. Especially in the case of dense
graphs, many previous works considered only complete (bipartite) graphs without much
progress. Only recently, the results were extended to the case of bounded independence
number, leading to XP algorithms parameterized by α or β. Looking for FPT algorithms
was the natural next step. In this paper, we could resolve the bipartite case fully, while the
non-bipartite case could only be resolved partially. However, our results in the non-bipartite
case still yield the following two non-trivial, independent insights: (i) To obtain an FPT
algorithm parameterized by α it suffices to solve BCPM (Theorem 1) and the easier problem
CPM can always be solved (Theorem 19). (ii) An FPT algorithm parameterized by α can
w.l.o.g. assume to start with a PM with k − 1 red edges (Theorem 18).

We hope that these insights can be the starting point for future work to obtain an
FPT algorithm parameterized by α, or, even better, an FPT algorithm parameterized by
k. The latter would be considered quite a breakthrough as it is likely to require a lot of
deep understanding of the structure and patterns behind EM, given the difficulty of making
progress towards it.

References
1 Stephan Artmann, Robert Weismantel, and Rico Zenklusen. A strongly polynomial algorithm

for bimodular integer linear programming. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1206–1219, 2017.

2 Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Jacobo Torán. Solving linear
equations parameterized by hamming weight. Algorithmica, 75(2):322–338, 2016.

N. El Maalouly, R. Steiner, and L. Wulf 28:17

3 André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and Guido Schäfer. Budgeted matching
and budgeted matroid intersection via the gasoline puzzle. Mathematical Programming,
128(1):355–372, 2011.

4 Jacek Błażewicz, Piotr Formanowicz, Marta Kasprzak, Petra Schuurman, and Gerhard J
Woeginger. A polynomial time equivalence between DNA sequencing and the exact perfect
matching problem. Discrete Optimization, 4(2):154–162, 2007.

5 Paolo M. Camerini, Giulia Galbiati, and Francesco Maffioli. Random pseudo-polynomial
algorithms for exact matroid problems. Journal of Algorithms, 13(2):258–273, 1992.

6 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

7 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
8 Nicolas El Maalouly. Exact matching: Algorithms and related problems. arXiv preprint, 2022.

arXiv:2203.13899.
9 Nicolas El Maalouly and Raphael Steiner. Exact Matching in Graphs of Bounded Independence

Number. In 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages
46:1–46:14, 2022.

10 Nicolas El Maalouly, Raphael Steiner, and Lasse Wulf. Exact matching: Correct parity
and FPT parameterized by independence number. CoRR, abs/2207.09797, 2022. doi:
10.48550/arXiv.2207.09797.

11 Nicolas El Maalouly and Yanheng Wang. Counting perfect matchings in dense graphs is hard.
arXiv preprint, 2022. arXiv:2210.15014.

12 Dennis Fischer, Tim A Hartmann, Stefan Lendl, and Gerhard J Woeginger. An investigation
of the recoverable robust assignment problem. arXiv preprint, 2020. arXiv:2010.11456.

13 Anna Galluccio and Martin Loebl. On the theory of Pfaffian orientations. I. Perfect matchings
and permanents. Electronic Journal of Combinatorics, 6:R6, 1999.

14 Hans-Florian Geerdes and Jácint Szabó. A unified proof for Karzanov’s exact matching
theorem. Technical Report QP-2011-02, Egerváry Research Group, Budapest, 2011.

15 Ronald L Graham, Bruce L Rothschild, and Joel H Spencer. Ramsey theory, volume 20. John
Wiley & Sons, 1991.

16 Fabrizio Grandoni and Rico Zenklusen. Optimization with more than one budget. arXiv
preprint, 2010. arXiv:1002.2147.

17 Rohit Gurjar, Arpita Korwar, Jochen Messner, Simon Straub, and Thomas Thierauf. Planar-
izing gadgets for perfect matching do not exist. In International Symposium on Mathematical
Foundations of Computer Science, pages 478–490. Springer, 2012.

18 Rohit Gurjar, Arpita Korwar, Jochen Messner, and Thomas Thierauf. Exact perfect matching
in complete graphs. ACM Transactions on Computation Theory (TOCT), 9(2):1–20, 2017.

19 Edith Hemaspaandra, Holger Spakowski, and Mayur Thakur. Complexity of cycle length
modularity problems in graphs. In Latin American Symposium on Theoretical Informatics,
pages 509–518. Springer, 2004.

20 Xinrui Jia, Ola Svensson, and Weiqiang Yuan. The exact bipartite matching polytope has
exponential extension complexity. In Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1635–1654. SIAM, 2023.

21 AV Karzanov. Maximum matching of given weight in complete and complete bipartite graphs.
Cybernetics, 23(1):8–13, 1987.

22 Steven Kelk and Georgios Stamoulis. Integrality gaps for colorful matchings. Discrete
Optimization, 32:73–92, 2019.

23 László Lovász. Matching structure and the matching lattice. Journal of Combinatorial Theory,
Series B, 43:187–222, 1987.

ISAAC 2023

https://arxiv.org/abs/2203.13899
https://doi.org/10.48550/arXiv.2207.09797
https://doi.org/10.48550/arXiv.2207.09797
https://arxiv.org/abs/2210.15014
https://arxiv.org/abs/2010.11456
https://arxiv.org/abs/1002.2147

28:18 Exact Matching: Correct Parity and FPT Parameterized by Independence Number

24 Monaldo Mastrolilli and Georgios Stamoulis. Constrained matching problems in bipartite
graphs. In International Symposium on Combinatorial Optimization, pages 344–355. Springer,
2012.

25 Monaldo Mastrolilli and Georgios Stamoulis. Bi-criteria and approximation algorithms for
restricted matchings. Theoretical Computer Science, 540:115–132, 2014.

26 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987.

27 Martin Nägele, Benny Sudakov, and Rico Zenklusen. Submodular minimization under congru-
ency constraints. Combinatorica, 39(6):1351–1386, 2019.

28 Christos H Papadimitriou and Mihalis Yannakakis. The complexity of restricted spanning
tree problems. Journal of the ACM (JACM), 29(2):285–309, 1982.

29 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

30 Georgios Stamoulis. Approximation algorithms for bounded color matchings via convex
decompositions. In International Symposium on Mathematical Foundations of Computer
Science, pages 625–636. Springer, 2014.

31 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-NC.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
696–707. Ieee, 2017.

32 Moshe Y Vardi and Zhiwei Zhang. Quantum-inspired perfect matching under vertex-color
constraints. arXiv preprint, 2022. arXiv:2209.13063.

33 Tongnyoul Yi, Katta G Murty, and Cosimo Spera. Matchings in colored bipartite networks.
Discrete Applied Mathematics, 121(1-3):261–277, 2002.

34 Raphael Yuster. Almost exact matchings. Algorithmica, 63(1):39–50, 2012.
35 Richard Zippel. Probabilistic algorithms for sparse polynomials. In International Symposium

on Symbolic and Algebraic Computation (EUROSAM 1979), pages 216–226. Springer, 1979.

https://arxiv.org/abs/2209.13063

Approximation Guarantees for Shortest
Superstrings: Simpler and Better
Matthias Englert #

University of Warwick, Coventry, UK

Nicolaos Matsakis #

Charles University, Prague, Czech Republic

Pavel Veselý #

Charles University, Prague, Czech Republic

Abstract
The Shortest Superstring problem is an NP-hard problem, in which given as input a set of strings,
we are looking for a string of minimum length that contains all input strings as substrings. The
Greedy Conjecture (Tarhio and Ukkonen, 1988) states that the GREEDY algorithm, which repeatedly
merges the two strings of maximum overlap, is 2-approximate. We have recently shown (STOC 2022)
that the approximation guarantee of GREEDY is at most 13+

√
57

6 ≈ 3.425. Before that, the best
established upper bound for this was 3.5 by Kaplan and Shafrir (IPL 2005), which improved upon
the upper bound of 4 by Blum et al. (STOC 1991). To derive our previous result, we established
two incomparable upper bounds on the overlap sum of all cycle-closing edges in an optimal cycle
cover and utilized lemmas of Blum et al.

We improve the more involved one of the two bounds and, at the same time, make its proof
more straightforward. This results in an improved approximation guarantee of

√
67+2

3 ≈ 3.396
for GREEDY. Additionally, our result implies an algorithm for the Shortest Superstring problem
having an approximation guarantee of

√
67+14

9 ≈ 2.466, improving slightly upon the previously best
guarantee of

√
57+37

18 ≈ 2.475 (STOC 2022).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Shortest Superstring problem, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.29

Funding Nicolaos Matsakis: Supported by GA ČR project 22-22997S.
Pavel Veselý: Partially supported by GA ČR project 22-22997S and by Center for Foundations of
Modern Computer Science (Charles University project UNCE/SCI/004).

1 Introduction

The shortest superstring problem naturally models a scenario when we have a set of overlap-
ping strings which we need to represent in a compressed form. However, unlike in typical
lossless data compression such as Lempel-Ziv schemes, we would like the input strings to
be human-readable in the result. That is, the compressed representation of input strings
should be a string over the same alphabet that contains all of the strings as substrings. This
viewpoint of superstrings as compressed representations has been the crux of their very recent
application for representing k-mers, which are k-long substrings of a genomic sequence [19].
These k-mers are typically highly overlapping and in such cases, the shortest superstring of
k-mers has length close to the theoretical minimum of the number of distinct k-mers.

Formally, we define the Shortest Superstring problem (SSP) as follows: For a given set of
strings S (over a fixed alphabet), compute a minimum-length common superstring for the
input strings, i.e., a string that contains any s ∈ S as a substring. SSP is a classical and
well-studied problem mentioned in several algorithmic textbooks, e.g., [25, 18, 9, 5]. SSP

© Matthias Englert, Nicolaos Matsakis, and Pavel Veselý;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.englert@warwick.ac.uk
https://orcid.org/0000-0002-8859-7731
mailto:nickmatsakis@gmail.com
https://orcid.org/0000-0002-0386-749X
mailto:vesely@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-1169-7934
https://doi.org/10.4230/LIPIcs.ISAAC.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Approximation Guarantees for Shortest Superstrings: Simpler and Better

is APX-hard (i.e., it is NP-hard to obtain a (1 + ε)-approximation for some ε > 0) and
remains so even when restricted to binary alphabets or input strings having the same length
r ≥ 3 [24].

Therefore, assuming P ̸= NP, the best we can hope for are constant-guarantee approxima-
tion algorithms. However, determining the best possible constant guarantee is a long-standing
open problem, studied for more than three decades. First, Blum et al. [3] designed an al-
gorithm for which they proved an upper bound of 3 on its approximation ratio. Several papers
subsequently obtained better approximations using various algorithms [22, 6, 13, 1, 2, 4, 20, 16]
and the currently best approximation guarantee is 37+

√
57

18 ≈ 2.475 [7]. In contrast, the
hardness result only rules out a 1.003-approximation [12].

Perhaps the most well-known approximation algorithm for SSP is GREEDY which it-
eratively merges two strings of maximum overlap until only one string remains (if there
are more pairs of strings with maximum overlap, we choose arbitrarily). GREEDY is an
appealing choice to implement in practice due to its simplicity and close-to-optimal results
in experiments [8, 14, 19]. However, the worst-case behavior of GREEDY is far from un-
derstood. Blum et al. [3] showed that GREEDY is 4-approximate, an upper bound which
was improved to 3.5 by Kaplan and Shafrir [11] and recently, in our previous work, to
13+

√
57

6 ≈ 3.425 [7]. It is easy to see that GREEDY is at least 2-approximate by considering
the input {c(ab)k, (ba)k, (ab)kc} for k → ∞ [21]. The Greedy Conjecture states that this
lower bound is tight [21]. Despite an extensive effort to prove or disprove this, the three
works [3, 11, 7] comprise the only improvements to the approximation guarantee of GREEDY
since the conjecture was first made.

Our results. We make progress on determining the optimal approximation guarantees of
GREEDY and of another, more involved algorithm; the latter one improves the best proven
approximation guarantee for SSP. In particular, we show the following theorems.

▶ Theorem 1. The approximation guarantee of GREEDY is at most
√

67+2
3 ≈ 3.396.

▶ Theorem 2. An algorithm from the literature that combines GREEDY and a Max-ATSP
approximation algorithm (outlined in Appendix A.2) computes a superstring of length at most√

67+14
9 ≈ 2.466 times the optimal.

Furthermore, our result implies improved approximation guarantees for two algorithms
which are variants of GREEDY established in [3], namely TGREEDY and MGREEDY (outlined
in Appendix A.2).

As in previous work, all our improved approximation bounds follow from a better inequality
that relates certain overlaps between strings to the cost of the optimal solution.

2 The General Setting and Our Technical Contribution

Preliminaries. The set of input strings is denoted by S = {s1, ..., s|S|}. Without loss of
generality, it is assumed that no string of S is a substring of another string of S. The length
of a string s is the number of its characters and we denote it by |s| ∈ Z+. The concatenation
of two strings s and t is denoted by st. A substring of s starting at character i and ending at
character j ≥ i of s is denoted by s[i, j].

By ov(s, t) we denote the maximum overlap to merge a string s to the left of a string
t ≠ s, i.e., the longest suffix of s that is a prefix of t. By ov(s, s) we denote the maximum
self-overlap of string s with itself, which is smaller than |s|. By pref(s, t) we denote the
prefix of s that remains after removing the overlap with t; thus, s = pref(s, t)ov(s, t) and
|pref(s, t)| = |s| − |ov(s, t)|.

M. Englert, N. Matsakis, and P. Veselý 29:3

2.1 Overlap Graph, Cycle-Closing Edges, and Overlap Inequalities

The overlap graph Gov plays a central role in SSP approximation, including the analysis of
GREEDY. It is a complete directed graph with self-loops in which vertices correspond to the
input strings, and the weight of each edge (s, t) equals the overlap length |ov(s, t)|.

Note that the optimal solution OPT for a fixed input corresponds to an optimal (maximum
overlap) Hamiltonian path in Gov; however, finding such a path is in general a hard problem.
On the other hand, finding an optimal cycle cover CC in Gov can be done efficiently. In
particular, in a variant of GREEDY, called MGREEDY, such a cycle cover is produced as a
by-product. Observe that the total overlap of edges in CC is only larger than that of the
optimal Hamiltonian path OPT; indeed, by adding the edge between the endpoints of OPT,
we obtain a Hamiltonian cycle, which is a particular cycle cover (not necessarily optimal).

The GREEDY algorithm can be stated as a heuristic for a Hamiltonian path in Gov: Sort
the edges of Gov by their overlap lengths non-increasingly, then go over the sorted list and
add the i-th edge ei to the path unless:

(i) there would be a vertex of indegree or outdegree more than one after adding ei (that is,
edge ei shares a head node or a tail node with an edge picked in a previous step), or

(ii) ei closes a cycle.

The crucial difference between GREEDY for computing an approximate superstring and
MGREEDY for the optimal cycle cover CC is the condition (ii), not present in the latter, i.e.,
MGREEDY is defined just by condition (i). Call an edge of CC cycle-closing if it is the last
edge of its cycle added by MGREEDY to CC (i.e., it has the smallest overlap on the cycle,
breaking ties arbitrarily).

To obtain a bound on the approximation guarantee of GREEDY, we intuitively need a
suitable upper bound on the total overlap of cycle-closing edges, denoted o (strictly speaking,
when analyzing GREEDY we consider only the optimal cycle cover of a certain subset of
nodes in Gov, but this does not make a difference for our technical contribution; we explain
these details in Appendix A.1). Furthermore, the overlap bound should be in terms of the
length (and not overlap) of OPT.

This intuition was formalized in [3], who proved that o ≤ 3 · n, where n is the length
of the optimal solution OPT. Moreover, they show that such a bound is sufficient for a
constant upper bound on the approximation ratio of GREEDY. Later works improved the
inequality to o ≤ 2.5 · n [11] and to o < 2.425 · n [7]. Our technical contribution is to show
that o < 2.396 · n.

In fact, these overlap inequalities are proven and applied in a stronger form of o < n+β ·w,
where w is a lower bound on n. To define w, we associate each edge (s, t) of the overlap
graph Gov also with a length which equals the prefix length |pref(s, t)| = |s| − |ov(s, t)|. Then
w is the total length of all edges in the optimal cycle cover CC.

2.2 Main technical result

We now state our main technical contribution.

▶ Theorem 3. Let S be any input set of strings, and consider an optimal superstring of
length n and an optimal cycle cover CC of length w, computed using MGREEDY. Let o be the
sum of overlaps of all cycle-closing edges of CC. Then it holds that

o ≤ n + β · w for β = (
√

67 − 4)/3 ≈ 1.396

ISAAC 2023

29:4 Approximation Guarantees for Shortest Superstrings: Simpler and Better

The proofs of Theorems 1 and 2 using Theorem 3 are the same as in previous work, but we
provide an outline for completeness. In Appendix A.1 we describe how Theorem 3 implies the
improved upper bound on the approximation guarantees of GREEDY, using another inequality
from Blum et al. [3]. Then, in Appendix A.2, we show how to derive better approximation
guarantees for a family of SSP algorithms that are based on a Max-ATSP approximation
algorithm; the argument is the same as in previous work (e.g., see [4, 15, 16, 7]).

2.3 Overview of the proof of Theorem 3
We build on our previous work [7], where one of the conceptual contributions was in classifying
the cycles of CC into three main types. To define them, for a cycle c of CC we let

o(c) = the overlap of the cycle-closing edge of c, i.e., the smallest overlap on cycle c, and
w(c) = the total length of edges on c, i.e., the sum of prefixes of the edges of c.

The classification is done according to the o(c)/w(c) ratio.

▶ Definition 4. For parameter β defined in Theorem 3, a cycle c of CC is
extra large, if o(c) ≤ β · w(c),
large, if β · w(c) < o(c) ≤ 2w(c), and
small, if 2w(c) < o(c).

The intuition behind the names is that short cycles contain highly periodic strings (e.g.,
abcabcabca), whereas strings in large cycles are not so periodic (e.g., abcdeabcd)

In order to prove that o ≤ n + β · w for β = (
√

67 − 4)/3, we will assume, without loss
of generality, that CC contains no extra large cycle. This follows by the argument in [7,
Section 5.1], though for a different overlap to length ratio threshold between large and extra
large cycles (which was suitably chosen to match the upper bound o ≤ n + 1.425w). For
completeness, we repeat the proof in Appendix B.

Our analysis in [7] proceeds by showing two incomparable bounds: one better if large
cycles have much larger total length than small cycles, and another one for the other case.
Namely, letting ws be the sum of lengths of all small cycles and wℓ be the sum of lengths of
large cycles, the first upper bound is

o ≤ n + ws + 1.5wℓ (1)

and the second upper bound is

o ≤ n + wℓ + 31 + 3 ·
√

57
14 ws ≈ n + wℓ + 3.832ws . (2)

Using the better of (1) and (2) together with w = ws + wℓ, it follows that o ≤ n + 1.425w

(recall that the extra large cycles are not taken into account here).
Our improvement and simplification comes from a better version of the second upper

bound. Specifically, we show

o ≤ n + wℓ + (γ − 1) · ws ≈ n + wℓ + 2.884ws , (3)

where γ = (
√

67 + 19)/7 ≈ 3.884. In [7], the bound was shown by first modifying the
input in such a way that the overlap graph Gov has the property that all short cycles in the
optimal cycle cover only consist of a single edge that is a self-loop. The analysis is then
done utilizing this somewhat simpler cycle cover. However, the modification of the input
introduces an additional loss that has to be accounted for in the bound. Our analysis is more
direct and works with the original optimal cycle cover, which eliminates the need for the

M. Englert, N. Matsakis, and P. Veselý 29:5

input modification and therefore the additional loss. This brings new technical complications
because certain properties no longer hold in these more general cycle covers. Nevertheless,
we are able to provide a slightly simpler and more straightforward analysis.

Choice of parameters. To combine the two incomparable bounds, o ≤ n + ws + 1.5 · wℓ

and o ≤ n + (γ − 1) · ws + wℓ, we set λ = 1
2γ−3 . As long as γ ≥ 2, this means λ ∈ [0, 1]. We

then multiply the first bound by (1 − λ) and the second bound by λ and add them together.
Using ws + wℓ = w we get o ≤ n + (3

2 − 1
4γ−6) · w. In Theorem 3, we want to show that

o ≤ n + β · w and so if

3
2 − 1

4γ − 6 ≤ β (4)

we are done. We will also need

3 · (β − 2
γ − 2) ≥ 1 (for Lemma 6) (5)

or equivalently

γ ≥ 2 + 6
3β − 1 (for Lemma 12(b)). (6)

The maximum of these two lower bounds (4) and (5) on β is minimized for γ = (
√

67+19)/7
and at this point both bounds are equal to (

√
67 − 4)/3, which is our choice for β. Apart

from this, we will use a number of further inequalities that hold for this choice of parameters
(but are not tight). Namely,

5
2 + 1

2(β − 1) ≤ γ (for Lemma 12(c)) , (7)

β ≥ γ

γ − 1 (for Lemma 12(d)) , and (8)

γ ≥ 2 (for Lemma 12(d)) . (9)

3 Analysis

In this section we show our improved second bound o ≤ n + wℓ + (γ − 1) · ws, following a
similar general strategy as in [7].

3.1 Proof Outline
Consider a directed Hamiltonian cycle CC0 of maximum total overlap in Gov. This cycle is
in particular also a (not necessarily maximum) cycle cover. Therefore, the total overlap of
CC0 must be bounded from above by the total overlap of CC. Our goal is to show something
stronger than this: that there is a gap between the total overlap of CC0 and the total overlap
of CC that depends in a specific way on the properties of the cycles in CC. Specifically, let L
and S denote the sets of large and small cycles in CC, respectively, and let |CCi| denote the
total overlap of a cycle cover CCi. Then we want to show that the total overlap |CC| of CC
is by at least∑

c∈S

(
o(c) − γ · w(c)

)
+
∑
c∈L

(o(c) − 2 · w(c)) (10)

ISAAC 2023

29:6 Approximation Guarantees for Shortest Superstrings: Simpler and Better

larger than the total overlap |CC0| of CC0. Showing this is sufficient to establish o ≤
n + wℓ + (γ − 1) · ws because

n ≥
|S|∑
ℓ=1

|sℓ| − |CC0| ≥
|S|∑
ℓ=1

|sℓ| − |CC| +
∑
c∈S

(o(c) − γ · w(c)) +
∑
c∈L

(o(c) − 2 · w(c))

≥
∑
c∈S

w(c) +
∑
c∈L

w(c) +
∑
c∈S

(o(c) − γ · w(c)) +
∑
c∈L

(o(c) − 2 · w(c))

=
∑
c∈S

(o(c) − (γ − 1) · w(c)) +
∑
c∈L

(o(c) − w(c))

= o − (γ − 1) ·
∑
c∈S

w(c) −
∑
c∈L

w(c) = o − (γ − 1) · ws − wℓ .

Related cycles. Before proceeding to describe how we show (10), we borrow the following
definition of related cycles from [7] that is useful to improve our final bounds slightly. We
note that a simpler version of our proof could still be carried out without this additional
concept, but at the cost of a slightly weaker bound.

▶ Definition 5. We define a relation R between cycles as follows. A small cycle c of CC is
related to a large cycle c′ of CC if w(c) ≤ (β/2 − 1/6) · w(c′) and there exists an edge e in Gov
that has one endpoint in cycle c, the other endpoint in cycle c′ and satisfies |ov(e)| ≥ β · w(c′).
In this case, we write (c, c′) ∈ R.

In [7], the following lemma is shown. We use different values for β and γ, but the proof
of the lemma only requires that 3 · (β − 2/(γ − 2)) ≥ 1 and this is still satisfied for our new
choice of β = (

√
67 − 4)/3 and γ = (5 − 3β)/(3 − 2β).

▶ Lemma 6 (Lemma 7.3 in [7]). For every large cycle c′ of CC, at most two different small
cycles of CC are related to c′.

Transforming cycle cover CC0 into CC in small steps. We analyze the difference of the
total overlap between CC0 and CC in small steps, gradually changing the Hamiltonian cycle
CC0 into a sequence of cycle covers CC0, CC1, CC2, . . . until we obtain CC. We modify a cycle
cover CCi by removing two edges f = (v′, v) and f ′ = (u, u′) from CCi \ CC and replace
them with the new edges e = (u, v) and e′ = (v′, u′). The resulting set of edges forms a (not
necessarily optimal) cycle cover again. Furthermore, if the edges are chosen such that e ∈ CC
or e′ ∈ CC (or both), then the resulting cycle cover is closer to the cycle cover CC in the sense
that the cardinality of the symmetric difference of the corresponding edge sets decreases.

For a cycle cover CCi, let M(CCi) be the set of small cycles c in CC for which CCi

contains no edge with one endpoint in c and the other endpoint being a string not in c. We
define

ϕ(i) =
∑

c∈M(CCi)

(
min{|ov(ê)| | ê ∈ CCi connects two strings of c} − γ · w(c)

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
.

The idea is to perform such edge swaps to obtain a sequence CC0, CC1, CC2, . . . , CCk = CC
of cycle covers, such that each cycle cover CCi is closer to CC than the previous one CCi−1
and such that |CCi| ≥ |CC0| + ϕ(i). Then this implies (10) since

M. Englert, N. Matsakis, and P. Veselý 29:7

|CC| − |CC0| = |CCk| − |CC0| ≥ ϕ(k)

=
∑

c∈M(CC)

(
min{|ov(ê)| | ê ∈ CC connects two strings of c} − γ · w(c)

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
=
∑
c∈S

(
min{|ov(ê)| | ê ∈ CC connects two strings of c} − γ · w(c)

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
=
∑
c∈S

(
o(c) − γ · w(c) −

∑
c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
=
∑
c∈S

(o(c) − γ · w(c)) −
∑
c∈S

∑
c′:(c,c′)∈R

(
w(c′) − o(c′)

2

)
≥
∑
c∈S

(o(c) − γ · w(c)) −
∑
c∈L

(2 · w(c) − o(c)) ,

where the last step follows from Lemma 6 and the fact that for large cycles c′, by definition,
2w(c′) ≥ o(c′).

We use induction to show that it is possible to construct the desired sequence of cycle
covers that satisfies |CCi| ≥ |CC0|+ϕ(i). The base case is i = 0 and we have ϕ(i) = 0 because
M(CC0) = ∅. (Strictly speaking, it may happen that M(CC0) ̸= ∅; however, in such a case,
the optimal Hamiltonian cycle CC0 is a small cycle of CC, thus CC0 = CC. Moreover, in such
a case, (1) implies o < n + w.)

In the following, we assume that we have a cycle cover CCi with |CCi| ≥ |CC0| + ϕ(i)
and we show how to construct CCi+1 such that |CCi+1| ≥ |CC0| + ϕ(i + 1) and such that
the symmetric difference between CCi+1 and CC is smaller than the symmetric difference
between CCi and CC. Specifically, we will identify a swap of four edges as described above to
obtain CCi+1 from CCi such that:

one of the edges that are swapped in belongs to CC, which implies that the symmetric
difference between CCi+1 and CC will decrease, and
|CCi+1| − |CCi| ≥ ϕ(i + 1) − ϕ(i).

This proves the claim due to the induction hypothesis.

3.2 Important Lemmas
We begin with the following bound on the overlap between two strings from different cycles
of CC.

▶ Lemma 7 (Lemma 9 in [3]). Let c and c′ ≠ c be two cycles in CC. It holds that |ov(s, s′)| <

w(c) + w(c′) for any two strings s ∈ c and s′ ∈ c′.

When changing cycle cover CCi into CCi+1, we identify an edge e = (u, v) ∈ CC \ CCi

that we add into CCi+1. This triggers removal of edges f = (v′, v) and f ′ = (u, u′) from
CCi and addition of one more edge e′ = (v′, u′) that does not belong to CCi but may or
may not be in CC; see Figure 1. In the following, we provide several lower bounds on
|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)|, which is the total overlap length difference between CCi

and CCi+1. The first lemma is the well-known Monge Condition.

ISAAC 2023

29:8 Approximation Guarantees for Shortest Superstrings: Simpler and Better

u v

u′ v′

e ∈ CC \ CCi

f ′ ∈ CCi \ CC f ∈ CCi \ CC

e′ /∈ CCi

Figure 1 Illustration of the notation used in lemmas in Section 3.2.

▶ Lemma 8 (Lemma 7 in [3]). Let e = (u, v), f = (v′, v), f ′ = (u, u′), e′ = (v′, u′) be edges
in Gov, such that max{|ov(e)|, ov(e′)|} ≥ max{|ov(f)|, |ov(f ′)|}. Then |ov(e)| + |ov(e′)| −
|ov(f)| − |ov(f ′)| ≥ 0.

The following lemma is shown in [7, Lemma 7.5] for the special case of inputs where each
small cycle of CC consists of one string. Below, we generalize it for any input and cycle.

▶ Lemma 9. Let e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′) be edges in Gov such
that e is an edge in cycle c in CC. Then,

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c) .

Before proving Lemma 9, we recall a few definitions from the literature. Consider a cycle
c of CC having k nodes s1, s2, . . . , sk. Assuming that the cycle-closing edge of c is (sk, s1),
we define s(c) as the string pref(s1, s2)pref(s2, s3) . . . pref(sk, s1).

A semi-infinite string is a string obtained by concatenating an infinite number of finite
strings. A semi-infinite string s is periodic if s = ts for a non-empty string t, that is, s = t∞.

A string t is a factor of a string s if s = tiy for an integer i > 0, where y is a (possibly
empty) prefix y of t. By factor(s) of s, we denote the shortest factor of s and we define
period(s) = |factor(s)|. Finally, we say that a string s has a periodicity of length q for q ≤ |s|
if s is a prefix of the semi-infinite string x∞ for some string x of length q.

Next, we need a basic observation.

▶ Observation 10. Let s and t be two strings that are substrings of some string z. Then,
|ov(s, t)| > min{|s|, |t|} − period(z).

Proof. We can assume without loss of generality (w.l.o.g.) that |s| ≤ |t|. This is because,
otherwise, let sR, tR, and zR be the reverse of the strings s, t, and z, respectively. We
observe that ov(tR, sR) = ov(s, t) and period(zR) = period(z). Clearly also |sR| = |s|,
|tR| = |t|. Therefore, the inequality in the statement of the observation is equivalent to
|ov(tR, sR)| > min{|sR|, |tR|} − period(zR). Hence, if |s| > |t| then |tR| ≤ |sR| and we can
apply the arguments below to the strings tR, sR, and zR instead of s, t, and z (in this order).

Since s and t are substrings of z we can write them as s = z[i, i + |s| − 1] and t =
z[j, j+|t|−1] for some i and j. Because of the period of z, we can assume that i ∈ [1, period(z)]
and j ∈ [1, period(z)].

If j ≥ i, we have ov(s, t) = z[j, i+ |s|−1] and hence |ov(s, t)| = i− j + |s| > |s|−period(z).
If j < i and j + period(z) > |z|, then j + period(z) > |z| ≥ i + |s| − 1 and hence,
|ov(s, t)| ≥ 0 > j − i ≥ |s| − period(z).
If j < i and j + period(z) ≤ |z|, we observe that t = z[j, j + |t| − 1] also has z[j +
period(z), min{j + |t|−1+period(z), |z|}] as a prefix (indeed, if j + |t|−1+period(z) ≤ |z|
this is not just a prefix of t, but exactly t). Since i ≤ j + period(z) and |s| ≤ |t|, we
have ov(s, t) = z[j + period(z), i + |s| − 1] and hence, |ov(s, t)| = i − j + |s| − period(z) >

|s| − period(z). ◀

M. Englert, N. Matsakis, and P. Veselý 29:9

Proof of Lemma 9. Since ov(f) and ov(f ′) are substrings of s(c)∞, we use Observation 10
to get

|ov(e′)| ≥ |ov(ov(f), ov(f ′))|
> min{|ov(f)|, |ov(f ′)|} − period(s(c)∞) ≥ min{|ov(f)|, |ov(f ′)|} − w(c) .

It follows that

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)|
> |ov(e)| + min{|ov(f)|, |ov(f ′)|} − w(c) − |ov(f)| − |ov(f ′)|
= |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c) . ◀

The following lemma is, also, due to [7]. Here, we state it in a slightly different way, but
the proof is essentially the same and included in Appendix C for completeness.

▶ Lemma 11. Consider the edges e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′)
between (not necessarily different) nodes u, u′, v, v′ in Gov. Suppose u′ and v′ are strings in
the same cycle c′ of CC and that whichever of f or f ′ has larger overlap connects a string
from cycle c and a string from cycle c′ ̸= c (if |ov(f)| = |ov(f ′)| then it is sufficient if one of
them satisfies this). If |ov(e)| ≥ w(c) + w(c′), then

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| > |ov(e′)| − w(c′) .

The following lemma draws conclusions from the previous ones in a way that will be
useful later for our analysis.

▶ Lemma 12. Consider the edges e = (u, v), f = (v′, v), f ′ = (u, u′), and e′ = (v′, u′)
between (not necessarily different) nodes u, u′, v, v′ in Gov. Suppose e is an edge in a cycle c

of CC. Suppose further that |ov(e)| ≥ max{|ov(f)|, |ov(f ′)|} and the edge of f and f ′ that has
larger overlap connects a string of cycle c and a string of cycle c′ ≠ c (if |ov(f)| = |ov(f ′)|,
then either one of f and f ′ may satisfy this condition). All of the following statements hold:
(a) |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ 0.
(b) If w(c) ≥ (β/2 − 1/6) · w(c′), then |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − γw(c).
(c) If w(c) ≥ (β − 1) · w(c′), then |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − γw(c) −

w(c′)/2 + w(c)/2.
(d) Furthermore, if v′ and u′ are strings in the same cycle in CC, then also |ov(e)|+ |ov(e′)|−

|ov(f)| − |ov(f ′)| ≥ max{|ov(e′)| − γw(c′), |ov(e)| − γw(c) + |ov(e′)| − γw(c′)}.

Proof. We show the relevant lower bounds on |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| separately.
(a) Due to Lemma 8, we have |ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ 0.
(b) If w(c) ≥ (β/2 − 1/6) · w(c′), due to Lemma 9, we have

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c)
≥ |ov(e)| − 2w(c) − w(c′) ≥ |ov(e)| − γw(c) ,

where the second step uses Lemma 7 and the last inequality follows from 2+6/(3β−1) = γ.
(c) If w(c) ≥ (β − 1) · w(c′), we have due to Lemma 9 that

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| − max{|ov(f)|, |ov(f ′)|} − w(c)
≥ |ov(e)| − 2w(c) − w(c′)

= |ov(e)| − 5
2w(c) − w(c′)/2 − w(c′)/2 + w(c)/2

≥ |ov(e)| − γw(c) − w(c′)/2 + w(c)/2 ,

where the second step uses Lemma 7 and the last inequality follows from 5/2 + 1/(2(β −
1)) ≤ γ.

ISAAC 2023

29:10 Approximation Guarantees for Shortest Superstrings: Simpler and Better

vh wh

wx vt

vx

wt

m
∈

CC
i
\

CC

eh ∈ CC

et ∈ CC

f ′
2 ∈ CCi \ CC f ′

1 ∈ CCi \ CC

e′
2

e′
1

Figure 2 Illustration of the notation. Note that we also allow nodes to be equal to one another
here, e.g., it could be that wt = wx, in which case et = e′

2, vh = vx, eh = e′
1, and f ′

1 = f ′
2.

(d) Suppose v′ and u′ are strings in the same cycle in CC. If |ov(e)| ≥ w(c)+w(c′), we apply
Lemma 11 to get |ov(e)|+|ov(e′)|−|ov(f)|−|ov(f ′)| ≥ |ov(e′)|−w(c′) ≥ |ov(e′)|−γw(c′).
Otherwise, we have |ov(e)| < w(c) + w(c′) and hence,

|ov(f)| ≤ w(c) + w(c′) = w(c′) + γw(c) − (γ − 1)w(c)
≤ w(c′) + (γ − 1)o(c) − (γ − 1)w(c)
≤ w(c′) + (γ − 1)|ov(e)| − (γ − 1)w(c) < γw(c′) ,

since it holds β ≥ γ
γ−1 and o(c) > βw(c) for any large or small cycle c (recall that we

assume that CC contains no extra large cycle). We get |ov(e)| + |ov(e′)| − |ov(f)| −
|ov(f ′)| ≥ |ov(e′)| − |ov(f)| ≥ |ov(e′)| − γw(c′).
Suppose v′ and u′ are strings in the same cycle in CC. Due to Lemma 7,

|ov(e)| + |ov(e′)| − |ov(f)| − |ov(f ′)| ≥ |ov(e)| + |ov(e′)| − 2 max{|ov(f)|, |ov(f ′)|}
≥ |ov(e)| − 2w(c) + |ov(e′)| − 2w(c′)
≥ |ov(e)| − γw(c) + |ov(e′)| − γw(c′) . ◀

3.3 The Induction Step
We specify how an edge swap is made at a fixed step i in which we obtain cycle cover CCi+1
from CCi. We start by identifying the largest-overlap edge m = (vt, wh) in CCi \CC, breaking
ties arbitrarily. Six further edges will be important. First, let eh = (vh, wh) and et = (vt, wt)
be the edges in CC that share heads and tails with m, respectively. Further, let f ′

1 = (vx, wt)
and f ′

2 = (vh, wx) be the two edges in CCi \ CC that share heads with et and tails with eh,
respectively. Lastly, define e′

1 = (vx, wh) and e′
2 = (vt, wx). See Figure 2 for a summary of

this notation. It is important to note that the six strings vh, wh, vx, wx, vt, and wt are not
necessarily different.

With this, we can define two potential edge swaps. In the first one, we add et and e′
1 to

the cycle cover and instead remove m and f ′
1. In the second one, we add eh and e′

2 to the cycle
over and instead remove m and f ′

2. Which one of these two swaps we will perform depends
on a few properties of the edges involved. First of all, we assume that |ov(eh)| ≥ |ov(et)|.
Otherwise, all the remaining arguments follow symmetrically by considering et instead of eh

and vice versa. Furthermore, we have that

|ov(eh)| ≥ |ov(m)| , (11)

M. Englert, N. Matsakis, and P. Veselý 29:11

since otherwise |ov(m)| > |ov(eh)| ≥ |ov(et)| and m would be added to CC by the greedy
algorithm for the optimal cycle cover before eh and et, contradicting the choice of m as an
edge of largest overlap in CCi \ CC.

We observe that there are two reasons why ϕ(i + 1) may be larger than ϕ(i).
The first potential reason is a difference between the sets M(CCi+1) and M(CCi). We
know that M(CCi+1) ⊇ M(CCi), because if a cycle c is in M(CCi), then there is no edge
in CCi connecting a string of c to a string of another cycle. That means that the edges f

and f ′ that we remove from CCi in the process of constructing CCi+1 either have both
their endpoints in c or both their endpoints not in c. If both endpoints of both edges f

and f ′ are part of c, then also the two edges that are swapped in to obtain CCi+1 from
CCi have their endpoints entirely in c. Therefore, c would still be in M(CCi+1) after the
swap. If both endpoints of both edges f and f ′ are outside of c, then also the two edges
that are swapped in to obtain CCi+1 from CCi have their endpoints entirely outside of
c. Again, c would still be in M(CCi+1) after the swap in this case. Finally, if one of f

and f ′ has both endpoints in c and the other one has both endpoints outside of c, then
the two edges that are swapped in both have one endpoint in c and the other endpoint
outside of c. However, this is not possible because one of the edges we swap in is eh or et

and must therefore be part of the optimal cycle cover CC.
We can further observe that M(CCi+1) \ M(CCi) must either be equal to ∅, {c}, {c′}, or
{c, c′}, where c and c′ are the cycles that eh and et belong to in CC, respectively. (It is
possible that c = c′.) To see this, observe that one edge being swapped out to obtain
CCi+1 from CCi is m and that m has one endpoint (wh) in c and the other endpoint (vt)
in c′. However, for each cycle of CC, it is clear from a parity argument that the number
of edges of CCi connecting the cycle to other cycles must be even. Hence, for a cycle c′′ to
be in M(CCi+1) \ M(CCi), each of the edges being swapped out must have a string from
cycle c′′ as an endpoint. This can only be true for c or c′ and not for any other cycle.
Overall, if this reason for the difference between ϕ(i + 1) and ϕ(i) applies, we have that

ϕ(i + 1) − ϕ(i) =
∑

c∈M(CCi+1)\M(CCi)

(
min{|ov(ê)| | ê ∈ CCi connects two strings of c} − γ · w(c)

−
∑

c′:(c,c′)∈R

(
w(c′) − o(c′)

2

))
.

The second potential reason why ϕ(i + 1) may be larger than ϕ(i) is that for a cycle
c ∈ M(CCi) the term min{|ov(ê)| | ê ∈ CCi connects two strings of c} could change.
However, this can only happen if M(CCi+1) \ M(CCi) = ∅ and, furthermore, it can
only happen for a cycle c when both edges f and f ′ that are swapped out have both
their endpoints in cycle c. In this case, all four strings involved in the swap (either
vh, wx, wh, and vt or vx, wt, wh, and vt), must be part of the same cycle in CC. If
the value min{|ov(ê)| | ê ∈ CCi+1 connects two strings of c} is larger than the value
min{|ov(ê)| | ê ∈ CCi connects two strings of c}, then an edge in arg min{|ov(ê)| | ê ∈
CCi connects two strings of c} must have been swapped out. This means, that if f

and f ′ are the edges being swapped out to obtain CCi+1 from CCi, then min{|ov(ê)| |
ê ∈ CCi connects two strings of c} = min{|ov(f)|, |ov(f ′)|}. If e and e′ are the two edges
being swapped in, the new value of min{|ov(ê)| | ê ∈ CCi+1 connects two strings of c} can
be at most min{|ov(e)|, |ov(e′)|} because e and e′ are in CCi+1 and satisfy the condition
that they connect two strings of c. So overall, in this situation,

ϕ(i + 1) − ϕ(i) ≤ min{|ov(e)|, |ov(e′)|} − min{|ov(f)|, |ov(f ′)|} .

ISAAC 2023

29:12 Approximation Guarantees for Shortest Superstrings: Simpler and Better

In summary, we note that only one of the two reasons can apply for any fixed step i. If there
is an increase of ϕ(i + 1) over ϕ(i) due to the first reason (a change in the set M(CCi+1)
compared to M(CCi)), then there is no increase due to the second reason and vice versa.

We are now ready to complete the proof by showing how to select one of the two identified
swap operations such that the total overlap increases by at least ϕ(i + 1) − ϕ(i).

If m connects two strings of the same cycle in CC, then observe that M(CCi+1) = M(CCi).
We swap in eh and e′

2 and swap out f ′
2 and m. Since |ov(eh)| ≥ |ov(m)| by (11), we can

apply Lemma 8 and establish that the total overlap does not decrease when this swap is
performed.
Furthermore, if vh, wh, vt, and wx all belong to the same cycle of CC, then
the total overlap increases by |ov(eh)| + |ov(e′

2)| − |ov(f ′
2)| − |ov(m)| ≥ |ov(e′

2)| −
|ov(f ′

2)| ≥ min{|ov(eh)|, |ov(e′
2)|} − min{|ov(f ′

2)|, |ov(m)|}, where the second inequality
uses |ov(f ′

2)| ≤ |ov(m)| by the definition of m. This is the only case in which

min{|ov(e)| | e is edge of CCi connecting two strings of cycle c}

can change for a cycle in c ∈ M(CCi) and the increase is at least min{|ov(eh)|, |ov(e′
2)|} −

min{|ov(f ′
2)|, |ov(m)|} ≥ ϕ(i + 1) − ϕ(i), as required.

If m connects strings of two different cycles in CC and |ov(et)| ≥ |ov(m)|. Let c be the
cycle of eh and c′ be the cycle of et. If w(c) ≥ w(c′), we swap in e = eh and e′ = e′

2 and
swap out f ′ = f ′

2 and m. Otherwise, we swap in e = et and e′ = e′
1 and swap out f ′ = f ′

1
and m.
We distinguish between these two cases:

Suppose w(c) ≥ w(c′).
Then, if c′ ∈ M(CCi+1)\M(CCi), Lemma 12(d) applies and we know that the increase
in total overlap due to the swap is |ov(e)|+ |ov(e′)|−|ov(m)|−|ov(f ′)| ≥ max{|ov(e′)|−
γw(c′), |ov(e)|−γw(c)+|ov(e′)|−γw(c′)} ≥ ϕ(i+1)−ϕ(i), as required since ϕ(i+1)−ϕ(i)
is either equal to |ov(e′)|−γw(c′) or equal to |ov(e)|−γw(c)+|ov(e′)|−γw(c′) depending
on whether M(CCi+1) \ M(CCi) = {c′} or M(CCi+1) \ M(CCi) = {c′, c}.
Otherwise, if c′ ̸∈ M(CCi+1) \ M(CCi), Lemma 12(a) and (b) both apply and we know
that the increase in total overlap due to the swap is |ov(e)|+|ov(e′)|−|ov(m)|−|ov(f ′)| ≥
max{0, |ov(e)| − γw(c)} ≥ ϕ(i + 1) − ϕ(i), as required since ϕ(i + 1) − ϕ(i) is either
equal to 0 or equal to |ov(e)| − γw(c) depending on whether M(CCi+1) \ M(CCi) = ∅
or M(CCi+1) \ M(CCi) = {c}.
Suppose w(c) < w(c′).
Then, the same argument as above holds with the only difference being that the roles of e

and e′ and of c and c′ are reversed. Specifically, if c ∈ M(CCi+1)\M(CCi), Lemma 12(d)
applies with the roles of e and e′ and the roles of c and c′ reversed. It follows that
the increase in total overlap due to the swap is |ov(e)| + |ov(e′)| − |ov(m)| − |ov(f ′)| ≥
max{|ov(e)| − γw(c), |ov(e′)| − γw(c′) + |ov(e)| − γw(c)} ≥ ϕ(i + 1) − ϕ(i), as required.
Otherwise, if c ̸∈ M(CCi+1) \ M(CCi), Lemma 12(a) and (b) both apply (again with
the roles of e and e′ and c and c′ reversed) and we know that the increase in total overlap
due to the swap is |ov(e)| + |ov(e′)| − |ov(m)| − |ov(f ′)| ≥ max{0, |ov(e′)| − γw(c′)} ≥
ϕ(i + 1) − ϕ(i), as required.

If m connects strings of two different cycles in CC and |ov(et)| < |ov(m)|, then we swap
in eh and e′

2 and swap out f ′
2 and m. Let c be the cycle of eh and c′ be the cycle of et.

If M(CCi+1) = M(CCi), then Lemma 12(a) shows that the total overlap does not
decrease, while the potential ϕ(i) does not increase.

M. Englert, N. Matsakis, and P. Veselý 29:13

If c′ ∈ M(CCi+1) \ M(CCi), then wx and vt must both be strings in cycle c′ as
otherwise, v′ is a string of cycle c′ and wx is a string of a different cycle and thus
e′

2, which is an edge in CCi+1, would connect a string of cycle c′ to a string of
another cycle. Thus, by Lemma 12(d), |ov(eh)| + |ov(e′

2)| − |ov(m)| − |ov(f ′
2)| ≥

max{|ov(e′
2)| − γw(c′), |ov(eh)| − γw(c) + |ov(e′

2)| − γw(c′)} ≥ ϕ(i + 1) − ϕ(i), as
required.
If M(CCi+1) \ M(CCi) = {c} and (c, c′) ∈ R, we first observe

w(c) ≥ |ov(m)| − w(c′) > |ov(et)| − w(c′) ≥ o(c′) − w(c′) ≥ (β − 1) · w(c′) ,

where the third inequality follows from the fact that et is an edge of the cycle c′

and the last step follows because c′ is not extra large. Therefore, we can apply
Lemma 12(c) which is sufficient because w(c)/2−w(c′)/2 = w(c)/2+w(c′)/2−w(c′) ≥
|ov(m)|/2−w(c′) ≥ o(c′)/2−w(c′) and therefore, |ov(eh)|+|ov(e′

2)|−|ov(m)|−|ov(f ′
2)| ≥

|ov(e)| − γw(c) − w(c′)/2 + w(c)/2 ≥ |ov(e)| − γw(c) − w(c′) + o(c′)/2 ≥ ϕ(i + 1) − ϕ(i),
as required.
If M(CCi+1) \ M(CCi) = {c} and (c, c′) ̸∈ R, there are two possibilities.

1. If c′ is a small cycle, then w(c′) ≤ o(c′)−w(c′) ≤ |ov(et)|−w(c′) < |ov(m)|−w(c′) ≤
w(c), where the first step uses the definition of a small cycle and the last step uses
Lemma 7.

2. If c′ is a large cycle and (c, c′) ̸∈ R, then, because |ov(m)| > |ov(et)| ≥ βw(c′) by
the definition of related cycles, w(c) > (β/2 − 1/6) · w(c′).

Either way w(c) > (β/2 − 1/6) · w(c′), which means that Lemma 12(b) implies
|ov(eh)| + |ov(e′

2)| − |ov(m)| − |ov(f ′
2)| ≥ |ov(eh)| − γw(c) ≥ ϕ(i + 1) − ϕ(i), as required.

References
1 Chris Armen and Clifford Stein. Improved length bounds for the shortest superstring problem.

In Proceedings of the 4th International Workshop on Algorithms and Data Structures (WADS),
pages 494–505, 1995. doi:10.1007/3-540-60220-8_88.

2 Chris Armen and Clifford Stein. A 2 2/3 superstring approximation algorithm. Discret. Appl.
Math., 88(1-3):29–57, 1998. doi:10.1016/S0166-218X(98)00065-1.

3 Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approximation
of shortest superstrings. Journal of the ACM, 41(4):630–647, 1994. doi:10.1145/179812.
179818.

4 Dany Breslauer, Tao Jiang, and Zhigen Jiang. Rotations of periodic strings and short
superstrings. J. Algorithms, 24(2):340–353, 1997. doi:10.1006/jagm.1997.0861.

5 M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.
6 Artur Czumaj, Leszek Gasieniec, Marek Piotrów, and Wojciech Rytter. Sequential and

parallel approximation of shortest superstrings. J. Algorithms, 23(1):74–100, 1997. doi:
10.1006/jagm.1996.0823.

7 Matthias Englert, Nicolaos Matsakis, and Pavel Veselý. Improved approximation guarantees
for shortest superstrings using cycle classification by overlap to length ratios. In Proceedings
of the 54th ACM Symposium on Theory of Computing (STOC), pages 317–330. ACM, 2022.
doi:10.1145/3519935.3520001.

8 Alan M. Frieze and Wojciech Szpankowski. Greedy algorithms for the shortest common
superstring that are asymptotically optimal. Algorithmica, 21(1):21–36, 1998.

9 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/CBO9780511574931.

10 Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation
algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the
ACM, 52(4):602–626, 2005. doi:10.1145/1082036.1082041.

ISAAC 2023

https://doi.org/10.1007/3-540-60220-8_88
https://doi.org/10.1016/S0166-218X(98)00065-1
https://doi.org/10.1145/179812.179818
https://doi.org/10.1145/179812.179818
https://doi.org/10.1006/jagm.1997.0861
https://doi.org/10.1006/jagm.1996.0823
https://doi.org/10.1006/jagm.1996.0823
https://doi.org/10.1145/3519935.3520001
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1145/1082036.1082041

29:14 Approximation Guarantees for Shortest Superstrings: Simpler and Better

11 Haim Kaplan and Nira Shafrir. The greedy algorithm for shortest superstrings. Inf. Process.
Lett., 93(1):13–17, 2005. doi:10.1016/j.ipl.2004.09.012.

12 Marek Karpinski and Richard Schmied. Improved inapproximability results for the shortest
superstring and related problems. In Proceedings of the 19th Computing: The Australasian
Theory Symposium (CATS), pages 27–36, 2013.

13 S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short superstrings. In
Proceedings of the 35th IEEE Symposium on Foundations of Computer Science (FOCS), pages
166–177, 1994. doi:10.1109/SFCS.1994.365696.

14 Bin Ma. Why greed works for shortest common superstring problem. Theor. Comput. Sci.,
410(51):5374–5381, 2009. doi:10.1016/j.tcs.2009.09.014.

15 Marcin Mucha. A tutorial on shortest superstring approximation. https://www.mimuw.edu.
pl/~mucha/teaching/aa2008/ss.pdf, 2007. [Accessed 15-June-2023].

16 Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the 24th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 958–972, 2013. doi:10.1137/1.
9781611973105.69.

17 Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen. Simpler approximation of the
maximum asymmetric traveling salesman problem. In Proceedings of the 29th Symposium
on Theoretical Aspects of Computer Science (STACS), pages 501–506, 2012. doi:10.4230/
LIPIcs.STACS.2012.501.

18 Steven Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer Science.
Springer, 2020.

19 Ondřej Sladký, Pavel Veselý, and Karel Břinda. Masked superstrings as a unified framework
for textual k-mer set representations. bioRxiv, 2023. doi:10.1101/2023.02.01.526717.

20 Z. Sweedyk. A 2½-approximation algorithm for shortest superstring. SIAM J. Comput.,
29(3):954–986, 1999. doi:10.1137/S0097539796324661.

21 Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing shortest
common superstrings. Theor. Comput. Sci., 57:131–145, 1988. doi:10.1016/0304-3975(88)
90167-3.

22 Shang-Hua Teng and Frances Yao. Approximating shortest superstrings. SIAM Journal on
Computing, 26(2):410–417, 1997. doi:10.1137/S0097539794286125.

23 Jonathan S. Turner. Approximation algorithms for the shortest common superstring problem.
Inf. Comput., 83(1):1–20, 1989. doi:10.1016/0890-5401(89)90044-8.

24 Virginia Vassilevska. Explicit inapproximability bounds for the shortest superstring problem.
In 30th International Symposium, MFCS, Gdansk, Poland, volume 3618 of Lecture Notes in
Computer Science, pages 793–800. Springer, 2005.

25 Vijay Vazirani. Approximation algorithms. Springer, 2001.

A Deriving Approximation Guarantees from Theorem 3

The technical contribution of the paper is proving Theorem 3 that shows an improved
inequality for overlaps of cycle-closing edges in terms of the optimal superstring length n

and the length w of the optimal cycle cover CC. In the next two subsections, we explain how
our improved approximation guarantees follow, using essentially the same arguments (and
algorithms) as in previous work.

A.1 The GREEDY Algorithm for SSP
The |S|2 edges of the overlap graph Gov are assumed to be ordered by non-increasing overlap
length. The GREEDY algorithm for SSP chooses edges from this order, unless an edge shares
an endpoint with an already chosen edge or closes a cycle. The edges corresponding to the
latter case are called bad back edges. As proven in [3], bad back edges do not intersect each
other, forming a laminar family of edges. Each inner-most bad back edge forms a cycle

https://doi.org/10.1016/j.ipl.2004.09.012
https://doi.org/10.1109/SFCS.1994.365696
https://doi.org/10.1016/j.tcs.2009.09.014
https://www.mimuw.edu.pl/~mucha/teaching/aa2008/ss.pdf
https://www.mimuw.edu.pl/~mucha/teaching/aa2008/ss.pdf
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.4230/LIPIcs.STACS.2012.501
https://doi.org/10.4230/LIPIcs.STACS.2012.501
https://doi.org/10.1101/2023.02.01.526717
https://doi.org/10.1137/S0097539796324661
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1137/S0097539794286125
https://doi.org/10.1016/0890-5401(89)90044-8

M. Englert, N. Matsakis, and P. Veselý 29:15

in the output of GREEDY and each such cycle is called culprit. The sum of lengths of all
culprit cycles is denoted by wc and the sum of overlap lengths of the cycle-closing edges of
all culprits is denoted by oc.

Blum et al. have shown the following two inequalities (Section 5 in [3]):

|GREEDY(S)| ≤ 2n + oc − wc (12)
o ≤ n + 2w (13)

Moreover, the application of the GREEDY algorithm for the optimal cycle cover CC on
the set of strings comprising the culprit cycles only, outputs the exact same set of culprit
cycles (Lemma 15 in [3]). By this and (13) it follows that oc ≤ n + 2wc, which by (12) gives
|GREEDY(S)| ≤ 4n, completing their proof.

Theorem 3 shows that o ≤ n+
√

67−4
3 w which implies that oc ≤ n+

√
67−4
3 wc using the same

syllogism (Lemma 15 in [3]). By this and (12), we have |GREEDY(S)| ≤
√

67+2
3 n ≈ 3.396 · n,

completing our proof.

A.2 SSP Algorithms Based on Max-ATSP Approximations
Blum et al. proposed the following 4-approximate SSP algorithm, called MGREEDY:
1. Apply GREEDY to find an optimal cycle cover CC.
2. Open all cycle-closing edges in CC to obtain a set of strings called representatives.
3. Concatenate the representatives in an arbitrary order.

If instead of concatenating the representatives in the third step, we merge them using a
Max-ATSP approximation algorithm (executed on the overlap graph of the representatives),
then we will obtain an SSP approximation algorithm which, obviously, cannot perform
worse. This is the idea behind the 3-approximate TGREEDY algorithm [3]. The Max-ATSP
algorithm utilized as a black-box within TGREEDY is GREEDY, which had been already
shown [21, 23] to be a 1

2 -approximate Max-ATSP algorithm for the overlap graphs.
We will need the following theorem from [7], which has already appeared in similar forms

in literature (e.g., [3, 4, 15]).

▶ Theorem 13. If MGREEDY is a (2 + ζ)-approximate SSP algorithm and there exists a
δ-approximate algorithm for Max-ATSP then there exists a (2 + (1 − δ) · ζ)-approximate SSP
algorithm.

Showing that o ≤ n + (
√

67 − 4)w/3 ≈ n + 1.396w implies that MGREEDY is a 3.396-
approximate SSP algorithm, since |MGREEDY(S)| = w +o ≤ w +n+(

√
67−4)w/3 < 3.396n.

Moreover, the currently best Max-ATSP approximation algorithms are 2
3 -approximate, due

to Kaplan et al. [10] or due to Paluch et al. [17]. Setting δ = 2
3 and ζ = (

√
67 − 4)/3 ≈ 1.396

in Theorem 13, we obtain an SSP algorithm with approximation guarantee
√

67+14
9 ≈ 2.466.

Finally, regarding TGREEDY, setting δ = 1
2 and ζ = (

√
67 − 4)/3 ≈ 1.396 in Theorem 13,

we improve the approximation guarantee of TGREEDY to (
√

67 + 8)/6 ≈ 2.698, from
(25 +

√
57)/12 ≈ 2.712 as shown in [7].

B Dealing with extra large cycles (as in [7])

Let S ⊆ S be the subset of strings that belong to all small and large cycles of CC. Observa-
tion 5.1 in [7] implies that the optimal cycle cover for S̄ (in short CC(S)) consists of all small
and large cycles of the optimal cycle cover for S (for simplicity denoted by CC(S) = CC),
while the optimal cycle cover for S − S (in short CC(S − S)) consists of all extra large cycles
of CC(S).

ISAAC 2023

29:16 Approximation Guarantees for Shortest Superstrings: Simpler and Better

Let ŵ denote the sum of lengths of the (extra large) cycles in CC(S − S) and let ô be the
sum of overlap lengths of the cycle-closing edges of the cycles in CC(S − S). Similarly, let o

be the sum of overlap lengths of the cycle-closing edges in CC(S) and let w be the sum of
lengths of the cycles in CC(S).

Proving o ≤ n + β · w for input S implies that o ≤ |OPT(S)| + β · w, and assuming this,
we show o ≤ n + β · w. Indeed, we take the sum of inequality o ≤ |OPT(S)| + β · w with
inequality ô ≤ β · ŵ (which holds by the definition of extra large cycles) and obtain:

o = o + ô ≤ |OPT(S)| + β · w + β · ŵ = |OPT(S)| + β · w ≤ n + β · w

where the penultimate step uses w = w + ŵ and the last inequality uses |OPT(S)| ≤
|OPT(S)| = n, which follows from S ⊆ S. Therefore, for proving o ≤ n + β · w, we assume
w.l.o.g. that CC(S) = CC has no extra large cycle.

C Lemma 11 (slightly modified from [7])

For completeness, we include a proof of Lemma 11. The proof is almost identical to the one
in [7] with only very minor changes to make it more general.

We start by stating a corollary, a version of which is already stated in [7] and in slight
variations has been known already before (e.g. see Lemma 9 in [3] and Lemma 7 in [15]).

▶ Corollary 14. Let c and c′ be any two cycles of CC. Any string h, which is a substring of
both s(c)∞ and s(c′)∞,1satisfies |h| < w(c) + w(c′).

This enables us to restate the proof of Lemma 11.

Proof of Lemma 11. We show that |ov(e)| > |ov(f)| + |ov(f ′)| − w(c′), which implies the
lemma. If min{|ov(f)|, |ov(f ′)|} ≤ w(c′), this inequality holds because by using Lemma 7,
we get

|ov(e)| ≥ w(c) + w(c′)
> max{|ov(f)|, |ov(f ′)|}
≥ max{|ov(f)|, |ov(f ′)|} + min{|ov(f)|, |ov(f ′)|} − w(c′)
= |ov(f)| + |ov(f ′)| − w(c′) .

Hence, for the remainder of the proof, we assume that we have min{|ov(f)|, |ov(f ′)|} > w(c′).
Now, assume for contradiction that |ov(e)| ≤ |ov(f)| + |ov(f ′)| − w(c′). We claim that in

this case ov(e) has a periodicity of length w(c′), i.e., ov(e) is a prefix of x∞ for some string x

with |x| = w(c′). To show this, first recall that |ov(e)| ≥ w(c)+w(c′) > max{|ov(f ′)|, |ov(f)|}
by Lemma 7. Since ov(f) is a prefix of v and a suffix of v′ and since ov(e) is a prefix of v,
the first |ov(f)| characters of ov(e) are also a suffix of v′, i.e.,

ov(e)[1, |ov(f)|] = ov(f) = v′[|v′| − |ov(f)| + 1, |v′|] .

Similarly, since ov(f ′) is a prefix of u′ and a suffix of u and since ov(e) is a suffix of u, we get
that

ov(e)[|ov(e)| − |ov(f ′)| + 1, |ov(e)|] = ov(f ′) = u′[1, |ov(f ′)|] .

1 The definitions of s(c) and s∞ appear below Lemma 9.

M. Englert, N. Matsakis, and P. Veselý 29:17

Observe that for all 1 ≤ i ≤ |ov(e)|−w(c′), a character at position i of ov(e) must be the same
as the character at position i + w(c′) of ov(e). Indeed, if i + w(c′) ≤ |ov(f)|, this is true as v′

has a periodicity of length w(c′). If i > |ov(e)|−|ov(f ′)|, it is true because u′ has a periodicity
of length w(c′). One of these two cases must apply because otherwise, i + w(c′) > |ov(f)|
and i ≤ |ov(e)| − |ov(f ′)|, which implies |ov(f)| − w(c′) < i ≤ |ov(e)| − |ov(f ′)|, contradicting
our assumption that |ov(f ′)| + |ov(f)| ≥ |ov(e)| + w(c′). Hence, ov(e) has a periodicity of
length w(c′) (in particular, period(ov(e)) ≤ w(c′)).

Next, we show that ov(e) is a substring of the semi-infinite string s(c′)∞. Because
ov(e) has a periodicity of length w(c′) and s(c′)∞ has period w(c′), it is sufficient to argue
that the first w(c′) characters of ov(e) are a substring of s(c′)∞. This is indeed the case
since ov(e)[1, |ov(f)|] is a substring of v′ which is a substring of s(c′)∞ and we assume that
|ov(f)| > w(c′).

Since ov(e) is a substring of s(c′)∞ as well as of s(c)∞ (because ov(e) is a substring of a
string that is part of c), Corollary 14 implies |ov(e)| < w(c) + w(c′) which contradicts the
assumption of the lemma. ◀

ISAAC 2023

Rapid Mixing for the Hardcore Glauber Dynamics
and Other Markov Chains in Bounded-Treewidth
Graphs
David Eppstein #

Department of Computer Science, University of California, Irvine, CA, USA

Daniel Frishberg #

Department of Computer Science and Software Engineering, California Polytechnic State University,
San Luis Obispo, CA, USA

Abstract
We give a new rapid mixing result for a natural random walk on the independent sets of a graph G.
We show that when G has bounded treewidth, this random walk – known as the Glauber dynamics
for the hardcore model – mixes rapidly for all fixed values of the standard parameter λ > 0, giving a
simple alternative to existing sampling algorithms for these structures. We also show rapid mixing for
analogous Markov chains on dominating sets, b-edge covers, b-matchings, maximal independent sets,
and maximal b-matchings. (For b-matchings, maximal independent sets, and maximal b-matchings
we also require bounded degree.) Our results imply simpler alternatives to known algorithms
for the sampling and approximate counting problems in these graphs. We prove our results by
applying a divide-and-conquer framework we developed in a previous paper, as an alternative to
the projection-restriction technique introduced by Jerrum, Son, Tetali, and Vigoda. We extend this
prior framework to handle chains for which the application of that framework is not straightforward,
strengthening existing results by Dyer, Goldberg, and Jerrum and by Heinrich for the Glauber
dynamics on q-colorings of graphs of bounded treewidth and bounded degree.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Glauber dynamics, mixing time, projection-restriction, multicommodity flow

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.30

Related Version Full Version: https://arxiv.org/abs/2111.03898

Acknowledgements The authors wish to acknowledge a number of helpful conversations on this
topic with Milena Mihail, Ioannis Panageas, Eric Vigoda, Charlie Carlson, and Zongchen Chen, as
well as with Karthik Gajulapalli, Hadi Khodabande, and Pedro Matias.

1 Introduction

The Glauber dynamics on independent sets in a graph – motivated in part by modeling systems
in statistical physics – is a Markov chain in which one starts at an arbitrary independent set,
then repeatedly chooses a vertex at random and, with probability that depends on a fixed
parameter λ > 0, either removes the vertex from the set (if it is in the set), or adds it to
the set (if it is not in the set and has no neighbor in the set). This chain, which samples
from the hardcore model on independent sets, has seen recent rapid mixing results under
various conditions. In addition to independent sets, similar dynamics have been studied for a
number of other structures – including, for example, q-colorings, matchings, and edge covers
(more generally, b-matchings and b-edge covers).

© David Eppstein and Daniel Frishberg;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
mailto:dfrishbe@calpoly.edu
https://orcid.org/0000-0002-1861-5439
https://doi.org/10.4230/LIPIcs.ISAAC.2023.30
https://arxiv.org/abs/2111.03898
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Rapid Mixing for Glauber Dynamics in Bounded-Treewidth Graphs

1.1 Our contribution
We prove that the hardcore Glauber dynamics mixes rapidly on graphs of bounded treewidth
for all fixed λ > 0, and that the Glauber dynamics on partial q-colorings (for all λ > 0)
of a graph of bounded treewidth, and on q-colorings of a graph of bounded treewidth and
degree, mix rapidly. Marc Heinrich proved the latter result, namely for q-colorings, in a
2020 preprint [10]. Heinrich’s result applies to all graphs of bounded treewidth; however,
for graphs of bounded treewidth and degree, whose degree is less than quadratic in their
treewidth, we improve on Heinrich’s upper bound – provided that q is fixed. We also prove
that the analogous dynamics on the b-edge covers (when b is bounded) and the dominating
sets of a graph of bounded treewidth mix rapidly for all λ > 0. In a similar vein, we prove
that three additional chains – on b-matchings (when λ > 0), on maximal independent sets,
and on maximal b-matchings – mix rapidly in graphs of bounded treewidth and degree.

To prove our results, we apply a framework we introduced in a companion paper [6]
that uses the multicommodity flow technique (essentially the same as the canonical paths
technique) for bounding mixing times. (We previously presented this framework in a preprint
of the present paper [5].) The framework consists of a set of conditions (which we will define
in Section 3.3) that guarantee rapid mixing; these conditions make progress towards unifying
prior work on similar Glauber dynamics with prior work on probabilistic graphical models.
In that paper [6], we also proved that the flip walk on the k-angulations of a convex n-point
set mixes in time quasipolynomial in n for all fixed k ≥ 3, although the special case k = 3
was known already to mix rapidly [15]. Thus our framework applies beyond graphical models
and graph sampling problems.

1.2 Main results
Our main results are the following (see Section 2 for relevant definitions).

▶ Theorem 1. The hardcore Glauber dynamics mixes in time nO(t) on graphs of treewidth t

for all fixed λ > 0.

▶ Theorem 2. The (unbiased) Glauber dynamics on q-colorings (when q ≥ ∆ + 2 is fixed)
mixes in time nO(t) on graphs of treewidth t and bounded degree when q is fixed. The Glauber
dynamics on partial q-colorings (when q ≥ ∆ + 2 is fixed) mixes in time nO(t) on graphs of
treewidth t for all fixed λ > 0.

▶ Theorem 3. The Glauber dynamics on b-edge covers mixes in time nO(t2) on graphs of
treewidth t, for all fixed b ≥ 1 and fixed λ > 0. The Glauber dynamics on dominating sets
mixes in time nO(t) on graphs of treewidth t for all fixed λ > 0. The Glauber dynamics
on b-matchings mixes in time nO(t) on graphs of treewidth t and bounded degree ∆ for all
fixed λ > 0 and fixed b ≥ 1.

▶ Theorem 4. There exist Markov chains on maximal independent sets and maximal b-
matchings, whose stationary distributions are uniform, that mix in time nO(t) on graphs of
treewidth t and bounded degree.

1.3 The framework: recursive flow construction
A multicommodity flow in an undirected graph G = (V, E) with n vertices is a set of n2 flows,
one flow for each ordered pair of vertices (s, t), where each flow sends one unit of a commodity
from s to t. More precisely, take each (undirected) edge in E and make two directed copies,

D. Eppstein and D. Frishberg 30:3

one in each direction; let E+ =
⋃

{u,v}∈E{(u, v), (v, u)} denote the set of all these directed
copies. A multicommodity flow is a collection of functions fst : E+ → R≥0 such that each fst

is a valid flow function, with s (respectively t) having net out flow (respectively in flow)
equal to one, and all other vertices having zero net flow. If a multicommodity flow exists in
G with small congestion – i.e. one in which no edge carries too much flow – then the natural
Markov chain whose states are the vertices of G mixes rapidly.

The chains we analyze are natural random walks on a Glauber graph M(G)1 – the graph
whose vertices are the structures over which the random walk is performed, and whose edges
are the pairs of these structures with symmetric distance equal to one. For example, in the
case of independent sets, M(G) has as its vertex set the collection of all independent sets
in G, and as its edge set the collection of all (unordered) pairs of independent sets S, S′ in G

such that S = S′ ∪ {v} for some v ∈ V (G). Thus each of these random walks is performed
on a graph that may be exponentially large with respect to the size of the input graph.
In our previous work [6], we showed that when all of a certain set of conditions hold, we
can construct a multicommodity flow in M(G) with congestion polynomial in n = |V (G)|,
implying that the walk on M(G) mixes rapidly. The conditions specify that M(G) can be
partitioned into a small number of induced subgraphs, all of which are approximately the
same size, with large numbers of edges between pairs of the subgraphs. The conditions require
that each of these induced subgraphs can be decomposed into smaller Glauber graphs that
are similar in structure to M(G). This self similarity allows for the recursive construction of
a multicommodity flow, by assembling flows on smaller Glauber graphs together into a flow
in M(G) with small congestion.

1.4 Projection-restriction and prior work on the hardcore model
Prior work on rapid mixing of Markov chains on subset systems includes the special case
of matroid polytopes. For this case, recent results [2, 1] have partly solved a 30-year-old
conjecture of Mihail and Vazirani [16]. Other prior work uses multicommodity flows (and the
essentially equivalent canonical paths technique) to obtain polynomial mixing upper bounds
on structures of exponential size, including matchings and 0/1 knapsack solutions [17, 9].
Madras and Randall [13] used a decomposition of the hardcore model state space to prove
rapid mixing under different conditions. We also decompose the state space, but our approach
is different and is more similar to Heinrich’s [10] application of the projection-restriction
technique introduced by Jerrum, Son, Tetali, and Vigoda [11]. This technique involves
partitioning the state space of a chain into a collection of sub-state spaces, each of which
internally has a good spectral gap – a property that implies rapid mixing – and all of which
are well connected to one another. Heinrich used the vertex separation properties of bounded-
treewidth graphs to obtain an inductive argument: the resulting sub-spaces are themselves
Cartesian products of chains on smaller graphs, and thus mix rapidly. (See Lemma 16.) We
partition the state space recursively using the same vertex separation properties, and indeed
for the chains on b-matchings and q-colorings in bounded-treewidth, bounded-degree graphs,
combining these properties straightforwardly with the existing spectral projection-restriction
machinery of [11] suffices for rapid mixing. The main contribution in this paper is to extend
the framework to chains for which this application is not straightforward. That is, we give
general conditions for constructing a multicommodity flow in the projection chain with small

1 The chains on maximal independent sets and maximal b-matchings are not strictly Glauber dynamics,
but we will use the same term for the graph, redefining the edge set as pairs connected by the moves we
define in the appendix of the full version.

ISAAC 2023

30:4 Rapid Mixing for Glauber Dynamics in Bounded-Treewidth Graphs

congestion, giving a good spectral gap in the projection chain. One may then apply induction
using the spectral machinery of [11] to obtain rapid mixing in the overall chain; alternatively,
one can substitute the flow-based machinery from our companion paper [6] for the spectral
technique.

In the case of independent sets, Jerrum, Son, Tetali, and Vigoda [11] applied their
technique to a special case of the hardcore model, namely regular trees. However, it was not
clear how to generalize this application to bounded-treewidth graphs – since showing the
spectral gap of the projection chain is sufficiently large is not straightforward. Martinelli,
Sinclair, and Weitz [14] showed that the Glauber dynamics on the hardcore model mixes
in O(n log n) time on the complete ∆ − 1-ary tree with n nodes, but they did not address
general trees. Berger, Kenyon, Mossel, and Peres [3] showed rapid mixing for q-colorings
of regular trees with unbounded degree but also did not address general trees. Our first
main technical contribution is to show rapid mixing for general bounded-treewidth graphs
by introducing the hierarchical version of our framework, in which we construct a flow with
small congestion in the projection chain; we show that this construction gives rapid mixing
for dominating sets, partial q-colorings, and b-edge covers in bounded-treewidth graphs. We
solve another problem: the technical theorem in [11] as stated requires each of the state
spaces in the partition to be a Cartesian product of chains on smaller spaces. For four of our
eight chains – those on dominating sets, b-edge covers, maximal b-matchings, and maximal
independent sets – the sub-spaces obtained in the decomposition are not a disjoint union
of Cartesian products but may each be a union of Cartesian products, or may be mutually
intersecting. In some cases, the sub-spaces may even induce disconnected restriction chains.
Our second main contribution is to resolve this problem, using the structure of the state
spaces of Glauber dynamics as graphs. We discuss this in the appendix of the full version.

1.5 Paper organization
In Section 2, we give relevant background. In Section 3, we use the chain on independent
sets to review the “non-hierarchical” version of our framework (the version we gave in our
companion paper) – which works for this chain when treewidth and degree are bounded.
In the appendix of the full version we apply it to q-colorings and to b-edge covers and b-
matchings. To fully prove Theorem 1 and Theorem 3, we need to deal with unbounded-degree
graphs – our first main technical contribution. In Section 4, we modify the framework to do
so, proving Theorem 1 for λ = 1. We defer some details to the appdenix of the full version,
where we also finish the proof of Theorem 2 for λ = 1. We prove the general case λ > 0 of
Theorems 1 and 2 in the appendix of the full version. We finish the proofs of Theorems 3
and 4 in the appendix of the full version: applying the framework to the relevant chains
requires a further refinement of the framework. In all of the above, we prove rapid mixing
but defer derivation of specific upper bounds to the appendix of the full version.

2 Preliminaries

2.1 Glauber dynamics
▶ Definition 5. The hardcore Glauber dynamics on a graph G is the following chain, defined
with respect to a fixed real parameter λ > 0:
1. Let X0 be an arbitrary independent set in G.
2. For t ≥ 0, select a vertex v ∈ V (G) uniformly at random.
3. If v /∈ Xt and Xt ∪ {v} is not a valid independent set, do nothing.

D. Eppstein and D. Frishberg 30:5

4. Otherwise:
Let Xt+1 = Xt ∪ {v} with probability λ/(λ + 1).
Let Xt+1 = Xt \ {v} with probability 1/(λ + 1).

Graph-theoretically, the Glauber dynamics is defined as follows: let the indepdendent set
Glauber graph MIS(G) denote the graph whose vertices are identified with the independent
sets of a given graph G, and whose edges are the pairs of independent sets whose symmetric
difference is one. The hardcore Glauber dynamics is a Markov chain, parameterized by λ > 0,
with state space Ω = V (MIS(G)) and probability matrix P , where for S, S′ ∈ V (M(G)) with
S ̸= S′, P (S, S′) = λ/(∆M(λ + 1)) when |S′ \ S| = 1, and P (S, S′) = 1/(∆M(λ + 1)) when
|S \ S′| = 1. If S = S′, then P (S, S′) = 1 −

∑
S′′ ̸=S P (S, S′′). (Here ∆M is the maximum

degree of the Glauber graph – i.e. the maximum number of neighboring states that a state S

can have.) The Glauber graph has vertex set Ω and adjacency matrix P – up to the addition
of self loops and normalization by degree. (When λ ̸= 1 this graph can still be augmented
with suitable weights so that the walk on the graph is the Glauber dynamics.)

2.2 Mixing time
To generate, approximately uniformly at random, an object of a given class – such as an
independent set in a given graph – one can conduct a random walk on a graph whose vertices
are the objects of interest, and whose edges represent local moves between the objects (or
states). It is known that under certain mild conditions satisfied by as all our chains (see the
appendix of the full version), the walk converges to the uniform distribution in the limit. The
rate of convergence is important: in the case of subset systems such as those we consider, the
walk takes place over an exponentially large number of subsets defined over an underlying
set of size n. If the convergence, or mixing time, of the walk is polynomial in n, then the
random walk is said to be rapidly mixing. The mixing time is denoted τ(ε), where ε denotes
the desired precision of convergence to the uniform distribution, and the value of τ at ε is the
minimum number of steps in the random walk before convergence is guaranteed. Convergence
is measured via the total variation distance [19] between the distribution over states induced
by the walk at a given time step, and the uniform distribution. One can obtain non-uniform
stationary distributions by weighting the graph – see the appendix of the full version. See
Levin, Peres, and Wilmer [12] for a comprehensive treatment of rapid mixing.

A Markov chain, given a starting state S ∈ Ω, induces a probability distribution πt at
each time step t. The Glauber dynamics is known, regardless of starting state, to converge
in the limit to a stationary distribution π∗(S) = λ|S|/Z(M(G)), where the term Z(M(G))
is simply a normalizing value. When λ is unspecified, assume λ = 1 (the uniform case). The
mixing time is defined as follows:

Given an arbitrary ε > 0, the mixing time, τ(ε), of a Markov chain with state space Ω
and stationary distribution π∗ is the minimum time t such that, regardless of starting state,
we always have 1

2
∑

S∈Ω |π(S) − π∗(S)| < ε. Suppose the chain belongs to a family of Markov
chains, the size of whose state space is parameterized by some value n. Here, |Ω| may be
exponential in n. If τ(ε) is bounded by a polynomial function in log(1/ε) and in n, the chain
is said to be rapidly mixing. It is common to omit the parameter ε and assume ε = 1/4.

2.3 Treewidth and vertex separators
▶ Definition 6 ([18]). A tree decomposition of a graph G = (V, E) is a collection of sets
{Xi}, i = 1, . . . , k, called bags, together with a tree T , whose nodes are identified with the
bags {Xi}, such that all of the following hold:

ISAAC 2023

30:6 Rapid Mixing for Glauber Dynamics in Bounded-Treewidth Graphs

1. Every vertex in V lies in some bag, i.e.
⋃k

i=1 Xi = V .
2. For every (u, v) ∈ E, the vertices u and v belong to at least one bag Xi together, i.e. for

some i, u ∈ Xi and v ∈ Xi.
3. The collection of all bags containing any given vertex v ∈ V , i.e. {Xi | v ∈ Xi} forms a

(connected) subtree of T .

▶ Definition 7 ([18]). The width of a tree decomposition is one less than the size of the
largest bag in the decomposition. The treewidth of a graph G is the minimum t such that a
tree decomposition of G exists with width t.

Intuitively, treewidth measures how far away a graph is from being a tree. For example,
trees have treewidth one; a graph consisting of a single cycle of size at least three has
treewidth two. Treewidth is of interest in large part because many NP-hard problems become
tractable on graphs of bounded treewidth. For a full definition of treewidth and a survey of
this phenomenon, known as fixed-parameter tractability, see [4].

For our purposes, treewidth is of interest due to its relationship to vertex separators: a
vertex set X ⊆ V in a graph G = (V, E) is called a vertex separator if the deletion of X from V

leaves the induced subgraph on the remaining vertices disconnected. Say that X is a balanced
separator if deleting X partitions V into mutually disconnected subsets A ∪ B = V \ X

such that |V |/3 ≤ |A| ≤ |B| ≤ 2|V |/3. A graph G is recursively s-separable [7] if either (i)
|V (G)| ≤ 1, or (ii) G has a balanced separator X with |X| ≤ s and, after deleting X, the
resulting subsets A and B induce subgraphs of G that are each recursively s-separable.

The following is known and easy to prove [7]:

▶ Lemma 8. Every graph with treewidth t ≥ 1 is recursively s-separable for all s ≥ t + 1.

3 λ = 1: Bounded treewidth and degree

To build up to the proof of Theorem 1, we first show a weaker result: that the unifrom
hardcore Glauber dynamics mixes rapidly in graphs of bounded treewidth and degree. Fully
proving Theorem 1, even in the unbiased case, requires the non-hierarchical framework.
The main technical lemma in this section, Lemma 17, comes from our companion paper.
Our contribution in this paper is the application to independent sets in graphs of bounded
treewidth and degree – which we strengthen to graphs of bounded treewidth in Section 4.

The following is necessary for the Glauber dynamics to sample correctly:

▶ Lemma 9. The independent set Glauber graph is connected.

Proof. Consider the empty independent set ∅. Every independent set S ∈ V (MIS(G)) has a
path of length |S| to ∅, formed by removing each vertex in S in arbitrary order. ◀

3.1 Partitioning the vertices of MIS(G) into classes

The vertices of the Glauber graph MIS(G) are subsets of the vertices of an underlying graph
G. When G has bounded treewidth, we can choose a small separator X that partitions
V (G) \ X into two mutually disconnected vertex subsets, A and B, each of which has at
most 2|V (G)|/3 vertices. Consider the problem of sampling an independent set S from G.
Given a separator X for G, partition the independent sets in G into equivalence classes as
follows:

D. Eppstein and D. Frishberg 30:7

X
A

B

v

u

X
A

B

v

u

Figure 1 Two independent sets in a graph G: S (left) and S′ (right), belonging to distinct classes.
S and S′ differ by a move, with the separator X inducing the classes to which the sets belong. S′

results from adding v to S. |S′| < |S|, since S′ excludes those independent sets that contain u.

▶ Definition 10. Let G = (V, E) be a graph. Let MIS(G) be the independent set Glauber
graph we have defined. Let X ⊆ V be a vertex separator for G. Let SIS(G) be the set of
equivalence classes of V (MIS(G)) in which two independent sets S and S′ are in the same
class if S ∩ X = S′ ∩ X. Let T = S ∩ X, and call the corresponding class CIS(T).

(Technically X is also a parameter for SIS(G) and CIS(T), but we omit it for ease of notation.)
See Figure 1 for an example of a partitioning.
The Cartesian product of two graphs H and J is the graph whose vertex set is V (H)×V (J)

and whose edges are the pairs ((h1, j1), (h2, j2)) such that either h1 = h2 and (j1, j2) ∈ E(J)
or else (h1, h2) ∈ E(H) and j1 = j2.

Let A and B be the mutually disconnected vertex subsets into which the removal of X

partitions V (G) \ X. Given a fixed independent subset T ⊆ X, identify the independent sets
in CIS(T) with the pairs of the form (SA, SB), where SA is an independent set in A \ NA(T),
and SB is an independent set in B \NB(T), where NA(T) and NB(T) denote the union of the
neighborhoods of vertices in T , in A and B respectively. That is, identify each independent
set in CIS(T) with a pair of an independent set in A that avoids neighbors of vertices in T ,
and a similar independent set in B. Consider the two Glauber graphs MIS(A \ NA(T))
and MIS(B \ NB(T)), whose vertices are respectively the independent sets in G[A \ NA(T)],
and those in G[B \ NB(T)]. If two independent sets S = (SA, SB) and S′ = (S′

A, S′
B) belong

to the same class, then a move (traversal of an edge in the Glauber graph) exists between S

and S′ in MIS(G) precisely when a move exists between the restrictions of S and S′ to
either MIS(A \ NA(T)) or MIS(B \ NB(T)) (but not both). Therefore, each class induces,
in MIS(G), a subgraph that is isomorphic to a Cartesian product of two smaller Glauber
graphs:

▶ Lemma 11. Given a graph G and a vertex separator X that partitions V (G) into sub-
graphs A and B, for every class T ∈ SIS(G), CIS(T) ∼= MIS(A \ NA(T))□MIS(B \ NB(T)).

(Here by the symbol ∼= we denote isomorphism, and we identify the class CIS(T) with the
subgraph it induces in MIS(G).)

3.2 Rapid mixing for the hardcore Glauber dynamics when G has
bounded treewidth and degree

As described in Section 3.1, we use a small vertex separator X in G to give a decomposition
of MIS(G) into subgraphs, each of which has a Cartesian product structure – in which
both factor graphs in the product are themselves Glauber graphs. Since Cartesian products
preserve flow congestion upper bounds (see Lemma 16), this decomposition provides a crucial
inductive structure. We analyze this structure in this section.

ISAAC 2023

30:8 Rapid Mixing for Glauber Dynamics in Bounded-Treewidth Graphs

CIS(T) CIS(T ′′) CIS(T ′)S

S
′′

wS
′

Figure 2 A schematic view of three classes in the independent set Glauber graph MIS(G). The
large circles denote classes under the partition described in Section 3.1. The curved arrows illustrate
the construction of a flow in MIS(G) from an independent set S ∈ CIS(T) to another independent set
S′′ ∈ CIS(T) – and also to an independent set S′ ∈ CIS(T ′). Here, CIS(T) and CIS(T ′′) are adjacent
classes in MIS(G), connected by a large number of edges, and similarly CIS(T ′) and CIS(T ′′) are
adjacent. In Section 3.2 we formalize this flow.

▶ Lemma 12. Let G be a graph with bounded treewidth t and bounded degree ∆, let MIS(G)
be as we have defined, and let SIS(G) be as in Definition 10 with respect to a small balanced
separator X with |X| ≤ t + 1. Then:
1. The number of classes in SIS(G) is O(1).
2. For every pair of classes CIS(T), CIS(T ′) ∈ SIS(G), |CIS(T)| = Θ(1)|CIS(T ′)|.
3. Let CIS(T), CIS(T ′) ∈ SIS(G) be two classes. No independent set S ∈ CIS(T) has more

than one move to an independent set S′ ∈ CIS(T ′).
4. Let CIS(T), CIS(T ′) ∈ SIS(G) be two classes. Suppose there exists at least one move between

an independent set in CIS(T) and an independent set in CIS(T ′). Then there exist at least
Ω(1)|CIS(T)| moves between independent sets in CIS(T) and independent sets in CIS(T ′).

Proof. Claim 1 follows from the fact that |SIS(G)| ≤ 2|X| ≤ 2t+1 = O(1), where the first
inequality is true because each class is identified with a subset of the vertices in X. The
proofs of claims 2 through 4 are in the appendix of the full version. ◀

We will use Lemma 12 to prove the following, applying the framework from our previous
paper, in Section 3.3:

▶ Lemma 13. Given a graph G with bounded treewidth and degree, the natural random walk
on the independent set Glauber graph MIS(G) has mixing time τ(ε) = O(nc log 1/ε), where
c = O(1).

To prove Theorem 1, however, we need to get rid of the assumption that degree is bounded.
We address this issue in Section 4.

3.3 Abstraction into framework conditions
The observations in Lemma 12 correspond to a set of conditions we gave in our previous
work [6]. These conditions are, given a connected graph M(G), on some set of combinatorial
structures over an underlying graph G with n vertices:
1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).
2. The ratio of the sizes of any two classes in S is Θ(1).
3. Given two classes C(T), C(T ′) ∈ S, no vertex in C(T) has more than O(1) edges to vertices

in C(T ′).
4. For every pair of classes that share at least one edge, the number of edges between the

two classes is Θ(1) times the size of each of the two classes.
5. Each class in S is the Cartesian product of two graphs M(G1) and M(G2), each of which

can be recursively partitioned in the same way as M(G).
6. The recursive partitioning mentioned in Condition 5 reaches the base case (graphs with

one or zero vertices) in O(log n) steps.

D. Eppstein and D. Frishberg 30:9

Conditions 1 through 4 correspond respectively to Lemma 12; Condition 5 corresponds
to Lemma 11. Condition 6 corresponds to the observation at the end of the proof sketch of
Lemma 13.

We introduce some facts that we previously used to prove that these conditions suffice
for rapid mixing, via expansion, then review a sketch of the proof; we will build on these
techniques in Section 4 (our main contribution) and in the appendices.

The edge expansion (or simply the expansion) of a graph G = (V, E) is the quantity
h(G) := minS⊆V :|S|≤|V |/2

|{(u,v)∈E|u∈S,v /∈S}|
|S| , i.e. the minimum quotient of the number of

edges in the cut by the number of vertices on the smaller side of the cut. The vertex expansion
is the quantity h(G) := minS⊆V :|S|≤|V |/2

|{v∈V \S|∃u∈S,(u,v)∈E}|
|S| , i.e. the minimum quotient

of the number of neighbors of a set S with |S| ≤ |V |/2 that are not in S.
Mixing can be bounded from above via a lower bound on expansion [19] when the degree

of a Glauber graph is small (linear in the case of our chains):

▶ Lemma 14. Given a graph M = (V, E), consider the Markov chain whose state space
is V and whose transitions are of the form P (x, x) = 1/2, P (x, y) = 0∀(x, y) /∈ E , P (x, y) =
1/(2∆)∀(x, y) ∈ E, where ∆ is the maximum degree of M. The mixing time of this Markov
chain is at most

τ(ε) = O

(
∆2

(h(M))2 · ln |V|
ε

)
.

Expansion, in turn, can be bounded from below via an upper bound on the congestion of
a multicommodity flow. Given a multicommodity flow f = {fst|s, t ∈ V × V } in a graph G =
(V, E), define the congestion of f as the quantity ρ = max(u,v)∈E+

∑
s,t∈V ×V fst(u, v), i.e.

the maximum amount of flow sent across an edge.

▶ Lemma 15 ([19]). For every graph G = (V, E) and for every flow function f defined
over G and having congestion ρ, h(G) ≥ 1/(2ρ).

▶ Lemma 16. Given graphs H and J , let G be the Cartesian product H□J . Suppose
multicommodity flows exist in H and J with congestion at most ρH and ρJ respectively. Then
there exists a multicommodity flow in G with congestion at most max{ρH , ρJ}.

We proved Lemma 16 in [6], although an analogous result for expansion is known [8]. We
also proved the following in [6]. We review the lemma and give a modified proof sketch here,
in terms more intuitive for the chains we are analyzing in this paper. We will modify the
technique in Section 4.

▶ Lemma 17. Given a graph M(G) satisfying the conditions in Section 3.3, the expansion
of M(G) is Ω(1/nc), where c = O(1).

Proof Sketch. Partition M(G) into classes as in Definition 10. By Lemma 11, each class
C(T) ∈ S(G) is isomorphic to the Cartesian product M(A \ NA(T))□M(B \ NB(T)). We
make an inductive argument, in which the inductive hypothesis assumes that for each such
Cartesian product, the graphs M(A \ NA(T)) and M(B \ NB(T)) have multicommodity
flows fA and fB with congestion ρA ≤ clog |V (G)|−1, ρB ≤ clog |V (G)|−1 respectively, for some
constant c. By Lemma 16, C(T) then has a flow fT with congestion ρT ≤ clog |V (G)|−1. The
inductive step is to combine the fT flows for all of the classes, giving a flow f in M(G)
with small congestion. We need to route flow between every S, S′ ∈ V (M(G)). If S and S′

belong to the same class C(T), simply use the same flow that S uses to send its unit to S′

in fT . If S ∈ C(T) and S′ ∈ C(T ′) ̸= C(T) belong to different classes, we find a sequence

ISAAC 2023

30:10 Rapid Mixing for Glauber Dynamics in Bounded-Treewidth Graphs

of intermediate classes through which to route flow from C(T) to C(T ′). See Figure 2. We
specified in our companion paper [6] how to route the flow through each intermediate class
so that the congestion across each edges between a pair of classes is at most O(1), then made
use of the existing flows within each class guaranteed by the inductive hypothesis to bound
the resulting amount of flow within each class C(T). We showed that the latter is at most
O(1) · ρT , giving overall congestion O(1)l, where l is the number of induction levels. Since X

is a balanced separator we have l = O(log n); the lemma now follows from Lemma 14. ◀

The full proof of Lemma 17 is in our companion paper [6]. We will use the phrase “non-
hierarchical framework” to describe this set of conditions – which apply to the chains we
study when the underlying graph G has bounded treewidth and degree. Although Jerrum,
Son, Tetali, and Vigoda [11] did not consider bounded-treewidth graphs generally, these
conditions do allow their projection-restriction technique to be applied. In effect, Lemma 17
and its proof, which we gave in our previous work, characterize a sufficient set of conditions
for applying Jerrum, Son, Tetali, and Vigoda’s technique: specifically, one can, instead of
routing flow internally through each intermediate class, simply treat the construction above
as a flow in the projection graph, concluding that the projection graph has a good spectral
gap – then apply [11]. The first main technical contribution of this paper is in Section 4, in
which we give an alternative set of conditions – which we will call our “hierarchical framework”
– that allows us to handle underlying graphs of unbounded degree (though treewidth still
must be bounded), and to handle chains other than the hardcore model. This will allow us
to complete the proofs of Theorems 1, 2, and 3.

4 λ = 1: Unbounded degree

4.1 Hierarchical framework
We now sketch “hierarchical” framework conditions that guarantee rapid mixing in the case
of unbounded degree (when treewidth is bounded). Several of the chains we consider satisfy
these conditions so long as the treewidth of the underlying graph is bounded. This is the first
main technical contribution in this paper. In the original framework, we assumed that the
classes were approximately the same size. Although all of the graphs to which we apply this
hierarchical framework satisfy this condition in graphs with bounded treewidth and degree,
this is not the case when the degree is unbounded. Fortunately, in the case of independent
sets, partial q-colorings, dominating sets, and b-edge covers, we solve this problem with some
modifications to the framework.

4.2 Independent sets
In the proof of Lemma 17, the assumption that the classes were approximately the same size
allowed every class CIS(T) to route flow for all pairs of vertices without being too congested,
because CIS(T) is sufficiently large. Once we discard this assumption, we need to specify
explicitly the path through which a given CIS(T) routes flow to each CIS(T ′). We construct a
flow in which for every such CIS(T), CIS(T ′), every intermediate class CIS(T ′′) that handles
flow between sets S ∈ CIS(T) and S′ ∈ CIS(T ′) is larger than one of CIS(T) or CIS(T ′). We
then bound the number of pairs of sets, relative to |CIS(T ′′)|, for which CIS(T ′′) carries flow.

To accomplish this, we observe that for any CIS(T), CIS(T ′) such that there exists one
move between an independent set in CIS(T ′) and an independent set in CIS(T), either every
independent set in CIS(T ′) has a move to some independent set in CIS(T), or vice versa.
This move consists of dropping some vertex v from T ′ ⊆ X to obtain T , i.e. T = T ′ \ {v}.

D. Eppstein and D. Frishberg 30:11

CIS(T)

CIS(P) CIS(P ′)

CIS(C) CIS(C ′)

Figure 3 Left: a schematic representation of the classes in the independent set Glauber graph
and edges between them when the degree is unbounded. Right: a class CIS(T), with two parents,
CIS(P) and CIS(P ′), and two children, CIS(C) and CIS(C′). (Classes with larger cardinality are drawn
larger.) The parallel edges depict the fact that a child class always has every one of its vertices
adjacent to a vertex in a given parent class, and that the edges between any given pair of classes are
vertex-disjoint.

We call CIS(T) a parent of CIS(T ′), and CIS(T ′) a child of CIS(T). See Figure 3. Since the
set of edges connecting vertices in CIS(T) with vertices in CIS(T ′) forms a matching, this
implies that |CIS(T)| ≥ |CIS(T ′)|. In fact, whenever T ⊆ T ′, we have |CIS(T)| ≥ |CIS(T ′)|.
We route flow between any pair of classes CIS(T) and CIS(T ′) along a path through a “least
common ancestor”. Since for every class CIS(T ′′) on this path, either |CIS(T ′′)| ≥ |CIS(T)| or
|CIS(T ′′)| ≥ |CIS(T ′)|, we obtain a bound on congestion that we make precise in the appendix
of the full version.

In the proof sketch of Lemma 17 (Section 3.2), for every pair S ∈ C(T), S′ ∈ C(T ′) ̸= C(T),
we found a sequence of classes C(T) = C(T1), C(T2), . . . , C(Tk−1), C(Tk) = C(T ′) through which
to route the S −S′ flow. As discussed in Section 4, when the degree is unbounded, the classes
are no longer nearly the same size – so if this sequence is chosen carelessly, some C(Ti) may
carry flow for too many S − S′ pairs. We therefore choose the sequences carefully: the parent-
child relationships induce a partial order ≺ on the classes with a unique maximal element,
where C(T) ≻ C(T ′) implies |C(T)| ≥ |C(T ′)|. We choose our sequence so that for some i

with 1 ≤ i ≤ k, |C(T1)| ≤ |C(T2)| ≤ · · · ≤ |C(Ti)| ≥ |C(Ti+1)| ≥ · · · |C(Tk−1)| ≥ |C(Tk)|.

4.3 Hierarchical Framework Conditions
The conditions are as follows. Conditions 2 through 4 are new and concern the partial order
described above; Condition 1 and Conditions 5 through 7 are as in Section 3.3.
1. The vertices of M(G) can be partitioned into a set S of classes, where |S| = O(1).
2. There exists a partial order ≺ on the classes in S, such that whenever C(T), C(T ′) ∈ S

and C(T) ≻ C(T ′), we have |C(T)| ≥ |C(T ′)|.
3. The partial order ≺ has a unique maximal element.
4. Whenever an edge exists between vertices in C(T) and C(T ′) with C(T) ≻ C(T ′), the

number of such edges is |C(T ′)|.
5. For every pair of classes C(T) and C(T ′) that share an edge, the maximum degree, in

C(T), of a vertex in C(T ′), is O(1), and the maximum degree, in C(T ′), of a vertex in
C(T), is O(1).

6. Each class in S is the Cartesian product of two graphs M(G1) and M(G2), each of which
can be recursively partitioned in the same way as M(G).

7. The recursive partitioning mentioned in Condition 6 reaches the base case (graphs with
one or zero vertices) in O(log n) levels of recursion.

ISAAC 2023

30:12 Rapid Mixing for Glauber Dynamics in Bounded-Treewidth Graphs

▶ Lemma 18. Given a graph M(G) satisfying the conditions in Section 4.3, the expansion
of M(G) is Ω(1/nc), where c = O(1).

We defer the proof of Lemma 18 to the appendix of the full version.

References
1 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials

II: High-dimensional walks and an FPRAS for counting bases of a matroid. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019), New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316385.

2 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46, 2018.
doi:10.1109/FOCS.2018.00013.

3 Noam Berger, Claire Kenyon, Elchanan Mossel, and Yuval Peres. Glauber dynamics on
trees and hyperbolic graphs. Probability Theory and Related Fields, 131:311–340, 2005.
doi:s00440-004-0369-4.

4 Hans L. Bodlaender. Fixed-parameter tractability of treewidth and pathwidth. In The
Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on
the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages
196–227. Springer, 2012. doi:10.1007/978-3-642-30891-8_12.

5 David Eppstein and Daniel Frishberg. Rapid mixing of the hardcore Glauber dynamics and
other Markov chains in bounded-treewidth graphs. arXiv preprint, 2021. doi:10.48550/
arXiv.2111.03898.

6 David Eppstein and Daniel Frishberg. Improved Mixing for the Convex Polygon Triangulation
Flip Walk. In 50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023), volume 261, pages 56:1–56:17, 2023. doi:10.4230/LIPIcs.ICALP.2023.56.

7 Jeff Erickson. Computational topology: Treewidth. Lecture Notes, 2009. URL: http:
//jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf.

8 F. Graham and P. Tetali. Isoperimetric inequalities for cartesian products of graphs. Comb.
Probab. Comput., 7:141–148, 1998.

9 Venkatesan Guruswami. Rapidly mixing markov chains: A comparison of techniques (a survey).
arXiv, 2016. arXiv:1603.01512.

10 Marc Heinrich. Glauber dynamics for colourings of chordal graphs and graphs of bounded
treewidth, 2020. arXiv:2010.16158.

11 Mark Jerrum, Jung-Bae Son, Prasad Tetali, and Eric Vigoda. Elementary bounds on Poincaré
and log-Sobolev constants for decomposable Markov chains. The Annals of Applied Probability,
14(4):1741–1765, 2004. URL: http://www.jstor.org/stable/4140446.

12 David A Levin, Elizabeth Wilmer, and Yuval Peres. Markov chains and mixing times, volume
107. American Mathematical Society, 2009. URL: https://bookstore.ams.org/mbk-58.

13 Neal Madras and Dana Randall. Markov chain decomposition for convergence rate analysis.
The Annals of Applied Probability, 12(2):581–606, 2002. doi:10.1214/aoap/1026915617.

14 Fabio Martinelli, Alistair Sinclair, and Dror Weitz. Fast mixing for independent sets, colorings,
and other models on trees. Random Structures & Algorithms, 31(2):134–172, 2007. doi:
10.1002/rsa.20132.

15 Lisa McShine and P. Tetali. On the mixing time of the triangulation walk and other catalan
structures. In Randomization Methods in Algorithm Design, 1997.

16 Milena Mihail and Umesh Vazirani. On the expansion of 0-1 polytopes. Journal of Combinat-
orial Theory, Series B, 1989.

17 Ben Morris and Alistair Sinclair. Random walks on truncated cubes and sampling 0-1 knapsack
solutions. SIAM journal on computing, 34(1):195–226, 2004.

https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1109/FOCS.2018.00013
https://doi.org/s00440-004-0369-4
https://doi.org/10.1007/978-3-642-30891-8_12
https://doi.org/10.48550/arXiv.2111.03898
https://doi.org/10.48550/arXiv.2111.03898
https://doi.org/10.4230/LIPIcs.ICALP.2023.56
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf
http://jeffe.cs.illinois.edu/teaching/comptop/2009/notes/treewidth.pdf
https://arxiv.org/abs/1603.01512
https://arxiv.org/abs/2010.16158
http://www.jstor.org/stable/4140446
https://bookstore.ams.org/mbk-58
https://doi.org/10.1214/aoap/1026915617
https://doi.org/10.1002/rsa.20132
https://doi.org/10.1002/rsa.20132

D. Eppstein and D. Frishberg 30:13

18 Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

19 Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multicommod-
ity flow. Combinatorics, Probability and Computing, 1(4):351–370, 1992. doi:10.1017/
S0963548300000390.

ISAAC 2023

https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1017/S0963548300000390
https://doi.org/10.1017/S0963548300000390

Matching Cuts in Graphs of High Girth and
H-Free Graphs
Carl Feghali #

University of Lyon, EnsL, CNRS, LIP, F-69342, Lyon Cedex 07, France

Felicia Lucke #

Department of Informatics, University of Fribourg, Switzerland

Daniël Paulusma #

Department of Computer Science, Durham University, UK

Bernard Ries #

Department of Informatics, University of Fribourg, Switzerland

Abstract
The (Perfect) Matching Cut problem is to decide if a connected graph has a (perfect) matching
that is also an edge cut. The Disconnected Perfect Matching problem is to decide if a
connected graph has a perfect matching that contains a matching cut. Both Matching Cut and
Disconnected Perfect Matching are NP-complete for planar graphs of girth 5, whereas Perfect
Matching Cut is known to be NP-complete even for subcubic bipartite graphs of arbitrarily large
fixed girth. We prove that Matching Cut and Disconnected Perfect Matching are also
NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree.
Our result for Matching Cut resolves a 20-year old open problem. We also show that the more
general problem d-Cut, for every fixed d ≥ 1, is NP-complete for bipartite graphs of arbitrarily large
fixed girth and bounded maximum degree. Furthermore, we show that Matching Cut, Perfect
Matching Cut and Disconnected Perfect Matching are NP-complete for H-free graphs
whenever H contains a connected component with two vertices of degree at least 3. Afterwards,
we update the state-of-the-art summaries for H-free graphs and compare them with each other,
and with a known and full classification of the Maximum Matching Cut problem, which is to
determine a largest matching cut of a graph G. Finally, by combining existing results, we obtain a
complete complexity classification of Perfect Matching Cut for H-subgraph-free graphs where
H is any finite set of graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases matching cut, perfect matching, girth, H-free graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.31

Acknowledgements We thank Hoang-Oanh Le for a significant simplification of our original proof of
Theorem 6, which we simplified a bit further. We thank Van Bang Le for observing the bound on
the maximum degree in Theorem 6, solving an Open Problem Garden question.

1 Introduction

We consider classic graph problems for finding certain edge cuts, which have in common that
their edges must form a matching. In order to explain this, let G = (V, E) be a connected
graph. A set M ⊆ E is a matching of G if no two edges in M share an end-vertex; M is
perfect if every vertex of G is incident to an edge of M . A set M ⊆ E is an edge cut of G if
V can be partitioned into two sets B and R, such that M consists of all the edges with one
end-vertex in B and the other one in R. We say that M is a (perfect) matching cut of G if
M is a (perfect) matching that is also an edge cut. We refer to Figure 1 for some examples.

© Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carl.feghali@ens-lyon.fr
https://orcid.org/0000-0001-6727-7213
mailto:felicia.lucke@unifr.ch
https://orcid.org/0000-0002-9860-2928
mailto:daniel.paulusma@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:bernard.ries@unifr.ch
https://orcid.org/0000-0003-4395-5547
https://doi.org/10.4230/LIPIcs.ISAAC.2023.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Matching Cuts in Graphs of High Girth and H-Free Graphs

Figure 1 The graph P6 from [31] with a matching cut that is not contained in a disconnected
perfect matching (left), a matching cut that is properly contained in a disconnected perfect matching
(middle) and a perfect matching cut (right). In each figure, thick edges denote matching cut edges.

Graphs with matching cuts were introduced in 1970 by Graham [18] as decomposable
graphs. Matching cuts have applications in number theory [18], graph drawing [34], graph
homomorphisms [16], edge labelings [2] and ILFI networks [13]. Moreover, a connected graph
with no vertex of degree 1 has a matching cut if and only if its line graph has a vertex cut
that is an independent set (stable cut set). As such, (perfect) matching cuts are well studied
in the literature.

Instead of considering perfect matchings that are edge cuts, we can also consider perfect
matchings in graphs that contain edge cuts. Such perfect matchings are called disconnected
perfect matchings; see Figure 1 again. Note that every perfect matching cut is a disconnected
perfect matching. However, there exist connected graphs, like the cycle C6 on six vertices,
that have a disconnected perfect matching (and thus a matching cut) but no perfect matching
cut. There also exist connected graphs, like the path P3 on three vertices, that have a
matching cut, but no disconnected perfect matching (and thus no perfect matching cut
either).

The problems Matching Cut, Disconnected Perfect Matching and Perfect
Matching are to decide if a connected graph has a matching cut, disconnected perfect
matching or perfect matching cut, respectively. As explained below, all three problems are
NP-complete, and have been extensively studied for special graph classes.

Our Focus. The girth of a graph that is not a forest is the number of edges of a shortest
cycle in it; a forest has infinite girth. In 2003, Bonsma [6] asked if Matching Cut is still
NP-complete for graphs of large girth and proved that this is indeed the case for planar
graphs of girth 5. In the 2009 journal version of [6], Bonsma showed that every connected
planar graph of girth at least 6 has a matching cut. Hence, the complexity status of
Matching Cut for graphs of large girth remained unknown and was regularly posed as an
open problem [9, 24, 27, 29].

Bouquet and Picouleau [8] proved that Disconnected Perfect Matching is NP-
complete for planar graphs of girth g = 5 and left the cases where g ≥ 6 open. In contrast,
Le and Telle [27] proved that for every g ≥ 3, Perfect Matching Cut is NP-complete for
subcubic bipartite graphs of girth at least g (a graph is subcubic if it has maximum degree at
most 3). We focus on the two remaining open problems:

What is the complexity of Matching Cut and Disconnected Perfect Matching for
graphs of large girth?

A challenging task is to find gadgets with no edges that are subdivided twice; such gadgets
always have a matching cut (take the two subdivision vertices on one side and all other
vertices on the other) and cannot be used in any hardness reduction.

1.1 Other Relevant Known Results
We restrict ourselves to hereditary graph classes, that is, classes of graphs closed under vertex
deletion. A class of graphs G is hereditary if and only if the graphs in G are FG-free for some
unique set FG , that is, they do not contain any graph from FG as an induced subgraph. For
a systematic study, one may start with H-free graphs (so where FG has a single graph H).

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:3

u v u v. . .

length i

Figure 2 The graphs H∗ = H∗
1 (left) and H∗

i (right).

Matching Cuts. Chvátal [10] proved that Matching Cut is NP-complete even for K1,4-free
graphs of maximum degree 4 (the graph K1,r is the (r + 1)-vertex star); see [34] for an
alternative hardness proof. In contrast, Chvátal [10] also proved that Matching Cut is
polynomial-time solvable for graphs of maximum degree at most 3, whereas Bonsma [6]
proved the same for K1,3-free graphs, thereby generalizing a known result of Moshi [32] for
line graphs, and also for P4-free graphs; the latter result was extended to P5-free graphs
in [14] and to P6-free graphs in [29]. Kratsch and Le [23] proved polynomial-time solvability
for (K1,4, K1,4 + e)-free graphs. It is also known that if Matching Cut is polynomial-time
solvable for H-free graphs for some graph H, then it is so for (H + P3)-free graphs [29]; for
two vertex-disjoint graphs G1 and G2, we write G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).

Moshi [32] proved that Matching Cut is NP-complete even for bipartite graphs where
the vertices in one set of the bipartition all have degree exactly 2. Consequently, Matching
Cut is NP-complete for (H∗

1 , H∗
3 , H∗

5 , . . .)-free bipartite graphs, where H∗
1 = H∗ denotes the

graph that looks like the letter “H”, and for i ≥ 2, the graph H∗
i is the graph obtained from

H∗ = H∗
1 by subdividing the middle edge of H∗

1 exactly i − 1 times; see also Figure 2.
Le and Randerath [26] proved that Matching Cut is NP-complete for K1,5-free bipartite

graphs and thus for Cs-free graphs if s is odd. Recall that Bonsma [6] proved that Matching
Cut is NP-complete for planar graphs of girth 5, and thus for (C3, C4)-free graphs. By using
the graph transformation of Moshi [32], Matching Cut is NP-complete for Cs-free graphs
also if s is even and at least 6 [29]. In [31] it was shown that Matching Cut is NP-complete
even for (3P5, P15)-free graphs, strengthening a result of [14]. Afterwards, Le and Le [25]
proved that Matching Cut is NP-complete even for (3P6, 2P7, P14)-free graphs.

We refer to [7, 24, 29] for results for non-hereditary graph classes, to [3, 15, 17, 22, 23]
for parameterized complexity results and exact algorithms, to [4, 17] for a generalization of
Matching Cut to d-Cut (where instead of at most one neighbour we allow each vertex to
have at most d neighbours across the cut) and to [9] for a comprehensive overview.

Disconnected Perfect Matchings. The Disconnected Perfect Matching problem
was introduced by Bouquet and Picouleau [8]. They used a different name but we adapt
the name of Le and Telle [27] to avoid confusion with Perfect Matching Cut. Bouquet
and Picouleau [8] showed that Disconnected Perfect Matching is, among others,
polynomial-time solvable for K1,3-free graphs and P5-free graphs, but NP-complete for
K1,4-free planar graphs, planar graphs of girth 5 and for bipartite graphs, and thus for
Cs-free graphs for every odd s. Le and Le [25] proved that Disconnected Perfect
Matching is NP-complete even for (3P6, 2P7, P14)-free graphs, which improved the previous
NP-completeness result of [31] for (3P7, P19)-free graphs.

Perfect Matching Cuts. The Perfect Matching Cut problem was first shown to be
NP-complete by Heggernes and Telle [19]. Le and Telle [27] proved, besides NP-completeness
for subcubic bipartite graphs of girth at least g (for any g ≥ 3), that Perfect Matching

ISAAC 2023

31:4 Matching Cuts in Graphs of High Girth and H-Free Graphs

Cut is polynomial-time solvable for chordal graphs and for S1,2,2-free graphs; the graph
S1,2,2 is obtained by subdividing two of the edges of the claw K1,3 exactly once. In [31], it
was shown that Perfect Matching Cut is polynomial-time solvable for P6-free graphs,
and moreover for (H + P4)-free graphs if it is polynomial-time solvable for H-free graphs.

Even more recently, two new results were shown. Le and Le [25] proved that Per-
fect Matching Cut is NP-complete even for (3P6, 2P7, P14)-free graphs (using the same
construction as for Matching Cut and Disconnected Perfect Matching), whereas
Bonnet, Chakraborty and Duron [5] proved that Perfect Matching Cut is NP-complete
for 3-connected cubic bipartite planar graphs.

1.2 Our Results
As our main results, we solve, in Section 3, the aforementioned two open problems in the
literature [6, 8, 9, 24, 27, 29] by showing that for every g ≥ 3, Matching Cut is NP-complete
for bipartite graphs of girth at least g and maximum degree at most 60 and Disconnected
Perfect Matching is NP-complete for bipartite graphs of girth at least g and maximum
degree at most 74. Note that our first result answers, in the negative, a question [33] from
the Open Problem Garden:

“For every d does there exists a g such that every graph with average degree smaller than d

and girth at least g has a matching-cut?”

As an immediate consequence of our second result, we have that Disconnected Perfect
Matching is NP-complete for Cs-free graphs for even s (as mentioned above, previously
this was only known for odd s [8]). To overcome the obstacle that connected graphs with a
2-subdivided edge have a matching cut, we use results from the theory of expander graphs.
The proof of our result on Matching Cut is surprisingly short. Moreover, we can extend it
in a straightforward way to show the following. For every d ≥ 2 and g ≥ 3, there exists a
function f(d) that only depends on d, such that even d-Cut is NP-complete for bipartite
graphs of girth at least g and maximum degree at most f(d); recall that 1-Cut is the
Matching Cut problem.

In Section 3, we also highlight an implicit result of Le and Telle [27] for Perfect
Matching Cut. In their NP-hardness proof for subcubic bipartite graphs of high girth,
they showed that a graph G has a perfect matching cut if and only if the graph obtained
from G by subdividing some edge four times has a perfect matching cut. Since graphs with a
2-subdivided edge have a matching cut, this property shows a fundamental difference between
matching cuts and perfect matching cuts.

For i ≥ 2, recall from Figure 2 that H∗
i is the graph obtained from H∗ = H∗

1 by
subdividing the middle edge of H∗

1 exactly i − 1 times. Recall also that a result of Moshi [32]
implies that Matching Cut is NP-complete for (H∗

1 , H∗
3 , H∗

5 , . . .)-free bipartite graphs.
In Section 4, we extend this result by proving that for every i ≥ 1, Matching Cut
and Disconnected Perfect Matching are NP-complete for (H∗

1 , . . . , H∗
i)-free graphs.

We obtain these results by replacing the gadget of Moshi [32] with more advanced graph
transformations. In Section 4, we also make explicit that the construction of Le and Telle [27]
for subcubic bipartite graphs of girth at least g gives in fact NP-completeness of Perfect
Matching Cut for (H∗

1 , . . . , H∗
i)-free subcubic bipartite graphs of girth at least g, for any

g ≥ 3. Hence, all three problems are NP-complete for H-free graphs whenever H has a
connected component with two vertices of degree at least 3.

In Section 5, we combine our new results with the known results. We update the state-of-
the-art summaries for the three problems on H-free graphs; basically, for all three problems,
we only need to consider cases where H is a linear forest. Apart from comparing the (partial)

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:5

classification of the three problems with each other, we also compare them with a recent
complete classification of the Maximum Matching Cut problem for H-free graphs [30].
This problem is to determine a matching cut in a graph G with a maximum number of edges
(or output that no matching cut exists in G). Finally, we show how the results for Perfect
Matching Cut lead to a full classification of Perfect Matching Cut on H-subgraph-free
graphs, for every finite set of graphs H.

2 Preliminaries

We only consider finite, undirected graphs without multiple edges and self-loops. Let
G = (V, E) be a graph. For u ∈ V , the set N(u) = {v ∈ V | uv ∈ E} is the neighbourhood of
u in G, where |N(u)| is the degree of u. For an integer p ≥ 0, G is p-regular if every u ∈ V

has degree p. Let S ⊆ V . The neighbourhood of S is the set N(S) =
⋃

u∈S N(u) \ S. The
graph G[S] is the subgraph of G induced by S ⊆ V , that is, G[S] is the graph obtained
from G after deleting the vertices not in S. We write G − S = G[V \ S]. Let u, v ∈ V . The
distance between u and v in G is the length (number of edges) of a shortest path between u

and v in G. The subdivision of an edge e = uv of G replaces e by a new vertex w and edges
uw and wv.

We will now define some useful colouring terminology for matching cuts used in other
papers as well (see e.g. [31]). In the remainder of this section, we let G = (V, E) be a
connected graph. A red-blue colouring of G colours every vertex of G either red or blue.
If every vertex of some set S ⊆ V has the same colour (red or blue), then S is said to be
monochromatic. We also say that G[S] is monochromatic. A red-blue colouring of G is valid
if the following holds:
1. every blue vertex has at most one red neighbour;
2. every red vertex has at most one blue neighbour; and
3. both colours red and blue are used at least once.

If a red vertex u in G has a blue neighbour v, then u and v are said to be matched. See
Figure 1 for three examples of valid red-blue colourings of the P6.

For a valid red-blue colouring of G, we let R be the red set consisting of all vertices
coloured red and B be the blue set consisting of all vertices coloured blue. Note that
V = R ∪ B. The red interface is the set R′ ⊆ R consisting of all vertices in R with a (unique)
blue neighbour, and the blue interface is the set B′ ⊆ B consisting of all vertices in B with a
(unique) red neighbour in R.

A red-blue colouring of G is perfect if it is valid and moreover R′ = R and B′ = B; see
Figure 1 (middle) for an example of a perfect red-blue colouring (of the P6). A red-blue
colouring of G is perfect-extendable if it is valid and G[R \ R′] and G[B \ B′] both contain
a perfect matching; see Figure 1 (right) for an example of a perfect-extendable red-blue
colouring (of the P6). In other words, the matching defined by the edges with one end-vertex
in R′ and the other one in B′ can be extended to a perfect matching in G or, equivalently, is
contained in a perfect matching in G.

We now make the following straightforward observation (see also e.g. [31]).

▶ Observation 1. Let G be a connected graph. The following three statements hold:
(i) G has a matching cut if and only if G has a valid red-blue colouring;
(ii) G has a disconnected perfect matching if and only if G has a perfect-extendable red-blue

colouring;
(iii) G has a perfect matching cut if and only if G has a perfect red-blue colouring.

ISAAC 2023

31:6 Matching Cuts in Graphs of High Girth and H-Free Graphs

Finally, we formally define the notion of a d-cut. For an integer d ≥ 1 and a connected graph
G = (V, E), a set M ⊆ E is a d-cut of G if V can be partitioned into two sets B and R, such
that the following two conditions hold:

(i) M consists of all the edges with one end-vertex in B and the other one in R; and
(ii) every vertex in B has at most d neighbours in R, and vice versa.

Recall that the corresponding d-Cut problem is to decide if a connected graph has a d-cut.
Hence, 1-Cut and Matching Cut are the same problems.

3 Hardness for Arbitrary Given Girth

In this section, we will show that Matching Cut (Section 3.1) and Disconnected Perfect
Matching (Section 3.2) remain NP-complete even for graphs of high girth and bounded
maximum degree; recall that previously both problems were known to be NP-complete for
(planar) graphs of girth at least g, only for g ≤ 5 [6, 8]. We also briefly discuss how an implicit
observation of Le and Telle [27] gives a simple, alternative proof for showing NP-completeness
for Perfect Matching Cut (Section 3.3) for graphs of high girth.

We need the following notions. The edge expansion h(G) of a graph G = (V, E) on
n vertices is defined as

h(G) = min
1≤|S|≤ n

2

|∂S|
|S|

,

where ∂S := {uv ∈ E | u ∈ S, v ∈ V \ S} is the set of all edges of G with one end-vertex in
S and one end-vertex outside S.

A connected graph G is said to be (matching-)immune if G admits no matching cut. We
generalize this notion as follows. For an integer d ≥ 1, we say that a connected graph G is
d-immune if G admits no d-cut, so being 1-immune is the same as being immune. We make
the following observation (proof omitted).

▶ Observation 2. For every integer d ≥ 1, every connected graph G with h(G) > d is
d-immune.

3.1 Matching Cut and d-Cut
In order to prove our hardness results for Matching Cut and d-Cut for bipartite graphs
of high girth and bounded maximum degree, we use known results on expander graphs and
number theory.

Two integers a and b are coprime, if they do not have a common divisor greater than 1.
The following result is well known.

▶ Theorem 3 ([11]). For two positive, coprime integers a and b, the sequence a + bk, for
k ∈ N contains infinitely many primes.

For an integer a and a prime p, the Legendre symbol is defined as
(

a
p

)
≡ a

p−1
2 mod p. It

is well known (see, for example, [35]) that for any integer a and prime p, it holds that(
a
p

)
≡ 0 mod p, or 1 mod p, or (p − 1) mod p, and with slight abuse of notation one denotes

these integers by 0, 1 and −1, respectively.
We use Theorem 3 to show the following lemma (proof omitted).

▶ Lemma 4. There are infinitely many primes q, such that
a) q > 13,
b) q ≡ 1 mod 4, and
c) the Legendre symbol

(
q

13
)

= −1.

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:7

x y

F

x1 y1

x2 y2

F ′

Figure 3 The graph F with designated vertices x and y at distance at least g (left) and the
graph F ′ (right) from the proof of Theorem 6.

Lemma 5 uses known results from the theory of expander graphs. We need the fact that the
graph in the statement of Lemma 5 has a perfect matching only in Section 3.2.

▶ Lemma 5. For every g ≥ 3, there is an immune 14-regular bipartite graph with girth at
least g that contains a perfect matching.

Proof. It follows from a construction of Lubotzky, Phillips and Sarnak [28] based on Caley
graphs that for every two primes p and q with the following four properties

q > p,
p ≡ 1 mod 4,
q ≡ 1 mod 4, and(

p
q

)
= −1,

there exists a (p + 1)-regular bipartite graph G with λ2(G) ≤ 2√
p and girth at least

4 logp q − logp 4; here, λ2(G) denotes the second largest eigenvalue of the adjacency matrix
of G.

We set p = 13, so p ≡ 1 mod 4. We now combine the above with Lemma 4 to find that
there exist infinitely many primes q, such that there exists a 14-regular bipartite graph Gq

with λ2(Gq) ≤ 2
√

13 and girth at least 4 log13 q − log13 4. Moreover, Dodziuk [12] and,
independently, Alon and Milman [1] showed that for every integer ℓ ≥ 1, every ℓ-regular
graph G satisfies h(G) ≥ 1

2 (ℓ − λ2(G)). This means that

h(Gq) ≥ 1
2(14 − λ2(Gq)) ≥ 1

2(14 − 2
√

13) ≈ 3.39 > 1.

Hence, by applying Observation 2, we find that Gq is immune.
By taking q sufficiently large, we conclude that for any g ≥ 3, there exists an immune

14-regular bipartite graph G with girth at least g. Finally, as G is bipartite and regular, we
find that G has a perfect matching (due to Hall’s Marriage Theorem). ◀

▶ Remark 1. The arguments that we used to prove Lemma 5 do not allow us to set p = 13
to a smaller value. We need p to be prime, and moreover, it must hold that p ≡ 1 mod 4.
Hence, the only alternative value for p that is smaller than 13 would be p = 5. However,
p = 5 yields h(Gq) ≥ 1

2 (6 − 2
√

5) ≈ 0.76, so we cannot conclude from this that Gq is immune.

We use Lemma 5 in the proof of our first main result.

▶ Theorem 6. For every integer g ≥ 3, Matching Cut is NP-complete for bipartite graphs
of girth at least g and maximum degree at most 60.

Proof. Let g ≥ 3. As the class of graphs of girth at least g + 1 is a subclass of the class of
graphs of girth at least g, we may assume without loss of generality that g is divisible by 2
but not by 4, so g

2 is odd. We reduce from Matching Cut. Recall that Matching Cut is

ISAAC 2023

31:8 Matching Cuts in Graphs of High Girth and H-Free Graphs

NP-complete for graphs of degree at most 4 [10]. Let G be a connected graph of maximum
degree at most 4. From G we construct a graph G′ with the required properties, but first we
define an auxiliary graph F ′.

By Lemma 5 there exists an immune 14-regular bipartite graph F with girth at least g.
Note that F has constant size, so we can find F in constant time.

Let x and y be two vertices of distance g
2 in F . As g

2 is odd, x and y belong to opposite
bipartition classes of F . We take two copies F1 and F2 of F , and we add an edge between
the two copies x1 and x2 of x and an edge between the two copies y1 and y2 of y. This yields
a graph F ′. As F is bipartite and has girth at least g, we find that F ′ is bipartite and has
girth at least g as well. The construction also gives us that x1 and y2 belong to the same
bipartition class of F ′. See also Figure 6.

Now consider an edge uv in G. The F ′-replacement of uv is obtained from the graphs G

and F ′ by identifying u with x1 and v with y2. We do an F ′-replacement on every edge
of G. This yields the graph G′. Since F ′ is bipartite such that the distance between x1 and
y2 is even, we find that G′ is bipartite as well. By construction, G′ has girth at least g and
maximum degree at most 4 × (14 + 1) = 60.

We claim that G has a matching cut if and only if G′ has a matching cut. We prove this
below, using Observation 1-(i) implicitly.

First suppose that G has a matching cut, so G has a valid red-blue colouring c. For every
edge uv in G we do as follows. Let F ′ with copies F1 and F2 of F be the corresponding
F ′-replacement applied on uv. If u and v have the same colour, then we colour every vertex
of V (F ′) \ {u, v} with that colour. If u and v are coloured differently, say u is red and v is
blue, then we colour every vertex in V (F1) red and every vertex in V (F2) blue. This yields a
valid red-blue colouring of G′. Hence, G′ has a matching cut.

Now suppose that G′ has a matching cut, so G′ has a valid red-blue colouring c′. As F is
immune, every copy of it in G′ is monochromatic. Thus, for two vertices x1, y2 ∈ V (F ′) in
some graph F ′ in G′, it holds that x1 and y2 each have a neighbour in F ′ of the opposite
colour if and only if x1 and y2 have different colours in G′. Hence, the restriction of c′ to
V (G) is a valid red-blue colouring of G. Hence, G has a matching cut. ◀

We now focus on the d-Cut problem for arbitrary d ≥ 1, and we show how Theorem 6 can be
generalized in a straightforward way. This requires us to replace Lemma 4 by the following
lemma (proof omitted).

▶ Lemma 7. There are infinitely many primes p, such that
a) p ≥ 13,
b) p ≡ 1 mod 4, and
c) there exists an infinite set Qp such that the following holds for every q ∈ Qp:

i. q > p

ii. q ≡ 1 mod 4, and
iii. the Legendre symbol

(
q
p

)
= −1.

We are now ready to generalize Theorem 6.

▶ Theorem 8. For every integer d ≥ 1 and every integer g ≥ 3, there is a function f(d) that
only depends on d, such that d-Cut is NP-complete for bipartite graphs of girth at least g

and maximum degree at most f(d).

Proof. Let d ≥ 1. By Observation 2, every graph G with h(G) > d is d-immune. Hence, we
can construct a (p + 1)-regular bipartite gadget F using the arguments from the proof of
Lemma 5, where Lemma 7 plays the role of Lemma 4. That is, we can choose p such that

(i) p is a prime congruent to 1 mod 4, and
(ii) 1

2 (p + 1 − λ2(G)) ≥ 1
2 (p + 1 − 2√

p) > d.

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:9

a)
s tx y

F (s, t)

s tx y

F

s = s1 t1 = s2 t2 = s3 t3 = t

H(s, t)

b)
s t s t

Figure 4 a) Illustration of the graphs F (left), F (s, t) (middle) and H(s, t) (right). b) Illustration
of how the edges in the perfect matching of H(s, t) (left) resp. H(s, t) − {s, t} (right) are chosen
(these edges are represented as red, thick edges).

We now reduce from d-Cut. Gomes and Sau [17] proved that d-Cut is NP-hard for graphs
of maximum degree at most 2d + 2. Hence, we may assume that the instance G from d-Cut
has maximum degree at most 2d + 2. By applying the arguments of the proof of Theorem 6,
we can use F and G to construct for every integer g ≥ 3, a bipartite graph G′ of girth at
least g and maximum degree at most f(d), such that G has a d-cut if and only if G′ has a
d-cut. ◀

▶ Remark 2. Since it is not possible to give the smallest prime p satisfying conditions (i)
and (ii) in the proof of Theorem 8, we can merely state that the maximum degree of G′ is
bounded by some function f(d) that only depends on d.

3.2 Disconnected Perfect Matching
We now show that Disconnected Perfect Matching is NP-complete for graphs of
arbitrarily large fixed girth and bounded maximum degree. Our proof uses some new ideas,
but we note that it is also possible to use a similar approach as in the proof of Theorem 6.
However, this will lead to a slightly worse bound on the maximum degree, namely 75 instead
of 74.

We first define some useful auxiliary graphs. Fix g ≥ 3 such that g is divisible by 6
and g/6 is odd. Let F be a 14-regular immune bipartite graph with girth at least 2(g + 1)
containing a perfect matching. We note that F exists by Lemma 5, and as F has constant
size, F can be found in constant time.

Let s and t be two designated vertices in F at distance at least g + 1. We fix a perfect
matching M of F . Let x ∈ NF (s) and y ∈ NF (t) be the (unique) neighbours of s and t in
M . Then, since s and t are at distance at least g + 1, x and y are at distance at least g − 1.
We add the edge xy and denote the resulting graph by F (s, t); see also Figure 4a).

We make the following observation (proof omitted).

▶ Lemma 9. The graph F (s, t) is immune, bipartite and has girth at least g. Moreover, both
F (s, t) and F (s, t) − {s, t} contain a perfect matching.

We now take k = g
6 copies F (s1, t1), . . . , F (sk, tk) of F (s, t) and identify si+1 with ti for all

i ∈ {1, . . . , k − 1}. We set s = s1 and t = tk and call the resulting graph H(s, t); see also
Figure 4a).

In the following lemma, whose proof we omit, we show some useful properties of H(s, t)
and H(s, t) − {s, t}.

ISAAC 2023

31:10 Matching Cuts in Graphs of High Girth and H-Free Graphs

▶ Lemma 10. The graph H(s, t) is immune, bipartite, and has girth at least g. Moreover,
dist(s, t) ≥ g

2 , and both H(s, t) and H(s, t) − {s, t} contain a perfect matching.

We are now ready to prove the following result.

▶ Theorem 11. For every integer g ≥ 3, Disconnected Perfect Matching is NP-
complete for bipartite graphs of girth at least g and maximum degree at most 74.

Proof. Let g ≥ 3. We reduce from Matching Cut for bipartite graphs of girth at least g

and maximum degree at most 60, which is NP-complete by Theorem 6. Similar to Theorem 6,
we may assume without loss of generality that g is divisible by 12. Let G be a bipartite
graph of girth at least g and maximum degree 60. We construct a graph G′ by taking two
copies G1 and G2 of G, where we connect every vertex v ∈ V (G1) and its copy v′ ∈ V (G2)
using the graph H(v, v′).

To see that G′ has girth at least g, we consider first G1 and G2, which both have girth at
least g. Any cycle containing vertices from both copies has to pass twice through a graph
H(s, t). Thus, it will always have length at least g, and so G′ has girth g. Every vertex
inside H(s, t) has degree at most 28, whereas s and t only have degree 14. The degree of a
vertex v ∈ V (G1) ∪ V (G2) is the degree of the vertex in the original graph G plus the degree
in the graph H(v, v′). Thus, the degree of v is at most 74.

We also claim that G′ is bipartite. For a contradiction, assume that G′ has an odd
cycle C. As G1 and G2 are both bipartite, C ′ must contain vertices from G1 and G2. Note
that C passes through an even number of graphs H(v, v′), where v ∈ V (G1) and v′ ∈ V (G2).
Hence, the number of edges in E(G) \ (E(G1) ∪ E(G2)) is even. Since the graph H(v, v′)
always connects a vertex v in G1 and its copy v′ in G2 we can find an odd cycle C ′ in G1,
consisting of the edges in C ∩ E(G1) and the edges in E(G1) corresponding to the edges
from C ∩ E(G2), a contradiction.

Finally, we show that G admits a matching cut if and only if G′ admits a disconnected
perfect matching. Consider some vertex v ∈ V (G1) and its copy v′ ∈ V (G2). Since v and v′

are connected by the graph H(v, v′), which is immune, v and v′ will always have the same
colour in any valid red-blue colouring of G′. Thus, G1 and G2 will be coloured the same
in any valid red-blue colouring. Now, if G admits a perfect-extendable red-blue colouring,
then G admits a valid red-blue colouring, as it suffices to colour G the same as G1 (or G2).

Conversely, if G admits a valid red-blue colouring, then we obtain a perfect-extendable
colouring of G′ as follows. We colour G1 and G2 the same as G. Notice that we colour the
immune graphs connecting two copies of the same vertex such that they are monochromatic.
This gives us a valid red-blue colouring of G′, i.e. a matching cut M in G′. It remains to show
that the matching cut is contained in a perfect matching of G′. Since the colourings of G1
and G2 are the same, we have that whenever a blue vertex v ∈ V (G1) is matched with a red
vertex u ∈ V (G1), i.e. vu ∈ M , then their copies v′ ∈ V (G2) and u′ ∈ V (G2) are matched as
well, i.e. v′u′ ∈ M . By Lemma 10, we know that H(v, v′) − {v, v′} and H(u, u′) − {u, u′}
contain both a perfect matching which we may add to M . For every v ∈ V (G1) with no
neighbour of the other colour, we know that its copy v′ ∈ V (G2) has no neighbour of the
other colour either. Thus, we can use that H(v, v′) contains a perfect matching by Lemma 10
and add it to M . Repeatedly doing this yields a perfect matching of G′ containing M . ◀

3.3 Perfect Matching Cut
In any perfect red-blue colouring of a connected graph G = (V, E), a vertex v ∈ V of degree 2
has exactly one neighbour coloured the same as itself and exactly one neighbour coloured
differently than itself. One can use this observation to prove the following lemma. This
lemma was implicit in [27] and we omit its proof.

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:11

▶ Lemma 12 ([27]). Let G = (V ′, E′) be the graph obtained from a connected graph G by
4-subdividing an edge e of G. Now, G has a perfect matching cut if and only if G′ has a
perfect matching cut.

A simple proof for showing that Perfect Matching Cut is NP-complete for graphs of
girth at least g is to apply Lemma 12, say, g times on each edge of the input graph. Recall
that the more involved gadget of Le and Telle [27] yields NP-completeness even for subcubic
bipartite graphs of girth at least g.

4 Hardness for Forbidden Subdivided H-Graphs

We show that Matching Cut (Section 4.1), Disconnected Perfect Matching (Sec-
tion 4.2) and Perfect Matching Cut (Section 4.3) are NP-complete for (H∗

1 , . . . , H∗
i)-free

graphs, for every i ≥ 1.

4.1 Matching Cut
Let uv be an edge of a graph G. We define an edge operation as displayed in Figure 5, which
when applied on uv will replace uv in G by the subgraph T i

uv. Note that in the new graph,
the only vertices from T i

uv that may have neighbours outside T i
uv are u and v.

u v

v2i−1 v2i−3 v3 v1

v2i
v2i−2 v4 v2

v

u

u2 u4 u2i−2
u2i

u1 u3 u2i−3 u2i−1

Figure 5 The edge uv (left) which we replace by the subgraph T i
uv (right).

▶ Theorem 13. For all i ≥ 1, Matching Cut is NP-complete for (H∗
1 , . . . , H∗

i)-free graphs.

Proof. Fix i ≥ 1. Reduce from Matching Cut. Let G = (V, E) be a connected graph.
Replace every uv ∈ E by the graph T i

uv (see Figure 5). This yields the graph G′ = (V ′, E′).
We claim that G′ is (H∗

1 , . . . , H∗
i)-free. For a contradiction, assume that G′ contains an

induced H∗
i′ for some 1 ≤ i′ ≤ i. Then G′ contains two vertices x and y that are centers of an

induced claw, as well as an induced path from x to y of length i′. All vertices in V ′ \ V are
not centers of any induced claw. Hence, x and y belong to V . By construction, any shortest
path between two vertices of V has length at least i + 1 in G′, a contradiction.

We claim that G′ has a matching cut if and only if G has a matching cut. First suppose
G′ has a matching cut M ′, so G′ has a valid red-blue colouring c′. We prove a claim for G′:

▷ Claim 13.1. For every edge uv ∈ E(G) it holds that
(a) either c′(u) = c′(v), and then T i

uv is monochromatic, or
(b) c′(u) ̸= c′(v), and then c′ colours u1, . . . , u2i with the same colour as u, while c′ colours all

vertices of T i
uv −{u, u1, . . . , u2i} with the same colour as v, and moreover, uv2i, vu2i ∈ M ′.

ISAAC 2023

31:12 Matching Cuts in Graphs of High Girth and H-Free Graphs

Proof. First assume c′(u) = c′(v), say c′ colours u and v red. As any clique of size at least 3
is monochromatic, all vertices in T i

uv are coloured red, so T i
uv is monochromatic.

Now assume c′(u) ̸= c′(v), say u is red and v blue. As before, we find that all vertices
u1, . . . , u2i have the same colour as u, so are red, while all vertices v1, . . . , v2i have the same
colour as v, so are blue. By definition, every edge xy with c′(x) ̸= c′(y) belongs to M ′, so
uv2i, vu2i ∈ M ′. ◁

We construct a subset M ⊆ E in G as follows. We add an edge uv ∈ E to M if and only if
c′(u) ̸= c′(v) in G′. We now show that M is a matching in G. Let u ∈ V . For a contradiction,
suppose that M contains edges uv and uw for v ̸= w. Then c′(u) ̸= c′(v) and c′(u) ̸= c′(w).
By Claim 13.1, we find that M ′ matches u in G′ to vertices in T i

uv and T i
uw, contradicting

our assumption that M ′ is a matching (cut). Hence, M is a matching.
Now let c be the restriction of c′ to V . If c colours every vertex of G with one colour,

say red, then c′ would also colour every vertex of G′ red by Claim 13.1, contradicting the
validity of c′. Hence, c uses both colours. Moreover, for every uv ∈ E, the following holds: if
c(u) ̸= c(v), then c′(u) ̸= c′(v) and thus uv ∈ M . Hence, as M is a matching, c is valid, and
thus M is a matching cut of G.

Conversely, assume that G admits a matching cut, so V has a valid red-blue colouring c.
We construct a red-blue colouring c′ of V ′ as follows.

For every edge uv ∈ E with c(u) = c(v), we let c′(x) = c(u) for every x ∈ V (T i
uv).

For every edge uv ∈ E with c(u) ̸= c(v), we let c′(u) = c′(u1) = · · · = c′(u2i) = c(u) and
c′(v) = c′(v1) = · · · = c′(v2i) = c(v).

As c is valid, c uses both colours and thus by construction, c′ uses both colours. Let u ∈ V .
Again as c is valid, c(u) ̸= c(v) holds for at most one neighbour v of u in G. Hence, by
construction, u belongs to at most one non-monochromatic gadget T i

uv. Thus, c′ colours in G′

at most one neighbour of u with a different colour than u. Let u ∈ V ′ \ V . By construction,
we find again that c′ colours at most one neighbour of u with a different colour than u.
Hence, c′ is valid, and so G′ has a matching cut. ◀

4.2 Disconnected Perfect Matching

u v

u

u′

vi+1

v2i+2

vi

v2i+1

vi−1

v2i

v2

vi+3

v1

vi+2

v′

v

i + 1 diamonds

Figure 6 The edge uv (left) which we replace by the subgraph Gi
uv (right).

We can prove the following result in a similar way as Theorem 13 and give a sketch of its
proof.

▶ Theorem 14. For every i ≥ 1, Disconnected Perfect Matching is NP-complete for
(H∗

1 , . . . , H∗
i)-free graphs.

Proof sketch. We first define a graph operation. Let uv be an edge of a graph G. We define
an edge operation as displayed in Figure 6, which when applied on uv replaces uv by the
subgraph Gi

uv for some integer i ≥ 1. In the new graph, the only vertices from Gi
uv that may

have neighbours outside Gi
uv are u and v.

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:13

Now fix an integer i ≥ 1. As the class of (H∗
1 , . . . , H∗

i)-free graphs is contained in the class
of (H∗

1 , . . . , H∗
i−1)-free graphs if i ≥ 2, we may assume without loss of generality that i is

even (we need this assumption at a later place in our proof). We reduce from Disconnected
Perfect Matching itself. Let G = (V, E) be a connected graph. We replace every edge
uv ∈ E by the graph Gi

uv (see Figure 6). Let G′ = (V ′, E′) be the resulting graph.
We can show that G′ is (H∗

1 , . . . , H∗
i)-free and that G has a disconnected perfect matching

if and only if G′ has a disconnected perfect matching. ◀

4.3 Perfect Matching Cut
We apply Lemma 12 (implicit in [27]) sufficiently times on every edge of a subcubic bipartite
graph of girth at least g and combine this with the NP-completeness of Perfect Matching
Cut for the class of such graphs [27]. Hence, Le and Telle essentially proved the following:

▶ Theorem 15 ([27]). For every i ≥ 1 and g ≥ 3, Perfect Matching Cut is NP-complete
for (H∗

1 , . . . , H∗
i)-free subcubic bipartite graphs of girth at least g.

5 Consequences and Open Problems

We give some consequences of our new results on Matching Cut, Disconnected Perfect
Matching and Perfect Matching Cut for H-free graphs and H-subgraph-free graphs.

5.1 H-Free Graphs
We give three up-to-date classifications for H-free graphs by combining the results from [6, 8,
10, 25, 26, 31, 29, 27, 32] (see Section 1.1) with our new results. That is, we took the three
state-of-the-art theorems in [31] and added both the result for H∗

i -free graphs and the result
for (3P6, 2P7, P14)-free graphs from [25]. For Disconnected Perfect Matching we also
added the new result for Cs-free graphs for even s, as implied by our girth result. We also
compare the three partial classification with a recent, full classification of the optimization
problem Maximum Matching Cut [30]. We write G′ ⊆i G if G′ is an induced subgraph
of G and G′ ⊇i G if G is an induced subgraph of G′.

▶ Theorem 16. For a graph H, Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP3 + K1,3 or sP3 + P6 for some s ≥ 0, and
NP-complete if H ⊇i K1,4, P14, 3P5, 2P7, Cr for some r ≥ 3 or H∗

j for some j ≥ 1.

▶ Theorem 17. For a graph H, Disconnected Perfect Matching on H-free graphs is
polynomial-time solvable if H ⊆i K1,3 or P5, and
NP-complete if H ⊇i K1,4, P14, 3P6, 2P7, Cr for some r ≥ 3 or H∗

j for some j ≥ 1.

▶ Theorem 18. For a graph H, Perfect Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP4 + S1,2,2 or sP4 + P6 for some s ≥ 0, and
NP-complete if H ⊇i K1,4, P14, 3P6, 2P7, Cr for some r ≥ 3 or H∗

j for some j ≥ 1.

▶ Theorem 19. For a graph H, Maximum Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP2 + P6 for some s ≥ 0, and
NP-hard if H ⊇i K1,3, 2P3, Cr for some r ≥ 3.

A subdivided claw is a graph obtained from the claw K1,3 by subdividing each of its edges zero
or more times. Let S be the class of graphs, each connected component of which is either a
path or a subdivided claw. From Theorem 16, it follows that Matching Cut is NP-complete
for H-free graphs if H has a cycle, a vertex of degree at least 4, or a connected component

ISAAC 2023

31:14 Matching Cuts in Graphs of High Girth and H-Free Graphs

with two vertices of degree 3. Hence, the remaining open cases for Matching Cut on H-free
graphs are all restricted to cases where H is a graph from S. The same remark holds for
Disconnected Perfect Matching due to Theorem 17, and for Perfect Matching
Cut due to Theorem 18.

5.2 H-subgraph-free Graphs
For a graph H, a graph G is H-subgraph-free if G does not contain H as a subgraph. Every
H-subgraph-free graph is H-free, whereas the reverse direction only holds if H is a complete
graph. For a set H of graphs, a graph G is H-subgraph-free if G is H-subgraph-free for every
H ∈ H.

For an integer p, a p-subdivision of an edge uv in a graph replaces uv by a path from u

to v of length p + 1. The p-subdivision of a graph G is obtained from G by p-subdividing each
edge of G. For a graph class G, we let Gp consist of all the p-subdivisions of the graphs in G.
A graph problem Π is NP-complete under edge subdivision of subcubic graphs if there is an
integer q ≥ 1 such that the following holds: if Π is NP-complete for the class G of subcubic
graphs, then Π is NP-complete for Gpq for every p ≥ 1. Now, Π is a C123-problem if (C1)
Π is polynomial-time solvable for graphs of bounded treewidth; (C2) Π is NP-complete for
subcubic graphs; and (C3) Π is NP-complete under edge subdivision of subcubic graphs.

In [20], it was shown that for every finite set of graphs H, any C123-problem Π on
H-subgraph-free graphs is polynomial-time solvable if H contains a graph from S and NP-
complete otherwise. Le and Telle [27] observed that Perfect Matching Cut satisfies C1
and proved C2 and C3 (see Lemma 12). Applying the above meta-theorem from [20] yields:

▶ Theorem 20. For any finite set of graphs H, Perfect Matching Cut on H-subgraph-free
graphs is polynomial-time solvable if H contains a graph from S and NP-complete otherwise.

5.3 Open Problems
Apart from completing the classifications of Theorems 16–18, we also pose the following open
problem.

▶ Open Problem 1. Classify the computational complexity of Matching Cut and Discon-
nected Perfect Matching for H-subgraph-free graphs.

We note that classifications of Matching Cut and Disconnected Perfect Matching
are unknown even for H-subgraph-free graphs (so when we forbid only a single graph H as a
subgraph). So far, only a partial classification for Matching Cut restricted to H-subgraph-
free graphs has been shown [21]. In particular, the transformations for Matching Cut and
Disconnected Perfect Matching from Section 4 do not decrease the girth and yield
graphs with many cycles of varying length as subgraphs. Hence, new techniques are needed.

Finally, with our current technique (Lemma 5) we cannot obtain a better bound on the
maximum degree of the graphs of arbitrarily large fixed girth in the proofs of Theorems 6
and 11.

▶ Open Problem 2. Can the two maximum degree bounds in Theorems 6 and 11 be improved?

References
1 Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and superconcen-

trators. Journal of Combinatorial Theory, Series B, 38:73–88, 1985.
2 Júlio Araújo, Nathann Cohen, Frédéric Giroire, and Frédéric Havet. Good edge-labelling of

graphs. Discrete Applied Mathematics, 160:2502–2513, 2012.

C. Feghali, F. Lucke, D. Paulusma, and B. Ries 31:15

3 N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. Vertex partition-
ing problems on graphs with bounded tree width. Discrete Applied Mathematics, 319:254–270,
2022.

4 N. R. Aravind and Roopam Saxena. An FPT algorithm for Matching Cut and d-Cut. Proc.
IWOCA 2021, LNCS, 12757:531–543, 2021.

5 Edouard Bonnet, Dibyayan Chakraborty, and Julien Duron. Cutting barnette graphs perfectly
is hard. Proc. WG 2023, LNCS, to appear.

6 Paul S. Bonsma. The complexity of the Matching-Cut problem for planar graphs and other
graph classes. Journal of Graph Theory, 62:109–126, 2009 (conference version: WG 2003).

7 Mieczyslaw Borowiecki and Katarzyna Jesse-Józefczyk. Matching cutsets in graphs of dia-
meter 2. Theoretical Computer Science, 407:574–582, 2008.

8 Valentin Bouquet and Christophe Picouleau. The complexity of the Perfect Matching-Cut
problem. CoRR, abs/2011.03318, 2020. arXiv:2011.03318.

9 Chi-Yeh Chen, Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng.
Matching Cut in graphs with large minimum degree. Algorithmica, 83:1238–1255, 2021.

10 Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8:51–53, 1984.
11 Peter G. Lejeune Dirichlet. Beweis des Satzes, dass jede unbegrenzte arithmetische Progres-

sion, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind,
unendlich viele Primzahlen enthält. Abhandlungen der Königlichen Preußischen Akademie der
Wissenschaften zu Berlin, 1837.

12 Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain random
walks. Transactions of the American Mathematical Society, 284:787–794, 1984.

13 Arthur M. Farley and Andrzej Proskurowski. Networks immune to isolated line failures.
Networks, 12:393–403, 1982.

14 Carl Feghali. A note on Matching-Cut in Pt-free graphs. Information Processing Letters,
179:106294, 2023.

15 Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined notions
of parameterized enumeration kernels with applications to matching cut enumeration. Journal
of Computer and System Sciences, 123:76–102, 2022.

16 Petr A. Golovach, Daniël Paulusma, and Jian Song. Computing vertex-surjective homomorph-
isms to partially reflexive trees. Theoretical Computer Science, 457:86–100, 2012.

17 Guilherme Gomes and Ignasi Sau. Finding cuts of bounded degree: complexity, FPT and
exact algorithms, and kernelization. Algorithmica, 83:1677–1706, 2021.

18 Ronald L. Graham. On primitive graphs and optimal vertex assignments. Annals of the New
York Academy of Sciences, 175:170–186, 1970.

19 Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets.
Nordic Journal of Computing, 5:128–142, 1998.

20 Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma,
Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs I:
The framework. CoRR, abs/2211.12887, 2022. arXiv:2211.12887.

21 Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and
Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs III: When problems
are tractable on subcubic graphs. Proc. MFCS 2023, LIPIcs, 272:57:1–57:15, 2023.

22 Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching Cut: Kernelization,
single-exponential time FPT, and exact exponential algorithms. Discrete Applied Mathematics,
283:44–58, 2020.

23 Dieter Kratsch and Van Bang Le. Algorithms solving the Matching Cut problem. Theoretical
Computer Science, 609:328–335, 2016.

24 Hoang-Oanh Le and Van Bang Le. A complexity dichotomy for Matching Cut in (bipartite)
graphs of fixed diameter. Theoretical Computer Science, 770:69–78, 2019.

25 Hoàng-Oanh Le and Van Bang Le. Complexity results for matching cut problems in graphs
without long induced paths. Proc. WG 2023, LNCS, to appear.

ISAAC 2023

https://arxiv.org/abs/2011.03318
https://arxiv.org/abs/2211.12887

31:16 Matching Cuts in Graphs of High Girth and H-Free Graphs

26 Van Bang Le and Bert Randerath. On stable cutsets in line graphs. Theoretical Computer
Science, 301:463–475, 2003.

27 Van Bang Le and Jan Arne Telle. The Perfect Matching Cut problem revisited. Proc. WG
2021, LNCS, 12911:182–194, 2021.

28 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8:261–277, 1988.

29 Felicia Lucke, Daniël Paulusma, and Bernard Ries. On the complexity of Matching Cut for
graphs of bounded radius and H-free graphs. Theoretical Computer Science, 936, 2022.

30 Felicia Lucke, Daniël Paulusma, and Bernard Ries. Dichotomies for Maximum Matching Cut:
H-Freeness, Bounded Diameter, Bounded Radius. Proc. MFCS 2023, LIPIcs, 272:64:1–64:15,
2023.

31 Felicia Lucke, Daniël Paulusma, and Bernard Ries. Finding matching cuts in H-free graphs.
Algorithmica, to appear.

32 Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13:527–536, 1989.
33 Open problem garden. http://www.openproblemgarden.org/op/matching_cut_and_girth.

(accessed on 22 June 2023).
34 Maurizio Patrignani and Maurizio Pizzonia. The complexity of the Matching-Cut problem.

Proc. WG 2001, LNCS, 2204:284–295, 2001.
35 Harold N. Shapiro. Introduction to the Theory of Numbers. Dover Publications, 2008.

http://www.openproblemgarden.org/op/matching_cut_and_girth

Computing Paths of Large Rank in Planar
Frameworks Deterministically
Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Petr A. Golovach #

Department of Informatics, University of Bergen, Norway

Tuukka Korhonen #

Department of Informatics, University of Bergen, Norway

Giannos Stamoulis #

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract
A framework consists of an undirected graph G and a matroid M whose elements correspond to
the vertices of G. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed
parameterized algorithms for computing paths of rank k in frameworks. More precisely, for vertices s

and t of G, and an integer k, they gave FPT algorithms parameterized by k deciding whether there is
an (s, t)-path in G whose vertex set contains a subset of elements of M of rank k. These algorithms
are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and
therefore the existence of a deterministic FPT algorithm for this problem remains open.

We present the first deterministic FPT algorithm that solves the problem in frameworks whose
underlying graph G is planar. While the running time of our algorithm is worse than the running
times of the recent randomized algorithms, our algorithm works on more general classes of matroids.
In particular, this is the first FPT algorithm for the case when matroid M is represented over
rationals.

Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex
technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us
to employ the toolbox of representative sets to design a dynamic programming procedure solving
the problem efficiently on instances of bounded treewidth.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Planar graph, longest path, linear matroid, irrelevant vertex

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.32

Related Version Full Version: https://arxiv.org/abs/2305.01993

Funding The research leading to these results has received funding from the Research Council of
Norway via the project BWCA (grant no. 314528). Giannos Stamoulis acknowledges support by the
ANR project ESIGMA (ANR-17-CE23-0010) and the French-German Collaboration ANR/DFG
Project UTMA (ANR-20-CE92-0027).

1 Introduction

A framework is a pair (G, M), where G is a graph and M = (V (G), I) is a matroid on
the vertex set of G. This term appears in the recent monograph of Lovász [39], where
he defines frameworks as graphs with a collection of vectors of Rd labeling their vertices.
Frameworks have appeared in the literature under many different names. For example, they
are mentioned as pregeometric graphs in the influential work of Lovász [37] on representative
families of linear matroids and as matroid graphs in the book of Lovász and Plummer [38].

© Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fedor.fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:petr.golovach@uib.no
https://orcid.org/0000-0002-2619-2990
mailto:tuukka.korhonen@uib.no
https://orcid.org/0000-0003-0861-6515
mailto:giannos.stamoulis@lirmm.fr
https://orcid.org/0000-0002-4175-7793
https://doi.org/10.4230/LIPIcs.ISAAC.2023.32
https://arxiv.org/abs/2305.01993
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Computing Paths of Large Rank in Planar Frameworks Deterministically

The problem of computing maximum matching in frameworks is closely related to the
matchoid, the matroid parity, and polymatroid matching problems (see [38] for an overview).
More broadly, the problems of finding specific subgraphs of large ranks in frameworks belong
to the wide family of problems about submodular function optimization under combinatorial
constraints [7, 8, 14,41].

Fomin et al. in [15] introduced the following Maximum Rank (s, t)-Path problem. In
this problem, given a framework (G, M), two vertices s and t of G, and an integer k, we seek
for an (s, t)-path in G where the rank function of M evaluates to at least k. We say that
such a path has rank at least k.

Input: A framework (G, M), vertices s and t of G, and an integer k ≥ 0.
Task: Decide whether G contains an (s, t)-path of rank at least k.

Max Rank (s, t)-Path

Max Rank (s, t)-Path encompasses several fundamental and well-studied problems
about paths and cycles in undirected graphs.

Longest path. Of course, when M is a uniform matroid, then a path is of rank at least k if
and only if it contains at least k vertices. In this case, we have the classical Longest Path
problem, where for a graph G and integer k the task is to identify whether G contains a path
with at least k vertices [1].

T -cycle. In this problem, we are given a set T of terminals and the task is to decide whether
there is a cycle through all terminals [5, 25,45]. T -cycle is the special case of Max Rank
(s, t)-Path. Consider the following linear matroid. For every vertex of G not in T we assign
a |T |-dimensional vector whose all entries are zero. To vertices of T we assign vectors forming
an orthonormal basis of R|T |. Then G has a cycle passing through all terminals if and only
if (G, M) has an (s, t)-path of rank |T |, for some {s, t} ∈ E(G).

Maximum Colored Path. In the Maximum Colored (s, t)-Path problem, we are given a
colored graph G, two vertices s and t of G, and an integer k. The task is to decide whether
G has an (s, t)-path containing at least k different colors [6, 15] (see also [9, 10]). Maximum
Colored (s, t)-Path is the special case of Max Rank (s, t)-Path where the matroid M is
a partition matroid. Indeed, in this matroid the ground set V (G) is partitioned into classes
L1, . . . , Lt and a set I is independent if |I ∩ Li| ≤ 1 for every label i ∈ {1, . . . , t}. In this
way, a path of G of rank at least k is a path containing vertices of at least k different (color)
classes among L1, . . . , Lt.

Randomized FPT algorithms for Maximum Rank (s, t)-Path. The parameterized com-
plexity of Maximum Rank (s, t)-Path was unknown until very recently. The first FPT
algorithm for Maximum Rank (s, t)-Path was given in [15]. This algorithm runs in time
2O(k2 log(q+k))nO(1) and works on frameworks with matroids represented in finite fields of
order q. Also, Eiben, Koana, and Wahlström [13], using different techniques, obtained an
FPT algorithm for the same problem that runs in time 2knO(1) on frameworks with matroids
representable over fields of characteristic two. These two algorithms use two different al-
gebraic methods. The algorithm of [15] extends the celebrated algebraic technique based
on cancellation of monomials used by Björklund, Husfeldt, and Taslaman [5] to solve the
T -Cycle problem, while the algorithm of [13] utilizes the toolbox of (constrained) multilin-
ear detection [3, 4, 34,35] combined with determinantal sieving [13]. Both these algorithms
involve polynomial identity testing and invoke the Schwartz-Zippel lemma, and therefore

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:3

are randomized. In fact, because of the crucial use of the Schwartz-Zippel lemma in both
these algorithms, as the authors of [13] state it, “derandomization appears infeasible” for the
algorithms of [15] and [13] for Maximum Rank (s, t)-Path. Therefore, the next challenge is
to obtain derandomized FPT algorithms for this problem.

Our results. Our main result establishes the first deterministic FPT algorithm for Maximum
Rank (s, t)-Path on frameworks of planar graphs and matroids representable over finite
fields or over the field of rationals. We use |G| to denote the number of vertices of a graph G

and ∥M∥ to denote the bit-length of the representation matrix of a linear matroid M .

▶ Theorem 1. There is a deterministic algorithm that, given a framework (G, M), where
G is a planar graph G and M is represented as a matrix over a finite field or over Q, two
vertices s, t ∈ V (G) and an integer k, in time 22O(k log k) · (|G| + ∥M∥)O(1) either returns an
(s, t)-path of G of rank at least k, or determines that G has no such (s, t)-path.

Note that the randomized FPT algorithms of [15] and [13] work for matroids representable
over finite fields or fields of characteristic two. The algorithm of Theorem 1, apart from
being the first deterministic algorithm for Maximum Rank (s, t)-Path, is also the first FPT
algorithm for frameworks whose matroids are not represented over a finite field or a field of
characteristic two, but are represented over Q.

Our techniques. To design the deterministic FPT algorithm of Theorem 1, we follow a
different proof strategy than that of [15] and [13]. Our approach is based on the win/win
arguments of the celebrated irrelevant vertex technique of Robertson and Seymour [42]. The
general scheme of this technique is the following. If the graph satisfies certain combinatorial
properties, then one can identify a vertex of the graph that can be declared irrelevant,
meaning that its deletion results in an equivalent instance of the problem. Therefore, after
deleting this vertex, we can iterate on the (equivalent) reduced instance. Once this reduction
rule can not be further applied, the obtained reduced instance is equivalent to the original
one and also “simpler”. Therefore, one remains to argue that the problem can be solved
efficiently in the reduced equivalent instance. This is a standard technique in parameterized
algorithms design – see, for example, [2, 17, 19, 20, 22–30, 32, 40, 44] (see also [11, Section
7.8]). The standard mesure of complexity of instances for the application of the irrelevant
vertex technique is treewidth. In particular, the strategy is formulated as follows. As long
as the treewidth of the instance is large enough, detect and remove irrelevant vertices. If
the treewidth is small, then solve the problem on this equivalent instance using dynamic
programming.

Our application of the irrelevant vertex technique is inspired by the algorithm of Kawara-
bayashi [25] for T -cycle and extends its methods. In a typical irrelevant-vertex argument,
one has to prove that every solution can “avoid” a vertex that will be declared irrelevant.
For example, in the classical application of Robertson and Seymour [42] for the Disjoint
Paths problem, one should argue that (if the graph has large treewidth) any collection of
disjoint paths between certain terminals can be “rerouted away” from a vertex v and this
vertex should be declared irrelevant. In our case, where we seek an (s, t)-path of large rank
in a framework, this rerouting should guarantee that large rank is preserved. In general,
to deal with such problems on frameworks, one should employ new arguments to adjust
this technique to take into account the structure of the matroid. The way we circumvent
this problem for Maximum Rank (s, t)-Path is to formulate such a rerouting argument
in a “sufficiently insulated” area of the graph where independent sets of the matroid M

ISAAC 2023

32:4 Computing Paths of Large Rank in Planar Frameworks Deterministically

appear in a homogeneous way. Planarity of the input graph allows to find such an area using
the grid-like structure of walls. An overview of this approach is provided in Subsection 1.1.
This application of the irrelevant vertex technique for frameworks is novel and illustrates an
interesting interplay between combinatorial structures and algebraic properties, that may be
of independent interest.

The dynamic programming on graphs of bounded treewidth is pretty standard (see,
e.g., [12]) up to one detail. To encode a partial solution, we keep the information about
vertices forming independent sets of matroid M visited by a partial solution. However, the
number of independent sets of size at most k in M could be of order nk. Thus a naive
encoding of partial solutions would result in blowing-up of the computational complexity. To
avoid this, we store only representative sets (see [18,36]) instead of all possible independent
sets. Both randomized [18] and deterministic [36] constructions of representative sets require
a linear representation of M . This is the reason why Theorem 1 is stated for linear matroids.
We point out that the dynamic programming subroutine for graphs of bounded treewidth is
the only place in the proof of Theorem 1 requiring a representation of M . It is an interesting
open question, whether Maximum Rank (s, t)-Path is FPT when parameterized by k and
the treewidth if the input matroid is given by its independence oracle.

1.1 Overview of the proof of Theorem 1
Our general approach is the following. We show that if the treewidth of the input graph G

is 2O(k log k), then Maximum Rank (s, t)-Path can be solved in FPT time by a dynamic
programming algorithm. Otherwise, if the treewidth is sufficiently large, we give an algorithm
that either finds an (s, t)-path of rank at least k or identifies an irrelevant vertex v, that is,
a vertex whose deletion results in an equivalent instance of the problem. In the latter case,
we delete v and iterate on the reduced instance.

If the treewidth of the input graph is large, i.e., of order 2Ω(k log k), we exploit the grid-
minor theorem of Robertson and Seymour for planar graphs [43] that asserts that a planar
graph either contains (w × w)-grid as a minor or the treewidth is O(w). More precisely, we
have that given a plane embedding of G, we can find a plane h-wall for h = 2Ω(k log k) as
a topological minor or, equivalently, a plane subgraph of G that is a subdivision of such a
wall. To explain our arguments, we need some notions that are informally explained here by
making use of figures. In particular, an example of an h-wall for h = 7 is given in Figure 1.

Figure 1 A 7-wall and its layers.

Note that an h-wall has ⌊h/2⌋ nested cycles, called layers, that are shown in Figure 1
in red and blue. The layer forming the boundary of a wall is called the perimeter of the
wall and is shown in red in the figure. We extend the notions of layers and perimeter for
a subdivided h-wall, that is, the graph obtained from an h-wall by replacing some of its

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:5

edges by paths. The vertices of the initial h-wall, i.e., before replacing edges by paths, are
called the branch vertices of the subdivided h-wall. Given a plane subdivided h-wall W in
G, we call the subgraph of G induced by the vertices on the perimeter and inside the inner
face of the perimeter the compass of W and denote it by compass(W). Notice that we can
assume that the compass of the subdivided h-wall W in G does not contain the terminal
vertices s and t by switching to a smaller subwall if necessary. Furthermore, we can assume
that compass(W) is a 2-connected graph as any (s, t)-path can only contain vertices of the
biconnected component of compass(W) containing W . Also we can assume that G has two
disjoint paths connecting s and t with two distinct vertices on the perimeter of W ; otherwise,
any vertex of compass(W) outside the perimeter is trivially irrelevant.

Observe that for any nontrivial subwall W ′ of W , compass(W ′) is also 2-connected.
Therefore, for every two distinct vertices x and y on the perimeter of W ′ and any z ∈
V (compass(W ′)), compass(W ′) has internally disjoint (x, z) and (y, z)-paths. In particular,
given a set of vertices S ⊆ V (compass(W ′)) that are independent with respect to M , we can
join any z ∈ S with x and y by disjoint paths. This observation is crucial for us.

s

t

W1 W2

Wk

Figure 2 An (s, t)-path for walls of big rank.

Suppose that there is a packing of k subwalls W1, . . . , Wk in W separated by paths in
W as it is shown in Figure 2 such that the rank r(compass(Wi)) ≥ k for i ∈ {1, . . . , k}.
Then we can choose vertices v1, . . . , vk in compass(W1), . . . , compass(Wk), respectively, in
such a way that {v1, . . . , vk} is an independent set of M . Then by our observation, we can
construct an (s, t)-path in G that goes through v1, . . . , vk as it is shown in the figure in green.
Suppose that this is not the case. Then, by zooming inside the wall, we can assume that
r(compass(W)) < k. Moreover, by recursive zooming, we can find a subwall W ′ of W with
the following structural properties (see Figure 3).

There is a packing of k + 1 subwalls W0, W1, . . . , Wk in W ′ separated by paths in W ′

shown in red in Figure 3 such that r(compass(Wi)) = r(compass(W ′)) for i ∈ {0, . . . , k}.
The packing of W0, W1, . . . , Wk is surrounded by O(k2) “insulation” layers of W ′ shown
in blue.

We claim that vertices of W0 are irrelevant.
To see this, consider an (s, t)-path P of rank at least k in G. We show that if P goes

through a vertex of W0, then the path can be rerouted as it is shown in Figure 3 in green
to avoid W0. Consider an independent set X ⊆ V (P) of rank k and let u1, . . . , uℓ be the
vertices of X that are not spanned by V (compass(W ′)) in M . Then u1, . . . , uℓ are outside
W ′. We prove that there are two distinct vertices x and y on the inner insulation layer of W ′,

ISAAC 2023

32:6 Computing Paths of Large Rank in Planar Frameworks Deterministically

and an (s, x)-path P1 and an (y, t)-path P2 such that (i) x and y are unique vertices of these
paths in the inner insulation layer, and (ii) u1, . . . , uℓ ∈ V (P1)∪V (P2). The proof that O(k2)
insulation layers are sufficient for rerouting P is non-trivial. In particular, we adapt the
ideas from [25] as well as the structural results of Kleinberg [31]. Further, using the fact that
r(compass(Wi)) = r(compass(W ′)) for i ∈ {1, . . . , k}, we show that for every independent set
I ′ of M consisting of vertices in compass(W ′), one can also find an independent set Ii of M in
compass(Wi) such that |Ii| = |I ′|, for every i ∈ {1, . . . , k}. Therefore, one can select, for every
Wi, a vertex vi ∈ Ii and this choice can be made so that r({v1, . . . , vk}) = r(compass(W ′)).
Then we construct an (x, y)-path Q in the inner part of W ′ such that (i) Q is internally
disjoint with P1 and P2, (ii) Q goes through v1, . . . , vk, and (iii) Q avoids W0. We have
that P ′ = P1QP2 is an (s, t)-path that goes through u1, . . . , uℓ and v1, . . . , vk. Note that,
replacing the vertices of X that are spanned by V (compass(W ′)) by the vertices {v1, . . . , vk},
we obtain the set X ′ = {u1, . . . , uℓ, v1, . . . , vk} and r(X ′) = r(X), and the latter holds since
r({v1, . . . , vk}) = r(compass(W ′)). Therefore r(P ′) ≥ r(X) ≥ k. Since Q avoids W0, P ′ has
the same property.

s

t

u2
u1

P1

x

W0 W1

v1

Q

vk

Wk

y

uℓ
P2

Figure 3 Rerouting an (s, t)-path.

Finally, we note that the algorithm of Kawarabayashi [25] for T -cycle works for general
graphs. The statement of Theorem 1 is limited to planar graphs and planarity is required to
ensure that the rerouting does not decrease the rank of an (s, t)-path. It is quite plausible
that with additional technicalities our method could be lifted when the underlying graph
of the framework is of bounded genus, and more generally, minor-free. However, it is very
unclear, whether rerouting that does not decrease the rank could be achieved for general
graphs. It remains the main obstacle towards pushing the irrelevant vertex technique from
frameworks with planar graphs to frameworks with general graphs.

Organization of the paper. In Section 2 we show how to reduce to instances of bounded
treewidth using the irrelevant vertex technique. Results whose proofs are omitted in this
extended abstract are marked with a star (⋆) and their proofs can be found in the full
version [16]. We also refer to the full version for formal definitions of the aforementioned
notions. We conclude in Section 3 with open questions and possible future research directions.

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:7

2 Rerouting paths and cycles

In this section, our goal is to prove Theorem 1 that we restate here.

▶ Theorem 1. There is a deterministic algorithm that, given a framework (G, M), where
G is a planar graph G and M is represented as a matrix over a finite field or over Q, two
vertices s, t ∈ V (G) and an integer k, in time 22O(k log k) · (|G| + ∥M∥)O(1) either returns an
(s, t)-path of G of rank at least k, or determines that G has no such (s, t)-path.

The algorithm of Theorem 1 consists of two parts. In the first part, we use the irrelevant
vertex technique in order to design an algorithm that removes vertices form the input graph
as long as its treewidth is big enough. In order to do this, we show a combinatorial result
that allows us to argue that, given a planar graph and a wall of it and a vertex set S that
lies outside the wall, if there is a path P that contains S and invades deeply enough inside
the wall, we can find another path P ′ that contains S (with the same endpoints as P) and
avoids some “central area” of the wall (Lemma 4). Then, we give an algorithm (Lemma 6)
that given a planar graph of “big enough” (as a function of k) treewidth, outputs, in time
22O(k log k) · (|G| + ∥M∥)O(1), either a path of rank at least k or an irrelevant vertex. The
dynamic programming algorithm that solves the problem in graphs of bounded treewidth is
included in the full version of the paper.

2.1 Rerouting paths and cycles
In this subsection, we aim to prove the main combinatorial result (Lemma 4) that allows
us to find an (s, t)-path that contains a given set S and avoids some inner part of a given
wall. Before stating Lemma 4, we state the following result (Lemma 3) that will be an
important tool for the proof of Lemma 4. The proof of Lemma 3 is inspired by the proof
of [25, Lemma 1]. An in-peg of the perimeter of a wall W is a vertex on the perimeter of W

that has degree three in W .

▶ Lemma 3 (⋆). Let G be a planar graph, let k ∈ N, let W be a wall of height at least
2k + 3, and let s, t ∈ V (G) \ V (compass(W)). Also, let E = {e1, . . . , ek, ek+1, ek+2} be a
set of k + 2 edges of G, where, for every i ∈ {1, . . . , k}, ei = {vi, ui}, ek+1 = {vk+1, s},
ek+2 = {vk+2, t}, and let X be the set {vk+1, vk+2} ∪

⋃
i∈{1,...,k}{vi, ui}. If every v ∈ X is

an in-peg of perim(W), then there is an (s, t)-path in G that contains the edges e1, . . . , ek+2
and its intersection with compass(W (k+1)) is a path of perim(W (k+1)) whose endpoints are
branch vertices of W .

We now prove the following result.

▶ Lemma 4. There is a function h : N → N such that if k, z ∈ N, G is a planar graph,
s, t ∈ V (G), S is a subset of V (G) of size at most k, W is a wall of G of at least h(k) layers
and whose compass is disjoint from S ∪{s, t}, and P is an (s, t)-path of G such that S ⊆ V (P)
and P intersects V (inn(W (h(k)))), then there is an (s, t)-path P̃ of G such that S ⊆ V (P̃)
and its intersection with compass(W (h(k))) is a path of perim(W (h(k))) whose endpoints are
branch vertices of W . Moreover, h(k) = O(k2).

Proof. We set h(k) := 2k · (k + 2) + 2k + 1. Let W be a wall of at least h(k) layers. For
i ∈ {1, . . . , k + 2}, we use Ci to denote the layer L2k·(i−1)+1 of W . Intuitively, we take C1 to
be the first layer of W and for every i ∈ {2, . . . , k +2}, we take Ci to be the 2k-th consecutive
layer after Ci−1. Also, we use Di to denote the vertex set of compass(W (2k·(i−1)+1)). Keep
in mind that Ci is the perimeter of W (2k·(i−1)+1). For every i ∈ [k + 2], we consider the
collection Fi of paths of G that are subpaths of P that intersect Di only on their endpoints

ISAAC 2023

32:8 Computing Paths of Large Rank in Planar Frameworks Deterministically

and that there is an onto function mapping each vertex u ∈ S ∪ {s, t} to the path in Fi that
contains u. Intuitively, for each u ∈ S ∪ {s, t} we consider the maximal subpath of P that
contains u and intersects Di only on its endpoints and we define Fi to be the collection of
these maximal paths (see Figure 4 for an example).

u1 u2
u3

v1

v2 v3

v4 v5

v6 v7

v8
v9

v10

v11 v12

v13

v14

s

t

C1

C2k+1

C4k+1

Figure 4 An example of an (s, t)-path P containing an independent set S = {u1, u2, u3}. In
this example, F1 is the collection of the four red paths (the ones with endpoints (s, v1), (v4, v5),
(v8, v9), and (v14, t)), F2 is the collection of the four green paths (the ones with endpoints (s, v2),
(v3, v6), (v7, v10), (v13, t)), and F3 is the collection of the two blue paths (the (s, v11)-path and the
(v12, t)-path).

Observe that |F1| ≤ k + 2 (since |S ∪ {s, t}| ≤ k + 2) and |Fk+2| ≥ 2 (since V (P) ∩
V (inn(W (h(k)))) ̸= ∅ and therefore P intersects at least twice every Ci, i ∈ [k + 2]). For
every i ∈ {1, . . . , k + 2}, we assume that Fi = {Fi,1, . . . , Fi,|Fi|}, where the ordering is given
by traversing P from s to t. For every i ∈ {1, . . . , k + 2}, we set Qi = {Qi,1, . . . , Qi,|Fi|−1},
where, for each j ∈ [|Fi| − 1], Qi,j is the minimal subpath of P that intersects both V (Fi,j)
and V (Fi,j+1). Observe that, for every i ∈ {1, . . . , k + 2}, P is the concatenation of the
paths Fi,1, Qi,1, Fi,2, . . . , Qi,|Fi|−1, Fi,|Fi|. In Figure 4, Q1 = {Q1,1, Q1,2, Q1,3}, where Q1,1
is the (v1, v4)-subpath, Q1,2 is the (v5, v8)-subpath, and Q1,3 is the (v9, v14)-subpath of P ,
Q2 = {Q2,1, Q2,2, Q2,3}, where Q2,1 is the (v2, v3)-subpath, Q2,2 is the (v6, v7)-subpath, and
Q2,3 is the (v10, v13)-subpath of P , and Q3 consists of the (v11, v12)-subpath Q3,1 of P .

It is easy to see that for every i ∈ {1, . . . , k + 1}, |Fi+1| is equal to |Fi| minus the number
of paths in Qi that do not intersect Ci+1 and therefore, |Fi| ≥ |Fi+1|. Therefore, given
that |F1| ≤ k + 2, |Fk+2| ≥ 2, and for every i ∈ {1, . . . , k + 1}, |Fi| ≥ |Fi+1|, there is an
i0 ∈ {1, . . . , k + 1} such that |Fi0 | = |Fi0+1| (if there are many such i0, we pick the minimal
one). This implies that every path in Qi0 intersects Ci0+1.

For each F ∈ Fi0 , we denote by vF and uF the endpoints of F . We define the graph G′

obtained from G after removing the internal vertices of every F ∈ Fi0 (i.e., the vertex set⋃
F ∈Fi0

(V (F) \ {vF , uF })) and adding the edge {vF , uF } for every F ∈ Fi0 . Observe that
G′ is also planar and contains Di0 as a subgraph. Moreover, notice that, for every F ∈ Fi0 ,
{vF , uF } ∈ V (Ci0) ∪ {s, t}. In Figure 4, |F1| = |F2| and thus G′ is obtained after replacing
each 3-colored path with an edge.

In the rest of the proof we will argue that, in G′, there is an (s, t)-path that contains all
edges {vF , uF }, F ∈ Fi0 , and its intersection with V (compass(W (h(k)))) is the vertex set of
a subdivided edge of W that lies in perim(W (h(k))). Having such a path in hand, we can
replace each edge {vF , uF }, F ∈ Fi0 with the corresponding path F and thus obtain the
path P̃ claimed in the statement of the lemma.

We will denote by C the cycle Ci0 (that is the layer L2k·(i0−1)+1) and by C ′ the layer
L2k·i0 . To get some intuition, recall that Ci0+1 = L2k·i0+1 and therefore C ′ is the layer of W

“preceding” Ci0+1. Since every path in Qi0 intersects Ci0+1, it holds that every path in Qi0

intersects C ′ at least twice. Therefore, if we set Y := V (C) ∩
⋃

F ∈Fi0
{vF , uF } and ℓ := |Y |,

then ℓ ≤ 2k and there are ℓ disjoint paths from Y to C ′ (for an example, see the left part
of Figure 5).

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:9

Recall that perim(W (2k·i0)) = C ′. We set B to be the set of branch vertices of W

that are in V (C ′) and have degree three in W (2k·i0). Also, we set K to be the graph
G′ \ V (inn(W (2k·i0))). The next claim states that there also exist ℓ disjoint paths from Y to
B in K. We omit the proof and we refer the reader to the full version [16].

C

C′

C

C′

s
t

s
t

Figure 5 A visualization of the statement of Claim 5. In both figures, the edges {vF , uF } are
depicted in blue, the black vertices correspond to the set Y and the red vertices correspond to the
set B. In the left figure, we illustrate |Y | disjoint paths from Y to C′, while in the right figure, we
illustrate |Y | disjoint paths from Y to B.

▷ Claim 5 (⋆). There is a set X ⊆ B, a bijection ρ : Y → X, and a collection P = {Pv | v ∈
Y } of pairwise disjoint paths where, for every v ∈ Y , Pv is a (v, ρ(v))-path in K.

Following Claim 5, let X ⊆ B, let a bijection ρ : Y → X, and let a collection P = {Pv |
v ∈ Y } of pairwise disjoint paths such that for every v ∈ Y , Pv is a (v, ρ(v))-path in K.

Now, for each F ∈ Fi0 , we consider the path PF obtained after joining the paths PvF

and PuF
by the edge {vF , uF } (in the case where s, t ∈ {vF , uF }, we just extend the

corresponding path in P by adding the edge {vF , uF }). Let G′′ be the graph obtained
from G′ after contracting each PF , F ∈ Fi0 to an edge ePF

and let E = {ePF
| F ∈ Fi0}.

Then, notice that G′′ contains W (2k·i0) as a subgraph and since h(k) = 2k · (k + 2) + 2k + 1,
the wall W (2k·i0) has at least k + 1 layers and therefore height at least 2k + 3. Therefore,
by Lemma 3, G′′ contains an (s, t)-path that contains all edges in E and its intersection with
compass(W (2k·i0+k+1)) is a path of perim(W (2k·i0+k+1)) whose endpoints are branch vertices
of W .

Thus, using this (s, t)-path in G′′, we can find an (s, t)-path P ⋆ in G that contains
S and its intersection with compass(W (2k·i0+k+1)) is a path of perim(W (2k·i0+k+1)) whose
endpoints, say x and y, are branch vertices of W . Finally, let an (x, y)-path Rx,y in
compass(W (2k·i0+k+1)) whose intersection with compass(W (h(k))) is a path of perim(W (h(k)))
whose endpoints are branch vertices of W . The proof concludes by observing that (P ⋆ \
V (compass(W (2k·i0+k+1))))∪Rx,y is the (s, t)-path claimed in the statement of the lemma. ◀

We stress that, while Lemma 4 deals with the case of “rerouting” an (s, t)-path, we can
apply the same arguments to “reroute” a cycle that contains a fixed set S away from the
inner part of some wall.

2.2 Equivalent instances of small treewidth
In this subsection, we design an algorithm that receives a framework (G, M), where G is a
planar graph of “big enough” treewidth, and two vertices s, t ∈ V (G), and outputs either a
report that G contains an (s, t)-path of rank at least k, or an irrelevant vertex that can be
safely removed. In frameworks, to remove a vertex, one has to remove this vertex from G

and also restrict the matroid.

ISAAC 2023

32:10 Computing Paths of Large Rank in Planar Frameworks Deterministically

Restrictions of matroids. Let M = (V, I) be a matroid and let S ⊆ V . We define the
restriction of M to S, denoted by M |S, to be the matroid on the set S whose independent
sets are the sets in I that are subsets of S. Given a v ∈ V , we denote by M \ v the matroid
M |(V \ {v}).

The goal of this subsection is to prove the following.

▶ Lemma 6. There is a function g : N → N and an algorithm that, given an integer k ∈ N,
a framework (G, M), where M is a matroid for which we can verify independence in time
∥M∥O(1), and G is a planar graph of treewidth at least g(k), and two vertices s, t ∈ V (G),
outputs, in time 22O(k log k) · (|G| + ∥M∥)O(1),

either a report that G contains an (s, t)-path of rank at least k, or
a vertex v ∈ V (G) such that (G, M, k, s, t) and (G\v, M \v, k, s, t) are equivalent instances
of Maximum Rank (s, t)-Path.

Moreover, g(k) = 2O(k log k).

Keep in mind that, if M is represented over a finite field or Q, we can verify independence
in time that is a polynomial in ∥M∥. In order to prove Lemma 6, we need some additional
definitions and results.

Packings of walls. Let G be a planar graph and W be a wall of G. Let z, r ∈ N and let q

be a non-negative odd integer. We say that W admits an (z, r, q)-packing of walls, if W has
height at least h, for some odd h ≥ 2z, and there is a collection W = {W0, W1, . . . , Wr−1}
of subwalls of W , such that for every i ∈ {0, . . . , r − 1}, Wi is a subwall of W of height at
least q such that V (Wi) is a subset of V (W (z+1)), and for every i, j ∈ {0, . . . , r − 1}, with
i ≠ j, V (compass(Wi)) and V (compass(Wj)) are disjoint. We call W an (z, r, q)-packing of
W (see Figure 3 for a visualization of a packing of a wall W).

▶ Observation 7. Given z, r ∈ N, an odd integer q ∈ N, and a planar graph G, every wall
W of G of height at least 2z + ⌈

√
r⌉ · (q + 1) + 1 admits a (z, r, q)-packing.

Let W be a wall of a planar graph. We use ρ(W) to denote r(V (compass(W))).

▶ Lemma 8 (⋆). There is a function f : N4 → N and an algorithm that, given integers
k, z, r, q ∈ N, where q is odd, a framework (G, M), where G is planar and M is a matroid
for which we can verify independence in time ∥M∥O(1), and a wall W of G of height at least
f(k, z, r, q) such that ρ(W) ≤ k, outputs, in (k + 1) · r · (|G| + ∥M∥)O(1) time, a subwall W ′

of W of height h, for some odd h ∈ N such that h ≥ 2z, and a (z, r, q)-packing W of W ′ such
that for every Wi ∈ W, ρ(Wi) = ρ(W ′). Moreover, f(k, z, r, q) = O(rk/2 · z · q).

We are now ready to prove Lemma 6.

Proof of Lemma 6. We set b = h(k), x = k + 1, z = (k + 1) · b, q = f(k − 1, z, x, 3),
r = ⌈

√
k⌉ · (q + 1) + 3, and g(k) = 36(r + 1). We first assume that G is 2-connected. If G

is not connected, then we break the problem in subproblems, each one corresponding to
a 2-connected component B of G and if the vertices of B are separated from s or t by a
cut-vertex v of G, then we consider the problem where v is set to be s or t, respectively.

Since the treewidth of G is at least g(k) = 36(r + 1), due to [21, Lemma 4.2], G has a
(4r + 1)-wall. We then consider an r-wall W of G such that s, t /∈ V (compass(W)) and an
(1, k, q)-packing W̃ = {W̃1, . . . , W̃k} of W . This (1, k, q)-packing exists because of the fact
that r = ⌈

√
k⌉ · (q + 1) + 3 and due to Observation 7 and we can find it in O(n) time. For

every i ∈ {1, . . . , k}, we set Ki := V (compass(W̃i)). Then, compute the rank of Ki, for each
i ∈ {1, . . . , k}. This can be done in time k · (|G| + ∥M∥)O(1).

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:11

If every Ki has rank at least k, then notice that there is a set S ⊆ V (G) such that
r(S) = k and for every i ∈ {1, . . . , k}, |S ∩ Ki| = 1. To obtain an (s, t)-path P such that
S ⊆ V (P), we do the following: We first pick two disjoint paths Ps, Pt from the perimeter of
W to s and t respectively (these exist since G is 2-connected). Let D be the perimeter of
W and let s′ and t′ be the endpoints of Ps and Pt in D. Also, let L2 be the second layer of
W . Observe that, since the compass of a wall is a connected graph, there is also a path P

in G such that the endpoints, say x, y, of P are in L2, no internal vertex of P is a vertex
of L2, and S ⊆ V (P). Finally, observe that there exist two disjoint paths Ps′x, Pt′y in the
closed disk bounded by D and L2 connecting s′ with x and t′ with y, respectively, and that
P := Ps ∪ Ps′x ∪ P ∪ Pt′y ∪ Pt is an (s, t)-path such that S ⊆ V (P) (see Figure 2).

Suppose now that there is an i ∈ {1, . . . , k} such that the rank of Ki is at most k − 1.
Since the corresponding wall W̃i is of height at least q = f(k − 1, z, x, 3), by Lemma 8, we
can find a subwall W ′ of W̃i of height h, for some odd h ≥ 2z and a (z, k + 1, 3)-packing
W = {W0, W1, . . . , Wk} of W ′, so that for every i ∈ {0, . . . , k}, ρ(Wi) = ρ(W ′). Let v be a
central vertex of W0.

We now prove that (G, M, k, s, t) and (G \ v, M \ v, k, s, t) are equivalent instances
of Maximum Rank (s, t)-Path. We show that if (G, M, k, s, t) is a yes-instance, then
(G\v, M \v, k, s, t) is also a yes-instance, since the other implication is trivial. If (G, M, k, s, t)
is a yes-instance, then there is a set of vertices S = {u1, . . . , uk} ⊆ V (G) and an (s, t)-path P

in G such that r(S) = k and S ⊆ V (P). The fact that z = (k + 1) · b implies that there is an
i ∈ {1, . . . , k + 1} such that the vertex set V (compass(W ′((i−1)·b+1)) \ V (inn(W ′(i·b)))), which
we denote by Di, does not intersect S. Let Sin be the vertices of S that are contained in
compass(W ′(i·b)) and let Sout be the set S \Sin. We will show that there is a set S′ ∈ I(M \v)
and a path P ′ such that r(Sout ∪ S′) ≥ k, Sout ∪ S′ ⊆ V (P ′) and V (P ′) ⊆ V (G \ v).

We assume that v ∈ V (P), otherwise we set S′ := Sin and P ′ := P and the lemma follows.
By Lemma 4, there is a path P̃ such that Sout ⊆ V (P̃) and V (P̃) ∩ V (compass(W ′(i·b))) is
the vertex set of a path P̂ of W ′

0 that lies in perim(W ′(i·b)) and whose endpoints are branch
vertices of W ′(i·b). Let sP̂ and tP̂ be the endpoints of P̂ .

We can assume that ρ(Wi) = ρ(W ′) > 0, for every i ∈ {0, . . . , k}, since otherwise
Sin = ∅ and the claim holds trivially. For every i ∈ {0, . . . , k}, since ρ(Wi) = ρ(W ′) and
Sin is an independent set of M that is a subset of compass(W ′), there is an independent
set Si ⊆ V (compass(Wi)) such that |Si| = |Sin|. Furthermore, because ρ(Wi) = ρ(W ′)
for i ∈ {0, . . . , k}, we can choose a set S′ = {v1, . . . , vk} where vi is a vertex in Si for
i ∈ {1, . . . , k} in such a way that r(S′) = ρ(W ′). Then r(Sout ∪ S′) = |Sout ∪ Sin| ≥ k. Also,
notice that, for every x, y ∈ Lz, there is an (x, y)-path P ⋆ in W (z) \ (V (Lz) \ {x, y}) that
contains S′ and avoids v. It is easy to see that there exist two disjoint paths Q1, Q2 in
compass(W ′(i·b)

0) connecting {sP̂ , tP̂ } with {x, y} and that these paths can be picked to be
internally disjoint from P̂ and P ⋆. Thus, if P̃ ′′ is the graph obtained from P̃ ′ after removing
all internal vertices of P̂ , then P̃ ′′ ∪ Q1 ∪ Q2 ∪ P ⋆ is the claimed (s, t)-path that contains
S′ ∪ Sout and avoids v (see Figure 3). ◀

2.3 Proof of Theorem 1
Let (G, M) be a framework, where G is a planar graph and M is a linear matroid given by
its representation over a finite filed or the field of rationals, and let k ∈ N. We set q = g(k),
where g is the function of Lemma 6. Keep in mind that g(k) = 2O(k log k). We describe an
algorithm A that solves Maximum Rank (s, t)-Path.

Our algorithm A first calls the single-exponential time 2-approximation algorithm for
treewidth of Korhonen [33] for G and q which runs in time 2q · n = 22O(k log k) · n and outputs
either a tree decomposition of G of width at most 2q or a report that the treewidth of G is larger

ISAAC 2023

32:12 Computing Paths of Large Rank in Planar Frameworks Deterministically

than q. In the first possible output, we can solve the problem using our dynamic programming
algorithm which runs in time 2qO(1) · (|G| + ∥M∥)O(1) = 22O(k log k) · (|G| + ∥M∥)O(1). In the
second possible output (i.e., where G has treewidth at least q), we apply the algorithm of
Lemma 6 and, in time 22O(k log k) · (|G| + ∥M∥)O(1), we either report a positive answer, or find
a vertex v ∈ V (G) such that (G, M, k, s, t) and (G \ v, M \ v, k, s, t) are equivalent instances
of the problem. If the latter happens, we recursively run A for the framework (G \ v, M \ v).
Observe that the overall running time of A is 22O(k log k) · (|G| + ∥M∥)O(1).

3 Conclusion

In this paper, we provide a deterministic FPT algorithm for Maximum Rank (s, t)-Path
for frameworks (G, M), where G is a planar graph and M is represented over a finite field or
the rationals. Let us conclude by discussing some open research directions.

Since the algorithm of [15] for Maximum Rank (s, t)-Path runs in time
2O(k2 log(k+q))nO(1), a natural question is whether one can drop the double-exponential
dependence on the parameter k on the running time of the algorithm of Theorem 1. The
main bottleneck is the bound the treewidth of a graph that contains no irrelevant vertices.
In particular, our approach to detect irrelevant vertices requires a recursive zooming into a
given wall of the graph in order to find a packing of k + 1-many k-walls with compasses of
specific rank. To perform this zooming, one should ask for the initial wall to be of height
at least kO(k). It is unclear whether we can circumvent this argument and detect irrelevant
vertices if the initial wall has height linear (or even polynomial) in k.

As mentioned in the introduction, the method of [15] gives a randomized algorithm for
the more general problem of Maximum Rank (S, T)-Linkage. In this paper, we focus
on the special case where |S| = |T | = 1 and one could ask whether our techniques can be
applied to solve the general problem of detecting (S, T)-linkages of large rank for frameworks
with planar graphs and matroids represented over finite fields. Such a generalization of our
results does not seem to be trivial and therefore we leave this as an open research direction.

Another natural question to ask is whether our approach can be generalized to obtain
deterministic FPT algorithms for frameworks with more general classes of graphs. While
it seems plausible to extend the applicability of the irrelevant vertex technique arguments
up to graphs that exclude a graph as a minor, such a proof would be highly technical. For
frameworks with general graphs, it is very unclear whether one can achieve rerouting that
does not decrease the rank and therefore allow an irrelevant vertex argument to go through.

Also, in the lines of [15], an interesting open question is whether we can obtain a
deterministic FPT algorithm for Maximum Rank (s, t)-Path for frameworks with matroids
not representable in finite fields of small order or in the field of rationals. For example,
uniform matroids, and more generally transversal matroids, are representable over a finite
field, but the field of representation must be large enough. While the approach of [15] also
gives a randomized FPT algorithm for frameworks of transversal matroids, our dynamic
programming subroutine relies on the efficient computation of representative sets, which
requires a linear representation of the input matroid. We stress that this is the only place in
the proof of Theorem 1 requiring a linear representation of the matroid. Another interesting
open question, is whether Maximum Rank (s, t)-Path is FPT when parameterized by k

and the treewidth if the input matroid is given by its independence oracle.

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:13

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

doi:10.1145/210332.210337.
2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting

connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
951–970, 2020. doi:10.1137/1.9781611975994.57.

3 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017. doi:10.1016/j.
jcss.2017.03.003.

5 Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest cycle through specified
elements. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
1747–1753. SIAM, 2012. doi:10.1137/1.9781611973099.139.

6 Hajo Broersma, Xueliang Li, Gerhard J Woeginger, and Shenggui Zhang. Paths and cycles in
colored graphs. Australas. J Comb., 31:299–312, 2005.

7 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

8 Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks in directed graphs.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 245–253.
IEEE Computer Society, 2005.

9 Johanne Cohen, Giuseppe F. Italiano, Yannis Manoussakis, Nguyen Kim Thang, and
Hong Phong Pham. Tropical paths in vertex-colored graphs. J. Comb. Optim., 42(3):476–498,
2021. doi:10.1007/s10878-019-00416-y.

10 Basile Couëtoux, Elie Nakache, and Yann Vaxès. The maximum labeled path problem.
Algorithmica, 78(1):298–318, 2017. doi:10.1007/s00453-016-0155-6.

11 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Eduard Eiben, Tomohiro Koana, and Magnus Wahlström. Determinantal sieving. CoRR,
abs/2304.02091, 2023. doi:10.48550/arXiv.2304.02091.

14 Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, Daniel Lokshtanov, and Giannos
Stamoulis. Shortest cycles with monotone submodular costs. In Nikhil Bansal and Viswanath
Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023, pages 2214–2227. SIAM, 2023. doi:
10.1137/1.9781611977554.ch83.

15 Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, Kirill Simonov, and Giannos Stamoulis.
Fixed-parameter tractability of maximum colored path and beyond. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3700–3712. SIAM, 2023.
doi:10.1137/1.9781611977554.ch142.

16 Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis. Computing
paths of large rank in planar frameworks deterministically. CoRR, abs/2305.01993, 2023.
doi:10.48550/arXiv.2305.01993.

17 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Modification to Planarity is
Fixed Parameter Tractable. In Proc. of the 36th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 126 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 28:1–28:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2019.28.

ISAAC 2023

https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1137/110839229
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1137/1.9781611973099.139
https://doi.org/10.1137/080733991
https://doi.org/10.1007/s10878-019-00416-y
https://doi.org/10.1007/s00453-016-0155-6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.48550/arXiv.2304.02091
https://doi.org/10.1137/1.9781611977554.ch83
https://doi.org/10.1137/1.9781611977554.ch83
https://doi.org/10.1137/1.9781611977554.ch142
https://doi.org/10.48550/arXiv.2305.01993
https://doi.org/10.4230/LIPIcs.STACS.2019.28

32:14 Computing Paths of Large Rank in Planar Frameworks Deterministically

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Proc. of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 1317–1326. ACM, 2020. doi:10.1145/3357713.3384318.

20 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear
kernels for (connected) dominating set on H -minor-free graphs. In Proc. of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82–93, 2012. doi:10.1137/1.
9781611973099.7.

21 Petr A. Golovach, Marcin Kaminski, Spyridon Maniatis, and Dimitrios M. Thilikos. The
parameterized complexity of graph cyclability. SIAM J. Discret. Math., 31(1):511–541, 2017.

22 Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Model-checking for first-order
logic with disjoint paths predicates in proper minor-closed graph classes. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3684–3699. SIAM, 2023.
doi:10.1137/1.9781611977554.ch141.

23 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proc. of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 479–488. ACM, 2011. doi:10.1145/1993636.1993700.

24 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proc. of the 53rd Annual ACM Symposium on Theory
of Computing (STOC), pages 1757–1769, 2021. doi:10.1145/3406325.3451068.

25 Ken-ichi Kawarabayashi. An improved algorithm for finding cycles through elements. In 13th
International Conference on Integer Programming and Combinatorial Optimization (IPCO),
volume 5035 of Lecture Notes in Computer Science, pages 374–384. Springer, 2008. doi:
10.1007/978-3-540-68891-4_26.

26 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. of the
50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 639–648,
2009. doi:10.1109/FOCS.2009.45.

27 Ken-ichi Kawarabayashi, Stephan Kreutzer, and Bojan Mohar. Linkless and flat embeddings
in 3-space and the unknot problem. In Proc. of the 2010 Annual Symposium on Computational
Geometry (SoCG), pages 97–106. ACM, 2010. doi:10.1145/1810959.1810975.

28 Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A simpler linear time algorithm
for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width.
In Proc. of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 771–780, 2008. doi:10.1109/FOCS.2008.53.

29 Ken-ichi Kawarabayashi and Bruce A. Reed. Hadwiger’s conjecture is decidable. In Proc. of
the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 445–454, 2009.
doi:10.1145/1536414.1536476.

30 Ken-ichi Kawarabayashi and Bruce A. Reed. Odd cycle packing. In Proc. of the 42nd ACM
Symposium on Theory of Computing (STOC), pages 695–704, 2010. doi:10.1145/1806689.
1806785.

31 Jon M. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint paths problem.
In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing (STOC),
pages 530–539. ACM, 1998.

32 Yusuke Kobayashi and Ken-ichi Kawarabayashi. Algorithms for finding an induced cycle
in planar graphs and bounded genus graphs. In Proc. of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1146–1155. ACM-SIAM, 2009. URL:
https://dl.acm.org/doi/10.5555/1496770.1496894.

https://doi.org/10.1145/2886094
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1137/1.9781611973099.7
https://doi.org/10.1137/1.9781611973099.7
https://doi.org/10.1137/1.9781611977554.ch141
https://doi.org/10.1145/1993636.1993700
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1145/1810959.1810975
https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1145/1536414.1536476
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1145/1806689.1806785
https://dl.acm.org/doi/10.5555/1496770.1496894

F. V. Fomin, P. A. Golovach, T. Korhonen, and G. Stamoulis 32:15

33 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 184–192. IEEE, 2021. doi:10.1109/FOCS52979.2021.00026.

34 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming – Volume
Part I, ICALP ’08, pages 575–586, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/
978-3-540-70575-8_47.

35 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98–105, December 2015. doi:10.1145/2742544.

36 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018. doi:10.1145/
3170444.

37 L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth
British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 45–86, 1977.

38 L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland Mathem-
atics Studies. North-Holland Publishing Co., Amsterdam; North-Holland Publishing Co.,
Amsterdam, 1986. Annals of Discrete Mathematics, 29.

39 László Lovász. Graphs and geometry, volume 65 of American Mathematical Society Colloquium
Publications. American Mathematical Society, Providence, RI, 2019. doi:10.1090/coll/065.

40 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

41 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxim-
ations for maximizing submodular set functions – I. Math. Program., 14(1):265–294, 1978.
doi:10.1007/BF01588971.

42 Neil Robertson and Paul D. Seymour. Graph minors XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

43 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph. J.
Comb. Theory, Ser. B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.

44 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph
classes. II. Parameterized algorithms. ACM Transactions on Algorithms, 18(3), 2022. doi:
10.1145/3519028.

45 Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for the
K-set-cycle problem. In Natacha Portier and Thomas Wilke, editors, 30th International
Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27 – March 2,
2013, Kiel, Germany, volume 20 of LIPIcs, pages 341–352. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2013. doi:10.4230/LIPIcs.STACS.2013.341.

ISAAC 2023

https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1145/2742544
https://doi.org/10.1145/3170444
https://doi.org/10.1145/3170444
https://doi.org/10.1090/coll/065
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1007/BF01588971
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1145/3519028
https://doi.org/10.1145/3519028
https://doi.org/10.4230/LIPIcs.STACS.2013.341

Pattern-Avoiding Binary Trees – Generation,
Counting, and Bijections
Petr Gregor # Ñ

Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Prague, Czech Republic

Torsten Mütze # Ñ

Department of Computer Science, University of Warwick, United Kingdom
Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Prague, Czech Republic

Namrata #

Department of Computer Science, University of Warwick, Coventry, UK

Abstract
In this paper we propose a notion of pattern avoidance in binary trees that generalizes the avoidance
of contiguous tree patterns studied by Rowland and non-contiguous tree patterns studied by Dairyko,
Pudwell, Tyner, and Wynn. Specifically, we propose algorithms for generating different classes of
binary trees that are characterized by avoiding one or more of these generalized patterns. This is
achieved by applying the recent Hartung–Hoang–Mütze–Williams generation framework, by encoding
binary trees via permutations. In particular, we establish a one-to-one correspondence between tree
patterns and certain mesh permutation patterns. We also conduct a systematic investigation of all
tree patterns on at most 5 vertices, and we establish bijections between pattern-avoiding binary
trees and other combinatorial objects, in particular pattern-avoiding lattice paths and set partitions.

2012 ACM Subject Classification Mathematics of computing → Enumeration; Mathematics of com-
puting → Permutations and combinations; Mathematics of computing → Combinatorial algorithms

Keywords and phrases Generation, binary tree, pattern avoidance, permutation, bijection

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.33

Related Version Full Version: https://arxiv.org/abs/2306.08420 [20]

Funding This work was supported by Czech Science Foundation grant GA 22-15272S.

1 Introduction

Pattern avoidance is a central theme in combinatorics and discrete mathematics. For
example, in Ramsey theory one investigates how order arises in large unordered structures
such as graphs, hypergraphs, or subsets of the integers. The concept also arises naturally
in algorithmic applications. For example, Knuth [28] showed that the integer sequences
that are sortable by one pass through a stack are precisely 231-avoiding permutations.
Pattern-avoiding permutations are a particularly important and heavily studied strand of
research, one that comes with its own associated conference “Permutation Patterns”, held
annually since 2003. While it may seem that pattern-avoiding permutations are somewhat
limited in scope, via suitable bijections they actually encode many objects studied in other
branches of combinatorics. Pattern avoidance has also been studied directly in these other
classes of objects, such as trees [38, 13, 12, 11, 15, 37, 6, 1, 16], set partitions [29, 24, 25,
26, 18, 22, 32, 33, 39, 19, 23, 17, 8], lattice paths [40, 5, 2, 4], heaps [30], matchings [7],
and rectangulations [34]. In this work, we focus on binary trees, a class of objects that is
fundamental within computer science, and also a classical Catalan family.

© Petr Gregor, Torsten Mütze, and Namrata;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gregor@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~gregor
https://orcid.org/0000-0002-3608-2533
mailto:torsten.mutze@warwick.ac.uk
http://tmuetze.de
https://orcid.org/0000-0002-6383-7436
mailto:namrata@warwick.ac.uk
https://orcid.org/0000-0002-6582-4196
https://doi.org/10.4230/LIPIcs.ISAAC.2023.33
https://arxiv.org/abs/2306.08420
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

pattern tree host trees

P T

T contains P

T ′

T ′ avoids P

non-contiguous
[11]

P T

T contains P

T ′

T ′ avoids P

contiguous
[38]

(a)

(b)

P T T ′
mixed
(this paper)

(c) 2

1

4

3

5

6

e(1) = e(3) = e(6) = 1

T contains (P, e)
T ′ avoids (P, e)

e(4) = e(5) = 0

Figure 1 Illustration of different notions of pattern containment in binary trees. Contiguous
edges are drawn solid, whereas non-contiguous edges are drawn dotted.

So far, two different notions of pattern avoidance in binary trees have been studied in the
literature. We consider a binary tree T , which serves as the host tree, and another binary
tree P , which serves as the pattern tree. Rowland [38] considered a contiguous notion of
pattern containment, where T contains P if P is present as an induced subtree of T ; see
Figure 1 (a). He devised an algorithm to compute the generating function for the number of
n-vertex binary trees that avoid P , and he showed that this generating function is always
algebraic. Dairyko, Pudwell, Tyner, and Wynn [11] considered a non-contiguous notion of
pattern containment, where T contains P if P is present as a “minor” of T ; see Figure 1 (b).
They discovered the remarkable phenomenon that for any two distinct k-vertex pattern
trees P and P ′, the number of n-vertex host trees that avoid P is the same as the number
of trees that avoid P ′, i.e., P and P ′ are Wilf-equivalent patterns. They also obtain the
corresponding generating function (which is independent of P , but only depends on k and n).

In this paper, we consider mixed tree patterns, which generalize both of the two afore-
mentioned types of tree patterns, by specifying separately for each edge of P whether it is
considered contiguous or non-contiguous, i.e., whether its end vertices in the occurrence of
the pattern must be in a parent-child or ancestor-descendant relationship (in the correct
direction left/right), respectively; see Figure 1 (c). Observe that the notions of tree patterns
considered in [38] and [11] are the tree analogues of consecutive [14] and classical permutation
patterns, respectively. Our new notion of mixed patterns is the tree analogue of vincular
permutation patterns [3], which generalize classical and consecutive permutation patterns.

P. Gregor, T. Mütze, and Namrata 33:3

1.1 The Lucas–Roelants van Baronaigien–Ruskey algorithm

One of the goals in this paper is to generate different classes of binary trees, i.e., we seek
an algorithm that visits every tree from the class exactly once. Our starting point is a
classical result due to Lucas, Roelants van Baronaigien, and Ruskey [31], which asserts that
all n-vertex binary trees can be generated by tree rotations, i.e., every tree is obtained from
its predecessor by a single tree rotation operation; see Figures 2 and 3.

X

Y Z

i

j

j△

j▽

j

i

X Y

Z

Figure 2 Rotation in binary trees.

The algorithm is an instance of a combinatorial Gray code [41, 35], which is a listing of objects
such that any two consecutive objects differ in a “small local” change. The aforementioned
Gray code algorithm for binary trees can be implemented in time O(1) per generated tree.

Williams [42] discovered a stunningly simple description of the Lucas–Roelants van
Baronaigien–Ruskey Gray code for binary trees via the following greedy algorithm, which is
based on labeling the vertices with 1, . . . , n according to the search tree property: Start with
the right path, and then repeatedly perform a tree rotation with the largest possible vertex
that creates a previously unvisited tree.

4△
1

3

2

4

4

1

3

2

3△
1

3

2

4

1

3

2

4

4

1

3

2

4

1

3

2

4

1

3

2

41

3

2

4

1

3

2

4

1

3

2

4

1

3

2 4

1 3

2

41

3

2 4

1 3

2

4△ 4△ 4▽ 4▽ 3△

4△ 2△ 4▽ 3▽ 4△ 4△

Figure 3 The Lucas–Roelants van Baronaigien–Ruskey algorithm to generate all binary trees
with n = 4 vertices by tree rotations. The vertices are labeled with 1, 2, 3, 4 according to the search
tree property.

1.2 Our results

It is well known that binary trees are in bijection with 231-avoiding permutations. Our
first result generalizes this bijection, by establishing a one-to-one correspondence between
mixed binary tree patterns and mesh permutation patterns, a generalization of classical
permutation patterns due to Brändén and Claesson [9]. Specifically, we show that n-vertex
binary trees that avoid a particular (mixed) tree pattern P are in bijection with 231-avoiding
permutations that avoid a corresponding mesh pattern σ(P) (see Theorem 2 below).

ISAAC 2023

33:4 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

This bijection enables us to apply the Hartung–Hoang–Mütze–Williams generation frame-
work [21], which is based on permutations. We thus obtain algorithms for efficiently generating
different classes of pattern-avoiding binary trees, which work under some mild conditions
on the tree pattern(s). These algorithms are all based on a simple greedy algorithm, which
generalizes Williams’ algorithm for the Lucas–Roelants van Baronaigien–Ruskey Gray code of
binary trees (see Algorithm S, Algorithm H, and Theorems 3 and 4, respectively). Specifically,
instead of tree rotations our algorithms use a more general operation that we refer to as
a slide. We implemented our generation algorithm in C++, and we made it available for
download and experimentation on the Combinatorial Object Server [10].

For our new notion of mixed tree patterns, we conduct a systematic investigation of all tree
patterns on up to 5 vertices. This gives rise to many counting sequences, some already present
in the OEIS [36] and some new to it, giving rise to several interesting conjectures. In this
work we establish most of these as theorems, by proving bijections between different classes of
pattern-avoiding binary trees and other combinatorial objects, in particular pattern-avoiding
lattice paths (Section 6 and [20, Sec. 7.2.4]) and set partitions ([20, Thm. 15]).

1.3 Outline of this paper
In Section 2 we introduce notations that will be used throughout the paper. In Section 3
we establish a bijection between binary trees patterns and mesh patterns. In Section 4 we
present our algorithms for generating pattern-avoiding binary trees. In Section 5 we report
on our computational results for all small tree patterns. In Section 6 we prove bijections
between pattern-avoiding binary trees and Motzkin paths. Some open problems are discussed
in Section 7. Due to space constraints, this extended abstract omits proofs, and several
further results, illustrations and tables; see [20].

2 Preliminaries

In this section we introduce a few general definitions related to binary trees, and we define
our notion of pattern avoidance for those objects.

2.1 Binary tree notions

T

L(6) = L(T) = T (5) R(6) = R(T) = T (9)

r(T) = 6

p(2) = 5

τ(T) = (6, 5, 2, 1, 4, 3, 9, 7, 8, 10)

6

95

7

8

102

4

3

1

cR(4) = ε

cR(2) = 4

βR(6) = 3
B−

R(6) = {6, 9}

cL(2) = 1

Figure 4 Definitions related to binary trees.

P. Gregor, T. Mütze, and Namrata 33:5

We consider binary trees whose vertex set is a set of consecutive integers {i, i + 1, . . . , j}.
In particular, we write Tn for the set of binary trees with the vertex set [n] := {1, 2, . . . , n}.
The vertex labels of each tree are defined uniquely by the search tree property, i.e., for any
vertex i, all its left descendants are smaller than i and all its right descendants are greater
than i. The special empty tree with n = 0 vertices is denoted by ε, so T0 = {ε}. The
following definitions are illustrated in Figure 4. For any binary tree T , we denote the root
of T by r(T). For any vertex i of T , its left and right child are denoted by cL(i) and cR(i),
respectively, and its parent is denoted by p(i). If i does not have a left child, a right child or
a parent, then we define cL(i) := ε, cR(i) := ε, or p(i) := ε, respectively. Furthermore, we
write T (i) for the subtree of T rooted at i. Also, we define L(i) := T (cL(i)) if cL(i) ̸= ε and
L(i) := ε otherwise, and R(i) := T (cR(i)) if cR(i) ̸= ε and R(i) := ε otherwise. The subtrees
rooted at the left and right child of the root are denoted by L(T) and R(T), respectively, i.e.,
we have L(T) = L(r(T)), and similarly R(T) = R(r(T)). A left path is a binary tree in which
no vertex has a right child. A left branch in a binary tree is a subtree that is isomorphic to a
left path. The notions right path and right branch are defined analogously, by interchanging
left and right.

We associate T ∈ Tn with a permutation τ(T) of [n] defined by

τ(T) :=
(
r(T), τ(L(T)), τ(R(T))

)
, (1)

where the base case of the empty tree ε is defined to be the empty permutation τ(ε) := ε.
In words, τ(T) is the sequence of vertex labels obtained from a preorder traversal of T , i.e.,
we first record the label of the root and then recursively record labels of its left subtree
followed by labels of its right subtree. Note that the right path T ∈ Tn satisfies τ(T) = idn,
the identity permutation.

For any vertex i we let βR(i) denote the number of vertices on the right branch starting
at i, with the special case βR(ε) := 0. We also define B−

R (i) := {cj−1
R (i) | j = 1, . . . , βR(i)−1}

as the corresponding sets of vertices on this branch except the last one.

2.2 Pattern-avoiding binary trees
Our notion of pattern avoidance in binary trees generalizes the two distinct notions considered
in [38] and [11] (recall Figure 1). This definition is illustrated in Figure 5. A tree pattern
is a pair (P, e) where P ∈ Tk and e : [k] \ r(P) → {0, 1}. For any vertex i ∈ [k] \ r(P),
a value e(i) = 0 is interpreted as the edge leading from i to its parent p(i) being non-
contiguous, whereas a value e(i) = 1 is interpreted as this edge being contiguous. In our
figures, edges (i, p(i)) in P with e(i) = 1 are drawn solid, and edges with e(i) = 0 are drawn
dotted. Formally, a tree T ∈ Tn contains the pattern (P, e) if there is an injective mapping
f : [k]→ [n] satisfying the following conditions:

(i) For every edge (i, p(i)) of P with e(i) = 1, we have that f(i) is a child of f(p(i))
in T . Specifically, if i = cL(p(i)) then f(i) is the left child of f(p(i)), i.e., we have
f(i) = cL(f(p(i))), whereas if i = cR(p(i)) then f(i) is the right child of f(p(i)), i.e.,
we have f(i) = cR(f(p(i))).

(ii) For every edge (i, p(i)) of P with e(i) = 0, we have that f(i) is a descendant of f(p(i))
in T . Specifically, if i = cL(p(i)), then f(i) is a left descendant of f(p(i)), i.e., we have
f(i) ∈ L(f(p(i))), whereas if i = cR(p(i)), then f(i) is a right descendant of f(p(i)),
i.e., we have f(i) ∈ R(f(p(i))).

We can retrieve the notions of contiguous and non-contiguous pattern containment used
in [38] and [11] as special cases by defining e(i) := 1 for all i ∈ [k] \ r(P), or e(i) := 0 for all
i ∈ [k] \ r(P), respectively.

ISAAC 2023

33:6 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

tree pattern host tree
P T

e(i) = 1
i = cL(p(i)) i = cR(p(i))

e(i) = 0

p(i) f(p(i))

f(i) = cL(f(p(i)))

p(i) f(p(i))

f(i) = cR(f(p(i)))

p(i) f(p(i))

f(i) ∈ L(f(p(i)))

P T

P T

p(i) f(p(i))

P T

i = cL(p(i)) i = cR(p(i))
f(i) ∈ R(f(p(i)))

f

f f

f

Figure 5 Illustration of our notion of pattern containment in binary trees.

If T does not contain (P, e), then we say that T avoids (P, e). Furthermore, we define
the set of binary trees with n vertices that avoid the pattern (P, e) as

Tn(P, e) := {T ∈ Tn | T avoids (P, e)}.

For avoiding multiple patterns (P1, e1), . . . , (Pℓ, eℓ) simultaneously, we define

Tn

(
(P1, e1), . . . , (Pℓ, eℓ)

)
:=

⋂ℓ

i=1
Tn(Pi, ei).

1

(P, e)

6

5

2

3

4

7

8

9

e(5) = 1

e(2) = 0

e(1) = 1 e(4) = 1

e(3) = 0

e(9) = 1

e(8) = 0

e(7) = 1

τ(P) = 652143879
e = (e(5), e(2), e(1), e(4), e(3),

(P, e) = (652143879, 10110011)

e(8), e(7), e(9)) = 10110011

Figure 6 Compact encoding of binary tree patterns.

We often write a tree pattern (P, e), P ∈ Tk, in compact form as a
pair

(
τ(P), (e(τ2), . . . , e(τk))

)
where τ(P) = (τ1, τ2, . . . , τk); see Figure 6. In words, the

tree P is specified by the preorder permutation τ(P), and the function e is specified by the
sequence of values for all vertices except the root in the preorder sequence, i.e., this sequence
has length k − 1.

For any tree pattern (P, e), we write µ(P, e) for the pattern obtained by mirroring the tree,
i.e., by changing left and right. Note that the mirroring operation changes the vertex labels so
that the search tree property is maintained, specifically the vertex i becomes n+1−i. Trivially,
we have Tn(µ(P, e)) = µ(Tn(P, e)), in particular (P, e) and µ(P, e) are Wilf-equivalent.

P. Gregor, T. Mütze, and Namrata 33:7

3 Encoding binary trees by permutations

In this section we establish that avoiding a tree pattern in binary trees is equivalent to
avoiding a corresponding mesh pattern in 231-avoiding permutations (Theorem 2 below).

3.1 Pattern-avoiding permutations
We write Sn for the set of all permutations of [n]. Given two permutations π ∈ Sn

and τ ∈ Sk, we say that π contains τ as a pattern if there is a sequence of indices ν1 <

· · · < νk, such that π(ν1), . . . , π(νk) are in the same relative order as τ = τ(1), . . . , τ(k). If
π does not contain τ , then we say that π avoids τ . We write Sn(τ) for the permutations
from Sn that avoid the pattern τ . More generally, for multiple patterns τ1, . . . , τℓ we
define Sn(τ1, . . . , τℓ) :=

⋂ℓ
i=1 Sn(τi), i.e., this is the set of permutations of length n that

avoid each of the patterns τ1, . . . , τℓ. It is well known that preorder traversals of binary trees
are in bijection with 231-avoiding permutations (see, e.g. [27]).

▶ Lemma 1. The mapping τ : Tn → Sn(231) defined in (1) is a bijection.

3.2 Mesh patterns

σ = (τ, C)

π = 673498125 contains σ

R0,1τ = 3241

C = {(0, 1), (1, 2), (3, 2)}

R1,2 R3,2

Figure 7 Illustration of mesh pattern containment.

Mesh patterns were introduced by Brändén and Claesson [9], and they generalize classical
permutation patterns discussed in the previous section. We recap the required definitions; see
Figure 7. The grid representation of a permutation π ∈ Sn is defined as G(π) := {(i, π(i)) |
i ∈ [n]}. Graphically, this is the permutation matrix corresponding to π.

A mesh pattern is a pair σ := (τ, C), where τ ∈ Sk and C ⊆ {0, . . . , k}×{0, . . . , k}. In our
figures, we depict σ by the grid representation of τ , and we shade all unit squares [i, i + 1]×
[j, j + 1] for which (i, j) ∈ C. A permutation π ∈ Sn contains the mesh pattern σ = (τ, C),
if there is a sequence of indices ν1 < · · · < νk such that the following two conditions hold:

(i) The entries of π(ν1), . . . , π(νk) are in the same relative order as τ = τ(1), . . . , τ (k).
(ii) We let λ1 < · · · < λk be the values π(ν1), . . . , π(νk) sorted in increasing order. For all

pairs (i, j) ∈ C, we require that G(π) ∩ Ri,j = ∅, where Ri,j is the rectangular open
set defined as Ri,j := (νi, νi+1) × (λj , λj+1), using the sentinel values ν0 := λ0 := 0
and νk+1 = λk+1 := n + 1.

ISAAC 2023

33:8 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

The first condition requires a match of the classical pattern τ in π. The second condition
requires that G(π) has no point in any of the regions Ri,j that correspond to the shaded
cells C of the pattern. Thus, the classical pattern τ ∈ Sk is the mesh pattern (τ, ∅).

3.3 From binary tree patterns to mesh patterns
In the following, for a given tree pattern (P, e), P ∈ Tk, we construct a permutation mesh
pattern σ(P, e) = (τ(P), C), consisting of the permutation τ(P) obtained by a preorder
traversal of the tree P and a set of shaded cells C. These definitions are illustrated in
Figures 8 and 9. We consider the inverse permutation of τ(P) ∈ Sk, which we abbreviate
to ρ := τ(P)−1 ∈ Sk. The permutation ρ gives the position of each vertex in the preorder
traversal τ(P) of P . Recall the definition of the set B−

R (i) given in Section 2.1. For any
vertex i ∈ [k] we define

Ci :=
{

(ρ(i)− 1, j) | j ∈ B−
R (i)

}
, (2a)

and for any i ∈ [k] \ r(P) we define

C ′
i :=

∅ if e(i) = 0,{(
ρ(i)− 1, min P (i)− 1

)
,

(
ρ(i)− 1, max P (i)

)}
if e(i) = 1.

(2b)

Then the mesh pattern σ(P, e) corresponding to the tree pattern (P, e) is defined as

σ(P, e) :=
(

τ(P),
⋃

i∈[k]
Ci ∪

⋃
i∈[k]\r(P)

C ′
i

)
. (2c)

In words, for every pair of vertices (not necessarily distinct and not necessarily forming an
edge) except the last vertex on a maximal right branch we shade the cell directly left of the
smaller vertex and directly above the larger vertex, and for every edge (i, p(i)) with e(i) = 1
we shade two additional cells to the left and bottom/top of the submatrix corresponding to
the subtree P (i).

(ρ(i), i)

i

(P, e)

σ(P, e) = (τ(P), C)

(ρ(i)− 1, j), j ∈ B−
R(i)

(ρ(i)− 1,minP (i)− 1)

P (i)

(ρ(i)− 1,maxP (i))

p(i)

B−
R(i)

Ci

C ′
i

Figure 8 Schematic illustration of the definition of the mesh pattern σ(P, e) for a tree pattern (P, e).
The edges of the tree P can be contiguous or non-contiguous, and are therefore drawn half solid
and half dotted. In the tree shown in the figure, i is the right child of p(i), but it might also be the
left child of p(i) (faint lines). On the right, the shaded cells belong to the mesh pattern, and the
hatched region corresponds to the submatrix given by the subtree P (i).

P. Gregor, T. Mütze, and Namrata 33:9

2

7

1

3

5

4

6

8

9

13

11

10

122

1 7

3 8

9

13

5

4 6

11

1210

(P, e)

σ(P, e) = (τ(P), C)

τ(P) = (2, 1, 7, 3, 5, 4, 6, 8, 9, 13, 11, 10, 12)

C = {(0, 2), (0, 7), (0, 8), (0, 9), (2, 2), (2, 7), (2, 8), (2, 9), (2, 13),

Ci

C ′
i

(3, 2), (3, 3), (3, 5), (3, 6), (4, 5), (7, 7), (7, 8), (7, 9), (7, 13)

(8, 8), (8, 9), (8, 13), (10, 9), (10, 11), (10, 12)}

Figure 9 Specific example of the mesh pattern σ(P, e) corresponding to a tree pattern (P, e).

The following generalization of Lemma 1 is the main result of this section. Our theorem
also generalizes Theorem 12 from [37], which is obtained as the special case when all edges
of P are non-contiguous, i.e., e(i) = 0 for all i ∈ [k] \ r(P).

▶ Theorem 2. For any tree pattern (P, e), P ∈ Tk, consider the mesh pattern σ(P, e) =
(τ(P), C) defined in (2). Then the mapping τ : Tn(P, e)→ Sn(231, σ(P, e)) is a bijection.

This theorem extends naturally to avoiding multiple tree patterns (P1, e1), . . . , (Pℓ, eℓ),
i.e., τ : Tn((P1, e1), . . . , (Pℓ, eℓ))→ Sn(231, σ(P1, e1), . . . , σ(Pℓ, eℓ)) is a bijection. The proof
of Theorem 2 can be found in [20].

4 Generating pattern-avoiding binary trees

In this section we apply the Hartung–Hoang–Mütze–Williams generation framework to
pattern-avoiding binary trees. The main results are simple and efficient algorithms (Al-
gorithm S and Algorithm H) to generate different classes of pattern-avoiding binary trees,
subject to some mild constraints on the tree pattern(s) that are inherited from applying the
framework (Theorems 3 and 4, respectively).

4.1 Tree rotations and slides
A natural and well-studied operation on binary trees are tree rotations; see Figure 2. We
consider a tree T ∈ Tn and one of its edges (i, j) with j = cR(i), and we let Y be the left
subtree of j, i.e., Y := L(j). A rotation of the edge (i, j) yields the tree obtained by the
following modifications: The child i of p(i) is replaced by j (unless p(i) = ε in T), i becomes

ISAAC 2023

33:10 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

the left child of j, and Y becomes the right subtree of i. We denote this operation by j△, and
we refer to it as up-rotation of j, indicating that the vertex j moves up. The operation j△
is well-defined if and only if j is not the root and p(j) < j, or equivalently j = cR(p(j)).
The inverse operation is denoted by j▽, and we refer to it as down-rotation of j, indicating
that the vertex j moves down. The operation j▽ is well-defined if and only if j has a left
child (which must be smaller), i.e., cL(j) ̸= ε. An up-slide or down-slide of j by d steps is a
sequence of d up- or down-rotations of j, respectively, which we write as (j△)d and (j▽)d.

4.2 A simple greedy algorithm

We use the following simple greedy algorithm to generate a set of binary trees Ln ⊆ Tn. We
say that a slide is minimal (w.r.t. Ln), if every slide of the same vertex in the same direction
by fewer steps creates a binary tree that is not in Ln.

Algorithm S (Greedy slides). This algorithm attempts to greedily generate a set of
binary trees Ln ⊆ Tn using minimal slides starting from an initial binary tree T0 ∈ Ln.
S1. [Initialize] Visit the initial tree T0.
S2. [Slide] Generate an unvisited binary tree from Ln by performing a minimal slide of

the largest possible vertex in the most recently visited binary tree. If no such slide
exists, or the direction of the slide is ambiguous, then terminate. Otherwise visit this
binary tree and repeat S2.

To illustrate the algorithm, consider the example in Figure 10. Suppose we choose the
right path T1 shown in the figure as initial tree for the algorithm, i.e., T0 := T1. In the first
iteration, Algorithm S performs an up-slide of the vertex 4 by three steps to obtain T2. This
up-slide is minimal, as an up-slide of 4 in T1 by one or two steps creates the forbidden tree
pattern (P, e). Note that any tree created from T2 by a down-slide of 4 either contains the
forbidden pattern or has been visited before. Consequently, the algorithm applies an up-slide
of 3 by two steps, yielding T3. After five more slides, the algorithm terminates with T8, and
at this point it has visited all eight trees in T4(P, e).

Now consider the example in Figure 11, where the algorithm terminates after having
visited six different trees from T4(P, e). However, the set T4(P, e) contains two more trees
that are not visited by the algorithm.

(P, e) =

(4△)3

1234

1

3

2

4

4

1

3

2

2

1

3

4

2

1

3

4 2

1

3

4

2

1

3

4

2

1 3

4 2

1 3

4

(3△)2 4▽ 2△ 4△ 3▽ (4▽)2

4123 4312 3124 3214 4321 4213 2134

2

1

3

T1 T2 T3 T4 T5 T6 T7 T8

Figure 10 Run of Algorithm S that visits all binary trees in the set T4(P, e). Below each tree T

is the corresponding permutation τ(T).

P. Gregor, T. Mütze, and Namrata 33:11

(P, e) =

4△

1234

1

3

2

4

1

3

2

4▽

1243 4312 3124 3214 4321

2

1 3
4

4△
1

3

2

4 1

3

2

4
4△ 3△

1

3

2

4 1

3

2

4

4321

1

3

2

4

4312

1

3

2

4

not visited:

Figure 11 Run of Algorithm S that does not visit all binary trees in the set T4(P, e).

We now formulate simple sufficient conditions on the tree pattern (P, e) ensuring that
Algorithm S successfully visits all trees in Tn(P, e). Specifically, we say that a tree pat-
tern (P, e), P ∈ Tk, is friendly, if it satisfies the following three conditions; see Figure 12:

r(P)

k

B−
R(r(P))

cL(k) ̸= ε

p(k)

Figure 12 Definition of friendly tree patterns.

(i) We have p(k) ̸= ε and cL(k) ̸= ε, i.e., the largest vertex k is neither the root nor a leaf
in P .

(ii) For every j ∈ B−
R (r(P)) \ r(P) we have e(j) = 0, i.e., the edges on the right branch

starting at the root, except possibly the last one, are all non-contiguous.
(iii) If e(k) = 1, then we have e(cL(k)) = 0, i.e., if the edge from k to its parent is contiguous,

then the edge to its left child must be non-contiguous.
Note that for non-contiguous tree patterns, i.e., e(i) = 0 for all i ∈ [k] \ r(P), conditions (ii)
and (iii) are always satisfied. The following is our main result of this section.

▶ Theorem 3. Let (P1, e1), . . . , (Pℓ, eℓ) be friendly tree patterns. Then Algorithm S initialized
with the tree τ−1(idn) visits every binary tree from Tn((P1, e1), . . . , (Pℓ, eℓ)) exactly once.

Recall that τ−1(idn) is the right path, i.e., the tree that corresponds to the identity
permutation. Note that by condition (i) in the definition of friendly tree pattern, we have
τ−1(idn) ∈ Tn((P1, e1), . . . , (Pℓ, eℓ)). Theorem 3 can be proved by applying the Hartung–
Hoang–Mütze–Williams generation framework [21]; see [20] for details. In particular, our
notion of friendly tree patterns is inherited from the notion of tame mesh permutation
patterns used in [21, Thm. 15].

4.3 Efficient implementation

We now describe an efficient implementation of Algorithm S. In particular, this implementation
is history-free, i.e., it does not require to store all previously visited binary trees, but only
maintains the current tree in memory. Algorithm H is a straightforward translation of the
history-free Algorithm M presented in [34] from permutations to binary trees.

ISAAC 2023

33:12 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

Algorithm H (History-free minimal slides). For friendly tree pat-
terns (P1, e1), . . . , (Pℓ, eℓ), this algorithm generates all binary trees from Tn that
avoid (P1, e1), . . . , (Pℓ, eℓ), i.e., the set Ln := Tn((P1, e1), . . . , (Pℓ, eℓ)) ⊆ Tn by minimal
slides in the same order as Algorithm S. It maintains the current tree in the variable T ,
and auxiliary arrays o = (o1, . . . , on) and s = (s1, . . . , sn).
H1. [Initialize] Set T ← τ−1(idn), and oj ← △, sj ← j for j = 1, . . . , n.
H2. [Visit] Visit the current binary tree T .
H3. [Select vertex] Set j ← sn, and terminate if j = 1.
H4. [Slide] In the current binary tree T , perform a slide of the vertex j that is minimal

w.r.t. Ln, where the slide direction is up if oj = △ and down if oj = ▽.
H5. [Update o and s] Set sn ← n. If oj = △ and j is either the root or its parent is larger

than j set oj = ▽, or if oj = ▽ and j has no left child set oj = △, and in both cases
set sj ← sj−1 and sj−1 = j − 1. Go back to H2.

The two auxiliary arrays used by Algorithm H store the following information. The
direction in which vertex j slides in the next step is maintained in the variable oj . Furthermore,
the array s is used to determine the vertex that slides in the next step. Specifically, the
vertex j that slides in the next steps is retrieved from the last entry of the array s in step H3,
by the instruction j ← sn. The running time per iteration of the algorithm is governed by the
time it takes to compute a minimal slide in step H4. This boils down to testing containment
of the tree patterns (Pi, ei), i ∈ [ℓ], in T .

▶ Theorem 4. Let (P1, e1), . . . , (Pℓ, eℓ) be friendly tree patterns with Pi ∈ Tki for i ∈ [ℓ].
Then Algorithm H visits every binary tree from Tn((P1, e1), . . . , (Pℓ, eℓ)) exactly once, in the
same order as Algorithm S, in time O(n2 ∑ℓ

i=1 k2
i) per binary tree.

See [20] for a proof of Theorem 4.

5 Tree patterns on at most 5 vertices

We conducted systematic computer experiments with all tree patterns (P, e) on k = 3, 4, 5
vertices; see Tables 1, 2 and 3, respectively. Specifically, we computed the corresponding
counting sequences |Tn(P, e)| for n = 1, . . . , 12, and searched for matches within the OEIS [36].
There are three new counting sequences denoted by NewA, NewB, and NewC, which we added
to the OEIS using the sequence numbers A365508, A365509, and A365510, respectively. All
those counts were computed using Algorithm H for friendly tree patterns, and via brute-force
methods for non-friendly tree patterns. As mirrored tree patterns are Wilf-equivalent, our
tables only contain the lexicographically smaller of any such pair of mirrored trees, using the
compact encoding described in Section 2.2.

It turns out that for some edges (i, p(i)) in a tree pattern (P, e), it is irrelevant whether
the edge is considered contiguous (e(i) = 1) or non-contiguous (e(i) = 0). We have a theorem
([20, Thm. 11]) that describes these situations, and this theorem is used heavily in our tables,
where those “don’t care” values of e are denoted by the hyphen -. The statement and proof
of this theorem are slightly technical, and so we omit it in this extended abstract.

https://oeis.org/A365508
https://oeis.org/A365509
https://oeis.org/A365510

P. Gregor, T. Mütze, and Namrata 33:13

Table 1 Tree patterns with 3 vertices. See Section 5 for explanations.

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
123 0- 1 2 4 8 16 32 64 128 256 512 1024 2048 . . . A000079

1- 1 2 4 9 21 51 127 323 835 2188 5798 15511 . . . A001006
132 -- 0-, -0 1 2 4 8 16 32 64 128 256 512 1024 2048 . . . A000079
213 -- 1 2 4 8 16 32 64 128 256 512 1024 2048 . . . A000079

Table 2 Tree patterns with 4 vertices.

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
1234 00- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519

01- 1 2 5 13 35 96 267 750 2123 6046 17303 49721 . . . A005773
10- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242
11- 1 2 5 13 36 104 309 939 2905 9118 28964 92940 . . . A036765

1243 0-- 00-, 0-0 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
1-- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

1324 0-- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
1-- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

1423 0--, -0- 0--, -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
11- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

1432 -0- -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
-1- 01- 1 2 5 13 35 96 267 750 2123 6046 17303 49721 . . . A005773

2134 -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
-1- 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

2143 -0- -0- 1 2 5 13 34 89 233 610 1597 4181 10946 28657 . . . A001519
-1- -10 1 2 5 13 35 97 275 794 2327 6905 20705 62642 . . . A025242

Table 3 Tree patterns with 5 vertices.

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
12345 000- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051

001- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
010- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
011- 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 . . . A159772
100- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
101- 1 2 5 14 41 124 383 1202 3819 12255 39651 129190 . . . NewB→A365509
110- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768
111- 1 2 5 14 41 125 393 1265 4147 13798 46476 158170 . . . A036766

12354 00-- 000-, 00-0 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

12435 00-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

12534 00--, 0-0- 00--, 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
011- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10--, 1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
111- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

12543 0-0- 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1- 001- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
101- 1 2 5 14 41 124 383 1202 3819 12255 39651 129190 . . . NewB→A365509
111- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

13245 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
1-0- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
1-1- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

ISAAC 2023

https://oeis.org/A000079
https://oeis.org/A001006
https://oeis.org/A000079
https://oeis.org/A000079
https://oeis.org/A001519
https://oeis.org/A005773
https://oeis.org/A025242
https://oeis.org/A036765
https://oeis.org/A001519
https://oeis.org/A025242
https://oeis.org/A001519
https://oeis.org/A025242
https://oeis.org/A001519
https://oeis.org/A025242
https://oeis.org/A001519
https://oeis.org/A005773
https://oeis.org/A001519
https://oeis.org/A025242
https://oeis.org/A001519
https://oeis.org/A025242
https://oeis.org/A007051
https://oeis.org/A054391
https://oeis.org/A365508
https://oeis.org/A159772
https://oeis.org/A176677
https://oeis.org/A365509
https://oeis.org/A159768
https://oeis.org/A036766
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A176677
https://oeis.org/A159768
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A176677
https://oeis.org/A159768
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A176677
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A054391
https://oeis.org/A176677
https://oeis.org/A365509
https://oeis.org/A159770
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A365510
https://oeis.org/A159768

33:14 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

P e Friendly Counts |Tn(P, e)| for n = 1, . . . , 12 OEIS
13254 0-0- 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051

0-1- 0-10 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
1-0- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
1-1- 1 2 5 14 41 124 385 1220 3929 12822 42309 140922 . . . A159771

14235 00-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

14325 00-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
10-- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
11-- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

15234 0-0-, -00- 0-0-, -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1-, -01- 0-1-, -01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
110- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
111- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

15243 -0--, 0-0- -0--, 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
011- 011- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
110- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
111- 1 2 5 14 41 124 385 1220 3929 12822 42309 140922 . . . A159771

15324 -0-- -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
11-- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

15423 -0-- -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
01-- 01-- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
-10- 010- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
111- 1 2 5 14 41 124 384 1211 3875 12548 41040 135370 . . . A159770

15432 -00- -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-01- -01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
-10- 010- 1 2 5 14 41 123 375 1157 3603 11304 35683 113219 . . . NewA→A365508
-11- 011- 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 . . . A159772

21345 -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
-10- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
-11- 1 2 5 14 41 124 385 1221 3939 12886 42648 142544 . . . A159768

21354 -0-- -00-, -0-0 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-10- 1 2 5 14 41 123 376 1168 3678 11716 37688 122261 . . . NewC→A365510
-11- 1 2 5 14 41 124 384 1212 3885 12613 41389 137055 . . . A159773

21435 -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-1-- 1 2 5 14 41 124 385 1220 3929 12822 42309 140922 . . . A159771

21534 -0-- -0-- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-10- -10- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
-11- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

21543 -00- -00- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
-01- -01- 1 2 5 14 41 123 374 1147 3538 10958 34042 105997 . . . A054391
-10- -10- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
-11- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

31245 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-1- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

31254 0-0- 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1-, 1-0- 0-10, 1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-1- 1-10 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

32145 0-0- 1 2 5 14 41 122 365 1094 3281 9842 29525 88574 . . . A007051
0-1-, 1-0- 1 2 5 14 41 123 375 1158 3615 11393 36209 115940 . . . A176677
1-1- 1 2 5 14 41 124 384 1212 3885 12614 41400 137132 . . . A159769

6 Bijections between binary trees and Motzkin paths

In this section, we present bijections between pattern-avoiding binary trees and different types
of Motzkin paths. For more bijections with other combinatorial objects, see [20]. Specifically,
we consider lattice paths with steps U := (1, 1), D := (1,−1), F := (1, 0), and Dh := (1,−h)
for h ≥ 2. An n-step Motzkin path starts at (0, 0), ends at (n, 0), uses only steps U, D or F,
and it never goes below the x-axis. We write Mn for the set of all n-step Motzkin paths
(OEIS A001006). An n-step Motzkin left factor starts at (0, 0), uses n many steps U, D or F,

https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A365510
https://oeis.org/A159771
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A176677
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A176677
https://oeis.org/A159770
https://oeis.org/A007051
https://oeis.org/A054391
https://oeis.org/A365510
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A365510
https://oeis.org/A159771
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A159770
https://oeis.org/A007051
https://oeis.org/A365508
https://oeis.org/A365508
https://oeis.org/A159770
https://oeis.org/A007051
https://oeis.org/A054391
https://oeis.org/A365508
https://oeis.org/A159772
https://oeis.org/A007051
https://oeis.org/A054391
https://oeis.org/A365510
https://oeis.org/A159768
https://oeis.org/A007051
https://oeis.org/A365510
https://oeis.org/A159773
https://oeis.org/A007051
https://oeis.org/A159771
https://oeis.org/A007051
https://oeis.org/A176677
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A054391
https://oeis.org/A176677
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A176677
https://oeis.org/A176677
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A176677
https://oeis.org/A159769
https://oeis.org/A007051
https://oeis.org/A176677
https://oeis.org/A159769

P. Gregor, T. Mütze, and Namrata 33:15

and it never goes below the x-axis. We write Ln for the set of all n-step Motzkin left factors
(OEIS A005773). An n-step Motzkin path with catastrophes [4] starts at (0, 0), ends at (n, 0),
uses only steps U, D, F, or Dh for h ≥ 2, such that all Dh-steps end on the x-axis, and it never
goes below the x-axis (OEIS A054391). We write Cn for the set of all n-step Motzkin paths
with catastrophes.

6.1 Bijection between Tn(123, 1-) and Motzkin paths Mn

This bijection is illustrated in Figure 13 (a). Consider a tree T ∈ Tn(P, e) where (P, e) :=
(123, 1-). Due to the forbidden pattern (P, e), every maximal right branch in T consists of
one or two vertices, but not more. We map T to an n-step Motzkin path f(T) as follows.
Every maximal right branch in T consisting of one vertex i creates an F-step at position i

in f(T). Every maximal right branch in T consisting of two vertices i and j, where j = cR(i),
creates a pair of U-step and D-step at the same height at positions i and j in f(T), respectively.
It is easy to verify that f is indeed a bijection between Tn(P, e) and Mn.

Rowland [38] described a bijection between Tn(123, 1-) and Mn that is different from f .

6.2 Bijection between Tn(1432, -1-) and Motzkin left factors Ln−1

This bijection is illustrated in Figure 13 (b), and it uses as a building block the bijection f

defined in the previous section. Instead of (1432, -1-), we consider the mirrored tree pat-
tern (P, e) := µ(1432, -1-) = (4123, -1-) for convenience. Consider a tree T ∈ Tn(P, e).
We define b := βR(r(T)) and ri := ci−1

R (r(T)) for i = 1, . . . , b, i.e., we consider the right
branch (r1, . . . , rb) starting from the root of T . Due to the forbidden tree pattern (P, e), each
subtree L(ri) for i = 1, . . . , b is (123, 1-)-avoiding. Using the bijection f described in the
previous section, we can thus map each subtree L(ri) to a Motzkin path f(L(ri)). Therefore,
we map T to an (n− 1)-step Motzkin left factor g(T) by combining the subpaths f(L(ri)),
separating them by in total b − 1 many U-steps, one between every two consecutive sub-
paths f(L(ri)) and f(L(ri+1)). To make the proof work, the subpaths f(L(ri)) can be
combined in increasing order from left to right on g(T), i.e., for i = 1, . . . , b, or in decreasing
order, i.e., for i = b, b− 1, . . . , 1, and for reasons that will become clear in the next section
we combine them in decreasing order, i.e.,

g(T) := f(L(rb)), U, f(L(rb−1)), . . . , U, f(L(r1)). (3)

The mapping g is clearly a bijection between Tn(P, e) and Ln−1.

6.3 Bijection between Tn(21543, -01-) and Motzkin paths with
catastrophes Cn

This bijection is illustrated in Figure 13 (c), and it uses as a building block the bijection g

defined in the previous section. Instead of (21543, -01-), we consider the mirrored tree
pattern (P, e) := µ(21543, -01-) = (41235, 01--) for convenience. Consider a tree T ∈ Tn(P, e)
and the rightmost leaf in T , and partition the path from the root of T to that leaf into a
sequence of maximal right branches B1, . . . , Bℓ. For i = 1, . . . , ℓ, we let Ti be the subtree
of T that consists of Bi plus the left subtrees of all vertices on Bi except the last one. Note
that T1, . . . , Tℓ form a partition of T . Furthermore, T avoiding (P, e) is equivalent to each
of the Ti, i = 1, . . . , ℓ, avoiding (4123, 01-). Using the bijection g described in the previous
section, we can thus map each subtree Ti to a Motzkin left factor g(Ti), and by appending one
additional appropriate step F, D or Dh for h ≥ 2 we obtain a Motzkin path g′(Ti). Note that

ISAAC 2023

33:16 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

5

g(T) ∈ Ln−1

T ∈ Tn(P, e) f(T) ∈ Mn

1 2 3 4 5 6 7 8 9 10 11

(a)

(b) T ∈ Tn(P, e)

1

3

2

(P, e) = (123, 1-) 11

5

4

1

2

3

6

12

7

10

9

8

12

1

3

2

(P, e) = (4123, -1-)

4

f

L(r1)

f(L(rb))
f(L(rb−1))

f(L(r1))

g

r1

r2

rb

L(r2)

L(rb)

(c)

1

3

2

(P, e) = (41235, 01--)

4
B1

B2 = T2

B3 = T3

B4

Bs

T ∈ Tn(P, e)

h g′(B2) g′(B3)

g(B1) g(B4) g(Bs)

h(T) ∈ Cn

T1

T4

Ts

g′(B1) g′(B4) g′(Bs)

Figure 13 Bijections between pattern-avoiding binary trees and different types of Motzkin paths.
Edges (i, p(i)) in the tree patterns that can be contiguous or non-contiguous (giving the same
pattern-avoiding trees) are drawn as a double line that is half solid and half dotted.

the rightmost leaf of Ti has no left child, and thus the definition (3) yields that g′(Ti) touches
the x-axis only at the first point and last point, but at no intermediate (integer) points.
Therefore, we map T to an n-step Motzkin path with catastrophes h(T) by concatenating
the Motzkin subpaths g′(Ti) for i = 1, . . . , ℓ, i.e., h(T) := g′(T1), g′(T2), . . . , g′(Tℓ). It can be
readily checked that h is a bijection between Tn(P, e) and Cn.

7 Open Problems

Are there elegant bijections between pattern-avoiding binary trees and other interesting
combinatorial objects such as Motzkin paths with 2-colored F-steps at odd heights
(OEIS A176677), or so-called skew Motzkin paths (OEIS A025242)?

P. Gregor, T. Mütze, and Namrata 33:17

For purely contiguous or non-contiguous tree patterns (P, e), there are recursions to derive
the generating function for |Tn(P, e)|; see [38] and [11]. For our more general mixed tree
patterns, these methods seem to fail. Is there is an algorithm to compute those more
general generating functions, and what are their properties? Furthermore, can the set of
pattern-avoiding trees for such pure (non-friendly) patterns be generated efficiently?
In addition to contiguous and non-contiguous edges (i, p(i)) of a binary tree pattern,
which we encode by e(i) = 1 and e(i) = 0, there is another very natural notion of
pattern containment that is intermediate between those two, which we may encode
by setting e(i) := 1/2. Specifically, for such an edge with e(i) = 1/2 in the pattern
tree P , we require from the injection f described in Section 2.2 that f(i) is a descendant
of f(p(i)) along a left or right branch in the host tree T . Specifically, if i = cL(p(i)), then
f(i) = cj

L(f(p(i))) for some j > 0, whereas if i = cR(p(i)), then f(i) = cj
R(f(p(i))) for

some j > 0. Theorem 2 can be generalized to also capture this new notion, by modifying
the definition (2b) in the natural way to

C ′
i :=

∅ if e(i) = 0,{

(ρ(i)− 1, min P (i)− 1)} if e(i) = 1/2 and i = cL(p(i)),{
(ρ(i)− 1, max P (i))

}
if e(i) = 1/2 and i = cR(p(i)),{(

ρ(i)− 1, min P (i)− 1
)
,

(
ρ(i)− 1, max P (i)

)}
if e(i) = 1.

The notion of friendly tree pattern can be generalized by modifying condition (iii) in
Section 4.2 as follows: (iii’) If e(k) ∈ {1, 1/2}, then we have e(cL(k)) ∈ {0, 1/2}. It is
worthwhile to investigate this new notion of pattern containment/avoidance and its
interplay with the other two notions. Our computer experiments show that there are
patterns with edges e(i) = 1/2 that give rise to counting sequences that are distinct from
the ones obtained from patterns with edges e(i) = 1 (contiguous) and e(i) = 0 (non-
contiguous). The corresponding functionality has already been built into our generation
tool [10].
This intermediate notion of pattern-avoidance in binary trees has interesting applications
in the context of pattern-avoidance in rectangulations, a line of inquiry that was initiated
in [34].

References
1 K. Anders and K. Archer. Rooted forests that avoid sets of permutations. European J. Combin.,

77:1–16, 2019. doi:10.1016/j.ejc.2018.10.004.
2 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of lattice

paths with forbidden patterns: enumerative aspects. In Language and automata theory and
applications, volume 10792 of Lecture Notes in Comput. Sci., pages 195–206. Springer, Cham,
2018. doi:10.1007/978-3-319-77313-1_15.

3 E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification of the
Mahonian statistics. Sém. Lothar. Combin., 44:Art. B44b, 18 pp., 2000.

4 J.-L. Baril and S. Kirgizov. Bijections from Dyck and Motzkin meanders with catastrophes to
pattern avoiding Dyck paths. Discrete Math. Lett., 7:5–10, 2021. doi:10.47443/dml.2021.
0032.

5 A. Bernini, L. Ferrari, R. Pinzani, and J. West. Pattern-avoiding Dyck paths. In 25th
International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC
2013), Discrete Math. Theor. Comput. Sci. Proc., AS, pages 683–694. Assoc. Discrete Math.
Theor. Comput. Sci., Nancy, 2013.

ISAAC 2023

https://doi.org/10.1016/j.ejc.2018.10.004
https://doi.org/10.1007/978-3-319-77313-1_15
https://doi.org/10.47443/dml.2021.0032
https://doi.org/10.47443/dml.2021.0032

33:18 Pattern-Avoiding Binary Trees – Generation, Counting, and Bijections

6 D. Bevan, D. Levin, P. Nugent, J. Pantone, L. Pudwell, M. Riehl, and M. L. Tlachac. Pattern
avoidance in forests of binary shrubs. Discrete Math. Theor. Comput. Sci., 18(2):Paper No. 8,
22 pp., 2016.

7 J. Bloom and S. Elizalde. Pattern avoidance in matchings and partitions. Electron. J. Combin.,
20(2):Paper 5, 38, 2013. doi:10.37236/2976.

8 J. Bloom and D. Saracino. Pattern avoidance for set partitions à la Klazar. Discrete Math.
Theor. Comput. Sci., 18(2):Paper No. 9, 22 pp., 2016. doi:10.46298/dmtcs.1327.

9 P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics as
sums of permutation patterns. Electron. J. Combin., 18(2):Paper 5, 14 pp., 2011.

10 The Combinatorial Object Server: Generate binary trees. http://www.combos.org/btree.
11 M. Dairyko, L. Pudwell, S. Tyner, and C. Wynn. Non-contiguous pattern avoidance in binary

trees. Electron. J. Combin., 19(3):Paper 22, 21 pp., 2012. doi:10.37236/2099.
12 F. Disanto. Unbalanced subtrees in binary rooted ordered and un-ordered trees. Sém. Lothar.

Combin., 68:Art. B68b, 14 pp., 2012.
13 V. Dotsenko. Pattern avoidance in labelled trees, 2011. arXiv:1110.0844.
14 S. Elizalde and M. Noy. Consecutive patterns in permutations. Adv. in Appl. Math., 30:110–

125, 2003. Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001). doi:
10.1016/S0196-8858(02)00527-4.

15 N. Gabriel, K. Peske, L. Pudwell, and S. Tay. Pattern avoidance in ternary trees. J. Integer
Seq., 15(1):Article 12.1.5, 20 pp., 2012.

16 S. Giraudo. Tree series and pattern avoidance in syntax trees. J. Combin. Theory Ser. A,
176:105285, 37, 2020. doi:10.1016/j.jcta.2020.105285.

17 A. Godbole, A. Goyt, J. Herdan, and L. Pudwell. Pattern avoidance in ordered set partitions.
Ann. Comb., 18(3):429–445, 2014. doi:10.1007/s00026-014-0232-y.

18 A. M. Goyt. Avoidance of partitions of a three-element set. Adv. in Appl. Math., 41(1):95–114,
2008. doi:10.1016/j.aam.2006.07.006.

19 A. M. Goyt and L. K. Pudwell. Avoiding colored partitions of two elements in the pattern
sense. J. Integer Seq., 15(6):Article 12.6.2, 17 pp., 2012.

20 P. Gregor, T. Mütze, and Namrata. Combinatorial generation via permutation languages. VI.
Binary trees, 2023. Full preprint version of the present article available at arXiv:2306.08420.

21 E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via permutation
languages. I. Fundamentals. Trans. Amer. Math. Soc., 375(4):2255–2291, 2022. doi:10.1090/
tran/8199.

22 V. Jelínek and T. Mansour. On pattern-avoiding partitions. Electron. J. Combin., 15(1):Re-
search paper 39, 52 pp., 2008. URL: http://www.combinatorics.org/Volume_15/Abstracts/
v15i1r39.html.

23 V. Jelínek, T. Mansour, and M. Shattuck. On multiple pattern avoiding set partitions. Adv.
in Appl. Math., 50(2):292–326, 2013. doi:10.1016/j.aam.2012.09.002.

24 M. Klazar. On abab-free and abba-free set partitions. European J. Combin., 17(1):53–68, 1996.
doi:10.1006/eujc.1996.0005.

25 M. Klazar. Counting pattern-free set partitions. I. A generalization of Stirling numbers of the
second kind. European J. Combin., 21(3):367–378, 2000. doi:10.1006/eujc.1999.0353.

26 M. Klazar. Counting pattern-free set partitions. II. Noncrossing and other hypergraphs.
Electron. J. Combin., 7:Research Paper 34, 25 pp., 2000. URL: http://www.combinatorics.
org/Volume_7/Abstracts/v7i1r34.html.

27 G. D. Knott. A numbering system for binary trees. Commun. ACM, 20(2):113–115, 1977.
doi:10.1145/359423.359434.

28 D. E. Knuth. The Art of Computer Programming. Vol. 1: Fundamental algorithms. Addison-
Wesley, Reading, MA, 1997. Third edition.

29 G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math., 1(4):333–350, 1972.
doi:10.1016/0012-365X(72)90041-6.

https://doi.org/10.37236/2976
https://doi.org/10.46298/dmtcs.1327
http://www.combos.org/btree
https://doi.org/10.37236/2099
https://arxiv.org/abs/1110.0844
https://doi.org/10.1016/S0196-8858(02)00527-4
https://doi.org/10.1016/S0196-8858(02)00527-4
https://doi.org/10.1016/j.jcta.2020.105285
https://doi.org/10.1007/s00026-014-0232-y
https://doi.org/10.1016/j.aam.2006.07.006
https://arxiv.org/abs/2306.08420
https://doi.org/10.1090/tran/8199
https://doi.org/10.1090/tran/8199
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r39.html
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r39.html
https://doi.org/10.1016/j.aam.2012.09.002
https://doi.org/10.1006/eujc.1996.0005
https://doi.org/10.1006/eujc.1999.0353
http://www.combinatorics.org/Volume_7/Abstracts/v7i1r34.html
http://www.combinatorics.org/Volume_7/Abstracts/v7i1r34.html
https://doi.org/10.1145/359423.359434
https://doi.org/10.1016/0012-365X(72)90041-6

P. Gregor, T. Mütze, and Namrata 33:19

30 D. Levin, L. K. Pudwell, M. Riehl, and A. Sandberg. Pattern avoidance in k-ary heaps.
Australas. J. Combin., 64:120–139, 2016.

31 J. M. Lucas, D. Roelants van Baronaigien, and F. Ruskey. On rotations and the generation of
binary trees. J. Algorithms, 15(3):343–366, 1993. doi:10.1006/jagm.1993.1045.

32 T. Mansour and M. Shattuck. Pattern avoiding partitions and Motzkin left factors. Cent. Eur.
J. Math., 9(5):1121–1134, 2011. doi:10.2478/s11533-011-0057-4.

33 T. Mansour and M. Shattuck. Pattern avoiding partitions, sequence A054391 and the kernel
method. Appl. Appl. Math., 6(12):397–411, 2011.

34 A. Merino and T. Mütze. Combinatorial generation via permutation languages. III. Rectangu-
lations. Discrete Comput. Geom., 70:51–122, 2023. doi:10.1007/s00454-022-00393-w.

35 T. Mütze. Combinatorial Gray codes – an updated survey. Electron. J. Combin., DS26:93,
2023. doi:10.37236/11023.

36 OEIS Foundation Inc. The on-line encyclopedia of integer sequences, 2023. URL: http:
//oeis.org.

37 L. Pudwell, C. Scholten, T. Schrock, and A. Serrato. Noncontiguous pattern containment in
binary trees. International Scholarly Research Notices, 2014, 2014. doi:10.1155/2014/316535.

38 E. S. Rowland. Pattern avoidance in binary trees. J. Combin. Theory Ser. A, 117(6):741–758,
2010. doi:10.1016/j.jcta.2010.03.004.

39 B. E. Sagan. Pattern avoidance in set partitions. Ars Combin., 94:79–96, 2010.
40 A. Sapounakis, I. Tasoulas, and P. Tsikouras. Counting strings in Dyck paths. Discrete Math.,

307(23):2909–2924, 2007. doi:10.1016/j.disc.2007.03.005.
41 C. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997. doi:

10.1137/S0036144595295272.
42 A. Williams. The greedy Gray code algorithm. In Algorithms and data structures, volume

8037 of Lecture Notes in Comput. Sci., pages 525–536. Springer, Heidelberg, 2013. doi:
10.1007/978-3-642-40104-6_46.

ISAAC 2023

https://doi.org/10.1006/jagm.1993.1045
https://doi.org/10.2478/s11533-011-0057-4
https://doi.org/10.1007/s00454-022-00393-w
https://doi.org/10.37236/11023
http://oeis.org
http://oeis.org
https://doi.org/10.1155/2014/316535
https://doi.org/10.1016/j.jcta.2010.03.004
https://doi.org/10.1016/j.disc.2007.03.005
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1007/978-3-642-40104-6_46
https://doi.org/10.1007/978-3-642-40104-6_46

Computing a Subtrajectory Cluster from c-Packed
Trajectories
Joachim Gudmundsson #

The University of Sydney, Australia

Zijin Huang #

The University of Sydney, Australia

André van Renssen #

The University of Sydney, Australia

Sampson Wong #

BARC, University of Copenhagen, Denmark

Abstract
We present a near-linear time approximation algorithm for the subtrajectory cluster problem of
c-packed trajectories. Given a trajectory T of complexity n, an approximation factor ε, and a desired
distance d, the problem involves finding m subtrajectories of T such that their pair-wise Fréchet
distance is at most (1 + ε)d. At least one subtrajectory must be of length l or longer. A trajectory
T is c-packed if the intersection of T and any ball B with radius r is at most c · r in length.

Previous results by Gudmundsson and Wong [24] established an Ω(n3) lower bound unless the
Strong Exponential Time Hypothesis fails, and they presented an O(n3 log2 n) time algorithm. We
circumvent this conditional lower bound by studying subtrajectory cluster on c-packed trajectories,
resulting in an algorithm with an O((c2n/ε2) log(c/ε) log(n/ε)) time complexity.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Subtrajectory cluster, c-packed trajectories, Computational geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.34

Related Version Full Version: https://arxiv.org/abs/2307.10610

Funding Joachim Gudmundsson: Funded by the Australian Government through the Australian
Research Council DP180102870.

Acknowledgements The authors thank Kevin Buchin for the insightful discussion on the important
Lemma 13. The authors thank the anonymous reviewers for their helpful feedback.

1 Introduction

With the proliferation of location-aware devices comes an abundance of trajectory data. One
way to process and make sense of many trajectories is to group long and similar subtrajectories.
The analysis of long and similar parts of trajectories can provide insights into behavior and
mobility patterns, such as common routes taken and places visited frequently.

Buchin et al. [8] initialised the study of subtrajectory cluster problems to detect and
extract common movement patterns. The Subtrajectory Cluster (SC) decision problem is
defined as follows. Given one or more trajectories, determine if there exists a cluster of m − 1
non-overlapping subtrajectories and one reference trajectory. The reference trajectory Tr

must be at least of length l, and the Fréchet distances between Tr and the other m − 1
subtrajectories must be at most d. In the case of animals, long and common movement
patterns can indicate movement between grazing spots of sheep or the migration flyway
of seabirds. In the case of humans, common movement on a Monday morning can show
commuting patterns to find the most heavily congested areas.

© Joachim Gudmundsson, Zijin Huang, André van Renssen, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joachim.gudmundsson@sydney.edu.au
https://orcid.org/0000-0002-6778-7990
mailto:zijin.huang@uni.sydney.edu.au
https://orcid.org/0000-0003-3417-5303
mailto:andre.vanrenssen@sydney.edu.au
https://orcid.org/0000-0002-9294-9947
mailto:sawo@di.ku.dk
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.ISAAC.2023.34
https://arxiv.org/abs/2307.10610
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Computing a Subtrajectory Cluster from c-Packed Trajectories

Subtrajectory clustering has attracted research from multiple communities. Gudmundsson
and Wolle [23] used subtrajectory cluster to analyse the common movement patterns of
football players. Buchin et al. [7] applied subtrajectory cluster to map reconstruction by
clustering common movement patterns of vehicles into road segments. Researchers in the
Geographical Information and Data Mining communities also considered the variants and
practical performance of subtrajectory cluster algorithms [11, 29, 21, 22, 26, 1, 17]. In
addition, the potential of SC is examined in a wide range of applications, including sports
player analysis [30] and human movement analysis [10, 25].

Several theoretical studies of the subtrajectory clustering problem focus on improving
the quality of clustering. Agarwal et al. [1] defined a single objective function, the weighted
sum of three quality measures of a clustering. These quality measures include the number of
clusters chosen, the quality of the cluster, and the size of the trajectories excluded from the
clustering. Brüning et al. [6] studied so-called △-coverage, aiming to find a set C of curves
to cover a polygonal curve such that a curve in C is fixed in size, and |C| is minimised.

However, despite considerable attention from multiple communities, there is no subcubic
time algorithm that solves the subtrajectory cluster problem, limiting its usefulness on large
data sets. Buchin et al. [8] solved the subtrajectory cluster problem in O(n5) time when the
similarity measurement of two trajectories is the Fréchet distance, and Gudmundsson and
Wong [24] further improved the runtime with an O(n3 log2 n) time algorithm. In addition,
Gudmundsson and Wong [24] showed that there is no O(n3−δ) algorithm for subtrajectory
cluster for any δ > 0 unless the Strong Exponential Time Hypothesis (SETH) fails.

SC is unlikely to have a strongly subquadratic algorithm even if we allow a small
approximation factor on the Fréchet distances between subtrajectories. Because given two
trajectories T1 and T2, we can structure the SC problem to find two subtrajectories such that
their Fréchet distance is at most (1 + ε)d, and the reference trajectory must be as long as the
maximum of T1 and T2. Solving this instance of SC is equivalent to approximating the Fréchet
distance of T1 and T2, and Bringmann [4] showed that there is no 1.001-approximation with
runtime O(n2−δ) for the continuous Fréchet distance for any δ > 0, unless SETH fails.

Since an exact subcubic and an approximate subquadratic algorithm are unlikely to exist,
we study subtrajectory cluster on a realistic family of trajectories, called c-packed trajectories.
A trajectory T is c-packed if, for any ball B of radius r, the length of T lying inside B is
at most c times r. The packedness value of a trajectory T is the maximum c for which
T is c-packed. Bringmann [4] proved that computing the Fréchet distance has no strong
subquadratic algorithm unless SETH fails, and the notion of c-packedness was introduced
by Driemel et al. [15] to circumvent such conditional lowerbound. Since then, the notion of
c-packedness has gained considerable attention from the theory community [20, 4, 2, 12, 5],
and several real-world data sets have been shown to have low packedness values [19, 15].
In one particular instance, Gudmundsson et al. [19] approximated the packedness values of
several real-world trajectory data sets. In their experiments, several trajectory data sets have
low packedness values, such as the movement patterns of people in Beijing, school buses,
European football players, and trawling bats.

In this paper, given a c-packed trajectory T of complexity n and a desired multiplicative
approximation error ε on the Fréchet distance between subtrajectories, we present an
O((c2n/ε2) log(c/ε) log(n/ε)) time algorithm that solves the SC problem. It is worth noting
that previous papers considering c-packed curves typically replace a factor n with a polynomial
of constant degree in c [13, 18]. We are able to replace a factor of n2 with c2/ε2, bringing
the algorithm’s running time from cubic to near-linear, assuming c ∈ O(1).

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:3

Along the way, we develop a tool for simplifying the free space diagram that may be of
independent interest. To efficiently approximate the Fréchet distance, Driemel et al. [15]
showed that the free space complexity, i.e., the number of non-empty cells, is O(cn/ε) for
two simplified c-packed trajectories (see Section 2 for an overview of the free space, or [3] for
a formal definition). However, simplifying a trajectory by taking shortcuts between vertices
can yield a much shorter trajectory, and the SC problem is sensitive to the length of the
trajectories since the reference trajectory has to have a length at least l. To tackle this
problem, we developed a tool to construct the free space diagram in O((cn/ε) log (cn/ε))
time, preserving the length of two trajectories while benefiting from the O(cn/ε) free space
complexity. Our tool can be of value for problems in which the length of a trajectory is
important, such as subtrajectory cluster [8], partial curve matching [9], and Fréchet distance
with speed limit [27].

In Section 2, we will formally define the subtrajectory cluster problem and outline the
greedy plane sweep algorithms by Buchin et al. [8] and Gudmundsson and Wong [24], which
our approach builds on. In Section 3, we provide a technical overview of our main results. In
Section 4, we will discuss how to simplify the free space diagram to achieve a lower complexity
while preserving trajectory lengths.

In Section 5, we will consider the restricted case when the reference trajectory must
be vertex-to-vertex. In Section 6, we will remove this restriction by considering arbitrary
reference trajectory.

2 Preliminaries

In this section, we will outline the previous algorithms for the subtrajectory cluster problem.
The subtrajectory cluster problem was first introduced by Buchin et al. [8], and later improved
by Gudmundsson and Wong [24]. But instead of looking for a subtrajectory where the Fréchet
distances between the reference trajectory and the subtrajectories are exact, we aim to find
a solution that approximates the Fréchet distance between subtrajectories in the cluster.

▶ Problem 1 ([24]). Given trajectory T of complexity n, a positive integer m, positive real
numbers d, l and ε, decide if there exists a subtrajectory cluster of T such that:

the cluster consists of one reference subtrajectory and m − 1 other subtrajectories of T ,
the reference subtrajectory has Euclidean length at least l,
the Fréchet distance between the reference subtrajectory and any other subtrajectory is at
most (1 + ε)d,
any pair of subtrajectories in the cluster overlap in at most one point.

Buchin et al. [8] solved the exact SC problem by using a plane sweep algorithm on the
free space diagram Fd(T, T). Let s and t be two points on T , and we denote Tst as the
subtrajectory of T starting from s and ending on t. Let ls and lt be the vertical sweep
lines x = s and x = t on Fd(T, T), respectively (see Figure 1). An xy-monotone path in
Fd(T, T), or monotone path for short, is a continuous path that is non-decreasing in both x-
and y-coordinates. To solve SC(m, d, l), the lines ls and lt sweep from left to right while
making sure that ls is to the left of lt, and the reference trajectory Tst is at least l long, i.e.,
t − s ≥ l. In each interval [ls, lt], they compute the maximum number of monotone paths in
Fd(T, T) starting at ls and ending at lt.

Let p and q be two points on T , and let (s, p) and (t, q) be two coordinates on Fd(T, T).
As we only consider monotone paths starting from ls and ending on lt, we call the monotone
path from (s, p) to (t, q) the pq monotone path. First, a monotone path pq must traverse only

ISAAC 2023

34:4 Computing a Subtrajectory Cluster from c-Packed Trajectories

ls lt

s

t

p
q

p

q

d

Figure 1 The free space diagram Fd(T, T), and interval [ls, lt] defined by two points s and t on T .
If there exists a monotone path (marked in brown) from (s, p) to (t, q) through the free space, then
the Fréchet distance between subtrajectories Tst and Tpq is at most d.

the free space. Second, two monotone paths pq and ab must not overlap along the y-interval
in more than a single point. Third, the y-coordinates of any pq monotone path cannot
overlap the [s, t] interval in more than a single point. We obtain the following subproblem.

▶ Subproblem 2 ([24]). Given a trajectory T of complexity n, a positive integer m, a positive
real value d, and a reference subtrajectory of T starting at s and ending at t, let ls and lt be
two vertical lines in Fd(T, T) representing the points s and t. Decide if there exist:

m − 1 distinct paths starting at ls and ending at lt, such that
the y-coordinate of any two monotone paths overlap in at most one point, and
the y-coordinate of any monotone path overlaps the y-interval from s to t in at most one
point.

To look for a set {p1q1, p2q2, ..., pm−1qm−1} of monotone paths, both algorithms use a
greedy approach. First, set p1 to be the lowest feasible point on ls, and compute p1q1 by
searching for a lowest monotone path through the free space. Inductively, with pi−1qi−1
computed, set pi to the lowest feasible point on ls that is on or above qi−1, and do the same.
If a search from pi leads to a dead end, we simply set pi to the next lowest feasible point on
ls, and search again.

The sweeplines stop at all O(n3) critical points, and for each critical point there is
a [ls, lt] interval to consider. Buchin et al. [8] solved each instance in O(nm) ⊆ O(n2)
time. Gudmundsson and Wong [24] improved the efficiency by connecting the critical points
efficiently in a tree-like data structure which allows them to reuse computed monotone paths
from previous interval instances. They showed that, in their construction, there are at most
O(n3 log n) edges, and each edge takes at most O(log n) time to add, remove, or access. This
brings down the complexity of the algorithm from O(n5) to O(n3 log2 n) time.

3 Technical Overview

Our technical overview is divided into three parts. In Sections 3.1, 3.2, and 3.3, we summarise
the main result of Sections 4, 5, and 6 respectively.

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:5

3.1 Computing the Free Space Diagram
Our algorithm constructs a simplified free space diagram that preserves trajectory lengths.
The size (in terms of Euclidean length) of the simplified free space diagram is the same as the
size of the unsimplified free space diagram. The only difference between the two diagrams is
that approximate distances are used in the simplified diagram. In particular, we define a
function that uniformly maps a trajectory to its simplification, and we calculate the distance
between the mapped simplification points instead of points on the original trajectory. We
prove that the complexity of the simplified free space diagram will be at most O(cn/ε), and
that the trajectory lengths in the diagram are preserved. Next, we build the simplified free
space diagram. We use an algorithm by Conradi and Driemel [13] to query pairs of nearby
segments. Finally, we construct a data structure on the free space diagram so that we can
access the closest non-empty cells below, above, to the left, and to the right in constant time.
Putting this all together, we obtain Theorem 1. For a full proof, see Section 4.

▶ Theorem 1. Given a pair of trajectories, one can construct a simplified free space diagram
in O((cn/ε) log (cn/ε)) time, so that the simplified free space has complexity O(cn/ε), it
approximates the Fréchet distance to within a factor of (1 + ε), and it preserves the trajectory
lengths of the original trajectory.

3.2 Reference trajectory is vertex-to-vertex
Next, we focus on the special case where the reference trajectory is vertex-to-vertex. Three
data structures are used in the vertex-to-vertex subtrajectory cluster algorithm of Gud-
mundsson and Wong [24] – a directed graph, a range tree, and a link-cut tree. For an overview
of these data structures, see the full version. Originally, the number of leaves per range tree
is O(n), and the directed graph has complexity O(n2). We use the c-packedness property
to prove that, in our simplified free space diagram, the number of leaves per range tree
is O(c/ε), and the directed graph has complexity O((cn/ε) log(c/ε)). The link-cut tree data
structure can be used without modification. Putting this all together, we obtain Theorem 2.
Recall that m is the desired number of subtrajectories in the cluster. For a full proof, see
Section 5.

▶ Theorem 2. There is an O(nm log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is vertex-to-vertex.

3.3 Reference trajectory is arbitrary
Finally, we tackle the general case where the reference trajectory is arbitrary. The main
obstacle in the general case is that there are Θ(n3) internal critical points that correspond
to potential starting and ending positions of the reference trajectory. In fact, Gudmundsson
and Wong [24] show that, for general (not c-packed) curves, these internal critical points
are essentially unavoidable. They use the Θ(n3) internal critical points to show that under
the Strong Exponential Time Hypothesis (SETH), there is no O(n3−δ) time algorithm for
subtrajectory cluster for any δ > 0.

Our main lemma in this section is to bound the number of internal critical points for
subtrajectory cluster on c-packed trajectories. The lemma uses the c-packedness property in
two different ways. First, the c-packedness property bounds the complexity of the simplified
free space diagram to linear. This replaces one of the factors of n with c/ε. Second, the
c-packedness property is used to prove that in any horizontal strip, only a constant number
of cells have free space. This replaces another factor of n with c/ε, resulting in O(c2n/ε2)

ISAAC 2023

34:6 Computing a Subtrajectory Cluster from c-Packed Trajectories

internal critical points. Finally, we prove that the interval management data structure can
be used in the same way as in Gudmundsson and Wong’s algorithm [24]. Putting this all
together, we obtain Theorem 3. For a full proof, see Section 6.

▶ Theorem 3. There is an O((c2n/ε2) log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is arbitrary.

4 Computing the Free Space Diagram

In this section, we will explain the process of constructing a simplified free space diagram
for two c-packed polygonal curves P and Q. The free space Dd(P, Q) describes all pairs of
points, one on P , one on Q, whose distance is at most d [3]. With slight abuse of notation,
we parameterise the polygonal curve P such that P (x) is a point on P , where x ∈ [0, ∥P∥].
Formally,

Dd(P, Q) = {(x, y) ∈ [0, ∥P∥] × [0, ∥Q∥] | dist(P (x), Q(y)) ≤ d}.

To circumvent the quadratic free space complexity, Driemel et al. [15] showed that the
free space complexity of two simplified c-packed curves is O(cn/ε). Given a c-packed curve
P = p1p2...pn, we simplify P into its εd-simplification P ′ = q1q2...qk as follows. Let B(a, r)
be the ball centered at a with radius r. First, set q1 = p1. With qi defined, traverse P from
qi until a vertex v is outside B(qi, εd), or v is the last vertex of P , and set qi+1 = v. Continue
until all vertices of P are exhausted. Driemel et al. [15] showed that the εd-simplification of
a c-packed curve is at most 6c-packed [15, Lemma 4.3], and the Fréchet distance between P

and P ′ is at most (1 + ε)d. A simplified curve has the useful property that every segment
but the last is at least εd long. We assume for simplicity that the last one is at least εd long
as well, since otherwise one can backtrack and modify the simplified curve such that each
segment is at least εd/2 long, and our arguments can be extended to such case.

▶ Observation 4. One can simplify a polygonal curve P into its εd-simplification P ′ such
that the Fréchet distance between P and P ′ is at most (1 + ε)d, and each segment in P ′ is at
least εd long.

Simplifying two c-packed curves can reduce the free space complexity, but using the plane-
sweep algorithm to solve the SC problem on the resulting free space diagram is unfortunately
infeasible. This is because the total length of the simplified trajectories can be much shorter,
making it impossible to slide a window of width l on the free space diagram F(1+ε)d(P ′, Q′).
To address this issue, we developed a tool that enables the construction of a free space
diagram that maintains the original curve length, while also benefiting from the reduced free
space complexity.

4.1 Simplifying the Free Space
In this section, we introduce a method that simplifies the free space. We show that we
can construct the simplified free space D′

(1+ε̂)d(P, Q), where ε̂ is at most 8ε, such that the
complexity of the simplified free space is at most O(cn/ε̂). In addition, D′

(1+ε̂)d(P, Q) contains
Dd(P, Q) as a subset, but it is not bigger than the free space of P and Q if we approximate
their Fréchet distance, i.e., D′

(1+ε̂)d(P, Q) ⊆ D(1+ε̂)d(P, Q).
We will first define a function that uniformly maps parts of the polygonal curve P to

segments of P ′ in Definition 5, using which we will formally define the simplified free space
in Definition 6. We will then formally prove the set inclusions mentioned above in Lemma 7.

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:7

▶ Definition 5. Let simpl(P, εd) be the εd-simplification of a polygonal curve P . Let Puv be
the subcurve of P from point u to v that are simplified into the segment (u, v) ∈ simpl(P, εd).
Let w be the first intersection point of Puv and the boundary of the ball B(u, εd) along Puv,
and let u′ be the intersection of (u, v) and the boundary of the ball B(u, εd). Define the
mapping fP,εd : P → simpl(P, εd) such that fP,εd maps [u, w) to [u, u′) uniformly, and [w, v]
to [u′, v] uniformly (see Figure 2).

u
v

u′

w

εd

u w

u′

v

v

fp,εd(x)

Puw

Pwv

Figure 2 A figure showcasing the function in Definition 5. The point u′ is the intersection of the
segment (u, v) and the ball B(u, εd), and the point w is the intersection of subtrajectory Puv and
B(u, εd). The function fP,εd uniformly maps Puw (red) to (u, u′) (orange), not including u′ and w.
The function fP,εd uniformly maps Pwv (blue) to (u′, v) (light blue).

▶ Definition 6. Define the simplified free space of P and Q with respect to the Fréchet
distance d > 0, and a parameter ε > 0 as

D′
(1+ε)d(P, Q)={(x, y) ∈ [0, ∥P∥] × [0, ∥Q∥] | dist(fP,εd(P (x)), fQ,εd(Q(y))) ≤ (1 + ε)d}.

Similarly, let F ′
(1+ε)d(P, Q) be the simplified free space diagram.

▶ Lemma 7. Let Dd(P, Q) be the free space of curves P and Q with respect to the Fréchet
distance d, and let D′

(1+ε)d(P, Q) be their simplified free space with an approximation error
ε > 0. Then Dd(P, Q) ⊆ D′

(1+4ε)d(P, Q) ⊆ D(1+8ε)d(P, Q).

Proof. With slight abuse of notation, let x = P (x), and y = Q(y), for x ∈ [0, ∥P∥], and
y ∈ [0, ∥Q∥]. Let x′ = fP,εd(x), and let y′ = fQ,εd(y). Observe that dist(x, x′) ≤ 2εd for all
x ∈ P because if x is within the ball B(u, εd), then x is at most 2εd apart from x′. If x is
outside B(u, εd), it is at most εd apart from x′, due to the simplification.

Dd(P, Q) ⊆ D′
(1+4ε)d(P, Q). If a point (x, y) ∈ Dd(P, Q) is white, then dist(x, y) ≤ d. By

the triangle inequality, dist(x′, y′) ≤ dist(x′, x)+dist(y′, y)+dist(x, y) ≤ 2εd+2εd+d =
(1 + 4ε)d, hence (x′, y′) must also be white.
D′

(1+4ε)d(P, Q) ⊆ D(1+8ε)d(P, Q). Similarly, if a point (x′, y′) ∈ D′
(1+4ε)d(P, Q) is white,

then (x, y) ∈ D(1+8ε)d(P, Q) must also be white, because dist(x, y) ≤ dist(x′, x) +
dist(y′, y) + dist(x′, y′) ≤ 2εd + 2εd + (1 + 4ε)d = (1 + 8ε)d. ◀

Similar to how we defined the (u, v) cell, let the (Puv, Qab) cells be the cells in the free
space diagram defined by the subcurves Puv and Qab. We show that we can compute the
intersection of the simplified free space with (Puv, Qab) cells in constant time. Please see the
full version for a proof of below lemma.

ISAAC 2023

34:8 Computing a Subtrajectory Cluster from c-Packed Trajectories

▶ Lemma 8. Given vertices u, v on P and a, b on Q, one can construct the cells in
F ′

(1+ε)d(P, Q) defined by Puv and Qab in constant time.

The complexity of the simplified free space D′
(1+ε̂)d(P, Q) is O(cn/ε̂) if P and Q are c-

packed. Assuming that Puv and Qab are simplified into segments (u, v) ∈ P ′ and (a, b) ∈ Q′,
respectively, the simplified free space intersects (Puv, Qab) cells if and only if the distance
between (u, v) and (a, b) is at most (1 + ε̂)d. The rest follows by modifying the proof of [15,
Lemma 4.4].

▶ Corollary 9. Let P and Q be two c-packed curves with complexity n, and let ε̂ be a constant
times a parameter ε > 0. The complexity of the simplified free space D′

(1+ε̂)d(P, Q) is O(cn/ε).

4.2 Compute the Non-empty Cells
To take advantage of the near-linear complexity of the simplified free space, we use an
algorithm by Conradi and Driemel [13] to efficiently compute the non-empty cells without
inspecting all pairs of segments.

▶ Fact 10 ([13, Lemma 59]). Given two c-packed curves P and Q in R2, a parameter d ≥ 0,
and let P ′ and Q′ be their εd-simplifications. In O((cn/ε) log(cn/ε)) time, one can find all
pairs of segments (u, v) ∈ P ′ and (a, b) ∈ Q′ such that the distance between (u, v) and (a, b)
is at most d.

To construct the simplified free space diagram efficiently, we first observe the following.

▶ Observation 11. If segments (u, v) ∈ P ′ and (a, b) ∈ Q′ are more than (1 + 2ε)d apart,
then Puv and Qab are more than d apart.

The above observation enables us to determine if (Puv, Qab) cells are empty by determining
if (u, v) and (a, b) are near.

4.3 Constructing the Simplified Free Space Diagram
Given two c-packed polygonal curves P and Q, we will use the results from previous
subsections to construct the simplified free space diagram using the below steps. In Lemma 8,
we showed that if Puv and Qab are simplified into segments (u, v) ∈ P ′ and (a, b) ∈ Q′,
respectively, we can compute (Puv, Qab) cells in constant time. Such aggregation of (Puv, Qab)
cells is an aggregated non-empty cell, and we will treat them as one cell for simplicity.

1. Simplify P and Q into their εd-simplifications P ′ and Q′.
2. Find all pairs of nearby segments from P ′ and Q′ that are at most (1 + ε̂)d apart using

Fact 10.
3. For each pair of nearby segments (u, v) ∈ P ′ and (a, b) ∈ Q′, compute the (Puv, Qab) cells

using Lemma 8.
4. Sort all non-empty cells horizontally and vertically.
5. Connect non-empty cells in a graph fashion such that a non-empty cell is connected to

the first non-empty cells to its top, bottom, left, and right.

Given two polygonal curves P and Q of complexity n, simplifying them (step 1) takes O(n)
time. By Fact 10, step 2 takes O((cn/ε) log(cn/ε)) time. Computing a cell in F ′

(1+ε̂)d(P, Q)
takes O(1) time by Lemma 8. F ′

(1+ε̂)d(P, Q) has at most O(cn/ε) non-empty cells, which
takes O(cn/ε) time to compute in step 3; sorting them in step 4 takes O((cn/ε) log(cn/ε))
time. Connecting each cell to at most four other cells takes O(cn/ε) time in step 5. Putting
this together, we obtain Lemma 12, and we summarise our result in Theorem 1.

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:9

Figure 3 The non-empty cells are connected horizontally and vertically to skip empty cells.

▶ Lemma 12. Let P and Q be two c-packed curves of complexities n. Let ε > 0 and d > 0
be two parameters, and let ε̂ ≤ 8 · ε. One can construct and connect O(cn/ε) aggregated
non-empty cells of the simplified free space diagram F ′

(1+ε̂)d(P, Q) in O((cn/ε) log (cn/ε))
time such that Dd(P, Q) ⊆ D′

(1+ε̂)d(P, Q) ⊆ D(1+ε̂)d(P, Q). Given an aggregated non-empty
cell C, one can access the first aggregated non-empty cells below, above, to the left, and to
the right of C in O(1) time.

▶ Theorem 1. Given a pair of trajectories, one can construct a simplified free space diagram
in O((cn/ε) log (cn/ε)) time, so that the simplified free space has complexity O(cn/ε), it
approximates the Fréchet distance to within a factor of (1 + ε), and it preserves the trajectory
lengths of the original trajectory.

5 Reference trajectory is vertex-to-vertex

Throughout the rest of the paper we assume that the free space diagram is the simplified
free space diagram F ′

(1+ε)d in Lemma 12. Next, we will use the algorithm by Gudmundsson
and Wong [24] to determine whether there is a solution to SC(T, m, l, (1 + ε)d) where T is a
c-packed trajectory, and the reference subtrajectory Tst is vertex-to-vertex, i.e., both s and t

must be an endpoint of some segment of T .
Three data structures are used in the vertex-to-vertex subtrajectory cluster algorithm of

Gudmundsson and Wong [24] – a directed graph, a range tree, and a link-cut tree. For an
overview of these data structures, see the full version. In Section 5.1, we show that the number
of leaves per range tree is O(c/ε), and the directed graph has complexity O((cn/ε) log(c/ε)).
In Section 5.2, we show that the link-cut tree data structure can be used without modification.

5.1 Using a Directed Graph to Store Candidate Monotone Paths
To show that the range tree has at most O(c/ε) leaves, it suffices to show that there exist
at most O(c/ε) critical points on each horizontal or vertical boundary of the simplified free
space diagram.

▶ Lemma 13. In the simplified free space diagram F ′
(1+ε̂)d(T, T), let H be a horizontal (resp.

vertical) strip that is at least εd wide on its y-span (resp. x-span). The intersection of H

and the simplified free space D′
(1+ε̂)d(T, T) exists in at most O(c/ε) aggregated cells.

ISAAC 2023

34:10 Computing a Subtrajectory Cluster from c-Packed Trajectories

Proof. Let T ′ be the εd-simplification of T , and let Tuv simplifies into segment (u, v) ∈ T ′.
Let u′ ⊆ (u, v) be a small part that is at least εd long. Let Su′ = u′ ⊕ B(0, (1 + ε̂)d).

Using similar construction, and arguments of [15, Lemma 4.4], one can prove that
at most O(c/ε) segments in T ′ intersects Su′ . Based on the construction of the sim-
plified free space D′

(1+ε̂)d(T, T), a point (x, y) ∈ D′
(1+ε̂)d(T, T) is white if and only if

dist(fT,ε̂d(T (x)), fT,ε̂d(T (y))) ≤ (1 + ε̂)d. As such, at most O(c/ε) aggregated cells have
simplified free space intersecting H. ◀

Next, bound the construction time and space complexity of the directed graph in [24].

▶ Lemma 14. Given a c-packed trajectory T of complexity n, constructing G for the simplified
free space diagram F ′

(1+ε̂)d(T, T) takes O((cn/ε) log (n/ε)) time. G has O(cn/ε) nodes and
O((cn/ε) log (c/ε)) edges.

Proof. Let nk be the number of non-empty aggregated cells in the jth row in F ′
(1+ε̂)d(T, T).

Construction of the range tree for the top (resp. right) boundary of a row (resp. column)
takes O(nk log nk) time [14]. For all pi, finding qi takes O(nk log nk) time

and recall that there are O(cn/ε) critical points in F ′
(1+ε̂)d(T, T). The total construction

time is as follows.
n+1∑
j=0

nk log nk ≤ log
(cn

ε

) n+1∑
j=0

nk = log
(cn

ε

)
O

(cn

ε

)
∈ O

((cn

ε

)
log

(n

ε

))
By Corollary 9, the simplified free space diagram has O(cn/ε) non-empty aggregated

cells, therefore G has O(cn/ε) nodes. In a range tree, given a continuous interval [qk, qi],
one can find O(log n) nodes such that these nodes include [qk, qi] in their canonical subset,
where n is the total number of items in the leaves [14]. There are at most O(c/ε) nodes on a
horizontal or vertical boundary by Lemma 13, and each critical point pi on a vertical (resp.
horizontal) cell boundary connects to O(log(c/ε)) nodes, therefore the total number of edges
is O((cn/ε) log(c/ε)). ◀

5.2 Storing and Reusing Pre-computed Paths
A link-cut tree [28] maintains a forest that allows the link/cut operations of subtrees in
O(log n) amortised time. In addition, a link-cut tree allows finding the root of a node in
O(log n) amortised time. The algorithm by Gudmundsson and Wong [24] used a link-cut
tree to store and re-use monotone paths. Consider when a sweepline, either ls or lt, stops at
a new critical point p. Instead of recomputing the monotone paths, they need only to add p

to the existing link-cut tree they maintained in the previous instances.
With graph G defined, we can analyse the total running time of the algorithm by

Gudmundsson and Wong [24] on the simplified free space diagram. The key to observe the
running time is that in their algorithm, if an edge leads to a dead-end, it is marked and will
not be used in future searches. Furthermore, inserting or removing an edge takes O(log n)
amortised time in a link-cut tree.

▶ Theorem 2. There is an O(nm log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is vertex-to-vertex.

Proof. Construction of the simplified free space diagram takes O((cn/ε) log (cn/ε)) time by
Theorem 1. Construction of G takes O((cn/ε) log (n/ε)) time by Lemma 14. The graph G has
at most O(nm log(c/ε)) edges, see the full version. Gudmundsson and Wong [24] showed that

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:11

an edge is added to and removed from the link-cut tree at most once, and adding/removing
an edge from the link-cut tree takes O(log(n/ε)) time since the maximum number of nodes
in the link-cut tree is upperbounded by the number of nodes in G. Therefore maintaining
the link-cut tree takes O(nm log(c/ε) log(n/ε)) time. ◀

6 Reference trajectory is arbitrary

Our results in this section rely heavily on the work of Gudmundsson and Wong [24]. Due to
space constraints, we can only highlight important parts of their algorithm, and the analysis
of our improvements.

When the reference trajectory is arbitrary, a monotone path can start and finish at
arbitrary positions in the non-empty cells. Therefore, in addition to the critical points in the
free space diagram and the greedy critical points, Gudmundsson and Wong defined three
new types of internal critical points [24, Definition 25]. An internal critical point must lie in
the interior of a non-empty cell, and lie on the boundary of the free space. They made the
following distinction (see Figure 4).

1. End-of-cell critical point: the leftmost and rightmost white point of a non-empty cell.
2. Propagated critical point: a point on the boundary of the free space that shares a

y-coordinate with a critical point.
3. l-apart critical points: two points on the boundaries of free space that are a distance of l

apart horizontally.

l

Figure 4 The three types of internal critical points are illustrated using a cross in the left, middle,
and right figures, respectively. From left to right, they are the end-of-cell critical points (left),
propagated critical points (middle) and l-apart critical points (right).

There could be an infinite number of l-apart critical points in a pair of non-empty cells.
However, if this is the case, we can simply perturb the input by a miniscule amount so that
there are no longer an infinite number of l-apart critical points. See the full version for an
example and a figure. Therefore, for the rest of the paper, we can assume that there are at
most a constant number of l-apart critical points per pair of cells.

We will first bound the number of internal critical points and the time it takes to compute
them. One can compute the end-of-cell and l-apart critical points in linear time with respect
to the number of non-empty cells since there are at most a constant number of them per
pair of cells. In Lemma 13, we showed that in a narrow horizontal strip, only a small
number of cells intersect free space. An output-sensitive query algorithm would be efficient
to find the non-empty cells that a critical point p propagates to. Therefore, we can use
an interval tree [14] to store the y-spans of all non-empty cells in a row, and query the
intersecting intervals of y(p) in logarithmic time. We formalise the above arguments in the
below Lemma 15.

ISAAC 2023

34:12 Computing a Subtrajectory Cluster from c-Packed Trajectories

▶ Lemma 15. Assume that there is a constant number of l-apart critical points per pair of
cells, it takes O(cn log(n/ε) + c2n/ε2) time to compute O(c2n/ε2) internal critical points in
the simplified free space diagram F ′

(1+ε̂)d(T, T).

Proof. There are O(cn/ε) non-empty aggregated cells in F ′
(1+ε̂)d(T, T), or non-empty cells for

short, and O(cn/ε) end-of-cell critical points in F ′
(1+ε̂)d(T, T). Each critical point propagates

O(c/ε) times by Lemma 13, therefore there are O(c2n/ε2) propagated critical points. We
can charge a cell with a constant number of l-apart critical points. Therefore, there are at
most O(cn/ε) l-apart critical points. In total, there are O(c2n/ε2) internal critical points.

One can compute the end-of-cell critical points by iterating through the free space diagram
in O(cn/ε) time. To compute the l-apart critical points, we can start from the first non-empty
cell C in a row and find the first cell that is l-apart from C, and solve a constant number of
quadratic equations. We can then slide this l-apart line and do the same for all pairs of cells
that are l-apart in all rows in O(cn/ε) time in total.

To compute the propagated critical points, we construct an interval tree [14] for each row
in F ′

(1+ε̂)d(T, T) to store the maximum and minimum y-coordinates of the free space in the
non-empty cells. Let ni be the number of non-empty cells in the ith row. We can sum the
construction time of the interval trees.

n∑
i=1

ni log ni ≤ cn

ε
log

(cn

ε

)
∈ O

((cn

ε

)
log

(cn

ε

))
Given a critical point p in the ith row, one can query the interval tree in O(log ni + c/ε) ∈

O(log n + c/ε) time to compute the propagated critical points from p using Lemma 13
and [14]. With O(cn/ε) critical points, computing the propagated critical points takes
O(cn log(n)/ε + c2n/ε2) time. ◀

With the additional internal critical points, the number of reference trajectories and the
number of greedy critical points increases. We can use the algorithm in the previous section,
and obtain the following result.

▶ Lemma 16. There is an O((c2mn/ε2) log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is arbitrary.

Proof. See the full version. ◀

6.1 Improve Further with an Interval Management Data Structure
The bottleneck in the above Lemma 16 is operating the outgoing edges of the O(c2mn/ε2)
greedy critical points, which are generated from O(c2n/ε2) propagated critical points. To
avoid computing the greedy critical points, Gudmundsson and Wong [24] used a dynamic
monotonic interval data structure [16] to store overlapping monotonic intervals that represent
the y-spans of monotone paths between ls and lt. Instead of searching for a set of monotone
paths between each window greedily, they showed that one can update and query the interval
data structure to retrieve m − 1 non-overlapping intervals, all in O(log n) amortised time.

▶ Theorem 3. There is an O((c2n/ε2) log(c/ε) log(n/ε)) time algorithm that solves
SC(T, m, l, (1 + ε)d) in the case that the reference trajectory is arbitrary.

Proof. Constructing the simplified free space diagram takes O((cn/ε) log (cn/ε)) time by
Theorem 1. Computing and sorting the internal critical points takes O((c2n/ε2) log(n/ε))
time by Lemma 15. There are O((c2n/ε2) log(c/ε)) edges in total by Lemma 13, and each

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:13

edge takes O(log(n/ε)) time to insert or remove since there are at most O(c2n/ε2) nodes
in the link-cut tree. In total, we spend O((c2n/ε2) log(c/ε) log(n/ε)) time to maintain the
edges in G.

Each internal critical point is treated as an event, and maintaining the interval data
structure takes O(log n) amortised time per event point (see [24, Theorem 2]), and thus
O((c2n/ε2) log n) in total. The overall complexity is dominated by maintaining the edges. ◀

7 Conclusion

We presented an algorithm that solves the subtrajectory cluster problem on c-packed
trajectories T with an approximation error on the Fréchet distance, achieving an
O((c2n/ε2) log(c/ε) log(n/ε)) time complexity. Our algorithm builds upon the near-optimal
algorithm proposed by Gudmundsson and Wong [24], but with significant improvements. By
carefully analysing the properties of c-packed trajectories, we have shown that important
parameters such as the number of propagated critical points are significantly lower than the
theoretical O(n) upperbound for realistic trajectories. As a result, our algorithm improves
upon the near-optimal algorithm by replacing a factor of n2 with c2/ε2, leading to more
efficient subtrajectory cluster of realistic trajectories.

References
1 Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan, and

Erin Taylor. Subtrajectory Clustering: Models and Algorithms. In Proceedings of the
37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
’18, pages 75–87, New York, NY, USA, May 2018. Association for Computing Machinery.
doi:10.1145/3196959.3196972.

2 Sepideh Aghamolaei, Vahideh Keikha, Mohammad Ghodsi, and Ali Mohades. Windowing quer-
ies using Minkowski sum and their extension to MapReduce. The Journal of Supercomputing,
77(1):936–972, January 2021. doi:10.1007/s11227-020-03299-7.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 05:75–91, March
1995. doi:10.1142/S0218195995000064.

4 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 661–670, October 2014. ISSN: 0272-5428. doi:
10.1109/FOCS.2014.76.

5 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27:85–119, March 2017. doi:10.1142/S0218195917600056.

6 Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster Approximate Covering of
Subcurves Under the Fréchet Distance. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg,
and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms (ESA 2022),
volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:16,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969.
doi:10.4230/LIPIcs.ESA.2022.28.

7 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I. Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction.
In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’17, pages 1–10, New York, NY, USA, November
2017. Association for Computing Machinery. doi:10.1145/3139958.3139964.

ISAAC 2023

https://doi.org/10.1145/3196959.3196972
https://doi.org/10.1007/s11227-020-03299-7
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.4230/LIPIcs.ESA.2022.28
https://doi.org/10.1145/3139958.3139964

34:14 Computing a Subtrajectory Cluster from c-Packed Trajectories

8 Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler, and Jun Luo. Detecting
commuting patterns by clustering subtrajectories. International Journal of Computational
Geometry & Applications, 21(03):253–282, June 2011. doi:10.1142/S0218195911003652.

9 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’09, pages 645–654, USA, January 2009. Society for Industrial and
Applied Mathematics.

10 Claudia Cavallaro, Armir Bujari, Luca Foschini, Giuseppe Di Modica, and Paolo Bellavista.
Measuring the impact of COVID-19 restrictions on mobility: A real case study from Italy.
Journal of Communications and Networks, 23(5):340–349, October 2021. doi:10.23919/JCN.
2021.000034.

11 Cheng Chang and Baoyao Zhou. Multi-granularity visualization of trajectory clusters using
sub-trajectory clustering. In 2009 IEEE International Conference on Data Mining Workshops,
pages 577–582, December 2009. doi:10.1109/ICDMW.2009.24.

12 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In 2011 Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX), Proceedings, pages 75–83. Society for
Industrial and Applied Mathematics, January 2011. doi:10.1137/1.9781611972917.8.

13 Jacobus Conradi and Anne Driemel. On Computing the k-Shortcut Fréchet Distance. In
Miko\laj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 46:1–46:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969. doi:10.4230/LIPIcs.
ICALP.2022.46.

14 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, Berlin, Heidelberg, 2008. doi:10.1007/
978-3-540-77974-2.

15 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, July
2012. doi:10.1007/s00454-012-9402-z.

16 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theoretical Computer Science, 562:227–
242, January 2015. doi:10.1016/j.tcs.2014.09.046.

17 Joachim Gudmundsson, Martin P. Seybold, and John Pfeifer. On practical nearest sub-
trajectory queries under the Fréchet distance. In Proceedings of the 29th International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’21, pages 596–
605, New York, NY, USA, November 2021. Association for Computing Machinery. doi:
10.1145/3474717.3484264.

18 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries
on realistic input graphs under the Fréchet distance. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1464–1492. Society for Industrial and
Applied Mathematics, January 2023. doi:10.1137/1.9781611977554.ch53.

19 Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packedness
of polygonal curves. Computational Geometry, 108:101920, January 2023. doi:10.1016/j.
comgeo.2022.101920.

20 Joachim Gudmundsson and Michiel Smid. Fréchet queries in geometric trees. In Hans L.
Bodlaender and Giuseppe F. Italiano, editors, Algorithms – ESA 2013, pages 565–576, Berlin,
Heidelberg, 2013. Springer. doi:10.1007/978-3-642-40450-4_48.

21 Joachim Gudmundsson, Andreas Thom, and Jan Vahrenhold. Of motifs and goals: mining
trajectory data. In Proceedings of the 20th International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’12, pages 129–138, New York, NY, USA, November 2012.
Association for Computing Machinery. doi:10.1145/2424321.2424339.

https://doi.org/10.1142/S0218195911003652
https://doi.org/10.23919/JCN.2021.000034
https://doi.org/10.23919/JCN.2021.000034
https://doi.org/10.1109/ICDMW.2009.24
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.4230/LIPIcs.ICALP.2022.46
https://doi.org/10.4230/LIPIcs.ICALP.2022.46
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1016/j.tcs.2014.09.046
https://doi.org/10.1145/3474717.3484264
https://doi.org/10.1145/3474717.3484264
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1016/j.comgeo.2022.101920
https://doi.org/10.1016/j.comgeo.2022.101920
https://doi.org/10.1007/978-3-642-40450-4_48
https://doi.org/10.1145/2424321.2424339

J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong 34:15

22 Joachim Gudmundsson and Nacho Valladares. A GPU approach to subtrajectory clustering
using the Fréchet distance. IEEE Transactions on Parallel and Distributed Systems, 26(4):924–
937, April 2015. doi:10.1109/TPDS.2014.2317713.

23 Joachim Gudmundsson and Thomas Wolle. Football analysis using spatio-temporal tools.
In Proceedings of the 20th International Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’12, pages 566–569, New York, NY, USA, November 2012. Association
for Computing Machinery. doi:10.1145/2424321.2424417.

24 Joachim Gudmundsson and Sampson Wong. Cubic upper and lower bounds for subtrajectory
clustering under the continuous Fréchet distance. In Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 173–189. Society for Industrial and
Applied Mathematics, January 2022. doi:10.1137/1.9781611977073.9.

25 Amin Hosseinpoor Milaghardan, Rahim Ali Abbaspour, Christophe Claramunt, and Alireza
Chehreghan. An activity-based framework for detecting human movement patterns in an
urban environment. Transactions in GIS, 25(4):1825–1848, 2021. doi:10.1111/tgis.12749.

26 Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-and-
group framework. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, SIGMOD ’07, pages 593–604, New York, NY, USA, June 2007. Association
for Computing Machinery. doi:10.1145/1247480.1247546.

27 Anil Maheshwari, Jörg-Rüdiger Sack, Kaveh Shahbaz, and Hamid Zarrabi-Zadeh. Fréchet
distance with speed limits. Computational Geometry, 44(2):110–120, February 2011. doi:
10.1016/j.comgeo.2010.09.008.

28 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362–391, June 1983. doi:10.1016/0022-0000(83)
90006-5.

29 Panagiotis Tampakis, Nikos Pelekis, Christos Doulkeridis, and Yannis Theodoridis. Scalable
distributed subtrajectory clustering. In Proceedings of the 2019 IEEE International Conference
on Big Data (Big Data), pages 950–959. IEEE Computer Society, December 2019. doi:
10.1109/BigData47090.2019.9005563.

30 Zheng Wang, Cheng Long, and Gao Cong. Similar sports play retrieval with deep reinforcement
learning. IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2021. doi:
10.1109/TKDE.2021.3136881.

ISAAC 2023

https://doi.org/10.1109/TPDS.2014.2317713
https://doi.org/10.1145/2424321.2424417
https://doi.org/10.1137/1.9781611977073.9
https://doi.org/10.1111/tgis.12749
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1016/j.comgeo.2010.09.008
https://doi.org/10.1016/j.comgeo.2010.09.008
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1109/BigData47090.2019.9005563
https://doi.org/10.1109/BigData47090.2019.9005563
https://doi.org/10.1109/TKDE.2021.3136881
https://doi.org/10.1109/TKDE.2021.3136881

Shortest Beer Path Queries in Digraphs with
Bounded Treewidth
Joachim Gudmundsson #

The University of Sydney, Australia

Yuan Sha #

The University of Sydney, Australia

Abstract
A beer digraph G is a real-valued weighted directed graph where some of the vertices have beer
stores. A beer path from a vertex u to a vertex v in G is a path in G from u to v that visits at least
one beer store.

In this paper we consider the online shortest beer path query in beer digraphs with bounded
treewidth t. Assume that a tree decomposition of treewidth t on a beer digraph with n vertices
is given. We show that after O(t3n) time preprocessing on the beer digraph, (i) a beer distance
query can be answered in O(t3α(n)) time, where α(n) is the inverse Ackermann function, and (ii) a
shortest beer path can be reported in O(t3α(n)L) time, where L is the number of edges on the path.
In the process we show an improved O(t3α(n)L) time shortest path query algorithm, compared with
the currently best O(t4α(n)L) time algorithm [Chaudhuri & Zaroliagis, 2000].

We also consider queries in a dynamic setting where the weight of an edge in G can change over
time. We show two data structures. Assume t is constant and let β be any constant in (0, 1). The
first data structure uses O(n) preprocessing time, answers a beer distance query in O(α(n)) time
and reports a shortest beer path in O(α(n)L) time. It can be updated in O(nβ) time after an edge
weight change. The second data structure has O(n) preprocessing time, answers a beer distance
query in O(log n) time, reports a shortest beer path in O(log n + L) time, and can be updated in
O(log n) time after an edge weight change.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph algorithms, Shortest Path, Data structures, Bounded treewidth

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.35

1 Introduction

A beer digraph is a real-valued weighted directed graph G = (V (G), E(G)) in which some
of the vertices have beer stores. For any two vertices u, v ∈ V (G), a shortest beer path is a
shortest path from u to v that visits at least one beer store. The beer distance from u to v is
the weight of a shortest beer path from u to v. In this paper, we consider the problem of
shortest beer path and beer distance queries for beer digraphs in both static and dynamic
settings. In the dynamic setting, the weight of an edge in the graph can change.

The shortest path and distance queries are fundamental graph problems. There are
numerous works on the subject in the literature. Thorup and Zwick [22] used the term
“distance oracle” to refer to a compact data structure that can efficiently answer distance query
between any two vertices. Ideally one would like a distance oracle with linear preprocessing
time and space, and constant query time. However, it is well known that there are graphs
for which no distance oracle with o(n2) bits of space and O(1) query time exists. Because of
this, researchers have focused their attention on restricted classes of graphs.

There has been extensive research on the class of planar graphs [5, 8, 9, 10, 11, 13,
18, 19]. We briefly highlight some of the most recent results for planar graphs. In [5],
Charalampopoulos et al. showed a distance oracle with space O(n1+ϵ) and polylogarithmic
query-time for any constant ϵ > 0. Long and Pettie [18] showed (i) an oracle with space

© Joachim Gudmundsson and Yuan Sha;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joachim.gudmundsson@sydney.edu.au
mailto:ysha3185@uni.sydney.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2023.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

O(n log2+o(1) n) and query-time O(nϵ) for any constant ϵ > 0, and (ii) an oracle with space
O(n1+o(1)) and query-time no(1). For a comparison of the existing distance oracles for planar
graphs, refer to Table 1 in [18].

For the class of graphs with bounded treewidth, the best shortest path and distance query
structure is attributed to Chaudhuri and Zaroliagis [6]. Let t be the treewidth of the input
graph G and assume that a tree decomposition of G with treewidth t is given. They showed
that after O(t3n) preprocessing, distance queries can be answered in time O(t3α(n)), and
shortest path queries can be answered in time O(t4α(n)L), where L is the number of edges
on the path and α(n) is the inverse Ackermann function.

Not surprisingly, answering shortest path or distance queries efficiently in a dynamic
setting where the graph undergoes changes is hard. Roditty and Zwick [21] showed that
the innocent looking decremental (only edge deletions) or incremental (only edge insertions)
single-source shortest path (SSSP) problem is, in a strong sense, as hard as APSP (all-
pairs shortest path). It is conjectured that APSP has no truly subcubic time (O(n3−ϵ))
solution [23].

The shortest beer path problem is a generalization of the shortest path problem. Bacic
et al. [2] considered the shortest beer path and beer distance queries for undirected outerplanar
graphs with non-negative edge weights. They showed that after O(n) time preprocessing a
beer distance query can be answered in O(α(n)) time, and a shortest beer path query can
be answered in O(L) time. Hanaka et al. [15] considered the shortest beer path and beer
distance queries for graphs with bounded triconnected component size (which they extends
to graphs with bounded treewidth). In this paper we study shortest beer path and beer
distance queries for digraphs with bounded treewidth.

We first show an improved O(t3α(n)L) time shortest path query algorithm, compared
with the O(t4α(n)L) time algorithm in [6]. Pettie [20] proved that for the online MST
(minimum spanning tree) verification problem, answering m queries requires Ω(mα(m, n))
time. Bacic et al. [2] reduced the online MST verification problem to the beer distance query
problem on trees, which implies that answering m beer distance queries on beer trees requires
Ω(mα(m, n)) time. Thus our result of beer distance query in Table 1 is optimal for graphs
with constant treewidth. Note that our shortest beer path and beer distance query structure
answers shortest beer path queries in the same asymptotic time as answering shortest path
queries, and answers beer distance queries in the same asymptotic time as answering distance
queries (see Table 1).

We also consider the shortest beer path and beer distance queries in the dynamic setting
where edge weights can change over time. Edge deletion (setting weight to infinity) and
edge re-insertion are special cases of edge weight change. We do not consider general edge
insertion, since our approach is based on tree decompositions of graphs while general edge
insertion can greatly change the treewidths and break the tree decompositions. For this
dynamic setting we give two dynamic shortest beer path query structures. See Table 2 for a
comparison of the structures.

2 Preliminaries

Let G = (V (G), E(G)) be a weighted beer digraph with n vertices where some of the vertices
have a beer store. The edge weights are specified by a weight function wt : E(G) −→ R. Let
wt(u, v) be the weight of edge ⟨u, v⟩. The weight of a path in G is the sum of the weights of
the edges on the path. For any two vertices u, v ∈ E(G), a shortest path in G from u to v is
a path from u to v with the minimum weight and is denoted as πG(u, v). The distance from

J. Gudmundsson and Y. Sha 35:3

Table 1 Comparison of shortest path query structures. In the table t is the treewidth, L is
the number of edges on the path, and α(n) is the inverse Ackermann function. Assume a tree
decomposition of treewidth t is given for a bounded treewidth graph. Entries in boldface are new.

Source Graph Preproc. Distance Shortest path Beer dist. Beer path

[6] directed,
bounded
treewidth

O(t3n) O(t3α(n)) O(t4α(n)L) – –

[2] undirected,
outer-
planar

O(n) O(α(n)) O(L) O(α(n)) O(L)

Theorem 9 directed,
bounded
treewidth

O(t3n) O(t3α(n)) O(t3α(n)L) O(t3α(n)) O(t3α(n)L)

Table 2 Comparison of dynamic shortest path query structures on directed graphs with constant
treewidth. β is any constant in (0, 1), and L is the number of edges on the path. Entries in boldface
are new.

Source Preproc. Distance Shortest path Beer dist. Beer path Edge weight
update

[6] O(n) O(α(n)) O(Lα(n)) – – O(nβ)
Theorem 13 O(n) O(α(n)) O(Lα(n)) O(α(n)) O(Lα(n)) O(nβ)
Theorem 23 O(n) O(log n) O(log n + L) O(log n) O(log n + L) O(log n)

u to v in G, denoted as δG(u, v), is the weight of πG(u, v). A shortest beer path in G from u

to v is denoted as πBG(u, v) and the beer distance from u to v in G, denoted as δBG(u, v), is
the weight of πBG(u, v).

Let V1, V2 and U be disjoint subsets of V (G). U is a separator for V1 and V2 if every
path in G from a vertex in V1 (V2) to a vertex in V2 (V1) goes through a vertex in U .

Let X be a subset of V (G) and let G[X] be the subgraph of G induced by X.
A tree decomposition of a graph G (directed or undirected) is a pair (X, T) in which

T = (I = V (T), E(T)) is a tree and X = {Xi|i ∈ I} is a family of subsets of V (G) such that:
1.

⋃
i∈I Xi = V (G);

2. for each edge e = (u, v) ∈ E(G) there exists a node i ∈ I such that both u and v belong
to Xi; and

3. for all v ∈ V , the set of nodes {i ∈ I|v ∈ Xi} forms a connected subtree of T .

The set Xi is called the bag of node i. The treewidth of a tree decomposition is
maxi∈I |Xi| − 1. The treewidth of G is the minimum treewidth over all possible tree
decompositions of G.

▶ Theorem 1 ([4]). For every constant t ∈ N , there exists an O(n) time algorithm which
tests whether a given n-vertex graph G has treewidth at most t and if so, outputs a tree-
decomposition (X, T) of G with treewidth at most t, where |V (T)| = n − t. In O(n) time, the
tree decomposition (X, T) can be converted into a binary tree decomposition of 2(n − t) nodes
and treewidth t.

For a tree decomposition (X, T) of G, every edge e = (i, j) ∈ E(T) corresponds to a
separator of G. Let T1 and T2 be the subtrees of T obtained by removing e from T , then
Xi ∩ Xj separates

⋃
m∈V (T1) Xm − (Xi ∩ Xj) from

⋃
m∈V (T2) Xm − (Xi ∩ Xj).

ISAAC 2023

35:4 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

3 Shortest path and distance queries

The most efficient algorithms for shortest path and distance queries on digraphs with bounded
treewidth to date are given by Chaudhuri and Zaroliagis [6] (see Table 1). We give some
preliminaries in Section 3.1, before giving an outline of the algorithms in [6] in Section 3.2.
Finally we show how to improve the shortest path query algorithm in Section 3.3.

3.1 Preliminaries
Call (a, b, c) a distance tuple if a, b are symbols and c ∈ R. Define a composition operator ◦
on two distance tuples as (a1, b1, c1) ◦ (a2, b2, c2) = (a1, b2, c1 + c2) if b1 = a2, otherwise it
is undefined. For a set of distance tuples, say M , define minmap(M) to be the operation
on M such that among all distance tuples in M with the same first and second components,
only the distance tuple with the smallest third component is retained.

Let A and B be two sets of distance tuples. Define a composition operator ◦ on A and B

as A ◦ B = minmap{x ◦ y|x ∈ A, y ∈ B}. For a node i ∈ V (T) where (X, T) is a tree
decomposition of G, define γ(i) = {(u, v, δG(u, v))|u, v ∈ Xi} to be the set of distance tuples
for pairs of vertices in Xi (u and v can be the same vertex).

▶ Definition 2 ([6]). Let H be a digraph, with V1, V2 and U be a partition of V (H) such that U

is a separator for V1 and V2. Let H1 and H2 be subgraphs of H such that V (H1) = V1 ∪ U

and V (H2) = V2 ∪ U . We say that H ′
1 is a graph obtained by absorbing H2 into H1, if H ′

1
is obtained from H1 by adding edges ⟨u, v⟩, with weight δH2(u, v) or δH(u, v), for each pair
u, v ∈ U . In case multiple edges are created, retain the one with minimum weight.

(a) (b)

V1 V2U

H1 H2

V1 U

H ′
1

Figure 1 (a) Illustrating Definition 2. (b) H ′
1 where the red edges have weights δH2 (·, ·) or δH(·, ·).

Absorption preserves distances in a digraph. Let H , H1, H2 and H ′
1 be as in Definition 2,

then for all x, y ∈ V (H ′
1), δH′

1
(x, y) = δH(x, y).

3.2 Shortest path and distance query algorithms
Let G be a weighted digraph with bounded treewidth t. Here we will briefly present the key
ideas of the algorithms by Chandhuri and Zaroliagis [6]. From Theorem 1, one can obtain
a tree decomposition (X, T) of G with constant treewidth in O(n) time.1 One can obtain
γ(i) for all nodes i ∈ V (T) in O(t3n) time by the following lemma. The algorithm uses an
absorption and expansion processes. IntG(u, v) is an intermediate vertex (neither u nor v)
on a shortest path from u to v.

1 The hidden constant of the O(n) time in Theorem 1 is 2O(t3). Recently, Korhonen [17] gave a 2-
approximation algorithm that runs in O(2O(t)n) time, which suffices for our application. Interested
readers are also referred to [12] for an O(t7n log n) time, O(t)-approximation algorithm.

J. Gudmundsson and Y. Sha 35:5

▶ Lemma 3. Let G be an n-vertex weighted digraph and let (X, T) be the tree decomposition
of G, of treewidth t. For each pair u, v such that u, v ∈ Xi for some i ∈ V (T), let Dist(u, v) =
δG(u, v) and IntG(u, v) = x, where x is some intermediate vertex (neither u nor v) on a
shortest path from u to v. If wt(u, v) = δG(u, v), then IntG(u, v) = null. Then in O(t3n)
time, we can either find a negative cycle in G, or compute the values Dist(u, v) and IntG(u, v)
for each such pair u, v.

After using the algorithm in Lemma 3, all γ(i) for i ∈ V (T) have been computed. One can
define a semigroup (Γ, ◦) where Γ is the set of sets of distance tuples and ◦ is the composition
operator defined on two sets of distance tuples. Label node i ∈ V (T) with γ(i). For any two
node i, j ∈ V (T), the composition of the labels along the path in T from i to j, which is
γ(i) ◦ . . . ◦ γ(j), gives the set of distance tuples P (Xi, Xj) = {(a, b, δG(a, b))|a ∈ Xi, b ∈ Xj}.
This is true because each edge along the path from i to j corresponds to a separator of G (see
the text below Theorem 1. Thus for any two vertices u, v ∈ V (G), if u ∈ Xi and v ∈ Xj , then
the composition of the labels along the path in T from i to j gives δG(u, v). The following
theorem is proved in [1] and [7].

▶ Theorem 4 ([1, 7]). Let (S, ◦) be a semigroup such that for q, r ∈ S, q ◦ r can be computed
in O(m) time. Let T be a tree with n nodes where each node is labeled with an element from
the semigroup. After O(mn) time preprocessing, the composition of the labels along any path
in T can be computed in O(mα(n)) time.

Plug in the result in Theorem 4, after O(t3n) time preprocessing, the composition of the
labels along any path in T of (X, T) can be computed in O(t3α(n)) time. Therefore the
distance between any two vertices in V (G) can be computed in O(t3α(n)) time.

The shortest path query algorithm uses the distance query algorithm. It works recursively
and finds one intermediate vertex on the shortest path at a time. In a recursive step, the
algorithm checks t vertices and for each vertex it makes two distance queries. Since a distance
query is answered in O(t3α(n)) time, an intermediate vertex is found in O(t4α(n)) time. The
shortest path is reported in O(t4α(n)L) time, where L is the number of edges on the path.
In summary:

▶ Theorem 5 ([6]). Let G be an n-vertex weighted digraph of treewidth t and assume a
tree decomposition of G with treewidth t is given. After O(t3n) time preprocessing, distance
queries in G can be answered in time O(t3α(n)), and shortest path queries in G can be
answered in time O(t4α(n)L), where L is the number of edges on the path.

3.3 Our improved shortest path query algorithm
In this section we show how to improve the shortest path query algorithm. The shortest
path query algorithm in Section 3.2 computes an intermediate vertex by checking t vertices
and making O(t) distance queries. However, we can define augmented distance tuples which
contain intermediate vertex information, and define the composition operator ◦ on two
augmented distance tuples such that the composition not only gives distance but also gives
intermediate vertex. Using the augmented distance tuples and the composition operator on
them, we can compute an intermediate vertex by making just one distance query.

An augmented distance tuple (a, b, c, d) has a fourth component d which is the intermediate
vertex information. The composition operator ◦ on two augmented distance tuples is defined
as (a1, b1, c1, d1) ◦ (a2, b2, c2, d2) = (a1, b2, c1 + c2, d′) if b1 = a2, otherwise it is undefined.
When b1 = a2, the fourth component d′ is determined as follows. If a1 = b1 or a2 = b2, then
d′ = d2 or d′ = d1, respectively. Otherwise, a1 ̸= b1 and a2 ≠ b2. Then if a1 ̸= b2,d′ = b1. If
a1 = b2, d′ = null.

ISAAC 2023

35:6 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

Now we redefine the semigroup (Γ, ◦). An element in the redefined Γ is a set of augmented
distance tuples. Let A and B be two sets of augmented distance tuples. The composition oper-
ator ◦ on A and B is defined as A◦B = minmap{x◦y|x ∈ A, y ∈ B}, where the minmap op-
eration is as defined before. For a node i ∈ V (T), let γ̄(i) = {(u, v, δG(u, v), IntG(u, v))|u, v ∈
Xi}. The values δG(u, v) and IntG(u, v) have been computed by Lemma 3. Relabel node
i ∈ V (T) with γ̄(i). The labels are elements in the redefined (Γ, ◦). For any two nodes
i, j ∈ V (T), the composition of the labels along the path in T from i to j, γ̄(i)◦ . . .◦ γ̄(j), gives
the set of augmented distance tuples P̄ (Xi, Xj) = {(a, b, δG(a, b), IntG(a, b))|a ∈ Xi, b ∈ Xj}.
For any two vertices u, v ∈ V (G), if u ∈ Xi and v ∈ Xj , then the composition of the labels
along the path in T from i to j gives δG(u, v) and IntG(u, v).

The composition of the labels along a path in T gives the claimed set of augmented
distance tuples, since each edge along the path corresponds to a separator of G.

For two labels γ̄(i) and γ̄(j), one can compute γ̄(i) ◦ γ̄(j) in O(t3) time. If we plug in the
data structure in Theorem 4, then after O(t3n) time preprocessing, the composition of the
labels γ̄(·) along any path in T can be computed in O(t3α(n)) time. We have the following
theorem.

▶ Theorem 6. Let G be an n-vertex weighted digraph of treewidth t and assume a tree
decomposition of G with treewidth t is given. After O(t3n) time preprocessing, distance
queries in G can be answered in time O(t3α(n)), and shortest path queries in G can be
answered in time O(t3α(n)L), where L is the number of edges on the path.

4 Shortest beer path and beer distance queries

Throughout this section, let G be a beer digraph. In this section we extend the approach
discussed in Section 3 to shortest beer path and beer distance queries. Given a tree
decomposition (X, T) of the input digraph G, we apply the absorption and expansion
processes similar to those in Section 3 on (X, T), which compute information on beer paths
and beer distances. Then we define a semigroup whose elements are sets of augmented
distance tuples and augmented beer distance tuples. Finally we use the data structure
in Theorem 4 to answer shortest beer path and beer distance queries efficiently. Before
describing the algorithms, we give some preliminaries.

4.1 Preliminaries
Let H be a beer digraph. We call a vertex v ∈ V (H) a beer vertex if v has a beer store. Let
u, v ∈ V (H). Recall that we use πBH(u, v) to denote a shortest beer path in H from u to v and
use δBH(u, v) to denote the the weight of πBH(u, v). Let IntBH(u, v) denote an intermediate
vertex (neither u nor v) on πBH(u, v). If wt(u, v) = δBH(u, v), then IntBH(u, v) = null. If
either u or v is a beer vertex, a shortest path from u to v is a shortest beer path from u

to v and we define IntBH(u, v) to be an intermediate vertex (neither u nor v) on πH(u, v).
If neither u nor v is a beer vertex, we define IntBH(u, v) to be a beer vertex that is on
πBH(u, v).

Corresponding to a shortest beer path πBH(u, v), we define a beer edge ⟨u, v⟩B which has
weight δBH(u, v) and the intermediate vertex IntBH(u, v). Note that a beer edge is different
from a normal edge. We extend Definition 2 to beer graphs.

▶ Definition 7. Let H be a beer digraph, possibly with beer edges. Let V1, V2 and U be a
partition of V (H) such that U is a separator for V1 and V2. Let H1 and H2 be subgraphs
of H such that V (H1) = V1 ∪ U and V (H2) = V2 ∪ U . We say that H ′

1 is a beer graph

J. Gudmundsson and Y. Sha 35:7

obtained by absorbing H2 into H1, if H ′
1 is obtained from H1 by adding edges ⟨u, v⟩, with

weight δH2(u, v) or δH(u, v), and beer edges ⟨u, v⟩B, with weight δBH2(u, v) or δBH(u, v), for
each pair u, v ∈ U . In case multiple edges or multiple beer edges are created, retain the one
with minimum weight.

Absorption preserves distances and beer distances in a beer digraph. Let H, H1, H2 and
H ′

1 be as in Definition 7, then for all x, y ∈ V (H ′
1), δH′

1
(x, y) = δH(x, y) and δBH′

1
(x, y) =

δBH(x, y).
For a node i ∈ V (T) where (X, T) is a tree decomposition of G, define γ̄B(i) =

{(u, v, δG(u, v), IntG(u, v))|u, v ∈ Xi} ∪ {(u, v, δBG(u, v), IntBG(u, v))|u, v ∈ Xi} to be the
set of augmented distance tuples and augmented beer distance tuples for pairs of vertices
in Xi.

Given a tree decomposition (X, T) of treewidth t of G, we use the absorption and
expansion processes with the absorbing procedure defined in Definition 7, to compute γ̄(i)
and γ̄B(i) for all i ∈ V (T). We have the following lemma.

▶ Lemma 8. Let G be an n-vertex weighted digraph and let (X, T) be a tree decomposition
of G, of treewidth t. Then in O(t3n) time, we can compute the values δG(u, v), IntG(u, v),
δBG(u, v) and IntBG(u, v) for each pair u, v ∈ Xi for every i ∈ V (T).

4.2 Defining a semigroup
We first define a composition operator ◦B on augmented distance tuples and augmented beer
distance tuples. When both operands are augmented distance tuples, the operator ◦B equals
the operator ◦ defined in Section 3.1. The operator ◦B is undefined when both operands are
augmented beer distance tuples. It remains to define ◦B between an augmented distance
tuple and an augmented beer distance tuple. Let (a1, b1, c1, d1) be an augmented distance
tuple and let (a2, b2, ĉ2, d̂2) be an augmented beer distance tuple. We only show the definition
of (a1, b1, c1, d1) ◦B (a2, b2, ĉ2, d̂2), since the definition of (a2, b2, ĉ2, d̂2) ◦B (a1, b1, c1, d1) is
symmetric. Define (a1, b1, c1, d1) ◦B (a2, b2, ĉ2, d̂2) = (a1, b2, c1 + ĉ2, d̂) if b1 = a2, otherwise it
is undefined. The tuple (a1, b2, c1 + ĉ2, d̂) is a beer distance tuple. The fourth component d̂

is set as follows. Here we assume that a1, b1 and b2 are all different. The other cases are very
similar. If a1 or b1 is a beer vertex, then d̂ = b1. Otherwise neither a1 nor b1 is a beer vertex.
Then, if a2 or b2 is a beer vertex, d̂ = a2, otherwise d̂ = d̂2. It is not hard to verify that the
setting of d̂ is consistent with the definition of an augmented beer distance tuple. The setting
of d̂ takes constant time in all cases, therefore the composition (a1, b1, c1, d1) ◦B (a2, b2, ĉ2, d̂2)
takes constant time.

Let Â and B̂ be two sets of augmented distance tuples and augmented beer distance
tuples. That is, Â = A1 ∪ A2 and B̂ = B1 ∪ B2 where A1 (B1) is a set of augmented distance
tuples and A2 (B2) is a set of augmented beer distance tuples. Define the composition
operator ◦B on Â and B̂ as Â ◦B B̂ = minmap{x ◦B y|x ∈ Â, y ∈ B̂}, where the minmap is
the operation such that among all distance tuples (or all beer distance tuples) with the same
first and second components, only the distance tuple (or the beer distance tuple) with the
smallest third component is retained. The operation ◦B is associative.

Recall that

γ̄B(i) = {(u, v, δG(u, v), IntG(u, v))|u, v ∈ Xi} ∪ {(u, v, δBG(u, v), IntBG(u, v))|u, v ∈ Xi}

for all i ∈ V (T) can be computed in O(t3n) time according to Lemma 8. We define a
semigroup (ΓB , ◦B) where ΓB is the set of sets of augmented distance tuples and augmented

ISAAC 2023

35:8 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

beer distance tuples, ◦B is the composition operator defined on two elements in ΓB . Label each
node i ∈ V (T) with γ̄B(i). Since the composition ◦B of two tuples takes constant time, the
composition of two labels takes O(t3) time. For any two nodes i, j ∈ V (T), the composition
of the labels along the path in T from i to j gives the set {(a, b, δG(a, b), IntG(a, b))|a ∈
Xi, b ∈ Xj} ∪ {(a, b, δBG(a, b), IntBG(a, b))|a ∈ Xi, b ∈ Xj}.

Plug in Theorem 4, we have that after O(t3n) time preprocessing, the composition of
the labels along any path in T of (X, T) can be computed in O(t3α(n)) time. Thus the beer
distance between any two vertices u, v ∈ V (G) and the intermediate vertex IntBG(u, v) can
be computed in O(t3α(n)) time.

The shortest beer path query algorithm is straightforward. If either u or v is a beer
vertex, then we can use the shortest path query algorithm to compute the shortest beer path
from u to v in O(t3α(n)L) time by Theorem 6, where L is the number of edges on the beer
path. If neither u nor v is a beer vertex, we first make a beer distance query from u to v.
The beer distance query returns the intermediate vertex IntBG(u, v), which is a beer vertex.
Then we use the shortest path query algorithm to compute the shortest beer path from u to
IntBG(u, v) and the shortest beer path from IntBG(u, v) to v. The concatenation of the two
paths is a shortest beer path from u to v, which is computed in O(t3α(n)L) time. We have
obtained the following theorem.

▶ Theorem 9. Let G be an n-vertex beer digraph of treewidth t and assume a tree decom-
position of G with treewidth t is given. After O(t3n) time preprocessing on G, beer distance
queries can be answered in time O(t3α(n)), and shortest beer path queries can be answered in
time O(t3α(n)L), where L is the number of edges on the path.

5 A dynamic shortest beer path query structure

In this section we give a dynamic shortest beer path query structure, which is an extension of
the dynamic shortest path query structure in [6]. We give an outline of the dynamic shortest
path query structure in the following. The dynamic shortest beer path query structure is
shown in Section 5.2.

The main technical tool is a graph partitioning algorithm. Let (X, T) be a binary tree
decomposition of G of treewidth t. One can convert a tree decomposition of treewidth t

into a binary tree decomposition of treewidth t in O(tn) time. Given any integer m, the
graph partitioning algorithm partitions the tree T of (X, T) in O(n) time into q ≤ 16n/m

node-disjoint subtrees {Ti|1 ≤ i ≤ q} such that Ti has at most m nodes and is connected to
the rest of T via at most three nodes. For each Ti, a subgraph Hi which is the subgraph
of G induced by vertices in

⋃
v∈V (Ti) Xv is created. The subgraph Hi has Ti as its tree

decomposition. A reduced graph H ′ is also created. Let v1, v2 and v3 be the nodes of subtree
Ti via which Ti is connected to the rest of T . The set C(Hi) = Xv1 ∪ Xv2 ∪ Xv3 is called
the cut set of Hi and contains at most 3t vertices. By shrinking each subtree Ti into a node
with C(Hi) as its bag of vertices, one creates a reduced tree T ′ with q ≤ 16n/m nodes. The
reduced graph H ′ has T ′ as its tree decomposition and includes edges in G joining pairs of
vertices in C(Hi), 1 ≤ i ≤ q.

The input graph G is partitioned into edge-disjoint components {Gi|1 ≤ i ≤ q} where
Gi is Hi with edges joining pairs of vertices in C(Hi) deleted. Construct graph G′ from H ′

by adding edges ⟨x, y⟩ weighted δGi
(x, y) for each pair x, y in C(Hi), 1 ≤ i ≤ q. Multiple

edges in G′ are replaced by the edge of minimum weight. Note that G′ is the graph obtained
by absorbing G1, . . . , Gq into the rest of G. It follows that δG′(u, v) = δG(u, v), for any
u, v ∈ V (G′). By setting m = 8

√
n, Hi has at most 8t

√
n vertices and H ′ has at most

3tq ≤ 6t
√

n vertices.

J. Gudmundsson and Y. Sha 35:9

When the shortest path/distance query structures have been built for G′ and Gi, 1 ≤ i ≤ q,
we can compute the shortest path/distance between any two vertices u, v ∈ V (G) by querying
the structures. If u ∈ V (Gi) and v ∈ V (Gj) \ V (Gi) for some i and j, we have

δG(u, v) = min{δGi
(u, x) + δG′(x, y) + δGj

(y, v)|x ∈ C(Gi), y ∈ C(Gj)}. (1)

If u, v ∈ V (Gi) for some i, we have

δG(u, v) = min{δGi
(u, v), min{δGi

(u, x) + δG′(x, y) + δGi
(y, v)|x, y ∈ C(Gi)}}. (2)

Replacing the distances realizing δG(u, v) in Equation (1) or Equation (2) by the corresponding
shortest paths gives the shortest path from u to v.

An edge in E(G) corresponds to an edge in exactly one graph in {Gi|1 ≤ i ≤ q} ∪ G′.
If the weight of the edge is updated and the edge is in G′, one only needs to update the
structure for G′. If the edge is in Gi, one needs to update the structure for Gi. Since an edge
⟨x, y⟩ with weight δGi

(x, y) was added in G′ for each pair x, y ∈ C(Hi), the change of an edge
weight in Gi can incur at most (3t)2 edge weight changes in G′. Thus one needs to update
the structure for G′ for these edge weight updates. To make an edge weight update efficient,
the above procedure of graph partitioning and construction of a reduced graph is repeated
recursively for each of G1, . . . , Gq, G′ until the component subgraphs at the deepest recursion
level have small sizes. A static query structure in Section 3 is built for each component
subgraph at the deepest recursion level. The dynamic data structure can be thought of as a
tree structure where the root is G and every other node is Ḡi or Ḡ′ of its parent Ḡ. A static
query structure is built and associated with each leaf node.

Since the dynamic data structure is built recursively, distance query or shortest path
query is answered by recursively querying lower recursion level structures. Eventually queries
are made and answered at the static query structures at the bottom level. An edge weight
update is accommodated by recursively updating lower level structures. Eventually an update
at a static query structure at the bottom level is accommodated by rebuilding the static
query structure.

Let r−1 denote the number of recursion steps. The dynamic shortest path query structure
is summarized in the following theorem.

▶ Theorem 10 ([6]). Let G be an n-vertex weighted digraph and assume a binary tree
decomposition of G with treewidth t is given. For any positive integer constant r, one can
build a data structure in O(Crtr+3n) time such that the structure answers distance queries
in O(Crt2r+2α(n)) time, answers shortest path queries in O(Crt2r+2α(n)L) time where L

is the number of edges on the shortest path, and accommodates an edge weight update in
O(Crt2r+2n(1/2)r−1) time, where Cr = 3r(r+2).

5.1 On the shortest path query time
We observe that the shortest path query algorithm only needs to compute the shortest path
from u to v after making all the distance queries used to determine the shortest path from u

to v. The shortest path from u to v is computed by making shortest path queries to static
query structures at the bottom level and concatenating the computed shortest subpaths
together, where a shortest subpath is a subpath of the shortest path from u to v. A shortest
path query to a static query structure is answered in O((3r−1t)4α(n)Li) time, where 3r−1t

is the maximum treewidth of a graph at the bottom recursion level and Li is the number of
edges on the computed shortest subpath. Therefore the shortest path from u to v can be
computed in O(

∑
i(3r−1t)4α(n)Li) = O(3rt4α(n)L) time where L is the number of edges

ISAAC 2023

35:10 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

on the shortest path from u to v, besides the O(Crt2r+2α(n)) time spent on making all the
distance queries. If we use the shortest path query algorithm in Theorem 6 of Section 3.3,
the O(3rt4α(n)L) time is improved to O(3rt3α(n)L) time. We have the following corollary.

▶ Corollary 11. With the static shortest path query structure in Theorem 6, the shortest
path query time in Theorem 10 can be improved to O(Crt2r+2α(n) + 3rt3α(n)L).

5.2 Dynamic shortest beer path and beer distance queries
Equipped with the graph partitioning technique and the shortest beer path query structure
in Theorem 9, we are ready to devise a dynamic shortest beer path and beer distance query
structure, which is an extension of the dynamic shortest path query structure in Theorem 10.
In the following we only focus on the differences.

We use the graph partitioning algorithm to partition the input beer graph G into edge-
disjoint components {Gi|1 ≤ i ≤ q} where q ≤ 2

√
n, the same as was done by the dynamic

shortest path query structure. The reduced graph H ′ is the same as in the dynamic shortest
path query structure. A reduced beer graph G′ is constructed from H ′ by adding edges ⟨x, y⟩
weighted δGi

(x, y) and beer edges ⟨x, y⟩B weighted δBGi
(x, y) for each pair x, y ∈ C(Hi),

1 ≤ i ≤ q. Edges and beer edges are dealt with separately. Multiple edges in G′ are replaced
by the edge of minimum weight, and multiple beer edges in G′ are replaced by the beer edge
of minimum weight. The beer graph G′ is obtained by absorbing G1, . . . , Gq into the rest
of G using the absorption defined in Definition 7. It follows that δG′(u, v) = δG(u, v) and
δBG′(u, v) = δBG(u, v), for any u, v ∈ V (G′).

When the shortest path query structures and the shortest beer path query structures
have been built for G′ and Gi, 1 ≤ i ≤ q, we can compute the shortest beer path or beer
distance between any two vertices u, v ∈ V (G). If u ∈ V (Gi) and v ∈ V (Gj) \ V (Gi) for
some i and j, we have

δBG(u, v) = min{M1, M2, M3}, where (3)
M1 = min{δBGi

(u, x) + δG′(x, y) + δGj
(y, v)|x ∈ C(Gi), y ∈ C(Gj)}, (4)

M2 = min{δGi
(u, x) + δBG′(x, y) + δGj

(y, v)|x ∈ C(Gi), y ∈ C(Gj)}, (5)
M3 = min{δGi

(u, x) + δG′(x, y) + δBGj
(y, v)|x ∈ C(Gi), y ∈ C(Gj)}. (6)

If u, v ∈ V (Gi) for some i, we have

δBG(u, v) = min{M1, M2, M3}, where (7)
M1 = min{δBGi(u, v), min{δBGi(u, x) + δG′(x, y) + δGi

(y, v)|x, y ∈ C(Gi)}}, (8)
M2 = min{δBGi

(u, v), min{δGi
(u, x) + δBG′(x, y) + δGi

(y, v)|x, y ∈ C(Gi)}}, (9)
M3 = min{δBGi

(u, v), min{δGi
(u, x) + δG′(x, y) + δBGi

(y, v)|x, y ∈ C(Gi)}}. (10)

Replacing the beer distances realizing δBG(u, v) in Equation (3) or Equation (7) by the
corresponding shortest beer paths gives the shortest beer path from u to v.

An edge in E(G) corresponds to an edge in exactly one graph in {Gi|1 ≤ i ≤ q} ∪ G′. If
an edge weight is updated and the edge is in G′, one only needs to update the structure for
G′. If the edge is in Gi, one needs to update the structure for Gi and G′. Since an edge
⟨x, y⟩ with weight δGi

(x, y) and a beer edge ⟨x, y⟩B with weight δBGi
(x, y) were added in G′

for each pair x, y ∈ C(Hi), the change of an edge weight in Gi can incur at most 2(3t)2 edge
or beer edge weight changes in G′. The procedure of graph partitioning and construction of
a reduced beer graph is repeated recursively for each of G1, . . . , Gq, G′ until the component

J. Gudmundsson and Y. Sha 35:11

subgraphs at the deepest recursion level have small sizes. A static shortest beer path query
structure in Theorem 9 and a static shortest path query structure in Section 3 are built for
each component subgraph at the deepest recursion level.

Since the dynamic data structure is built recursively, a beer distance query or a shortest
beer path query is answered by recursively querying lower recursion level structures. Eventu-
ally queries are made and answered at the static query structures at the bottom level. An
edge weight update is accommodated by recursively updating lower level structures. An
update at a static shortest path (or shortest beer path) query structure at the bottom level
is accommodated by rebuilding the static query structure.

Let r − 1 denote the number of recursion steps. We omit the details of calculating the
preprocessing/query/update times of the dynamic data structure, since the calculations
are similar to the calculations for the dynamic shortest path structure in Theorem 10 and
Corollary 11. The dynamic data structure is summarized in the following theorem.

▶ Theorem 12. Let G be an n-vertex beer digraph with treewidth t and assume a binary
tree decomposition of G with treewidth t is given. For any positive integer constant r, after
O(C(r)tr+3n) time preprocessing, beer distance queries can be answered in O(C(r)t2r+2α(n))
time, shortest beer path queries can be answered in O(C(r)t2r+2α(n) + 3rt3α(n)L) time,
where C(r) = 3r(r+3) and L is the number of edges on the shortest beer path. The data
structure updates in O(C(r)t2r+2n(1/2)r−1) time after an edge weight change.2

Combined with Theorem 1, we obtain the following theorem by setting r = 1 − log β.

▶ Theorem 13. Let G be an n-vertex beer digraph with constant treewidth, and let β be any
constant in (0, 1). After O(n) time preprocessing, beer distance queries can be answered in
O(α(n)) time, shortest beer path queries can be answered in O(α(n)L) time where L is the
number of edges on the shortest beer path. Edge weight updates (including edge deletions and
edge re-insertions) can be performed in O(nβ) time.

6 Another dynamic shortest path query structure

In this section we give another dynamic shortest path query structure. The basic structure is
a balanced tree BST (G) which represents a balanced separator decomposition of G. We build
compressed graphs for the associated subgraphs of nodes in BST (G) so that the distances
between vertices in different separators can be quickly computed. Finally, we partition edges
in E(G) among nodes in BST (G) so that edge weight update can be handled efficiently.

We give some preliminaries in Section 6.1, and describe the structure in Section 6.2,
Section 6.3 and Section 6.4.

6.1 Preliminaries
Let (X, T) be a binary tree decomposition of G. Recall that an edge e = (i, j) in E(T)
corresponds to Xi ∩Xj , which is a separator of G. We can get a decomposition of G alongside
a decomposition of T . Let ϕ denote the separator that an edge e in E(T) corresponds to. The
removal of e from T divides T into two subtrees T1 and T2, the removal of ϕ from G divides G

into two disjoint subgraphs G[V1] and G[V2]. We add the separator ϕ and the edges in E(G)
between vertices in ϕ and vertices in V1 to G[V1], and get the subgraph G1 = G[V1] ∪ ϕ ∪ E1

2 One can detect whether the edge weight change incurs a negative cycle, by using Lemma 3 at the
partitioned component subgraphs.

ISAAC 2023

35:12 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

where E1 is the set of edges in E(G) joining vertices in ϕ and vertices in V1. We add the
separator ϕ and the edges in E(G) between vertices in ϕ and vertices in V2 to G[V2], and get
the subgraph G2 = G[V2] ∪ ϕ ∪ E2 where E2 is the set of edges in E(G) joining vertices in ϕ

and vertices in V2. Thus G is divided into G1, G2 and G[ϕ] where G[ϕ] is the subgraph of G

induced by vertices in ϕ. See Figure 2(a). We call G[ϕ] a separator subgraph. We have that
T1 is a tree decomposition of G1 and T2 is a tree decomposition of G2. Note that G1, G2
and G[ϕ] partitions edges in E(G).

If we repeat the division step for T1 and G1, and for T2 and G2 recursively until the
subtrees have O(1) nodes, we obtain a decomposition of G. We use a tree DT to represent
the decomposition. Each node p of DT corresponds to a subtree of T and is associated with
a subgraph of G, denoted as Gp. If p is an internal node of DT , p is also associated with an
edge ep in E(T) and a separator ϕp which corresponds to ep. Recall that Gp[ϕp] is called a
separator subgraph, and we associate p with Gp[ϕp]. Since the division stops at a leaf node
of DT , a leaf node has no associated separator or separator subgraph.

Let Φ denote the set of separators associated with nodes of DT . The separators of Φ
that separate Gp from the rest of G are called the cut separators of Gp. See Figure 2(b) for
an illustration.

(a) (b)

V1 V2φ

G1 G2

associated separator

separator subgraph

cut separators

associated subgraph

cut separators

CR(Gg)

(c)

Gp

Figure 2 (a) G1 = G[V1] ∪ ϕ ∪ E1 where E1 is the set of edges in E(G) joining vertices in ϕ and
vertices in V1. The blue edges are in E1. G2 = G[V2] ∪ ϕ ∪ E2 where E2 is the set of edges in E(G)
joining vertices in ϕ and vertices in V2. The red edges are in E2. G1, G2 and G[ϕ] partitions edges
in E(G). (b) The cut separators of Gp are in blue. (c) The BST (G) structure.

Constructing a balanced separator decomposition
We give an algorithm that outputs a decomposition of G that will be used in the construction
of the data structure in Section 6.2. The decomposition is the construction of a DT using
balanced separators. A balanced separator corresponds to an edge of a tree decomposition
whose removal partitions the tree decomposition into two subtrees of proportional sizes. The
decomposition fulfills two goals: (1) the height of the DT is O(log n) and (2) any subgraph
associated with a node of DT has constant size separators. If in the decomposition of T we
successively use an edge of a subtree whose removal partitions the subtree into two subtrees
of proportional sizes, we get a balanced decomposition of T which fulfills the first goal.

Guibas et al. [14] showed an algorithm that computes a balanced decomposition of a
binary tree in linear time. They called the balanced decomposition a centroid decomposition.
In their algorithm the binary tree is decomposed by removing a centroid edge which partitions
the binary tree into two subtrees, each of size at least (|T | + 1)/3. A centroid edge is found
by finding a node that is a centroid of the tree. When each of the subtrees is partitioned
similarly and this is repeated recursively until the subtrees are single nodes, we obtain a
balanced binary tree structure which is the balanced decomposition of the binary tree. For
our purpose, we perform a centroid decomposition on T until the subtrees have at most 5
nodes.

J. Gudmundsson and Y. Sha 35:13

To fulfill the second goal, we modify the centroid decomposition procedure by using the
following step when choosing the edge used to partition a subtree. Edges in E(T) which are
used for partitioning subtrees are called partition edges. If a subtree is connected to the rest
of T through at most three partition edges, we just choose an centroid edge of the subtree as
the partition edge (used to partition the subtree). If a subtree is connected to the rest of T

through four partition edges, we choose an edge of the subtree whose removal partitions the
subtree into two subtrees, either of which is connected to the rest of T through two of the
four partition edges. Thus in every two levels of recursion, the size of a subtree is reduced by
a factor of at least 1/3.

If we use the above modified centroid decomposition on T to get a decomposition of G,
we get a balanced DT which we call a balanced separator tree of G, denoted as BST (G).

BST (G) is a balanced decomposition of G which meets the two goals. The second goal
is fulfilled since any subgraph associated with a node of BST (G) has at most four cut
separators, due to the fact that any subtree in the modified centroid decomposition on T is
connected to the rest of T through at most four partition edges. The two goals will support
the shortest path and distance queries in Section 6.3. For an internal node of BST (G),
we store with it its associated separator and its separator subgraph. For a leaf node of
BST (G), we store with its associated subgraph. For any node p of BST (G), we store with
it pointers to edges in E(T) that correspond to the cut separators of Gp. See Figure 2(c) for
an illustration.

Assume that a binary tree decompostion (X, T) of G with treewidth t is given. The
modified centroid decomposition on T takes O(n) time. Storing the associated separators
and separator subgraphs at internal nodes of BST (G) takes O(t2n) time. The associated
subgraph of a leaf node in BST (G) has O(t) vertices, so storing the associated subgraphs at
leaf nodes of BST (G) takes O(t2n) time. In summary:

▶ Lemma 14. Given a binary tree decomposition (X, T) of G with treewidth t, we can build
BST (G) in O(t2n) time. The depth of BST (G) is O(log n). The associated subgraph of a
node in BST (G) has at most four cut separators.

6.2 The preprocessing
Given a binary tree decompostion (X, T) of G, we preprocess T and G to output the following
data structures:
1. The BST (G) with CR(Gg) for each internal node g in BST (G). CR(Gg) is a compressed

representation of g’s associated subgraph Gg, which will be described below.
2. An array Loc[·] for vertices in V (G), where Loc[v] is a leaf node of BST (G) whose

associated subgraph contains vertex v in V (G).
3. An LCA (lowest common ancestor) structure for BST (G).
We have the following definition.

▶ Definition 15. Let BST (G) be the balanced separator tree of G and let p be a node of
BST (G). If p is an internal node g, let CR(Gg) be a clique for Gg with respect to vertices
in ϕg and the cut separators of Gg. The weight of an edge in the clique is the distance in Gg

between the vertices of the edge. We call CR(Gg) the compressed representation of Gg. If p

is a leaf node, we have CR(Gp) = Gp.

Given BST (G), we compute CR(Gg) for each internal node g of BST (G) in a bottom-up
fashion. Let t1 and t2 be g’s children. We take the union of CR(Gt1), CR(Gt2) and g’s
associated separator subgraph Gg[ϕg], run the Floyd-Warshall algorithm on the union graph,
and build a clique on vertices in ϕg and the cut separators of Gg where the weight of an edge
is the distance computed for the vertices of the edge.

ISAAC 2023

35:14 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

The correctness of the clique construction procedure is supported by the following lemma.

▶ Lemma 16. lemmaCRunion Let g be an internal node of BST (G) and let ϕg be its
associated separator. Let t1 and t2 be g’s children in BST (G). Let Gt1 be t1’s associated
subgraph and let Gt2 be t2’s associated subgraph. The distance between any two vertices in
CR(Gt1) ∪ CR(Gt2) ∪ Gg[ϕg] equals the distance between the two vertices in Gg.

Note that the associated subgraphs of leaf nodes in BST (G) and the separator subgraphs
of internal nodes in BST (G) partition edges in E(G). This property is used for efficiently
updating an edge weight in Section 6.4.

The preprocessing consists of two steps: building the BST (G), and constructing the
CR(Gg) for each internal node g of BST (G). The associated subgraph of an internal node
g in BST (G) has at most four cut separators, each of which contains at most t vertices.
Thus CR(Gg) has O(t) vertices and computing CR(Gg) takes O(t3) time, dominated by the
Floyd-Warshall algorithm. There are O(n) internal nodes, so the second step takes O(t3n)
time. Combined with Lemma 14, we have the following lemma.

▶ Lemma 17. Given a binary tree decomposition (X, T) of G with treewidth t, we can build
BST (G) and CR(Gg) for each internal node g of BST (G) in O(t3n) time.

The array Loc[·] for vertices in V (G) can be constructed by scanning the associated
subgraphs of leaf nodes of BST (G). There are O(n) leaf nodes. The associated subgraph of
a leaf node has O(t) vertices. Thus Loc[·] can be constructed in O(tn) time.

We can build an LCA structure for BST (G) in O(n) time [3, 16].

▶ Corollary 18. The preprocessing outputs the BST (G) with CR(Gg), Loc[·] and an LCA
structure for BST (G) in O(t3n) time.

6.3 Answering shortest path and distance queries
We describe the distance query algorithm first. Let u and v be any two vertices of G. The
distance query algorithm consists of three steps: (1) find the node s of BST (G) whose
associated separator separates u from v, (2) compute the distances in G between any two
vertices in ϕa, where ϕa is the associated separator of an ancestor node a of s, and (3)
compute the distances in G from u to vertices in ϕs and the distances in G from vertices in
ϕs to v, from which the distance from u to v is computed.

In step 1 we use the array Loc[·] to locate the leaf node l(u) of BST (G) whose associated
subgraph contains u and locate the leaf node l(v) whose associated subgraph contains v. We
use the LCA structure on BST (G) to find the vertex s, which is the lowest common ancestor
of l(u) and l(v) in BST (G).

Step 2 makes use of the compressed representations. Let g be an internal node of BST (G)
and let D(ϕg) denote the distances in G between any two vertices in ϕg. Let r be the root
of BST (G) and let a be an ancestor of s. We compute the distances top-down, for nodes
on the path from r to s. CR(G) at r is a clique containing the distances in G between any
two vertices in ϕr, thus D(ϕr) has already been computed. Next let b be a’s child that is on
the path from r to s and assume we have computed D(ϕr), . . . , D(ϕa) . We can use CR(Gb)
and D(ϕr), . . . , D(ϕa) to compute D(ϕb). The associated subgraph Gb of b is separated from
the rest of G by at most four cut separators, which are among {ϕr, . . . , ϕa}. Recall that we
have stored, with each node p of BST (G), pointers to the cut separators of Gp. If we add to
CR(Gb) edges with weights equal to distances in D(ϕx), where ϕx is a cut separator of Gb,

J. Gudmundsson and Y. Sha 35:15

the distance between any two vertices in the resulting graph equals the distance in G between
the two vertices. This is because absorption preserves distances in G (see Definition 2).
Thus we can run the Floyd-Warshall algorithm on the resulting graph to compute D(ϕb) in
O(t3) time, recalling that any compressed representation has O(t) vertices. Therefore we
can compute D(ϕr), . . . , D(ϕs) top-down from r to s, where each D(·) is computed in O(t3)
time.

In step 3 we compute the distances in G from u to vertices in ϕs recursively. Computing
the distances in G from vertices in ϕs to v is symmetric so we only discuss the former. Let s1
be the child of s that is on the path from s to l(u). We have computed D(ϕr), . . . , D(ϕq) in
step 2, where q is the parent of s. Let D(u, ϕs) denote the distances in G from u to vertices
in ϕs. We compute D(u, ϕs) at s1 and differentiate between two cases:

Case 1 : ϕs1 separates u from ϕs in Gs1 . See Figure 3(a). For a vertex vs in ϕs, we have

dG(u, vs) = min
vs1 ∈ϕs1

{dG(u, vs1) + dG(vs1 , vs)}. (11)

Let D(u, ϕs1) = {dG(u, vs1)|vs1 ∈ ϕs1} and let D(ϕs1 , ϕs) = {dG(vs1 , vs)|vs1 ∈ ϕs1 , vs ∈ ϕs}.
Given D(ϕr), . . . , D(ϕs), we add edges to CR(Gs1) with weights equal to distances in D(ϕx),
where ϕx is a cut separator of Gs1 . Then we run the Floyd-Warshall algorithm on the
resulting graph to compute D(ϕs1) and D(ϕs1 , ϕs). Thus in this case, computing D(u, ϕs) is
reduced to computing D(u, ϕs1), which is computed recursively at s′ where s′ is the child of
s1 on the path from s to l(u).

φs1 φs

u
vs1

vs
(a)

φs1 φs

(b)

u

Gs1 Gs1

Figure 3 (a) ϕs1 separates u from ϕs in Gs1 . (b) ϕs1 does not separate u from ϕs in Gs1 .

Case 2 : ϕs1 does not separate u from ϕs in Gs1 . See Figure 3(b). For this case, we add
edges to CR(Gs1) with weights equal to distances in D(ϕx), where ϕx is a cut separator of
Gs1 . Then we run the Floyd-Warshall algorithm on the resulting graph to compute D(ϕs1).
We recursively compute D(u, ϕs) at s′, since ϕs is a cut separator of Gs′ .

Recursion stops when we arrive at l(u). Since we have computed D(ϕr), . . . , D(ϕy) where
y is the parent of l(u), we can add edges and run the Floyd-Warshall algorithm to compute
D(u, ϕy) or D(u, ϕs), as desired.

Step 1 takes O(1) time. Step 2 computes D(ϕr), . . . , D(ϕs) top-down from r to s, where
each D(·) is computed in O(t3) time. Since BST (G) has depth O(log n), step 2 takes
O(t3 log n) time. Each recursion step in step 3 takes O(t3) time, dominated by running the
Floyd-Warshall algorithm. The computation at l(u) also takes O(t3) time. Thus step 3 takes
O(t3 log n) time. In summary:

▶ Lemma 19. Let u and v be any two vertices in G. The distance in G from u to v can be
computed in O(t3 log n) time where t is the treewidth of G.

6.3.1 Shortest path query algorithm
To answer shortest path queries efficiently, we add a preprocessing step PathExtract_Pre.
PathExtract_Pre works on BST (G) bottom-up and stores with each internal node g the
complete APSP information when running the Floyd-Warshall algorithm. In analogy to the

ISAAC 2023

35:16 Shortest Beer Path Queries in Digraphs with Bounded Treewidth

distance query algorithm, the shortest path query algorithm works down the path from the
root to l(u) and retains APSP information when running the Floyd-Warshall algorithm. The
APSP information allows us to extract the shortest path in G between any two vertices in
CR(Ga) where a is an ancestor of l(u), in time linear to the number of edges on the shortest
path. We have the following lemma.

▶ Lemma 20. Let u and v be any two vertices in G. One can preprocess G in O(t3n)
time and with O(t3n) space so that the shortest path in G from u to v can be reported in
O(t3 log n + L) time where L is the number of edges on the shortest path.

6.4 Handling edge weight update
We have the following lemma.

▶ Lemma 21. The query structure can be updated in O(t3 log n) time for an edge weight
update.

Combined with Corollary 18, Lemma 19 and Lemma 20, we obtain the main theorem of
this section.

▶ Theorem 22. Let G be an n-vertex digraph of treewidth t and assume a binary tree
decomposition of G with treewidth t is given. One can preprocess G in O(t3n) time and with
O(t3n) space, so that distance queries can be answered in O(t3 log n) time, and shortest path
queries can be answered in time O(t3 log n + L), where L is the number of edges on the path.
The data structure can be updated in O(t3 log n) time for an edge weight update.

7 A dynamic shortest beer path query structure

We can extend the structure in Section 6 to handle shortest beer paths. The general idea is
to add beer edges and to compute not only APSP, but also APSBP (all pairs shortest beer
path). The query structure is summarized in the following theorem.

▶ Theorem 23. Let G be an n-vertex beer digraph with treewidth t and assume a binary tree
decomposition of G with treewidth t is given. One can preprocess G in O(t3n) time and with
O(t3n) space, so that beer distance queries can be answered in O(t3 log n) time, shortest beer
path queries can be answered in O(t3 log n + L) time where L is the number of edges on the
shortest beer path. The query structure can be updated in O(t3 log n) time for an edge weight
update.

References
1 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.

Technical Report No.71/87, Tel Aviv University, 1987.
2 Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar

graphs. In Proceedings of the 32nd International Symposium on Algorithms and Computation
(ISAAC), volume 212 of LIPIcs, pages 62:1–62:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021.

3 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proceedings of
the 4th Latin American Symposium on Theoretical Informatics (LATIN), pages 88–94, 2000.

4 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages
226–234, 1993.

J. Gudmundsson and Y. Sha 35:17

5 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Almost
optimal distance oracles for planar graphs. In Proceedings of the 51st Symposium on Theory
of Computing (STOC), pages 138–151. ACM, 2019.

6 Shiva Chaudhuri and Christos D. Zaroliagis. Shortest paths in digraphs of small treewidth.
part I: sequential algorithms. Algorithmica, 27(3):212–226, 2000.

7 Bernard Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
2:337–361, 1987.

8 Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proceedings of the
32nd Annual ACM Symposium on Theory of Computing (STOC), pages 469–478. ACM, 2000.

9 Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact exact
distance oracle for planar graphs. In Proceedings of the 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 962–973. IEEE Computer Society, 2017.

10 Hristo N. Djidjev. On-line algorithms for shortest path problems on planar digraphs. In
Proceedings of the 22nd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 1197 of Lecture Notes in Computer Science, pages 151–165, 1996.

11 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
near linear time. In 42nd Annual Symposium on Foundations of Computer Science, (FOCS),
pages 232–241, 2001.

12 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Trans. Algorithms, 14(3):34:1–34:45, 2018.

13 Viktor Fredslund-Hansen, Shay Mozes, and Christian Wulff-Nilsen. Truly subquadratic exact
distance oracles with constant query time for planar graphs. In Proceedings of the 32nd
International Symposium on Algorithms and Computation (ISAAC), volume 212 of LIPIcs,
pages 25:1–25:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

14 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987.

15 Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama. Shortest beer path
queries based on graph decomposition, 2023. arXiv:2307.02787.

16 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

17 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 184–192, 2021.

18 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2517–2537. SIAM, 2021.

19 Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 209–222.
SIAM, 2012.

20 Seth Pettie. An inverse-ackermann type lower bound for online minimum spanning tree
verification. Combinatorica, 26(2):207–230, 2006.

21 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Proceedings of the
12th Annual European Symposium (ESA), volume 3221 of Lecture Notes in Computer Science,
pages 580–591. Springer, 2004.

22 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
23 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix

and triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 645–654. IEEE Computer Society, 2010.

ISAAC 2023

https://arxiv.org/abs/2307.02787

Coloring and Recognizing Mixed Interval Graphs
Grzegorz Gutowski # Ñ

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Konstanty Junosza-Szaniawski Ñ

Warsaw University of Technology, Poland

Felix Klesen Ñ

Universität Würzburg, Germany

Paweł Rzążewski Ñ

Warsaw University of Technology, Poland
Institute of Informatics, University of Warsaw, Poland

Alexander Wolff Ñ

Universität Würzburg, Germany

Johannes Zink Ñ

Universität Würzburg, Germany

Abstract
A mixed interval graph is an interval graph that has, for every pair of intersecting intervals, either an
arc (directed arbitrarily) or an (undirected) edge. We are particularly interested in scenarios where
edges and arcs are defined by the geometry of intervals. In a proper coloring of a mixed interval
graph G, an interval u receives a lower (different) color than an interval v if G contains arc (u, v)
(edge {u, v}). Coloring of mixed graphs has applications, for example, in scheduling with precedence
constraints; see a survey by Sotskov [Mathematics, 2020].

For coloring general mixed interval graphs, we present a min{ω(G), λ(G) + 1}-approximation
algorithm, where ω(G) is the size of a largest clique and λ(G) is the length of a longest directed
path in G. For the subclass of bidirectional interval graphs (introduced recently for an application
in graph drawing), we show that optimal coloring is NP-hard. This was known for general mixed
interval graphs.

We introduce a new natural class of mixed interval graphs, which we call containment interval
graphs. In such a graph, there is an arc (u, v) if interval u contains interval v, and there is an edge
{u, v} if u and v overlap. We show that these graphs can be recognized in polynomial time, that
coloring them with the minimum number of colors is NP-hard, and that there is a 2-approximation
algorithm for coloring.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Interval Graphs, Mixed Graphs, Graph Coloring

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.36

Related Version Full Version: https://arxiv.org/abs/2303.07960

Funding Grzegorz Gutowski: partially supported by the National Science Center of Poland under
grant no. 2019/35/B/ST6/02472.
Johannes Zink: partially supported by DFG grant Wo 758/11-1.

Acknowledgements We are indebted to Krzysztof Fleszar, Zbigniew Lonc, Karolina Okrasa, and
Marta Piecyk for fruitful discussions. Additionally, we acknowledge the welcoming and productive
atmosphere at the workshop Homonolo 2022, where some of the work was done.

© Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff,
and Johannes Zink;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 36; pp. 36:1–36:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grzegorz.gutowski@uj.edu.pl
https://www.tcs.uj.edu.pl/gutowski
https://orcid.org/0000-0003-3313-1237
https://pages.mini.pw.edu.pl/~szaniawskik/www/
https://orcid.org/0000-0003-0352-8583
https://www.informatik.uni-wuerzburg.de/en/algo/team/klesen-felix/
https://orcid.org/0000-0003-1136-5673
https://pages.mini.pw.edu.pl/~rzazewskip/www/
https://orcid.org/0000-0001-7696-3848
https://www.informatik.uni-wuerzburg.de/en/algo/team/wolff-alexander/
https://orcid.org/0000-0001-5872-718X
https://www.informatik.uni-wuerzburg.de/en/algo/team/zink-johannes/
https://orcid.org/0000-0002-7398-718X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.36
https://arxiv.org/abs/2303.07960
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Coloring and Recognizing Mixed Interval Graphs

1 Introduction

In a geometric intersection graph, the vertices represent geometric objects, and two vertices
are adjacent if and only if the corresponding objects intersect. For example, interval graphs
are the intersection graphs of intervals on the real line. These graphs are well understood:
interval graphs are chordal and can thus be colored optimally (that is, with the least number
of colors) in polynomial time. In other words, given an interval graph G, its chromatic
number χ(G) can be computed efficiently.

The notion of coloring can be adapted to directed graphs where an arc (u, v) means that
the color of u must be smaller than that of v. Clearly, such a coloring can only exist if the
given graph is acyclic. Given a directed acyclic graph, its chromatic number can be computed
efficiently (via topological sorting).

A generalization of both undirected and directed graphs are mixed graphs that have
edges and arcs. A proper coloring of a mixed graph G with vertex set V (G) is a function
f : V (G) → N such that, for any distinct vertices u and v of G, the following conditions hold:
1. if there is an edge {u, v}, then f(u) ̸= f(v), and
2. if there is an arc (u, v), then f(u) < f(v).
The objective is to minimize the number of colors.

The concept of mixed graphs was introduced by Sotskov and Tanaev [16] and reintroduced
by Hansen, Kuplinsky, and de Werra [9] in the context of proper colorings of mixed graphs.
Properly coloring mixed graphs is NP-hard even for bipartite planar graphs [12] but admits
efficient algorithms for trees [5] and series-parallel graphs [6].

For a mixed interval graph G, the underlying undirected graph of G, denoted by U(G),
has an edge for every edge or arc of G. Note that testing whether a given graph G is a mixed
interval graph means testing whether U(G) is an interval graph, which takes linear time [10].

Motivation. Mixed graphs are graphs where some vertices are connected by (undirected)
edges and others by directed arcs. Such structures are useful for modeling relationships
that involve both directed and undirected connections and find applications in various areas,
including network analysis, transportation planing, job scheduling, and circuit design.

Coloring mixed graphs is relevant in task scheduling problems where tasks have de-
pendencies and resource requirements [18, 3, 15]. In circuit design, coloring mixed graphs
allows us to reduce signal crosstalk or interference. Other applications include modeling of
metabolic pathways in biology [1], process management in operating systems [2], traffic signal
synchronization [13], and timetabling [4]. See the extensive survey by Sotskov [14] for other
applications and relevant problems. Coloring of mixed graphs is a challenging problem, as
many techniques known for solving graph coloring problems fail in the more general setting.

The study of mixed graph coloring for interval graphs was initiated by Zink et al. [19],
motivated by the minimization of the number of additional sub-layers for routing edges in
layered orthogonal graph drawing according to the so-called Sugiyama framework [17]. In a
follow-up paper, Gutowski et al. [8] resolved some of the problems concerning interval graphs
where the subset of arcs and their orientations are given by the geometry of the intersecting
intervals. Driven by the graph drawing application, they focused on the directional variant
where, for every pair of intersecting intervals, there is an edge when one interval is contained
in the other and there is an arc oriented towards the right interval when the intervals overlap.

In this paper we focus on the containment variant where, for any pair of intersecting
intervals, there is an arc oriented towards the smaller interval when one interval is contained
in the other, and an edge when they overlap. This is the only other natural geometric variant

G. Gutowski, K. Junosza-Szaniawski, F. Klesen, P. Rzążewski, A. Wolff, and J. Zink 36:3

Table 1 Known and new results concerning subclasses of mixed interval graphs. The time
complexities refer to a given set of n intervals with m pairwise intersections. (We use T, P, and C
as shorthand for Theorem, Proposition, Corollary, respectively.)

Mixed interval Coloring Recognition
graph class complexity lower bound upper bound approximation

containment NP-hard T7 2ω−1 P6 2ω−1 T2 2 C5 O(nm) T1
directional O(n log n) [8] 1 [8] O(n2) [8]
bidirectional NP-hard T8 2 [8] open
general NP-hard [8] (λ+2)ω/2 P10 (λ+1)ω T9 min{ω, λ+1} T9 O(n+m) [10]

that can be defined for interval graphs, but the containment variant can also be defined for
other geometric intersection graphs, or even for graphs defined by systems of intersecting
sets.

As there are already some effective techniques for the directional variant, our hope was to
use them in the containment variant, or even in more general settings. Quite unexpectedly,
the containment variant for interval graphs turned out to be more difficult than the directional
variant. We have found our techniques for proving lower bounds for the containment variant
of interval graphs to be applicable for the bidirectional variant considered previously [19, 8].
This variant is a generalization of the directional variant mentioned above. Every interval
has an orientation; left-going or right-going. There is an arc between two intervals if and only
if they overlap and their orientations agree. Arcs between left-going intervals are directed as
in the directional variant; the condition for right-going intervals is symmetric. As a result, we
get that minimizing the number of additional sub-layers in layered orthogonal graph drawing
according to the Sugiyama framework is NP-hard.

Our Contribution. In this paper we forward the study of coloring mixed graphs where
edge directions have a geometric meaning. To this end, we introduce a new natural class of
mixed interval graphs, which we call containment interval graphs. In such a graph, there
is an arc (u, v) if interval u contains interval v, and there is an edge {u, v} if u and v

overlap. For a set I of intervals, let C[I] be the containment interval graph induced by I.
We show that these graphs can be recognized in polynomial time (Section 2), that coloring
them optimally is NP-hard (Section 4), and that, for every set I of intervals, it holds that
χ(C[I]) ≤ 2ω(C[I]) − 1, that is, C[I] can be colored with fewer than twice as many colors
as the size of the largest clique in C[I] (Section 3). In other words, containment interval
graphs are χ-bounded. Our constructive proof yields a 2-approximation algorithm for coloring
containment interval graphs.

Then we prove that, for the class of bidirectional interval graphs, optimal coloring is
NP-hard (Section 5). This answers (negatively) an open problem that was asked previously [8].
Our reduction is similar to the one for containment interval graphs, but technically somewhat
more challenging. Finally, we show that, for any mixed interval graph G without directed
cycles, it holds that χ(G) ≤ ω(G) · (λ(G) + 1), where λ(G) denotes the length of a longest
directed path in G (Section 6). Since χ(G) ≥ max{ω(G), λ(G) + 1}, our constructive proof
for the upper bound yields a min{ω(G), λ(G) + 1}-approximation algorithm. The upper
bound is asymptotically tight in the worst case.

Table 1 gives an overview over known and new results concerning the above-mentioned
subclasses of mixed interval graphs. Given a positive integer k, we use [k] as shorthand for
the set {1, 2, . . . , k}. When we visualize a graph coloring corresponding to a set of intervals,

ISAAC 2023

36:4 Coloring and Recognizing Mixed Interval Graphs

u
v w

u

v w

(a) G1 ∈ C \ B.

u
v

w

u

v

w

(b) G2 ∈ D \ C.

u

u

v

v

w

w

x

x

(c) G3 ∈ B \ D.

Figure 1 Let D, B, and C be the classes of directional, bidirectional, and containment interval
graphs. Clearly, D ⊆ B. The above sets of intervals and the corresponding directed graphs show
that the classes D and B are incomparable with the class C and that D is properly contained in B.

we use horizontal tracks to indicate the color. In Figure 1, we briefly analyze the relationships
between the three classes of geometrically defined mixed interval graphs; directional (D),
bidirectional (B), and containment interval graphs (C).

2 Recognition of Containment Interval Graphs

Booth and Lueker [10] introduced a data structure called PQ-tree to recognize, for a given
undirected graph G, whether G is an interval graph. A PQ-tree is a rooted tree of so-called
P-nodes, where the order of children can be arbitrarily permuted, and Q-nodes, where the
order of children is fixed up to inversion. A specific permutation of all nodes is called a
rotation. One can think of the leaves of a PQ-tree to represent the maximal cliques of G and
a specific rotation to represent an order of the maximal cliques, which implies an interval
representation of G where every vertex is contained in a consecutive sequence of maximal
cliques. (Actually, a PQ-tree can encode all possible interval representations of G.)

Observe that a representation of a containment interval graph is an interval representation.
Hence, if, for a given mixed graph G, a containment representation I exists, then I corresponds
to a rotation of the PQ-tree constructed for the underlying undirected graph U(G) by the
algorithm of Booth and Lueker [10]. Hence, to recognize a containment interval graph G, we
proceed in three phases. First, we compute a PQ-tree T of U(G). Second, we find a rotation
of T corresponding to a containment representation of G. Third, we determine suitable
endpoints for the intervals corresponding to our selected rotation resulting in a containment
representation I of G.

In the second phase, we proceed top-down to fix the permutation of each node of T while
we maintain as invariant that before and after deciding the permutation of a single node, we
can still reach a rotation of T corresponding to a containment representation I (provided G

is a containment interval graph). Depending on the set of maximal cliques (corresponding to
leaves) a vertex v is contained in, we can determine where v is introduced in T (roughly at
the root of the subtree containing all leaves corresponding to v). Intuitively, it is “natural”
for a vertex u introduced further up in the tree to have an arc towards a vertex v introduced
further down in the tree. However, if u and v are connected by an edge, we need to permute
the nodes of the PQ-tree such that both u and v start or end in the same maximal clique.
These restrictions can propagate.

If we end up with a rotation of T , we construct, in the third phase, a corresponding
containment representation if possible. To this end, we determine for every vertex the first
and the last clique it appears in, which groups the left and right endpoint of the intervals.
Within each group, we sort the endpoints according to the constraints implied by the arcs

G. Gutowski, K. Junosza-Szaniawski, F. Klesen, P. Rzążewski, A. Wolff, and J. Zink 36:5

and edges where possible. What remains are induced mixed subgraphs of vertices that start
and end in the same cliques and that behave the same with respect to every other vertex (i.e.,
they are all connected to this vertex by an outgoing arc or an incoming arc or an edge). We
can interpret each such subgraph as a partially ordered set for which we need to check whether
it is two-dimensional and find two corresponding linear orders, which gives us an ordering
of their left and their right endpoints. This last part depends on the linear-time algorithm
by McConnell and Spinrad [11] that can construct such two orders for any two-dimensional
poset.

▶ Theorem 1. There is an algorithm that, given a mixed graph G, decides whether G is a
containment interval graph. The algorithm runs in O(nm) time, where n is the number of
vertices of G and m is the total number of edges and arcs of G, and produces a containment
representation of G if G admits one.

The full proof follows the ideas presented above, but has some technical subtleties; see
the full version of this article [7].

3 A 2-Approximation Algorithm for Coloring Containment Interval
Graphs

In this section, we present a 2-approximation algorithm for coloring containment interval
graphs, we detail how to make the algorithm run in O(n log n) time for a set of n intervals,
and we construct a family of sets of intervals that shows that our analysis is tight.

▶ Theorem 2. For any set I of intervals, the containment interval graph C[I] induced by I
admits a proper coloring with at most 2 · ω(C[I]) − 1 colors.

Proof. For simplicity, let G := C[I] and ω := ω(G). We use induction on ω. If ω = 1, then
G has no edges and clearly admits a proper coloring using only one color. So assume that
ω > 1 and that the theorem holds for all graphs with smaller clique number.

Recall that a proper interval graph is an interval graph that has a representation where
no interval is contained in another interval. Let M(I) denote the subset of I consisting of
intervals that are maximal with respect to the containment relation. In particular, C[M(I)]
is a proper interval graph. Observe that

⋃
M(I) =

⋃
I (where we consider the union of

intervals as a subset of the real line). Let R be an inclusion-wise minimal subset of M(I)
such that

⋃
R =

⋃
I. In Figure 2, the intervals in M(I) are marked with crosses and the

set of intervals on the lowest two (gray) lines is one way of choosing R.

▷ Claim 3. C[R] is an undirected linear forest.

Proof. All intervals in M(I) and thus in R are incomparable with respect to the containment
relation, so C[R] has no arcs. Note that C[R] is a proper interval graph, so it contains no
induced K1,3 and no induced cycle with at least four vertices. Thus it suffices to prove that
C[R] is triangle-free. For contradiction, suppose otherwise. Let x, y, z induce a triangle in
C[R], ordered according to their left endpoints. As x, y, z are pairwise overlapping, note that
y ⊆ x ∪ z, and thus

⋃
(R \ {y}) =

⋃
R. This contradicts the minimality of R. ◁

By the claim above, C[R] can be properly colored with colors {1, 2}. Let f1 be such a
coloring. If R = I, we are done (using only ω many colors), so suppose that I \ R ̸= ∅.
Slightly abusing notation, we define G′ := G − R.

▷ Claim 4. The largest clique in G′ has at most ω − 1 vertices.

ISAAC 2023

36:6 Coloring and Recognizing Mixed Interval Graphs

1
2
3
4
5

Figure 2 A set of intervals and a coloring produced by the 2-approximation algorithm. The
intervals that lie in M(I) at the top level of the recursion are marked with crosses.

Proof. As G′ is a subgraph of G, each clique in G′ has at most ω vertices. For contradiction,
suppose that there is a set S ⊆ I \ R such that |S| = ω and all intervals in S pairwise
intersect. By the Helly property of intervals,

⋂
S ̸= ∅. Let p ∈

⋂
S. Since

⋃
R =

⋃
I, there

is an interval r ∈ R that contains p. Thus S ∪ {r} is a clique in G with ω + 1 vertices, which
contradicts the definition of ω. ◁

By the inductive assumption, G′ admits a proper coloring f2 using colors [2(ω − 1) − 1].
Finally, we define f : I → [2ω − 1] as follows:

f(x) =
{

f1(x) if x ∈ R,

f2(x) + 2 if x /∈ R.

We claim that f is a proper coloring of G. (For an example, see Figure 2.)
First, note that if x, y ∈ I are distinct and x∩y ̸= ∅, then f(x) ̸= f(y). Indeed, if x, y ∈ R,

then f(x) = f1(x) ̸= f1(y) = f(y). If x, y /∈ R, then f(x) = f2(x) + 2 ̸= f2(y) + 2 = f(y).
Finally, if, say, x ∈ R and y /∈ R, then f(x) ∈ {1, 2} and f(y) ≥ 3.

It remains to argue that the second condition in the definition of a proper coloring holds
as well. For a contradiction, let x and y be distinct intervals and assume that x ⊆ y and
f(y) > f(x). Note that x /∈ M(I) and thus x /∈ R. This implies that f(x) ≥ 3. Since we
assumed that f(y) > f(x), we have that f(y) > 3. Hence, y ̸∈ R. However, by the inductive
assumption, we have that f(x) = f2(x) + 2 > f2(y) + 2 = f(y), which yields the desired
contradiction. This completes the proof. ◀

Observe that the proof of Theorem 2 can be easily transformed into an efficient algorithm,
which yields the following corollary.

▶ Corollary 5. There is a 2-approximation algorithm for coloring interval containment graphs
properly. Given a set of n intervals, the algorithm runs in O(n log n) time.

Proof. For any graph G, we have χ(G) ≥ ω(G). Hence, the approximation factor follows
directly from Theorem 2.

It remains to implement the constructive proof of Theorem 2 efficiently. Let I be the
given set of intervals. For each interval I in I, let rI be the right endpoint of I. We go
through the intervals from left to right in several phases. In each phase, we use two colors,
except possibly in the last phase where we may use only one color. For phase i with i ≥ 1,
we reserve the set colors(i) = {2i − 1, 2i}. We use an augmented balanced binary search
tree T to store the intervals in I. We will query T in two ways. A query of type Q1 in T
with a value x ∈ R ∪ {−∞} will return, among all intervals whose left endpoint is at least x,
one with leftmost left endpoint (and nil if such an interval does not exist). A query of type
Q2 in T with a value y ∈ R will return, among all intervals whose left endpoint is at most y,
one with rightmost right endpoint (and nil if such an interval does not exist). Note that the
two queries are not symmetric.

Algorithm 1 describes our algorithm in pseudocode. Initially, T stores all intervals in I.
The algorithm terminates once T is empty and all intervals are colored.

G. Gutowski, K. Junosza-Szaniawski, F. Klesen, P. Rzążewski, A. Wolff, and J. Zink 36:7

Algorithm 1 2-Approximate-Coloring(set I of n intervals).

T .initialize(I)
i = 0
while not T .empty() do

i = i + 1 // start new phase
I = T .Q1(−∞)
c = I.color = 2i − 1 // color I and set current color
T .remove(I)
while not T .empty() do

I ′ = T .Q2(rI)
if I ′ == nil or rI′ ≤ rI then // no interval contains rI

I ′ = T .Q1(rI)
if I ′ == nil then break // finish current phase
I ′.color = c // color I ′ and keep current color

else // I and I ′ overlap
c = I ′.color = colors(i) \ {c} // color I ′ and swap current color

T .remove(I ′)
I = I ′

We start each phase by Q1-querying T with −∞. This yields the leftmost interval I

stored in T . We color I with the smaller color 2i − 1 reserved for the current phase i. Let
the current color c be this color. We remove I from T . Then we Q2-query T with the right
endpoint rI of I and consider the following two possibilities.
Case I: If the Q2-query returns nil or an interval that lies completely to the left of rI , we

Q1-query T with rI for an interval to the right of rI . If such an interval I ′ exists, it must
be disjoint from I, so we color I ′ with the current color c. Otherwise, we start a new
phase.

Case II: If the Q2-query returns an interval I ′ that overlaps with the previous interval I,
we color I ′ with the other color c′ that we reserved for the current phase, that is,
{c′} = colors(i) \ {c}. Then we set the current color c to c′.

In either case, if we do not start a new phase, we remove I ′ from T and proceed with the
next Q2-query as above, with I ′ now playing the role of I.

It remains to implement the balanced binary search tree T . The key of an interval is
its left endpoint. For simplicity, we assume that the intervals are stored in the leaves of T
and that the key of each inner node is the maximum of the keys in its left subtree. This
suffices to answer queries of type Q1. For queries of type Q2, we augment T by storing, with
each node ν, a value max(ν) that we set to the maximum of the right endpoints among all
intervals in the subtree rooted at ν. (We also store a pointer µ(ν) to the interval that yields
the maximum.) In a Q2-query with a value y, we search for the largest key k ≤ y. Let π be
the search path in T , and initialize m with −∞. When traversing π, we inspect each node ν

that hangs off π on the left side. If max(ν) > m, then we set m = max(ν) and ρ = µ(ν).
When we reach a leaf, ρ points to an interval whose right endpoint is maximum among all
intervals whose left endpoint is at most y.

The runtime of O(n log n) is obvious since we insert, query, and delete each interval in
O(log n) time exactly once. ◀

ISAAC 2023

36:8 Coloring and Recognizing Mixed Interval Graphs

1
2
3
4
5

Figure 3 Instance for the proof of Proposition 6 for n = 3: |In| = 3 ·2n−1 −2 = 10, ω(In) = n = 3,
and χ(In) = 2n − 1 = 5.

▶ Proposition 6. There is an infinite family (In)n≥1 of sets of intervals with |In| = 3·2n−1−2,
χ(C[In]) = 2n − 1, and ω(C[In]) = n.

Proof. The construction is iterative. The family I1 consists of a single interval of unit length.
Now let n > 1 and suppose that we have defined In−1 and want to define In. We

introduce two new intervals ℓn and rn, both of length 3n−1, that overlap slightly. Then
we introduce two copies of In−1. All intervals of one copy are contained in ℓn \ rn, and all
intervals of the other copy are contained in rn \ ℓn.

The number of intervals in In is given by the recursion: f(1) = 1 and f(n) = 2f(n−1)+2,
which solves to f(n) = 3 · 2n−1 − 2. Furthermore, it is straightforward to observe that with
each step of the construction, the size of a largest clique increases by 1.

We claim that, for i ∈ [n], in any proper coloring of C[Ii], the difference between the
largest and the smallest color used is at least 2i − 2. Clearly, the claim holds for i = 1.
Now assume that it holds for i = n − 1. Consider any proper coloring of C[In], and let m be
the minimum color used in this coloring. The colors of ℓn and rn must be different. Without
loss of generality, suppose that the color of rn is larger than the color of ℓn. In particular,
the color of rn is at least m + 1. Now consider the copy of In−1 contained in rn. The color of
each interval in this copy must be larger than the color of rn, so in particular the minimum
color used for this copy of In−1 is at least m + 2. By the inductive assumption, some interval
in this copy of In−1 receives a color that is at least m + 2 + 2(n − 1) − 2 = 2n − 2 + m.
Summing up, the difference between the largest and the smallest color used for C[In] is at
least 2n − 2.

Given that the minimum color is 1, we conclude that χ(C[In]) ≥ 2n − 1.
For the upper bound, we color C[In] as follows. For n = 1, we color the only interval with

color 1. For n > 1, we color ℓn with color 1 and rn with color 2. Next, for each of the two
copies of In−1, we use the proper coloring defined inductively with all colors increased by 2,
see Figure 3. ◀

4 Coloring Containment Interval Graphs Is NP-Hard

In this section we show that it is NP-hard to color a containment interval graph with a given
number of colors.

▶ Theorem 7. Given a set I of intervals and a positive integer k, it is NP-hard to decide
whether k colors suffice to color C[I], that is, whether χ(C[I]) ≤ k.

Proof. We describe a reduction from (exact) 3-Sat, i.e., the satisfiability problem where
every clause contains exactly three literals. Let φ = C1 ∧ C2 ∧ · · · ∧ Cm be an instance of
3-Sat where, for each clause Ci (i ∈ [m]), the literals are negated or unnegated variables
from the set {x1, x2, . . . , xn}, and let H = 5(m + 1) be a threshold.

Using φ, we construct in polynomial time a set of intervals (with pairwise distinct
endpoints) such that the corresponding containment interval graph has a proper coloring
with H colors if and only if φ is satisfiable. To this end, we introduce variable gadgets

G. Gutowski, K. Junosza-Szaniawski, F. Klesen, P. Rzążewski, A. Wolff, and J. Zink 36:9

1

H

5i

5i+3

x true

1

H

5i

5i+3

x false

Figure 4 Variable gadget for the proof of Theorem 7 in its two states. The blue intervals with
dots extend to the clause gadgets. The topmost blue interval (starting immediately to the right of a
gray interval) indicates that x is part of a clause Cj with j > i; the blue interval (with a small gap)
that starts immediately to the right of a red interval indicates that ¬x is part of the clause Ci.

and clause gadgets, which are sets of intervals representing the variables and clauses of φ,
respectively. Our main building structure used in these gadgets is a Christmas tree, that is,
an ordered set of intervals where each interval contains its successor; see, for example, the set
of red intervals in Figure 4. Clearly, the intervals of a Christmas tree form a totally ordered
clique and any proper coloring needs to observe this order. In Figure 5, Christmas trees
are represented by trapezoids. The height of a Christmas tree is the number of intervals it
consists of.

Let j ∈ [n]. The variable gadget for xj consists of two Christmas trees (formed by the
red and gray intervals in Figure 4) whose longest intervals overlap and, for each tree, of two
additional intervals (green in Figure 4). These green intervals lie immediately to the left
and to the right of the shortest interval in their tree. The right green interval of the red
tree overlaps the left green interval of the gray tree. Figure 4 depicts two representations
of the same gadget for a variable x, each with its own coloring of the intervals (encoded
by the height of the intervals; see the numbers at the right side of the gray box). The left
representation with its coloring corresponds to assigning true to x, the right representation
corresponds to assigning false. The height of the red tree is H − 1 minus the number of
occurrences of literals xj′ and ¬xj′ with j′ < j in φ. The height of the gray tree is that of
the red tree minus the number of occurrences of ¬xj in φ. We say that xj is set to true if
the bottom interval of the gray tree has color 1; otherwise we say that xj is set to false.

For i ∈ [m], the gadget for clause Ci consists of a Christmas tree (light blue in Figure 5)
of height H − (5i + 2) = 5(m − i) + 3. All clause gadgets are placed to the right of all variable
gadgets, in the order C1, . . . , Cm from left to right.

The key idea to transport a Boolean value from a variable gadget to a clause gadget is to
add, for each occurrence of a literal ℓj ∈ {xj , ¬xj} in a clause Ci, an “arm” (blue intervals in
Figures 4 and 5) that ends to the right of the clause gadget (the light blue Christmas tree)
corresponding to Ci and starts immediately to the right of the 5i-th interval of the gray tree
(if ℓj = xj) or of the red tree (if ℓj = ¬xj) corresponding to ℓj . The arm is represented by a
sequence of intervals that are separated by a small gap within each Christmas tree of each
clause gadget passed by the arm (such that, for any two arms, their gaps are disjoint and the
resulting intervals do not contain each other). Assuming that the total number of colors is H ,
two intervals of the same arm that are separated by a gap need to get the same color because,
at the gap, H − 2 colors are occupied by other intervals and the one remaining “wrong” color
is blocked due to the green intervals of the variable gadgets; see Figures 4 and 5. The green
intervals are contained by the blue intervals of the arms and need to get color H or H − 1.

If there is a satisfying truth assignment for φ, then there is a proper coloring that colors
the variable gadgets such that they represent this truth assignment. As for every clause Ci,
at least one of its literals in Ci is true, the corresponding arm can use color 5i. Then, the

ISAAC 2023

36:10 Coloring and Recognizing Mixed Interval Graphs

1

H

x1 false x2 false x3 true x4 true x5 false

5i

1

H

x1 false x2 false x3 true x5 falsex4 false

5i

Figure 5 Variable gadgets (red and gray) and clause gadgets (blue) for the 3-Sat instance
(¬x2 ∨ ¬x4 ∨ x5) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) with a fulfilling truth assignment (above) and a
non-fulfilling assignment (below). Note that the latter uses one color more (is one level higher).

arms of the other literals that occur in Ci can use colors 5i + 1 and 5i + 2. This allows the
light blue Christmas tree representing clause Ci, which has height H −5i−2 and is contained
in the rightmost interval of each of these arms, to use the colors {5i + 3, 5i + 4, . . . , H}.

Now suppose for a contradiction that there is no satisfying truth assignment for φ, but
that there is a proper coloring with H colors. This coloring assigns a truth value to each
variable gadget (depending on whether the bottommost interval of the red or the gray tree has
color 1). Clearly, there is a clause Ci in φ that is not satisfied by this truth assignment. Hence,
none of the arms connecting the clause gadget of Ci with its three corresponding variable
gadgets can use color 5i. Hence they must use colors 5i+1, 5i+2, and 5i+3 (or higher). This
forces the (blue) Christmas tree representing clause Ci to use colors {5i + 4, . . . , H, H + 1}.

Thus, a proper coloring with H colors exists if and only if φ is satisfiable. ◀

5 Coloring Bidirectional Interval Graphs Is NP-Hard

In this section we show that it is NP-hard to color a bidirectional interval graph with a given
number of colors. For a set I of intervals and a function o that maps every interval in I
to an orientation (left-going or right-going), let B[I, o] be the bidirectional interval graph
induced by I and o.

▶ Theorem 8. Given a set I of intervals with orientations o and a positive integer k, it is
NP-hard to decide whether k colors suffice to color B[I, o], that is, whether χ(B[I, o]) ≤ k.

Proof. We use the same ideas as in the proof of Theorem 7, but now we reduce from
Monotone 3-Sat, the version of 3-Sat where every clause contains only negated or only
unnegated variables as literals. For an overview, see Figures 6 and 7. Let φ = C1∧C2∧· · ·∧Cm

be the given instance of Monotone 3-Sat with variables {x1, x2, . . . , xn}. As before, let
H = 5(m + 1) be the number of colors sufficient for coloring a yes-instance.

We now construct variable and clause gadgets by specifying a set I of intervals with
orientations o. Our intervals have pairwise distinct endpoints. Our main building structures
are left- and right-going staircases. A left-going staircase (gray in Figures 6 and 7) is an

G. Gutowski, K. Junosza-Szaniawski, F. Klesen, P. Rzążewski, A. Wolff, and J. Zink 36:11

x true

1

H

5i

5i+3

x false

1

H

5i

5i+3

Figure 6 Variable gadget for the proof of Theorem 8 in its two states. Intervals directions are
indicated by arrow heads. The blue intervals extend (to the right) to the clause gadgets of only
negated variables. The two blue arrow heads starting next to the red intervals indicate that the
clause Ci and a clause Cj with j > i contain the literal ¬x.

x4 true

1

H

x1 true x2 false x3 true

5i

x4 true

1

H

x1 true x3 true

5i

x2 true

Figure 7 Variable gadgets (red and gray) and clause gadgets (light green and light blue) for the
Monotone 3-Sat instance (x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) with a fulfilling
truth assignment (top) and a non-fulfilling assignment (bottom), which use H and H + 1 colors,
respectively. Interval directions are indicated by arrow heads.

ordered set of left-going intervals that share a common point and whose left and right
endpoints are in the order of the set. A right-going staircase is symmetric (red in Figures 6
and 7). Observe that staircases in (bi)directional interval graphs behave like Christmas trees
in containment graphs: they form totally ordered cliques. The height of a staircase is the
number of its intervals. In Figure 7, we draw staircases as parallelograms and we indicate
left- and right-going intervals by arrow heads.

Let i ∈ [m]. If the clause Ci has only negated literals, we again have three “arms” in Ci

starting to the right of the 5i-th interval of the red staircase of the three corresponding
variables; see the blue intervals in Figures 6 and 7. The intervals of these arms are left-going
and they are not split by a gap at the other variable gadgets this time because now we need
to contain the left-going intervals of the staircases to have edges instead of arcs in B[I, o].
The arms end below a left-going light blue staircase (see Figure 7 on the upper right side) of
height 5(m − i) + 3 whose maximum color is H if and only if none of the corresponding arms
gets a color greater than 5i + 2.

Note that we need to avoid arcs between the arms. Therefore, we let every arm have a
gap below each blue staircase that it passes. These gaps do not overlap and their order is
inverse to the order of the left endpoints of the involved intervals. We continue the arm with
a right-going interval (to avoid an arc with the blue staircase and the other arms) ending to

ISAAC 2023

36:12 Coloring and Recognizing Mixed Interval Graphs

the right of the blue staircase, where we continue again with a left-going interval. Consider
such an arm with intervals I and I ′ (going in different directions) around a gap. At this gap,
it is important that no color smaller than the color of I is available for I ′, forcing I ′ to also
get the color of I. Hence, we add long left-going intervals blocking every color not occupied
by an arm or the blue staircase; see the orange intervals in Figure 7.

For every clause with only unnegated literals, we use the same construction but mirrored
(connecting to the gray staircases); see the green intervals and light green staircases depicted
in the top left corner of Figure 7.

We now have the same conditions as in the proof of Theorem 7: If there is a satisfying
truth assignment for φ, there is a proper coloring, which colors the variable gadgets such
that they represent this truth assignment. Again, for every i ∈ [m], clause Ci contains at
least one literal set to true. Hence, the corresponding arm can get color 5i, and the other
two arms and the (light blue or light green) staircase of Ci get colors {5i + 1, 5i + 2, . . . , H}.

If there is no satisfying truth assignment for φ, then there is a clause Ci none of whose
arms (as a whole) can get color 5i. If each arm occupies only one layer, then an interval
of the clause gadget of Ci requires color H + 1. If there is an arm occupying more than
one layer, then below a clause gadget of some clause Ci′ , there are two colors blocked by
this arm (at one of its gaps). Then, however, an interval of the clique of size H − 1 at this
gap belonging to the (light blue or light green) staircase of Ci′ , to the other arms, or to the
orange “blocker” intervals requires color H + 1; see Figure 7 for such an example. ◀

6 Coloring General Mixed Interval Graphs

In this section we consider a further generalization of mixed interval graphs. We are dealing
with an interval graph G whose edges can be arbitrarily oriented (or stay undirected). In
other words, the edge directions are not related to the geometry of the intervals.

Observe that a proper coloring of G exists if and only if G does not contain a directed
cycle. Let χ(G) denote the minimum number of colors in a proper coloring of G, if it exists,
or ∞ otherwise. We point out that the existence of a directed cycle can be determined in
polynomial time (using, for example, depth-first search).

Note that clearly we have ω(G) ≤ χ(G). However, there is another parameter that
enforces a large chromatic number even in sparse graphs. A directed path (of length t) in G

is a sequence of vertices ⟨v1, v2, . . . , vt+1⟩, such that, for each i ∈ [t], the arc (vi, vi+1) exists.
Let λ(G) denote the length of a longest directed path in G.

Note that the vertices in a directed path receive pairwise distinct colors in any proper
coloring. Thus we have χ(G) ≥ λ(G) + 1, and consequently χ(G) ≥ max{ω(G), λ(G) + 1}.

▶ Theorem 9. Let G be a mixed interval graph without directed cycles. Then χ(G) ≤
(λ(G) + 1) · ω(G).

Proof. Let V denote the vertex set of G. Let G→ be the graph obtained from G by removing
all edges. Clearly, G→ is a DAG. We partition V into layers L0, L1, . . . as follows. The set L0
consists of the vertices that are sources in G→, i.e., they do not have incoming arcs. Then,
for i = 1, 2, . . ., we iteratively define Li to be the set of sources in G→ \

⋃i−1
j=0 Lj . Note that

λ(G) = max{i : Li ̸= ∅}. For x ∈ V , let ℓ(x) ∈ {0, . . . , λ(G)} denote the unique i such that
x ∈ Li.

Recall that the underlying undirected graph of G, U(G), is an (undirected) interval graph,
and thus χ(U(G)) = ω(U(G)) = ω(G). Let c : V → [ω(U(G))] be an optimal proper coloring
of U(G).

G. Gutowski, K. Junosza-Szaniawski, F. Klesen, P. Rzążewski, A. Wolff, and J. Zink 36:13

Ik,1 {

I ′
k,k}

Ik,k

I ′
k,1}

︷ ︸︸ ︷︷ ︸︸ ︷Ik I ′
k

{

x6 12 6k 12k 12k + 8

Figure 8 For any k ≥ 1, the set Ik ∪ I′
k of intervals gives rise to a mixed interval graph Gk with

2k2 vertices, λ(Gk) = k − 1, ω(Gk) = 2k, and χ(Gk) = (k + 1) · k = (λ(Gk) + 2) · ω(Gk)/2.

Now we define a coloring f of G: for x ∈ V , let f(x) = ℓ(x) · ω(G) + c(x). Note that
1 ≤ f(x) ≤ (λ(G) + 1) · ω(G). We claim that f is a proper coloring.

Consider an edge {x, y}. As this is also an edge in U(G), we obtain that c(x) ̸= c(y), and
so f(x) ̸= f(y). Now consider an arc (x, y). Its existence implies that ℓ(x) < ℓ(y), and thus
f(x) < f(y). ◀

For some instances, the above bound is asymptotically tight.

▶ Proposition 10. There is an infinite family (Gk)k≥1 of mixed interval graphs with |V (Gk)| =
2k2, λ(Gk) = k − 1, ω(Gk) = 2k, and χ(Gk) = (k + 1) · k = (λ(Gk) + 2) · ω(Gk)/2.

Proof. Let Ik = Ik,1 ∪ Ik,2 ∪ · · · ∪ Ik,k be a set of k2 intervals defined as follows; see Figure 8
for I4. For i ∈ [k], let Ik,i be a multiset that contains k copies of the interval [6i, 6i + 8].
Similarly, let I ′

k = I ′
k,1 ∪ I ′

k,2 ∪ · · · ∪ I ′
k,k be a set of k2 intervals such that I ′

k is the image
of mirroring Ik at the point x = 6k + 7. Note that, for i ∈ [k − 1], every interval in Ik,i

intersects every interval in Ik,i+1 and every interval in I ′
k,i intersects every interval in I ′

k,i+1.
Additionally, every interval in Ik,k intersects every interval in I ′

k,k.
Let Gk be a mixed interval graph for the set Ik ∪ I ′

k. We direct the edges of Gk as
follows. Let {I, I ′} be a pair of intervals in Ik ∪ I ′

k that intersect each other. If I and I ′ are
copies of the same interval, then {I, I ′} is an edge of Gk. Otherwise, (I, I ′) is an arc of Gk if
{I, I ′} ⊆ Ik and I lies further to the left than I ′, if {I, I ′} ⊆ I ′

k and I lies further to the right
than I ′, or if (I, I ′) ∈ Ik,k × I ′

k,k. It is easy to see that Gk has the desired properties. ◀

Note that the mixed interval graphs that we constructed in the proof above are even
directional interval graphs.

7 Open Problems

The obvious open problems are improvements to the results in Table 1, in particular: Is
there a constant-factor approximation algorithm for coloring general mixed interval graphs?
For applications in graph drawing, a better-than-2 approximation for coloring bidirectional
interval graphs is of particular interest.

Is there a linear-time recognition algorithm for directional or containment interval graphs?
Is there a polynomial-time recognition algorithm for bidirectional interval graphs?

Using a reduction from Max-3-SAT instead of 3-SAT, it may be possible to adjust
our NP-hardness proofs in order to show APX-hardness. To this end, the difference in the
number of colors needed to color a yes-instance and the number of colors needed to color a
no-instance would have to be proportional to the number of clauses that cannot be satisfied.
We were not able to force such a large difference, hence we leave the APX-hardness of (or
the existence of a PTAS for) coloring containment and birectional interval graphs open.

ISAAC 2023

36:14 Coloring and Recognizing Mixed Interval Graphs

References
1 Matthias Beck, Daniel Blado, Joseph Crawford, Taïna Jean-Louis, and Michael Young. Mixed

graph colorings. In Proc. Sci. Nat. Conf. of the Society for Advancement of Hispanics/Chicanos
and Native Americans, 2012.

2 Matthias Beck, Daniel Blado, Joseph Crawford, Taïna Jean-Louis, and Michael Young. On
weak chromatic polynomials of mixed graphs. Graphs Combin., 31:91–98, 2015. doi:10.1007/
s00373-013-1381-1.

3 Peter Brucker. Scheduling Algorithms. Springer, 5 edition, 1995. doi:10.1007/
978-3-540-69516-5.

4 Dominique de Werra. Restricted coloring models for timetabling. Discrete Math., 165–166:161–
170, 1997. doi:10.1016/S0012-365X(96)00208-7.

5 Hanna Furmańczyk, Adrian Kosowski, and Paweł Żyliński. A note on mixed tree coloring. Inf.
Process. Lett., 106(4):133–135, 2008. doi:10.1016/j.ipl.2007.11.003.

6 Hanna Furmańczyk, Adrian Kosowski, and Paweł Żyliński. Scheduling with precedence
constraints: Mixed graph coloring in series-parallel graphs. In Proc. PPAM’07, pages 1001–
1008, 2008. doi:10.1007/978-3-540-68111-3_106.

7 Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander
Wolff, and Johannes Zink. Coloring and recognizing directed interval graphs. ArXiv report,
2023. doi:10.48550/arXiv.2303.07960.

8 Grzegorz Gutowski, Florian Mittelstädt, Ignaz Rutter, Joachim Spoerhase, Alexander
Wolff, and Johannes Zink. Coloring mixed and directional interval graphs. In Patrizio
Angelini and Reinhard von Hanxleden, editors, Proc. 30th Int. Symp. Graph Drawing
& Network Vis. (GD’22), volume 13764 of LNCS, pages 418–431. Springer, 2023. doi:
10.1007/978-3-031-22203-0_30.

9 Pierre Hansen, Julio Kuplinsky, and Dominique de Werra. Mixed graph colorings. Math.
Methods Oper. Res., 45:145–160, 1997. doi:10.1007/BF01194253.

10 George S. Lueker and Kellogg S. Booth. A linear time algorithm for deciding interval graph
isomorphism. J. ACM, 26(2):183–195, 1979. doi:10.1145/322123.322125.

11 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.
Discrete Math., 201(1):189–241, 1999. doi:10.1016/S0012-365X(98)00319-7.

12 Bernard Ries and Dominique de Werra. On two coloring problems in mixed graphs. Eur. J.
Comb., 29(3):712–725, 2008. doi:10.1016/j.ejc.2007.03.006.

13 Paolo Serafini and Walter Ukovich. A mathematical model for the fixed-time traffic control
problem. Europ. J. Oper. Res., 42(2):152–165, 1989. doi:10.1016/0377-2217(89)90318-4.

14 Yuri N. Sotskov. Mixed graph colorings: A historical review. Mathematics, 8(3):385:1–24,
2020. doi:10.3390/math8030385.

15 Yuri N. Sotskov, Vjacheslav S. Tanaev, and Frank Werner. Scheduling problems and mixed
graph colorings. Optimization, 51(3):597–624, 2002. doi:10.1080/0233193021000004994.

16 Yuri N. Sotskov and Vyacheslav S. Tanaev. Chromatic polynomial of a mixed graph. Vestsi
Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 6:20–23, 1976.

17 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125, 1981.
doi:10.1109/TSMC.1981.4308636.

18 Vjacheslav S. Tanaev, Yuri N. Sotskov, and V.A. Strusevich. Scheduling Theory: Multi-Stage
Systems. Kluwer Academic Publishers, 1994.

19 Johannes Zink, Julian Walter, Joachim Baumeister, and Alexander Wolff. Layered drawing of
undirected graphs with generalized port constraints. Comput. Geom., 105–106(101886):1–29,
2022. doi:10.1016/j.comgeo.2022.101886.

https://doi.org/10.1007/s00373-013-1381-1
https://doi.org/10.1007/s00373-013-1381-1
https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1016/S0012-365X(96)00208-7
https://doi.org/10.1016/j.ipl.2007.11.003
https://doi.org/10.1007/978-3-540-68111-3_106
https://doi.org/10.48550/arXiv.2303.07960
https://doi.org/10.1007/978-3-031-22203-0_30
https://doi.org/10.1007/978-3-031-22203-0_30
https://doi.org/10.1007/BF01194253
https://doi.org/10.1145/322123.322125
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1016/j.ejc.2007.03.006
https://doi.org/10.1016/0377-2217(89)90318-4
https://doi.org/10.3390/math8030385
https://doi.org/10.1080/0233193021000004994
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1016/j.comgeo.2022.101886

Shortest Beer Path Queries Based on Graph
Decomposition
Tesshu Hanaka #

Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

Hirotaka Ono #

Graduate School of Informatics, Nagoya University, Japan

Kunihiko Sadakane #

Graduate School of Information Science and Technology, The University of Tokyo, Japan

Kosuke Sugiyama #

Graduate School of Informatics, Nagoya University, Japan

Abstract
Given a directed edge-weighted graph G = (V,E) with beer vertices B ⊆ V , a beer path between
two vertices u and v is a path between u and v that visits at least one beer vertex in B, and the beer
distance between two vertices is the shortest length of beer paths. We consider indexing problems on
beer paths, that is, a graph is given a priori, and we construct some data structures (called indexes)
for the graph. Then later, we are given two vertices, and we find the beer distance or beer path
between them using the data structure. For such a scheme, efficient algorithms using indexes for
the beer distance and beer path queries have been proposed for outerplanar graphs and interval
graphs. For example, Bacic et al. (2021) present indexes with size O(n) for outerplanar graphs
and an algorithm using them that answers the beer distance between given two vertices in O(α(n))
time, where α(·) is the inverse Ackermann function; the performance is shown to be optimal. This
paper proposes indexing data structures and algorithms for beer path queries on general graphs
based on two types of graph decomposition: the tree decomposition and the triconnected component
decomposition. We propose indexes with size O(m + nr2) based on the triconnected component
decomposition, where r is the size of the largest triconnected component. For a given query u, v ∈ V ,
our algorithm using the indexes can output the beer distance in query time O(α(m)). In particular,
our indexing data structures and algorithms achieve the optimal performance (the space and the
query time) for series-parallel graphs, which is a wider class of outerplanar graphs.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases graph algorithm, shortest path problem, SPQR tree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.37

Related Version Extended Version: https://arxiv.org/abs/2307.02787

Funding Tesshu Hanaka: JSPS KAKENHI Grant Numbers JP21H05852, JP21K17707, JP22H00513,
and JP23H04388
Hirotaka Ono: JSPS KAKENHI Grant Numbers JP20H00081, JP20H05967, JP21K19765,
JP22H00513
Kunihiko Sadakane: JSPS KAKENHI Grant Number JP20H05967

1 Introduction

Given a directed edge-weighted graph G = (V,E) with beer vertices B ⊆ V , a beer path
between two vertices u and v is a path between u and v that visits at least one beer vertex
in B, and the beer distance between two vertices is the shortest length of beer paths. Here,
a graph with B, the set of beer stores, is called a beer graph. The names “beer path” and
“beer distance” come from the following story: A person will visit a friend but does not want

© Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 37; pp. 37:1–37:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanaka@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-6943-856X
mailto:ono@nagoya-u.jp
https://orcid.org/0000-0003-0845-3947
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
mailto:sugiyama.kousuke.k3@s.mail.nagoya-u.ac.jp
https://orcid.org/0009-0004-9419-9176
https://doi.org/10.4230/LIPIcs.ISAAC.2023.37
https://arxiv.org/abs/2307.02787
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Shortest Beer Path Queries Based on Graph Decomposition

to show up empty-handed, and they decide to pick up some beer along the way. They would
like to take the fastest way to go from their place to their friend’s place while stopping at a
beer store to buy some drinks.

The notion of the beer path was recently introduced by Bacic et al. [1]. Although the
name is somewhat like a fable, we often encounter similar situations as the above story.
Instead of beer stores, we want to stop at a gas station along the way, for example.

Just computing the beer distance or a beer path with the beer distance is easy. A beer
path with the beer distance always consists of two shortest paths: from the source to one
of the beer stores and from the beer store to the destination. We can therefore compute
them by solving the single source shortest path problem twice from the source and from the
destination, and taking the minimum beer vertex among B.

We consider indexing problems on beer paths, that is, a graph is given a priori, and we
construct some data structures (called indexes) for the graph. Then later, we are given two
vertices, and we find the beer distance or beer path between them using the data structure.
This is more efficient than algorithms without using any indexes if we need to solve queries for
many pairs of vertices. Indeed, car navigation systems might equip such indexing mechanisms;
since a system has map information as a graph in advance, it can make indexed information
by preprocessing, which enables it to quickly output candidates of reasonable routes from
the current position as soon as receiving a goal point. Such a scenario is helpful also for the
beer path setting. Efficient algorithms using indexes for the beer distance and beer path
queries have been proposed for outerplanar graphs [1] and interval graphs [5].

This paper presents indexes with efficient query algorithms using graph decomposition
for more general classes of graphs. Namely, we consider graphs of bounded treewidth [3] and
graphs with bounded triconnected components size [9]. The performance of our indexing
and algorithm generalizes that for outerplanar graphs in [1]; if we apply our indexing and
algorithm for outerplanar graphs, the space for indexes, preprocessing time, and query time
are equivalent to those of [1]. Furthermore, ours can be applied for general graphs, though the
performance worsens for graphs of large treewidth and with a large triconnected component.

1.1 Related Work

For undirected outerplanar beer graphs G of order n, Bacic et al. [1] present indexes with
size O(n), which can be preprocessed in O(n) time. For any two query vertices u and v,
(i) the beer distance between u and v can be reported in O(α(n)) time, where α(n) is the
inverse Ackermann function, and (ii) a beer path with the beer distance between u and v

can be reported in O(L) time, where L is the number of vertices on this path. The query
time is shown to be optimal.

For unweighted interval graphs with beer vertices B, Das et al. [5] provides a representation
using 2n log n+O(n) +O(|B| log n) bits. This data structure answers beer distance queries
in O(logε n) time for any constant ε > 0 and shortest beer path queries in O(logε n + L)
time. They also present a trade-off relation between space and query time. These results are
summarized in Table 1.

Other than the beer path problem, Farzan and Kamali [6] proposed a distance oracle for
graphs with n vertices and treewidth k using asymptotically optimal k(n+o(n)−k/2)+O(n)
bit space which can answer a query in O(k3 log3 k) time. For general graphs, indexes
for shortest paths (i.e., distance queries) and max flow queries based on the triconnected
component decomposition have been proposed [10].

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:3

Table 1 Comparison of results.

Graphs Preprocessing Complexity Query time
Space (words) Time

Outerplanar graphs [1]
O(m) (= O(n)) O(α(n))

(undirected, W = R≥0)
Interval graphs [5] O(n+ |B|) O(n+ |B|)∗ O(logε n)

(undirected, unweighted) O(n+ |B| log log n) O(n+ |B| log log n)∗ O(log log n)

Ours

tri. decomp. O(m) O(m+ nr3) O(r2 + α(m))
(undirected, W = Z≥0) O(m+ nr2) O(m+ nr4) O(α(m))

tri. decomp. O(m) O((m+ n log r+)r2
+) O(r2 log r+ + α(m))

(W = R≥0) O(m+ nr2) O((m+ n log r+)r3
+) O(α(m))

tree decomp. O(t3n) O(t8n) O(t7 + α(tn))
(W = R≥0) O(t5n) O(t10n) O(t6 + α(tn))

n: the number of vertices
m: the number of edges
r: the size of maximum triconnected components, r+ = max{1, r}
t: the treewidth
α(·): the inverse Ackermann function
∗: not explicitly mentioned

1.2 Our Contribution

We present indexing data structures and query algorithms for beer distance and beer path
queries for general graphs based on graph decomposition. As graph decomposition, we use
the tree decomposition [3] and the triconnected component decomposition [9]. The obtained
results are summarized in Table 1.

We first present faster query algorithms using properties of the triconnected component
decomposition. In this approach, we use r, the size of the largest triconnected component
in a graph, as the parameter to evaluate the efficiency of algorithms. Note that r is not
the number of edges in the largest triconnected component; it is the number of edges in
a component after contracting every biconnected component into an edge and therefore it
is not so large in practice. The formal definition will be given in Section 2.2. Our data
structure uses O(m+ r · min{m, rn}) space, and the algorithm for undirected graphs with
nonnegative integer edge weights requires O(m + r3 · min{m, rn}) time for preprocessing,
and it answers for each query in O(α(m)) time. For directed graphs with nonnegative edge
weights, the preprocessing time and query time are, respectively O(m+ r3(m+n log r+)) and
O(α(m)). Since the size of indexes and query time have a trade-off relation, a little slower
query time can achieve an indexing data structure with less memory. In such a scenario,
another data structure uses O(m) space, and the algorithm for undirected graphs with
nonnegative integer edge weights requires O(m+ r2 · min{m, rn}) time for preprocessing, and
it answers for each query in O(r2 + α(m)) time. For directed graphs with nonnegative edge
weights, the preprocessing time and query time are, respectively O(m+ r2(m+ n log r+))
and O(r2 log r+ + α(m)).

Because triconnected component decomposition can be regarded as a tree decomposition,
we extend our query algorithms for graphs represented by using the tree decomposition.
Though computing the exact treewidth is NP-hard, whereas triconnected component decom-
position is done in linear time [8], and query time complexities using tree decomposition is

ISAAC 2023

37:4 Shortest Beer Path Queries Based on Graph Decomposition

larger than using triconnected component decomposition, the treewidth is always at most
r and therefore algorithms based on the tree decomposition are faster in some cases. In
view of these, we remake the indexing data structures and algorithms for tree decomposition.
The indexing data structure requires O(t5n) space and O(t10n) time to construct, and the
algorithm can answer a query in O(t6 + α(tn)) time.

Note that for series-parallel graphs r = 0, t = 2, and m = O(n) hold. This implies that
for series-parallel graphs, our indexing data structures use O(n) space, and the algorithms
can answer each query in O(α(n)) time. Since the class of series-parallel graphs is a super
class of outerplanar graphs, our results fairly extend the optimal result for outerplanar graphs
by [1].

The rest of the paper is organized as follows. Section 2 is for preliminaries. Sections 3
and 4 present the main parts that describe the indexing and algorithms under triconnected
decomposition. Section B shows how we remake that to those under tree decomposition.

2 Preliminaries

Let Z≥0 be the set of nonnegative integers and R≥0 be the set of nonnegative real numbers.
For nonnegative integers i, j ∈ Z≥0 (i ≤ j), let [i, j] = {i, i+ 1, . . . , j − 1, j}.

For a graph G, let V (G) and E(G) denote its vertex and edge sets, respectively.
For two graphs G and G′, let G \ G′ = (V (G) \ V (G′), E(G) \ E(G′)) and G ∪ G′ =
(V (G) ∪ V (G′), E(G) ∪ E(G′)). Also, for a graph G and a set of vertex pairs F ⊆
V (G) × V (G), let G \ F = (V (G), E(G) \ F) and G ∪ F = (V (G), E(G) ∪ F). Furthermore,
for a graph G and its vertex subset S ⊆ V (G), let G[S] be the subgraph of G induced by S.

2.1 Shortest Path Problem and Beer Path Problem / Query
Suppose we are given a graph G, an edge weight w : E(G) → W , and a vertex subset
B ⊆ V (G). Note that in this paper, we assume W = Z≥0 or W = R≥0.

For vertices u, v ∈ V (G), a path from u to v in G is called a u-v path in G. Usually, a
u-v path is not unique. The length of a path is defined by the sum of the edge weights on
the path. The shortest length of all u-v paths is called the u-v distance in G, denoted by
d((G,w), u, v). Also, for vertices u, v ∈ V (G), a walk from u to v passing through a vertex
belonging to B at least once is called a u-v beer path in G. The length of a u-v beer path
is similarly defined as the length of a u-v path, u-v beer distance in G is defined by the
shortest length of all u-v beer paths and is denoted by dB((G,w,B), u, v). Note that if w
and B are clear from the context, we omit them and denote d((G,w), u, v) as d(G, u, v) and
dB((G,w,B), u, v) as dB(G, u, v). Then, a vector whose elements are the distance and the
beer distance is denoted by

d⃗(G, u, v) =
(

d(G, u, v)
dB(G, u, v)

)
.

For a given G,w,B and vertices u, v ∈ V (G), the problem of finding d(G, u, v) (or one u-v
path that realizes it) is called Shortest Path and the problem of finding dB(G, u, v) (or
one u-v beer path that realizes it) is called Beer Path. For given u and v, the query asked
to return dB(G, u, v) or one u-v beer path with length dB(G, u, v) is called Beer Path Query
on G,w,B.

Here, we review algorithms for the shortest path problem and their computational
complexity. When W = Z≥0 and G is an undirected graph, the shortest path problem can
be solved in O(m) time by using Thorup’s algorithm [11]. When W = R≥0, the shortest

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:5

path problem can be solved in O(m+ n log n) time by Dijkstra’s algorithm using Fibonacci
heap [7]. Hereafter, let ALG (G) denote the computational time to solve Shortest Path
Problem by one of the above algorithms according to the setting; for example, if G is
undirected and W = Z≥0, ALG (G) = O(m), and if W = R≥0, ALG (G) = O(m+ n logm).

2.2 SPQR tree
Let G be a biconnected (multi) undirected graph and {u, v} be its vertex pair. If G[V (G) \
{u, v}] is disconnected or u and v are adjacent in G, {u, v} is called a split pair of G. We
denote the set of split pairs of G by SplG. For {u, v} ∈ SplG, a maximal subgraph H of
G satisfying {u, v} /∈ SplH , and the graph ({u, v}, {e}) consisting of the edge e connecting
u and v, are called a split component of the split pair {u, v} of G. We denote the set of
split components of the split pair {u, v} of G by SplComG(u, v). For {u, v} ∈ SplG and
{s, t} ∈ E(G), we say that {u, v} is maximal with respect to {s, t} if vertices u, v, s, t are in
the same split component for any split pair {u′, v′}.

For example, for the graph G shown in Figure 6, SplG = E(G) ∪
{{1, 6}, {1, 7}, {2, 6}, {4, 6}} and SplComG(1, 6) = {G1, G2, G3}, SplComG(2, 6) =
{H1, H2, H3}. Also, {1, 6} ∈ SplG is maximal with respect to the edge {1, 2}. Further-
more, {1, 6} ∈ SplG is not maximal with respect to the edge {2, 5} because no component in
SplComG(2, 6) containing all vertices 1, 6, 2, and 5.

For an edge e = {u, v} ∈ E(G), we define an SPQR tree T (G, e) of G. Here, e is called a
reference edge of T (G, e) of G. Each node µ of T (G, e) is associated with a graph Skµ. The
root node of T (G, e) is denoted by µe. The T (G, e) is defined recursively as follows.
Trivial Case If SplComG(u, v) = {({u, v}, {e}), ({u, v}, {e′})} (e′ ∈ E(G)), that is, G is a

two vertices multi graph consisting of two edges e, e′, T (G, e) = ({µe}, ∅), Skµe
= G.

Also, µe is said to be a Q node.
Series Case Let SplComG(u, v) = {({u, v}, {e}), H}, where H is formed by a series connec-

tion of k(≥ 2) connected components H1, . . . Hk. Then, for vertices u = c0, c1, c2, . . . , ck−1,

ck = v (c1, . . . , ck−1 are cut vertices of G), let ci−1, ci be the only vertices belonging to
Hi (1 ≤ i ≤ k). In this case, if ei = {ci−1, ci} (1 ≤ i ≤ k), then

T (G, e) = ({µe}, ∅) ∪
⋃

1≤i≤k (T (Hi ∪ {ei}, ei) ∪ {{µe, µei
}}) ,

Skµe
= ({c0, . . . , ck}, {e, e1, . . . , ek}).

Also, µe is said to be an S node.
Parallel Case If SplComG(u, v) = {({u, v}, {e}), H1, . . . ,Hk} (k ≥ 2), that is, G is formed

by the parallel connection of 3 or more split components of {u, v}. In this case, if we let
ei denote the edge corresponding to Hi, then Skµe

= ({u, v}, {e, e1, . . . , ek}) and T (G, e)
is defined as same as series case. Also, µe is said to be a P node.

Rigid Case If the above does not apply, that is, SplComG(u, v) = {({u, v}, {e}), H} and H

has no cut vertices, let all maximal split pairs for {u, v} in SplG \ {{u, v}} be {ui, vi}
(1 ≤ i ≤ k, k ≥ 1). Also, for each i, let Hi be the union of the split components for
{ui, vi} that does not contain e. That is, Hi =

⋃
H∈SplComG(ui,vi):e/∈E(H) H. In this case,

if we let ei denote the edge corresponding to Hi (1 ≤ i ≤ k), then

Skµe
=
(

{u, v} ∪
⋃

1≤i≤k{ui, vi}, {e} ∪
⋃

1≤i≤k{ei}
)

and T (G, e) is defined as same as series case. Also, µe is said to be an R node.

ISAAC 2023

37:6 Shortest Beer Path Queries Based on Graph Decomposition

The tree ({ρ, ∅}) ∪ T (G, e) ∪ {{ρ, µe}} obtained by connecting the tree T (G, e) obtained by
the above definition and Q node ρ with the graph Skρ = ({u, v}, {e}) as a root is called
the SPQR tree of G with respect to edge e. Hereafter, we simply call it an SPQR tree and
denote it by T . Also, we denote the only child node µe of the root node ρ by ρ′.

For each node µ ∈ V (T) \ {ρ} of T , each edge of Skµ is a skeleton of a certain graph,
so Skµ is called the skeleton graph of µ. Let nµ = |V (Skµ)| be the number of vertices and
mµ = |E(Skµ)| be the number of edges of the skeleton Skµ. Also, let the reference edge of µ
be Refµ = {xµ, yµ} and let Chµ and Desµ be the sets of child and descendant nodes of µ in
T , respectively. We denote the set consisting of S, P, Q, and R nodes by ST , PT , QT , RT ,
respectively. For each µ ∈ V (T)\{ρ}, let Gµ be the subgraph of G corresponding to the graph
of Skµ without the reference edge. This can be expressed as Gµ = ({xµ, yµ}, {{xµ, yµ}}) if
µ ∈ QT , otherwise Gµ =

⋃
λ∈Chµ

Gλ. An example of a SPQR tree is shown in Figure 1.
The following is known for the SPQR tree T of G.

▶ Lemma 1. Let G be a biconnected undirected graph with n vertices and m edges, and T
be its SPQR tree. For each node µ ∈ V (T) \ {ρ}, {xµ, yµ} ∈ SplG. If µ ∈ RT , Skµ is a
triconnected graph. Also, |QT | = m, |ST ∪ PT ∪ RT | = O(n),

∑
µ∈ST ∪PT ∪RT

mµ = O(m),
and

∑
µ∈V (T) nµ = O(n) hold. Furthermore, T van be computed in O(n+m) time.

Let r = maxµ∈RT {mµ} be the maximum number of edges in the skeleton of the R node
(triconnected graph). Note that if RT = ∅), r = 0. Also, r+ = max{1, r}.

An SPQR tree for a directed graph is defined as a graph whose skeleton is replaced by a
directed graph after computing the SPQR tree by considering the graph as an undirected
graph. In this case, for each µ ∈ V (T)\{ρ}, we consider two reference edges ⟨xµ, yµ⟩, ⟨yµ, xµ⟩
and let Refµ = {⟨xµ, yµ⟩, ⟨yµ, xµ⟩}.

2.3 Query Problems
We present all query problems that will be used in later.
Range Minimum Query For a given array (a) = a[1], a[2], . . . , a[n] of length n, the query

defined by the following pair of inputs and outputs is called Range Minimum Query for
the array (a).
Input Positive integers i, j (1 ≤ i ≤ j ≤ n),
Output Minimum value in the subarray a[i], a[i+ 1], . . . , a[j − 1], a[j] of the array (a).

This query can be answered in O(1) time by preprocessing in O(n) space and O(n) time [2].

Lowest Common Ancestor Query Given a rooted tree T with n vertices. The query defined
by the following pair of input and output is called the lowest common ancestor query for
the rooted tree T .
Input Vertices u, u′ ∈ V (T),
Output The deepest (furthest from the root) common ancestor of u, u′ in T .

This query can be answered in O(1) time by preprocessing in O(n) space and O(n) time
using range minimum queries.

Tree Product Query Given a set S, a semigroup ◦ : S2 → S, a tree T with n vertices, and
a mapping f : V (T) → S. The query defined by the following pair of input and output is
called a Tree Product Query for S, ◦, T, f .
Input Vertices u, u′ ∈ V (T),
Output Let u = v1, v2, . . . , vk−1, vk = u′ be the only path on T that connects u, u′, then
f(v1) ◦ f(v2) ◦ . . . ◦ f(vk).

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:7

This query can be answered in O(α(n)) time by preprocessing in O(n) space and O(n)
time [4]. Here, α is the inverse Ackermann function.

For a nonnegative integer i, ℓ, we define Aℓ(i) as follows.

Aℓ(i) =
{

i+ 1 ℓ = 0, i ≥ 0
A

(i+1)
ℓ−1 (i+ 8) ℓ ≥ 1, i ≥ 0.

Note that A(i+1)
ℓ−1 denotes a function that Aℓ−1 iterated i+ 1 times. Using this, the inverse

Ackermann function α is defined as α(n) = min{ℓ ∈ Z≥0 | Aℓ(1) > n}.

3 Triconnected component decomposition-based indexing

This section describes indices based on triconnected component decomposition
for biconnected graphs. First, for each µ, λ ∈ T , we define Kµ,λ =(
{xµ, yµ} ∪ {xλ, yλ}, ({xµ, yµ} ∪ {xλ, yλ})2) to be a complete graph with self loops, and

let Kw⃗
µ,λ denote the graph Kµ,λ with the weight

w⃗ : V (Kµ,λ)2 → W 2 (w⃗(u, v) =
(
w(u, v)
wB(u, v)

)
).

Also, let K =
{
Kw⃗
µ,λ | µ, λ ∈ V (T), w⃗ : V (Kµ,λ)2 → W 2

}
∪ {⊥} be the union of the set of

those weighted graphs and {⊥}.
Next, for convenience, we define the maps Fi : dom(Fi) → K that provide data of distance

and beer distance (i = 1, 2, 3, 4, specific domains are described later). The algorithms for
beer path queries precompute some of these as data structures.

For each X ∈ dom(Fi), let Fi(X) ∈ K be a complete graph with at most 4 vertices
and f⃗i(X) be its weight. Also, we will denote the weight f⃗i(X)(u, v) of each vertex pair
⟨u, v⟩ ∈ V (Fi(X))2 by

f⃗i(X , u, v) =
(
fi(X , u, v)
fB
i (X , u, v)

)
omitting some brackets. These maps are defined so that fi(X , u, v) represents the normal
distance and fB

i (X , u, v) represents the beer distance.

3.1 Definition of the mapping F1 and its computation
▶ Definition 2. We define the mapping F1 : V (T) \ {ρ} → K as follows: For each node
µ ∈ V (T) \ {ρ}, let F1(µ) = K

f⃗1(µ)
µ,µ (a complete graph consists of 2 vertices xµ, yµ). The

weight of each vertex pair ⟨u, v⟩ ∈ {xµ, yµ}2 is f⃗1(µ, u, v) = d⃗(Gµ, u, v).

The F1(µ) intuitively represents the distance data when using the part of the T shown in
Figure 2.We can compute F1 from the leaves of T to the root as described below.

If µ ∈ QT \ {ρ}, Gµ is a graph that consists of only edges ⟨xµ, yµ⟩, ⟨yµ, xµ⟩, so we can
calculate the weights as in

f1(µ, u, v) = w(u, v), fB
1 (µ, u, v) =

{
∞ B ∩ {xµ, yµ} = ∅

minp∈B∩{xµ,yµ}{w(u, p) + w(p, v)} B ∩ {xµ, yµ} ̸= ∅.

From now on, we assume that µ is an inner node and that F1(λ) is computed for each of
its child nodes λ ∈ Chµ. Also, let Hµ be the weighted graph with each edge ⟨xλ, yλ⟩, ⟨yλ, xλ⟩
(λ ∈ Chµ) of Skµ \ Refµ given a weight f1(µ, xµ, yµ) , f1(µ, yµ, xµ) respectively. Then, from

ISAAC 2023

37:8 Shortest Beer Path Queries Based on Graph Decomposition

the definition of Hµ, if we consider the path from u to v in Gµ through the subgraph Gλ
(⟨u, v⟩ ∈ {xλ, yλ}2). The distance f1(µ, u, v) can be obtained by referring to the weight of the
edge ⟨u, v⟩ ∈ E(Hµ) (the beer distance fB

1 (µ, u, v) is obtained by referring to fB
1 (λ, u, v) =

dB(Gλ, u, v) directly). Therefore, F1(µ) can be calculated by using Hµ instead of Gµ.
If µ ∈ ST , let Chµ = {µ1, . . . , µk} and let xµ = xµ1 , yµi

= xµi+1 (1 ≤ i ≤ k− 1), yµk
= yµ

in Skµ (see Figure 7 of Appendix). Here, we define the following six symbols for each µ ∈ ST :

σxy
µ [i, j] :=

{∑
i≤p≤j f1

(
µp, xµp

, yµp

)
1 ≤ i ≤ j ≤ k,

0 otherwise,
which is the distance from xµi

to yµj
in
⋃
i≤p≤j Gµp

.

σyx
µ [i, j] :=

{∑
i≤p≤j f1

(
µp, yµp

, xµp

)
1 ≤ i ≤ j ≤ k,

0 otherwise,
βxx
µ [i] := σxy

µ [1, i− 1] + fB
1 (µi, xµi

, xµi
) + σyx

µ [1, i− 1] (1 ≤ i ≤ k,
which is the distance of the shortest walk that reaches from xµ = xµ1 to yµi−1 = xµi

in⋃
1≤j≤i−1 Gµj

, back to xµi
via a beer vertex in Gµi

and again to xµ.
βxy
µ [i] := fB

1 (µi, xµi
, yµi

) − f1(µi, xµi
, yµi

) (1 ≤ i ≤ k),
which is the difference between the beer distance and the (mere) distance in moving from
xµi

to yµi
in Gµi

.
βyx
µ [i] := fB

1
(
µj , yµj , xµj

)
− f1

(
µj , yµj , xµj

)
(1 ≤ i ≤ k),

βyy
µ [i] := σyx

µ [i+ 1, k] + fB
1 (µi, yµi

, yµi
) + σxy

µ [i+ 1, k] (1 ≤ i ≤ k).
Note that we only preprocess σxy

µ [1, i], σxy
µ [i, k], σyx

µ [1, i], σyx
µ [i, k] (1 ≤ i ≤ k) among σxy

µ [i, j],
σyx
µ [i, j]. The other σxy

µ [i, j] and σyx
µ [i, j] are obtained and used in O(1) time each time.

We also preprocess βxx
µ [·], βxy

µ [·], βyx
µ [·], βyy

µ [·] for Range Minimum Query. All of the above
preprocessing can be computed in O(k) space and O(k) time. By using these, we can calculate
the weights as in

f⃗1(µ, xµ, xµ) =
(

0
min1≤i≤k

{
βxx
µ [i]

}) , f⃗1(µ, xµ, yµ) =
(

σxy
µ [1, k]

σxy
µ [1, k] + min1≤i≤k

{
βxy
µ [i]

}) .
If µ ∈ PT , we define the following for each ⟨u, v⟩ ∈ {xµ, yµ}2 to simplify:

ℓu,v = min
λ∈Chµ

{f1(λ, u, v)} , ℓB
u,v = min

λ∈Chµ

{
fB

1 (λ, u, v)
}
.

By using these, we can calculate the weights as in

f⃗1(µ, xµ, xµ) =
(

0
min

{
ℓB
xµ,xµ

, ℓxµ,yµ + ℓB
yµ,yµ

+ ℓyµ,xµ , ℓ
B
xµ,yµ

+ ℓyµ,xµ , ℓxµ,yµ + ℓB
yµ,xµ

}) ,
f⃗1(µ, xµ, yµ) =

(
ℓxµ,yµ

min
{
ℓB
xµ,xµ

+ ℓxµ,yµ , ℓxµ,yµ + ℓB
yµ,yµ

, ℓB
xµ,yµ

, 2ℓxµ,yµ + ℓB
yµ,xµ

}) .
If µ ∈ RT , each weight f⃗1(µ, u, v) can be calculated on Hµ as follows.

f⃗1(µ, u, v) =
(

d(Hµ, u, v)
minλ∈Chµ

{minp,q∈{xλ,yλ}{d(Hµ, u, p) + fB
1 (λ, p, q) + d(Hµ, q, v)}}

)
.

Note that each d(Hµ, a, b) in the above equation is calculated by a shortest path algorithm
for Hµ. An example of calculating F1 is shown in Figure 1.

3.2 Definition of the mapping F2 and its computation
▶ Definition 3. We define the mapping F2 : V (T) \ {ρ} → K as follows: For each node
µ ∈ V (T) \ {ρ}, let F2(µ) = K

f⃗2(µ)
µ (a complete graph consists of 2 vertices xµ, yµ). The

weight of each vertex pair ⟨u, v⟩ ∈ {xµ, yµ}2 is f⃗2(µ, u, v) = d⃗(G \ E(Gµ), u, v).

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:9

𝜽

𝜽′

𝐹2 𝜇

5

4

7 8

9
7 8

4

7

4

8

8

5

9

7

9

8

1

6

2

4

5

6
1

2

2

1 1
3

2

3

1

2

3

7 5

5

4

6

17 89 3

2
3 1

𝐺,𝑤,𝐵 = 3,9

3
1

3 4

2 6

5 8

6
6

4

3

5

4

6

1

2

4

80 4

3 19

180 9

7 58

106 8

7 55

∞∞ ∞

7 87

86 7

7 86

3228 30

7 42

∞∞ ∞

7 412

206 13

4 520

3024 27

4 57

1010 13

4 86

∞∞ ∞

4 88

810 9

5 81

∞∞ ∞

5 812

816 12

7 93

06 3

7 910

020 10

9 84

80 4

9 89

180 9

4 26

∞∞ ∞

4 221

1210 27

2 13

812 10

2 124

3222 30

1 68

∞∞ ∞

1 619

168 25

5 63

∞∞ ∞

5 624

2410 31

2 13

∞∞ ∞

2 110

812 10

2 110

812 10

2 13

2822 25

2 36

012 6

2 37

014 7

𝝆

𝝆′ 𝑥𝜇 𝑦𝜇
Ref𝜇

Notation of each node 𝜇 ≠ 𝜌

Sk𝜇

𝜇

𝑓2
𝐵 𝜇, 𝑥𝜇 , 𝑥𝜇

𝑓2
𝐵 𝜇, 𝑥𝜇 ,𝑦𝜇 𝑓2

𝐵 𝜇,𝑦𝜇 ,𝑦𝜇

𝑓2 𝜇, 𝑥𝜇, 𝑦𝜇𝑥𝜇 𝑦𝜇

𝐹1 𝜇

𝑓1
𝐵 𝜇, 𝑥𝜇 , 𝑥𝜇

𝑓1
𝐵 𝜇, 𝑥𝜇 ,𝑦𝜇 𝑓1

𝐵 𝜇,𝑦𝜇 ,𝑦𝜇

𝑓1 𝜇, 𝑥𝜇, 𝑦𝜇𝑥𝜇 𝑦𝜇

𝒯

𝑠 = 1
𝑡 = 8

Figure 1 An weighted beer graph (G,w,B) (lower left) and its SPQR tree with F1, F2.

The F2(µ) intuitively represents the distance data when using the part of the T shown in
Figure 3. We can compute F2 from the root of T to the leaves. To describe how to compute
F2(µ), let λ be the parent node of µ in T .

If λ = ρ (root node), the edges of G \ E(Gµ) are only ⟨xλ, yλ⟩, ⟨yλ, xλ⟩, so each weight
f⃗2(µ, u, v) can be calculated by replacing µ to λ in the formula for f⃗1(µ, u, v).

From here, we assume that λ ̸= ρ. Then, F2(µ) can be calculated by using Hλ\Refµ∪Refλ
instead of G \ E(Gµ). We set the weights of the edges ⟨xλ, yλ⟩ and ⟨yλ, xλ⟩ of this graph to
f2(λ, xλ, yλ) and f2(λ, yλ, xλ), respectively.

For λ ∈ ST , let Chλ = {λ1, . . . , λk}, µ = λi, xλ = xλ1 , yλj = xλj+1 (1 ≤ j ≤ k− 1), yλk
=

yλ in Skλ. Each weights can be calculated in the same way as f⃗1 for S nodes, for example,

f2(µ, xλi
, yλi

) = σyx
λ [1, i− 1] + f2(λ, xλ, yλ) + σyx

λ [i+ 1, k],

fB
2 (µ, xλi

, yλi
) = f2(µ, xλi

, yλi
) + min

{
min

1≤j≤k,j ̸=i
{βyx

λ [j]}

fB
2 (λ, xλ, yλ) − f2(λ, xλ, yλ)

}
.

The weights F2 for the P and R nodes can be calculated as well as F1.
An example of calculating F2 is shown in Figure 1.

3.3 Definition of the mapping F3 and its computation
▶ Definition 4. We define the mapping F3 : E(T) \ {{ρ, ρ′}} → K as follows: For each
edge E = {µ, λ} ∈ E(T) \ {{ρ, ρ′}} (λ ∈ Chµ), F3(E) = K

f⃗3(E)
µ,λ (a complete graph consists

of at most 4 vertices). The weight of each vertex pair ⟨u, v⟩ ∈ ({xµ, yµ} ∪ {xλ, yλ})2 is
f⃗3(E , u, v) = d⃗(Gµ \ E(Gλ), u, v).

ISAAC 2023

37:10 Shortest Beer Path Queries Based on Graph Decomposition

The F3(E) intuitively represents the distance data when using the part of the T shown in
Figure 4. In the actual F3(E) calculation, we can consider Hµ \ Refλ instead of Gµ \ E(Gλ).
F4 can be calculated by the same idea as the previous mappings. An example of calculating
a part of F3 is shown in Figure 8.

3.4 Definition of the mapping F4 and its computation

▶ Definition 5. We define the mapping F4 :
⋃
µ∈V (T)\QT

(Chµ

2
)

→ K as follows: For each

node µ ∈ V (T) \ QT and each node pair ψ = {λ, λ′} ∈
(Chµ

2
)

of µ, F4(ψ) = K
f⃗4(ψ)
λ,λ′ (a

complete graph consists of at most 4 vertices). The weight of each vertex pair ⟨u, v⟩ ∈
({xλ, yλ} ∪ {xλ′ , yλ′})2 is f⃗4(ψ, u, v) = d⃗(G \ E(Gλ) \ E(Gλ′), u, v).

The F4(ψ) intuitively represents the distance data when using the part of the T shown in
Figure 5. In the actual F4(ψ) calculation, we can consider Hµ \ Refλ \ Refλ′ ∪ Refµ instead
of G \ E(Gλ) \ E(Gλ′). We set the weights of the edges ⟨xµ, yµ⟩, ⟨yµ, xµ⟩ of this graph to
f2(µ, xµ, yµ) , f2(µ, yµ, xµ) respectively. F4 can be calculated by the same idea as the previous
mappings.

If µ ∈ ST ∪ PT , F4(ψ) can be computed in O(1) time by using Range Minimum Query.
Also, the beer distance is obtained from a graph that is a combination of the images of
F1, F2, F3, F4, but the image of F4 appears in at most one element of the combination (see
subsection 4.2 for details). Therefore, it is enough to compute F4 only for the child node
pairs of the R node in the preprocessing. From this it is convenient to consider a mapping
restricting the domain of F4 and we define F4R :

⋃
µ∈RT

(Chµ

2
)

→ K (F4R(ψ) = F4(ψ),
ψ ∈

⋃
µ∈RT

(Chµ

2
)
).

Because of space limitation, we show analyses on computational complexities in Sec-
tion A.3.

4 Algorithm based on triconnected component decomposition

4.1 Definition of binary operations

We define the binary operation ⊕ : K2 → K as follows.

▶ Definition 6. For each H1, H2 ∈ K, H1 ⊕ H2 is defined as follows. If H1 =⊥ or
H2 =⊥, H1 ⊕ H2 =⊥. If H1 ̸=⊥ and H2 ≠⊥, let Hi = Kw⃗i

µi,λi
(i = 1, 2). Also, let

A = ({µ1} ∪ {λ1}) ∩ ({µ2} ∪ {λ2}) be the set of nodes in K that give vertices appearing in
H1, H2 in common. If |A| ̸= 1, H1 ⊕ H2 =⊥. If |A| = 1, let A = {θ}, H1 ⊕ H2 = Kw⃗

θ1,θ2
.

Here, we define θ1, θ2 as follows.

θ1 =

µ1(= λ1) µ1 = θ = λ1

µ1 µ1 ̸= θ = λ1
λ1 µ1 = θ ̸= λ1

, θ2 =

µ2(= λ2) µ2 = θ = λ2

µ2 µ2 ̸= θ = λ2
λ2 µ2 = θ ̸= λ2

.

Also, let H1∪̃H2 be a weighted multi graph with vertex set V (H1) ∪ V (H2), given distinct
edges in H1 and edges in H2, and let z⃗ be the weights defined by

z⃗(e) =
(
z(e)
zB(e)

)
= w⃗i(p, q) (e = ⟨p, q⟩ ∈ E(Hi), i = 1, 2).

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:11

𝑥𝜇 𝑦𝜇

𝑥𝜇 𝑦𝜇

𝝁

Figure 2 The subtree considered in F1(µ).

𝝁
𝑥𝜇 𝑦𝜇

𝑥𝜆 𝑦𝜆

𝜆
𝑥𝜇 𝑦𝜇

Figure 3 The subtree considered in F2(µ).

𝜇
𝑥𝜇 𝑦𝜇

𝜆

𝑥𝜆 𝑦𝜆

𝑥𝜆 𝑦𝜆

𝓔

Figure 4 The subtree considered in F3(E).

𝜇
𝑥𝜇 𝑦𝜇

𝜆 𝜆′

𝑥𝜆 𝑦𝜆

𝑥𝜆 𝑦𝜆

𝑥𝜆′ 𝑦𝜆′

𝑥𝜆′
𝑦𝜆′

𝝍

Figure 5 The subtree considered in F4(ψ).

Then, For each ⟨u, v⟩ ∈ ({xθ1 , yθ1} ∪ {xθ2 , yθ2})2, we define w⃗(u, v) as follows.

w(u, v) = d((H1∪̃H2, z), u, v) ,
wB(u, v) = min

e=⟨p,q⟩∈E(H1∪̃H2)
{d((H1∪̃H2, z), u, p) + zB(e) + d((H1∪̃H2, z), q, v)}.

For a concrete example of this operation, see the computation of H ⊕ H ′ in Figure 8.
Furthermore, we define a subset K̂ of K by K̂ = {Kw⃗

µ,λ ∈ K \ {⊥} | λ ∈ Desµ} ∪ {⊥} and
define the binary operation ⊕̂ : K̂2 → K̂ as follows.

▶ Definition 7. For each H1, H2 ∈ K̂, if H1 =⊥ or H2 =⊥, then H1⊕̂H2 =⊥, otherwise, let
Hi = Kw⃗i

µi,λi
, λi ∈ Desµi

(i = 1, 2) then

H1⊕̂H2 =
{

⊥ λ1 ̸= µ2
H1 ⊕H2 λ1 = µ2.

▶ Lemma 8. ⊕̂ is a semigroup.

The proof is given in Section A.1.

4.2 Representation of distance and beer distance using mapping and
algorithms for Beer Path Query

By using F1, F2, F3, F4, F4R and tree product query data structures, we can compute beer
path between given vertices. Recall that r is the maximum edge number of the skeleton of R
nodes in the SPQR tree of G and W is the range of the edge weight function.

ISAAC 2023

37:12 Shortest Beer Path Queries Based on Graph Decomposition

▶ Theorem 9. If we precompute F1, F2 as a data structure, the space required to store the
data structure is O(m). The preprocessing time and query time are
1. O(m+r ·min{m, rn}) and O(n+r ·min{m, rn}+α(m)) if W = Z≥0 and G is undirected.
2. O(m+ r(m+ n log r+)) and O(n+ r(m+ n log r+) + α(m)) if W = R≥0.

▶ Theorem 10. If we precompute F1, F2, F3 as a data structure, the space required to store
the data structure is O(m). The preprocessing time and query time are
1. O(m+ r2 · min{m, rn}) and O(r2 + α(m)) if W = Z≥0 and G is undirected.
2. O(m+ r2(m+ n log r+)) and O(r2 log r+ + α(m)) if W = R≥0.

▶ Theorem 11. If we precompute F1, F2, F3, F4R as a data structure, the space required to
store the data structure is O(m+ r · min{m, rn}). The preprocessing time and query time are
1. O(m+ r3 · min{m, rn}) and O(α(m)) if W = Z≥0 and G is undirected.
2. O(m+ r3(m+ n log r+)) and O(α(m)) if W = R≥0.
Proofs are given in Section A.4

References
1 Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest beer path queries in outerplanar

graphs. Algorithmica, 85(6):1679–1705, 2023.
2 Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure. SIAM Journal

on Computing, 22(2):221–242, 1993.
3 Hans L Bodlaender. Treewidth: Algorithmic techniques and results. In Mathematical Founda-

tions of Computer Science 1997: 22nd International Symposium, MFCS’97 Bratislava, Slovakia,
August 25–29, 1997 Proceedings 22, pages 19–36. Springer, 1997.

4 Bernard Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
2(1-4):337–361, 1987.

5 Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro, Anurag Murty Naredla, and Kaiyu
Wu. Shortest Beer Path Queries in Interval Graphs. In Sang Won Bae and Heejin Park,
editors, 33rd International Symposium on Algorithms and Computation (ISAAC 2022), volume
248 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–59:17, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

6 Arash Farzan and Shahin Kamali. Compact navigation and distance oracles for graphs with
small treewidth. Algorithmica, 69(1):92–116, 2014.

7 Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

8 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In
Joe Marks, editor, Graph Drawing, pages 77–90, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

9 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

10 Manas Jyoti Kashyop, Tsunehiko Nagayama, and Kunihiko Sadakane. Faster algorithms for
shortest path and network flow based on graph decomposition. J. Graph Algorithms Appl.,
23(5):781–813, 2019.

11 Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. Journal of the ACM (JACM), 46(3):362–394, 1999.

A Missing Proofs

A.1 Proof of Lemma 8
Proof. We arbitrarily take H1, H2, H3 ∈ K̂, and confirm that H(12)3 := (H1⊕̂H2)⊕̂H3
and H1(23) := H1⊕̂(H2⊕̂H3) are equal. First, if H1 =⊥ or H2 =⊥ or H3 =⊥, clearly
H(12)3 = H1(23) =⊥. In the following, let Hi ≠⊥ and Hi = Kw⃗i

µi,λi
(λi ∈ Desµi

) for each i.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:13

If λ1 ̸= µ2 or λ2 ̸= µ3, then we can easily obtain H(12)3 = H1(23) =⊥. If λ1 = µ2, λ2 = µ3,
let H(12)3 = K

w⃗(12)3
µ1,λ3

, H1(23) = K
w⃗1(23)
µ1,λ3

. Then, we show briefly that w⃗(12)3(u, v) = w⃗1(23)(u, v)
for each u, v ∈ {xµ1 , yµ1} ∪ {xλ3 , yλ3}.

If let H1⊕̂H2 = H12 = Kw⃗12
µ1,µ3

, then from Figure 9 the following holds for each u′ ∈
{xµ1 , yµ1} and v′ ∈ {xµ3 , yµ3}.

w12(u′, v′) = d(H12, u
′, v′) = min

p∈{xµ2 ,yµ2 }
{d(H1, u

′, p) + d(H2, p, v
′)}.

By using this, the following holds for each u ∈ {xµ1 , yµ1} and v ∈ {xλ3 , yλ3}.

w(12)3(u, v) = d
(
H(12)3, u, v

)
= min
q∈{xµ3 ,yµ3 }

{d(H12, u, q) + d(H3, q, v)}

= min
q∈{xµ3 ,yµ3 }

{
min

p∈{xµ2 ,yµ2 }
{d(H1, u, p) + d(H2, p, q)} + d(H3, q, v)

}
= min
p∈{xµ2 ,yµ2 },q∈{xµ3 ,yµ3 }

{d(H1, u, p) + d(H2, p, q) + d(H3, q, v)}.

By the same idea, exactly the same result is obtained for w1(23)(u, v). We can show
w(12)3(u, v) = w1(23)(u, v) and wB

(12)3(u, v) = wB
1(23)(u, v) for the other weights in the same

way. ◀

A.2 Preprocessing algorithms

A.2.1 Algorithm for preprocessing F1, F2

We consider an algorithm that preprocesses F1, F2. For this algorithm, the preprocessing
space is Cspace

1 + Cspace
2 = O(m) and the preprocessing time is

Ctime
1 + Ctime

2 =
{
O(m+ r · min{m, rn}) W = Z≥0
O(m+ r(m+ n log r+)) W = R≥0.

Beer Path Query can be solved by computing O(n) images of F3 and one image of F4 on Π
and combine them using Tree Product Query. Thus, query time is

O
(∑

µ∈ST ∪PT
1 +

∑
µ∈RT

mµALG (Hµ) +mπALG (Hπ) + α(m)
)

=
{
O(n+ r · min{m, rn} + α(m)) W = Z≥0
O(n+ r(m+ n log r+) + α(m)) W = R≥0.

A.2.2 Algorithm for preprocessing F1, F2, F3

We consider an algorithm that preprocesses F1, F2, F3. For this algorithm, the preprocessing
space is Cspace

1 + Cspace
2 + Cspace

3 = O(m) and the preprocessing time is

Ctime
1 + Ctime

2 + Ctime
3 =

{
O(m+ r2 · min{m, rn}) W = Z≥0
O(m+ r2(m+ n log r+)) W = R≥0.

Beer Path Query can be solved by computing one image of F4 and combine images of F3 on
Π and F4 using Tree Product Query. Thus, query time is

O(mπALG (Hπ) + α(m)) =
{

O(r2 + α(m)) W = Z≥0
O(r2 log r+ + α(m)) W = R≥0.

ISAAC 2023

37:14 Shortest Beer Path Queries Based on Graph Decomposition

A.2.3 Algorithm for preprocessing F1, F2, F3, F4R

We consider an algorithm that preprocesses F1, F2, F3, F4R. For this algorithm, the pre-
processing space is Cspace

1 + Cspace
2 + Cspace

3 + Cspace
4R = O(m + r · min{m, rn}) and the

preprocessing time is

Ctime
1 + Ctime

2 + Ctime
3 + Ctime

4R =
{
O(m+ r3 · min{m, rn}) W = Z≥0
O(m+ r3(m+ n log r+)) W = R≥0.

Beer Path Query can be solved by combining images of F3 and F4 on Π using Tree Product
Query. Thus, query time is O(α(m)).

A.3 Computational complexity for each mapping
In this subsection, we analyze the computational complexity for each mapping. Let Ctime

i

and Cspace
i be the time required to compute each Fi and the space to store, respectively.

A.3.1 Computational complexity for F1

First, we consider Cspace
1 . For each µ ∈ V (T) \ {ρ}, F1(µ) is a graph of constant size. Also,

each µ ∈ ST ∪ PT uses O(mµ) space in the preprocessing for Range Minimum Query and so
on. Thus, Cspace

1 = O
(∑

µ∈QT ∪RT
1 +

∑
µ∈ST ∪PT

mµ

)
= O(m). Next, we consider Ctime

1 .
If µ ∈ QT \ {ρ}, F1(µ) can be computed in O(1) time. If µ ∈ ST ∪ PT , preprocessing and
F1(µ) calculation can be done in O(mµ) time. Also, if µ ∈ RT , F1(µ) can be obtained by
running the shortest path algorithm for Hµ for O(mµ) times, so it can be computed in
O (mµALG (Hµ)) time. Thus, noting the definition of r, Ctime

1 is as follows:

Ctime
1 = O

(∑
µ∈QT

1 +
∑
µ∈ST ∪PT

mµ +
∑
µ∈RT

mµALG (Hµ)
)

= O
(
m+m+ r

∑
µ∈RT

ALG (Hµ)
)

=
{
O(m+ r · min{m, rn}) W = Z≥0
O(m+ r(m+ n log r+)) W = R≥0

.

A.3.2 Computational complexity for F2

First, Cspace
2 can be similarly considered to Cspace

1 , Cspace
2 =

∑
µ∈V (T)\{ρ} O(1) = O(m).

Next, we consider Ctime
2 . Let λ be the parent node of µ in T . If λ ∈ {ρ} ∪ ST ∪ PT , F2(µ)

can be computed in O(1) time by using Range Minimum Query. Also, if λ ∈ RT , F2(µ) can
be obtained by running the shortest path algorithm for Hλ \ Refµ ∪ Refλ for O(mλ) times,
so it can be computed in O (mλALG (Hλ)) time. Thus, Ctime

2 can be evaluated as follows:

Ctime
2 = O

(∑
λ∈{ρ}∪ST ∪PT

1 +
∑
λ∈RT

mλALG (Hλ)
)

= O
(
n+ r

∑
λ∈RT

ALG (Hλ)
)

=
{
O(n+ r · min{m, rn}) W = Z≥0,

O(n+ r(m+ n log r+)) W = R≥0.

A.3.3 Computational complexity for F3

First, we consider Cspace
3 . In F3, a graph of a constant size is prepared for each edge

of E(T) \ {{ρ, ρ′}}, so Cspace
3 = O(|E(T)|) = O(m). Next, we consider Ctime

3 . For each
E = {µ, λ} ∈ E(T) \ {{ρ, ρ′}} (λ ∈ Chµ), if µ ∈ ST ∪ PT then F3(E) can be computed
in O(1) time by using Range Minimum Query. If µ ∈ RT then F3(E) can be obtained by
running the shortest path algorithm for Hµ \ Refλ for O(mλ) times, so it can be computed
in O (mλALG (Hλ)) time. Thus, Ctime

3 can be evaluated as follows.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:15

Ctime
3 = O

(∑
µ∈ST ∪PT

∑
λ∈Chµ

1 +
∑
µ∈RT

∑
λ∈Chµ

mµALG (Hµ)
)

= O
(
m+ r2∑

µ∈RT
ALG (Hµ)

)
=
{
O(m+ r2 · min{m, rn}) W = Z≥0,

O(m+ r2(m+ n log r+)) W = R≥0.

A.3.4 Computational complexity for F4

If F4 is realized as a data structure, it is not efficient because it requires computation and
space even for images that can be computed in O(1) time, as described in Subsection 3.4.
Therefore, we consider the computational complexity of realizing F4R as a data structure
instead of F4 itself.

First, the space for F4R is Cspace
4R =

∑
µ∈RT

O
(
m2
µ

)
= O(r · min{m, rn}). Next, we

consider the preprocessing time of F4R, Cspace
4R . For each µ ∈ RT and each node pair

ψ = {λ, λ′} ∈
(Chµ

2
)
, F4R(ψ) = F4(ψ) can be obtained by running the shortest path algorithm

for Hµ \ Refλ \ Refλ′ ∪ Refµ for O(mµ) times, so it can be computed in O (mµALG (Hµ))
time. Thus, Ctime

4R is as follows:

Ctime
4R = O

(∑
µ∈RT

∑
ψ∈(Chµ

2)mµALG (Hµ)
)

= O
(∑

µ∈RT
m3
µALG (Hµ)

)
= O

(
r3∑

µ∈RT
ALG (Hµ)

)
=
{
O(r3 · min{m, rn}) W = Z≥0,

O(r3(m+ n log r+)) W = R≥0.

A.4 Proofs for the algorithms
In the following, we describe an outline of the algorithm corresponding to each of the above
theorems.

First, we describe the representation of distances and beer distances using each mapping
Fi and binary operations. We also show several algorithms for Beer Path Query based on
them. We consider computing the distance or beer distance from s to t in a biconnected
connected graph G. First, let θ ∈ QT \ {ρ} be a Q node whose skeleton contains vertex s,
and let {xθ, yθ} = {s, s′}. Similarly, take a node θ′ ∈ QT \ {ρ} whose skeleton contains a
vertex t and let {xθ′ , yθ′} = {t, t′}.

If θ = θ′, then we combine F1(θ) which contains data on the distance and the beer distance
in Gθ, and F2(θ) which contains data in G \ E(Gθ). The combined result is represented by
F1(θ) ⊕ F2(θ), and the distance and beer distance are obtained by referring to the weights of
the vertex pair ⟨s, t⟩ in F1(θ) ⊕ F2(θ).

If θ ̸= θ′, let π be the lowest common ancestor of θ and θ′ in T and denote the θ-θ′

path in T by the vertex sequence Π: θ = µk, µk−1, . . . , µ2, µ1, π, λ1, λ2, . . . , λℓ−1, λℓ = θ′.
F1(θ) = F1(µk) contains the data of the distance and the beer distance of each pair of {s, s′} =
{xµk

, yµk
} in Gµk

. Also, F3({µk−1, µk}) contains the data of each pair of {xµk−1 , yµk−1} ∪
{xµk

, yµk
} in Gµk−1 \ E(Gµk

). Therefore, by combining F1(µk) and F3({µk−1, µk}), we can
obtain the data of each pair of {xµk−1 , yµk−1} ∪ {s, s′} in Gµk−1 . And the combined result
can be expressed as F1(µk) ⊕ F3({µk−1, µk}).

By applying this idea repeatedly, we can obtain the data of each pair of {xµ1 , yµ1}∪{s, s′}
in Gµ1 by computing

F1(µk) ⊕ (F3({µ1, µ2}) ⊕ · · · ⊕ F3({µk−1, µk})) = F1(µk) ⊕
(
⊕k−1
i=1 F3({µi, µi+1})

)
.

ISAAC 2023

37:16 Shortest Beer Path Queries Based on Graph Decomposition

Similarly, by computing

(F3({λ1, λ2}) ⊕ · · · ⊕ F3({λℓ−1, λℓ})) ⊕ F1(λℓ) =
(
⊕ℓ−1
j=1F3({λj , λj+1})

)
⊕ F1(λℓ),

we can obtain the data of each pair of {xλ1 , yλ1} ∪ {t, t′} in Gλ1 .
Furthermore, F4({µ1, λ1}) contains the data of each pair of {xµ1 , yµ1} ∪ {xλ1 , yλ1} in

G\E(Gµ1)\E(Gλ1). Therefore, by combining this and the results of the above two operations,
we can obtain the data of each pair of {s, s′} ∪ {t, t′} in G. And the combined result can be
expressed as

K
w⃗s,t

θ,θ′ = F1(µk) ⊕
(
⊕k−1
i=1 F3({µi, µi+1})

)
⊕F4({µ1, λ1}) ⊕

(
⊕ℓ−1
j=1F3({λj , λj+1})

)
⊕F1(λℓ).

Then, we obtain the distance and the beer distance by d(G, s, t) = ws,t(s, t), dB(G, s, t) =
wB
s,t(s, t).

Here, the computation of Kw⃗s,t

θ,θ′ can be written

K
w⃗s,t

θ,θ′ = F1(µk) ⊕
(

⊕̂k−1
i=1 F3({µi, µi+1})

)
⊕F4({µ1, λ1}) ⊕

(
⊕̂ℓ−1
j=1F3({λj , λj+1})

)
⊕F1(λℓ)

by using the semigroup ⊕̂. Therefore, if we preprocess T for Tree Product Query regarding
⊕̂, we can compute Kw⃗s,t

θ,θ′ for the ⊕, ⊕̂ operation in O(α(|V (T)|)) = O(α(m)) time.

B Algorithm based on tree decomposition

In this section, we describe algorithms based on tree decomposition. For a graph G with
n vertices and m edges, denote its treewidth by t := tw(G). Also, let T be a rooted tree
decomposition of G with width t and O(tn) nodes. Then, the following theorem holds.

▶ Theorem 12.
1. When we construct a data structure in O(t3n) space with preprocessing using O(t8n) time,

we can answer a query in O(t8n+ α(tn)) time.
2. When we construct a data structure in O(t3n) space with preprocessing using O(t8n) time,

we can answer a query in O(t7 + α(tn)) time.
3. When we construct a data structure in O(t5n) space with preprocessing using O(t10n)

time, we can answer a query in O(t6 + α(tn)) time.

In the following, we describe an outline of the proof of the above theorems. For each
node µ in T , let Xµ be the vertex subset of G that µ has, and let Sµ = Xµ ∪

⋃
λ∈Desµ

Xλ.
Furthermore, let Aµ be a vertex in Xµ if µ is a root node, and if µ is not the root node,
Aµ = Xµ ∩ Xλ where µ ∈ Chλ (Aµ corresponds to the endpoint set of Refµ in the SPQR
tree). Then, we define the following symbols as well as the mapping to the SPQR tree:

f⃗1(µ, u, v) := d⃗(G[Sµ], u, v) (µ ∈ V (T), u, v ∈ Aµ),

f⃗2(µ, u, v) := d⃗(G \ E(G[Sµ]), u, v) (µ ∈ V (T), u, v ∈ Aµ),

f⃗3({µ, λ}, u, v) := d⃗(G[Sµ] \ E(G[Sλ]), u, v) ((µ, λ) ∈ E(T), λ ∈ Chµ, u, v ∈ Aµ ∪Aλ),

f⃗4({λ, λ′}, u, v) := d⃗(G \ E(G[Sλ]) \ E(G[Sλ′]), u, v)
({λ, λ′} ∈

(Chµ

2
)
, µ ∈ V (T), u, v ∈ Aλ ∪A′

λ).

We can calculate f⃗1 as follows: If µ is a leaf of T , then f1(µ, u, v) = d(G[Xµ], u, v) and

fB
1 (µ, u, v) =

{
minp∈B∩Xµ{d(G[Xµ], u, p) + d(G[Xµ], p, v)} B ∩Xµ ̸= ∅

∞ B ∩Xµ = ∅.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:17

If µ is not leaves, then

f1(µ, u, v) = min
{

d(G[Xµ], u, v)
minλ∈Chµ

p,q∈Aλ

{d(G[Xµ], u, p) + f1(λ, p, q) + d(G[Xµ], q, v)}

}
,

fB
1 (µ, u, v) =

{
min

{
ℓu,v,minp∈B∩Xµ

{d(G[Xµ], u, p) + d(G[Xµ], p, v)}
}

B ∩Xµ ̸= ∅
ℓu,v B ∩Xµ = ∅,

where ℓu,v = minλ∈Chµ,p,q∈Aλ
{d(G[Xµ], u, p) + fB

1 (λ, p, q) + d(G[Xµ], q, v)}. f⃗2, f⃗3, f⃗4 can be
calculated using the same idea.

For each µ ∈ V (T), |Xµ| = O(t), |E(G[Xµ])| = O(t2), so ALG (G[Xµ]) = O(t2) is
obtained regardless of how we take the range W of the weights. Noting this, the space Cspace

i

and computation time Ctime
i required for each f⃗i can be evaluated as follows:

Cspace
1 , Cspace

2 =
∑

µ∈V (T)

O
(
|Aµ|2

)
= O(t2|V (T)|) = O(t3n),

Cspace
3 =

∑
E∈E(T)

O(t2) = O(t2|E(T)|) = O(t3n),

Cspace
4 =

∑
µ∈V (T)

∑
ψ∈(Chµ

2)
O(t2) = O(t4|V (T)|) = O(t5n),

Ctime
1 , Ctime

2 =
∑

µ∈V (T)

∑
u,v∈Aµ

∑
λ∈Chµ

∑
p,q∈Aλ

O (ALG (G[Xµ])) = O(t7|V (T)|) = O(t8n),

Ctime
3 =

∑
(µ,λ)∈E(T)

∑
u,v∈Aµ∪Aλ

∑
θ∈Chµ\{λ}

∑
p,q∈Aθ

O(t2) = O(t7|E(T)|) = O(t8n),

Ctime
4 =

∑
µ∈V (T)

∑
{λ,λ′}∈(Chµ

2)

∑
u,v∈Aλ∪Aλ′

∑
θ∈Chλ,λ′ \{λ}

∑
p,q∈Aθ

O(t2) = O(t9|V (T)|) = O(t10n).

Then, we consider the computational complexity of queries when these are precomputed.
First, if f⃗1, f⃗2 are precomputed, the query can be solved in O(t7|V (T)| + α(|V (T)|) + t6) =
O(t8n + α(tn)) time. Next, if f⃗1, f⃗2, f⃗3 are precomputed, the query can be solved in
O(t7 + α(|V (T)|) + t6) = O(t7 + α(tn)) time. Finally, if f⃗1, f⃗2, f⃗3, f⃗4 are precomputed, the
query can be solved in O(α(tn) + t6) time.

Here, the t6 term appearing in each computational time is the time required to perform
O(1) times operation (⊕) to integrate the data structure without using Tree Product Query
(for ⊕̂). Of course, the t6 term could be replaced by α(tn) if a better semigroup could be
defined.

These computation complexity shows that the degree of t in each result is larger than that
of r in the case of triconnected component decomposition (SPQR tree). The dominant factor
of this is that u, v in each f⃗i(·, u, v) can be taken in O(t2) ways in the tree decomposition,
whereas O(1) ways in triconnected component decomposition.

C Algorithm for connected graphs

In this section, we consider the algorithm for solving Beer Path Query for connected graphs.
For a given connected graph G = (V,E) with n vertices and m edges, let C ⊆ V be the set
of cut vertices, R be the size of the largest the size of the largest triconnected component
among all biconnected connected components, and R+ = max{1, R}. The following theorem
holds.

ISAAC 2023

37:18 Shortest Beer Path Queries Based on Graph Decomposition

▶ Theorem 13. When we construct a data structure in O(m + nR2
+ + |C|2) space with

preprocessing using O((m+ n logR+)R3
+ + (n+ |C|2)|C|α(m)) time, we can answer a query

in O(α(|C|)) time.

In the following, we describe an outline of the proof of the above theorems. First, we
compute the set C and the set of biconnected components H by using biconnected component
decomposition in O(n+m) time. Then, we arbitrarily take ρ ∈ H, define T by V (T) = H
and {H,H ′} ∈ E(T) ⇐⇒ V (H) ∩ V (H ′) ̸= ∅, and make a tree T with ρ as the root. Let
GH be the subgraph of G induced by the vertices that appear in the subtree of T with H as
a root. Also, let cρ be a specific vertex in V (ρ), and for each H ∈ H, let cH be the only cut
vertex that H and its parent in T have in common.

Next, we define the following symbols as well as the mapping to the SPQR tree:

f1(H) := dB(GH , cH , cH) (H ∈ H),
f2(H, c, c′) := dB(G, c, c′) (H ∈ H, c, c′ ∈ C ∩ V (H)),
f3(H, v) := dB(GH , v, cH) (H ∈ H, v ∈ V (H)),
f4(H, v) := dB(GH , cH , v) (H ∈ H, v ∈ V (H)).

We can calculate f1 from the leaves to the root by the following formula:

f1(H) = min
{

dB(H, cH , cH)
minI∈ChH

{d(H, cH , cI) + f1(I) + d(H, cI , cH)}

}
.

Note that when H is a leaf, we do not consider the second line on the right side of this
equation. Similarly, for equations appearing below, we do not consider any undefined part of
the equation if it occurs. Also, let J be the parent of H if it exists, we can calculate f2 from
the root to the leaves by the following formula:

f2(H, c, c′) = min

dB(H, c, c′)

minI∈ChH
{d(H, c, cI) + f1(I) + d(H, cI , c′)}

d(H, c, cH) + f2(J, cH , cH) + d(H, cH , c′)

 .

Furthermore, we can calculate f3 by the following formula:

f3(H, v) = min
{

dB(H, v, cH)
minI∈ChH

{d(H, v, cI) + f2(H, cI , cH)}

}
.

f4 can be computed as well as f3.
Using the above symbols, we represent the distance between two given vertices s,t and

the beer distance. First, we choose a biconnected component that contains the vertices s
and t, respectively, and denote it by Hs and Ht.

If Hs = Ht = H, the distance and the beer distance can be computed as follow:

d(G, s, t) = d(H, s, t) , dB(G, s, t) = min

dB(H, s, t)

minI∈ChH
{d(H, s, cI) + f1(I) + d(H, cI , t)}

d(H, s, cH) + f2(H, cH , cH) + d(H, cH , t)

 .

If Hs ≠ Ht, let Ha be the lowest common ancestor of Hs and Ht in T and denote the
Hs-Ht path in T by the sequence Hs = I1, I2, . . . , Ik−1, Ik, Ha, J1, J2, . . . , Jℓ−1, Jℓ = Ht.

T. Hanaka, H. Ono, K. Sadakane, and K. Sugiyama 37:19

Then, the distance and the beer distance can be computed as follow:

d(G, s, t) = d(I1, s, cI1) +
∑

2≤p≤k d
(
Ip, cIp−1 , cIp

)
+ d(Ha, cIk

, cJ1) +
∑

1≤q≤ℓ−1 d
(
Jq, cJq

, cJq+1

)
+ d(Jℓ, cJℓ

, t) ,

dB(G, s, t) = d(G, u, v) + min

f3(H, s) − d(I1, s, cI1)

min2≤p≤k
{
f2(Ip, cIp−1 , cIp) − d

(
Ip, cIp−1 , cIp

)}
f2(Ha, cIk−1 , cJ2) − d

(
Ha, cIk−1 , cJ2

)
min1≤q≤ℓ−1

{
f2(Jq, cJq , cJq+1) − d

(
Jq, cJq , cJq+1

)}
f4(H, t) − d(Jℓ, cJℓ

, t)

 .

From here, we analyze the computation complexity. Note that we assume that each biconnec-
ted graph H ∈ H has been preprocessed in O(m+nR2) space and O((m+n logR+)R3

+) time
so that any distance and any beer distance can be computed in O(α(|E(H)|)) = O(α(m))
time. Also, let degT (H) be the degree of H in T , the space Cspace

i to store fi and the time
Ctime
i required to compute fi can be evaluated as follows:

Cspace
1 = O(|C|), Cspace

2 =
∑
H∈H

O(degT (H)2) = O(|C|2),

Cspace
3 , Cspace

4 =
∑
H∈H

O

 ∑
v∈V (H)\C

1 +
∑

v∈V (H)∩C

1

 = O((n− |C|) + 2|C|) = O(n),

Ctime
1 =

∑
H∈H

O(α(m)|ChH |) = O

(
α(m)

∑
H∈H

degT (H)

)
= O(α(m)|C|),

Ctime
2 =

∑
H∈H

∑
c,c′∈C∩V (H)

O(α(m)|ChH |) = O

(
α(m)

∑
H∈H

degT (H)3

)
= O(α(m)|C|3),

Ctime
3 , Ctime

4 =
∑
H∈H

∑
v∈V (H)

O(α(m)|ChH |) =
∑
v∈V

O

(
α(m)

∑
H∈H

|ChH |

)
= O(α(m)|C|n).

Therefore, we can perform all preprocessing in O((m+ n logR+)R3
+ + (n+ |C|2)|C|α(m))

time and store it in O(m+ nR2
+ + |C|2) space. Furthermore, By using Tree Product Query

and Lange Minimum Query, the query can be solved in O(α(|V (T)|)) = O(α(|C|)) time.

D Figures

1

5

2 43

6 7

1

5

2

6

1

3

6

1

4

6 7 5

2

6

2

6

1

2 43

6 7

𝐺

𝐻1 𝐻2

𝐻3𝐺1 𝐺2 𝐺3

SplCom𝐺 2,6SplCom𝐺 1,6

Figure 6 An graph G and its two sets of split components.

ISAAC 2023

37:20 Shortest Beer Path Queries Based on Graph Decomposition

𝑥𝜇 = 𝑥𝜇1
𝑦𝜇1 = 𝑥𝜇2

𝑦𝜇𝑗

𝑦𝜇𝑗−1 = 𝑥𝜇𝑗

𝑦𝜇𝑘−1 = 𝑥𝜇𝑘
𝑦𝜇𝑘 = 𝑦𝜇

𝐹1 𝜇1 𝐹1 𝜇𝑖 𝐹1 𝜇𝑘

Ref𝜇

𝐹1 𝜇𝑗

𝑥𝜇𝑖
𝑦𝜇𝑖 = 𝑥𝜇𝑖+1

𝜎𝜇
xy
𝑖, 𝑗

𝜎𝜇
yx
𝑖, 𝑗

𝜇 ∈ 𝑆𝒯

𝜇1 𝜇2 𝜇𝑘

Ch𝜇

⋯

Sk𝜇

Figure 7 Notation for skeleton of S node.

𝝁𝟒 = 𝜽

𝝅 = 𝝆′

𝑥𝜇 𝑦𝜇

𝜇

8

5

3

1
3 14

80 4

5 81

∞∞ ∞

Notation of each node 𝜇 ∉ 𝑄𝒯

Sk𝜇Π

𝑥𝜆 𝑦𝜆

𝐹2 𝜇

●

●

●●

𝐹1 𝜆 𝜆 ∈ Ch𝜇

● ●●
●

4

7

∞

∞
5

∞

∞
∞

6

∞

5

8
6

∞
∞

∞

1

7 8
7

2∞
∞

∞

30

24

2720

5

4

6

1

2

7

3
8

6
3

10

∞ ∞ ∞

∞ ∞ ∞

∞
∞
∞

10

13
8

12
10

1

2

∞
∞
∞

3 102430

32

22

30

8

12

1

3

2

4
3

6

28

25

22

8
4

0

6
12

0
1

3

2

6

∞

0

6

12

12
∞∞

3

∞

𝐹3 𝜇3,𝜇4

𝐹3 𝜇2,𝜇3

∞

11

𝐹3 𝜇1,𝜇2

12

54
∞∞

∞

∞∞6

8

5

4

127

8

16

13

10

12

9
6

𝐻′ ≔ 𝐹4 𝜆1,𝜇1𝝁𝟏

𝝁𝟐

𝝁𝟑

𝝀𝟏 = 𝜽′

18

11

9
9

𝐻

1
3

5
4 4024

0

32

29
12 20

21 209
20

12

18

11
9

9

1

3
5

4

0

29

12

20

21
20

912

8

127

8

16

13

10

12

9
6

16

12

27
11

𝐻⊕𝐻′

51

83 80

18

18

129
1519

1819
18

9

10

10

19
11

𝐾
𝜃,𝜃′
𝑤𝑠,𝑡

51

83 80

8

16

14
1815

1215
16

4

𝐹1 𝜃′

𝐹1 𝜃

𝑠 = 1
𝑡 = 8

Figure 8 F3, F4 on Π and calculation of the beer distance between s = 1 and t = 8.

𝑥𝜇1 𝑦𝜇1

𝑥𝜇2 𝑦𝜇2

𝑥𝜇3 𝑦𝜇3

𝑥𝜆3 𝑦𝜆3

𝐻1

𝐻2

𝐻3

𝑥𝜇1 𝑦𝜇1

𝑥𝜇3 𝑦𝜇3

𝑥𝜆3 𝑦𝜆3

𝐻12

𝐻3

𝑥𝜇1 𝑦𝜇1

𝑥𝜆3 𝑦𝜆3

𝐻 12 3

𝜇1

𝜆1 = 𝜇2

𝜆2 = 𝜇3

𝜆3

Figure 9 Calculation of H(12)3 in the case of λ1 = µ2 and λ2 = µ3.

Temporal Separators with Deadlines
Hovhannes A. Harutyunyan #

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Kamran Koupayi #

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Denis Pankratov #

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Abstract
We study temporal analogues of the Unrestricted Vertex Separator problem from the static world.
An (s, z)-temporal separator is a set of vertices whose removal disconnects vertex s from vertex z

for every time step in a temporal graph. The (s, z)-Temporal Separator problem asks to find the
minimum size of an (s, z)-temporal separator for the given temporal graph. The (s, z)-Temporal
Separator problem is known to be N P-hard in general, although some special cases (such as bounded
treewidth) admit efficient algorithms [15].

We introduce a generalization of this problem called the (s, z, t)-Temporal Separator problem,
where the goal is to find a smallest subset of vertices whose removal eliminates all temporal
paths from s to z which take less than t time steps. Let τ denote the number of time steps over
which the temporal graph is defined (we consider discrete time steps). We characterize the set of
parameters τ and t when the problem is N P-hard and when it is polynomial time solvable. Then
we present a τ -approximation algorithm for the (s, z)-Temporal Separator problem and convert
it to a τ2-approximation algorithm for the (s, z, t)-Temporal Separator problem. We also present
an inapproximability lower bound of Ω(ln(n) + ln(τ)) for the (s, z, t)-Temporal Separator problem
assuming that N P ̸⊂ Dtime(nlog log n). Then we consider three special families of graphs: (1) graphs
of branchwidth at most 2, (2) graphs G such that the removal of s and z leaves a tree, and (3) graphs
of bounded pathwidth. We present polynomial-time algorithms to find a minimum (s, z, t)-temporal
separator for (1) and (2). As for (3), we show a polynomial-time reduction from the Discrete Segment
Covering problem with bounded-length segments to the (s, z, t)-Temporal Separator problem where
the temporal graph has bounded pathwidth.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Temporal graphs, dynamic graphs, vertex separator, vertex cut, separating
set, deadlines, inapproximability, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.38

Related Version Full Version: https://arxiv.org/abs/2309.14185 [17]

Funding The research presented in this work is supported by NSERC.

1 Introduction

Suppose that you have been given the task of deciding how robust a train system of a given
city is with respect to station closures. For instance, is it possible to disconnect the two most
visited places, e.g., the downtown and the beach, by shutting down 5 train stations in the
city? Does an efficient algorithm even exist? If not, what can we say about special classes of
graphs? These are central questions of interest in this work.

© Hovhannes A. Harutyunyan, Kamran Koupayi, and Denis Pankratov;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 38; pp. 38:1–38:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hovhannes.harutyunyan@concordia.ca
mailto:kamran.koupayi@gmail.com
mailto:denis.pankratov@concordia.ca
https://doi.org/10.4230/LIPIcs.ISAAC.2023.38
https://arxiv.org/abs/2309.14185
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Temporal Separators with Deadlines

More formally, we model the scenario as a graph problem. An important component
missing from the classical graph theory is the ability of the graph to vary with time. The
trains run on a schedule (or at least they are supposed to – for simplicity, we assume a
perfectly punctual train system). Thus, it is not accurate to say that there is an edge between
station A and station B just because there are tracks connecting them. It would be more
accurate to say that if you arrive at A at some specific time t then you could get to B at
some other time t′ > t, where t is when the train arrives at station A and t′ is the time when
this train reaches station B. In other words, we can consider the edge from A to B as being
present at a particular time (or times) and absent otherwise. This is an important point
for the robustness of train networks, since it could be that due to incompatibility of certain
train schedules the train network could become disconnected by shutting down even fewer
stations than we otherwise would have thought if we didn’t take time schedules into account.

The notion of graphs evolving with time has several formal models in the research
literature [3, 23]. First of all, there is an area of online algorithms [1] where the graph is
revealed piece by piece (thus the only allowable changes are to add objects or relations to
the graph) and we need to make irrevocable decisions towards some optimization goal as the
graph is being revealed. Secondly, streaming and semi-streaming graph algorithms deal with
graphs that are revealed one piece at a time similar to online algorithms, but the emphasis
is on memory-limited algorithms [12, 11]. Thus, in streaming one does not have to make
irrevocable decisions, but instead tries to minimize the memory size necessary to answer
some queries at the end of the stream. Thirdly, there is a notion of dynamic graph algorithms
where the emphasis is on designing efficient data structures to support certain queries when
the graph is updated by either adding or removing vertices or edges [24]. The goal is to
maintain the data structures and answer queries, such as “are nodes u and v connected?”, in
the presence of changes more efficiently than recomputing the answer from scratch on every
query. It is evident that none of these models is a good fit for our question: the train system
is known in advance and it is not frequently updated (some cities that shall remain unnamed
take decades to add a single station to the system). Fortunately, there is yet another model
of graphs changing with time that has recently gotten a lot of attention and it happens to
capture our situation perfectly. The model is called a temporal graph. In this work, we focus
on undirected temporal graphs that have a fixed node set but whose edge sets change in
discrete time units, all of which are known in advance. Other temporal graph models where
changes to nodes are allowed and where time is modelled with the continuous real line have
been considered in the research literature but they are outside of the scope of this work.
We typically use τ to indicate the total number of time steps over which a given temporal
graph is defined. For example, if we model the train system as a temporal graph with one
minute-granularity and the schedule repeats every 24 hours then the temporal graph would
have τ = (24H)× (60M/H) = 1440M time steps in total. For emphasis, when we need to
talk about non-temporal graphs and bring attention to their unchanging nature we shall call
them “static graphs.”

We study temporal analogues of the Unrestricted Vertex Separator problem from the
static world. An (s, z)-temporal separator is a set of vertices whose removal disconnects
vertex s from vertex z for every time step in a temporal graph. The (s, z)-Temporal Separator
problem asks to find the minimum size of an (s, z)-temporal separator for the given temporal
graph. The (s, z)-Temporal Separator problem is known to be NP-hard in general [28],
although some special cases (such as bounded treewidth) admit efficient algorithms [15].
This question can be thought of as a mathematical abstraction of the robustness of the
train network of a city question posed at the beginning of this section. The (s, z)-Temporal

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:3

Separator problem asks you to eliminate all temporal paths between s and z by removing
some nodes. Observe that, practically speaking, in real life, one doesn’t actually have to
eliminate all temporal paths between s and z – one would have to remove only reasonable
temporal paths between s and z. Which paths would be considered unreasonable? We
consider paths taking too much time as unreasonable. For example, if normally it takes 30
minutes to get from downtown to the beach, then eliminating all routes that take at most 4
hours would surely detract most downtown dwellers from visiting the beach. Motivated by
such considerations, we introduce a generalization of the (s, z)-Temporal Separator problem
called (s, z, t)-Temporal Separator problem, where the goal is to find the smallest subset of
vertices whose removal eliminates all temporal paths from s to z which takes less than t

time steps. Observe that setting t = τ captures the (s, z)-Temporal Separator problem as a
special case of the (s, z, t)-Temporal Separator problem. Our results can be summarized as
follows:

In Section 4.1, we present a characterization of parameters t and τ when the problem
is NP-hard. We also present an inapproximability lower bound of Ω(ln(n) + ln(τ)) for the
(s, z, t)-Temporal Separator problem assuming that NP ̸⊂ Dtime(nlog log n). In Section 4.2,
we present a τ -approximation algorithm for the (s, z)-Temporal Separator problem, and we
convert it to a τ2-approximation algorithm for (s, z, t)-Temporal Separator problem.

In Section 5.1, we present a polynomial-time algorithm to find a minimum (s, z, t)-temporal
separator on temporal graphs whose underlying graph (see Section 2) has branchwidth at
most 2. In Section 5.2, we present another polynomial-time algorithm for temporal graphs
whose underlying graph becomes a tree after removal of s and z. In Section 5.3, we show a
polynomial-time reduction from the Discrete Segment Covering problem with bounded-length
segments to the (s, z, t)-Temporal Separator problem where the temporal graph has bounded
pathwidth. Therefore, solving the (s, z, t)-Temporal Separator problem on a temporal graph
whose underlying graph has bounded pathwidth is at least as difficult as solving the Discrete
Segment Covering problem where lengths of all segments are bounded.

2 Preliminaries

Temporal graphs (also known as dynamic, evolving [13], or time-varying [14, 6] graphs) are
graphs whose edges are active at certain points in time. A temporal graph G = (V, E, τ)
contains a set of vertices V , and a set of edges E ⊆ V × V × [τ] 1. So each edge2. e ∈ E

contains two vertices of V and a time label t ∈ [τ] indicating a time step at which the edge
is active. A graph G↓ = (V, E′) where E′ contains every edge e that is active at least once
in the temporal graph G is called the underlying graph (alternatively, the footprint) of the
temporal graph G. A static graph representing active edges for a specific time t is called
the layer of the temporal graph at that time and is denoted by Gt. Some other ways of
modelling temporal graphs could be found in [20]. We refer to V (G) and E(G) as the set of
vertices and edges, respectively, of a graph G (either temporal or static). Also for any subset
U ⊆ V (G) we refer to the set of all edges in the subgraph induced by U as E(U), and for
any node v ∈ V we use E(v) to denote the set of all edges incident on v. We also use τ(G)
to refer to the number τ of time labels of the temporal graph G.

1 Notation [n] stands for {1, 2, . . . , n}.
2 We only consider undirected graphs in this work, i.e. no self-loops and (u, v, t) ∈ E if and only if

(v, u, t) ∈ E

ISAAC 2023

38:4 Temporal Separators with Deadlines

A temporal path in a temporal graph is a sequence of edges such that (1) it is a valid path in
the underlying graph, and (2) the corresponding sequence of times when the edges are active is
non-decreasing. Formally, a sequence P = [(u1, v1, t1), (u2, v2, t2), . . . , (uk, vk, tk)] of edges in
a temporal graph G is called an (s, z)-temporal path if s = u1, v1 = u2, . . . , vk−1 = uk, vk = z

and t1 ≤ t2 ≤ · · · ≤ tk. If the sequence of times is in strictly increasing order, the
temporal path is called strict. Travelling time of P , denoted by ttime(P), is defined as
ttime(P) = tk − t1 + 1, i.e., the time it takes to travel from s to z. If ttime(P) ≤ t then we
refer to P as an (s, z, t)-temporal path. A temporal graph G is connected if for any pair of
vertices s, z ∈ V (G) there is at least one temporal path from s to z. A temporal graph G is
continuously connected if for every i ∈ [τ(G)] layer Gi is connected.

We distinguish between three types of temporal paths: (1) shortest (s, z)-temporal path: a
temporal path from s to z that minimizes the number of edges; (2) fastest (s, z)-temporal path:
a temporal path from s to z that minimizes the traveling time; (3) foremost (s, z)-temporal
path: a temporal path from s to z that minimizes the arrival time at destination. Temporal
distance from node s to node z is equal to the traveling time of the fastest (s, z)-temporal
path.

A set S ⊆ V −{s, z} is called a (strict) (s, z)-temporal separator if the removal of vertices
in set S removes all (strict) temporal paths from s to z. The (strict) (s, z)-Temporal Separator
problem asks to find the minimum size of a (strict) (s, z)-temporal separator in a given
temporal graph G. This problem has been studied before (see Section 3). In this work, we
propose a new problem that is based on the notion of (s, z, t)-temporal paths. We define a
set of vertices S to be a (strict) (s, z, t)-temporal separator if every (strict) (s, z, t)-temporal
path contains at least one vertex in S, i.e., removal of S removes all (strict) (s, z, t)-temporal
paths. Thus, the new problem, which we refer to as the (strict) (s, z, t)-Temporal Separator
problem is defined as follows: given a temporal graph G, a pair of vertices s, z ∈ V (G), and
a positive integer t, the goal is to compute the minimum size of a (s, z, t)-temporal separator
in G.

▶ Lemma 1. Given a temporal graph G = (V, E, τ) and two distinct vertices s and z as
well as an integer t, it is decidable in time O(|S||E|) if there is a (s, z, t)-temporal path in G

where S = {t′ | ∃u : (s, u, t′) ∈ E}.

Proof. [25] and [27] present an algorithm that computes fastest paths from a single source s

to all of the vertices in O(|S|(|V |+ |E|)). We could ignore isolated vertices, then we could
compute a fastest path from s to z in G and check if its travelling time is at least t. ◀

Branch decomposition and branchwidth of a graph is defined as follows.

▶ Definition 2 (Branch Decomposition [8]). Given a graph G = (V, E), a branch decomposition
is a pair (T, β), such that

T is a binary tree with |E| leaves, and every inner node of T has two children.
β is a mapping from V (T) to 2E satisfying the following conditions:

For each leaf v ∈ V (T), there exists e ∈ E(G) with β(v) = {e}, and there are no
v, u ∈ V (T), v ̸= u such that β(v) = β(u).
For every inner node v ∈ V (T) with children vl, vr, β(v) = β(vl) ∪ β(vr);

▶ Definition 3 (Boundary [8]). Given a graph G = (V, E), for every set F ⊆ E, the boundary
∂F = {v|v is incident to edges in F and E\F}.

▶ Definition 4 (Width of a Branch Decomposition [8]). Given a branch decomposition (T, β)
of G = (V, E), the width of this decomposition is max{|∂β(v)| | v ∈ V (T)}.

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:5

The branchwidth bw(G) of G is defined as the minimum width of a branch decomposition
of G [8]. We note that for any fixed k there is a linear time algorithm to check if a graph
has branchwidth k, and if so, the algorithm outputs a branch decomposition of minimum
width [5].

Path decomposition and pathwidth of a graph are defined as follows.

▶ Definition 5 (Path Decomposition [22]). Given a graph G = (V, E), a path decomposition
of G is a pair (P, β), such that

P is a path with nodes a1, . . . am.
β is a mapping from {a1, . . . , am} to 2E satisfying the following conditions:

For e ∈ E(G) there exists ai such that vertices of e appear in β(ai).
For every v ∈ V (G) the set of ai, such that v appears in β(ai), forms a subpath of P .

The width of a decomposition (P, β) is maxa∈V (P) |β(a)| − 1. The pathwidth of a graph G is
the minimum width of a path decomposition of G.

3 Related Work

Enright et al. in [9] adopt a simple and natural model for time-varying networks which is
given with time-labels on the edges of a graph, while the vertex set remains unchanged. This
formalism originates in the foundational work of Kempe et al. [18]. There has already been
a lot of work on temporal graphs, too much to give a full overview. Thus, in this section, we
focus only on the results most relevant to our work.

The fastest temporal path is computable in polynomial time, see, e.g. [27, 26, 25]. A nice
property of the foremost temporal path is that it can be computed efficiently. In particular,
there is an algorithm that, given a source node s ∈ V and a time tstart, computes for all
w ∈ V \ {s} a foremost (s, w)-temporal path from the time tstart [19]. The running time of
the algorithm is O(nτ3 + |E|). It is worth mentioning that this algorithm takes as input
the whole temporal graph G. Such algorithms are known as offline algorithms in contrast
to online algorithms in which the temporal graph is revealed on the fly. The algorithm is
essentially a temporal translation of the breadth-first search (BFS) algorithm (see e.g. [7]
page 531).

While the Unrestricted Vertex Separator problem is polynomial time solvable in the
static graph world (by reducing to the Maximum Flow problem), the analogous problem
in the temporal graph world, namely, the (s, z)-Temporal Separator problem, was shown
to be NP-hard by Kempe et al. [18]. Zschoche et al. [28] investigate the (s, z)-Temporal
Separator and strict (s, z)-Temporal Separator problems on different types of temporal graphs.
A central contribution in [28] is to prove that both (s, z)−Temporal Separator and Strict
(s, z)-Temporal Separator are NP-hard for all τ ≥ 2 and τ ≥ 5, respectively, strengthening a
result by Kempe et al. [18] (they show NP-hardness of both variants for all τ ≥ 12) [28].

Fluschnik et al. [15] show that (s, z)-Temporal Separator remains NP-hard on many
restricted temporal graph classes: temporal graphs whose underlying graph falls into a class
of graphs containing complete-but-one graphs (that is, complete graphs where exactly one
edge is missing), or line graphs, or temporal graphs where each layer contains only one
edge. In contrast, the problem is tractable if the underlying graph has bounded treewidth,
or if we require each layer to be a unit interval graph and impose suitable restrictions on
how the intervals may change over time, or if one layer contains all others (grounded), or if
all layers are identical (1-periodic or 0-steady), or if the number of periods is at least the
number of vertices. It is not difficult to show that this problem is fixed-parameter tractable
when parameterized by k + l, where k is the solution size and l is the maximum length of a
temporal (s, z)-path.

ISAAC 2023

38:6 Temporal Separators with Deadlines

Lastly, we note that the classical Vertex Separator problem from the static world is
often stated as asking to find a vertex separator such that after its removal the graph is
partitioned into two blocks (one containing s and one containing z) of roughly equal size3.
This “balanced” separator restriction makes the problem NP-hard. The temporal separator
problems considered in this work do not have such a restriction, and as discussed they are
hard problems due to the temporal component. There is a lot of research on the Vertex
Separator problem, but since our versions do not have this “balancedness” restriction, we do
not discuss it in detail. An interested reader is referred to [2] and references therein.

4 Temporal Separators with Deadlines on General Graphs

4.1 Hardness of Exact and Approximate Solutions
Zschoche et al. [28] show that the (s, z)-Temporal Separator problem is NP-hard on a
temporal graph G = (V, E, τ) if τ ≥ 2 (and it is in P if τ = 1). So, it is obvious that the
(s, z, t)-Temporal Separator problem is NP-hard if t ≥ 2. In this section we strengthen this
result by showing that the problem remains NP-hard even when restricted to inputs with
t = 1 and τ ≥ 2.

Reduction from the minimum satisfiability problem with non-negative variables to (s, z, 1)-
Temporal Separator could be made by adding a path from s to z in layer Gi, which contains
all the variables in the i-th clause. So, (s, z, 1)-Temporal Separator on temporal graphs with
a sufficient number of layers is NP-hard. However, it is not easy to establish the complexity
of (s, z, t)-Temporal Separator on temporal graphs with a small number of layers. Here
we aim to show that (s, z, 1)-Temporal Separator remains NP-hard on a temporal graph
G = (V, E, τ) if τ is equal to 2. To do that, we construct a reduction from the Node Multiway
Cut problem. In this problem, one is given a graph G = (V, E) and a set of terminal vertices
Z = {z1, z2, . . . zk}. A multiway cut S ∈ V \Z is a set of vertices whose removal from G

disconnects all pairs of distinct terminals zi and zj . The goal is to find a multiway cut of
minimum cardinality. The Node Multiway Cut problem is NP-hard for k ≥ 3 [16]. For the
proof of the next theorem, please see the full version of the paper [17].

▶ Theorem 6. For every t0 ≥ 1, the (s, z, t)-Temporal Separator problem is NP-hard on a
temporal graph G = (V, E, τ) when restricted to inputs with t = t0 and τ ≥ 2.

Since Strict (s, z)-Temporal Separator is NP-hard on a temporal graph with τ ≥ 5 [28],
it is clear that Strict (s, z, t)-Temporal Separator is NP-hard even when restricted to inputs
with t ≥ 5 and τ ≥ 5. However, by a small change to the reduction presented by Zschoche
et al. [28], which is inspired by [26], we can show that Strict (s, z, t)-Temporal Separator
remains NP-hard even when restricted to inputs with t = 3 and τ = 4. For the proof of the
next theorem, please see the full version of the paper [17].

▶ Theorem 7. Finding a strict (s, z, 3)-temporal separator on a temporal graph G = (V, E, τ)
is NP-hard when restricted to inputs with τ = 4.

Since every temporal path from s to z contains more than two edges, then ∅ is a
strict (s, z, 1)-temporal separator. Since every strict (s, z, 2)-temporal path is of the form
(s, v, t), (v, z, t + 1), the Strict (s, z, 2)-Temporal Separator problem could be solved in

3 That is why earlier we referred to a static world problem of interest as the Unrestricted Vertex Separator
problem to emphasize that there is no balancedness requirement.

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:7

polynomial time easily. The Strict (s, z, t)-Temporal Separator problem on a graph G =
(V, E, τ) with τ = t is the same as the Strict (s, z)-Temporal Separator. Therefore, in case
τ = t = 3 this problem is equivalent to the Strict (s, z)-Temporal Separator problem with
τ = 3. Zschoche et al. [28] present a polynomial time algorithm for finding a minimum
strict (s, z)-temporal separator on a temporal graph G = (V, E, τ) when τ < 5. So, this case
could be solved in polynomial time. Although we know that finding a strict (s, z, t)-temporal
separator on a temporal graph G = (V, E, 3) is polynomial-time solvable with the algorithm
which is presented in [28], we describe another simple algorithm to solve this problem.

In the first step of the algorithm, we check if there is an edge between s and t. If so, it is
clear that there are no separator sets because the direct path using this edge from s to z will
remain with the removal of any node from the graph.

Next, for every temporal path from s to z of length two, such as (s, x, t1), (x, z , t2) with
t2 = t1 + 1, it is clear that we have to remove x if we want to remove this path from the
graph. So, it is clear that x ∈ S.

In the last step, we know that the length of every temporal path in the graph is three.
So, every path from s to z should be of the following form:

(s, x, 1), (x, y, 2), (y, z, 3).

Now, put every node x with existing edge (s, x) into the set X with time label 1. Also, put
every node y that is a neighbor of z into the set Y with time label 3. Now, it is clear that
X ∩ Y = ∅, for otherwise there exists a node u with two existing edges e1 = (s, u, 1) and
e2 = (u, z, 3), while this node should be removed in the previous step. Therefore, every strict
temporal path from s to z should have a corresponding edge (x, y, 2) where x ∈ X and y ∈ Y .
So, we should remove either x or y for every edge (x, y, 2), where x ∈ X and y ∈ Y . In order
to do this we could use any known polynomial time algorithm for the Vertex Cover problem
in bipartite graphs.

In the rest of this section we show Ω(log n + log(τ))-inapproximability (assuming NP ⊂
Dtime(nlog log n)) for the (s, z, t)-Temporal Separator problem. This is proved by a strict
reduction from the Set Cover problem. Recall that in the Set Cover problem, one is given a
collection S of subsets of a universe U that jointly cover the universe. The goal is to find a
minimum size sub-collection of S that covers U .

▶ Theorem 8. For every t > 0 there is a strict polynomial time reduction from the Set Cover
problem to the (s, z, t)−Temporal Separator problem.

Proof. Let (U,S) be an instance of the Set Cover problem, where U = {1, 2, . . . n} is the
universe and S = {S1, S2, . . . , Sm} is a family of sets the union of which covers U . For each
i ∈ U define the family Fi as Fi = {S ∈ S | i ∈ S}, i.e., Fi consists of all sets from S that
contain element i. Let ki = |Fi| and order the elements of each Fi in the order of increasing
indices, i.e., Fi = {Si1 , . . . , Siki

}.
Our reduction outputs a temporal graph f(U,S) = (V ∪ {s, z}, E) where:
the vertex set is V ∪ {s, z} = {vi|i ∈ [m]} ∪ {s, z};
the edge set is the union over i of the sets Ei = {(s, vi1 , i·t), (vi1 , vi2 , i·t), . . . , (viki−1 , viki

, i·
t), (viki

, z, i · t)}.

The main idea behind the proof is to map every element of U to a path from s to z in
f(U,S) bijectively, so by covering an element, we remove the corresponding path in f(U,S)
as well as by removing a path we cover the corresponding element.

We claim that V ′ = {vj1 , . . . , vjℓ
} ⊆ V is a (s, z, t)−temporal separator for f(U,S) if and

only if S ′ = {Sj1 , . . . , Sjℓ
} ⊆ S is a set cover for (U,S).

ISAAC 2023

38:8 Temporal Separators with Deadlines

vi1 vi2 vij viki vmv1 · · · · · · · · · · · · · · ·

s

z

Figure 1 Layer Gi·t of the temporal graph used in the proof of Theorem 8.

Figure 1 represents the edges in the layer Git, which contain all the edges in Ei. It
illustrates that element i in the universe U corresponds to a path Ei, as well as the element
i is covered by the set Sij ∈ S ′ if and only if a temporal path which is shown in Figure 1 is
removed from the temporal graph by removing the vertex vij

∈ V ′.
→ Suppose for contradiction that S ′ does not cover U . Pick an arbitrary item i ∈ U that is

not covered and consider the following path P = [(s, vi1 , i · t), (vi1 , vi2 , i · t), . . . , (viki−1 , viki
, i ·

t), (viki
, z, i · t)], where the indices are according to the equation for Fi. Since i is not

covered, Fi ∩ S ′ = ∅, so P is present in f(U,S) \ V ′ violating the assumption that V ′ is a
(s, z, t)−temporal separator (note that ttime(P) = 0).
← Now, suppose for contradiction that V ′ is not a (s, z, t)-temporal separator. Thus,

there is path P from s to z with ttime(P) < t. From the definition of f(U,S) it is clear
that P should be using edges only from Ej for some j ∈ [n]. Note that there is a unique
(s, z)-temporal path that can be constructed from Ej , namely, P = [(s, vj1 , j · t), (vj1 , vj2 , j ·
t), . . . , (vjkj −1 , vjkj

, j · t), (vjkj
, z, j · t)]. This implies that element j is not covered by S ′, since

otherwise, one of the vji
would be in V ′.

Following the previous claim, every solution in (s, z, t)-Temporal Separator has a corres-
ponding solution in Set Cover, and vice versa. Therefore, an optimal solution in (s, z, t)-
Temporal Separator, has a corresponding optimal solution in Set Cover. As a result

|V ′|
|Vopt| = |S′|

|Sopt| . This implies that the reduction is strict. ◀

Due to the inapproximability of Set Cover (see [10]), we have the following:

▶ Corollary 9. The (s, z, t)-Temporal Separator problem is not approximable to within
(1− ϵ)(log n + log(τ)) in polynomial time for any ε > 0, unless NP ⊂ Dtime(nlog log n).

4.2 Approximation Algorithms
In this section, we present an efficient τ2-approximation for the (s, z, t)-Temporal Separator
problem. We begin by establishing a τ -approximation for the (s, z)-Temporal Separator
problem. The main tool used in this section is the flattening4 of a temporal graph G = (V, E, τ)
with respect to vertices s and z, denoted by F (G, s, z) = (V ′, E′). To ease the notation we
omit the specification of s and z and denote the flattening of G by F (G). The flattening
F (G) is a static directed graph defined as follows: the vertex set V ′ is the union of τ disjoint
sets V1, V2, . . . , Vτ and {s, z}, where each Vi is a disjoint copy of V − {s, z}. Denoting the

4 The concept of flattening is not new, and it is similar to the static expansion of a temporal graph – see,
for example, [19].

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:9

vertices of V by v1, v2, . . . , vn, we have ∀i ∈ [τ] Vi = {vj,i|vj ∈ V − {s, z}}. The edge set E′

of the flattening F (G) is defined as follows:
For each (vi, vj , t′) ∈ E with vi, vj ̸∈ {s, z} we add edges (vi,t′ , vj,t′) and (vj,t′ , vi,t′) to
E′.
For each vi ∈ V and each time t′ ∈ [τ − 1] we add an edge (vi,t′ , vi,t′+1) to E′.
For each (s, vi, t′) ∈ E we add an edge (s, vi,t′) to E′.
For each (z, vi, t′) we add an edge (vi,t′ , z) to E′.

Clearly, F (G) is defined to express temporal (s, z)-paths in G in terms of (s, z)-paths in
F (G). More specifically, if we have a temporal (s, z) path P in G then there is an analogous
static (s, z) path P ′ in F (G). If P begins with an edge (s, vi, t1) then P ′ begins with an
edge (s, vi,t1). After that if the next edge in P is (vi, vj , t2), we can simulate it in F (G) by
introducing a sequence of edges (vi,t1 , vi,t1+1), (vi,t1+1, vi,t1+2), . . . , (vi,t2−1, vi,t2) followed by
an edge (vi,t2 , vj,t2), and so on until the vertex z is reached. This correspondence works in
reverse as well. If P ′ is a static (s, z) path in F (G) then we can find an equivalent temporal
(s, z) path in G as follows. If the first edge in P ′ is (s, vi,t1) then this corresponds to the
first edge of P being (s, vi, t1). For the following edges of P ′, if the edge is of the form
(vi,t′ , vi,t′+1) then it is simply ignored for the purpose of constructing P (since it corresponds
to the scenario where the agent travelling along the path is simply waiting an extra time
unit at node vi), and if the edge is of the form (vi,t′ , vj,t′) then we add the edge (vi, vj , t′)
to P . This continues until z is reached. Thus, there is a temporal (s, z) path P in G if
and only if there is a static (s, z) path P ′ in F (G). Moreover, if S represents the internal
nodes of the path P then we can find P ′ with internal nodes in

⋃
t′∈[τ]{vi,t′ : vi ∈ S}. In

the reverse direction, if P ′ uses internal nodes S′ then we can find P with internal nodes in
{vi : ∃t′ vi,t′ ∈ S′}.

Armed with these observations, we show that the sizes of (s, z)-temporal separators in G

and (s, z)-separators (non-temporal) in F (G) are related as follows.

▶ Theorem 10.
1. If S is an (s, z)-temporal separator in G then there is an (s, z)-separator of size at most

τ |S| in F (G).
2. If S′ is an (s, z)-separator in F (G) then there is an (s, z)-temporal separator of size at

most |S′| in G.
The proof of the above theorem, albeit rather simple, appears in the full version of the
paper [17].

▶ Corollary 11. The (s, z)-Temporal Separator problem on a temporal graph G = (V, E, τ)
can be approximated within τ in O((m + nτ)nτ) time, where n = |V | and m = |E|.

Proof. We can use any existing efficient algorithm to solve the (s, z) separator problem on
F (G) and return its answer, which will give τ -approximation by Theorem 10. For example, the
stated runtime is achieved by applying Menger’s theorem and the Ford-Fulkerson algorithm
to compute the maximum number of vertex-disjoint paths in F (G). Then the running time
is O(|E′||V ′|). Observing that |E′| ≤ |E|+ |V |τ and |V ′| ≤ |V |τ , finishes the proof of this
corollary. ◀

Next, we describe how the (s, z, t)-Temporal Separator problem can be approximated
using a slight extension of the above ideas. First, for a temporal graph G = (V, E, τ) and
two integers t1 ≤ t2 we define E[t1 : t2] = {(u, v, t) ∈ E : t1 ≤ t′ ≤ t2}. We also define
G[t1 : t2] = (V, E[t1 : t2], t2), which can be thought of as graph G restricted to time interval
[t1, t2]. The idea behind approximating a minimum (s, z, t)-temporal separator is to combine
(s, z)-temporal separators of F (G[1 : t + 1]), F (G[2 : t + 2]), . . . , F (G[τ − t : τ]).

ISAAC 2023

38:10 Temporal Separators with Deadlines

▶ Theorem 12. The (s, z, t)-Temporal Separator problem on a temporal graph G = (V, E, τ)
can be approximated within τ2 in O((m + nτ)nτ2) time, where n = |V | and m = |E|.
Proof. The algorithm has essentially been described prior to the statement of the theorem,
so the running time is clear. It is left to argue that it produces τ2-approximation. This can
be argued similarly to Theorem 10.
1. Let S be a (s, z, t)-temporal separator in G. Then for G[i : i + t] we define Si to consist

of all nodes vj,t′ with vj ∈ S. Since S removes all paths from G of travelling time ≤ t and
G[i : i + t] only has paths of travelling time ≤ t, then Si is a (s, z)-separator in G[i : i + t]
of size |Si| = τ |S|. Thus, if there is an (s, z, t)-temporal separator of size |S| in G then the
combined size of all (s, z, t)-temporal separators of G[1 : t + 1], G[1 : t + 2], . . . , G[τ − t, τ]
is at most τ2|S|.

2. Let Si be a (s, z)-temporal separator in G[i : i + t]. Define S = {vj : ∃i∃t′ vj,t′ ∈ Si}. It
is easy to see that S is a (s, z, t) temporal separator in G. Paths of travelling time at
most t that begin with an edge (s, vi, t1) are present in G[t1, t1 + t], and so removal of
St1 removes such temporal paths in G[t1, t1 + t]. Since St1 is “projected” onto V and
included in S, these paths are eliminated from G. ◀

5 Temporal Separators with Deadlines on Special Families of Graphs

5.1 Temporal Graphs with Branchwidth at most 2
The graphs with branchwidth 2 are graphs in which each biconnected component is a
series-parallel graph [21]. In this section, we present an efficient algorithm to solve the
(s, z, t)-Temporal Separator problem on temporal graphs whose underlying static graphs have
branchwidth at most 2. In fact, our algorithm works for a more general class of problems,
which we refer to as “restricted path (s, z)-Temporal Separator.” The goal in this more
general problem is to select a set of vertices S such that the removal of S from the given
temporal graph G removes all (s, z) paths in a restricted family of paths. The (s, z, t)-
Temporal Separator problem is seen as a special case of this, where paths are restricted
to have travelling time less than t. Restricted family of paths could be any path family
implicitly defined by a procedure ExistsRestrictedPath(G, s, z) which takes as input a
temporal graph G, a pair of nodes s and z, and returns true if and only if there exists a
restricted temporal path between s and z in G. Due to Lemma 1, we know that such a
procedure exists in the case of temporal paths restricted by travelling time, which is suitable
for the (s, z, t)-Temporal Separator problem.

For the rest of this section, we assume that G is a temporal graph such that bw(G↓) ≤ 2
unless stated otherwise. Furthermore, we assume that G↓ is connected, otherwise, if s and z

belong to different connected components the answer to the problem is trivially ∅, and if they
belong to the same connected component, the problem reduces to analyzing that connected
component alone. We introduce some notation and make several observations about branch
decomposition before we give full details of our algorithm. Recall from Section 2 that branch
decomposition of G of width 2 can be computed in linear time. Thus, we assume that the
algorithm has access to such a decomposition, which we denote by (T, β). We use ρ to denote
the root of T and we define the function top : V (G)→ V (T) as follows. For v ∈ V (G) we
let top(v) be the furthest node x ∈ V (T) from the root r which satisfies E(v) ⊆ β(x). We
also use xl to denote the left child of x and xr to denote the right child of x. For a node
x ∈ V (T) we define Gin

x to be the temporal graph obtained from G by keeping only those
edges (u, v, t) with (u, v) ∈ β(x) and removing all vertices of degree 0. We collect several
useful observations about the introduced notions in the following lemma.

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:11

▶ Lemma 13.
1. If v ∈ ∂β(x) then v ∈ ∂β(xℓ) or v ∈ ∂β(xr).
2. If top(v) = x then v ∈ ∂β(xℓ) and v ∈ ∂β(xr).
3. If v ∈ V (Gin

x) \ ∂β(x) then all edges incident on v in G are present in Gin
x .

Proof.
1. Since v ∈ ∂β(x) it means that some but not all edges incident on v in G appear in β(x).

Since β(x) = β(xℓ) ∪ β(xr), it implies that some but not all edges incident on v must
appear either in β(xℓ), or β(xr), or both.

2. If top(v) = x then E(v) ⊆ β(x). Suppose for contradiction that v ̸∈ ∂β(xℓ). This can
happen for two reasons: either (1) E(v) ⊆ β(xℓ), or (2) E(v) ∩ β(xℓ) = ∅. In case (1) we
obtain a contradiction with the definition of top(v) since xℓ is further from the root than
x and it still contains all of E(v). In case (2) observe that we must have E(v) ⊆ β(xr),
thus obtaining a contradiction with the definition of top(v) again since xr is further from
the root than x and it still contains all of E(v).

3. Since v ∈ V (Gin
x) \ ∂β(x) it means that there is at least one edge incident on v in V (Gin

x).
Since v is not in the boundary of β(x), it means that all edges incident on v in G must
be present in β(x). ◀

Algorithm 1 This algorithm finds a restricted (s, z)−temporal separator in a temporal
graph G with bw(G↓) ≤ 2.

Function RTS(G, s, z):
if ExistsRestrictedPath(G, s, z)=false then

return ∅;
for v ∈ V (G) \ {s, z} do

if ExistsRestrictedPath(G \ {v}, s, z)=false then
return {v};

if top(s) = top(z) then
return RTS(Gin

ρℓ
, s, z) ∪ RTS(Gin

ρr
, s, z);

else if top(s), top(z) are not ancestors of each other then
return ∂β(top(z));

else
/* assume top(z) is ancestor of top(s), otherwise swap s and z */
if z ̸∈ ∂β(top(s)) then

return ∂β(top(s));
else if ∂β(top(s)) = {z} then

return RTS(Gin
top(s), s, z);

else
/* ∂β(top(s)) = {z, q}, ∂β(top(s)ℓ) = {s, z}, ∂β(top(s)r) = {s, q} */
S ← RTS(Gin

top(s)ℓ
, s, z);

if ExistsRestrictedPath(G \ S, s, z) then
return S ∪ {q};

else
return S;

Now, we are ready to describe our algorithm, which is denoted by RTS. The algorithm
starts by checking if there is a restricted temporal path from s to z in G, and if such a
path does not exist then the algorithm immediately returns ∅. Then the algorithm checks if

ISAAC 2023

38:12 Temporal Separators with Deadlines

there exists a restricted temporal separator of size 1 by testing whether there is a restricted
temporal path in G \ {v} for each v ∈ V (G) \ {s, z}. Then the algorithm computes top(s)
and top(z) and the computation splits into three cases: (1) if top(s) = top(z); (2) if top(s)
and top(z) are not on the same root-to-leaf path in T (i.e., neither one is an ancestor of
another); and (3) if one of top(s), top(z) is an ancestor of another. We shall later see that
case (1) implies that top(s) = top(z) = ρ. In this case, the algorithm invokes itself recursively
on the two subtrees of T – the subtree rooted at the left child of ρ and the subtree rooted at
the right child of ρ. The separators obtained on these two subtrees correspond to separators
of Gin

ρℓ
and Gin

ρr
and their union is returned as the separator for G. In case (2) the algorithm

returns the boundary of β(top(z)) (it could return the boundary of β(top(s)) instead – it
does not make a difference) as the answer. In case (3), we assume without loss of generality
that top(z) is the ancestor of top(s), and handling of this case depends on whether z belongs
to the boundary of β(top(s)) or not. In fact, this case splits into three subcases: (3.1) if
z ̸∈ ∂β(top(s)) then the algorithm immediately returns ∂β(top(s)); (3.2) if ∂β(top(s)) = {z}
then the algorithm invokes itself recursively on Gin

top(s); and (3.3) if ∂β(top(s)) = {z, q} for
some vertex q ̸= s, z then the algorithm first invokes itself recursively on Gin

top(s)ℓ
(assuming

∂β(top(s)ℓ) = {s, z}) and stores the answer in S. If S proves to be a separator in G then
S is returned, otherwise, q is added to S and returned. The pseudocode is presented in
Algorithm 1.

▶ Theorem 14. Algorithm 1 correctly computes a minimum-sized restricted path (s, z)-
temporal separator for a temporal graph G such that bw(G↓) ≤ 2.

Proof. The proof proceeds by the case analysis reflecting the structure of the algorithm.
Clearly, the algorithm correctly identifies when there is a separator of size 0 or 1 since it
performs brute-force checks for these special cases. Assuming that there is no separator of
size ≤ 1, we discuss the correctness for the remaining three cases.
Case (1): top(s) = top(z) = x ∈ V (T). Observe that Lemma 13, item 1, implies that

s, z ∈ ∂β(xℓ) and s, z ∈ ∂β(xr). Since the branchwidth is 2, it implies that ∂β(xℓ) =
∂β(xr) = {s, z}. In addition, we know that s, z ̸∈ ∂β(x) by the definition of top(). And
since every vertex in ∂β(x) must appear in ∂β(xℓ) or ∂β(xr) (using Lemma 13, item 2),
we conclude that ∂β(x) = ∅. By Lemma 13, item 3, every vertex in Gin

x has all its edges
from G. Therefore Gin

x is disconnected from the rest of G. However, we assume that G

is connected, so we must have Gin
x = G. This is true only when x = ρ. Thus, we must

have in this case that top(s) = top(z) = ρ. Observe that if P is a restricted temporal
path between s and z (that does not have s or z as intermediate nodes) then it cannot
use edges from both β(ρℓ) and β(ρr). Suppose, for contradiction, that P uses both kinds
of edges, then there must be a vertex v on this path incident on e1 and e2 such that
e1 ∈ β(xℓ) and e2 ∈ β(xr). Since β(xℓ), β(xr) partition all the edges, it implies that
e2 ̸∈ β(xℓ). This means that v ∈ ∂β(xℓ) = {s, z}, but v ̸= s, z, giving a contradiction.
Therefore, the minimum size restricted path temporal separator in G is the union of
minimum size restricted path temporal separators in Gin

ρℓ
and Gin

ρr
, which is precisely

what our algorithm outputs.
Case (2): top(s) and top(z) do not lie on the same root-to-leaf path in T . One of the

consequences of Lemma 13, item 3, is that removing ∂β(x) from G separates all vertices
in V (Gin

x) from the rest of the graph. Therefore, removing ∂β(top(z)) separates all vertices
in Gin

top(z) from the rest of the graph. Observe that z ∈ V (Gin
top(z)) and s ̸∈ V (Gin

top(z))
(by the condition of this case). Therefore removing ∂β(top(z)) separates s from z. We
claim that this is the minimum separator in this case. This is because when this line is

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:13

reached we are guaranteed that there is no separator of size 1, and |∂β(top(z))| ≤ 2 (in
fact, it must be then equal to 2). We only need to be careful that neither z nor s is in
∂β(top(z)), but it is clear from the definition of top() and the case condition.

Case (3): top(z) is an ancestor of top(s) (if top(s) is an ancestor of top(z) then we can
exchange the roles of s and z for the sake of the argument). This case has three subcases.
Subcase (3.1): z ̸∈ ∂β(top(s)). This is similar to case (2) described above. The algorithm

can return ∂β(top(s)) as a minimum size separator.
Subcase (3.2): ∂β(top(s)) = {z}. In this case, the structure of the graph is such that

Gin
top(s) is connected to the rest of the vertices in G via the node z, while vertex s

lies in Gin
top(s). Thus, to separate z from s, it is sufficient to separate them in Gin

top(s),
which is what the algorithm does.

Subcase (3.3): ∂β(top(s)) = {z, q}. By Lemma 13, item 2, it follows that s ∈ ∂β(top(s)ℓ)
and s ∈ ∂β(top(s)r). By Lemma 13, item 1, it follows that z, q ∈ β(top(s)ℓ)∪β(top(s)r).
Since branchwidth is at most 2, we have (without loss of generality) that ∂β(top(s)ℓ) =
{s, z} and ∂β(top(s)r) = {s, q}. By an argument similar to the one in case (1), we
can establish that any restricted (s, z) temporal path (that does not use s or z as
intermediate nodes) must either consist entirely of edges in β(top(s)ℓ) or entirely of
edges in β(top(s)r). Thus, we can compute the two separators and take their union;
however, we can simplify the calculation observing that the only separator we need
to consider for the Gin

top(s)r
is {q}, since Gin

top(s)r
is connected to the rest of G only

through q and s. ◀

▶ Corollary 15. Given a temporal graph G = (V, E, τ) with bw(G↓) ≤ 2, the problem
(s, z, t)-Temporal Separator is solvable in time O(|V ||E||T |) where T = {t(e) : e ∈ E(s)}.

5.2 Temporal Graphs with a “Tree-like” Underlying Graph
In this section, we present a polynomial time greedy algorithm (motivated by the point-cover
interval problem) for computing a path restricted (s, z)-temporal separator (see Section 5.1)
on a temporal graph G such that G↓ \ {s, z} is a tree if the existence of a restricted (s, z)-
temporal path could be checked in polynomial time.

We assume that we are given a temporal graph G such that G↓ \ {s, z} is a tree, which
we denote by T . For a pair of nodes (u, w), we let Pu,w denote the unique shortest path in
T between u and w. For a vertex v ∈ V (T), we define a removal list of v, denoted by RLv,
to consist of all unordered pairs (u, w) such that v ∈ V (Pu,w) and there exists a restricted
(s, z)-temporal path in G using the edges of Pu,w. For a pair u, w ∈ V (T), we define two
temporal graphs: (1) G1

u,w is G induced on the edges of E(Pu,w) ∪ {(s, u), (v, z)}, and (2)
G2

u,w is G induced on the edges of E(Pu,w)∪ {(s, v), (u, z)}. The removal lists for all vertices
in V (T) can be computed efficiently as follows. Initialize all removal lists to be empty.
For each pair of vertices u, w ∈ V (T) check if there is any restricted (s, z)-temporal path
in G1

u,w or G2
u,w, and if so, then add (u, w) to the removal lists of all nodes in Pu,w. Let

U =
⋃

v∈V (T) RLv be the set of all pairs of nodes that appear in removal lists. The following
observation is immediate from the definitions and shows that computing a minimum size
restricted path (s, z)-temporal separator reduces to covering U with as few removal lists as
possible.

▶ Observation 16. A set of S is a restricted path (s, z)-temporal separator if and only if⋃
v∈S RLv = U .

A vertex v is called topmost if there exists a pair (u, w) ∈ RLv such that (u, w) ̸∈
RLparent(v). Our greedy algorithm, called GreedyRTS, starts out with an empty solution
S = ∅, and then adds more vertices to S as follows. While there are non-empty removal lists,

ISAAC 2023

38:14 Temporal Separators with Deadlines

the algorithm selects a topmost vertex v with maximum distance from the root of T , adds v

to the set S, and removes all pairs in RLv from the removing lists of all the other vertices.
The pseudocode is given in Algorithm 2 (in Appendix B).

For the proof of the next theorem, please see the full version of the paper [17].

▶ Theorem 17. Algorithm 2 computes a minimum-sized restricted path (s, z)-temporal
separator in a temporal graph G with G↓ \ {s, z} being a tree.

Based on Lemma 1, the existence of a (s, z, t)-temporal path can be solved in polynomial
time. Thus, the following theorem follows from Theorem 17.

▶ Theorem 18. The (s, z, t)-Temporal Separator problem is solvable in polynomial time on
temporal graphs G where G↓ \ {s, z} is a tree.

5.3 Temporal Graphs with Bounded Pathwidth
In this section, we present a reduction from the Discrete Segment Covering (DISC-SC)
problem to the (s, z, t)-Temporal Separator problem on graphs with bounded pathwidth. In
the DISC-SC problem, we are given a set Γ of n intervals (also called segments), on the
rational line and a set I of unit-intervals on the rational line. We wish to find a subset of
unit intervals A ⊆ I which covers all the segments in Γ. The objective is to minimize the
size of A. An interval I ∈ I covers a segment S ∈ Γ if at least one endpoint S lies in I. A
segment S ∈ Γ is covered by a set of intervals A if there is an interval I ∈ A that covers S.
We refer to the version of DISC-SC where all segments in Γ have length bounded by k as
DISC-SC-k. DISC-SC problem is NP-hard [4]. [4] also shows that the DISC-SC problem
remains NP-hard when the length of all segments in Γ are equal. DISC-SC-1 can be solved
efficiently by a simple greedy algorithm [4]. However, the hardness of DISC-SC-k for general
k > 1 remains open.

The following theorem serves as a warm-up, and it establishes a simple polynomial time
reduction from DISC-SC to the (s, z, t)-Temporal Separator problem. For the proof of the
next theorem, please see the full version of the paper [17].

▶ Theorem 19. There is a polynomial-time reduction from the DISC-SC problem to the
(s, z, t)-Temporal Separator problem.

The issue with the above theorem is that it does not provide any structural guarantees
about the temporal graph G used in the construction. In order to establish a reduction
via a temporal graph G whose underlying graph has bounded pathwidth, we start with a
restricted version of DISC-SC, namely, the DISC-SC-k problem. The following results can
then be established.

▶ Theorem 20. There is a polynomial-time reduction from the DISC-SC-k problem to the
(s, z, t)-Temporal Separator in which the pathwidth of the underlying graph is bounded by
2k + 6.

Proof. Consider an instance (I, Γ) of the Discrete Segment Covering problem such that the
length of all the segments in Γ is at most k. Consider intervals in I = (I1, I2, . . . In) in the
non-decreasing order of their starting times. We choose a special set of intervals SP ∈ I by
the following algorithm.
1. Let SP = I1 and index = 1.
2. Let j be the largest index such that s(Ij) < e(Iindex), if such j exists. Otherwise, let

j = index + 1
3. Put Ij into the set SP , update the integer index equal to j and if j ≤ n repeat the

algorithm from step 2.

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:15

For the proof of the next lemma, please see the full version of the paper [17].

▶ Lemma 21. A p is covered by I if SP covers it.

The main idea of the proof is based on to the following features of the special set SP . Denote
SP = {Im1 , Im2 , . . . Imq}. Based on the selection of interval Imi+1 it is clear that the starting
point of Imi+2 is greater than the ending point of Imi

which implies that s(Imi+2) > s(Imi
)+1.

More generally, we have that e(Imi+2k
) > s(Imi) + k + 1. Therefore, for any segment C ∈ Γ

and for any interval Imi
and Imj

such that s(C) ∈ Imi
and e(C) ∈ Imj

, we could conclude
that j ≤ i + 2k. This feature for SP is the main idea used in constructing an instance of the
(s, z, t)-Temporal Separator problem with low pathwidth.

Now we construct a temporal graph G = (V, E, τ) where τ = |Γ| × t. Let V = {ui|i ∈
[n]} ∪ {vi|i ∈ [n]} ∪ {s, z}. Now, for the i-th segment C ∈ Γ we add a path from s to z at
time i× t. Let ma and mb be the indices of the first intervals in SP which cover points s(C)
and e(C), respectively. Based on the Lemma 21 if ma (or mb) does not exist, then the point
s(C) (respectively, e(C)) will not be covered by any interval in I. Therefore, we could treat
C as a single point e(C) (respectively, s(C)) and continue on with the algorithm. Let ls be
the index of the leftmost interval form I which covers s(C), and let rs be the index of the
rightmost interval from I which covers s(C). It is obvious that s(C) is covered by all of the
intervals between ls and rs in I. Similarly, let le and re be the indices of the leftmost and
the rightmost intervals which cover e(C). If le ≤ rs then consider le = rs + 1 instead. Now,
add the following (s, z, t)-temporal path to the temporal graph G. For simplicity, we denote
i× t by θ.

(s, uls
, θ), (uls

, vls
, θ), (vls

, vls+1, θ), . . . (vrs−1, vrs
, θ)

(vrs
, urs

, θ), (urs
, urs−1, θ), . . . (uma+1, uma

, θ)
(uma

, umb
, θ) (1)

(umb
, umb−1, θ), . . . , (ule+1, ule , θ), (ule , vle , θ)

(vle
, vle

+ 1, θ) . . . (vre−1, vre
, θ), (vre

, ure
, θ), (ure

, z, θ)

Figure 2 (in Appendix A) shows the above path in the graph layer i× t. We claim that there
exists A ⊆ I that covers Γ with |A| ≤ p if and only if there is a (s, z, t)-temporal separator
S ⊆ V such that |S| ≤ p.
→ Suppose that A ⊆ I covers all segments in Γ. Let S = {vi|Ii ∈ A}. It is obvious that

|S| = |A|. Now we prove that S is a (s, z, t)-temporal separator. Suppose that there is a
temporal path P in G, based on the construction of G this temporal path should be of the
form shown in equation 1 for some i ∈ [n]. This implies Ij /∈ A for all j such that ls < j < rs

or le < j < re and results in the i-th segment not being covered by A. So, based on the
contradiction we could conclude that S is a (s, z, t)-temporal separator.
← Suppose that S ⊆ V is a (s, z, t)-temporal separator in a temporal graph G. Let

A = {Ii|ui ∈ S or vi ∈ S}, it is clear that |A| ≤ |S|. Consider the i-th segment C ∈ Γ. There
should be one vertex belonging to the temporal path P which is shown in equation 1 in S

since S is a (s, z, t)-temporal separator. Therefore there is j where ls < j < rs or le < j < re

and either ui or vi belong to S, which implies C ∈ A. Thus, A covers Γ.
Now we prove that the pathwidth of the underlying graph G↓ = (V, E′) of the temporal

graph G(V, E, |Γ| × t) is bounded by 2k + 6. We refer to an edge (uma
, umb

, θ) in a path
that is shown in equation 1 as a crossing edge. Figure 3 (in Appendix A) shows a graph
G′ of which G↓ is a subgraph. Now we give a path decomposition (P, β) for a graph G↓
in which the width of decomposition is at most 2k + 6. Let V (P) = {a1, a2, . . . , am} and

ISAAC 2023

38:16 Temporal Separators with Deadlines

E(P) = {(a1, a2), . . . , (am−1, a(m))}. Let i ∈ [n] and l(i) be the largest integer such that the
starting point of the interval Iml(i) ∈ SP is before the starting point of interval Ii. Now we
define the β(ai) as follows: β(ai) = {ui, vi, ui+1, vi+1, s, z} ∪ {uml

|l ≥ l(i) and l ≤ l(i) + 2k}.

▶ Lemma 22. For any uq and i, j, l such that i < j < l, if uq ∈ β(ai) and uq ∈ β(al), we
have uq ∈ β(aj).

Proof. If Iq /∈ SP then it is clear that uq only appears in β(aq−1) and β(aq). Now suppose
that I1 ∈ SP and q = mp. Since ump

∈ β(ai) we have mp ≤ l(i) + 2k, also l(l) ≤ mp since
mp ∈ β(al). As a result we have mp ≤ l(i) + 2k ≤ l(j) + 2k and l(j) ≤ l(l) ≤ mp which
implies that uq ∈ β(aj). ◀

For any vi ∈ V it is clear that vi just belongs to the two sets β(ai−1) and β(ai). Also,
s and z are present in all the sets. Therefore, by Lemma 1 we could say that the third
property of path decomposition is satisfied. So, it is sufficient to show that for every edge
(u, v) ∈ E(G↓) there exists i ∈ [n] such that {u, v} ⊆ β(ai). If the edges are not crossing
edges, then there are three types of edges (ui, vi), (ui, ui+1), and (vi, vi+1) which satisfy
the condition by the definition of β(ai). If e = (ui, uj) is a crossing edge, then Ii ∈ SP

and Ij ∈ SP , so let mp = i and mq = j. Since this edge corresponds to a segment C such
that s(C) ∈ Imp and e(C) ∈ Imq we could conclude that mq ≤ mp + 2k which implies that
ui, uj ⊆ β(ai). Also, the cardinality of all sets β(ai) is 2k + 7 which implies that the width of
(P, β) is 2k + 6. Therefore the pathwidth of the underlying graph G↓ is at most 2k + 6. ◀

▶ Theorem 23. If the (s, z, t)-Temporal Separator problem on temporal graphs with bounded
pathwidth is solvable in polynomial time then the DISC-SC-k problem is solvable in polynomial
time.

6 Conclusions

In this work, we defined the (s, z, t)-Temporal Separator problem, generalizing the (s, z)-
Temporal Separator problem. We showed that (s, z)-Temporal Separator and (s, z, t)-
Temporal Separator problems could be approximated within τ and τ2 approximation ratio,
respectively, in a graph with lifetime τ . We also presented a lower bound Ω(log(n) + log(τ))
for polynomial time approximability of (s, z, t)-Temporal Separator assuming that NP ̸⊂
Dtime(nlog log n). Then we considered special classes of graphs. We presented two efficient
algorithms: one for temporal graphs G with bw(G↓) ≤ 2 and one for temporal graphs G with
G↓ \ {s, z} being a tree. The question of whether there is a polynomial-time algorithm to
compute a minimum (s, z, t)-temporal separator in a temporal graph of bounded treewidth
remains an interesting open problem. However, we showed a reduction from the DISC-
SC-k problem to (s, z, t)-Temporal Separator when the pathwidth of the underlying graph
is bounded by a constant number. Therefore, designing efficient algorithms for bounded
treewidth graphs encounters serious obstacles, such as making progress on the open problem
of the hardness of DISC-SC-k. Another interesting direction of future research is to consider
temporal separator problems with the additional restriction of “balancedness”, as discussed
at the end of Section 3.

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:17

References
1 Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-2):3–26, 2003.
2 Haeder Y. Althoby, Mohamed Didi Biha, and André Sesboüé. Exact and heuristic methods

for the vertex separator problem. Computers and Industrial Engineering, 139:106135, 2020.
doi:10.1016/j.cie.2019.106135.

3 Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin.
Algorithms on evolving graphs. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pages 149–160, 2012.

4 Dan Bergren, Eduard Eiben, Robert Ganian, and Iyad Kanj. On covering segments with
unit intervals. In 37th International Symposium on Theoretical Aspects of Computer Science
(STACS 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

5 Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for
branchwidth. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela,
editors, Automata, Languages and Programming, pages 627–637, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

6 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

7 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

8 Xiaojie Deng, Bingkai Lin, and Chihao Zhang. Multi-multiway cut problem on graphs of
bounded branch width. In Frontiers in Algorithmics and Algorithmic Aspects in Information
and Management, pages 315–324. Springer, 2013.

9 Jessica Enright, Kitty Meeks, George B Mertzios, and Viktor Zamaraev. Deleting edges to
restrict the size of an epidemic in temporal networks. arXiv preprint, 2018. arXiv:1805.06836.

10 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

11 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. In International Colloquium on Automata,
Languages, and Programming, pages 531–543. Springer, 2004.

12 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Departmental Papers (CIS), page 236, 2005.

13 Afonso Ferreira. Building a reference combinatorial model for manets. IEEE network, 18(5):24–
29, 2004.

14 Paola Flocchini, Bernard Mans, and Nicola Santoro. Exploration of periodically varying graphs.
In International Symposium on Algorithms and Computation, pages 534–543. Springer, 2009.

15 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020.

16 Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and node
weighted graphs. In International Colloquium on Automata, Languages, and Programming,
pages 487–498. Springer, 1994.

17 Hovhannes A. Harutyunyan, Kamran Koupayi, and Denis Pankratov. Temporal separators
with deadlines, 2023. arXiv:2309.14185.

18 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

19 George B Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Temporal
network optimization subject to connectivity constraints. In International Colloquium on
Automata, Languages, and Programming, pages 657–668. Springer, 2013.

20 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016.

ISAAC 2023

https://doi.org/10.1016/j.cie.2019.106135
https://arxiv.org/abs/1805.06836
https://arxiv.org/abs/2309.14185

38:18 Temporal Separators with Deadlines

21 Neil Robertson and Paul D Seymour. Graph minors. x. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

22 Neil Robertson and P.D. Seymour. Graph minors. i. excluding a forest. Journal of Combinatorial
Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

23 Ryan A Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Modeling dynamic
behavior in large evolving graphs. In Proceedings of the sixth ACM international conference
on Web search and data mining, pages 667–676, 2013.

24 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
computer and system sciences, 26(3):362–391, 1983.

25 Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path problems
in temporal graphs. Proceedings of the VLDB Endowment, 7(9):721–732, 2014.

26 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016.

27 B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer Science,
14(02):267–285, 2003.

28 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity
of finding small separators in temporal graphs. Journal of Computer and System Sciences,
107:72–92, 2020.

A Figures

u1 u2

uls uma
urs ule umb

ure

um

v1 v2 vls vma
vrs vle vmb

vre vm

s z

Figure 2 Demonstration of one step of the reduction in the proof of Theorem 20. The figure
shows the (s, z, t)-temporal path in the layer Gj×t. The time label for all edges is j × t.

v1 v2 vma
vmb

vm−1 vm

s z

u1

u2

uma
umb

um−1 um

Figure 3 Illustration of the graph G′ which is used to show that the output of the reduction from
Theorem 20 has bounded pathwidth. The underlying graph G↓ is a subgraph of G′.

https://doi.org/10.1016/0095-8956(83)90079-5

H. A. Harutyunyan, K. Koupayi, and D. Pankratov 38:19

B Pseudocode

Algorithm 2 This algorithm computes a minimum sized restricted path (s, z)-temporal
separator in a temporal graph G when G↓ \ {s, z} is a tree T .

Function ComputeRLs(G, s, z):
U ← ∅;
for (u, w) ∈ V (T)× V (T) do

if ExistsRestrictedPath(G1
u,w, s, z) or

ExistsRestrictedPath(G2
u,w, s, z) then

U ← U ∪ {(u, w)};
for v ∈ V (Pu,w) do

RLv ← RLv ∪ {(u, w)};
Function GreedyRTS(G, s, z, RL,U)):

S ← ∅;
while U ̸= ∅ do

v ← furthest node from the root of T such that ∃(u, w) ∈ RLv \RLparent(v);
S ← S ∪ {v};
U ← U \RLv;
for w ∈ V (T) do

RLw ← RLw \RLv;
return S;

ISAAC 2023

Regularization of Low Error PCPs and an
Application to MCSP
Shuichi Hirahara #

National Institute of Informatics, Tokyo, Japan

Dana Moshkovitz #

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
In a regular PCP the verifier queries each proof symbol in the same number of tests. This number
is called the degree of the proof, and it is at least 1/(sq) where s is the soundness error and q is
the number of queries. It is incredibly useful to have regularity and reduced degree in PCP. There
is an expander-based transformation by Papadimitriou and Yannakakis that transforms any PCP
with a constant number of queries and constant soundness error to a regular PCP with constant
degree. There are also transformations for low error projection and unique PCPs. Other PCPs are
constructed especially to be regular. In this work we show how to regularize and reduce degree of
PCPs with a possibly large number of queries and low soundness error.

As an application, we prove NP-hardness of an unweighted variant of the collective minimum
monotone satisfying assignment problem, which was introduced by Hirahara (FOCS’22) to prove
NP-hardness of MCSP∗ (the partial function variant of the Minimum Circuit Size Problem) under
randomized reductions. We present a simplified proof and sufficient conditions under which MCSP∗ is
NP-hard under the standard notion of reduction: MCSP∗ is NP-hard under deterministic polynomial-
time many-one reductions if there exists a function in E that satisfies certain direct sum properties.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases PCP theorem, regularization, Minimum Circuit Size Problem

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.39

Funding Shuichi Hirahara: Supported by JST, PRESTO Grant Number JPMJPR2024, Japan.
Dana Moshkovitz : Supported by the National Science Foundation under grants number 2200956 and
2312573.

Acknowledgements We are thankful to Dean Doron for discussions about explicit construction of
dispersers.

1 Introduction

1.1 Regularization of Low Error PCPs
In a Probabilistically Checkable Proof (PCP) the verifier uses randomness to pick a small
number of queries to its proof. A correct proof is typically accepted, whereas a proof of
an incorrect statement is typically rejected. PCPs found many surprising applications over
the years in areas like hardness of approximation [14, 15], cryptography [30], complexity
theoretic lower bounds [49, 2, 9], quantum computation [25] and metric embeddings [29].

It is often desirable, both for the construction of PCPs and for their applications, that the
PCP is regular1, that is, the verifier queries each proof symbol on the same number of tests.
This number is called the degree. Some PCPs are naturally regular or can be made regular

1 We remark that regular PCPs were called smooth PCPs in a few forks following the definition of smooth
locally decodable codes [27]. In PCP the term “smooth PCP” was also used with a completely different
meaning [21]. Hence, we will use the term “regularity” and not “smoothness”.

© Shuichi Hirahara and Dana Moshkovitz;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s_hirahara@nii.ac.jp
mailto:danama@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2023.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Regularization of Low Error PCPs and an Application to MCSP

with some effort (see, e.g., [38] that constructed a regular PCP from scratch). In contrast,
other constructions are inherently non regular, typically because the proof consists of different
parts with different roles. Most constructions, and especially algebraic constructions, do
not naturally have small degree. We focus on regularization and degree reduction, i.e., on
transformations that take any PCP verifier and create a similar PCP verifier that is regular
and has small degree.

Note that for a regular PCP with degree d, number of queries q and soundness error
s we have s > 1/(dq). The reason is that fraction 1/(dq) of the randomness strings have
disjoint queries. Since each verifier test is satisfiable on its own, it is always possible to satisfy
fraction 1/(dq) of the tests. Thus, the degree has to be at least 1/(sq). As q is typically
constant or only slightly super-constant, one desires d that is about 1/s.

For soundness error s close to 1 and a small number of queries q, Papadimitriou and
Yannakakis [37] showed how to regularize the query graph and make the degree constant.
This was extended to the case of low soundness error and unique or projection games (q = 2)
that is especially important for hardness of approximation [28, 34, 11].

We regularize and decrease degree of PCPs of low soundness error s and a general number
q of queries:

▶ Theorem 1 (Regularization and degree reduction). Let V be a PCP verifier that uses r

random bits to make q queries to a proof over alphabet Σ and has completeness error c and
soundness error s, where s ≤ min{1/(eq), 1/ |Σ|a} for e the basis of the natural logarithm
and a constant 0 < a ≤ 1. Then V can be efficiently transformed into a new PCP verifier V ′

whose query graph is bi-regular and where proof symbols have degree d = qpoly(1/s). The
verifier V ′ uses r + O(log(1/s)) random bits to make poly(q) queries to a proof over alphabet
Σ. It has completeness error c and soundness error O(sΩ(1)).

We can apply our theorem to the PCPs with the lowest error known today:
For a large constant number of queries:

▶ Corollary 2 (follows from [10, 12] and Theorem 1). For any β > 0, for any s ≥ 2−(log n)1−β ,
for every L ∈ NP, there exists a regular PCP verifier V for L that uses r random bits to
make q queries to a proof over alphabet Σ and has perfect completeness and soundness error
s, where r = O(log n), |Σ| = poly(1/s), and q = poly(1/β). The degree is d = poly(1/s).

For a super-constant number of queries:

▶ Corollary 3 (follows from [12] and Theorem 1). For every L ∈ NP, there exists a regular
PCP verifier V for L that uses r random bits to make q queries to a proof over alphabet
Σ and has perfect completeness and soundness error s, where r = O(log n), s = 1/poly(n),
|Σ| = n1/(log log n)O(1) , and q = (log log n)O(1). The degree is d = poly(n).

1.2 Regularization Technique
Next we describe the Papadimitriou–Yannakakis transformation and subsequent work, as
well as explain the difficulty with a larger number of queries and low soundness error. The
idea of Papadimitriou and Yannakakis was to replace each proof symbol with several “copies”
of the symbol depending on the symbol’s original degree. Whenever the verifier wishes to
query the symbol, it queries one of the copies instead, so all copies have low degree. The
verifier also checks equality between copies by placing an expander of low degree on the set of
copies, and picking a random edge from the expander. Overall, the verifier makes an original
test with probability 1

2 and an equality check with probability 1
2 .

S. Hirahara and D. Moshkovitz 39:3

This construction is only for the case of large soundness error s > 1
2 , because half of

the tests can be satisfied even in the soundness case. Why is this construction only for a
small number of queries? Because for an original test all q copies queried must be consistent
with some global proof π. For the Papadimitrious–Yannakakis verifier this happens if the
soundness error is sufficiently larger than 1 − 1

q , so we can tolerate a union bound over the q

queries.
To allow for lower soundness error one can combine equality tests with original tests,

however the natural way to do it requires poly(q, 1/s) queries in order to ensure that except
with probability s the labels to every copy queried are consistent with the majority alphabet
symbol for the query. Unfortunately, 1/s is large when the soundness error s small. In
particular, 1/s is often much larger than the number of queries q, so one would get a PCP
with a much worse number of queries than the number of queries one started with.

An exception is known for “robust” PCPs2, for which an increase in the number of queries
as described above is acceptable, since robust PCPs can always be converted to PCPs with
two queries [11]. Indeed, the transformation outlined above, combining the original test
with equality tests is equivalent to the regularization and degree reduction of [34]. Alas, the
robust PCPs of lowest error [34, 13] have alphabet size exp(1/s) instead of poly(1/s). In
particular, to keep the alphabet size polynomial in n for a robust PCP the soundness error
has to be at least logarithmically small in n.

We show how to regularize and reduce the degree of general, non robust, PCPs while
maintaining poly(q) queries and O(sΩ(1)) soundness error. The degree becomes poly(q, 1/s)
(recall that degree 1/(qs) is needed).

Our construction is similar in spirit to what was described above: we introduce copies
for each of the original proof symbols. For each original query the verifier makes queries
to several of its copies, checking equality on the copies as well as checking the original test.
Surprisingly, we show that only poly(q) queries chosen according to a disperser suffice. Our
main insight is that since the soundness error s of the original PCP is small, it suffices to have
a list decoding of size about q

√
1/s for each one of the q queries. There is only probability

about (q
√

s)q = s that q copies of an original proof symbol all fall outside the list decoding.

1.3 An Application to MCSP
We expect that our regularization would have many applications in future. Here, we present
a specific application of regularization to the Minimum Circuit Size Problem (MCSP) [26].

MCSP is the decision problem that asks to decide whether there exists a circuit of size
s that computes a given function f : {0, 1}n → {0, 1}, given the truth table of f and a size
parameter s ∈ N. It is easy to see that MCSP ∈ NP, but it is a long-standing open question
whether MCSP is NP-hard. In fact, Levin [32] delayed his publication on the theory of
NP-completeness because he hoped to prove NP-hardness of MCSP. In his seminal paper [32],
he proved NP-completeness of DNF-MCSP∗, i.e, the partial function variant of the Minimum
DNF Formula Size Problem. In addition to its historical aspect, MCSP has connections
to many areas of theoretical computer science, including learning theory [7], average-case
complexity [17], circuit complexity [26, 36, 8], and cryptography [42, 33]. Recently, NP-
hardness of the partial function variant of MCSP, denoted by MCSP∗, was resolved under
randomized polynomial-time reductions [18]. Here, MCSP∗ is the problem of deciding if there
exists a circuit of size s that computes a given partial function f on input x ∈ f−1({0, 1}),
given the truth table of f : {0, 1}n → {0, 1, ∗} and s ∈ N as input.

2 In a robust PCP [5], in the soundness case, only s fraction of tests are even s-close (in Hamming
distance) to satisfying. This notion is equivalent to projection PCP [11].

ISAAC 2023

39:4 Regularization of Low Error PCPs and an Application to MCSP

The starting point of the NP-hardness reduction of [18] is the problem called Collective
Minimum Monotone Satisfying Assignment Problem (CMMSA). The input of CMMSA
consists of a collection of monotone formulas of size ∆ over n variables, where ∆ ≪ n, and
the task is decide whether there exists an assignment for the n variables with small weight
that satisfies as many formulas as possible. In [18], the weighted version of CMMSA in which
each variable has its own weight is shown to be NP-hard to approximate within a factor of
∆Ω(1) using low-error PCP systems. The reason why variables are assigned weights comes
from the fact that low-error PCP systems may not be regular. Using our regularization for
low-error PCPs, we prove NP-hardness of the unweighted version of CMMSA. This enables
us to present a simpler proof of NP-hardness of MCSP∗.

Using the simplified proof, we investigate whether MCSP∗ is NP-hard under the standard
notion of reduction. The NP-hardness of MCSP∗ shown in [18] differs from the standard
notion of NP-hardness in that the reduction is randomized. The usage of randomized
reductions is in some sense necessary because of the connection to a circuit lower bound
for explicit functions: A line of work [26, 20, 19, 41] shows that NP-hardness of MCSP∗

under deterministic reductions implies breakthrough separations, such as EXP ̸= ZPP or
EXP ̸⊆ P/poly. Thus, proving NP-hardness of MCSP∗ under deterministic reductions is at
least as difficult as the central open problems in complexity theory. In fact, the hardness of
certain variants of MCSP under deterministic reductions characterizes some circuit lower
bounds for explicit functions [1].

We present sufficient conditions under which the reduction of [18] can be derandomized:
MCSP∗ is NP-hard under deterministic polynomial-time many-one reductions if there exists
a family f =

{
fk,n : {0, 1}k × {0, 1}n → {0, 1}

}
k,n∈N ∈ E = DTIME[2O(n)] of functions with

certain “direct sum” properties. Roughly speaking, for some parameter σ ≥ 2Ω(n), we require
that (i) fk,n(i, -) can be computed by a circuit of size σ for every i ∈ {0, 1}k, and that (ii)
for any set B ⊆ {0, 1}k, the size of any circuit that computes fk,n(i, -) for every i ∈ B on
average is at least ≳ |B| · σ. Although the actual assumption is somewhat stronger, it can be
shown that a random function satisfies the direct sum properties with high probability. The
original proof of [18] heavily relies on Kolmogorov complexity, and it is unclear what property
of random functions is used. Our contribution is to identify the direct sum properties that
are sufficient for the proof to go through, by giving a simplified proof that does not rely on
Kolmogorov complexity.

We mention that, in general, any randomized polynomial-time reduction for a problem
in NP can be derandomized to a deterministic polynomial-time nonadaptive reduction that
makes several queries, under the assumption that E = DTIME[2O(n)] cannot be computed
by non-deterministic circuits of size 2Ω(n). This follows from the theory of pseudorandom
generators secure against non-deterministic circuits [31, 43]. We also mention that Ilango [22]
showed that MCSP∗ is hard under the Exponential-Time Hypothesis, which provides an
exponential-time reduction from SAT to MCSP∗. Here, we aim at obtaining NP-hardness of
MCSP∗ under deterministic polynomial-time many-one reductions.

2 Regularization and Degree Reduction For General PCPs

2.1 Preliminaries
2.1.1 Expanders and Dispersers
We will use an explicit construction of expanders obtained by powering an explicit constant
degree expander. For a constant degree expander one can use the construction of [39] based
on the zig zag product. The same paper discusses powering as well. The parameters one can
get are given in this lemma (for a proof see the appendix of [34]):

S. Hirahara and D. Moshkovitz 39:5

▶ Lemma 4 (Explicit construction of expanders). There is a constant α < 1 and a function
∆ : N → N+ with ∆(D) = Θ(D), such that given two natural numbers n and D, one can
find in time polynomial in n and in D an undirected (multi-)graph G = (V, E) with |V | = n,
which is ∆(D)-regular and whose adjacency matrix has second largest eigenvalue (in absolute
value) λ ≤ (∆(D))α.

We will use expander random walk as a hitter (see, e.g., Theorem 4.7 in [47]):

▶ Lemma 5 (Expander random walk hitting property). Let G = (V, E) be a ∆-regular undirected
(multi-)graph, whose adjacency matrix has second largest eigenvalue (in absolute value) λ∆.
Then, for any set B ⊆ V of fraction µ = |B| / |V |, the probability that a random walk
v1, . . . , vt in G satisfies vi ∈ B for i = 1, . . . , t is at most (µ + λ)t.

Lemma 4 and Lemma 5 give an explicit construction of a disperser:

▶ Definition 6 (Disperser/hitter). A (δ, ε)-disperser graph is a bi-regular bipartite graph
G = (U, V, E) such that for every set B ⊆ V of fraction at most ε, for at most δ fraction of
the u ∈ U it holds that all of u’s neighbors in G are in B.

▶ Corollary 7 (Explicit disperser). For any q ≥ 1 and 0 < ε < 1, for any N ≥ (1/ε)q+1

there is an explicit construction of a (eεq, ε)-disperser G = ([N], [M], E) with N -degree q and
M -degree q · poly(1/εq).

Proof. Let G = ([M], E) for M = N/∆q be an explicit expander of degree ∆ = poly(1/ε) and
second eigenvalue (ε/q)∆ as given by Lemma 4. Let N correspond to length q walks in G. In
the disperser each walk is connected to the q vertices it contains. Let B ⊆ [M] of fraction ε. By
Lemma 5, the fraction of walks that fall completely in B is (ε+ε/q)q = εq(1+1/q)q ≤ eεq. ◀

2.1.2 PCP Verifiers and Their Parameters
▶ Definition 8 (PCP verifier). A PCP verifier for a language L is a procedure that on input
x uses r bits of randomness to make q queries to a proof π of length m over alphabet Σ. The
verifier satisfies the following:

Completeness: If x ∈ L then there exists π that the verifier accepts with probability at
least c.
Soundness: If x /∈ L then for all π the verifier accepts with probability at most s.

Typically, if n is the input size one considers r that is logarithmic in n, so the answers to
all the 2r tests would make an NP witness if x ∈ L. The number of queries is typically a
constant independent of n or slightly super constant; ideally q = 2. We have s ≥ 1/ |Σ|q,
since a random proof would satisfy at least this fraction of verifier tests. Thus, |Σ| is ideally
close to 1/s1/q. The completeness c is often 1. The soundness error s is as small as possible.
Sometimes one considers a constant s < 1, and sometimes sub-constant s is desired. Note that
s ≥ 2−r. Ideally one could hope for s that is exponentially small in r and polynomially small
in n. However, it is currently a known open problem (“The Sliding Scale Conjecture” [4])
whether polynomially small error can be achieved simultaneously with constant number
of queries. The state-of-the-art PCP with soundness error s = 1/n has q = poly(log log n)
queries [12].

▶ Definition 9. The query graph QV of a PCP verifier V that uses r random bits to make q

queries to a proof of length m is the bipartite graph that has the 2r randomness strings of the
verifier on one side and the m proof symbols of the proof π on the other side. Connect each
randomness string to the q queries the verifier makes on this randomness string.

ISAAC 2023

39:6 Regularization of Low Error PCPs and an Application to MCSP

2.2 Our Regularization and Its Analysis
Assume a PCP verifier V that uses r random bits to make q queries to a proof π over alphabet
Σ and has completeness c and soundness s, where s ≤ 1/(eq), 1/ |Σ|a for a constant 0 < a ≤ 1
(e is the basis of the natural logarithm). We will construct a new, similar, PCP verifier V ′

with a bi-regular query graph of small degree as specified in Theorem 1.
Let A = 1/s. First, duplicate each of the 2r tests A times, so each of the degrees is at

least A. This causes r to grow to r + O(log(1/s)) and does not change the other parameters.
For l = A, A + 1, . . . , 2r · A consider an explicit disperser Gl = ([l], [ml], El) as guaranteed
by Corollary 7 for N = l vertices, [l]-degree q′ = ⌈6q/a⌉, and ε = s1/(2q). Note that ml < l.
If V queries the i’th symbol in the proof in d(i) verifier tests, then replace the i’th symbol
with md(i) new symbols symbol(i, j), 1 ≤ j ≤ md(i) that are supposed to be copies of the i’th
symbol. That is, in the proof for V ′ in the completeness case all those copies are assigned
the same label from Σ as the one assigned to the i’th symbol in the completeness proof of V .

The verifier V ′ picks a uniformly random test of the verifier V . For every symbol i that
the test queries, if the test is the t’th test on which the i’th symbol is queried (1 ≤ t ≤ d(i)),
the verifier V ′ queries instead the q′ copies of the i’th symbol that correspond to the Gd(i)
neighborhood of t. The verifier V ′ checks equality between the copies in addition to the
original test. Overall the number of queries that V ′ makes is O(q2), and the degree of every
proof symbol is the same poly(q, 1/s). This step does not change the number of random bits
the verifier uses. The alphabet of the proof is the same as the alphabet of the proof of V .
The completeness error c of V ′ is the same as the completeness error c of V .

It remains to prove soundness. Suppose that we have a proof for V ′ that V ′ accepts with
probability larger than 2

√
s.

Let L = 1/ε and assume for simplicity that L is a natural number (otherwise, round it).
For every original proof symbol i, consider the L labels from the alphabet Σ that repeat in
the proof of V ′ in the largest number of copies symbol(i, j). We call a label from Σ “bad” for
i if it is not one of those L. We call a copy “bad” for i if its label is bad for i. Note that a
bad label repeats in at most ε fraction of copies.

For any original query i, consider a uniform choice of a V test among the d(i) tests
that query it, as well as the q′ corresponding queries of V ′ to copies symbol(i, j). By the
disperser property, for every bad label σ ∈ Σ for i, the probability that V ′ accepts and
queries copies labeled σ is at most eεq′ ≤ es3/a ≤ s/(q |Σ|), where the last inequality used
the low soundness error of V . Consider a uniform test of V ′, which induces a uniform test of
V that makes q original queries. By a union bound over the q queries and |Σ| possible bad
labels for them, the probability that V ′ accepts yet for one of the q queries it queries a bad
copy is at most s.

Hence, with probability larger than 2
√

s − s ≥
√

s over a choice of a uniform V ′ test, the
verifier accepts and for none of the q original queries it queries a bad copy. Consider the
following proof for V : for every proof symbol pick uniformly at random one of its L labels.
The probability that this assignment is accepted is larger than

√
s · (1/L)q = s.

3 Application: NP-Hardness of Partial MCSP

As an application, we simplify the proof of NP-hardness of MCSP∗ and present two sufficient
conditions under which the randomized reductions of [18] can be derandomized. The first
sufficient condition is that E cannot be computed by 2cn-time algorithms with 2n − 2n/2 bits
of advice for a sufficiently large constant c. This condition is essentially equivalent to the
statement that there exists a polynomial-time algorithm that, on input 1N , outputs a string

S. Hirahara and D. Moshkovitz 39:7

of length N whose time-bounded Kolmogorov complexity is at least N −
√

N [40].3 The
second sufficient condition is weaker and is that there exists a function in E that satisfies
“direct sum” properties.

To define the direct sum properties formally, we introduce the notion of oracle-sum
circuit, which generalizes a standard circuit. An oracle-sum circuit consists of a pair (C, D)
of an oracle circuit C and a circuit D. The oracle-sum circuit computes a function f such
that f(x) = CD(x), i.e., the function computed by the D-oracle circuit C. Abusing the
notation, we identify (C, D) with the function computed by (C, D). The size of an oracle-sum
circuit is measured by |C| + |D|, where |C| and |D| denote the number of wires in C and D,
respectively. Note that it is possible to simulate an oracle-sum circuit (C, D) by a circuit
of size O(|C| · |D|) by having |C| copies of the circuit D. The main difference between an
oracle-sum circuit and a standard circuit lies in how we measure their size.

For a function f : {0, 1}n → {0, 1}, let fm : ({0, 1}n)m → {0, 1}m denote the m-wise
direct product of fi, i.e., the function defined as fm(x1, . . . , xm) := (f(x1), . . . , f(xm)). We
now provide the formal definition of direct sum properties.

▶ Definition 10. For a function σ : N2 → N, a family f =
{

fk,n :{0, 1}k ×{0, 1}n →{0, 1}
}

k,n∈N
of functions is said to have σ-direct sum properties if the following hold for some constant
δ > 0 and all sufficiently large constant c.
1. For every B ⊆ {0, 1}k, there exists a circuit C of size |B| · σ(k, n) such that C computes

the m-wise direct product of fi for every i ∈ B, i.e., (fm
i | i ∈ B), where m := nc. Here,

fi(x) := fk,n(i, x).
2. For every B ⊆ {0, 1}k and every oracle-sum circuit C of size at most |B| · σ(k, n) · n−1/c,

there exists i ∈ B such that Prx∼{0,1}n [C(i, x) = fi(x)] ≤ 1 − δ.
Roughly speaking, a function with σ-direct sum properties satisfies that the circuit complexity
of computing (fi | i ∈ B) is approximately equal to σ · |B| for every B ⊆ {0, 1}k. Definition 10
is stronger than this in the following respects: (i) Item 1 states that for every i ∈ B, not
only each fi is computable by a circuit of size σ, but also the m-wise direct product of fi is
computable by a circuit of size σ. In particular, computing fm

i is as easy as computing fi,
which means that the strong direct sum property for fi fails to hold. (ii) Item 2 is a strong
direct sum property for (fi | i ∈ B), and states that oracle-sum circuits of size ≲ |B| · σ

cannot compute (fi | i ∈ B) on average.
The formal definition of MCSP∗ is as follows.

▶ Definition 11. For a partial function f : {0, 1}n → {0, 1, ∗}, let CC∗(f) denote the
minimum number of the wires in a circuit C such that C(x) = f(x) for every x ∈ {0, 1}n.
Partial MCSP (MCSP∗) is defined as the language that consists of (f, s) such that CC∗(f) ≤ s,
where f is encoded as a binary string of length 2Θ(n).

We now state the main result of this section.

▶ Theorem 12. Assume that either
1. for every constant c > 0, there exists a language in E \ i.o.DTIME[2cn]/(2n − 2n/2), or
2. there exists a family f = {fk,n}k≤n functions computable in time 2O(n) with σ-direct sum

properties, where σ(k, n) ≥ 2γn for some constant γ > 0.
Then, MCSP∗ is NP-hard under deterministic polynomial-time many-one reductions.

We first show that the first condition implies the second condition in Theorem 12. Item 1
of Definition 10 follows from Uhlig’s theorem:

3 We mention that this can be optimized to N − N1−ϵ for any constant ϵ > 0.

ISAAC 2023

39:8 Regularization of Low Error PCPs and an Application to MCSP

▶ Lemma 13 ([45, 46]; see also [48]). Let r : N → N be a function such that r(n) = 2o(n/ log n).
Then, for all large n ∈ N, for any function f : {0, 1}n → {0, 1}, there exists a circuit of size
O(2n/n) that computes fr(n) : ({0, 1}n)r(n) → {0, 1}r(n).

▶ Proposition 14. There exists a constant c > 0 such that if f : {0, 1}k × {0, 1}n → {0, 1}
cannot be computed by any algorithm running in time 2cn with 2n+k − 2n−1 bits of advice,
then f satisfies the σ-direct sum property for σ = Θ(2n/n).

Proof. To see the first property of Definition 10, for each i ∈ B, by Lemma 13, there exists a
circuit Ci of size O(2n/n) that computes the m-wise direct product fm

i of fi. By combining
the circuits (Ci | i ∈ B) for all i ∈ B, we obtain a circuit of size |B| · O(2n/n) that computes
fm

i for every i ∈ B.
Let Kt(x) denote the t-time bounded Kolmogorov complexity of x, i.e., the length of

a shortest program that prints x in time t. Then, the assumption implies that K2cn(f) ≥
2n+k − 2n−1.

To see the second property, we first claim that for every B ⊆ [n], the time-bounded
Kolmogorov complexity of fB := (fi | i ∈ B) is at least |B| · 2n−2. Since f can be described
by a description for (fi | i ∈ B), the set B, and (fi | i ∈ {0, 1}k \ B), we have

2n+k − 2n−1 ≤ Kt(f) ≤ Kt′
(fB) + |B| · O(k) + (2k − |B|) · 2n

for some t, t′ ≤ 2O(n). It follows that Kt(fB) ≥ |B| · (2n − 2n−1 − O(k)) ≥ |B| · 2n−2.
We now claim that any small oracle-sum circuit fails to approximate (fi | i ∈ B). Let C

be an oracle-sum circuit of size s such that Prx∼{0,1}n [C(i, x) = fi(x)] ≥ 1 − δ for every
i ∈ B. For each i ∈ B, the set of inputs x such that C(i, x) ̸= fi(x) can be described by
log

∑
k≤δ2n

(2n

k

)
≤ H2(δ)2n ≤ 2n−3 bits, where the last inequality holds for a sufficiently

small constant δ > 0. Since C can be described by O(s log s) bits, (fi | i ∈ B) can be
described by O(s log s) + |B| · 2n−3. Thus, we obtain |B| · 2n−3 ≤ O(s log s), which implies
s ≥ Ω(|B| · 2n/n). ◀

Since a random function has high Kolmogorov complexity, the proof of Proposition 14 also
shows that a random function satisfies Θ(2n/n)-direct sum properties with high probability.

3.1 Collective Minimum Monotone Satisfying Assignment Problem
In [18], Collective Minimum Monotone Satisfying Assignment (CMMSA) was introduced
and shown to be NP-hard to approximate. Using the regularization for low-error PCPs, we
show that the same hardness of approximation can be proved for the unweighted version of
CMMSA.

For an assignment α : [n] → {0, 1}, let w(α) denote the Hamming weight
∑n

i=1 α(i) of α.
For a formula φ, let φ(α) ∈ {0, 1} denote the output of φ when the variables are assigned
by α.

▶ Definition 15 ([18]). The Collective Minimum Satisfying Assignment problem (CMMSA)
with gap g ∈ N and soundness ϵ > 0 is the following problem. The input consists of
a collection Φ = {φ1, . . . , φm} of monotone formulas over the set [n] of variables and a
threshold parameter s ∈ N. The task is to distinguish the following two cases.
Yes: There exists an assignment α : [n] → {0, 1} such that

w(α) ≤ s and Pr
φ∼Φ

[φ(α) = 1] = 1.

S. Hirahara and D. Moshkovitz 39:9

No: For every assignment α : [n] → {0, 1}, if w(α) ≤ g · s, then

Pr
φ∼Φ

[φ(α) = 1] < ϵ.

The degree of Φ is defined to be maxφ∈Φ |φ|, where |φ| denotes the number of the literals in
the formula φ. The size of an instance of CMMSA is measured by the number n of input
variables.

▶ Theorem 16. For any constant β > 0, there exists a constant α > 0 such that for every
parameter ∆: N → N such that ω(1) ≤ ∆(n) ≤ 2(log n)1−β for all large n ∈ N, it is NP-hard
under polynomial-time many-one reductions to compute CMMSA with gap ∆(n)α, degree
∆(n), and soundness ∆(n)−α on a collection Φ of monotone DNF formulas over n variables.

The proof of Theorem 16 is essentially the same with [18], except that we use the
regularized PCP system of Corollary 2.

Proof of Theorem 16. The PCP theorem of Corollary 2 can be stated in terms of MaxCSP
as follows: Let Ψ = {C1, . . . , Cm} be the set of constraints over n variables on the alphabet
Σ. Here, for any internal randomness j ∈ {0, 1}O(log n) of a PCP verifier, there is a constraint
Cj . Each constraint Cj depends on D = O(1/β) variables. The size of the alphabet Σ is at
most poly(1/δ), where δ is the soundness error. Let C−1

j (1) denote the set of assignments to
the variables in Cj that cause Cj to accept. Here, an assignment r to the variables in Cj is a
function r : dom(r) → Σ, where dom(r) ⊆ [n] denotes the set of variables in Cj .

Given the MaxCSP instance Ψ over Σ, we reduce it to an instance (Φ, s) of CMMSA as
follows: Each variable of Φ is indexed by (x, a) ∈ [n] × Σ and is denoted by Lx,a. Informally,
Lx,a = 1 indicates that the variable x in the original CSP instance Ψ is assigned to a ∈ Σ.
For each j ∈ [m], construct a monotone DNF formula φj defined as

φj(L) :=
∨

r∈C−1
j

(1)

∧
x∈dom(r)

Lx,r(x).

The threshold s is defined to be n.
We prove the correctness of the reduction. Assume that the CSP instance Ψ is satisfied by

an assignment α : [n] → Σ. Then, we set Lx,α(x) := 1 and Lx,y := 0 for every y ∈ Σ \ {α(x)}.
The weight of the assignment L : [n] × Σ → {0, 1} is w(L) = n. By the perfect completeness,
we have Cj(α) = 1 for every j ∈ [m]; thus, α satisfies every formula in Φ. It follows that
(Φ, s) is a Yes instance of CMMSA.

Next, assume that any assignment to Ψ can satisfy at most a δ-fraction of constraints in
Ψ. Assume that there exists an assignment L : [n] × Σ → {0, 1} such that w(L) = g · n and

Pr
j∼[m]

[φj(L) = 1] ≥ ϵ, (1)

where ϵ > 0 is a parameter to be chosen later. We claim that g must be large. For each
variable x ∈ [n] of Ψ, let A(x) := {a ∈ Σ | Lx,a = 1}. Since gn = w(L) =

∑
x∈[n] |A(x)|,

we have Ex∼[n] [|A(x)|] = g. We say that x ∈ [n] is bad if |A(x)| ≥ 2gD/ϵ. By Markov’s
inequality, the probability that x is bad is at most ϵ/2D. Since the PCP system is bi-regular,
the uniform distribution x ∼ [n] is identical to the following distribution: First choose
j ∼ [m], and then choose x uniformly at random from the variables in Cj . We say that Cj is
bad if Cj contains some bad variable x. Thus, the probability, over j ∼ [m], that Cj is bad
is at most ϵ/2. Combining this with Equation (1), we obtain that

Pr
C∼Ψ

[
∃r ∈ C−1(1), ∀x ∈ dom(r), |A(x)| ≤ 2gD

ϵ
and r(x) ∈ A(x)

]
≥ ϵ − ϵ

2 = ϵ

2 .

ISAAC 2023

39:10 Regularization of Low Error PCPs and an Application to MCSP

Now, we construct a random assignment α : [n] → Σ as follows: For each x ∈ [n], pick
a ∼ A(x) ⊆ Σ uniformly and randomly and define α(x) := a. Under the event that
r ∈ C−1(1), |A(x)| ≤ 2gD

ϵ , and r(x) ∈ A(x) for every x ∈ dom(r), we have C(α) = 1 if

α(x) = r(x) for every x ∈ dom(r), which happens with probability at least
(

ϵ
2gD

)D

. It
follows that

δ ≥ Pr
C∼Ψ

α

[C(α) = 1] ≥ ϵ

2 ·
(

ϵ

2gD

)D

,

which implies that g ≥ Ω
(

ϵ2 · δ− 1
D

)
≥ Ω

(
δ− 1

2D

)
, where the last inequality holds by setting

ϵ := δ
1

4D . The number of the literals in φj ∈ Φ is at most |C−1
j (1)| · D ≤ |Σ|D · D ≤ δ−O(D).

Given a parameter ∆, we choose δ := ∆−Ω(1/D) so that the degree of Φ is at most ∆.
Then, the gap g is at least Ω

(
δ− 1

2D

)
≥ ∆Ω(1/D2). Moreover, the soundness ϵ is at least

δ
1

4D ≥ ∆−Ω(1/D2). ◀

3.2 Technical Tools
We review the three technical tools used in [18]. The first tool is a secret sharing scheme.

▶ Definition 17 (Secret Sharing Scheme [3]). A secret sharing scheme for A ⊆ 2[n] is a pair
(Share, Rec) of a randomized algorithm Share and a deterministic algorithm Rec with the
following properties:
Correctness: For every authorized set T ∈ A and for every bit b ∈ {0, 1}, the output of

Share(b) is a sequence (s1, . . . , sn) of n strings that satisfies Rec(T, sT) = b with probability
1 over the internal randomness of Share(b).

Privacy: For every unauthorized set T ̸∈ A and for every random variable b on {0, 1}, the
random variables b and Share(b)T are statistically independent.

For a monotone formula φ, let Aφ denote the access structure such that T ∈ Aφ if and
only if the indicator function of T ⊆ [n] satisfies φ.

▶ Lemma 18 ([24, 6]). Let A = {Aφ}φ be the family of access structures Aφ represented by
monotone formulas φ. Then, there exists a pair of a randomized polynomial-time algorithm
Share and a deterministic polynomial-time algorithm Rec such that for every monotone
formula φ, the pair (Share(φ, -), Rec(φ, -)) is a secret sharing scheme for the access structure
Aφ. Moreover, the length |si| of each share si is at most the number |φ| of the literals in the
formula φ.

The second tool is the Nisan–Wigderson pseudorandom generator construction.

▶ Proposition 19 ([35, 44]). For any sufficiently large parameters ℓ, m, ρ ∈ N with m ≤ 2ℓ,
there exists a “design” S1, . . . , Sm ⊆ [d] such that for every i ∈ [m],
1. |Si| = ℓ, d = O(exp(ℓ/ρ) · ℓ2/ρ), and
2. |Si ∩ Sj | ≤ ρ for every j ∈ [m] \ {i}
Moreover, such a family can be constructed in time poly(2d, m).

▶ Definition 20 (The Nisan–Wigderson pseudorandom generator construction [35]). Let S =
(S1, . . . , Sm) be a family of ℓ-sized subsets of [d]. For a function f : {0, 1}ℓ → {0, 1}, we
define a function

NWS : {0, 1}2ℓ

× {0, 1}d → {0, 1}m

S. Hirahara and D. Moshkovitz 39:11

as

NWS(f ; z) := (f(zS1), . . . , f(zSm)) ∈ {0, 1}m,

where zSi ∈ {0, 1}ℓ denotes the string obtained by concatenating all the bits of z ∈ {0, 1}d

indexed by Si ⊆ [d].

The third tool is a derandomized version of Yao’s XOR lemma.

▶ Lemma 21 ([23, 16]; see also [18]). For any constant γ > 0, there exist a constant c ∈ N and
a procedure Amp that takes a function f : {0, 1}n → {0, 1} and parameters ϵ, δ ∈ (0, 1/2) as
input, and returns a function Ampf = Ampf

ϵ,δ : {0, 1}cn → {0, 1} that satisfies the following
properties:
1. For every circuit D that computes Ampf on a (1/2 + ϵ)-fraction of inputs, there exists

an oracle circuit C of size 2γn · poly(1/ϵδ) such that CD computes f on a (1 − δ)-fraction
of inputs.

2. There is a nonadaptive f-oracle circuit of size poly(n/ϵδ) and depth O(log(n/ϵδ)) that
computes Ampf by making O(1/ϵδ) queries to f .

3. Ampf can be computed in time poly(2n, n/ϵδ) given the truth table of f and the parameters
as input.

3.3 Proof of NP-hardness of MCSP∗

We are ready to present a proof of Theorem 12. As shown in Proposition 14, the first
condition is stronger than the second condition. Thus, it suffices to show NP-hardness of
MCSP∗ under the second condition that there exists a family F = {Fk,n}k≤n of functions
with σ-direct sum properties, where σ(k, n) ≥ 2γn. Let δ > 0 be the constant of Definition 10.

We present a reduction from CMMSA with degree ∆ and soundness ϵ0 to MCSP∗, where
∆ := (log n)1/2 and ϵ0 < 1/4. Let (Φ, θ) be an instance of CMMSA, where Φ = {φ1, . . . , φν}
is a degree-∆ collection of monotone formulas over the set [n] of input variables. For each
j ∈ [ν], let Vj denote the set

{
vj

1, · · · , vj
m

}
⊆ [n] of the variables of φj . Here, m ≤ ∆ is the

number of variables on which φj depends for every j ∈ [ν]. We may assume without loss of
generality that m does not depend on j and n is a power of 2.

Let Amp be the hardness amplification procedure of Lemma 21 for ϵ := ϵ0/2∆m, and let
c ≥ 1 be the constant of Lemma 21. Let λ = nO(1) be a sufficiently large parameter. We
define ℓ := c log λ.

Let f := Flog n,log λ : {0, 1}log n × {0, 1}log λ → {0, 1}, where we identify {0, 1}log n with
[n]. For each k ∈ [n], let fk : {0, 1}log λ → {0, 1} be the function such that fk(x) = f(k, x)
for every x ∈ {0, 1}log λ. Let f̂k := Ampfk : {0, 1}ℓ → {0, 1} denote the hardness-amplified
version of the function fk.

We construct a partial function

g : {0, 1}O(log ν) × {0, 1}d × ({0, 1}∆)m → {0, 1, ∗},

which is the output of the reduction, as follows. Let S = (S1, . . . , Sm∆) be the collection
of ℓ-sized subsets of [d] from Proposition 19, where d = O(ℓ) and ρ := γ log λ. Let Si :=
(S(i−1)∆+1, . . . , S(i−1)∆+∆) for every i ∈ [m]. g takes x = (j, z, ξ1, . . . , ξm) ∈ {0, 1}O(log ν) ×
{0, 1}d × ({0, 1}∆)m as input. Define si := ξi ⊕ NWSi

(
f̂vj

i
; z

)
for every i ∈ [m], where

⊕ denotes the bit-wise XOR. Then, we check if (s1, . . . , sm) can be obtained by running
Share(φj , b) for some secret b ∈ {0, 1} and some internal randomness of Share. (Here, Share

ISAAC 2023

39:12 Regularization of Low Error PCPs and an Application to MCSP

is the randomized algorithm of Lemma 18.) If not, we define g(x) := ∗; otherwise, we define
g(x) := b. Observe that |x| = O(log ν + d + ∆m) = O(log n + ∆2) = O(log n).

We prove the correctness of the reduction that maps (Φ, θ) to an instance (g, 2θσ) of
MCSP∗ in the following two claims.

▷ Claim 22. If (Φ, θ) is a Yes instance of CMMSA, then CC∗(g) ≤ θσ + poly(n log λ/ϵδ),
where σ := σ(log n, log λ).

Since poly(n log λ/ϵδ) ≤ 2γ log λ ≤ σ for a sufficiently large λ, it follows that CC∗(g) ≤ 2θσ

in the Yes case.

Proof of Claim 22. Let α : [n] → {0, 1} be an assignment of weight θ that satisfies every
formula in Φ. Define T := α−1(1). We construct a circuit C that computes the partial
function g. Let x = (j, z, ξ1, . . . , ξm) be an input to C. First, for each k ∈ T , the circuit
C computes strings (yk

1 , . . . , yk
∆) ∈

(
{0, 1}ℓ

)∆ such that if there exists i ∈ [m] such that
k = vj

i , then yk
p = zS(i−1)∆+p

for every p ∈ [∆]. Then, for each k ∈ T , the circuit C computes
(f̂k(yk

1), . . . , f̂k(yk
∆)) from (yk

1 , . . . , yk
∆). By Lemma 21, each f̂k(yk

p) can be computed by
O(1/ϵδ) nonadaptive queries to f ; thus, the tuple

(
f̂k(yk

p)
∣∣∣ p ∈ [∆]

)
can be computed by

O(∆/ϵδ) nonadaptive queries to fk. By the direct sum property of F , the nonadaptive
queries to fk for every k ∈ T can be simulated by a circuit of size |T | · σ ≤ θ · σ. Finally,
C computes si := (f̂k(yk

1), . . . , f̂k(yk
∆)) ⊕ ξi for every k and i such that k = vj

i . Then, C

outputs b = Rec(φj , Vj ∩ T, sVj∩T). Overall, the size of the circuit is

θ · σ + poly(n∆ log λ/ϵδ). ◁

Let η > 0 be a constant such that CMMSA is NP-hard to approximate to within a factor
of 4(log λ)η. For a No instance (Φ, θ) of CMMSA, we claim that CC∗(g) is large.

▷ Claim 23. Assume that

Pr
j∼[ν]

[φj(α) = 1] ≤ ϵ0

for every assignment α of weight 4θ · (log λ)η. Then,

CC∗(g) > 2θσ.

Proof of Claim 23. Let C be an arbitrary circuit of size 2θσ. We prove that C cannot compute
g on average with respect to some distribution.

We say that C knows k ∈ [n] if there exists an oracle circuit S of size t such that SC

computes fk on a (1 − δ)-fraction of inputs, where t := 2γ log λ · poly(m∆/ϵδ). Let B be the
set of k ∈ [n] such that C knows k.

For every j ∈ [ν] and every i ∈ {0, . . . , m}, we consider the hybrid distribution Hj
i

defined by the following sampling procedure: Choose a secret b ∼ {0, 1} randomly. Let
(s1, . . . , sm) := Share(φj , b). Define

x :=
(
j, z, Y1, . . . , Yi, Y ′

i+1, . . . , Y ′
m

)
,

where Ya := NWSa

(
f̂vj

a
; z

)
⊕ sa for every a ∈ [m] and Y ′

a := Ya if vj
a ∈ B and Y ′

a ∼ {0, 1}∆

otherwise. Output (x, b).
Fix any j ∈ [ν] and i ∈ [m]. We claim that∣∣∣∣∣ Pr
(x,b)∼Hj

i−1

[C(x) = b] − Pr
(x,b)∼Hj

i

[C(x) = b]

∣∣∣∣∣ ≤ ϵ∆. (2)

S. Hirahara and D. Moshkovitz 39:13

Assume, towards a contradiction, that this does not hold. The only difference between
Hj

i−1 and Hj
i is that the i-th coordinate is Y ′

i in the former and is Yi in the latter. Let
k := vj

i . If k ∈ B, it is evident that the two distributions are identical, in which case we
are done. Thus, assume k ̸∈ B. In this case, Y ′

i is the uniform distribution. We use a
standard security proof of the Nisan–Wigderson generator to construct a C-oracle circuit SC

of size t that computes fk, which contradicts k ̸∈ B. Specifically, we use a hybrid argument
in which each bit of Yi is replaced with Y ′

i . Then, there exists a bit position a of Yi that
can be distinguished from the uniform distribution. We fix z[m∆]\Sa

, b, the randomness
of Share(φj , b) so that the distinguishing probability is preserved. Since |zSa

∩ zSa′ | ≤ ρ

for every a′ ̸= a, given zSa
, one can compute

(
f̂k(zSa′)

∣∣∣ a′ ∈ [m∆] \ {a}
)

using a circuit
of size O(m∆2ρρ) ≤ λγ · poly(m∆). By Yao’s next bit predictor, we obtain a C-oracle
circuit that computes f̂k(zSa) on a (1/2 + ϵ)-fraction of inputs. By Lemma 21, we obtain
a C-oracle circuit SC that computes fk on a (1 − δ)-fraction of inputs. The size of S is at
most λγ · poly(m∆/ϵδ) ≤ t, which implies k ∈ B. However, this contradicts k ̸∈ B.

It follows from Equation (2) that∣∣∣∣∣ Pr
(x,b)∼Hj

0

[C(x) = b] − Pr
(x,b)∼Hj

m

[C(x) = b]

∣∣∣∣∣ ≤ ϵ∆m.

Observe that g(x) = b for every (x, b) in the support of Hj
m. Thus, we have

Pr
(x,b)∼Hj

m

[C(x) = b] = Pr
(x,b)∼Hj

m

[C(x) = g(x)]

Let α : [n] → {0, 1} be a function such that α(k) = 1 iff k ∈ B. In the distribution of
(x, b) ∼ Hj

0 , only the shares in B are included in x. Thus, if φj(α) = 0, then by the privacy
of the secret sharing scheme, b and x are statistically independent, in which case we have

Pr
(x,b)∼Hj

0

[C(x) = b] = 1
2 .

We claim that the size of B is small. In order to use the direct sum property of F , we
construct a small oracle-sum circuit (S, C) that approximates fk for every k ∈ B. For each
k ∈ B, let Sk be the oracle circuit Sk of size t such that SC

k computes fk on a (1 − δ)-fraction
of inputs. We define an oracle circuit SC as follows: Given k ∈ B and x ∈ {0, 1}n as
input, the circuit outputs SC

k (x). The size of S is at most (1 + o(1)) · |B| · t. The size of
the oracle-sum circuit (C, S) is at most |S| + |C|. By the direct sum property of F , we
obtain |B| · σ · (log λ)−η ≤ |S| + |C| ≤ (1 + o(1)) · |B| · t + |C|. Since t ≪ σ · (log λ)−η,
we obtain |B| ≤ (1 + o(1)) · |C| · (log λ)η/σ ≤ θ · 4(log λ)η. By the assumption, we have
Prj [φj(α) = 1] ≤ ϵ0.

Choose j ∼ [ν] randomly. Then, we obtain

Pr
j∼[ν],(x,b)∼Hj

m

[C(x) = g(x)] ≤ Pr
j

[φj(α) = 1] + Pr
j,(x,b)

[C(x) = g(x) | φj(α) = 0]

≤ ϵ0 + 1
2 + ϵ∆m ≤ 1

2 + 2ϵ0 < 1. ◁

4 Open Problems

Can we show NP-hardness of MCSP∗ under circuit lower bound assumptions, such as
the assumption that E cannot be computed by non-deterministic circuits of size 2ϵn for
some constant ϵ > 0? Using a pseudorandom generator secure against non-deterministic

ISAAC 2023

39:14 Regularization of Low Error PCPs and an Application to MCSP

algorithms [31, 43], one can generate, in time poly(N), functions f1, . . . , fN : {0, 1}k ×
{0, 1}n → {0, 1} such that fi satisfies the Θ(2n/n)-direct sum properties for most i ∈ [N],
where N = 2O(n+k). However, it remains open whether a single function f with direct sum
properties can be obtained.

It is interesting to see whether there exists any candidate for a function with σ-direct sum
properties, where 2Ω(n) ≤ σ ≪ 2n/n. In this regime, Uhlig’s theorem (Lemma 13) cannot be
used, so new insights would be required to answer this question.

The original motivation of the regularization was to show NP-hardness of learning sparse
parities by small programs, which was raised as an open problem in [18]. Unfortunately, it
turned out that regularization is not sufficient for resolving this question. It remains open
whether learning sparse parities by small programs is NP-hard.

References
1 E. Allender and S. Hirahara. New Insights on the (Non-)Hardness of Circuit Minimization

and Related Problems. TOCT, 11(4):27:1–27:27, 2019. doi:10.1145/3349616.
2 J. Alman and L. Chen. Efficient construction of rigid matrices using an NP oracle. In Proc.

60th IEEE Symp. on Foundations of Computer Science, pages 1034–1055, 2019.
3 A. Beimel. Secret-Sharing Schemes: A Survey. In The Third International Workshop on

Coding and Cryptology (IWCC), pages 11–46, 2011. doi:10.1007/978-3-642-20901-7_2.
4 M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs

and applications to approximations. In Proc. 25th ACM Symp. on Theory of Computing, pages
294–304, 1993.

5 E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity,
shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4):889–974, 2006.

6 J. C. Benaloh and J. Leichter. Generalized Secret Sharing and Monotone Functions. In
Proceedings of the International Cryptology Conference (CRYPTO), pages 27–35, 1988. doi:
10.1007/0-387-34799-2_3.

7 M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Learning Algorithms from
Natural Proofs. In Proceedings of the Conference on Computational Complexity (CCC), pages
10:1–10:24, 2016. doi:10.4230/LIPIcs.CCC.2016.10.

8 L. Chen, S. Hirahara, I. C. Oliveira, J. Pich, N. Rajgopal, and R. Santhanam. Beyond Natural
Proofs: Hardness Magnification and Locality. In Proceedings of the Innovations in Theoretical
Computer Science Conference (ITCS), pages 70:1–70:48, 2020. doi:10.4230/LIPIcs.ITCS.
2020.70.

9 J. Cook and D. Moshkovitz. Tighter MA/1 circuit lower bounds from verifier efficient PCPs
for PSPACE. Technical Report TR22-014, ECCC, 2022.

10 I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP: Toward
a polynomially-small error-probability. Computational Complexity, 20(3):413–504, 2011.

11 I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs. In
Proc. 50th IEEE Symp. on Foundations of Computer Science, pages 472–481, 2009.

12 I. Dinur, P. Harsha, and G. Kindler. Polynomially low error pcps with polyloglog n queries via
modular composition. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proc. 47th ACM
Symp. on Theory of Computing, pages 267–276. ACM, 2015.

13 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proc. 46th ACM Symp.
on Theory of Computing, 2014.

14 U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996.

15 J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.
16 A. Healy, S. P. Vadhan, and E. Viola. Using Nondeterminism to Amplify Hardness. SIAM J.

Comput., 35(4):903–931, 2006. doi:10.1137/S0097539705447281.

https://doi.org/10.1145/3349616
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1137/S0097539705447281

S. Hirahara and D. Moshkovitz 39:15

17 S. Hirahara. Non-Black-Box Worst-Case to Average-Case Reductions within NP. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018. doi:
10.1109/FOCS.2018.00032.

18 S. Hirahara. NP-Hardness of Learning Programs and Partial MCSP. In Proceedings of
the Symposium on Foundations of Computer Science (FOCS), pages 968–979, 2022. doi:
10.1109/FOCS54457.2022.00095.

19 S. Hirahara and O. Watanabe. Limits of Minimum Circuit Size Problem as Oracle. In
Proceedings of the Conference on Computational Complexity (CCC), pages 18:1–18:20, 2016.
doi:10.4230/LIPIcs.CCC.2016.18.

20 J. M. Hitchcock and A. Pavan. On the NP-Completeness of the Minimum Circuit Size Problem.
In Proceedings of the Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), pages 236–245, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.236.

21 J. Holmerin and S. Khot. A new PCP outer verifier with applications to homogeneous linear
equations and max-bisection. In Proc. 36th ACM Symp. on Theory of Computing, pages 11–20,
2004.

22 R. Ilango. Constant Depth Formula and Partial Function Versions of MCSP are Hard. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 424–433,
2020. doi:10.1109/FOCS46700.2020.00047.

23 R. Impagliazzo and A. Wigderson. P = BPP if E Requires Exponential Circuits: Derandomizing
the XOR Lemma. In Proceedings of the Symposium on the Theory of Computing (STOC),
pages 220–229, 1997. doi:10.1145/258533.258590.

24 M. Ito, A. Saito, and T. Nishizeki. Multiple Assignment Scheme for Sharing Secret. J. Cryptol.,
6(1):15–20, 1993. doi:10.1007/BF02620229.

25 Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen. MIP* = RE. Submitted, 2020.
26 V. Kabanets and J. Cai. Circuit minimization problem. In Proceedings of the Symposium on

Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.335314.
27 J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting

codes. In Proc. 32nd ACM Symp. on Theory of Computing, pages 80–86, 2000.
28 S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon. Journal

of Computer and System Sciences, 74(3):335–349, 2008.
29 S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems

and embeddability of negative type metrics into l1. In Proc. 46th IEEE Symp. on Foundations
of Computer Science, pages 53–62, 2005.

30 J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract. In
Proc. 24th ACM Symp. on Theory of Computing, pages 723–732, 1992.

31 A. R. Klivans and D. van Melkebeek. Graph Nonisomorphism Has Subexponential Size Proofs
Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput., 31(5):1501–1526, 2002.
doi:10.1137/S0097539700389652.

32 L. A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii, 9(3):115–
116, 1973.

33 Y. Liu and R. Pass. On One-way Functions and Kolmogorov Complexity. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.
doi:10.1109/FOCS46700.2020.00118.

34 D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal of the ACM,
57(5), 2010.

35 N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1.

36 I. C. Oliveira and R. Santhanam. Hardness Magnification for Natural Problems. In Proceedings
of the Symposium on Foundations of Computer Science (FOCS), pages 65–76, 2018.

37 C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.

38 O. Paradise. Smooth and strong pcps. Comput. Complex., 30(1):1, 2021.

ISAAC 2023

https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.4230/LIPIcs.CCC.2016.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/BF02620229
https://doi.org/10.1145/335305.335314
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1016/S0022-0000(05)80043-1

39:16 Regularization of Low Error PCPs and an Application to MCSP

39 O. Reingold, S. P. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors. Annals of Mathematics, 155(1):157–187, 2002.

40 H. Ren, R. Santhanam, and Z. Wang. On the Range Avoidance Problem for Circuits. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 640–650,
2022. doi:10.1109/FOCS54457.2022.00067.

41 M. Saks and R. Santhanam. Circuit Lower Bounds from NP-Hardness of MCSP Under
Turing Reductions. In Proceedings of the Computational Complexity Conference (CCC), pages
26:1–26:13, 2020. doi:10.4230/LIPIcs.CCC.2020.26.

42 R. Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In Proceedings of
the Innovations in Theoretical Computer Science Conference (ITCS), pages 68:1–68:26, 2020.
doi:10.4230/LIPIcs.ITCS.2020.68.

43 R. Shaltiel and C. Umans. Pseudorandomness for Approximate Counting and Sampling.
Computational Complexity, 15(4):298–341, 2006. doi:10.1007/s00037-007-0218-9.

44 L. Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, 2001. doi:
10.1145/502090.502099.

45 D. Uhlig. On the synthesis of self-correcting schemes from functional elements with a small
number of reliable elements. Mathematical Notes of the Academy of Sciences of the USSR,
15(6):558–562, 1974.

46 D. Uhlig. Networks Computing Boolean Functions for Multiple Input Values. In Poceedings of
the London Mathematical Society Symposium on Boolean Function Complexity, pages 165–173,
USA, 1992. Cambridge University Press.

47 S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

48 I. Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http://ls2-www.
cs.uni-dortmund.de/monographs/bluebook/.

49 R. Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42:231–240, 2010.

https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.4230/LIPIcs.ITCS.2020.68
https://doi.org/10.1007/s00037-007-0218-9
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/

Structural Parameterizations of b-Coloring
Lars Jaffke # Ñ

University of Bergen, Norway

Paloma T. Lima # Ñ

IT University of Copenhagen, Denmark

Roohani Sharma # Ñ

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
The b-Coloring problem, which given a graph G and an integer k asks whether G has a proper
k-coloring such that each color class has a vertex adjacent to all color classes except its own, is
known to be FPT parameterized by the vertex cover number and XP and W[1]-hard parameterized
by clique-width. Its complexity when parameterized by the treewidth of the input graph remained
an open problem. We settle this question by showing that b-Coloring is XNLP-complete when
parameterized by the pathwidth of the input graph. Besides determining the precise parameterized
complexity of this problem, this implies that b-Coloring parameterized by pathwidth is W[t]-hard
for all t, and resolves the parameterized complexity of b-Coloring parameterized by treewidth. We
complement this result by showing that b-Coloring is FPT when parameterized by neighborhood
diversity and by twin cover, two parameters that generalize vertex cover to more dense graphs, but
are incomparable to pathwidth.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases b-coloring, structural parameterization, XNLP, pathwidth, neighborhood
diversity, twin cover

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.40

Funding Paloma T. Lima: This work received funding from the Independent Research Fund Denmark
grant agreement number 2098-00012B.

Acknowledgements We would like to thank an anonymous reviewer for carefully reading our paper
and for many useful comments.

1 Introduction

A b-coloring of a graph G is a proper vertex-coloring such that each color class has a vertex,
called b-vertex, that has a neighbor in each color class except its own. This problem originated
in the study of the color-suppressing heuristic for the Graph Coloring problem: Start
with any proper coloring of G, and keep on suppressing color classes as long as you can.
Here, a color class C can be suppressed, if for each vertex with color C, there is a color
C ′ ̸= C that does not yet appear in its neighborhood. This allows us to recolor all vertices
in C and thereby lower the number of colors by one. The colorings which do not allow for
further improvements are exactly the b-colorings, so the largest integer k such that a graph G

admits a b-coloring with k colors determines the worst-case behaviour of this heuristic, when
applied to G. This quantitity is referred to as the b-chromatic number. In this work, we study
the following decision problem related to b-colorings. For more details on computational
problems associated with b-colorings, we refer to [17, 18, 23].

© Lars Jaffke, Paloma T. Lima, and Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 40; pp. 40:1–40:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lars.jaffke@uib.no
https://lars-jaffke.github.io
https://orcid.org/0000-0003-4856-5863
mailto:palt@itu.dk
https://itu.dk/~palt/
https://orcid.org/0000-0001-9304-4536
mailto:rsharma@mpi-inf.mpg.de
https://people.mpi-inf.mpg.de/~rsharma/
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.ISAAC.2023.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Structural Parameterizations of b-Coloring

Input: Graph G, integer k

Question: Does G have a b-coloring with k colors?

b-Coloring

This problem is known to be NP-complete, even when the number of colors is fixed [17].
The complexity of b-Coloring has been studied on several graph classes, see for instance [7,
8, 9, 10, 16, 17, 21, 24]. Recent work also considered first structural parameterizations: Jaffke,
Lima, and Lokshtanov [18] showed that b-Coloring is FPT when parameterized by the
vertex cover number of the input graph, and XP and W[1]-hard when parameterized by
clique-width. Arguably the most prominent parameter (between the vertex cover number
and the clique-width) is treewidth. Parameterized by treewidth plus the number of colors,
b-Coloring is FPT [1, 18]. However, in the setting when the number of colors is part of
the input, the parameterized complexity of b-Coloring by treewidth remained open. In
fact, this problem has already been stated explicitly over a decade ago, see for instance [23].
Observe that even n-vertex forests can have b-colorings with

√
n colors (think of a forest

where each of the
√

n components is a star with
√

n − 1 leaves).
The first main result of this work is to resolve this open problem, showing hardness. We

prove a stronger hardness result than W[1]-hardness by treewidth, namely XNLP-completeness
by the more restrictive parameter pathwidth. The class XNLP has recently been coined by
Bodlaender et al. [5], derived from earlier work of Elberfeld, Stockhusen, and Tantau [13], as
a means of addressing the question of completeness of parameterized problems. XNLP is the
class of parameterized problems that can be solved by a nondeterministic algorithm using
f(k) · nc time and f(k) · log n space, where k is the parameter, n the input size, c a constant,
and f a computable function. Several parameterized problems have been shown to be
XNLP-complete [3, 4, 5], most relevant for our work problems parameterized by linear width
measures [3, 4]. While XNLP-hardness reductions are often very similar to reductions proving
W-hardness, they yield a much stronger result. As XNLP contains the entire W-hierarchy [5],
XNLP-hardness implies W[t]-hardness for all t ∈ N.

▶ Theorem 1. b-Coloring parameterized by pathwidth is XNLP-complete, and therefore
W[t]-hard for all t ∈ N.

Notice that the previous theorem implies that b-Coloring parameterized by treewidth
or by clique-width is W[t]-hard for all t ∈ N, therefore resolving the open question of
the parameterized complexity of b-Coloring parameterized by treewidth [18, 23], and
significantly strengthening the W[1]-hardness result by clique-width [18].

We complement Theorem 1 with two positive results about generalizations of the vertex
cover number. The FPT-algorithm parameterized by vertex cover of [18] essentially follows
from two observations. First, that the number of colors in any b-coloring of a graph with
vertex cover number t is bounded by a function of t. Second, that the treewidth is always
at most the vertex cover number. Therefore, the algorithm follows by an FPT-algorithm
parameterized by treewidth plus number of colors. The generalizations we consider here,
neighborhood diversity and twin-cover, both extend the vertex cover number to simply
structured dense graphs; in particular, complete graphs have twin-cover number 0 and
neighborhood diversity 1. This means that in both parameterizations, the number of colors
in a b-coloring can be as high as Ω(n). Nevertheless, we obtain FPT-algorithms in both cases.

▶ Theorem 2. b-Coloring parameterized by the twin-cover number or by the neighborhood
diversity of a graph is fixed-parameter tractable.

L. Jaffke, P. T. Lima, and R. Sharma 40:3

mim-width twin-width

clique-width

treewidth

pathwidth

vertex cover

neighb. diversity twin cover

modular-width

para-NP-complete

XP and W-hard

FPT

* *

*

* * *

Figure 1 Known results about structural parameterizations of b-Coloring. Results marked with *
can be found in this work. The complexity of b-Coloring parameterized by modular-width remains
open.

Lastly, we observe by two trivial reductions that the XP-algorithms parameterized by
clique-width cannot be extended to the more general width measures mim-width and twin-
width. In both cases, this follows directly from known hardness results of Graph Coloring
on certain graph classes. In the case of twin-width, this even holds when the number of
colors is a fixed constant. This stronger hardness result does not hold for mim-width, as
b-Coloring is expressible in DN logic by a sentence whose length depends only on the
number of colors, and therefore XP parameterized by the mim-width of a given decomposition
plus the number of colors [2].

▶ Observation 3. b-Coloring is NP-complete on graphs of linear mim-width 2, and on
graphs of twin-width at most 8. In the case of twin-width, para-NP-hardness even holds when
the number of colors is any fixed constant q ≥ 3.

We summarize these results in Figure 1. Note that the parameterization modular-width,
which is a common generalization of neighborhood diversity and twin-cover, remains open.
The remainder of the paper is organized as follows. In Section 2, we give the necessary
background and definitions, and justify Observation 3. In Section 3, we consider the
parameterization by pathwidth and prove Theorem 1, and in Sections 4 and 5 we consider
neighborhood diversity and twin-cover, respectively, to prove Theorem 2. We conclude in
Section 6. Proofs of statements marked “⋆” can be found in the full version.

2 Preliminaries

Basic notations and definitions. For two integers a ≤ b we let [a..b] = {a, a + 1, . . . , b}, and
for a positive integer a, we let [a] = [1..a]. All graphs considered here are finite and simple.
For an (undirected or directed) graph G, we denote its vertex set by V (G) and its edge set by
E(G). For an edge {u, v} ∈ E(G), we use the shorthand “uv”. If G is a directed graph, then
denoting the edge e = (u, v) ∈ E(G) by uv also points to e being directed from u to v. Given
an undirected graph G, an orientation of G, denoted by −→

G , is a directed graph obtained
from G by replacing each edge {u, v} ∈ E(G) by either (u, v) or (v, u). The neighborhood
of a vertex v is defined as N(v) = {u ∈ V (G) | uv ∈ E(G)}. The closed neighborhood of v

is defined as N [v] = N(v) ∪ {v}. The neighborhood of a set S ⊆ V (G) is defined similarly,
that is, N(S) = {u ∈ V (G) \ S | us ∈ E(G) for some s ∈ S}. The closed neighborhood of
S is N [S] = N(S) ∪ S. A set S ⊆ V (G) is independent if for all pairs of distinct u, v ∈ S,

ISAAC 2023

40:4 Structural Parameterizations of b-Coloring

uv /∈ E(G). A set C ⊆ V (G) is a clique if for all pairs of distinct u, v ∈ C, uv ∈ E(G). A
star is an undirected graph with one special vertex called the center that is adjacent to all of
the remaining vertices, called leaves, which form an independent set.

Colorings. A proper coloring with k colors of a graph G is a partition of V (G) into k

independent sets, called color classes. For a graph G and a proper coloring of G, a vertex
v ∈ V (G) is a b-vertex if it has a neighbor in all color classes except its own. A b-coloring
with k colors of a graph G is a proper coloring of G such that each color class contains a
b-vertex. We call such a coloring a k-b-coloring. In this work we consider the following
problem.

Input: Graph G, integer k

Question: Does G have a b-coloring with k colors?

b-Coloring

2.1 Width measures
We now define the width measures relevant for this work and state some known facts about
them for completeness.

▶ Definition 4 (Module, Modular Partition, Quotient Graph). A module of a graph G is a set
of vertices M ⊆ V (G) such that for all v ∈ V (G) \ M , either M ⊆ NG(v) or M ∩ NG(v) = ∅.
A partition P of V (G) is a modular partition if all parts of P are modules in G. The quotient
graph of P, denoted by G/P is the graph whose vertex set is P such that for all P, Q ∈ P,
PQ ∈ E(G/P) if P is complete to Q in G and PQ /∈ E(G/P) if P is anti-complete to Q in
G.

▶ Definition 5 (Neighborhood Diversity [22]). An ND-partition of a graph G is a modular
partition P of V (G) such that each part of P is either a clique (called a clique part) or an
independent set (called independent part) in G. The neighborhood diversity of a graph G is
the minimum number of parts in any ND-partition of G.

▶ Remark 6. Note that the neighborhood diversity can also be defined as follows: for a graph
G, say that two vertices u, v are equivalent if N(u)\{v} = N(v)\{u}. Each equivalence class
consists of a complete part and an independent part which gives the optimal ND-partition in
polynomial time.

▶ Definition 7 (Twin Cover [15]). A set S ⊆ V (G) of a graph G is a twin cover, if for each
edge uv ∈ V (G), either (i) {u, v} ∩ S ̸= ∅, or (ii) or u and v are twins in G. The twin cover
number of G is the smallest size of any twin cover of G.

▶ Observation 8. If S is a twin-cover of a graph G then each connected component of G − S

is a clique consisting of twins.

Let G be a graph and S a vertex cover of size k. It is clear that S is also a twin cover.
Moreover, for each A ⊆ S, let PA ⊆ V (G) \ S be the set of all vertices v with N(v) = A.
Then, the partition of V (G) consisting of all singletons of S plus the sets PA for all A ⊆ S is
an ND-partition of G, so G has neighborhood diversity at most k + 2k [22].

Neighborhood diversity and twin cover number are incomparable: consider for instance
Kn,n, a complete bipartite graph with n vertices on each side. The neighborhood diversity
of Kn,n is two, as the natural bipartition of its vertices is an ND-partition. On the other
hand, each twin cover of Kn,n has size at least n (it has to fully contain one of the sides).

L. Jaffke, P. T. Lima, and R. Sharma 40:5

Conversely, consider the windmill graph Wn with n petals, that is, a collection of n

triangles where each triangle has one special vertex that is identified with all other special
vertices. The twin cover number of Wn is one (just take the vertex resulting from identifying
all the special vertices), while the neighborhood diversity of Wn is n + 1. For the lower
bound, observe that no two non-special vertices from distinct triangles can be in the same
part of an ND-partition.

▶ Definition 9. Let G be a graph. A path decomposition of G is a sequence B = B1, . . . , Bd

of subsets of V (G) called bags covering V (G) such that:
1. For each edge e ∈ E(G), there is some i ∈ [d] such that e ⊆ Bi.
2. For each h, i, j ∈ [d] with h < i < j, Bh ∩ Bj ⊆ Bi.

The width of B is maxi∈[d]|Bi| − 1, and the pathwidth of G is the smallest width of all
its path decompositions.

Membership in XNLP of b-Coloring parameterized by pathwidth will follow from the
membership of b-Coloring parameterized by a linear width measure with more expressive
power than pathwidth, namely one that is equivalent to linear clique-width. We define it
next and show its relation to pathwidth.

▶ Definition 10. Let G be a graph and S ⊆ V (G). The module number of S is the number of
equivalence classes of the equivalence relation ∼S defined as: u ∼S v ⇔ N(u) ∩ (V (G) \ S) =
N(v) ∩ (V (G) \ S). Let π = v1, . . . , vn be a linear order of V (G). The module-width of π is
the maximum, over all i, of the module number of {v1, . . . , vi}. The linear module-width of
G is the minimum module-width over all its linear orders.

▶ Lemma 11 (⋆). Let G be a graph and B be a path decomposition of G of width w. Then
one can construct in polynomial time and logarithmic space a linear order of module-width at
most w + 2.

2.1.1 Linear mim-width
For a graph G and a linear order λ = v1, . . . , vn of V (G), the mim-width of λ is the maximum,
over all i ∈ [n − 1], of the size of an induced matching in the bipartite subgraph of G

consisting of all edges that have one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}.
The linear mim-width of a graph G is the minimum mim-width over all its linear orders. We
observe that b-Coloring parameterized by linear mim-width is para-NP-complete.

▶ Observation 12 (⋆). b-Coloring is NP-complete on graphs of linear mim-width 2.

2.1.2 Twin-width
We skip the definition of twin-width here, and refer the reader to [6].

▶ Observation 13 (⋆). For any k ≥ 3, the problem of determining if a graph G has a
b-coloring with k colors is NP-complete on graphs of twin-width at most 8.

2.2 The class XNLP
We assume familiarity with the basic technical notions of parameterized complexity and
refer to [12] for an overview. The class XNLP, introduced as N [f poly, f log] by Elberfeld
et al. [13], consists of the parameterized decision problems that given an n-bit input with

ISAAC 2023

40:6 Structural Parameterizations of b-Coloring

parameter k can be solved by a non-deterministic algorithm that simultaneously uses at
most f(k)nc time and at most f(k) log n space, where f is a computable function and c is a
constant. We refer to [5, 13] for more details on this complexity class. Hardness in XNLP can
be transferred via parameterized logspace reductions [13] which are parameterized reductions
in the traditional sense [12] with the additional constraint of using only f(k) + O(log n)
space, where once again k is the parameter of the problem and n is the input size.

3 Pathwidth

We show b-Coloring is XNLP-complete via a reduction from the following problem which is
known to be XNLP-complete when parameterized by the width of a given path decomposition
of the input graph [3].

Input: Undirected graph G with edge weights w : E(G) → N given in unary.
Question: Is there an orientation −→

G of G such that for every vertex v ∈ V (G):∑
vx∈E(−→

G) w(vx) =
∑

xv∈E(−→
G) w(xv)?

Circulating Orientation

▶ Theorem 14. b-Coloring parameterized by the width of a given path decomposition of
the input graph is XNLP-complete.

Proof. To show XNLP-hardness, we give a parameterized logspace-reduction from the Cir-
culating Orientation problem parameterized by the width of a given path decomposition
of the input graph, which was shown to be XNLP-complete in [3]. Let (G, w) be an in-
stance of Circulating Orientation, given with a path decomposition B of G. We let
n = |V (G)|, m = |E(G)|, and W =

∑
e∈E(G) w(e). For each vertex v ∈ V (G), we let

Wv =
∑

uv∈E(G) w(uv). We may assume that G is connected and that for all e ∈ E(G),
w(e) ≥ 1; therefore W ≥ m ≥ n − 1.

We construct an equivalent instance (H, k) of b-Coloring. We let

k = 2W + 3m + n + 2. (1)

We begin the construction of H which is illustrated in Figure 2 by adding 2W + 2 disjoint
copies of a star with k − 1 leaves. Let S⋆ be one of these stars. We denote its center by s⋆

and refer to it throughout the proof as the superstar. The remaining ones are referred to
as anonymous. We partition a subset of the leaves of S⋆ into L = {Le,v | e ∈ E(G), v ∈ e}
where for all e ∈ E(G) and v ∈ e, |Le,v| = w(e). Note that this is possible since k − 1 ≥ 2W.

Vertex gadget. For each v ∈ V (G), we add v, as well as a set Pv of k− 3
2 Wv −1 independent

vertices to H. We add all edges between v and Pv. Furthermore, for each edge e ∈ E(G)
such that v ∈ e, we connect v and the vertices in Le,v in H.

Edge gadget. For each e = uv ∈ E(G), we add the following gadget to H . First, it has two
vertices xe,u and xe,v, a set Ye of w(e) vertices, and a set Ze of k − 2w(e) − 3 vertices. The
vertex xe,u is adjacent to Ye ∪ Ze ∪ Le,u, and xe,v is adjacent to Ye ∪ Ze ∪ Le,v. We make
u and v adjacent to Ye. We furthermore add two new vertices qe,1 and qe,2 to H that are
connected by an edge, as well as all edges between qe,h and Ze ∪ Le,u ∪ Le,v ∪ {xe,u, xe,v} for
all h ∈ [2]. We let X = {xe,u, xe,v | e = uv ∈ E(G)}, and Q = {qe,1, qe,2 | e ∈ E(G)}.

Adding all vertex and edge gadgets finishes the construction of H, which can be performed
using only logarithmic space.

L. Jaffke, P. T. Lima, and R. Sharma 40:7

· · ·

u

v1 v2

e1 e2

w(e1) = 3, w(e2) = 2

s?

Le1,v1 Le1,u Le2,u Le2,v2

v1 v2u

· · ·

L

Ye1
xe1,v1 xe1,u

Ze1

qe1,1 qe1,2

gadget for e2

Pv1 Pu Pv2

Figure 2 Sketch of the main part of the reduction. Bold edges mean that all edges between the
corresponding sets are present. All vertex sets represented by single boxes are independent. Note
that |Le,v1 | = |Le,u| = |Ye1 | = w(e1) = 3 and recall that |Ze1 | = k − 2w(e1) − 3.

▷ Claim 15. If (G, w) has a circulating orientation, then H has a b-coloring with k colors.

Proof. Let −→
G be the circulating orientation of (G, w). We give a coloring of the vertices

of H with colors [0..(k − 1)]. To do so, we identify some important subsets of [0..(k − 1)]
whose b-vertices will appear in targeted regions of H. First, we let V (G) = {v1, . . . , vn} and
E(G) = {e1, . . . , em}. We construct a proper coloring of H such that once the coloring is
completed, the following hold.

1. The vertex s⋆ (the center of the superstar) is a b-vertex of color 0.
2. For each i ∈ [n], vi is a b-vertex of color i.
3. For each i ∈ [m], qei,1 is a b-vertex of color n + i, and qei,2 is a b-vertex of color m + n + i.
4. For each i ∈ [m], either xei,u or xei,v, where ei = uv, is a b-vertex of color 2m + n + i.
5. Each of the remaining k − (3m + n + 1) = 2W + 1 colors has a b-vertex that is a center

of an anomymous star.

Let S1, . . . , S2W+1 be the anonymous stars with centers s1, . . . , s2W+1, respectively. For
each i ∈ [2W + 1], we assign si the color 3m + n + i, and the leaves of Si the colors
[0..(k − 1)] \ {3m + n + i}. This satisfies Item 5. We assign s⋆ the color 0 and its leaves the
colors [k − 1] in such a way that colors [(3m + n + 1)..(3m + n + 2W)] appear on the vertices
in L. This satisfies Item 1. For each i ∈ [n], we assign vi color i. For each i ∈ [m] and each
v ∈ ei, we let Cei,v be the colors appearing on Lei,v, and we assign xei,v the color 2m + n + i.

We now color the edge gadgets. Let i ∈ [m] and ei = uv. We give qei,1 color n + i and
qei,2 color m + n + i. We assign the vertices in Zei

the colors

[0..(k − 1)] \ (Cei,u ∪ Cei,v ∪ {n + i, m + n + i, 2m + n + i}).

If ei is directed from u to v in −→
G , then we repeat colors Cei,u on Yei

. Observe that this
makes xei,v a b-vertex for color 2m + n + i: it sees colors Cei,v on Lei,v, colors Cei,u on
Yei

, and the remaining colors other than its own on Zei
∪ {qei,1, qei,2}. Moreover, qei,1 is a

b-vertex for color n + i, since it sees color m + n + i on qei,2, color 2m + n + i on xei,v, and
the remaining colors on Lei,u ∪ Lei,v ∪ Zei

. Similarly, qei,2 is a b-vertex for color m + n + i.
Once this is done for all i, Items 3 and 4 are satisfied.

ISAAC 2023

40:8 Structural Parameterizations of b-Coloring

We now color the vertex gadgets. We first argue that each v ∈ V (G) already sees precisely
3
2 Wv colors in its neighborhood. This is because v sees Wv colors on

⋃
e∈E(G),v∈e Le,v, and

for each edge e that is directed towards v, there are w(e) additional colors appearing in the
neighborhood of v; concretely, on the set Ye of the corresponding edge gadget. Since −→

G is
circulating, the latter contribute with an additional 1

2 Wv colors in total. Therefore, we can
distribute the remaining k − 3

2 Wv − 1 colors on the set Pv, which makes v a b-vertex. This
satisfies Item 2, and we have arrived at a b-coloring of H with k colors. ◁

We now work towards the reverse implication of the correctness proof. We start with a
claim regarding the location of the b-vertices in any b-coloring of H with k colors. Throughout
the following, we denote by A the set of centers of the anonymous stars.

▷ Claim 16. Each b-coloring of H with k colors has precisely one b-vertex per color. Moreover,
the b-vertices are {s⋆} ∪ V (G) ∪ Q ∪ A, and for each e = uv ∈ E(G), precisely one of xe,u

and xe,v.

Proof. The only vertices with high enough degree (at least k − 1) to become b-vertices
in such a coloring of H are in {s⋆} ∪ V (G) ∪ Q ∪ A ∪ X. Note that this set has size
2W + 4m + n + 2 = k + m.

We argue that the gadget of each edge e = uv can contain at most three b-vertices. Note
that only four of its vertices, xe,u, xe,v, qe,1, and qe,2 have high enough degree to be b-vertices.
Suppose for a contradiction that xe,u and xe,v are b-vertices for colors cu and cv, respectively,
where cu ≠ cv. For xe,u to be a b-vertex of color cu, it needs to have a neighbor colored cv. By
the structure of H, this vertex has to be contained in Le,u. Similarly, we can conclude that
Le,v contains a vertex colored cu. But this means that both qe,1 and qe,2 have two neighbors
colored cu and two neighbors colored cv. Since degH(qe,h) = 2w(e) + |Ze| + 3 = k for all
h ∈ [2], this means that each of these vertices sees at most k − 2 colors in its neighborhood,
so neither of them is a b-vertex. Therefore we can assume from now on that xe,u and xe,v

receive the same color.
Since we only have k + m vertices of high enough degree to be b-vertices, we can only

have enough b-vertices if each edge gadget has exactly three b-vertices, and if all vertices in
{s⋆} ∪ V (G) ∪ A are b-vertices. Now suppose that for some edge e = uv ∈ E(G), both xe,u

and xe,v are b-vertices for their color. By the structure of H , this implies that the same colors
have to appear on Le,u and Le,v. But s⋆ needs to be a b-vertex, now there are w(e) ≥ 1
colors in its neighborhood that repeat. Since degH(s⋆) = k − 1, this is not possible. This
yields the claim. ◁

Throughout the following, we assume that we have a b-coloring of H with k colors. Again,
for each e ∈ E(G) and v ∈ e, we denote by Ce,v the set of colors appearing on the vertices
Le,v. We prove another auxiliary claim.

▷ Claim 17.
1. For each e, e′ ∈ E(G) and v ∈ e, v′ ∈ e′, if (e, v) ̸= (e′, v′), then Ce,v ∩ Ce′,v′ = ∅.
2. For each e = uv ∈ E(G), either colors Ce,u or colors Ce,v appear on Ye; the former if xe,v

is a b-vertex and the latter if xe,u is a b-vertex.

Proof. Item 1. By Claim 16, we know s⋆ is a b-vertex. Since its degree is k − 1, all its
neighbors must receive distinct colors. Hence Item 1 follows.

Item 2. By Claim 16, either xe,v or xe,u is a b-vertex for its color. Suppose that xe,v is a
b-vertex for color i (the other case is analogous). For xe,v to be a b-vertex, the colors Ce,u

have to appear in its neighborhood. We show that the colors Ce,u have to appear on Ye,

L. Jaffke, P. T. Lima, and R. Sharma 40:9

which yields the claim. By Claim 17 Item 1, we have that Ce,u ∩ Ce,v = ∅, so the colors Ce,u

have to appear on Ze ∪ Ye. We rule out that they appear on Ze. For the following argument,
recall that by Claim 16, qe,1 is a b-vertex for its color; moreover, its degree is k, so it sees
exactly one color twice in its neighborhood.

We distinguish two cases based on the color of the vertex xe,u. Suppose xe,u received
color i as well. Then, qe,1 sees color i twice, meaning that all remaining colors appear exactly
once on its neighborhood. Since Ze ∪Le,u ⊂ N(qe,1)\{xe,u, xe,v}, no color from Ce,u appears
on Ze. Now suppose that xe,u received a color j ̸= i. Since xe,v is a b-vertex for color i, and
since deg(xe,v) = k − 1, there is precisely one vertex with color j in N(xe,v). Since the given
coloring of H is proper, this vertex cannot be in Ye ∪ Ze ∪ {qe,1, qe,2} ⊆ N(xe,u). Therefore,
there is a vertex of color j in Le,v. This means that qe,1 sees color j twice, once on xe,u and
once on a vertex in Le,v. Subsequently, the vertices in Le,u ∪ Ze all receive unique colors,
implying once again that no color from Ce,u appears on Ze. In either case, the only way that
xe,v sees colors Ce,u is if they appear on Ye, which proves the claim. ◁

We now construct an orientation −→
G of G. For each edge e = uv ∈ E(G), if xe,u is a

b-vertex, then we orient e towards u, and if xe,v is a b-vertex, we orient e towards v. Note
that by Claim 16, this is well-defined. Throughout the following whenever we write “uv”
for an edge in −→

G , we mean that the edge uv is directed from u to v in −→
G . The next claim

completes the correctness proof of the reduction.

▷ Claim 18. For each v ∈ V (G),
∑

uv∈E(−→
G) w(uv) = 1

2 Wv.

Proof. We first show that
∑

uv∈E(−→
G) w(uv) ≥ 1

2 Wv. By Claim 16, v is a b-vertex. Moreover,
degH(v) = k + 1

2 Wv − 1 since v has k − 3
2 Wv − 1 neighbors in Pv, Wv additional neighbors in

the edge gadgets, Wv additional neighbours in L, and no other neighbors. This means that
for v to be a b-vertex, v needs to see at least 1

2 Wv colors in
⋃

e∈E(G),v∈e Ye. Claim 17 then
implies that there is a set of edges {e1, . . . , ed} incident with v and with

∑
i∈[d] w(ei) ≥ 1

2 Wv

such that for all i ∈ [d], xei,v is a b-vertex. This implies the inequality by our construction
of −→

G .
Now we show that

∑
uv∈E(−→

G) w(uv) ≤ 1
2 Wv. Let Y =

⋃
e∈E(G) Ye, note that |Y| = W,

and that to make each v ∈ V (G) a b-vertex, 1
2 Wv colors must appear in NH(v) ∩ Y that are

not in NH(v) \ Y . Moreover, for each e = uv ∈ E(G), Ye has colors that appear in NH(u) \ Y
but not in NH(v) \ Y or vice versa by Claim 17. Since W =

∑
e∈E(G) w(e) =

∑
v∈V (G)

1
2 Wv,

we can conclude that if for some v ∈ V (G),
∑

uv∈E(−→
G) w(uv) > 1

2 Wv, then there is another
v′ ∈ V (G) \ {v} with

∑
uv′∈E(−→

G) w(uv′) < 1
2 Wv′ , contradicting the previous paragraph. ◁

▷ Claim 19. Given a path decomposition of G of width w, one can construct a path
decomposition of H of width at most w + 6 in polynomial time and logarithmic space.

Proof. Let B be a path decomposition of G of width w. We add s⋆ to all bags of B. For
each vertex v ∈ V (G), let Bv ∈ B be a bag containing v. We insert a sequence of |Pv| bags
after Bv containing Bv, and a unique vertex of Pv. For each edge e = uv ∈ E(G), let Be be
a bag in B containing u and v. We insert a sequence of |Ye ∪ Ze ∪ Le,u ∪ Le,v| bags after Be

containing Be, xe,u, xe,v, qe,1, qe,2, and a unique vertex of Le,u ∪ Le,v ∪ Ye ∪ Ze. Finally, we
append a sequence of bags forming a width-1 path decomposition of the anonymous stars.
Note that this gives a path decomposition of H and there is no bag to which we added more
than six vertices. It is easy to see that these operations can be performed within the claimed
time and space requirements. ◁

ISAAC 2023

40:10 Structural Parameterizations of b-Coloring

Adapting the XP-algorithm for b-Coloring parameterized by module-width w [18] to a
nondeterministic FPT-time and f(w) log n space algorithm, we can show that b-Coloring
parameterized by linear module-width, and therefore by pathwidth, belongs to XNLP. This
can be done similarly as in the case of Graph Coloring parameterized by linear clique-width
as shown in [4]. This is summarized in the statement below.

▷ Claim 20. b-Coloring parameterized by the module-width of a given linear order of the
vertices of the input graph is in XNLP.

Membership then follows from Lemma 11 and Claim 20. This concludes the proof of the
theorem. ◀

4 Neighborhood Diversity

In this section, we consider the parameterization by neighborhood diversity. We follow the
same strategy as the one that Koutecký [20] applied for the Graph Coloring problem, that
is, we give an ILP-formulation that can be solved efficiently by a parameterized ILP-algorithm
due to Jansen and Rohwedder [19].1

▶ Theorem 21 (Jansen and Rohwedder [19]). For A ∈ Zr×n, b ∈ Zr, c ∈ Zn, the ILP

min{cT x : Ax = b, x ∈ Zn
≥0}

can be solved in time O((
√

r∆)2r) · log ∥b∥∞ + O(rn), where ∆ = ∥A∥∞ = maxi,j A(i, j) and
∥b∥∞ = maxi b(i).

Note that in the previous theorem, the number of rows r in the ILP is equal to the number
of constraints. Recall that an optimal ND-partition can be computed in polynomial time
(Remark 6).

▶ Theorem 22. b-Coloring parameterized by the neighborhood diversity d of the input
n-vertex graph is fixed-parameter tractable. Given an ND-partition of the input graph, the
algorithm runs in time 2O(d log d) log n + O(n).

Proof. Suppose we want to find a b-coloring with k colors. Let G be a graph of neighborhood
diversity at most d with ND-partition P = (P1, . . . , Pd). We create another partition P ′ of
V (G) as follows. For each Pi that is an independent set of size at least two, we pick one
vertex vi, let P ′

i = Pi \ {vi}, remove Pi from P and add P ′
i and {vi} to P ′. All other parts

of P are added to P ′ as they are. As a convention, we consider each {vi} a clique of size 1,
and each such part in P ′ a clique part. Note that d′ = |P ′| ≤ 2d.

We start with a few observations.

1. If u, v ∈ V (G) are false twins, then in each proper coloring of G, either both u and v are
b-vertices for the same color, or neither of them is a b-vertex.

2. For each P ∈ P ′ that is a clique, either all vertices in P are b-vertices for their color, or
none of them are.

3. In each b-coloring of G, each color class has a b-vertex contained in a clique part of P ′.

1 Note that the arXiv-version contains an improved running time over the version published in the ITCS
2019 proceedings.

L. Jaffke, P. T. Lima, and R. Sharma 40:11

Item 1 is immediate, Item 2 follows from the fact that all vertices that are in the same part
are twins, and Item 3 follows from Item 1 and our construction: if there was an independent
part with more than one vertex in P, we split off a single vertex into a new part, which
is now considered a clique part. If in a b-coloring, some independent part (of the original
ND-partition P) had a b-vertex, then the split off vertex is a b-vertex for the same color by
Item 1, considered a clique part in P ′.

Next, we guess which clique parts of P ′ = (P1, . . . P ′
d′) contain b-vertices in the solution

we are looking for. From now on, fix one such choice B ⊆ [d′].
We construct an ILP as follows. Let H = G/P ′. Each color class is described by its

type, that is, the parts of P ′ it intersects. Note that each type is an independent set in H.
Therefore, for each independent set I in H, we add a variable xI , which counts how many
color classes of that type there are. From now on, we denote by I(H) the independent sets
of H. Now, the sum, over all independent sets I of H of the xI will correspond to the total
number of colors used. We add a constraint that ensures that this number is k. Moreover,
for each clique part P ′

i , we have to make sure that exactly |P ′
i | colors appear on that part,

and in each independent part P ′
i′ , at least one color must appear. Finally, we have to ensure

that there are k b-vertices. Note that, since all b-vertices are clique parts, by Observation 2,
each vertex in each part P ′

i for i ∈ B, has to be a b-vertex. Therefore, for each i ∈ B, we
ensure that the number of colors intersecting the closed neighborhood of vertex i in H is
equal to k. To ensure that each color class has a b-vertex, we use the objective function to
minimize the number of color classes that do not intersect B. If this value is 0, then we have
a b-coloring, otherwise not. The ILP is:

min
∑

I∈I(H),I∩B=∅
xI

s.t.
∑

I∈I(H)
xI = k∑

I∈I(H),i∈I
xI = |P ′

i |, if P ′
i is a clique∑

I∈I(H),i∈I
xI ≥ 1, if P ′

i is an independent set (2)∑
I∈I(H),I∩NH [i]̸=∅

xI = k, if i ∈ B

The correctness of this formulation follows fairly straightforwardly from the discussion above.

▶ Observation 23. The previous ILP has a solution with value 0 if and only if G has a
b-coloring with k colors whose b-vertices intersect precisely the parts {P ′

i | i ∈ B}.

For each guess of B, we construct an ILP as above. If there is one guess for which we
have a solution with value 0, we report that G has a b-coloring with k colors, and say No
otherwise. Correctness directly follows from Observation 23.

Let us analyze the run time. We can obtain the ND-partition P ′ from P in time O(n). We
can then compress P ′ to remember only |P ′

i | for each i ∈ [d′] and one representative vertex
per P ′

i , also in time O(n). We solve 2O(d) many ILPs using Theorem 21 with O(d) rows and
2O(d) variables. From the compressed representation, each such ILP can be constructed in
2O(d) log n time. Note that the inequalities (2) can be turned into equalities by adding at
most 2O(d) slack variables. In the resulting ILP, the largest coefficient of any variable is 1,
and the largest value on the right-hand side is at most n, since we may assume that k ≤ n,
and clearly, for each i ∈ [d′], |P ′

i | ≤ n. Therefore, we have ∆ = 1 and ∥b∥∞ ≤ n, and each
of the ILPs can be solved in time 2O(d log d) log n + d · 2O(d) = 2O(d log d) log n, yielding the
claimed run time bound. ◀

ISAAC 2023

40:12 Structural Parameterizations of b-Coloring

5 Twin Cover

In this section, we prove the following theorem. This will be done by reducing the input
graph of bounded twin cover number to a graph of bounded neighborhood diversity and then
applying the algorithm from Theorem 22.

▶ Theorem 24. b-Coloring parameterized by the twin cover number of the input graph is
fixed-parameter tractable. Given a graph with n vertices, m edges, and twin cover number t,
it is solvable in 22O(t)

n + O(m) time.

Let (G, k) be an instance of b-Coloring. If the size of a minimum twin-cover of G is at
most t, then one can compute a twin-cover S of G of size at most t in O(1.2378t + tn + m)
time [15]. Recall that each connected component of G − S consists of a clique C consisting
of twins (Observation 8). Since C is a clique, we may assume |C| ≤ k.

Without loss of generality, let the color set be {1, . . . , k} and assume the vertices of S get
colors from the set {1, . . . , min{k, t}}. For each col : S → {1, . . . , min{k, t}} such that col
is a proper coloring of G[S], perform the following steps. Note, in the following, col is fixed.

For each A ⊂ S, let CA = {C : C is a maximal clique of G−S and N(C) = A}. Through-
out, we use the shorthand

⋃
CA for

⋃
C∈CA

C. Let ccol
A denote the number of distinct colors

used by the vertices of A in col, that is ccol
A = | ∪a∈A col(a)|. Note that if a b-coloring with

k colors of G coincides with col on the vertex set S, then for any C ∈ CA, k ≥ |C| + ccol
A .

Thus, if this inequality does not hold, then col cannot be extended into a k-b-coloring of
G. In this case, discard col and consider the next available (non-discarded) proper coloring
function on S. Henceforth, assume that for each C ∈ CA, |C| ≤ k − ccol

A .

▶ Observation 25 (⋆). Let C be a maximal clique of G − S. A vertex v ∈ C is a b-vertex
of some b-coloring of G with k colors that extends col, if and only if |C| = k − ccol

A .

For each A ⊆ S, let Cmax
A ∈ CA denote a clique of maximum cardinality among the cliques

in CA. Note that for any v ∈
⋃

CA \ Cmax
A , by Observation 25, if (G, k) is a Yes-instance of

b-Coloring witnessed by a coloring that extends col, then there exists a k-b-coloring that
extends col where, if v is a b-vertex, then it is not the unique b-vertex of its color, as Cmax

A

would also contain one such vertex. This is the idea behind the next reduction rule, which
deletes vertices until the number of vertices in all the cliques of CA is bounded.

▶ Reduction Rule 26. If there exists A ⊆ S such that |
⋃

CA| ≥ k − ccol
A + 1, then let

v ∈
⋃

CA \ Cmax
A and delete v from the graph.

▶ Lemma 27 (⋆). Reduction Rule 26 is safe, i.e., under its preconditions, G has a b-coloring
with k colors if and only if G \ v has a b-coloring with k colors.

Consider the instance obtained after the exhaustive application of Reduction Rule 26.
For brevity of notation let the instance be (G, k, S, col) where S is a twin cover of G of size
at most t and col is a proper coloring of G[S] with colors from {1, . . . , min{k, t}}. Further,
for each A ⊆ S, the number of vertices present in the union of the cliques in CA is at most
k −ccol

A and therefore CA contains at most one clique of size k −ccol
A . We call such an instance

a cleaned instance.

▶ Lemma 28 (⋆). If a cleaned instance (G, k, S, col) is a Yes-instance, then there exists a
k-b-coloring where for each A ⊆ S, the vertices of

⋃
CA get distinct colors.

The safeness of the following reduction rule follows from Lemma 28.

L. Jaffke, P. T. Lima, and R. Sharma 40:13

▶ Reduction Rule 29. For each A ⊆ S, delete the cliques in CA \ {Cmax
A } and add a new

clique of size |
⋃

CA \ Cmax
A | whose neighbourhood in G is exactly A.

▶ Lemma 30 (⋆). When Reduction Rules 26 and 29 are no longer applicable, the neigh-
bourhood diversity of G is at most 2t+1 + t.

Proof of Theorem 24. The algorithm starts by finding a twin-cover of G of size t in
O(1.2378t + tn + m) time [15]. The algorithm guesses the restriction of the k-b-coloring of
G onto the vertices of S. Assuming that the colors of S are from the set {1, . . . , min{k, t}}
in the k-b-coloring, the number of guesses is at most t! = 2O(t log t). Applying Reduction
Rule 26 on this instance, we get a cleaned instance. Then applying Reduction Rule 29 on
this instance, by Lemma 30 we conclude that the neighbourhood diversity of G is at most
2t+1 + t. Applying all reduction rules can be done in time O(2t · n). Using the algorithm
of Theorem 22, we solve the problem in 22O(t) · log n + O(n) time. If for neither of the
guessed colorings of S, the above algorithm reports Yes, then report a No. Otherwise,
report Yes. ◀

6 Conclusion

We explored the landscape of structural parameterizations of b-Coloring. We showed that
the problem is XNLP-complete parameterized by pathwidth, which implies it is W[t]-hard for
any t by pathwidth, and as a consequence, by treewidth and clique-width as well. Recall that
b-Coloring was already known to be XP parameterized by clique-width. The algorithm
of [18] runs in time n2O(w) , where w is the clique-width of the input graph (which is tight
under the Exponential Time Hypothesis). Since graphs of treewidth t have clique-width
2Θ(t) [11], this results in an XP algorithm for b-Coloring parameterized by treewidth
with running time n22O(t)

. It would be interesting to investigate if this dependence on the
treewidth can be improved, and accompanied by a matching lower bound under the ETH.

On the positive side, we showed b-Coloring to be FPT parameterized by neighborhood
diversity and twin cover, two generalizations of vertex cover to more dense graphs. A para-
meter that generalizes both neighborhood diversity and twin cover is modular-width, defined
by Gajarský, Lampis and Ordyniak [14]. The complexity of b-Coloring parameterized by
modular-width remains an interesting open problem.

References
1 Davi de Andrade and Ana Silva. (Sub)fall coloring and b-coloring parameterized by treewidth.

In Anais do VII Encontro de Teoria da Computação, ETC 2022, pages 69–72, 2022.
2 Benjamin Bergougnoux, Jan Dreier, and Lars Jaffke. A logic-based algorithmic meta-theorem

for mim-width. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 3282–3304. SIAM, 2023.
doi:10.1137/1.9781611977554.ch125.

3 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. In Michael A. Bekos and Michael Kaufmann, editors,
Proceedings of the 48th International Workshop Graph-Theoretic Concepts in Computer Science,
WG 2022, volume 13453 of Lecture Notes in Computer Science, pages 84–97. Springer, 2022.
doi:10.1007/978-3-031-15914-5_7.

4 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. XNLP-
completeness for parameterized problems on graphs with a linear structure. In Holger Dell and
Jesper Nederlof, editors, Proceedings of the 17th International Symposium on Parameterized
and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.8.

ISAAC 2023

https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1007/978-3-031-15914-5_7
https://doi.org/10.4230/LIPIcs.IPEC.2022.8

40:14 Structural Parameterizations of b-Coloring

5 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
pages 193–204, 2021. doi:10.1109/FOCS52979.2021.00027.

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

7 Flavia Bonomo, Guillermo Durán, Frederic Maffray, Javier Marenco, and Mario Valencia-
Pabon. On the b-coloring of cographs and P4-sparse graphs. Graphs and Combinatorics,
25(2):153–167, 2009.

8 Flavia Bonomo, Oliver Schaudt, Maya Stein, and Mario Valencia-Pabon. b-Coloring is NP-hard
on co-bipartite graphs and polytime solvable on tree-cographs. Algorithmica, 73(2):289–305,
2015.

9 Victor A. Campos, Carlos V. Lima, Nicolas A. Martins, Leonardo Sampaio, Marcio C. Santos,
and Ana Silva. The b-chromatic index of graphs. Discrete Mathematics, 338(11):2072–2079,
2015.

10 Victor A. Campos, Cláudia Linhares-Sales, Rudini Sampaio, and Ana Karolinna Maia. Maxim-
ization coloring problems on graphs with few P4. Discrete Applied Mathematics, 164:539–546,
2014.

11 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM Journal on Computing, 34(4):825–847, 2005. doi:10.1137/S0097539701385351.

12 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
13 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity

of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

14 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation, pages 163–176, Cham, 2013. Springer International Publishing.

15 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel
Marx and Peter Rossmanith, editors, Parameterized and Exact Computation, pages 259–271,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

16 Frédéric Havet, Claudia Linhares Sales, and Leonardo Sampaio. b-Coloring of tight graphs.
Discrete Applied Mathematics, 160(18):2709–2715, 2012.

17 Robert W. Irving and David F. Manlove. The b-chromatic number of a graph. Discrete Applied
Mathematics, 91(1-3):127–141, 1999.

18 Lars Jaffke, Paloma T. Lima, and Daniel Lokshtanov. b-Coloring parameterized by clique-
width. Theory of Computing Systems, 2023. To appear. Conference version in STACS 2021,
pages 43:1–43:15.

19 Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In Avrim
Blum, editor, Proceedings of the 10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, volume 124 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl, 2019. arxiv:1803.04744.
doi:10.4230/LIPIcs.ITCS.2019.43.

20 Martin Koutecký. A note on coloring (4K1, C4, C6)-free graphs with a C7. Graphs Comb.,
38(5):149, 2022. doi:10.1007/s00373-022-02553-4.

21 Jan Kratochvíl, Zsolt Tuza, and Margit Voigt. On the b-chromatic number of graphs. In WG
2002, pages 310–320, 2002.

22 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

23 Ana Shirley Ferreira da Silva. The b-chromatic number of some tree-like graphs. PhD thesis,
Université Joseph-Fourier-Grenoble I, 2010.

24 Clara Inés Betancur Velasquez, Flavia Bonomo, and Ivo Koch. On the b-coloring of P4-tidy
graphs. Discrete Applied Mathematics, 159(1):60–68, 2011.

https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.1145/3486655
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.4230/LIPIcs.ITCS.2019.43
https://doi.org/10.1007/s00373-022-02553-4
https://doi.org/10.1007/s00453-011-9554-x

Clustering What Matters in Constrained Settings
Improved Outlier to Outlier-Free Reductions

Ragesh Jaiswal1 #

CSE, IIT Delhi, India

Amit Kumar #

CSE, IIT Delhi, India

Abstract
Constrained clustering problems generalize classical clustering formulations, e.g., k-median, k-means,
by imposing additional constraints on the feasibility of a clustering. There has been significant
recent progress in obtaining approximation algorithms for these problems, both in the metric and
the Euclidean settings. However, the outlier version of these problems, where the solution is allowed
to leave out m points from the clustering, is not well understood. In this work, we give a general
framework for reducing the outlier version of a constrained k-median or k-means problem to the
corresponding outlier-free version with only (1 + ε)-loss in the approximation ratio. The reduction is
obtained by mapping the original instance of the problem to f(k, m, ε) instances of the outlier-free
version, where f(k, m, ε) =

(
k+m

ε

)O(m). As specific applications, we get the following results:
First FPT (in the parameters k and m) (1 + ε)-approximation algorithm for the outlier version
of capacitated k-median and k-means in Euclidean spaces with hard capacities.
First FPT (in the parameters k and m) (3 + ε) and (9 + ε) approximation algorithms for the
outlier version of capacitated k-median and k-means, respectively, in general metric spaces with
hard capacities.
First FPT (in the parameters k and m) (2 − δ)-approximation algorithm for the outlier version
of the k-median problem under the Ulam metric.

Our work generalizes the results of Bhattacharya et al. and Agrawal et al. to a larger class of
constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can
extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases clustering, constrained, outlier

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.41

Related Version Full Version: https://arxiv.org/abs/2305.00175

Funding Ragesh Jaiswal: The author acknowledges the support from the SERB, MATRICS grant.

1 Introduction

Center-based clustering problems such as k-median and the k-means are important data
processing tasks. Given a metric D on a set of n points X and a parameter k, the goal
here is to partition the set of points into k clusters, say C1, . . . , Ck, and assign the points
in each cluster to a corresponding cluster center, say c1, . . . , ck, respectively, such that the
objective

∑k
i=1
∑

x∈Ci
D(x, ci)z is minimized. Here z is a parameter which is 1 for k-median

and 2 for k-means. The outlier version of these problems is specified by another parameter
m, where a solution is allowed to leave out up to m points from the clusters. Outlier versions
capture settings where the input may contain a few highly erroneous data points. Both the

1 corresponding author

© Ragesh Jaiswal and Amit Kumar;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rjaiswal@cse.iitd.ac.in
https://orcid.org/0009-0002-4475-0922
mailto:amitk@cse.iitd.ac.in
https://orcid.org/0000-0002-3965-6627
https://doi.org/10.4230/LIPIcs.ISAAC.2023.41
https://arxiv.org/abs/2305.00175
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Clustering What Matters in Constrained Settings

outlier and the outlier-free versions have been well-studied in the literature with constant
factor approximations known for both the k-means and the k-median problem [3, 4, 12]. In
addition, fixed-parameter tractable (FPT) (1 + ε)-approximation algorithms are known for
these problems in the Euclidean setting [26, 19, 8]: the running time of such algorithms is
of the form f(k,m, ε) · poly(n, d), where f() is an exponential function of the parameters
k,m, ε and d denotes the dimensionality of the points.

A more recent development in clustering problems has been the notion of constrained
clustering. A constrained clustering problem specifies additional conditions on a feasible
partitioning of the input points into k clusters. For example, the r-gathering problem requires
that each cluster in a feasible partitioning must contain at least r data points. Similarly, the
well-known capacitated clustering problem specifies an upper bound on the size of each cluster.
Constrained clustering formulations can also capture various types of fairness constraints:
each data point has a label assigned to it, and we may require upper or lower bounds
on the number (or fraction) of points with a certain label in each cluster. Table 1 in the
Appendix gives a list of some of these problems. FPT (in the parameter k) constant factor
approximation algorithms are known for a large class of these problems (see Table 2 in the
Appendix).

It is worth noting that constrained clustering problems are distinct from outlier clustering:
the former restricts the set of feasible partitioning of input points, whereas the latter allows us
to reduce the set of points that need to be partitioned into clusters. There has not been much
progress on constrained clustering problems in the outlier setting (also see [25] for unbounded
integrality gap for the natural LP relaxation for the outlier clustering versions). In this
work, we bridge this gap between the outlier and the outlier-free versions of constrained
clustering problems by giving an almost approximation-preserving reduction from the former
to the latter. As long as the parameters of interest (i.e., k,m) are small, the reduction
works in polynomial time. Using our reduction, an FPT α-approximation algorithm for the
outlier-free version of a constrained clustering problem leads to an FPT (α+ε)-approximation
algorithm for the outlier version of the same problem. For general metric spaces, this implies
the first FPT constant-approximation for outlier versions of several constrained clustering
problems; and similarly, we get new FPT (1 + ε)-approximation algorithms for several outlier
constrained clustering problems –see Table 2 in the Appendix for the precise details.

This kind of FPT approximation preserving reduction in the context of Euclidean k-means
was first given by [8] using a sampling-based approach. [20] extended the sampling ideas
of [8] to general metric spaces but did not give an approximation-preserving reduction. [2]
gave a reduction for general metric spaces using a coreset construction. In this work, we use
the sampling-based ideas of [8] to obtain an approximation-preserving reduction from the
outlier version to the outlier-free version with improved parameters over [2]. Moreover, our
reduction works for most known constrained clustering settings as well.

1.1 Preliminaries
We give a general definition of a constrained clustering problem. For a positive integer
k, we shall use [k] to denote the set {1, . . . , k}. Let (X , D) denote the metric space with
distance function D. For a point x and a subset S of points, we shall use D(x, S) to denote
miny∈S D(x, y). The set X contains subsets F and X: here X denotes the set of input points
and F is the set of points where a center can be located. An outlier constrained clustering
problem is specified by the following parameters and functions:

k: the number of clusters.
m: the number of points which can be left out from the clusters.

R. Jaiswal and A. Kumar 41:3

a function check: given a partitioning X0, X1, . . . , Xk of X (here X0 is the
set of outliers) and centers f1, . . . , fk, each lying in the set F , the function
check(X0, X1, . . . , Xk, f1, . . . , fk) outputs 1 iff this is a feasible clustering. For example,
in the r-gathering problem, the check(X0, X1, . . . , Xk, f1, . . . , fk) outputs 1 iff |Xi| ≥ r for
each i ∈ [k]. The check function depends only on the cardinality of the sets X1, . . . , Xk

and the locations f1, . . . , fk. This already captures many of the constrained clustering
problems. Our framework also applies to the more general labelled version (see details
below).
a cost function cost: given a partitioning X0, X1, . . . , Xk of X and centers f1, . . . , fk,

cost(X0, X1, . . . , Xk, f1, . . . , fk) :=
∑
i∈[k]

∑
x∈Xi

Dz(x, fi),

where z is either 1 (the outlier constrained k-median problem) or 2 (the outlier constrained
k-means problem).

Given an instance I = (X,F, k,m, check, cost) of an outlier constrained clustering problem as
above, the goal is to find a partitioning X0, X1, . . . , Xk of X and centers f1, . . . , fk ∈ F such
that |X0| ≤ m, check(X0, X1, . . . , Xk, f1, . . . , fk) is 1 and cost(X0, X1, . . . , Xk, f1, . . . , fk) is
minimized. The outlier-free constrained clustering problem is specified as above, except that
the parameter m is 0. For the sake of brevity, we leave out the parameter m and the set X0
while defining the instance I, and functions check and cost.

We shall also consider a more general class of constrained clustering problems, where each
input point is assigned a label. In other words, an instance I of such a problem is specified
by a tuple (X,F, k,m, σ, check, cost), where σ : X → L for a finite set L. Note that the
check function may depend on the function σ. For example, σ could assign a label “red” or
“blue” to each point in X and the check function would require that each cluster Xi should
have an equal number of red and blue points. In addition to the locations f1, . . . , fk, the
check(X1, . . . , Xk, f1, . . . , fk, σ) function also depends on |σ−1(l) ∩Xj | for each l ∈ L, j ∈ [k],
i.e., the number of points with a particular label in each of the clusters. Indirectly, this also
implies that the check function can impose conditions on the labels of the outliers points. For
example, the colorful k-median problem discussed in [2] has the constraint that mi clients
from the label type i should be designated as outliers, given that every client has a unique
label. Table 1 in the Appendix gives a description of some of these problems.

We shall use the approximate triangle inequality, which states that for z ∈ {1, 2} and any
three points x1, x2, x3 ∈ X ,

Dz(x1, x3) ≤ z (Dz(x1, x2) +Dz(x2, x3)) . (1)

1.2 Our results

Our main result reduces the outlier constrained clustering problem to the outlier-free version.
In our reduction, we shall also use approximation algorithms for the (unconstrained) k-median
and k-means problems. We assume we have a constant factor approximation algorithm for
these problems2: let C denote such an algorithm with running time TC(n) on an input of size
n. Note that C would be an algorithm for the k-means or the k-median problem depending
on whether z = 1 or 2 in the definition of the cost function.

2 Several such constant factor approximation algorithms exist [3, 4, 12].

ISAAC 2023

41:4 Clustering What Matters in Constrained Settings

▶ Theorem 1 (Main Theorem). Consider an instance I = (X,F, k,m, check, cost) of an
outlier constrained clustering problem. Let A be an α-approximation algorithm for the
corresponding outlier-free constrained clustering problem; let TA(n) be the running time of A
on an input of size n. Given a positive ε > 0, there is an α(1 + ε)-approximation algorithm
for I with running time TC(n) + q · TA(n) + O

(
n · (k + mz+1 log m

εz)
)

+ O
(
qm2(k +m)3),

where n is the size of I and q = f(k,m, ε) =
(

k+m
ε

)O(m), and z = 1 or 2 depending on the
cost function (i.e., z = 1 for k-median objection and z = 2 for k-means objective).

The above theorem implies that as long as there is an FPT or polynomial-time approxi-
mation algorithm for the constrained, outlier-free k-median or k-means clustering problem,
there is an FPT approximation algorithm (with almost the same approximation ratio) for the
corresponding outlier version. We prove this result by creating q instances of the outlier-free
version of I and picking the best solution on these instances using the algorithm A. We also
extend the above result to the labelled version:

▶ Theorem 2 (Main Theorem: labelled version). Consider an instance I =
(X,F, k,m, σ, check, cost) of an outlier constrained clustering problem with labels on input
points. Let A be an α-approximation algorithm for the corresponding outlier-free constrained
clustering problem; let TA(n) be the running time of A on an input of size n. Given a
positive ε > 0, there is an α(1 + ε)-approximation algorithm for I with running time
TC(n) + q · TA(n) + O

(
n · (k + mz+1 log m

εz)
)

+ O
(
qℓm2(k +m)3), where n is the size of I,

q = f(k,m, ε) =
(

(k+m)ℓ
ε

)O(m)
with ℓ being the number of distinct labels, and z = 1 or 2

depending on the cost function (i.e., z = 1 for k-median objection and z = 2 for k-means
objective).

The algorithms given in Theorem 1 and Theorem 2 are randomized algorithms that
guarantee the stated approximation factor with high probability. The consequences of our
results for specific constrained clustering problems are summarized in Table 2 in the Appendix.
We give the results of related works [8, 20, 2] in the same table to see the contributions of
this work. Our contributions can be divided into two main categories:
1. Matching the best-known result: This can be further divided into two categories:

a. Matching results of [2]: [2] gives an outlier to outlier-free reduction. We also give
such a reduction using a different technique with better parameters. This means
that we match all the results of [2], which includes problems such as the classical
k-median/means problems, the Matroid k-median problem, the colorful k-median
problem, and k-median in certain special metrics. See rows 2-6 in Table 2 given in the
Appendix.

b. Matching results of [20]: [20] gives FPT approximation algorithms for certain con-
strained problems on which the coreset-based approach of [2] is not known to work. See
the last row of Table 2. [20] gives algorithms for outlier and outlier-free versions with
the same approximation guarantee. Since the best outlier-free approximation is also
from [20], our results currently only match the approximation guarantees of [20]. How-
ever, if there is an improvement in any of these problems, our results will immediately
beat the known outlier results of [20].

2. Best known results: Since our results hold for a larger class of constrained problems than
earlier works, there are certain problems for which our results give the best-known FPT
approximation algorithm. The list includes capacitated k-median/k-means with hard
capacities in general metric and Euclidean spaces. It also includes the k-median problem
in the Ulam metric. A recent development in the Ulam k-median problem [11] has broken

R. Jaiswal and A. Kumar 41:5

the 2-approximation barrier. Our reduction allows us to take this development to the
outlier setting as well. The outlier-free results from which our best results are derived
using our reduction are given in Table 2 (see rows 7-9) given in the Appendix.

1.3 Comparison with earlier work
As discussed earlier, the idea of a reduction from an outlier clustering problem to the
corresponding outlier-free version in the context of the Euclidean k-means problem was
suggested by [8] using a D2-sampling based idea. [20] used the sampling ideas to design
approximation algorithms for the outlier versions of various constrained clustering problems.
However, the approximation guarantee obtained by [20] was limited to (3 + ε) for a large
class of constrained k-median and (9 + ε) for the constrained k-means problems, and it was
not clear how to extend these techniques to get improved guarantees. As a result, their
techniques could not exploit the recent developments by [14] in the design of (1 + 2/e+ ε)
and (1 + 8/e+ ε) FPT approximation algorithms for the classical outlier-free k-median and
k-means problems respectively in general metric spaces. [2] gave an outlier-to-outlier-free
reduction, making it possible to extend the above-mentioned FPT approximation guarantees
for the outlier-free setting to the outlier setting.

The reduction of [2] is based on the coreset construction by [13] using uniform sampling.
A coreset for a dataset is a weighted set of points such that the clustering of the coreset
points with respect to any set of k centers is the same (within a 1 ± ε factor) as that of
the original set points. The coreset construction in [13] starts with a set C of centers that
give constant factor approximation. They consider O(log n) “ring” around these centers,
uniformly sample points from each of these rings, and set the weight of the sampled points
appropriately. The number of sampled points, and hence the size of the coreset, is

(
|C| log n

ε

)2
.

[2] showed that when starting with (k+m) centers that give a constant approximation to the
classical (k +m)-median problem, the coreset obtained as above has the following additional
property: for any set of k centers, the clustering cost of the original set of points excluding m
outliers is same (again, within 1 ± ε factor) as that of the coreset, again allowing for exclusion
of a subset of m points from it. This means that by trying out all m subsets from the
coreset, we ensure that at least one subset acts as a good outlier set. Since the coreset size is(

(k+m) log n
ε

)2
, the number of outlier-free instances that we construct is

(
(k+m) log n

ε

)O(m)
.

Using (log n)O(m) = max{mO(m), nO(1)}, this is of the form f(k,m, ε) · nO(1) for a suitable
function f . At this point, we note the first quantitative difference from our result. In our
algorithm, we save the (log n)O(m) factor, which also means that the number of instances
does not depend on the problem size n. Further, a coreset-based construction restricts the
kind of problems it can be applied to. The coreset property that the cost of original points
is the same as that of the weighted cost of coreset points holds when points are assigned
to the closest center (i.e., the entire weight of the coreset goes to the closest center).3 This
works for the classical unconstrained k-median and k-means problems (as well as the few
other settings considered in [2]). However, for several constrained clustering problems, it
may not hold that every point is assigned to the closest center. There have been some recent
developments [5, 10] in designing coresets for constrained clustering settings. However, they
have not been shown to apply to the outlier setting. Another recent work [22] designs coresets
for the outlier setting, but like [2], it has limited scope and has not been shown to extend for
most constrained settings. Our Dz-sampling-based technique has the advantage that instead
of running the outlier-free algorithm on a coreset as in [2], it works directly with the dataset.

3 The reason is how Haussler’s lemma is applied to bound the cost difference.

ISAAC 2023

41:6 Clustering What Matters in Constrained Settings

That is, we run the outlier-free algorithm on the dataset (after removing outlier candidates).
This also makes our results helpful in weighted settings (e.g., see [11]) where the outlier-free
algorithm is known to work only for unweighted datasets – note a coreset is a weighted set).

Recent independent work. In recent and independent work, [17] design similar approxima-
tion preserving reductions for a restricted class of constrained clustering settings, namely
capacitated clustering and (α, β)-fair clustering. Further, their results are obtained by
extending coreset based ideas of [2].

1.4 Our Techniques
In this section, we give a high-level description of our algorithm. Let I denote an instance of
outlier constrained clustering on a set of points X and O denote an optimal solution to I.
The first observation is that the optimal cost of the outlier-free and unconstrained clustering
with k+m centers on X is a lower bound on the cost of O (Claim 1). 4 Let C denote the set
of these (k+m) centers (we can use any constant factor approximation for the unconstrained
version to find C). The intuition behind choosing C is that the centers in O should be close
to C.

Now we divide the set of m outliers in O into two subsets: those which are far from C

and the remaining ones close to C (“near” outliers). Our first idea is to randomly sample a
subset S of O(m logm) points from X with sampling probability proportional to distance
(or square of distance) from the set C. This sampling ensures that S contains the far outliers
with high probability (Claim 2). We can then iterate over all subsets of S to guess the exact
subset of far outliers. Handling the near outliers is more challenging and forms the heart of
the technical contribution of this paper.

We “assign” each near outlier to its closest point in C – let Xopt
N,j be the set of outliers

assigned to cj . By iterating over all choices, we can guess the cardinality tj of each of the sets
Xopt

N,j . We now set up a suitable minimum cost bipartite b-matching instance which assigns a
set of tj points to each center cj . Let X̂j be the set of points assigned to cj . Our algorithm
uses ∪jX̂j as the set of near outliers. In the analysis, we need to argue that there is a way of
matching the points in Xopt

N,j to X̂j whose total cost (sum of distances or squared distances
between matched points) is small (Lemma 4). The hope is that we can go from the optimal
set of outliers in O to the ones in the algorithm and argue that the increase in cost is small.
Since we are dealing with constrained clustering, we need to ensure that this process does
not change the size of each of the clusters. To achieve this, we need to further modify the
matching between the two sets of outliers (Lemma 5). Finally, with this modified matching,
we are able to argue that the cost of the solution produced by the algorithm is close to that
of the optimal solution. The extension to the labelled version follows along similar lines.

In the remaining paper, we prove our two main results, Theorem 1 and Theorem 2. The
main discussion will be for Theorem 1 since Theorem 2 is an extension of Theorem 1 that
uses the same proof ideas. In the following sections, we give the details of our algorithm
(Section 2) and its analysis (Section 3). In Section 3, we discuss the extension to the labelled
version.

2 Algorithm

In this section, we describe the algorithm for the outlier constrained clustering problem.
Consider an instance I = (X,F, k,m, check, cost) of this problem. Recall that the parameter
z = 1 or 2 depends on whether the cost function is like the k-median or the k-means objective
respectively. In addition, we assume the existence of the following algorithms:

4 This observation was used in both [8] and [2].

R. Jaiswal and A. Kumar 41:7

A constant β-factor algorithm C for the k-median or the k-means problem (depending on
z = 1 or z = 2 respectively): an instance here is specified by a tuple (X ′, F ′, k′) only,
where X ′ is the set of input points, F ′ is the set of potential locations for a center, and
k′ denotes the number of clusters.
An algorithm A for the outlier-free version of this problem. An instance here is given
by a tuple (X ′, F ′, k, check, cost) where the check and the cost functions are the same as
those in I.
An algorithm M for the b-matching problem: an instance of the b-matching problem is
specified by a weighted bi-partite graph G = (L,R = {v1, . . . , vr}, E), with edge e having
weight we; and a tuple (t1, . . . , tr), where ti, i ∈ [r], are non-negative integers. A solution
needs to find a subset of E′ of E such each vertex of L is incident with at most one edge
of E′, and each vertex vj ∈ R is incident with exactly tj edges of E′. The goal is to find
such a set E′ of minimum total weight.

We now define Dz-sampling:

▶ Definition 3. Given sets C and X of points, Dz-sampling from X w.r.t. C samples a
point x ∈ X, where the probability of sampling x is proportional to Dz(x,C).

The algorithm is described in Algorithm 1. It first runs the algorithm C to obtain a set
of (k + m) centers C in line 1.2. In line 1.3, we sample a subset S where each point in S

is sampled independently using Dz-sampling w.r.t. C. Given a subset Y , we say that a
tuple τ = (t1, . . . , tk+m) is valid if tj ≥ 0 for all j ∈ [k + m], and

∑
j tj + |Y | = m. For

each subset Y of size ≤ m of S and for each valid tuple τ , the algorithm constructs a
solution (X(Y,τ)

0 , X
(Y,τ)
1 , . . . , X

(Y,τ)
k), where X(Y,τ)

0 denotes the set of outlier points. This is
done by first computing the set X(Y,τ)

0 , and then using the algorithm A on the remaining
points X \ (X(Y,τ)

0 ∪ Y) (line 1.8). To find the set X(Y,τ)
0 , we construct an instance I(Y,τ) of

b-matching first (line 1.6). This instance is defined as follows: the bipartite graph has the set
of (k+m) centers C on the right side and the set of points X on the left side. The weight of
an edge between a vertex v ∈ C and w ∈ X is equal to Dz(v, w). For each vertex vj ∈ C,
we require that it is matched to exactly tj points of X. We run the algorithm M on this
instance of b-matching (line 1.7). We define X(Y,τ)

0 as the set of points of X matched by this
algorithm. Finally, we output the solution of minimum cost (line 1.10).

Algorithm 1 Algorithm for outlier constrained clustering.

1.1 Input: I := (X,F, k,m, check, cost)
1.2 Execute C on the instance I ′ := (X,F, k +m) to obtain a set C of k +m centers.
1.3 Sample a set S of ⌈ 4βm log m

ε ⌉ points with replacement, each using Dz-sampling from
X w.r.t. C.

1.4 for each subset Y ⊂ S, |Y | ≤ m do
1.5 for each valid tuple τ = (t1, . . . , tk+m) do
1.6 Construct the instance I(Y,τ)

1.7 Run M on I(Y,τ) and let X(Y,τ)
0 be the set of matched points in X.

1.8 Run the algorithm A on the instance (X \ (X(Y,τ)
0 ∪ Y), F, k, check, cost).

1.9 Let (X(Y,τ)
1 , . . . , X

(Y,τ)
k) be the clustering produced by A.

1.10 Let (Y ⋆, τ ⋆) be the pair for which cost(X(Y,τ)
1 , . . . , X

(Y,τ)
k) is minimized.

1.11 Output (X(Y ⋆,τ ⋆)
0 , X

(Y ⋆,τ ⋆)
1 , . . . , X

(Y ⋆,τ ⋆)
k).

ISAAC 2023

41:8 Clustering What Matters in Constrained Settings

3 Analysis

We now analyze Algorithm 1. We refer to the notation used in this algorithm. Let I =
(X,F, k,m, check, cost) be the instance of the outlier constrained clustering problem. Let
opt(I) denote the optimal cost of a solution for the instance I. Assume that the algorithm C
for the unconstrained clustering problem (used in line 1.2) is a β-approximation algorithm.
We overload notation and use costI′(C) to denote the cost of the solution C for the instance
I ′. Observe that the quantity costI′(C) can be computed as follows: each point in X is
assigned to the closest point in C, and then we compute the total cost (which could be the
k-median or the k-means cost based on the value of the parameter z) of this assignment. We
first relate costI′(C) to opt(I).

▷ Claim 1. costI′(C) ≤ β · opt(I).

Proof. Let (X0, X1, ..., Xk) denote the optimal solution for I, where X0 denotes the set of m
outlier points (without loss of generality, we can assume that the number of outlier points in
the optimal solution is exactly m). Let c1, . . . , ck be the centers of the clusters X1, . . . , Xk

respectively. Consider the solution to I ′ consisting of centers C ′ := X0 ∪{c1, . . . , ck}. Clearly,
costI′(C ′) ≤ opt(I) (we have inequality here because the solution X1, . . . , Xk may not be a
Voronoi partition with respect to c1, . . . , ck). Since C is a β-approximation algorithm, we
know that costI′(C) ≤ β · costI′(C ′). Combining these two facts implies the desired result.

◁

We now consider an optimal solution for the instance I: let Xopt
0 , Xopt

1 , . . . , Xopt
k be

the partition of the input points X in this solution, with Xopt
0 being the set of m outliers.

Depending on the distance from C, we divide the set Xopt
0 into two subsets – Xopt

F (“far”
points) and Xopt

N (“near” points) as follows:

Xopt
F :=

{
x ∈ Xopt

0 |Dz(x,C) ≥ ε costI′(C)
2βm

}
, Xopt

N := X \Xopt
F .

Recall that we sample a set S of 4βm log m
ε clients using Dz-sampling with respect to

center set C (line 1.3 in Algorithm 1). Note that the probability of sampling a point x is
given by

Dz(x,C)∑
x′∈X Dz(x,C) = Dz(x,C)

costI′(C) . (2)

We first show that S contains all the points in Xopt
F with high probability.

▷ Claim 2. Pr[Xopt
F ⊆ S] ≥ 1 − 1/m.

Proof. Inequality Equation (2) shows that the probability of sampling a point x ∈ Xopt
F is

Dz(x,C)
costI′ (C) ≥ ε

2βm . So the probability that x is not present in S is at most
(

1 − ε
2βm

) 4βm log m
ε ≤

1
m2 . The desired result now follows from union bound. ◁

For the rest of the analysis, we assume that the event in Claim 2 holds. We now note that
the sum of the cost of assigning Xopt

N to C is at most ε · opt(I).

▷ Claim 3.
∑

x∈Xopt
N
Dz(x,C) ≤ ε

2 · opt(I).

R. Jaiswal and A. Kumar 41:9

Proof. The claim follows from the following sequence of inequalities:∑
x∈Xopt

N

Dz(x,C) <
∑

x∈Xopt
N

ε costI′(C)
2βm ≤

∑
x∈Xopt

N

ε · opt(I)
2m ≤ ε

2 · opt(I),

where the first inequality follows from the definition of Xopt
N and the second inequality follows

from Claim 1. ◁

For every point in Xopt
N , we identify the closest center in C = {c1, . . . , cm+k} (breaking ties

arbitrarily). For each j ∈ [k+m], let Xopt
N,j be the set of points in Xopt

N which are closest to cj .
Let t̂j denote |Xopt

N,j |. Consider an iteration of line 1.7–1.9 where Y = Xopt
F , τ = (t̂1, . . . , t̂k+m).

Observe that τ is valid with respect to Y because
∑

j∈[m+k] |t̂j |+|Y | = m. Let X̂1, . . . , X̂m+k

be the set of points assigned to c1, . . . , cm+k respectively by the algorithm M. Intuitively, we
will like to construct a solution where the set of outliers is given by X̂ := Xopt

F ∪X̂1∪· · ·∪X̂m+k.
We now show that the set X̂ is “close” to Xopt

0 , the set of outliers in the optimal solution. In
order to do this, we set up a bijection µ : Xopt

0 → X̂, where µ restricted to Xopt
F is identity,

and µ restricted to any of the sets Xopt
N,j is a bijection from Xopt

N,j to X̂j . Such a function µ

is possible because for each j ∈ [m + k], |Xopt
N,j | = |X̂j | = t̂j . We now prove this closeness

property.

▶ Lemma 4.
∑

x∈Xopt
0
Dz(x, µ(x)) ≤ ε · z · opt(I).

Proof. We first note a useful property of the solution given by the algorithm M. One of the
possible solutions for the instance I(Y,τ) could have been assigning Xopt

N,j to the center cj .
Since M is an optimal algorithm for b-matching, we get∑

j∈[k+m]

∑
x∈X̂j

Dz(x, cj) ≤
∑

j∈[k+m]

∑
x∈Xopt

N,j

Dz(x, cj) =
∑

x∈Xopt
N

Dz(x,C) ≤ ε

2 · opt(I), (3)

where the last inequality follows from Claim 3. Now,∑
x∈Xopt

0

Dz(x, µ(x)) =
∑

x∈Xopt
N

Dz(x, µ(x)) =
∑

j∈[k+m]

∑
x∈Xopt

N,j

Dz(x, µ(x))

(1)
≤ z ·

∑
j∈[k+m]

∑
x∈Xopt

N,j

(Dz(x, cj) +Dz(cj , µ(x))) , (4)

where the first equality follows from the fact that µ is identity on Xopt
F . Since µ is a bijection

from Xopt
N,j to X̂j , the above can also be written as

z ·
∑

j∈[k+m]

∑
x∈Xopt

N,j

Dz(x, cj) + z ·
∑

j∈[k+m]

∑
x∈X̂j

Dz(x, cj) ≤ z · ε opt(I),

where the last inequality follows from Claim 3 and (3). This proves the desired result. ◀

The mapping µ described above may have the following undesirable property: there could
be a point x ∈ Xopt

0 ∩ X̂ such that µ(x) ̸= x. This could happen if x ∈ Xopt
N,j and x ∈ X̂i

where i ̸= j. We now show that µ can be modified to another bijection µ̂ : Xopt
0 → X̂ which

is identity on Xopt
0 ∩ X̂. Note that the mapping µ̂ is only needed for the analysis of the

algorithm.

ISAAC 2023

41:10 Clustering What Matters in Constrained Settings

▶ Lemma 5. There is a bijection µ̂ : Xopt
0 → X̂ such that µ̂(x) = x for all x ∈ Xopt

0 ∩ X̂ and∑
x∈Xopt

0

Dz(x, µ̂(x)) ≤ mz−1 ε · z · opt(I).

Proof. We construct a directed graph H = (V1, E1) where V1 = Xopt
0 ∪X̂. For every x ∈ Xopt

0 ,
we add the directed arc (x, µ(x)) to E1. Observe that a self loop in H implies that µ(x) = x.
Every vertex in Xopt

0 \ X̂ has 0 in-degree and out-degree 1; whereas a vertex in X̂ \Xopt
0 has

in-degree 1 and 0 out-degree. Vertices in X̂ ∩Xopt
0 have exactly one incoming and outgoing

arc (in case of a self-loop, it counts towards both the in-degree and the out-degree of the
corresponding vertex).

The desired bijection µ̂ is initialized to µ. Let cost(µ̂) denote
∑

x∈Xopt
0
Dz(x, µ̂(x)); define

cost(µ) similarly. It is easy to check H is vertex disjoint union of directed cycles and paths.
In case of a directed cycle C on more than 1 vertex, it must be the case that each of the
vertices in C belong to X̂ ∩Xopt

0 . In this case, we update µ̂ be defining µ̂(x) = x for each
x ∈ C. Clearly this can only decrease cost(µ̂). Let P1, . . . , Pl be the set of directed paths in
H. For each path Pj , we perform the following update: let Pj be a path from aj to bj . We
know that aj ∈ Xopt \ X̂, bj ∈ X̂ \Xopt

0 and each internal vertex of Pj lies in X̂ ∩Xopt
0 . We

update µ̂ as follows; µ̂(aj) = bj and µ̂(v) = v for each internal vertex v of Pj . The overall
increase in cost(µ̂) is equal to

∑
j∈[l]

(
Dz(aj , bj) −

nj∑
i=1

Dz(vi
j , v

i−1
j)

)
, (5)

where aj = v0
j , v

1
j , . . . , v

nj

j = bj denotes the sequence of vertices in Pj . If z = 1, triangle
inequality shows that the above quantity is at most 0. In case z = 2,

D2(aj , bj) ≤ nj

(
nj∑

i=1
D2(vi

j , v
i−1
j)

)
,

and so the quantity in (5) is at most (nj − 1)
∑nj

i=1 D
2(vi

j , v
i−1
j).

It follows that cost(µ̂) ≤ mz−1cost(µ). The desired result now follows from Lemma 4. ◀

We run the algorithm A on the outlier-free constrained clustering instance I ′′ = (X \
X̂, F, k, check, cost) (line 1.8 in Algorithm 1). Let opt(I ′′) be the optimal cost of a solution
for this instance. The following key lemma shows that opt(I ′′) is close to opt(I).

▶ Lemma 6. opt(I ′′) ≤ (1 + ε
1
z (4m+ 1)z−1)opt(I).

Proof. We shall use the solution (Xopt
0 , . . . , Xopt

k) to construct a feasible solution for I ′′. For
each j ∈ [k], let Zj denote Xopt

j ∩ X̂. Let µ̂−1(Zj) denote the pre-image under µ̂ of Zj . Since
Zj ⊆ X̂ \Xopt

0 , µ̂−1(Zj) ⊆ Xopt
0 \ X̂. For each j ∈ [k], define X ′

j := (Xopt
j \ Zj) ∪ µ̂−1(Zj).

▷ Claim 4.
⋃k

j=1 X
′
j = X \ X̂.

Proof. For any j ∈ [k], we have already argued that µ̂−1(Zj) ⊆ Xopt
0 \ X̂ ⊆ X \ X̂. Clearly,

Xopt
j \Zj ⊆ X \X̂. Therefore X ′

j ⊆ X \X̂. Therefore, ∪j∈[k]X
′
j ⊆ X \X̂. Since |X ′

j | = |Xopt
j |,∑

j∈[k]

|X ′
j | = n−m = |X \ X̂|.

This proves the claim. ◁

R. Jaiswal and A. Kumar 41:11

The above claim implies that (X ′
1, . . . , X

′
k) is a partition of X \ X̂. Since |X ′

j | = |Xopt
j | for

all j ∈ [k] and the function check only depends on the cardinality of the sets in the partition,
(X ′

1, . . . , X
′
k) is a feasible partition (under check) of X \ X̂. In the optimal solution for I, let

fopt
1 , . . . , f opt

k be the k centers corresponding to the clusters Xopt
1 , . . . , Xopt

k respectively. Now,

opt(I ′′) ≤ cost(X ′
1, . . . , X

′
k) ≤

∑
j∈[k]

∑
x∈X′

j

Dz(x, fopt
j) (6)

For each j ∈ [k], we estimate the quantity
∑

x∈X′
j
Dz(x, fopt

j). Using the definition of X ′
j

and triangle inequality, this quantity can be expressed as∑
x∈Xopt

j
\Zj

Dz(x, fopt
j) +

∑
x∈µ̂−1(Zj)

Dz(x, fopt
j)

≤
∑

x∈Xopt
j

\Zj

Dz(x, fopt
j) +

∑
x∈µ̂−1(Zj)

(
D(x, µ̂(x)) +D(µ̂(x), fopt

j)
)z (7)

When z = 1, the above is at most (replacing x by µ̂(x) in the second expression on RHS)∑
x∈Xopt

j

D(x, fopt
j) +

∑
x∈Zj

D(x, µ̂(x)).

Using this bound in (6), we see that

opt(I ′′) ≤ opt(I) +
∑

x∈Xopt
0

D(x, µ̂(x)) ≤ (1 + ε)opt(I),

where the last inequality follows from Lemma 5. This proves the desired result for z = 1.
When z = 2, we use the fact that for any two reals a, b,

(a+ b)2 ≤ (1 +
√
ε)a2 + b2

(
1 + 1√

ε

)
.

Using this fact, the expression in the RHS of (7) can be upper bounded by

(1 +
√
ε)
∑

x∈Xopt
j

D2(x, fopt
j) +

(
1 + 1√

ε

) ∑
x∈Zj

D2(x, µ̂(x)).

Substituting this expression in (6) and using Lemma 5, we see that

opt(I ′′) ≤ (1 +
√
ε)opt(I) + 4m

√
εopt(I).

This proves the desired result for z = 2. ◀

The approximation preserving properties of Theorem 1 follow from the above analysis.
For the k-means problem, since the approximation term is (1 +

√
ε(4m+ 1)), we can replace

ε with ε2/(4m+ 1)2 in the algorithm and analysis to obtain a (1 + ε) factor. Let us quickly
check the running time of the algorithm. The algorithm first runs C that takes TC(n) time.
This is followed by Dz-sampling O(mz+1 log m

εz) points, which takes O(n · (k + mz+1 log m
εz))

time. The number of iterations of the for-loops is determined by the number of subsets of
S, which is

∑m
i=0
(|S|

i

)
=
(

m
ε

)O(m), and the number of possibilities for τ , which is at most(2m+k−1
m

)
= (m+ k)O(m). This gives the number of iterations q = f(k,m, ε) =

(
k+m

ε

)O(m).
In every iteration, in addition to running A, we solve a weighted b-matching problem on a
bipartite graph (L∪R,E) where R has (k+m) vertices (corresponding to the k+m centers
in the center set C) and L has at most (k +m) ·m vertices (considering m closest clients for
every center is sufficient which can be found using a pre-processing step). So, every iteration
costs TA(n) +O((k +m)3m2) time. This gives the running time expression in Theorem 1.

ISAAC 2023

41:12 Clustering What Matters in Constrained Settings

Extension to labelled version

In this section, we extend Algorithm 1 to the setting where points in X have labels from a
finite set L and the check() function can also depend on the number of points with a certain
label in a cluster. The overall structure of Algorithm 1 remains unchanged; we just indicate
the changes needed in this algorithm.

Given a non-negative integer p, a label partition of p is defined as a tuple ψ = (q1, . . . , q|L|)
such that

∑
i qi = p. The intuition is that given a set S of size p, q1 points get the first label

in L, q2 points in S get the second label in L, and so on. Now, given a subset Y , define
a valid tuple τ w.r.t. Y as a tuple ((t1, ψ1), . . . , (tk+m, ψk+m)), where (i)

∑
j tj + |Y | = m,

and (ii) ψj is a label partition of tj . As in line 1.5 in Algorithm 1, we iterate over all such
valid tuples. The definition of a solution to the b-matching instance I(Y,τ) changes as follows.
Let ψj = (n1

j , . . . , n
ℓ
j), where ℓ = |L|. Then a solution to I(Y,τ) needs to satisfy the condition

that for each point cj ∈ C and each label l ∈ L, exactly nl
j points in X are matched to

cj . Note that this also implies that exactly tj points are matched to cj . This matching
problem can be easily reduced to weighted bipartite matching by making tj copies of each
point cj , and for each label l, adding edges between nl

j distinct copies of cj to vertices of
label l only. The rest of the details of Algorithm 1 remain unchanged. Note that the running
time of the algorithm changes because we now have to iterate over all partitions of each of
the numbers tj .

The analysis of the algorithm proceeds in an analogous manner as that of Algorithm 1.
We just need to consider the iteration of the algorithm, where we correctly guess the size of
each of the sets Xopt

N,j and the number of points of each label in this set.

References

1 Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Trans. Algorithms,
6(3), July 2010. doi:10.1145/1798596.1798602.

2 Akanksha Agrawal, Tanmay Inamdar, Saket Saurabh, and Jie Xue. Clustering what matters:
Optimal approximation for clustering with outliers, 2023. arXiv:2212.00696.

3 S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means
and euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 61–72, October 2017. doi:10.1109/FOCS.
2017.15.

4 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004. doi:10.1137/S0097539702416402.

5 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On Coresets for Fair Clustering
in Metric and Euclidean Spaces and Their Applications. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ICALP.2021.23.

6 Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms
for clustering. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/
file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf.

https://doi.org/10.1145/1798596.1798602
https://arxiv.org/abs/2212.00696
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.4230/LIPIcs.ICALP.2021.23
https://proceedings.neurips.cc/paper_files/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fc192b0c0d270dbf41870a63a8c76c2f-Paper.pdf

R. Jaiswal and A. Kumar 41:13

7 Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt. On the Cost of Essentially Fair Clusterings. In Dimitris
Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:22, Dagstuhl, Germany, 2019.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.
2019.18.

8 Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. On Sampling Based
Algorithms for k-Means. In Nitin Saxena and Sunil Simon, editors, 40th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2020), volume 182 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–
13:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.FSTTCS.2020.13.

9 Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Faster algorithms for the con-
strained k-means problem. Theor. Comp. Sys., 62(1):93–115, January 2018. doi:10.1007/
s00224-017-9820-7.

10 V. Braverman, V. Cohen-Addad, H. Jiang, R. Krauthgamer, C. Schwiegelshohn, M. Toftrup,
and X. Wu. The power of uniform sampling for coresets. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 462–473, Los Alamitos, CA,
USA, November 2022. IEEE Computer Society. doi:10.1109/FOCS54457.2022.00051.

11 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Clustering permutations:
New techniques with streaming applications. In Yael Tauman Kalai, editor, 14th Innovations in
Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge,
Massachusetts, USA, volume 251 of LIPIcs, pages 31:1–31:24. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.31.

12 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and System Sciences,
65(1):129–149, 2002. doi:10.1006/jcss.2002.1882.

13 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. doi:10.1137/
070699007.

14 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT Approximations for k-Median and k-Means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.42.

15 Vincent Cohen-Addad and Jason Li. On the Fixed-Parameter Tractability of Capacitated
Clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41:1–
41:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2019.41.

16 Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework
for clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 169–182, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451022.

17 Rajni Dabas, Neelima Gupta, and Tanmay Inamdar. Fpt approximations for capacitated/fair
clustering with outliers, 2023. arXiv:2305.01471.

18 Hu Ding. Faster balanced clusterings in high dimension. Theoretical Computer Science,
842:28–40, 2020. doi:10.1016/j.tcs.2020.07.022.

ISAAC 2023

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.13
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.13
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1109/FOCS54457.2022.00051
https://doi.org/10.4230/LIPIcs.ITCS.2023.31
https://doi.org/10.1006/jcss.2002.1882
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1145/3406325.3451022
https://arxiv.org/abs/2305.01471
https://doi.org/10.1016/j.tcs.2020.07.022

41:14 Clustering What Matters in Constrained Settings

19 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, SCG ’07, pages 11–18, New York, NY, USA, 2007. ACM. doi:10.1145/1247069.
1247072.

20 Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. FPT Approximation for Constrained Metric
k-Median/Means. In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium
on Parameterized and Exact Computation (IPEC 2020), volume 180 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1–14:19, Dagstuhl, Germany, 2020. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.IPEC.2020.14.

21 Mohammadtaghi Hajiaghayi, Wei Hu, Jian Li, Shi Li, and Barna Saha. A constant factor
approximation algorithm for fault-tolerant k-median. ACM Trans. Algorithms, 12(3), April
2016. doi:10.1145/2854153.

22 Lingxiao Huang, Shaofeng H. C. Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for
robust clustering, 2022. arXiv:2210.10394.

23 Tanmay Inamdar and Kasturi Varadarajan. Fault tolerant clustering with outliers. In Evripidis
Bampis and Nicole Megow, editors, Approximation and Online Algorithms, pages 188–201,
Cham, 2020. Springer International Publishing.

24 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1117–1130, USA, 2011.
Society for Industrial and Applied Mathematics.

25 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 646–659, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3188745.3188882.

26 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes
for clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, February 2010. doi:
10.1145/1667053.1667054.

27 Clemens Rösner and Melanie Schmidt. Privacy Preserving Clustering with Constraints. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 96:1–96:14,
Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ICALP.2018.96.

https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1145/1247069.1247072
https://doi.org/10.4230/LIPIcs.IPEC.2020.14
https://doi.org/10.1145/2854153
https://arxiv.org/abs/2210.10394
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.4230/LIPIcs.ICALP.2018.96
https://doi.org/10.4230/LIPIcs.ICALP.2018.96

R. Jaiswal and A. Kumar 41:15

A Tables

Table 1 The table defines various outlier-free versions of the constrained k-median problem. The
k-means versions are defined similarly using D2 instead of D. We include a few references. The
problems are categorized based on the type of constraints. There are three main types of constraints
(i) size (constraints on the cluster size), (ii) center (constraints on the points a center can service),
and (iii) label (constraints on the label of points in clusters). A constrained problem can have a
combination of these constraint types.

Problem Description

Unconstrained k-median
(Constraint type: unconstrained)

Input: (F,X, k)
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: None, i.e., check(X1, ..., Xk, f1, ..., fk) always equals 1.
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).
(This includes various versions corresponding to specific metrics such as

Ulam metric on permutations, metric spaces with constant doubling dimension etc.)

Fault-tolerant k-median
(Constraint type: unconstrained
but labelled)

[21, 23]

Input: (F,X, k) and a number h(x) ≤ k for every facility x ∈ X

Output: (f1, ..., fk)
Constraints: None.
Objective: Minimise

∑
x∈X

∑h(x)
j=1 D(x, fπx(j)),

where πx(j) is the index of jth nearest center to x in (f1, ..., fk)
(Label: h(x) may be regarded as the label of the client x. So, the number of distinct labels ℓ ≤ k.)

Balanced k-median
(Constraint type: size)

[1, 18]

Input: (F,X, k) and integers (r1, ..., rk), (l1, ..., lk),
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: Xi should have at least ri and at most li clients,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, ri ≤ |Xi| ≤ li .
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).
(Versions corresponding to specific values of ri’s and li’s are known by different names.

The version corresponding to l1 = ... = lk = |X| is called the r-gather problem and
the version where r1 = ... = rk = 0 is called the l-capacity problem.)

Capacitated k-median
(Constraint type: center + size)

[15]

Input: (F,X, k) and with capacity s(f) for every facility f ∈ F

Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The number of clients, Xi, assigned to fi is at most s(fi),

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, |Xi| ≤ s(fi) .
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).

Matroid k-median
(Constraint type: center)

[24, 14]

Input: (F,X, k) and a Matroid on F

Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The number of clients, Xi, assigned to fi is at most s(fi),

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff {f1, ..., fk} is an independent set of the Matroid .
Objective: Minimise

∑
i

∑
x∈Xi

D(x, fi).

Strongly private k-median
(Constraint type: label + size)

[27]

Input: (F,X, k) and numbers (l1, ..., lw). Each client has a label ∈ {1, ..., w}.
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: Every Xi has at least lj clients with label j,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, j, |Xi ∩ Sj | ≥ lj ,
where Sj is the set of clients with label j .

Objective: Minimise
∑

i

∑
x∈Xi

D(x, fi).
(Labels: The number of distinct labels ℓ = w).

l-diversity k-median
(Constraint type: label + size)

[7]

Input: (F,X, k) and a number l > 1. Each client has one colour from ∈ {1, ..., w}
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The fraction of clients with colour j in every Xi is at least 1/l,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1 iff ∀i, j, |Xi ∩ Sj | ≤ |Xi|/l,
where Sj is the set of clients with colour j .

Objective: Minimise
∑

i

∑
x∈Xi

D(x, fi).
(Labels: Each colour can be regarded as a label and hence the number of distinct labels ℓ = w).

Fair k-median
(Constraint type: label + size)

[7, 6]

Input: (F,X, k) and fairness values (α1, ..., αw), (β1, ..., βw). Each client has colours from ∈ {1, ..., w}
Output: (X1, ..., Xk, f1, ..., fk)
Constraints: The fraction of clients with colour j in every Xi is between αj and βj ,

i.e., check(X1, ..., Xk, f1, ..., fk) = 1
iff ∀i, j, αj |Xi| ≤ |Xi ∩ Sj | ≤ β|Xi|, where Sj is the set of clients with colour j .

Objective: Minimise
∑

i

∑
x∈Xi

D(x, fi).
(There are two versions: (i) each client has a unique label, and (ii) a client can have multiple labels.)
(Labels: For the first version ℓ = w and for the second version ℓ = 2w.)

ISAAC 2023

41:16 Clustering What Matters in Constrained Settings

Table 2 A × means that the techniques are not known to apply to the problem. The new
results that do not follow from the previously known results are shaded . The results that were
not explicitly reported but follow from the techniques in the paper are shaded The techniques
of [2] do not apply to the Ulam k-median problem since the outlier-free algorithm works on
unweighted instances. Note that all the FPT (3 + ε) and (9 + ε) approximations for the outlier-free
versions (leftmost column) in the last row follow from the outlier-free results in [20]. However, the
approximation guarantees in the rightmost column depend on those in the leftmost. This means,
unlike the rigid (3 + ε) and (9 + ε) approximation of [20] in the middle column, the approximation
guarantee in the rightmost column will improve with every improvement in the leftmost.

Problem Outlier-free
Outlier version

[20] [2] This work

Euclidean k-means (i.e., F = Rd, X ⊂ Rd) (1 + ε)
[9] × (1 + ε) (1 + ε)

k-median
(
1 + 2

e + ε
)

[14] (3 + ε)
(
1 + 2

e + ε
) (

1 + 2
e + ε

)
k-means

(
1 + 8

e + ε
)

[14] (9 + ε)
(
1 + 8

e + ε
) (

1 + 8
e + ε

)
k-median/means in metrics:
(i) constant doubling dimension
(ii) metrics induced by graphs of bounded treewidth
(iii) metrics induced by graphs that exclude a fixed
graph as a minor

(1 + ε)
[16]

(3 + ε)
k-median
(9 + ε)
k-means

(1 + ε) (1 + ε)

Matroid k-median (2 + ε)
[14] (3 + ε) (2 + ε) (2 + ε)

Colourful k-median
(
1 + 2

e + ε
)

[14] (3 + ε)
(
1 + 2

e + ε
) (

1 + 2
e + ε

)
Ulam k-median (here F = X) (2 − δ)

[11] (2 + ε) × (2 − δ)

Euclidean Capacitated k-median/means (1 + ε)
[15] × × (1 + ε)

Capacitated k-median
Capacitated k-means

(3 + ε)
(9 + ε)

[15]

×
×

×
×

(3 + ε)
(9 + ε)

Uniform/non-uniform r-gather k-median/means
(uniform implies r1 = r2 = ... = rk)

Uniform/non-uniform l-capacity k-median/means
(uniform implies l1 = l2 = ... = lk)

Uniform/non-uniform balanced k-median/means
(uniform implies r1 = r2 = ... = rk and l1 = l2 = ... = lk)

(3 + ε)
(k-median)

(3 + ε)
(k-median) × (3 + ε)

(k-median)

Uniform/non-uniform fault tolerant k-median/means
(uniform implies same h(x) for every x)

(9 + ε)
(k-means)

(9 + ε)
(k-means) × (9 + ε)

(k-means)

Strongly private k-median/means [20]

l-diversity k-median/means

Fair k-median/means

Single-Exponential FPT Algorithms for
Enumerating Secluded F-Free Subgraphs and
Deleting to Scattered Graph Classes
Bart M. P. Jansen #

Eindhoven University of Technology, The Netherlands

Jari J. H. de Kroon #

Eindhoven University of Technology, The Netherlands

Michał Włodarczyk #

University of Warsaw, Poland

Abstract

The celebrated notion of important separators bounds the number of small (S, T)-separators in
a graph which are “farthest from S” in a technical sense. In this paper, we introduce a generalization
of this powerful algorithmic primitive, tailored to undirected graphs, that is phrased in terms of
k-secluded vertex sets: sets with an open neighborhood of size at most k.

In this terminology, the bound on important separators says that there are at most 4k maximal
k-secluded connected vertex sets C containing S but disjoint from T . We generalize this state-
ment significantly: even when we demand that G[C] avoids a finite set F of forbidden induced
subgraphs, the number of such maximal subgraphs is 2O(k) and they can be enumerated efficiently.
This enumeration algorithm allows us to make significant improvements for two problems from
the literature.

Our first application concerns the Connected k-Secluded F-free subgraph problem, where
F is a finite set of forbidden induced subgraphs. Given a graph in which each vertex has a positive
integer weight, the problem asks to find a maximum-weight connected k-secluded vertex set C ⊆ V (G)
such that G[C] does not contain an induced subgraph isomorphic to any F ∈ F . The parameterization
by k is known to be solvable in triple-exponential time via the technique of recursive understanding,
which we improve to single-exponential.

Our second application concerns the deletion problem to scattered graph classes. A scattered
graph class is defined by demanding that every connected component is contained in at least one
of the prescribed graph classes Π1, . . . , Πd. The deletion problem to a scattered graph class is
to find a vertex set of size at most k whose removal yields a graph from the class. We obtain
a single-exponential algorithm whenever each class Πi is characterized by a finite number of forbidden
induced subgraphs. This generalizes and improves upon earlier results in the literature.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis; Theory of computation → Parameterized complexity
and exact algorithms

Keywords and phrases fixed-parameter tractability, important separators, secluded subgraphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.42

Related Version Full Version: https://arxiv.org/abs/2309.11366 [24]

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).

© Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 42; pp. 42:1–42:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:j.j.h.d.kroon@tue.nl
https://orcid.org/0000-0003-3328-9712
mailto:m.wlodarczyk@mimuw.edu.pl
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ISAAC.2023.42
https://arxiv.org/abs/2309.11366
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

1 Introduction

Graph separations have played a central role in algorithmics since the discovery of min-
cut/max-flow duality and the polynomial-time algorithm to compute a maximum flow [15].
Nowadays, more complex separation properties are crucial in the study of parameterized
complexity, where the goal is to design algorithms for NP-hard problems whose running time
can be bounded as f(k) · nO(1) for some function f that depends only on the parameter k

of the input. There are numerous graph problems which either explicitly involve finding
separations of a certain kind (such as Multiway Cut [33], Multicut [4, 36], k-Way
Cut [25], and Minimum Bisection [11]) or in which separation techniques turn out to be
instrumental for an efficient solution (such as Directed Feedback Vertex Set [7] and
Almost 2-SAT [39]).

The field of parameterized complexity has developed a robust toolbox of techniques
based on graph separators, e.g., treewidth reduction [35], important separators [34], shadow
removal [36], discrete relaxations [12, 18, 19, 20], protrusion replacement [37], randomized
contractions and recursive understanding [8, 10, 31], and flow augmentation [26, 27]. These
powerful techniques allowed a large variety of graph separation problems to be classified
as fixed-parameter tractable. However, this power comes at a cost. The running times for
many applications of these techniques are superexponential: of the form 2p(k) · nO(1) for
a high-degree polynomial p, double-exponential, or even worse. Discrete relaxations form
a notable exception, which we discuss in Section 4.

The new algorithmic primitive we develop can be seen as an extension of important
separators [34] [9, §8]. The study of important separators was pioneered by Marx [33, 34]
and refined by follow-up work by several authors [6, 29], which was recognized by the
EATCS-IPEC Nerode Prize 2020 [3]. The technique is used to bound the number of extremal
(S, T)-separators in an n-vertex graph G with vertex sets S and T . The main idea is that,
even though the number of distinct inclusion-minimal (S, T)-separators (which are vertex
sets potentially intersecting S ∪ T) of size at most k can be as large as nΩ(k), the number
of important separators which leave a maximal vertex set reachable from S, is bounded
by 4k. For Multiway Cut, a pushing lemma [33, Lem. 6] shows that there is always an
optimal solution that contains an important separator, which leads to an algorithm solving
the problem in time 2O(k) ·nO(1). Important separators also form a key ingredient for solving
many other problems such as Multicut [4, 36] and Directed Feedback Vertex Set [7].

For our purposes, it will be convenient to view the bound on the number of important
separators through the lens of secluded subgraphs.

▶ Definition 1. A vertex set S ⊆ V (G) or induced subgraph G[S] of an undirected graph G

is said to be k-secluded if |NG(S)| ≤ k, that is, the number of vertices outside S which are
adjacent to a vertex of S is bounded by k.

A vertex set S in a graph G is called seclusion-maximal with respect to a certain property Π
if S satisfies Π and for all sets S′ ⊋ S that satisfy Π we have |NG(S′)| > |NG(S)|.

Hence a seclusion-maximal set with property Π is inclusion-maximal among all subsets with
the same size neighborhood. Consequently, the number of inclusion-maximal k-secluded sets
satisfying Π is at most the number of seclusion-maximal k-secluded sets with that property.

Using the terminology of seclusion-maximal subgraphs, the bound on the number of
important (S, T)-separators of size at most k in a graph G is equivalent to the following
statement: in the graph G′ obtained from G by inserting a new source r adjacent to S, the
number of seclusion-maximal k-secluded connected subgraphs C containing r but no vertex
of T is bounded by 4k. The neighborhoods of such subgraphs C correspond exactly to the
important (S, T)-separators in G.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:3

While a number of previously studied cut problems [30, 35] place further restrictions
on the vertex set that forms the separator (for example, requiring it to induce a connected
graph or independent set) our generalization instead targets the structure of the k-secluded
connected subgraph C. We will show that, for any fixed finite family F of graphs, the number
of k-secluded connected subgraphs C as above which are seclusion-maximal with respect to
satisfying the additional requirement that G[C] contains no induced subgraph isomorphic
to a member of F is still bounded by 2O(k). Observe that the case F = ∅ corresponds to
the original setting of important separators. Note that a priori, it is not even clear that the
number of seclusion-maximal graphs of this form can be bounded by any function f(k), let
alone a single-exponential one.

Our contribution

Having introduced the background of secluded subgraphs, we continue by stating our result
exactly. This will be followed by a discussion on its applications.

For a finite set F of graphs we define ||F|| := maxF ∈F |V (F)|, the maximum order of
any graph in F . We say that a graph is F-free if it does not contain an induced subgraph
isomorphic to a graph in F . Our generalization of important separators is captured by the
following theorem, in which we use OF (. . .) to indicate that the hidden constant depends on F .

▶ Theorem 2. Let F be a finite set of graphs. For any n-vertex graph G, non-empty vertex
set S ⊆ V (G), potentially empty T ⊆ V (G) \ S, and integer k, the number of k-secluded
induced subgraphs G[C] which are seclusion-maximal with respect to being connected, F-free,
and satisfying S ⊆ C ⊆ V (G) \ T , is bounded by 2OF (k). A superset of size 2OF (k) of these
subgraphs can be enumerated in time 2OF (k) · n||F||+O(1) and polynomial space.

The single-exponential bound given by the theorem is best-possible in several ways.
Existing lower bounds on the number of important separators [9, Fig. 8.5] imply that even
when F = ∅ the bound cannot be improved to 2o(k). The term n||F|| in the running time is
unlikely to be avoidable, since even testing whether a single graph is F -free is equivalent to
Induced Subgraph Isomorphism and cannot be done in time no(||F||) [9, Thm. 14.21]
assuming the Exponential Time Hypothesis (ETH) due to lower bounds for k-Clique.

The polynomial space bound applies to the internal space usage of the algorithm, as
the output size may be exponential in k. More precisely, we consider polynomial-space
algorithms equipped with a command that outputs an element and we require that for
each element in the enumerated set, this command is called at least once. The algorithm
could also enumerate just the set in question (rather than its superset) by postprocessing
the output and comparing each pair of enumerated subgraphs. However, storing the entire
output requires exponential space.

By executing the enumeration algorithm for every singleton set S of the form {v},
v ∈ V (G), and T = ∅, we immediately obtain the following.

▶ Corollary 3. Let F be a finite set of graphs. For any n-vertex graph G and integer k, the
number of k-secluded induced subgraphs G[C] which are seclusion-maximal with respect to
being connected and F-free is 2OF (k) · n. A superset of size 2OF (k) · n of these subgraphs can
be enumerated in time 2OF (k) · n||F||+O(1) and polynomial space.

Note that we require that the set F of forbidden induced subgraphs is finite. This is
necessary in order to obtain a bound independent of n in Theorem 2. For example, the
number of seclusion-maximal (k = 1)-secluded connected subgraphs C containing a prescribed
vertex r for which C induces an acyclic graph is already as large as n−1 in a graph consisting

ISAAC 2023

42:4 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

of a single cycle, since each way of omitting a vertex other than r gives such a subgraph.
For this case, the forbidden induced subgraph characterization F consists of all cycles.
Extending this example to a flower structure of k cycles of length n/k pairwise intersecting
only in r shows that the number of seclusion-maximal k-secluded F -free connected subgraphs
containing r is Ω(nk/kk) and cannot be bounded by f(k) · nO(1) for any function f .

We give two applications of Theorem 2 to improve the running time of existing super-
exponential (or even triple-exponential) parameterized algorithms to single-exponential,
which is optimal under ETH. For each application, we start by presenting some context.

Application I: Optimization over connected k-secluded F-free subgraphs

The computation of secluded versions of graph-theoretic objects such as paths [2, 5, 32],
trees [13], Steiner trees [14], or feedback vertex sets [1], has attracted significant attention
over recent years. This task becomes hard already for detecting k-secluded disconnected sets
satisfying very simple properties. In particular, detecting a k-secluded independent set of
size s is W[1]-hard when parameterized by k + s [1].

Golovach, Heggernes, Lima, and Montealegre [17] suggested then to focus on connected
k-secluded subgraphs and studied the problem of finding one, which belongs to a graph class
H, of maximum total weight. They therefore studied the Connected k-secluded F-free
subgraph problem for a finite family F of forbidden induced subgraphs. Given an undirected
graph G in which each vertex v has a positive integer weight w(v), and an integer k, the
problem is to find a maximum-weight connected k-secluded vertex set C for which G[C] is
F -free. They presented an algorithm based on recursive understanding to solve the problem
in time 222OF (k log k)

· nOF (1). We improve the dependency on k to single-exponential.

▶ Corollary 4. For each fixed finite family F , Connected k-secluded F-free subgraph
can be solved in time 2OF (k) · n||F||+O(1) and polynomial space.

This result follows directly from Corollary 3 since a maximum-weight k-secluded F -free
subgraph must be seclusion-maximal. Hence it suffices to check for each enumerated subgraph
whether it is F -free, and remember the heaviest one for which this is the case.

The parameter dependence of our algorithm for Connected k-secluded F-free
subgraph is optimal under ETH. This follows from an easy reduction from Maximum
Independent Set, which cannot be solved in time 2o(n) under ETH [9, Thm. 14.6]. Finding
a maximum independent set in an n-vertex graph G is equivalent to finding a maximum-
weight triangle-free connected induced (k = n)-secluded subgraph in the graph G′ that is
obtained from G by inserting a universal vertex of weight n and setting the weights of all other
vertices to 1. Consequently, an algorithm with running time 2o(k) · nO(1) for Connected
k-secluded triangle-free induced subgraph would violate ETH and our parameter
dependence is already optimal for F = {K3}.

Application II: Deletion to scattered graph classes

When there are several distinct graph classes (e.g., split graphs and claw-free graphs) on
which a problem of interest (e.g. Vertex Cover) becomes tractable, it becomes relevant to
compute a minimum vertex set whose removal ensures that each resulting component belongs
to one such tractable class. This can lead to fixed-parameter tractable algorithms for solving
the original problem on inputs which are close to such so-called islands of tractability [16].
The corresponding optimization problem has been coined the deletion problem to scattered
graph classes [21, 23]. Jacob, Majumdar, and Raman [22] (later joined by de Kroon for the
journal version [21]) consider the (Π1, . . . , Πd)-deletion problem; given hereditary graph

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:5

classes Π1, . . . , Πd, find a set X ⊆ V (G) of at most k vertices such that each connected
component of G−X belongs to Πi for some i ∈ [d]. Here d is seen as a constant. When the
set of forbidden induced subgraphs Fi of Πi is finite for each i ∈ [d], they show [21, Lem. 12]
that the problem is solvable in time 2q(k)+1 · nOΠ(1), where q(k) = 4k10(pd)2+4 + 1. Here p is
the maximum number of vertices of any forbidden induced subgraph.

Using Theorem 2 as a black box, we obtain a single-exponential algorithm for this problem.

▶ Theorem 5. (Π1, . . . , Πd)-deletion can be solved in time 2OΠ(k) · nOΠ(1) and polynomial
space when each graph class Πi is characterized by a finite set Fi of (not necessarily connected)
forbidden induced subgraphs.

The main idea behind the algorithm is the following. For an arbitrary vertex v, either it
belongs to the solution, or we may assume that in the graph that results by removing the
solution, the vertex v belongs to a connected component that forms a seclusion-maximal
connected k-secluded Fi-free induced subgraph of G for some i ∈ [d]. Branching on each
of the 2OΠ(k) options gives the desired running time by exploiting the fact that in most
recursive calls, the parameter decreases by more than a constant (cf. [9, Thm. 8.19]). Prior
to our work, single-exponential algorithms were only known for a handful of ad-hoc cases
where d = 2, such as deleting to a graph in which each component is a tree or a clique [21],
or when one of the sets of forbidden induced subgraphs Fi contains a path.

Similarly as our first application, the resulting algorithm for (Π1, . . . , Πd)-deletion is
ETH-tight: the problem is a strict generalization of k-Vertex Cover, which is known not
to admit an algorithm with running time 2o(k) · nO(1) unless ETH fails.

Techniques

The proof of Theorem 2 is based on a bounded-depth search tree algorithm with a nontrivial
progress measure. By adding vertices to S or T in branching steps of the enumeration
algorithm, the sets grow and the size of a minimum (S, T)-separator increases accordingly.
The size of a minimum (S, T)-separator disjoint from S is an important progress measure for
the algorithm: if it ever exceeds k, there can be no k-secluded set containing all of S and
none of T and therefore the enumeration is finished.

The branching steps are informed by the farthest minimum (S, T)-separator (see Lemma 9),
similarly as the enumeration algorithm for important separators, but are significantly more
involved because we have to handle the forbidden induced subgraphs. A distinctive feature
of our algorithm is that the decision made by branching can be to add certain vertices to the
set T , while the important-separator enumeration only branches by enriching S. A key step
is to use submodularity to infer that a certain vertex set is contained in all seclusion-maximal
secluded subgraphs under consideration when other branching steps are inapplicable.

As an illustrative example consider the case F = {K3}, that is, we want to enumerate
seclusion-maximal vertex sets C ⊆ V (G) \ T , C ⊇ S, which induce connected triangle-free
subgraphs with at most k neighbors. Let λL(S, T) denote the size of a minimum vertex
set disjoint from S that separates T from S – we will refer to such separators as left-
restricted. Then λL(S, T) corresponds to the minimum possible size of N(C). Similarly to
the enumeration algorithm for important separators, we keep track of two measures: (M1)
the value of k, and (M2) the gap between k and λL(S, T). We combine them into a single
progress measure which is bounded by 2k and decreases during branching.

The first branching scenario occurs when there is some triangle in the graph G which
intersects or is adjacent to S; then we guess which of its vertices should belong to N(C),
remove it from the graph, and decrease k by one. Otherwise, let U = {U1, . . . Ud} be the
collection of all vertex sets of triangles in G (which are now disjoint from S). When there
exists a triangle Ui whose addition to T increases the value λL(S, T), we branch into two

ISAAC 2023

42:6 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

TS TS TS

P

C

Figure 1 Illustration of the branching steps for enumerating triangle-free k-secluded subgraphs
for k = 3. Left: the green triangle intersects S; we branch to guess which vertex belongs to N(C).
Middle: setting where 2 = λL(S, T) < λL(S, T ∪V (U)) = 3; adding the top triangle to T increases λL.
The set U consists of the colored triangles. Right: setting where λL(S, T) = λL(S, T ∪ V (U)) = 2,
with a corresponding farthest separator P . In this case every seclusion-maximal triangle-free set
C ⊇ S must be a superset of the reachability set of S in G − P .

possibilities: either Ui is disjoint from N [C] – then we set T ← T ∪ Ui so the measure (M2)
decreases – or Ui intersects N(C) – then we perform branching as above. We show that in the
remaining case all the triangles are separated from S by the minimum left-restricted (S, T)-
separator closest to S; hence the value of λL(S, T) equals the value of λL(S, T ∪V (U)). Next,
let P be the farthest minimum left-restricted (S, T ∪ V (U))-separator; we use submodularity
to justify that we can now safely add to S all the vertices reachable from S in G− P . This
allows us to assume that when u ∈ P then either u ∈ N(C) or u ∈ C, which leads to the last
branching strategy. We either delete u (so k drops) or add u to S; note that in this case
the progress measure may not change directly. The key observation is that adding u to S

invalidates the farthest (S, T ∪V (U))-separator P and now we are promised to make progress
in the very next branching step. The different branching scenarios are illustrated in Figure 1.

The only property of K3 that we have relied on is connectivity: if a triangle intersects
a triangle-free set C then it must intersect N(C) as well. This is no longer true when F
contains a disconnected graph. For example, the forbidden family for the class of split graphs
includes 2K2. A subgraph of F ∈ F that can be obtained by removing some components
from F is called a partial forbidden graph. We introduce a third measure to keep track of
how many different partial forbidden graphs appear as induced subgraph in G[S]. The main
difficulty in generalizing the previous approach lies in justification of the greedy argument:
when P is a farthest minimum separator between S and a certain set then we want to replace
S with the set S′ of vertices reachable from S in G−P . In the setting of connected obstacles
this fact could be proven easily because S′ was disjoint from all the obstacles. The problem
is now it may contain some partial forbidden subgraphs. We handle this issue by defining P

in such a way that the sets of partial forbidden graphs appearing in G[S] and G[S′] are the
same and giving a rearrangement argument about subgraph isomorphisms. This allows us to
extend the analysis to any family F of forbidden subgraphs.

Organization. We begin with formal preliminaries in Section 2, including proofs of several
properties of extremal separators. Next, we present the algorithm for enumerating secluded
F-free subgraphs in Section 3 and conclude in Section 4. The proofs of claims indicated
with (⋆) can be found in the full version of the article [24]. The applications of the main
theorem are discussed in the full version as well.

2 Preliminaries

Graphs and separators

We consider finite, simple, undirected graphs. We denote the vertex and edge sets of a
graph G by V (G) and E(G) respectively, with |V (G)| = n and |E(G)| = m. For a set of
vertices S ⊆ V (G), by G[S] we denote the graph induced by S. We use shorthand G − v

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:7

and G− S for G[V (G) \ {v}] and G[V (G) \ S], respectively. The open neighborhood NG(v)
of v ∈ V (G) is defined as {u ∈ V (G) | {u, v} ∈ E(G)}. The closed neighborhood of v is
NG[v] = NG(v)∪{v}. For S ⊆ V (G), we have NG[S] =

⋃
v∈S NG[v] and NG(S) = NG[S]\S.

The set C is called connected if the graph G[C] is connected.
We proceed by introducing notions concerning separators which are crucial for the

branching steps of our algorithms. For two sets S, T ⊆ V (G) in a graph G, a set P ⊆ V (G) is
an unrestricted (S, T)-separator if no connected component of G− P contains a vertex from
both S \ P and T \ P . Note that such a separator may intersect S ∪ T . Equivalently, P is
an (S, T)-separator if each (S, T)-path contains a vertex of P . A restricted (S, T)-separator
is an unrestricted (S, T)-separator P which satisfies P ∩ (S ∪ T) = ∅. A left-restricted (S, T)-
separator is an unrestricted (S, T)-separator P which satisfies P ∩ S = ∅. Let λL

G(S, T)
denote the minimum size of a left-restricted (S, T)-separator, or +∞ if no such separator
exists (which happens when S ∩ T ̸= ∅).

▶ Theorem 6 (Ford-Fulkerson). There is an algorithm that, given an n-vertex m-edge graph
G = (V, E), disjoint sets S, T ⊆ V (G), and an integer k, runs in time O(k(n + m)) and
determines whether there exists a restricted (S, T)-separator of size at most k. If so, then the
algorithm returns a separator of minimum size.

By the following observation we can translate properties of restricted separators into
properties of left-restricted separators.

▶ Observation 7. Let G be a graph and S, T ⊆ V (G). Consider the graph G′ obtained from
G by adding a new vertex t adjacent to each v ∈ T . Then P ⊆ V (G) is a left-restricted
(S, T)-separator in G if and only if P is a restricted (S, t)-separator in G′.

Extremal separators and submodularity

The following submodularity property of the cardinality of the open neighborhood is
well-known; cf. [40, §44.12] and [28, Fn. 3].
▶ Lemma 8 (Submodularity). Let G be a graph and A, B ⊆ V (G). Then the following holds:

|NG(A)|+ |NG(B)| ≥ |NG(A ∩B)|+ |NG(A ∪B)|.

For a graph G and vertex sets S, P ⊆ V (G), we denote by RG(S, P) the set of vertices
which can be reached in G− P from at least one vertex in the set S \ P .

▶ Lemma 9. Let G be a graph and S, T ⊆ V (G) be two disjoint non-adjacent vertex sets.
There exist minimum restricted (S, T)-separators P − (closest) and P + (farthest), such that
for each minimum restricted (S, T)-separator P , it holds that RG(S, P −) ⊆ RG(S, P) ⊆
RG(S, P +). Moreover, if a minimum restricted (S, T)-separator has size k, then P − and P +

can be identified in O(k(n + m)) time.

Proof. It is well-known (cf. [9, Thm. 8.5] for the edge-based variant of this statement, or [28,
§3.2] for the same concept with slightly different terminology) that the existence of these
separators follows from submodularity (Lemma 8), while they can be computed by analyzing
the residual network when applying the Ford-Fulkerson algorithm to compute a minimum
separator. We sketch the main ideas for completeness.

By merging S into a single vertex s+ and merging T into a single vertex t−, which is
harmless because a restricted separator is disjoint from S ∪ T , we may assume that S and T

are singletons. Transform G into an edge-capacitated directed flow network D in which s+

is the source and t− is the sink. All remaining vertices v ∈ V (G) \ (S ∪ T) are split into two

ISAAC 2023

42:8 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

representatives v−, v+ connected by an arc (v−, v+) of capacity 1. For each edge uv ∈ E(G)
with u, v ∈ V (G) \ {s+, t−} we add arcs (u+, v−), (u−, v+) of capacity 2. For edges of the
form s+v we add an arc (s+, v−) of capacity 2 to D. Similarly, for edges of the form t−v we
add an arc (v+, t−) of capacity 2. Then the minimum size k of a restricted (S, T)-separator
in G equals the maximum flow value in the constructed network, which can be computed
by k rounds of the Ford-Fulkerson algorithm. Each round can be implemented to run in
time O(n + m). From the state of the residual network when Ford-Fulkerson terminates
we can extract P − and P + as follows: the set P − contains all vertices v ∈ V (G) \ (S ∪ T)
for which the source can reach v− but not v+ in the final residual network. Similarly, P +

contains all vertices v ∈ V (G) \ (S ∪ T) for which v+ can reach the sink but v− cannot. ◀

By Observation 7, we can apply the lemma above for left-restricted separators too; when
the sets S, T are disjoint, then S is non-adjacent to t in the graph obtained by adding a
vertex t adjacent to every vertex in T .

The extremal separators identified in Lemma 9 explain when adding a vertex to S or T

increases the separator size. The following statement is not symmetric because we work with
the non-symmetric notion of a left-restricted separator.

▶ Lemma 10. Let G be a graph, let S, T be disjoint vertex sets, and let P − and P + be the
closest and farthest minimum left-restricted (S, T)-separators. Then for any vertex v ∈ V (G),
the following holds:
1. λL

G(S ∪ {v}, T) > λL
G(S, T) if and only if v ∈ RG(T, P +) ∪ P +.

2. λL
G(S, T ∪ {v}) > λL

G(S, T) if and only if v ∈ RG(S, P −).

Proof. Adding a vertex to S or T can never decrease the separator size, so for both cases,
the left-hand side is either equal to or strictly greater than the right-hand side.

(1). Observe that if v /∈ RG(T, P +) ∪ P +, then P + is also a left-restricted (S ∪ {v}, T)-
separator which implies λL

G(S ∪ {v}, T) = λL
G(S, T). If v ∈ T , then (1) holds as λL

G(S ∪
{v}, T) = +∞. Consider now v ∈ (RG(T, P +) ∪ P +) \ T ; we argue that adding it to S

increases the separator size. Assume for a contradiction that there exists a minimum left-
restricted (S ∪ {v}, T)-separator P of size at most λL

G(S, T) = |P +|. Note that since P is
left-restricted, we have v /∈ P . Observe that P is also a left-restricted (S, T)-separator. By
Lemma 9 we have RG(S, P) ⊆ RG(S, P +). Since v ∈ (RG(T, P +) ∪ P +) \ T , it follows that
v /∈ RG(S, P). We do a case distinction on v to construct a path Q from v to T .

In the case that v ∈ P + \ T , then since P + is a minimum separator it must be inclusion-
minimal. Therefore, since P + \ {v} is not an (S, T)-separator, it follows that v has a
neighbor in RG(T, P +) and so there is a path Q from v to T in the graph induced by
RG(T, P +) ∪ {v} such that V (Q) ∩ P + = {v}.
In the case that v ∈ RG(T, P +) \ T , then by definition there is a path from v to T in the
graph induced by RG(T, P +).

Since P is a left-restricted (S ∪ {v}, T)-separator and therefore v /∈ P , it follows that P

contains at least one vertex u ∈ V (Q) that is not in RG(S, P +) ∪ P +. Let P ′ be the set of
vertices adjacent to RG(S, P). Since all vertices of P ′ belong to P while u /∈ P ′, it follows
that P ′ is a left-restricted (S, T)-separator that is strictly smaller than P , a contradiction to
|P | ≤ λL

G(S, T).

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:9

(2). If v /∈ RG(S, P −), then P − is a left-restricted (S, T ∪ {v})-separator as well which
implies λL

G(S, T ∪ {v}) = λL
G(S, T). If v ∈ RG(S, P −), suppose that there exists a minimum

left-restricted (S, T ∪ {v})-separator P of size |P −|. Note that v /∈ S, as otherwise no such
separator exists. Furthermore P is also a left-restricted (S, T)-separator. By Lemma 9
we have RG(S, P −) ⊆ RG(S, P). But since v /∈ RG(S, P) we reach a contradiction as
RG(S, P) ̸⊇ RG(S, P −). ◀

The following lemma captures the idea that if λL
G(S, T ∪ Z) > λL

G(S, T), then there
is a single vertex from Z whose addition to T already increases the size of a minimum
left-restricted (S, T)-separator. We will use it to argue that when it is cheaper to separate S

from T than to separate S from T together with all obstacles of a certain form, then there is
already a single vertex from one such obstacle which causes this increase.

▶ Lemma 11. Let G be a graph, S ⊆ V (G), and T, Z ⊆ V (G) \ S. If there is no vertex
v ∈ Z such that λL

G(S, T ∪ {v}) > λL
G(S, T), then λL

G(S, T) = λL
G(S, T ∪ Z). Furthermore if

λL
G(S, T) ≤ k, then in O(k(n + m)) time we can either find such a vertex v or determine

that no such vertex exists.

Proof. Let P − be the minimum left-restricted (S, T)-separator which is closest to S. If
for every v ∈ Z the value of λL

G(S, T ∪ {v}) equals λL
G(S, T) then Lemma 10 implies that

each v ∈ Z lies outside RG(S, P −) so Z ∩ RG(S, P −) = ∅. Then P − is a left-restricted
(S, T ∪ Z)-separator of size λL

G(S, T).
On the other hand, if there is a vertex v ∈ Z for which λL

G(S, T ∪ {v}) > λL
G(S, T) then

v ∈ RG(S, P −). Hence, in order to detect such a vertex it suffices to compute the closest
minimum left-restricted (S, T)-separator P −, which can be done in time O(k(n + m)) via
Lemma 9. ◀

Finally, the last lemma of this section uses submodularity to argue that the neighborhood
size of a vertex set C with S ⊆ C ⊆ V (G) \ T does not increase when taking its union with
the reachable set RG(S, P) with respect to a minimum left-restricted (S, T)-separator P .

▶ Lemma 12. If P ⊆ V (G) is a minimum left-restricted (S, T)-separator in a graph G

and S′ = RG(S, P), then for any set C with S ⊆ C ⊆ V (G) \ T we have |NG(C ∪ S′)| ≤
|NG(C)|.

Proof. Observe that since P is a minimum left-restricted (S, T)-separator, we have |P | =
λL

G(S, T) and P = NG(S′). We apply the submodular inequality to the sets C and S′.

|NG(C)|+ |NG(S′)| ≥ |NG(C ∪ S′)|+ |NG(C ∩ S′)| ≥ |NG(C ∪ S′)|+ λL
G(S, T).

Here the last step comes from the fact that S ⊆ S′ ⊆ V (G) \ T since it is the set reachable
from S with respect to a left-restricted (S, T)-separator, so that C ∩ S′ contains all of S

and is disjoint from T . This implies that NG(C ∩ S′) is a left-restricted (S, T)-separator, so
that |NG(C ∩ S′)| ≥ λL

G(S, T).
As |NG(S′)| = |P | = λL

G(S, T), canceling these terms from both sides gives |NG(C)| ≥
|NG(C ∪ S′)| which completes the proof. ◀

3 The enumeration algorithm

We need the following concept to deal with forbidden subgraphs which may be disconnected.

ISAAC 2023

42:10 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

T
S

U

T
S U

Figure 2 Illustration of the idea of enrichment and the branching steps in the proof of Theorem 2.
Here F = C4 ⊎ K4. Left: The graph G[S] contains C4 and K4, but not F . The set U enriches S

since G[S ∪ U] contains a new partial forbidden graph F . Every component of G[U] is adjacent to
S, so Step 3 applies. Right: The two top copies of C4 do not enrich S. One of them intersects the
only copy of K4 in G[S]; the other one is adjacent to the only copy of K4, while F has to appear
as an induced subgraph. However the connected set U enriches S and it gets detected in Step 4.
In both cases the enrichments are tight.

▶ Definition 13. A partial forbidden graph F ′ is a graph obtained from some F ∈ F by
deleting zero or more connected components. (So each F ∈ F itself is also considered a
partial forbidden graph.)

We use the following notation to work with induced subgraph isomorphisms. An induced
subgraph isomorphism from H to G is an injection ϕ : V (H) → V (G) such that for all
distinct u, v ∈ V (H) we have {u, v} ∈ E(H) if and only if {ϕ(u), ϕ(v)} ∈ E(G). For a vertex
set U ⊆ V (H) we let ϕ(U) := {ϕ(u) | u ∈ U}. For a subgraph H ′ of H we write ϕ(H ′)
instead of ϕ(V (H ′)).

The following definition will be important to capture the progress of the recursive
algorithm. See Figure 2 for an illustration.

▶ Definition 14. We say that a vertex set U ⊆ V (G) enriches a vertex set S ⊆ V (G) with
respect to F if there exists a partial forbidden graph F ′ such that G[S ∪ U] contains an
induced subgraph isomorphic to F ′ but G[S] does not. We call such a set U an enrichment.

An enrichment U is called tight if U = ϕ(F ′) \ S for some induced subgraph isomorphism
ϕ : V (F ′)→ V (G) from some partial forbidden graph F ′ for which G[S] does not contain an
induced subgraph isomorphic to F ′.

The following observation will be used to argue for the correctness of the recursive scheme.
Note that we get an implication only in one way (being seclusion-maximal in G implies being
seclusion-maximal in G− v, not the other way around), which is the reason why we output
a superset of the sought set in Theorem 2.

▶ Observation 15. Let G be a graph containing disjoint sets S, T ⊆ V (G) and let C ⊆ V (G)
be seclusion-maximal with respect to being connected, F-free, k-secluded and satisfying S ⊆
C ⊆ V (G) \ T . For each v ∈ NG(C) it holds that C is seclusion-maximal in G − v with
respect to being connected, F-free, (k − 1)-secluded and satisfying S ⊆ C ⊆ V (G− v) \ T .

With these ingredients, we present the enumeration algorithm. Recall that ||F|| =
maxF ∈F |V (F)| denotes the maximum order of any graph in F .

▶ Theorem 2. Let F be a finite set of graphs. For any n-vertex graph G, non-empty vertex
set S ⊆ V (G), potentially empty T ⊆ V (G) \ S, and integer k, the number of k-secluded
induced subgraphs G[C] which are seclusion-maximal with respect to being connected, F-free,
and satisfying S ⊆ C ⊆ V (G) \ T , is bounded by 2OF (k). A superset of size 2OF (k) of these
subgraphs can be enumerated in time 2OF (k) · n||F||+O(1) and polynomial space.

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:11

Proof. Algorithm EnumF (G, S, T, k) solves the enumeration task as follows.
1. Stop the algorithm if one of the following holds:

a. λL
G(S, T) > k,

b. the vertices of S are not contained in a single connected component of G, or
c. the graph G[S] contains an induced subgraph isomorphic to some F ∈ F .
There are no secluded subgraphs satisfying all imposed conditions.

2. If the connected component C of G which contains S is F-free and includes no vertex
of T : output C and stop.
Component C is the unique seclusion-maximal one satisfying the imposed conditions.

3. If there is a vertex set U ⊆ V (G) \ (S ∪ T) such that:
each connected component of G[U] is adjacent to a vertex of S, and
the set U is a tight enrichment of S with respect to F (so G[S ∪ U] contains a new
partial forbidden graph)

then execute the following calls and stop:
a. For each u ∈ U call EnumF (G− u, S, T, k − 1).
b. Call EnumF (G, S ∪ U, T, k).
A tight enrichment can have at most ||F|| vertices which bounds the branching factor in
Step 3a. Note that these are exhaustive even though we do not consider adding U to T :
since each component of G[U] is adjacent to a vertex of S, if a relevant secluded subgraph
does not contain all of U then it contains some vertex of U in its neighborhood and we
find it in Step 3a.

4. For the rest of the algorithm, let U denote the collection of all connected vertex sets U ⊆
V (G)\(S∪T) which form tight enrichments of S with respect to F . Let V (U) :=

⋃
U∈U U .

a. If λL
G(S, T) < λL

G(S, T ∪ V (U)): then (using Lemma 11) there exists U ∈ U such that
λL

G(S, T ∪ U) > λL
G(S, T), execute the following calls and stop:

i. For each u ∈ U call EnumF (G− u, S, T, k − 1). (The value of k decreases.)
ii. Call EnumF (G, S ∪ U, T, k). (We absorb a new partial forbidden graph.)
iii. Call EnumF (G, S, T ∪ U, k). (The separator size increases.)

b. If λL
G(S, T) = λL

G(S, T∪V (U)), then let P be the farthest left-restricted minimum (S, T∪
V (U))-separator in G, and let S′ = RG(S, P) ⊇ S. Pick an arbitrary p ∈ P (which
may be contained in T but not in S).
i. Call EnumF (G− p, S′, T \ {p}, k − 1). (The value of k decreases.)
ii. If p /∈ T , then call EnumF (G, S′ ∪ {p}, T, k).

(Either here or in the next iteration we will be able to make progress.)
It might happen that U is empty; in this case the algorithm will execute Step 4b. Also
note that P is non-empty because the algorithm did not stop in Step 2; hence it is always
possible to choose a vertex p ∈ P .

Before providing an in-depth analysis of the algorithm, we establish that it always
terminates. For each recursive call, either a vertex outside S is deleted, or one of S or T

grows in size while the two remain disjoint. Since S and T are vertex subsets of a finite
graph, this process terminates. The key argument in the correctness of the algorithm is
formalized in the following claim.

▷ Claim 16. If the algorithm reaches Step 4b, then every seclusion-maximal k-secluded
subgraph satisfying the conditions of the theorem statement contains S′.

Proof. We prove the claim by showing that for an arbitrary k-secluded F-free connected
induced subgraph G[C] satisfying S ⊆ C ⊆ V (G) \ T , the subgraph induced by C ∪ S′

also satisfies these properties while |NG(C ∪ S′)| ≤ |NG(C)|. Hence any seclusion-maximal
subgraph satisfying the conditions contains S′.

ISAAC 2023

42:12 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

Under the conditions of Step 4b, we have λL
G(S, T) = λL

G(S, T ∪ V (U)), so that the
set P is a left-restricted minimum (S, T)-separator. Next, we have S′ = RG(S, P). By
exploiting submodularity of the size of the open neighborhood, we prove in Lemma 12 that
|NG(C ∪ S′)| ≤ |NG(C)|. The key part of the argument is to prove that C ∪ S′ induces an
F-free subgraph. Assume for a contradiction that G[C ∪ S′] contains an induced subgraph
isomorphic to F ∈ F and let ϕ : V (F)→ C ∪ S′ denote an induced subgraph isomorphism.
Out of all ways to choose ϕ, fix a choice that minimizes the number of vertices |ϕ(F) \ S| the
subgraph uses from outside S. We distinguish two cases.

Neighborhood of S intersects ϕ(F)

If ϕ(F) ∩ NG(S) ̸= ∅, then we will use the assumption that Step 3 of the algorithm was
not applicable to derive a contradiction. Let F ′ be the graph consisting of those connected
components Fi of F for which ϕ(Fi) ∩ NG[S] ̸= ∅; let U = ϕ(F ′) \ S. Observe that each
connected component of G[U] is adjacent to a vertex of S. By construction U is disjoint
from S, and U is disjoint from T since ϕ(F) ⊆ C ∪ S′ while both these sets are disjoint
from T . Hence U satisfies all but one of the conditions for applying Step 3. Since the
algorithm reached Step 4b, it follows that U failed the last criterion which means that the
partial forbidden graph F ′ also exists as an induced subgraph in G[S]. Let ϕF ′ : V (F ′)→ S

be an induced subgraph isomorphism from F ′ to G[S]. Since all vertices v ∈ V (F) for
which ϕ(v) ∈ NG[S] satisfy v ∈ V (F ′), we can define a new subgraph isomorphism ϕ′ of F

in G[C ∪ S′] as follows for each v ∈ V (F):

ϕ′(v) =
{

ϕF ′(v) if v ∈ F ′

ϕ(v) otherwise.
(1)

Observe that this is a valid induced subgraph isomorphism since F ′ consists of some connected
components of F , and we effectively replace the model of F ′ by ϕF ′ . Since the model of the
remaining graph F ′ = F − F ′ does not use any vertex of NG[S] by definition of F ′, there
are no edges between vertices of ϕF ′(F ′) and vertices of ϕ(F ′), which validates the induced
subgraph isomorphism.

Since ϕ(F) contains at least one vertex from NG(S) while ϕ′(F) does not, and the only
vertices of ϕ′(F) \ ϕ(F) belong to S, we conclude that ϕ′(F) contains strictly fewer vertices
outside S than ϕ(F); a contradiction to minimality of ϕ.

Neighborhood of S does not intersect ϕ(F)

Now suppose that ϕ(F) ∩NG(S) = ∅. If ϕ(F) ⊆ C, then ϕ(F) is an induced F -subgraph
in G[C], a contradiction to the assumption that C is F-free. Hence ϕ(F) must contain a
vertex v ∈ S′ \ C ⊆ S′ \ S. Since the previous case was not applicable, v /∈ NG(S) and
therefore v ∈ S′ \NG[S].

Fix an arbitrary connected component Fi of F for which ϕ(Fi) contains a vertex of S′ \
NG[S]. We derive several properties of ϕ(Fi).
1. Since Fi is a connected component of F , the graph G[ϕ(Fi)] is connected.
2. We claim that ϕ(Fi)∩S = ∅. Note that a connected subgraph cannot both contain a vertex

from S and a vertex outside NG[S] without intersecting NG(S). Since ϕ(F)∩NG(S) = ∅
by the case distinction, the graph G[ϕ(Fi)] is connected since Fi is connected, and ϕ(Fi)
contains a vertex of S′ \NG[S], we find ϕ(Fi) ∩ S = ∅.

3. ϕ(Fi) ∩ T = ∅, since ϕ(F) ⊆ C ∪ S′ while both C and S′ are disjoint from T .

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:13

4. We claim that ϕ(Fi) /∈ U . To see that, recall that S′ = RG(S, P) is the set of vertices
reachable from S when removing the (S, T ∪ V (U))-separator P . The definition of
separator therefore ensures that no vertex of S′ belongs to V (U). Since ϕ(Fi) contains a
vertex of S′ \NG[S] by construction, some vertex of ϕ(Fi) does not belong to V (U) and
therefore ϕ(Fi) /∈ U .

Now note that ϕ(Fi) satisfies almost all requirements for being contained in the set U defined
in Step 4: it induces a connected subgraph and it is disjoint from S ∪ T . From the fact
that ϕ(Fi) /∈ U we therefore conclude that it fails the last criterion: the set ϕ(Fi) is not a
tight enrichment of S.

Let F ′ be the graph formed by Fi together with all components Fj of F for which ϕ(Fj) ⊆
S; then ϕ(Fi) = ϕ(F ′) \ S. Since ϕ(Fi) is not a tight enrichment of S, the partial forbidden
graph F ′ is also contained in G[S]. Let ϕF ′ : F ′ → S denote an induced subgraph isomorphism
of F ′ to G[S]. Since ϕ(F) contains no vertex of NG(S), we can define a new subgraph
isomorphism ϕ′ of F in G[C ∪ S′] exactly as in (1).

Since the graph F ′ consists of some connected components of F , while ϕF ′(F ′) ⊆ S

and ϕ(F ′) ∩ NG[S] = ∅, it follows that ϕ′ is an induced subgraph isomorphism of F

in G[C∪S′]. But |ϕ′(F)\S| is strictly smaller than |ϕ(F)\S| since ϕ(Fi) intersects S′\NG[S]
while ϕ′(Fi) ⊆ ϕ′(F ′) ⊆ S and ϕ and ϕ′ coincide on F ′. This contradicts the minimality of
the choice of ϕ.

Since the case distinction is exhaustive, this proves the claim. ◁

Using the previous claim, we can establish the correctness of the algorithm.

▷ Claim 17. If G[C] is an induced subgraph of G that is seclusion-maximal with respect to
being connected, F -free, k-secluded and satisfying S ⊆ C ⊆ V (G) \ T , then C occurs in the
output of EnumF (G, S, T, k).

Proof. We prove this claim by induction on the recursion depth of the EnumF algorithm,
which is valid as we argued above it is finite. In the base case, the algorithm does not recurse.
In other words, the algorithm either stopped in Step 1 or 2. If the algorithm stops in Step 1,
then there can be no induced subgraph satisfying the conditions and so there is nothing to
show. If the algorithm stops in Step 2, then the only seclusion-maximal induced subgraph is
the F -free connected component containing S. Note that this component is k-secluded since
k ≥ 0 as λL

G(S, T) ≥ 0 and the algorithm did not stop in Step 1a.
For the induction step, we may assume that each recursive call made by the algorithm

correctly enumerates a superset of the seclusion-maximal subgraphs satisfying the conditions
imposed by the parameters of the recursive call, as the recursion depth of the execution of
those calls is strictly smaller than the recursion depth for the current arguments (G, S, T, k).
Consider a connected F -free k-secluded induced subgraph G[C] of G with S ⊆ C ⊆ V (G) \T

that is seclusion-maximal with respect to satisfying all these conditions. Suppose there is
a vertex set U ⊆ V (G) \ (S ∪ T) that satisfies the conditions of Step 3. If U ⊆ C, then by
induction C is part of the enumerated output of Step 3b. Otherwise, since each connected
component of G[U] is adjacent to a vertex in S, there is at least one vertex u ∈ U such that
u ∈ NG(C). By Observation 15, the output of the corresponding call in Step 3a contains C.
Note that since U ∩ T = ∅, we have T ⊆ V (G) \ (S ∪ U) and therefore the recursive calls
satisfy the input requirements.

Next we consider the correctness in case such a set U does not exist so the algorithm
reaches Step 4. Let U be the set of tight enrichments as defined in Step 4. First suppose
that λL

G(S, T) < λL
G(S, T ∪ V (U)). Then by the contrapositive of the first part of Lemma 11

with Z = V (U), there is a vertex v ∈ V (U) \ T such that λL
G(S, T ∪ {v}) > λL

G(S, T). By

ISAAC 2023

42:14 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

picking an enrichment U ∈ U such that v ∈ U , this implies λL
G(S, T ∪ U) > λL

G(S, T). Now
if there is a vertex u ∈ U such that u ∈ NG(C), then by induction and Observation 15 we
get that C is output by the corresponding call in Step 4(a)i. Otherwise, either U ⊆ C or
U ∩ C = ∅ (since U is connected) and C is found in Step 4(a)ii or Step 4(a)iii respectively.
Again observe that these recursive calls satisfy the input requirements as U ∩ (S ∪ T) = ∅.

Finally suppose that λL
G(S, T) = λL

G(S, T ∪ V (U)). By Claim 16 we get that S′ ⊆ C. We
first argue that P = NG(S′) is non-empty. Note that since the algorithm did not stop in
Step 1, the graph G[S] is F-free and S is contained in a single connected component of G.
Furthermore since it did not stop in Step 2, the connected component containing S either has
a vertex of T or is not F -free. Note that the former case already implies λL

G(S, T) > 0. If the
component has no vertex of T and is not F -free, then it contains a vertex set J for which G[J]
is isomorphic to some F ∈ F . Observe that J \ (S ∪ T) = J \ S is a tight enrichment of S.
We have established that it is possible to enrich S but we need an enrichment that meets the
conditions of Step 4. Let U ⊆ V (G) \ (S ∪ T) be a tight enrichment of minimum size and let
ϕ : V (F ′)→ V (G) be the corresponding subgraph isomorphism from some partial forbidden
graph F ′; we have U = ϕ(F ′) \ S. We argue that G[U] is connected. If each connected
component of G[U] is adjacent to a vertex of S, then Step 3 would have applied, contradicting
the fact that the algorithm reaches Step 4. Hence, there exists a connected component of
G[U] that is non-adjacent to S; let U ′ be the vertex set of such a component. Since U is
chosen to be minimum, we get that U \ U ′ is not a tight enrichment, and so there is an
induced subgraph of G[S] isomorphic to the partial forbidden graph F ′′ = G[ϕ(F ′)\U ′]. This
subgraph of G[S] combines with the graph G[U ′] to form an induced subgraph isomorphic
to F ′ (we exploit that U ′ is not adjacent to S), which shows that U ′ is a tight enrichment.
By minimality of U we obtain U = U ′. Hence U is not adjacent to S and the graph G[U]
is connected so U ∈ U . Since U and S are contained in the same connected component we
get that λL

G(S, T ∪ V (U)) > 0. This implies there exists some vertex p ∈ P = NG(S′). Since
S′ ⊆ C, we either get p ∈ NG(C), or (if p /∈ T) p ∈ C. By induction (and Observation 15)
we conclude that C is part of the output of Step 4(b)i or Step 4(b)ii. The condition p /∈ T

ensures that the input requirements of the latter recursive call are satisfied. ◁

As the previous claim shows that the algorithm enumerates a superset of the relevant
seclusion-maximal induced subgraphs, to prove Theorem 2 it suffices to bound the size of
the search tree generated by the algorithm, and thereby the running time and total number
of induced subgraphs which are given as output. To that end, we argue that for any two
successive recursive calls in the recursion tree, at least one of them makes strict progress on
a relevant measure. Since no call can increase the measure, this will imply a bound on the
depth of the recursion tree. Since it is easy to see that the branching factor is a constant
depending on ||F||, this will lead to the desired bound.
▷ Claim 18 (⋆). The search tree generated by the call EnumF (G, S, T, k) has depth OF (k)
and 2OF (k) leaves.

The previous claim implies that the number of seclusion-maximal connected F-free k-
secluded induced subgraphs containing all of S and none of T is 2OF (k), since the algorithm
outputs at most one subgraph per call and only does so in leaf nodes of the recursion tree.
As Claim 18 bounds the size of the search tree generated by the algorithm, the desired bound
on the total running time follows from the claim below.
▷ Claim 19 (⋆). A single iteration of EnumF (G, S, T, k) can be implemented to run in
time |F| · 2||F|| · n||F||+O(1) and polynomial space.

This concludes the proof of Theorem 2. ◀

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:15

4 Conclusion

We have introduced a new algorithmic primitive based on secluded connected subgraphs which
generalizes important separators. The high-level idea behind the algorithm is enumeration
via separation: by introducing an artificial set T and considering the more general problem
of enumerating secluded subgraphs containing S but disjoint from T , we can analyze the
progress of the recursion in terms of the size of a minimum (left-restricted) (S, T)-separator.
We expect this idea to be useful in scenarios beyond the one studied here.

We presented a single-exponential, polynomial-space FPT algorithm to enumerate the
family of seclusion-maximal connected F-free subgraphs for finite F , making it potentially
viable for practical use [38]. The combination of single-exponential running time and
polynomial space usage sets our approach apart from others such as recursive understanding [8,
10, 31] and treewidth reduction [36]. Algorithms exploiting half-integrality of the linear-
programming relaxation or other discrete relaxations also have these desirable properties,
though [12, 18, 19, 20, 41]. Using this approach, Iwata, Yamaguchi, and Yoshida [20] even
obtained a linear-time algorithm in terms of the number of vertices n, solving (vertex)
Multiway Cut in time 2k · k · (n + m). At a high level, there is some resemblance between
their approach and ours. They work on a discrete relaxation of deletion problems in graphs
which are not standard LP-relaxations, but are based on relaxations of a rooted problem in
which only constraints involving a prescribed set S are active. This is reminiscent of the
fact that we enumerate secluded subgraphs containing a prescribed set S. Their branching
algorithms are based on the notion of an extremal optimal solution to the LP relaxation,
which resembles our use of the farthest minimum left-restricted (S, T)-separator. However,
the two approaches diverge there. To handle problems via their approach, they should be
expressible as a 0/1/ALL CSP. Problems for which the validity of a solution can be verified
by unit propagation (such as Node Unique Label Cover, Node Multiway Cut, Subset
and Group Feedback Vertex Set) belong to this category, but it seems impossible to
express the property of being F -free for arbitrary finite sets F in this framework.

The branching steps underlying our algorithm were informed by the structure of the
subgraphs induced by certain vertex sets. In the considered setting, where certain possibly
disconnected structures are not allowed to appear inside C, it is necessary to characterize
the forbidden sets in terms of the graph structure they induce. But when the forbidden
sets are connected, we believe our proof technique can be used in a more general setting
to establish the following. For any n-vertex graph G, non-empty vertex set S ⊆ V (G),
potentially empty T ⊆ V (G) \ S, integer k, and collection F1, . . . , Fm ⊆ V (G) of vertex sets
of size at most ℓ which are connected in G, the number of k-secluded induced subgraphs G[C]
which are seclusion-maximal with respect to being connected, not containing any set Fi, and
satisfying S ⊆ C ⊆ V (G) \ T , is bounded by (2 + ℓ)O(k), and a superset of them can be
enumerated in time (2 + ℓ)O(k) ·m ·nO(1) and polynomial space. The reason why dealing with
general connected obstacles is feasible is that whenever Fi ∩ C ̸= ∅ then also Fi ∩N(C) ̸= ∅;
this allows us to always make progress using the simpler branching strategy without keeping
track of partial forbidden graphs. The corresponding generalization for disconnected vertex
sets Fi is false, even for |Fi| = 2. To see this, consider a graph consisting of a cycle on 2m + 1
vertices consecutively labeled s, a1, . . . , am, b1, . . . , bm with Fi = {ai, bi} for each i ∈ [m], in
which the number of relevant seclusion-maximal 2-secluded sets containing s is Ω(m).

We leave it to future work to consider generalizations of our ideas to directed graphs.
Since important separators also apply in that setting, we expect the branching step in terms
of left-restricted minimum separators to be applicable in directed graphs as well. However,

ISAAC 2023

42:16 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

there are multiple ways to generalize the notion of a connected secluded induced subgraph
to the directed setting: one can consider weak connectivity, strong connectivity, or a rooted
variant where we consider all vertices reachable from a source vertex x. Similarly, one can
define seclusion in terms of the number of in-neighbors, out-neighbors, or both.

References
1 René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter, Manuel Sorge, and

Ondrej Suchý. The parameterized complexity of finding secluded solutions to some classical
optimization problems on graphs. Discret. Optim., 30:20–50, 2018. doi:10.1016/j.disopt.
2018.05.002.

2 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized algorithms and
data reduction for the short secluded s-t-path problem. Networks, 75(1):34–63, 2020. doi:
10.1002/net.21904.

3 Hans L. Bodlaender, Anuj Dawar, and Virginia V. Williams. EATCS-IPEC Nerode Prize
2020, 2020. URL: https://eatcs.org/index.php/component/content/article/1-news/
2861-eatcs-ipec-nerode-prize-2020-.

4 Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. SIAM J. Comput.,
47(1):166–207, 2018. doi:10.1137/140961808.

5 Shiri Chechik, Matthew P. Johnson, Merav Parter, and David Peleg. Secluded connectivity
problems. Algorithmica, 79(3):708–741, 2017. doi:10.1007/s00453-016-0222-z.

6 Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the
minimum node multiway cut problem. Algorithmica, 55(1):1–13, 2009. doi:10.1007/
s00453-007-9130-6.

7 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

8 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket
Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM
Trans. Algorithms, 17(1):6:1–6:30, 2021. doi:10.1145/3426738.

11 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM J. Comput., 48(2):417–450, 2019.
doi:10.1137/140988553.

12 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Trans. Comput. Theory, 5(1):3:1–3:11,
2013. doi:10.1145/2462896.2462899.

13 Huib Donkers, Bart M. P. Jansen, and Jari J. H. de Kroon. Finding k-secluded trees faster.
In Proceeding of the 48th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG 2022, volume 13453 of Lecture Notes in Computer Science, pages 173–186.
Springer, 2022. doi:10.1007/978-3-031-15914-5_13.

14 Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov, and Alexander S. Kulikov. Parameterized
complexity of secluded connectivity problems. Theory Comput. Syst., 61(3):795–819, 2017.
doi:10.1007/s00224-016-9717-x.

15 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1002/net.21904
https://doi.org/10.1002/net.21904
https://eatcs.org/index.php/component/content/article/1-news/2861-eatcs-ipec-nerode-prize-2020-
https://eatcs.org/index.php/component/content/article/1-news/2861-eatcs-ipec-nerode-prize-2020-
https://doi.org/10.1137/140961808
https://doi.org/10.1007/s00453-016-0222-z
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1007/s00453-007-9130-6
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3426738
https://doi.org/10.1137/140988553
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1007/978-3-031-15914-5_13
https://doi.org/10.1007/s00224-016-9717-x
https://doi.org/10.4153/CJM-1956-045-5

B. M. P. Jansen, J. J. H. de Kroon, and M. Włodarczyk 42:17

16 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Trans. Algorithms, 13(2):29:1–29:32, 2017.
doi:10.1145/3014587.

17 Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Montealegre. Finding
connected secluded subgraphs. J. Comput. Syst. Sci., 113:101–124, 2020. doi:10.1016/j.
jcss.2020.05.006.

18 Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems.
Discret. Optim., 8(1):61–71, 2011. doi:10.1016/j.disopt.2010.05.003.

19 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching, and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

20 Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all CSPs, half-integral A-path
packing, and linear-time FPT algorithms. In Mikkel Thorup, editor, 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 462–473. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00051.

21 Ashwin Jacob, Jari J. H. de Kroon, Diptapriyo Majumdar, and Venkatesh Raman. Deletion
to scattered graph classes I – case of finite number of graph classes. J. Comput. Syst. Sci.,
138:103460, 2023. doi:10.1016/j.jcss.2023.05.005.

22 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Parameterized complexity
of deletion to scattered graph classes. In Yixin Cao and Marcin Pilipczuk, editors, 15th
International Symposium on Parameterized and Exact Computation, IPEC 2020, December
14-18, 2020, Hong Kong, China (Virtual Conference), volume 180 of LIPIcs, pages 18:1–18:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.
18.

23 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Deletion to scattered graph
classes II – improved FPT algorithms for deletion to pairs of graph classes. J. Comput. Syst.
Sci., 136:280–301, 2023. doi:10.1016/j.jcss.2023.03.004.

24 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Single-exponential fpt
algorithms for enumerating secluded F-free subgraphs and deleting to scattered graph classes,
2023. arXiv:2309.11366.

25 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 160–169. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.53.

26 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard cut
problems via flow-augmentation. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021,
pages 149–168. SIAM, 2021. doi:10.1137/1.9781611976465.11.

27 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-
augmentation. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages
938–947. ACM, 2022. doi:10.1145/3519935.3520018.

28 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

29 Daniel Lokshtanov and Dániel Marx. Clustering with local restrictions. Inf. Comput., 222:278–
292, 2013. doi:10.1016/j.ic.2012.10.016.

30 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.
Covering small independent sets and separators with applications to parameterized algorithms.
ACM Trans. Algorithms, 16(3):32:1–32:31, 2020. doi:10.1145/3379698.

31 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 135:1–135:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.135.

ISAAC 2023

https://doi.org/10.1145/3014587
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1016/j.disopt.2010.05.003
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2018.00051
https://doi.org/10.1016/j.jcss.2023.05.005
https://doi.org/10.4230/LIPIcs.IPEC.2020.18
https://doi.org/10.4230/LIPIcs.IPEC.2020.18
https://doi.org/10.1016/j.jcss.2023.03.004
https://arxiv.org/abs/2309.11366
https://doi.org/10.1109/FOCS.2011.53
https://doi.org/10.1137/1.9781611976465.11
https://doi.org/10.1145/3519935.3520018
https://doi.org/10.1145/3390887
https://doi.org/10.1016/j.ic.2012.10.016
https://doi.org/10.1145/3379698
https://doi.org/10.4230/LIPIcs.ICALP.2018.135

42:18 Single-Exponential FPT Algorithms for Enumerating Secluded F-Free Subgraphs

32 Max-Jonathan Luckow and Till Fluschnik. On the computational complexity of length-
and neighborhood-constrained path problems. Inf. Process. Lett., 156:105913, 2020. doi:
10.1016/j.ipl.2019.105913.

33 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406,
2006. doi:10.1016/j.tcs.2005.10.007.

34 Dániel Marx. Important separators and parameterized algorithms. In Petr Kolman and
Jan Kratochvíl, editors, Graph-Theoretic Concepts in Computer Science – 37th International
Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Revised Papers,
volume 6986 of Lecture Notes in Computer Science, pages 5–10. Springer, 2011. doi:10.1007/
978-3-642-25870-1_2.

35 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, 2013. doi:10.1145/2500119.

36 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

37 Neeldhara Misra. Kernelization, Planar F-deletion. In Encyclopedia of Algorithms, pages
1033–1036. Springer, 2016. doi:10.1007/978-1-4939-2864-4_527.

38 Marcin Pilipczuk and Michal Ziobro. Experimental evaluation of parameterized algorithms for
graph separation problems: Half-integral relaxations and matroid-based kernelization. CoRR,
abs/1811.07779, 2018. arXiv:1811.07779.

39 Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput.
Syst. Sci., 75(8):435–450, 2009. doi:10.1016/j.jcss.2009.04.002.

40 A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.
41 Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory

Comput. Syst., 46(4):723–736, 2010. doi:10.1007/s00224-009-9215-5.

https://doi.org/10.1016/j.ipl.2019.105913
https://doi.org/10.1016/j.ipl.2019.105913
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1007/978-3-642-25870-1_2
https://doi.org/10.1007/978-3-642-25870-1_2
https://doi.org/10.1145/2500119
https://doi.org/10.1137/110855247
https://doi.org/10.1007/978-1-4939-2864-4_527
https://arxiv.org/abs/1811.07779
https://doi.org/10.1016/j.jcss.2009.04.002
https://doi.org/10.1007/s00224-009-9215-5

Is the Algorithmic Kadison-Singer Problem Hard?
Ben Jourdan #

University of Edinburgh, UK

Peter Macgregor #

University of Edinburgh, UK

He Sun #

University of Edinburgh, UK

Abstract
We study the following KS2(c) problem: let c ∈ R+ be some constant, and v1, . . . , vm ∈ Rd be
vectors such that ∥vi∥2 ≤ α for any i ∈ [m] and

∑m

i=1⟨vi, x⟩2 = 1 for any x ∈ Rd with ∥x∥ = 1. The
KS2(c) problem asks to find some S ⊂ [m], such that it holds for all x ∈ Rd with ∥x∥ = 1 that∣∣∣∣∣∑

i∈S

⟨vi, x⟩2 − 1
2

∣∣∣∣∣ ≤ c ·
√

α,

or report no if such S doesn’t exist. Based on the work of Marcus et al. [15] and Weaver [20], the
KS2(c) problem can be seen as the algorithmic Kadison-Singer problem with parameter c ∈ R+.

Our first result is a randomised algorithm with one-sided error for the KS2(c) problem such that
(1) our algorithm finds a valid set S ⊂ [m] with probability at least 1 − 2/d, if such S exists, or (2)
reports no with probability 1, if no valid sets exist. The algorithm has running time

O

((
m

n

)
· poly(m, d)

)
for n = O

(
d

ϵ2 log(d) log
(

1
c
√

α

))
,

where ϵ is a parameter which controls the error of the algorithm. This presents the first algorithm
for the Kadison-Singer problem whose running time is quasi-polynomial in m in a certain regime,
although having exponential dependency on d. Moreover, it shows that the algorithmic Kadison-
Singer problem is easier to solve in low dimensions. Our second result is on the computational
complexity of the KS2(c) problem. We show that the KS2

(
1/
(
4
√

2
))

problem is FNP-hard for
general values of d, and solving the KS2

(
1/
(
4
√

2
))

problem is as hard as solving the NAE-3SAT
problem.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms

Keywords and phrases Kadison-Singer problem, spectral sparsification

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.43

Related Version Full Version: https://arxiv.org/abs/2205.02161

Funding This work is supported by an EPSRC Early Career Fellowship (EP/T00729X/1).

1 Introduction

The Kadison-Singer problem [13] posed in 1959 asks whether every pure state on the (abelian)
von Neumann algebra D of bounded diagonal operators on ℓ2 has a unique extension to
a pure state on B(ℓ2), the von Neumann algebra of all bounded linear operators on the
Hilbert space ℓ2. The statement of the Kadison-Singer problem arises from work on the
foundations of quantum mechanics done by Dirac in 1940s, and has been subsequently shown
to be equivalent to numerous important problems in pure mathematics, applied mathematics,
engineering and computer science [8]. Weaver [20] shows that the Kadison-Singer problem is
equivalent to the following discrepancy question, which is originally posed as a conjecture.

© Ben Jourdan, Peter Macgregor, and He Sun;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 43; pp. 43:1–43:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Ben.Jourdan@ed.ac.uk
mailto:peter.macgregor@ed.ac.uk
mailto:h.sun@ed.ac.uk
https://doi.org/10.4230/LIPIcs.ISAAC.2023.43
https://arxiv.org/abs/2205.02161
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Is the Algorithmic Kadison-Singer Problem Hard?

▶ Conjecture 1 (The KS2 Conjecture). There exist universal constants η ≥ 2 and θ > 0 such
that the following holds. Let v1, . . . , vm ∈ Cd satisfy ∥vi∥ ≤ 1 for all i ∈ [m], and suppose∑m

i=1 |⟨u, vi⟩|2 = η for every unit vector u ∈ Cd. Then, there exists a partition S1, S2 of [m]
so that

∑
i∈Sj
|⟨u, vi⟩|2 ≤ η − θ, for every unit vector u ∈ Cd and every j = {1, 2}.

As a major breakthrough in mathematics, Marcus, Spielman and Srivastava [15] prove
that the KS2 conjecture holds, and give an affirmative answer to the Kadison-Singer problem.
Specifically, in this celebrated paper they show that, for any vectors v1, . . . , vm ∈ Cd such
that ∥vi∥2 ≤ α for any i ∈ [m] and

∑m
i=1⟨vi, x⟩2 = 1 for any x ∈ Cd with ∥x∥ = 1, there

is a partition S1, S2 of [m] such that it holds for any x ∈ Cd with ∥x∥ = 1 and j = 1, 2
that

∣∣∣∑i∈Sj
⟨vi, x⟩2 − 1/2

∣∣∣ ≤ 3 ·
√
α. The proof of this result is based on studying interlacing

families of polynomials [14]. While analysing interlacing families of polynomials suffices
to answer the KS2 conjecture and, as a consequence, solve the Kadison-Singer problem,
it is unclear if their existential proof on the partition guaranteed by the KS2 conjecture
can be turned into an efficient algorithmic construction; designing efficient algorithms for
the Kadison-Singer problem is listed as a natural open question in [15]. This question
is particularly interesting in theoretical computer science, since it is directly linked to
constructing unweighted spectral sparsifiers [5] and spectrally thin trees [1], among many
other applications in approximation algorithms. However, there has been little work on
the algorithmic Kadison-Singer problem, and the complexity status of this problem is an
important open question.

To address this question, we study the following KS2 problem with some constant c ∈ R+:

▶ Problem 2 (The KS2(c) problem). Given vectors v1, . . . , vm ∈ Rd such that ∥vi∥2 ≤ α for
any i ∈ [m] and

∑m
i=1⟨vi, x⟩2 = 1 for any x ∈ Rd with ∥x∥ = 1, the KS2(c) problem asks to

find some S ⊂ [m], such that it holds for all x ∈ Rd with ∥x∥ = 1 that∣∣∣∣∣∑
i∈S

⟨vi, x⟩2 −
1
2

∣∣∣∣∣ ≤ c · √α, (1)

or report no if such S doesn’t exist.

Notice that the KS2 conjecture is equivalent to finding some subset S ⊂ [m] as stated
in Problem 2 for some constant c. Here we choose to formulate the discrepancy of any
set S ⊂ [m] in (1) as c ·

√
α for three reasons: first of all, Weaver [20] shows that the

dependency on O(
√
α) in (1) is tight, so the term O(

√
α) is unavoidable when bounding the

discrepancy; secondly, the KS2 conjecture shows that the existence of any universal constant
c in (1) suffices to prove the Kadison-Singer conjecture, and it is proven in [15] that the
KS2 conjecture holds for c = 3; however, studying the tightness of this constant remains an
interesting open question on its own (Problem 8.1, [7]). Finally, as we will show shortly,
the KS2(c) problem belongs to different complexity classes with respect to different values
of c, so introducing this parameter c allows us to better understand the complexity of the
algorithmic Kadison-Singer problem.

1.1 Our Results
Our first result is an algorithm called Randomised-KS({vi}, c, ϵ) for approximately solving
the KS2(c) problem for general values of c. For any constant c, ϵ < 1, and any vectors
v1, . . . , vm ∈ Rd such that ∥vi∥2 ≤ α for all i ∈ [m], we show that (i) if there exists an

B. Jourdan, P. Macgregor, and H. Sun 43:3

S which satisfies (1), then with probability at least (1 − 2/d) the algorithm returns a set
S′ ⊂ {vi}m

i=1 that satisfies

(1− ϵ)
(1

2 − c
√
α
)
≤
∑
v∈S′

⟨v, x⟩2 ≤ (1 + ϵ)
(1

2 + c
√
α
)

(2)

for all unit vectors x ∈ Rd, and (ii) if no set exists which satisfies (2), then with probability 1
the algorithm returns “no”. Our result is summarised as follows:

▶ Theorem 3. There is an algorithm, Randomised-KS(I, c, ϵ), such that for any instance
I ≜ {vi}m

i=1 of the KS2(c) problem with vi ∈ Rd for d ≥ 3, and for any ϵ ∈ (0, 1), the
following holds:

if there exists a set S ⊂ I such that(
1
2 − c

√
α

)
≤
∑
v∈S

⟨v, x⟩2 ≤
(

1
2 + c

√
α

)

for all unit vectors x ∈ Rd, then with probability at least (1 − 2/d), the Randomised-
KS(I, c, ϵ) algorithm returns a subset S′ ⊂ I which satisfies (2) for all unit vectors
x ∈ Rd.
if there is no set S ⊂ I which satisfies (2), then with probability 1, the Randomised-
KS(I, c, ϵ) algorithm reports that no such set exists.

The algorithm has running time

O

((
m

n

)
· poly(m, d)

)
for n ≜ O

(
d

ϵ2
log(d) max

(
log
(

1
c
√
α

)
, log

(
1

(1/2)− c
√
α

)))
.

▶ Remark 4. Since the most interesting instances of the KS2(c) problem are the cases in
which 1/2 + c

√
α is bounded away from 1, we can assume that c

√
α ≤ 1/2 − σ for some

constant σ which implies that

n = O

(
d

ϵ2
log(d) log

(
1

c
√
α

))
.

Combining this with d =
∑m

i=1 ∥vi∥2 ≤ αm, a constraint due to the isotropic nature of the
input, shows that our algorithm runs in quasi-polynomial time in m when d = O(polylog(m)).

Compared with the state-of-the-art that runs in dO(m1/3α−1/4) time [2], the most appealing
fact of Theorem 3 is that it shows the KS2(c) problem can be approximately solved in quasi-
polynomial time when d = O(poly logm). Moreover, for small values of c where a subset
S ⊂ [m] satisfying (1) isn’t guaranteed to exist, our algorithm, with the same time complexity,
is still able to find an S satisfying (2) with high probability if it exists, or report no with
probability 1 otherwise. These two facts together show that both determining the existence
of a valid subset S and finding such S are computationally much easier in low dimensions,
regardless of the range of c. In addition, our result is much stronger than a random sampling
based algorithm, which only works in the regime of α = O(1/ log d) [19], while our algorithm
works even when there are vectors with much larger norm, e.g., α = Θ(1). On the other
side, like many optimisation problems that involve the dimension of input items in their
formulation (e.g., multi-dimensional packing [10], and vector scheduling [4]), Theorem 3
indicates that the order of d might play a significant role in the hardness of the KS2(c)
problem, and the hard instances of the problem might be in the regime of m = O(d).

ISAAC 2023

43:4 Is the Algorithmic Kadison-Singer Problem Hard?

Inspired by this, we study the computational complexity of the KS2(c) problem for general
values of d, where the number of input vectors satisfies m = O(d). In order to study the
“optimal” partitioning, for a given instance of the problem I = {v1, . . . , vm}, let

W(I) ≜ min
S⊂I

max
x∈Rd

∥x∥=1

∣∣∣∣∣∑
v∈S

⟨v, x⟩2 − 1
2

∣∣∣∣∣ .
Then, we choose c = 1/(4

√
2) and notice that, for any vectors that satisfy the conditions of

the KS2(c) problem, there could be no subset S satisfying (1) for such c. As our second result,
we prove that, for any c ≤ 1/(4

√
2), distinguishing between instances for which W(I) = 0

and those for which W(I) ≥ c ·
√
α is NP-hard. Our result is as follows:

▶ Theorem 5. The KS2
(
1/
(
4
√

2
))

problem is FNP-hard for general values of d. Moreover,
it is NP-hard to distinguish between instances of the KS2(c) problem with W(I) = 0 from
instances with W(I) ≥

(
1/4
√

2
)
·
√
α.

▶ Remark 6. It’s important to note that, when d is constant, the decision problem in
Theorem 5 can be solved in polynomial time. For example, the 1-dimensional problem
is equivalent to the PARTITION problem, in which we are given a set of real numbers
I = {x1, . . . , xm} such that

∑
i xi = 1 and need to determine whether there is a subset

S ⊂ I such that
∑

x∈S x = 1/2. In this setting,

W(I) = min
S⊂I

∣∣∣∣∣
(∑

x∈S

x

)
− 1/2

∣∣∣∣∣ .
There is a well-known FPTAS for PARTITION which can distinguish between instances for
which W(I) = 0 and those for which W(I) ≥ ϵ, for any ϵ > 0. Theorem 5 implies that there
is no such FPTAS for the optimisation version of the KS2(c) problem for general d.

Theorem 5 shows that the isotropic structure of the KS2(c) instance is not sufficient to
make finding a partition easy when compared with similar problems. As such, the design of
a potential polynomial-time algorithm for the Kadison-Singer problem would need to take
some range of c into account and cannot solve the optimisation version of the KS2(c) problem,
otherwise one would end up solving an NP-hard problem. We remark that Theorem 5 shares
the same style as the one for Spencer’s Discrepancy Problem: given any input on N elements,
Charikar et al. [9] shows that it is NP-hard to distinguish between the input with discrepancy
zero and the one with discrepancy Ω(

√
N), although it is known that a solution with O(

√
N)

approximation can be computed efficiently [3].

1.2 Our Techniques
In this subsection we sketch our main techniques used in proving Theorems 3 and 5.

Proof Sketch of Theorem 3. We start by sketching the ideas behind our algorithmic
result. First of all, it is easy to see that we can solve the KS2(c) problem for any c ∈ R+ in
O (2m · poly(m, d)) time, since we only need to enumerate all the 2m subsets S ⊆ I of the
input set I and check if every possible set S satisfies the condition (1). To express all the
subsets of I, we inductively construct level sets {Li}m

i=0 with Li ⊆ 2I as follows:
initially, level i = 0 consists of a single set ∅, and we set L0 = {∅};
based on Li−1 for any 1 ≤ i ≤ m, we define Li by Li ≜ {S, S ∪ {vi} : S ∈ Li−1}.

B. Jourdan, P. Macgregor, and H. Sun 43:5

It is important to see that, although |Li| could be as high as 2m, there are only m such level
sets Li, which are constructed inductively in an online manner, and it holds for any S ⊆ I
that S ∈ Lm.

The bottleneck for improving the efficiency of this simple enumeration algorithm is the
number of sets in Lm, which could be exponential in m. To overcome this bottleneck, we
introduce the notion of spectral equivalence classes to reduce |Li| for any i ∈ [m]. Informally
speaking, if there are different S1, S2 ∈ Li for any i ∈ [m] such that1

(1− ϵ)
∑
j∈S2

vjv
⊺
j ⪯

∑
j∈S1

vjv
⊺
j ⪯ (1 + ϵ)

∑
j∈S2

vjv
⊺
j

for some small ϵ, then we view S1 and S2 to be “spectrally equivalent” to each other2. It
suffices to use one set to represent all of its spectral equivalences; hence, we only need to
store the subsets which aren’t spectrally equivalent to each other3. Since there is a spectral
sparsifier of any S with O(d log(d)/ϵ2) vectors [11, 17], we can reduce the total number of
stored subsets (i.e., the number of spectral equivalence classes) in Li for any i ∈ [m] to

(
m
n

)
where n = O

(
d log(d)/ϵ2

)
which is no longer exponential in m.

Turning this idea into an algorithm design, we need be careful that the small approximation
error introduced by every constructed spectral sparsifier does not compound as we construct
sparsifiers from one level to another. In order to avoid this, we employ the online vector
sparsification algorithm presented in [11]. This allows us to construct sparsifiers in Li from
the ones in Li−1 and the vector vi. In addition, the construction in each level preserves the
same approximation error as the previous one.

We highlight that the design of our algorithm for solving the KS2(c) problem is entirely
different from the previous work, which is based on analysing the properties of interlacing
polynomials [2]. Moreover, one can view our use of online spectral sparsifiers in constructing
spectral equivalence classes as an encoding strategy to reduce the enumeration space of the
KS2(c) problem. From this aspect, our work sheds light on potential applications of other
tools well-studied in algorithmic spectral graph theory and numerical linear algebra, such as
sparsification and sketching.

Proof Sketch of Theorem 5. Our proof of the FNP-hardness of the KS2
(
1/
(
4
√

2
))

problem
is based on a reduction from the well-known NAE-3SAT problem [12] to a decision version of
the KS2

(
1/
(
4
√

2
))

problem, which asks whether W(I) = 0 or W(I) ≥
(
1/
(
4
√

2
))√

α. Our
overall reduction consists of two steps: we first build a reduction from the NAE-3SAT problem
to the so-called NAE-3SAT-KS problem, and then build a reduction from the NAE-3SAT-KS
problem to the KS2

(
1/
(
4
√

2
))

problem.
To sketch the first reduction, we examine the so-called NAE-3SAT-KS problem, which

can be viewed as a restricted version of the NAE-3SAT problem, and used only as a tool to
build the reduction from the NAE-3SAT problem to the KS2

(
1/
(
4
√

2
))

problem. Informally,
the NAE-3SAT-KS problem consists of the 3SAT Boolean formula ψ, in which the number of
occurrences of both u and ū for every variable u in any ψ is limited with respect to some
additional constraints and any two clauses of ψ share at most one literal; the NAE-3SAT-KS
problem asks if there is a satisfying assignment for ψ such that every clause of ψ has at

1 For any two matrices A and B of the same dimension, we write A ⪯ B if B − A is positive semi-definite.
2 Although this relationship is not symmetric, this informal definition is sufficient for the proof sketch

and is not used directly in our analysis.
3 The list of stored subsets can be thought of as an epsilon cover of all possible subsets.

ISAAC 2023

43:6 Is the Algorithmic Kadison-Singer Problem Hard?

least one true literal and at least one false literal; we refer the reader to Problem 11 in
Section 3 for the formal definition of the NAE-3SAT-KS problem. Based on a reduction from
the NAE-3SAT problem, we show that the NAE-3SAT-KS problem is NP-complete.

For the second and main reduction of our analysis, we build a reduction from the NAE-
3SAT-KS problem to the KS2

(
1/
(
4
√

2
))

problem. Specifically, for an NAE-3SAT-KS instance
ψ of n variables and m clauses, we construct a set A of Θ(n+m) vectors as a KS2

(
1/
(
4
√

2
))

instance, and each v ∈ A has dimension n+m, such that the following properties hold:
every vector v has norm ∥v∥2 ≤ 1/4 and

∑
v∈A vv

⊺ = I;
if ψ is a satisfiable instance of NAE-3SAT-KS, then there is a subset S ⊂ A such that∑

v∈S vv
⊺ = (1/2) · I;

if ψ is not a satisfiable instance of NAE-3SAT-KS, then for any subset S ⊂ A there is
always some y ∈ Rn with ∥y∥ = 1 such that

∣∣∣∑v∈S ⟨v, y⟩
2 − 1/2

∣∣∣ ≥ 1/
(
8
√

2
)
.

The key to proving these properties is the construction of a KS instance I from any formula
ψ, and an analysis of the properties of

∑
v∈S vv

⊺ for any S ⊆ I if ψ is an unsatisfiable
instance of NAE-3SAT-KS. We think that such a reduction from any SAT instance to a KS
instance is quite novel, and might be further employed to sharpen the constant 1/(4

√
2).

1.3 Related Work

There has been little work on the algorithmic Kadison-Singer problem. Anari et al. [2] studies
approximating the largest root of a real rooted polynomial and its applications to interlacing
families, which are the main tool developed in [15] to prove the Kadison-Singer conjecture.
They show that a valid partition promised by Weaver’s KS2 conjecture can be found in
dO(m1/3α−1/4) time, suggesting that exhaustive search of all possibilities is not required for
the algorithmic Kadison-Singer problem. Becchetti et al. [6] studies the algorithmic Kadison-
Singer problem for graphs under some restricted condition. Specifically, they show that, if
G = (V,E) is an n-vertex and ∆-regular graph of ∆ = Ω(n) and the second eigenvalue of the
adjacency matrix of G is at most a sufficient small constant times ∆, then an unweighted
spectral sparsifier of G can be constructed efficiently.

Weaver [21] shows that the BSS-framework for constructing linear-sized spectral sparsifi-
ers [5] can be adapted for the one-sided Kadison-Singer problem, where the term “one-sided”
refers to the fact that the discrepancy of the algorithm’s output can be only upper bounded.

Finally, independent of our work, Spielman and Zhang [18] studies the same complexity
problem as ours. Different from our approach, their analysis starts with the (3, 2-2) Set
Splitting problem, which is a variant of the 2-2 Set Splitting problem. They prove that the
(3, 2-2) Set Splitting problem remains NP-hard even if no pair of sets intersects in more than
one variable. Applying this, they show that the KS2(c) problem is NP-hard for c = 1/4.
While their result is slightly tighter than ours with respect to the value of c, the conclusions
of the two works are essentially the same.

1.4 Notation

Let [m] ≜ {1, . . . ,m}. For any integer j, we define vector 1j , in which 1j(j) = 1 and all of
1j ’s other entries are 0. For any integer d ≥ 1, let 0d×d ∈ Rd×d be the matrix in which every
entry is equal to 0. We call a matrix A positive semi-definite (PSD) if x⊺Ax ≥ 0 holds for
any x ∈ Rd. For any two matrices A and B, we write A ⪯ B if B −A is PSD. The spectral
norm of any matrix A is expressed by ∥A∥.

B. Jourdan, P. Macgregor, and H. Sun 43:7

L1 L2 L3 L4

. . .

Lm
. . .

Figure 1 The construction of the sets Li in Algorithm 1. Each Li−1 contains sparsifiers
representing the spectral equivalence classes of the vectors {v1, . . . , vi−1}. Then, Li contains either
one or two “children” of each sparsifier in Li−1, where the second child is added with some small
probability which prevents |Lm| from growing exponentially with m. For a particular target subset
S ⊆ {v1, . . . vm}, there is some sequence of constructed sparsifiers which corresponds to the process
of the online algorithm for constructing spectral sparsifiers [11], applied to S.

2 Algorithm Based on Spectral Equivalence Classes

This section discusses in detail the construction of spectral equivalence classes, and its
application in designing a randomised algorithm for the KS2(c) problem. We analyse the
presented algorithm, and prove Theorem 3. All the proofs omitted from this section can be
found in Appendix A.

2.1 Algorithm
Our algorithm consists of m iterations: in iteration i, the algorithm constructs the set Li

of spectral equivalence classes for the subsets S ⊆ {v1, . . . , vi}. For each equivalence class,
Li contains a pair (S,B) where S ⊆ {v1, . . . vi} is a representative set in the equivalence
class and B ∈ Rd×d is a spectral sparsifier representing the equivalence class. Moreover, the
algorithm constructs the representations of spectral equivalence classes in iteration i based
on the ones maintained in iteration i − 1. That is, instead of constructing all the subsets
of {v1, . . . , vi} and grouping them into different spectral equivalence classes, the algorithm
directly constructs the representations of the spectral equivalence classes of {v1, . . . , vi} based
on its constructed equivalence classes of {v1, . . . , vi−1}. This can be achieved by applying an
online algorithm for constructing spectral sparsifiers, since, if we assume that in iteration i−1
every subset S ⊆ {v1, . . . , vi−1} is spectrally equivalent to some (S′, B′) ∈ Li−1 maintained
by the algorithm, then both of S and S ∪ {vi} are spectrally equivalent to S′ and S′ ∪ {vi}
in iteration i as well. As such, in iteration i we only need to ensure that the sets S′ and
S′ ∪ {vi} are still represented by some sparsifiers in Li.

Based on this, we can view all the vectors v1, . . . , vm as arriving online and, starting
with the trivial spectral equivalence class defined by L0 = {(∅,0d×d)}, the algorithm con-
structs the representations of spectral equivalence classes of {v1, . . . vi} in iteration i. Our
algorithm applies the online algorithm for constructing spectral sparsifiers [11] (Lines 13-18
of Algorithm 1) to construct the representations of spectral equivalence classes of {v1, . . . , vi}
based on those of {v1, . . . , vi−1}. Since any subset of {v1, . . . vm} is spectrally equivalent to
some set of vectors with size n where n is nearly linear in d [11], the number of spectral
equivalence classes in any set Li will be at most

(
m
n

)
. See Figure 1 for an illustration of the

construction of the sets Li and Algorithm 1 for the formal description of the algorithm.
▶ Remark 7. The if-condition on Line 10 of Algorithm 1 can be checked in polynomial
time while introducing an arbitrarily small error, by constructing the matrix

∑
v∈S′ vv⊺ and

computing its eigenvalues.

ISAAC 2023

43:8 Is the Algorithmic Kadison-Singer Problem Hard?

Algorithm 1 Randomised-KS(I = {vi}m
i=1, c, ϵ), where vi ∈ Rd and ∥vi∥2 ≤ α.

1 µ← ϵ/6
2 λ← min (c

√
α, 1/2− c

√
α)

3 b← 8 log(d)/µ2

4 n← O
(
d log(d) log(1/λ)/µ2)

5 L0 ← {(∅,0d×d)}
6 for i← 1 to m do
7 Li ← ∅
8 for (S,B) ∈ Li−1 and B constructed with at most n vectors do
9 S′ ← S ∪ {vi}

10 if S′ satisfies (2) then
11 return S′

12 end
13 p← min

(
b (1 + µ) v⊺i (B + λI)−1

vi, 1
)

14 if X ≤ p where X ∼ Uniform[0, 1] then
15 B′ ← B + 1

pviv
⊺
i

16 Li ← Li ∪ {(S,B), (S′, B′)}
17 else
18 Li ← Li ∪ {(S′, B)}
19 end
20 end
21 end
22 return Failure

2.2 Analysis
First of all, notice that sparsifying

∑
v∈S vv

⊺ for any S ⊆ I is equivalent to sparsifying the
|S| × d matrix whose rows are defined by all the v ∈ S. Based on this, our proof uses the
result from the online matrix sparsification algorithm [11] as a black box. Specifically, we
apply the following lemma in our analysis, which is a special case of Theorem 2.3 from [11].
Notice that the algorithm described in Lemma 8 below corresponds to the sampling scheme
used in Algorithm 1.

▶ Lemma 8 ([11], Theorem 2.3). Let S be a set of vectors v1, . . . , vm ∈ Rd, and let A =∑
v∈S vv

⊺. With µ, δ ∈ [0, 1], b ≜ 8 log(d)/µ2 and B0 = 0d×d, construct Bi inductively for
i ∈ [m] such that with probability

pi = min
(
b(1 + µ)v⊺i

(
Bi−1 + δ

µ
I

)−1
vi, 1

)
,

we have

Bi = Bi−1 + 1
pi
viv

⊺
i ,

and with probability 1− pi, we have Bi = Bi−1. Then, it holds with probability (1− 1/d) that

(1− µ)A− δI ⪯ Bm ⪯ (1 + µ)A+ δI,

and the number of vectors added to Bm is O
(
d log d log

(
µ∥A∥2/δ

)
/µ2).

B. Jourdan, P. Macgregor, and H. Sun 43:9

Now, we analyse Algorithm 1. We begin by showing that, for each pair (S,B) constructed
by Algorithm 1, B is a spectral sparsifier of S with high probability.

▶ Lemma 9. Let Li be the set constructed by Algorithm 1 at iteration i. Then, for any
(S⋆, B⋆) ∈ Li, it holds with probability (1− 1/d) that

(1− µ)AS⋆ − δI ⪯ B⋆ ⪯ (1 + µ)AS⋆ + δI

where AS⋆ =
∑

v∈S⋆ vv⊺, and the parameters are set in Algorithm 1 to be µ = ϵ/6 and
δ = µmin(c

√
α, 1/2− c

√
α).

Next we show that any set S ⊂ {v1, . . . , vm} is well approximated by one of the sparsifiers
constructed in Algorithm 1.

▶ Lemma 10. Let I = {vi}m
i=1 be the input to Algorithm 1. Let S ⊆ I be any fixed set,

and A =
∑

v∈S vv
⊺. Then, with probability (1 − 1/d), there is a matrix B constructed by

Algorithm 1 such that

(1− µ)A− δI ⪯ B ⪯ (1 + µ)A+ δI,

where µ = ϵ/6 and δ = µmin(c
√
α, 1/2− c

√
α).

Finally, to prove Theorem 3, we need only apply Lemma 10 for the target set S ⊂ I, and
Lemma 9 for one of the pairs (S′, B) constructed by the algorithm. In particular, we do not
need to take the union bound over all sparsifiers constructed by the algorithm; rather, it is
sufficient that an accurate sparsifier is constructed for one specific target set.

Proof of Theorem 3. We first look at the case in which there is some S ⊂ I, such that for
AS =

∑
i∈S viv

⊺
i it holds that 1/2− c

√
α ≤ x⊺ASx ≤ 1/2 + c

√
α, for all unit vectors x ∈ Rd.

By Lemma 10, with probability greater than or equal to 1 − 1/d, there exists some pair
(S′, B) ∈ Lm such that

(1− µ)AS − δI ⪯ B ⪯ (1 + µ)AS + δI, (3)

where µ = ϵ/6 and δ = µmin(c
√
α, 1/2− c

√
α) ≤ µ. By Lemma 9, with probability 1− 1/d,

we have (1− µ)AS′ − δI ⪯ B ⪯ (1 + µ)AS′ + δI, where S′ is the set constructed alongside
B. Taking the union bound, with probability at least 1− 2/d, we have for any unit vector
x ∈ Rd that

x⊺AS′x ≤ 1 + µ

1− µ

(
1
2 + c

√
α

)
+ 2δ

1− µ x⊺AS′x ≥ 1− µ
1 + µ

(
1
2 − c

√
α

)
− 2δ

1− µ

≤ 1 + 3µ
1− µ

(
1
2 + c

√
α

)
and ≥ 1− 3µ

1− µ

(
1
2 − c

√
α

)
≤ (1 + ϵ)

(
1
2 + c

√
α

)
≥ (1− ϵ)

(
1
2 − c

√
α

)
,

where we use the definition of δ and the fact that ϵ = 6µ ≤ 1. Therefore, the set S′ satisfies
(2) and will be returned by Algorithm 1.

On the other side, notice that, by the condition on Line 10 of Algorithm 1, any set
returned by the algorithm satisfies (2). Therefore, with probability 1 the algorithm will
correctly report that there is no set S ⊂ I satisfying (2) if it is the case.

Finally, we analyse the running time of the algorithm. By Lemma 8, it holds that B is
constructed from O(n) vectors with probability at least 1− 1/d. For this reason, on Line 8
of Algorithm 1 we consider only the sparsifiers of size O(n). The remaining part of the
algorithm contributes only polynomial factors to its running time, so the total running time
of the algorithm is O

((
m
n

)
· poly(m, d)

)
. ◀

ISAAC 2023

43:10 Is the Algorithmic Kadison-Singer Problem Hard?

3 FNP-Hardness of KS2
(
1/(4

√
2)
)

This section studies the computational complexity of the KS2(c) problem, and is organised
as follows. In Section 3.1 we introduce the FNP complexity class. We formally define the
NAE-3SAT-KS problem in Section 3.2, and prove that this problem is NP-hard. In Section 3.3,
we build a reduction from the NAE-3SAT-KS problem to the KS2

(
1/
(
4
√

2
))

problem.

3.1 The FNP Complexity Class
In contrast with the complexity classes P and NP, the class FNP is used to study problems
with output which is more complex than simply “yes” or “no”. Formally, given a binary
relation R and an input X, the corresponding function problem is to find Y such that R(X,Y)
holds or report “no” if no such Y exists. For example, we can take X to be an instance
I = {vi}m

i=1 of the KS2(c) problem, and Y ⊆ I to be a candidate solution. Then, the relation
RKS2(c)(I, Y) holds if and only if Y satisfies (1). Any given binary relation R is in the class
FNP iff there is a deterministic polynomial-time algorithm which can determine whether
R(X,Y) holds for a given pair (X,Y) [16]. Notice that every function problem has a natural
corresponding decision problem. Specifically, given a binary relation R and a value of X,
the decision problem asks whether there exists some Y such that R(X,Y) holds. A function
problem F is FNP-hard if there is a polynomial-time reduction from all problems in FNP
to F . It is known that if the decision problem corresponding to F is NP-hard, then F is
FNP-hard [16], and we will use this fact in our proof of Theorem 5.

3.2 NP-Completeness of NAE-3SAT-KS
In this subsection, we study the following NAE-3SAT-KS problem, and prove that the problem
is NP-complete. We remark that we restrict ourselves to study SAT instances of a specific form
here, as these SAT instances will be employed to prove the NP-hardness of the KS2

(
1/(4
√

2)
)

problem.

▶ Problem 11 (NAE-3SAT-KS). Given a 3SAT instance ψ consisting of a collection C of
clauses over the set U of variables such that
1. every c ∈ C has 3 literals,
2. for every u ∈ U , both of u and ū appear in at most 2 clauses of C,
3. for every u ∈ U , at least one of u or ū appears in exactly 2 clauses of C, and
4. any two clauses share at most one literal and no variable appears twice in the same clause,
the NAE-3SAT-KS problem asks if there is a satisfying assignment for ψ such that every
clause of ψ has at least one true literal and at least one false literal.

Our reduction is from the following well-known NP-complete problem.

▶ Problem 12 (NAE-3SAT, [12]). Given a 3SAT instance ψ that consists of a collection C of
clauses over the set U of variables such that every clause c ∈ C has 3 literals, the NAE-3SAT
problem asks if there is a satisfying assignment for ψ such that every clause of ψ has at least
one true literal and at least one false literal.

▶ Theorem 13. The NAE-3SAT-KS problem is NP-complete.

Proof. Given any NAE-3SAT-KS instance ψ and an assignment to ψ’s variables, it’s straight-
forward to check in polynomial time if this is a satisfying assignment, and every clause of ψ
has at least one true literal and at least one false literal. Hence, the NAE-3SAT-KS problem
is in NP.

B. Jourdan, P. Macgregor, and H. Sun 43:11

To prove that the NAE-3SAT-KS problem is NP-complete, we build a reduction from the
NAE-3SAT problem to the NAE-3SAT-KS problem. Specifically, for any NAE-3SAT instance
(U,C), where U is the set of variables and C is a collection of clauses, we construct an
NAE-3SAT-KS instance (U ′, C ′) such that (U,C) is satisfiable in NAE-3SAT if and only if
(U ′, C ′) is satisfiable in NAE-3SAT-KS. Our construction of (U ′, C ′) is as follows. Initially, we
set U ′ = U and C ′ = C. Then, for any variable x which appears only once in C, we remove
x from U ′ and the corresponding clause from C ′ since the clause can always be satisfied
by setting x appropriately and so removing the clause does not change the satisfiability
of (U ′, C ′). Then, for every remaining variable x, we replace the instances of x and x̄

with new variables and add additional clauses to ensure that the satisfiability is unchanged.
Specifically, for each x left in U ′ let n1 = |{c ∈ C : x ∈ c}|, n2 = |{c ∈ C : x̄ ∈ c}|, and set
n = n1 + n2. Then, we introduce new variables x1, . . . , xn and replace the instances of x in
C ′ with x1, . . . , xn1 . Similarly, we replace the instances of x̄ with x̄n1+1, . . . , x̄n.

Now, in order to ensure that (U ′, C ′) is satisfiable if and only if (U,C) is satisfiable, we
introduce new clauses to C ′ which have the effect of constraining the variables x1, . . . , xn to
have the same truth value in any satisfying assignment. To achieve this, let n′ ≥ n be an
odd number, and we introduce additional new variables y1, . . . , yn′ and clauses

(ȳi ∨ ȳi+1 ∨ yi+2) for any i ∈ [1, n′], (4)

where the indices are taken modulo n′. We will see that these clauses ensure that the yi

variables must all have the same value in a satisfying assignment. We see this by a simple
case distinction.

Case 1: y1 = y2 in a satisfying assignment. Then, by the first clause in (4) it must be
that y2 = y3 since there must be at least one true literal and one false literal in each
satisfied clause. Proceeding inductively through the clauses in (4), we establish that
y1 = y2 = . . . = yn′ .
Case 2: y1 ̸= y2 in a satisfying assignment. We will show that this leads to a contradiction.
By the last clause in (4), yn′ ̸= y1 since there must be at least one true literal and one
false literal. Again, we proceed inductively from the (n′ − 1)th clause in (4) down to
establish that y1 ̸= y2, y2 ̸= y3, . . . , yn′−1 ̸= yn′ . As such, we have y1 = y3 = . . . = y2i+1
which is a contradition since n′ is odd and we have already established that y1 ̸= yn′ .

As such, we can use the variables y1, . . . , yn′ with the assumption that they have the same
value in any satisfying assignment of (U ′, C ′). It remains to construct clauses to guarantee
that the variables x1, . . . , xn have the same value in any satisfying assignment. We add the
clauses

(xi ∨ x̄i+1 ∨ yi) for any i ∈ [1, n], (5)

where the indices are taken modulo n. We will show that x1 = x2 = . . . = xn in a satisfying
assignment by case distinction.

Case 1: x1 = yi for all i. By the first clause in (5), it must be that x1 = x2 since we
cannot have x1 = x̄2 = yi in a satisfying assignment. Then, proceeding inductively using
each clause in turn we establish that x1 = x2 = . . . = xn.
Case 2: x̄1 = yi for all i. By the last clause in (5), it must be that x̄n = x̄1 since we
cannot have xn = x̄1 = yn in a satisfying assignment. Then, proceeding inductively from
the (n− 1)th clause down, we establish that x̄1 = x̄2 = . . . = x̄n.

Notice that by this construction, each literal xi, x̄i, yi, and ȳi now appears at most twice
in C ′, no two clauses share more than one literal and no literal appears twice in the same
clause. Additionally, every xi and x̄i appears exactly once in the clauses added by (5).

ISAAC 2023

43:12 Is the Algorithmic Kadison-Singer Problem Hard?

Since the variable xi also appears exactly once in the clauses corresponding directly to C,
requirement (3) of the NAE-3SAT-KS problem is satisfied. Moreover, we have that (U ′, C ′)
has a satisfying assignment if (U,C) has a satisfying assignment; this follows by setting the
values of x1, . . . , xn in U ′ to the value of their corresponding x ∈ U . On the other hand,
any satisfying assignment of (U ′, C ′) corresponds to a satisfying assignment of (U,C), since
we must have that x1 = . . . = xn and can set the value of x ∈ U to be the same value
to get a satisfying assignment of (U,C). Finally, notice that our new instance (U ′, C ′) of
NAE-3SAT-KS can be constructed in polynomial time in the size of the instance (U,C) of
NAE-3SAT. This completes the proof. ◀

3.3 FNP-Hardness of KS2
(
1/

(
4

√
2
))

We now show that the KS2(c) problem is FNP-hard for any c ≤ 1/(4
√

2), i.e., Theorem 5. At
a high level, our proof is by reduction from the NAE-3SAT-KS problem. Given an instance of
the NAE-3SAT-KS problem, we will construct an instance I of KS2(c) such that
1. if the NAE-3SAT-KS instance is satisfiable, then there is a set S ⊂ I with

∑
v∈S vv

⊺ =
(1/2) · I, and

2. if the NAE-3SAT-KS instance is not satisfiable, then for all sets S ⊂ I we have∥∥∥∥∥∑
v∈S

vv⊺ − 1
2I

∥∥∥∥∥ ≥ 1
4
√

2
·
√
α.

This will establish that the KS2
(
1/
(
4
√

2
))

problem is FNP-complete, and that it is NP-hard
to distinguish between instances of KS2(c) with W(I) = 0 and those for which W(I) ≥(
1/4
√

2
)√

α.

Proof of Theorem 5. We prove that KS2(1/(4
√

2)) is NP-hard by a reduction from the
NAE-3SAT-KS problem to the decision version of the KS2

(
1/
(
4
√

2
))

problem. We are given
an instance (U,C) of the NAE-3SAT-KS problem, and construct an instance of KS2(c). Let
us refer to

the clauses in C as c1, . . . cm;
the variables in U as x1, . . . , xn; we sometimes write xi and x̄i for the un-negated and
negated literals.

Our constructed KS2(c) instance has O(n+m) dimensions. Specifically, there is one di-
mension for each clause in C and one dimension for each variable in U which appears both
negated and un-negated in C. We use dc

j to refer to the dimension corresponding to clause cj ,
and dx

j to refer to the dimension corresponding to variable xj . We add O(m+ n) vectors to
our KS2(c) instance. Conceptually, we add one vector for each clause and 4 vectors for each
literal. We use vc

j to refer to the vector corresponding to clause cj , and vx
j,1 to vx

j,4 or vx̄
j,1 to

vx̄
j,4 to refer to the vectors corresponding to the literal xj or x̄j . For each clause cj , we set
vc

j(dc
j) = 1/2, and set the other entries of vc

j to be 0. Table 1 completes the definition of the
vectors corresponding to literals. For each literal, we define only the value on the dimensions
corresponding to the variable and the clauses containing the literal; all other entries in the
vector are 0. Let A be the set of vectors defined above. Notice that the squared norms of the
vectors in A are bounded above by 1/4 and so α = 1/4 in the constructed KS2(c) instance.

To complete the reduction, we’ll show the following:
1. It holds that

∑
v∈A vv

⊺ = I.
2. If the original NAE-3SAT-KS instance has a satisfying assignment, then there’s a set

S ⊂ A such that
∑

v∈S vv
⊺ = 1

2 · I.

B. Jourdan, P. Macgregor, and H. Sun 43:13

Table 1 The construction of the vectors in the KS2(c) instance for a literal xi appearing in clause
cj and possibly also in ck. If a literal appears in only one clause, cj , we ignore the middle column
corresponding to ck; i.e., the vectors corresponding to xi are non-zero only on dimensions dc

j and dx
i .

Vector Value on dc
j Value on dc

k Value on dx
i

vx
i,1 1/4 1/4 1/

√
8

vx
i,2 1/4 1/4 −1/

√
8

vx
i,3 1/4 −1/4 1/

√
8

vx
i,4 1/4 −1/4 −1/

√
8

3. Any set S ⊂ A with∥∥∥∥∥∑
v∈S

vv⊺ − 1
2I

∥∥∥∥∥ < 1
8
√

2
= 1

4
√

2
√
α

corresponds to a satisfying assignment of the original NAE-3SAT-KS instance.

Vectors in A are isotropic. Let B =
∑

v∈A vv
⊺. Then, for any variable xi, we have that

B(dx
i , d

x
i) =

∑
v∈A

v(dx
i)2 =

4∑
j=1

vx
i,j(dx

i)2 +
4∑

j=1
vx̄

i,j(dx
i)2 = 1.

Additionally, for any clause ci we have that

B(dc
i , d

c
i) =

∑
v∈A

v(dc
i)2 = vc

i (dc
i)2 +

∑
xj∈c

4∑
k=1

vx
j,k(dc

i)2 = 1
4 + 3 · 1

4 = 1.

This demonstrates that the diagonal entries of B are all 1. We now see that the off-diagonal
entries are all 0. First, notice that for any two dimensions relating to variables, dx

i and dx
j ,

we have

B(dx
i , d

x
j) =

∑
v∈A

v(dx
i)v(dx

j) = 0,

since there is no vector in A with a non-zero contribution to more than one dimension
corresponding to a variable. Now, let us consider two dimensions corresponding to different
clauses ci and cj . We have

B(dc
i , d

c
j) =

∑
v∈A

v(dc
i)v(dc

j) =
∑

xk∈ci∩cj

4∑
ℓ=1

vx
k,ℓ(dc

i) · vx
k,ℓ(dc

j) = 0,

where we use the fact that ci and cj share at most one literal. Finally, consider the case
when one dimension corresponds to the clause ci and the other dimension corresponds to
the variable xj . If the variable xj does not appear in ci, then there are no vectors with a
non-zero contribution to the two dimensions and so the entry is 0. Otherwise, we have

B(dc
i , d

x
j) =

∑
v∈A

v(dc
i)v(dx

j) =
4∑

k=1
vx

i,k(dc
i)vx

i,k(dx
j) = 1

4
√

8
+ 1

4
√

8
− 1

4
√

8
− 1

4
√

8
= 0,

where we use the fact that no variable appears twice in the same clause. This completes the
proof that

∑
v∈A vv

⊺ = I.

ISAAC 2023

43:14 Is the Algorithmic Kadison-Singer Problem Hard?

If the NAE-3SAT-KS instance is satisfiable, then there is a solution to KS2(1/(4
√

2)).
Given a satisfying assignment to NAE-3SAT-KS, let T ⊂ U be the set of variables which are
set to be True and let F ⊂ U be the set of variables which are set to be False. Recall that
in a satisfying assignment, each clause in C contains either 1 or 2 true literals. Let C ′ ⊂ C
be the set of clauses with exactly 1 true literal in the satisfying assignment. Then, we define
S to be

S ≜ {vx
i,1, v

x
i,2, v

x
i,3, v

x
i,4 : xi ∈ T} ∪ {vx̄

i,1, v
x̄
i,2, v

x̄
i,3, v

x̄
i,4 : xi ∈ F} ∪ {vc

i : ci ∈ C ′},

and we show that
∑

v∈S vv
⊺ = 1

2I. We can repeat the previous calculations, this time setting
B =

∑
v∈S vv

⊺ to show that B = (1/2)I. Specifically, for any variable xi, it holds that
B(dx

i , d
x
i) = 1

2 since only the vectors corresponding to the negated or un-negated variable
are included. For any clause ci ∈ C ′, we have

B(dc
i , d

c
i) = vc

i (dc
i)2 +

4∑
k=1

vx
j,k(dc

i)2 = 1/4 + 1/4 = 1/2,

where xj is the literal which is set to be true in the clause ci. Similarly, for any clause in
ci ∈ C \ C ′, we have

B(dc
i , d

c
i) =

4∑
k=1

vx
j,k(dc

i)2 +
4∑

k=1
vx

ℓ,k(dc
i)2 = 1/4 + 1/4 = 1/2,

where the literals xj and xℓ are set to be true in the clause ci. Then, notice that the
calculations for the off-diagonal entries follow in the same way as before. This completes the
proof that a satisfying assignment for NAE-3SAT-KS implies a solution to the KS2(1/(4

√
2))

problem.

If there is a solution to KS2(c), then the NAE-3SAT-KS instance is satisfiable. We
prove this by a contrapositive argument. That is, we show that for any set S′ which does
not correspond to a satisfying assignment of the NAE-3SAT-KS problem, there must be some
vector y with ∥y∥ = 1 such that∣∣∣∣∣y⊺

(∑
v∈S′

vv⊺

)
y − 1

2

∣∣∣∣∣ ≥ ϵ (6)

for ϵ = 1
8

√
2 . Specifically, we will analyse three cases, and show that

1. if there is some variable xi such that S′ does not contain exactly 4 of the vectors

{vx
i,1, v

x
i,2, v

x
i,3, v

x
i,4, v

x̄
i,1, v

x̄
i,2, v

x̄
i,3, v

x̄
i,4},

then there is a vector y satisfying (6) for ϵ = 1/8;
2. if Case (1) does not apply, then if there is some literal xi such that S′ contains 1, 2, or 3

of the vectors {vx
i,1, v

x
i,2, v

x
i,3, v

x
i,4}, then there is a vector y satisfying (6) for ϵ = 1/(8

√
2);

3. if neither Case (1) nor (2) applies, then if S′ does not correspond to a satisfying assignment
of the original NAE-3SAT-KS instance, there must be a vector y satisfying (6) for ϵ = 1/4.

For the first case, suppose that there is some variable xi such that S′ does not contain
exactly 4 vectors corresponding to the variable xi. Let k ̸= 4 be the number of such vectors,
and let y be the vector with all zeros except for y(dx

i) = 1. Notice that∣∣∣∣∣y⊺
(∑

v∈S′

vv⊺

)
y − 1

2

∣∣∣∣∣ =

∣∣∣∣∣∑
v∈S′

v(dx
i)2 − 1

2

∣∣∣∣∣ =
∣∣∣∣k8 − 1

2

∣∣∣∣ ≥ 1
8 .

B. Jourdan, P. Macgregor, and H. Sun 43:15

Table 2 The absolute values of off-diagonal entries in B =
∑

v∈S′ vv⊺, based on which vectors
corresponding to the literal xi are included in S′. We assume xi appears in the clauses cj and ck.

Vectors in S′ |B(dx
i , dc

j)| |B (dx
i , dc

k)| |B(dc
j , dc

k)|

One vector vx
i,ℓ 1/

(
8
√

2
)

1/
(
8
√

2
)

1/16
Vectors vx

i,1 and vx
i,2 0 0 1/8

Vectors vx
i,1 and vx

i,3 1/
(
4
√

2
)

0 0
Vectors vx

i,1 and vx
i,4 0 1/

(
4
√

2
)

0
Vectors vx

i,2 and vx
i,3 0 1/

(
4
√

2
)

0
Vectors vx

i,2 and vx
i,4 1/

(
4
√

2
)

0 0
Vectors vx

i,3 and vx
i,4 0 0 1/8

Three vectors vx
i,ℓ 1/

(
8
√

2
)

1/
(
8
√

2
)

1/16

For the second case, suppose that the set S′ contains 4 vectors for each variable, but
there is some literal xi such that S′ contains some but not all of the vectors corresponding
to xi. By Condition 3 of the NAE-3SAT-KS problem (Problem 11) we can assume that xi

appears in two clauses cj and ck. Otherwise, this is the case for x̄i and S′ contains some, but
not all, of the vectors corresponding to x̄i since it contains exactly 4 vectors corresponding
to the variable xi. Now, we define B =

∑
v∈S′ vv⊺ and we consider the absolute values of

certain off-diagonal entries in B, which are summarised in Table 2. Notice that, regardless of
which vectors corresponding to xi are included, there are two indices d̂1 and d̂2 such that∣∣∣B(d̂1, d̂2)

∣∣∣ ≥ 1
8

√
2 . Using the indices d̂1 and d̂2, define the unit vector

y =
{

1√
2 (1d̂1

+ 1d̂2
) if sgn(B(d̂1, d̂1) +B(d̂2, d̂2)− 1) = sgn(B(d̂1, d̂2))

1√
2 (1d̂1

− 1d̂2
) otherwise

where sgn(·) is the sign function. Then we have∣∣∣∣y⊺By − 1
2

∣∣∣∣ =
∣∣∣∣12(B(d̂1, d̂1) +B(d̂2, d̂2)±B(d̂1, d̂2)±B(d̂2, d̂1)

)
− 1

2

∣∣∣∣
= 1

2

∣∣∣B(d̂1, d̂1) +B(d̂2, d̂2)− 1± 2B(d̂1, d̂2)
∣∣∣

= 1
2

(∣∣∣B(d̂1, d̂1) +B(d̂2, d̂2)− 1
∣∣∣+ 2

∣∣∣B(d̂1, d̂2)
∣∣∣)

≥
∣∣∣B (d̂1, d̂2

)∣∣∣
≥ 1

8
√

2
,

where the third equality follows by the construction of y.
Finally, we consider the third case, in which there are 4 vectors in S′ for each variable,

and all 4 vectors correspond to the same literal. It is clear that such a set S′ corresponds
unambiguously to an assignment for the original variables in the NAE-3SAT-KS instance:
specifically, one can set a variable xi to be True if S′ contains {vx

i,1, v
x
i,2, v

x
i,3, v

x
i,4}, and set

xi to be False if S′ contains {vx̄
i,1, v

x̄
i,2, v

x̄
i,3, v

x̄
i,4}. Then, suppose that there is some clause

cj ∈ C which is not satisfied by this assignment. This implies that either all 12 of the vectors
corresponding to literals in cj are included in S′, or none of the vectors corresponding to
literals in cj are included in S′. In either case, we can set y to be the indicator vector of the
dimension dc

j , and have that

ISAAC 2023

43:16 Is the Algorithmic Kadison-Singer Problem Hard?

|y⊺By − 1/2| =

∣∣∣∣∣∑
v∈S′

v(dc
j)2 − 1/2

∣∣∣∣∣ ≥ 1/4

since we can either include vc
j or not in order to set

∑
v∈S′ v(dc

j)2 equal to either 1/4 or 3/4.
This completes the reduction from the NAE-3SAT-KS problem to the decision version

of the KS2(c) problem for c ≤ 1/(4
√

2), which implies that KS2
(
1/
(
4
√

2
))

is FNP-hard.
Furthermore, notice that by the reduction in this proof,

if the NAE-3SAT-KS instance is satisfiable, then the constructed instance I of the KS2(c)
problem satisfies W(I) = 0, and
if the NAE-3SAT-KS instance is not satisfiable, then the constructed instance I of the
KS2(c) problem satisfies W(I) ≥ 1/

(
4
√

2
)
·
√
α.

This shows that distinguishing between instances with W(I) = 0 and W(I) ≥ 1/
(
4
√

2
)
·
√
α

is NP-hard, and completes the proof. ◀

4 Conclusion

This paper studies the algorithms and complexity of the Kadison-Singer problem through the
KS2(c) problem, and presents two results. On one side, we prove that the KS2(c) problem
for any c ∈ R+ can be solved in quasi-polynomial time when d = O(logm), which suggests
that the problem is much easier to solve in low dimensions. The key to our algorithm design
is a novel application of online spectral sparsification subroutines, with which we are able to
efficiently construct representations of all spectral equivalence classes over time and reduce
the enumeration space of the candidate solutions. We expect that our work could motivate
more research on the applications of spectral sparsification and related problems in numerical
linear algebra to the algorithmic Kadison-Singer problem.

On the other side, our NP-hardness result shows that the Kadison-Singer type problem
for arbitrary dimensions can be as hard as solving the SAT problem, and the KS2(c) problem
belongs to different complexity classes for different values of c. Hence, more refined studies
on the classification of its computational complexity would help us better understand the
complexity of the algorithmic Kadison-Singer problem. In our point of view, both directions
left from the paper are very interesting, and we leave these for future work.

References
1 Nima Anari and Shayan Oveis Gharan. The Kadison-Singer problem for strongly Rayleigh

measures and applications to asymmetric TSP. CoRR, abs/1412.1143, 2014. arXiv:1412.1143.
2 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Nikhil Srivastava. Approximating the

largest root and applications to interlacing families. In 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’18), pages 1015–1028, 2018.

3 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 51th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’10), pages 3–10, 2010.

4 Nikhil Bansal, Tim Oosterwijk, Tjark Vredeveld, and Ruben van der Zwaan. Approximating
vector scheduling: Almost matching upper and lower bounds. Algorithmica, 76(4):1077–1096,
2016.

5 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012.

6 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Luca
Trevisan. Finding a bounded-degree expander inside a dense one. In 31st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’20), pages 1320–1336, 2020.

https://arxiv.org/abs/1412.1143

B. Jourdan, P. Macgregor, and H. Sun 43:17

7 Peter G. Casazza. Consequences of the Marcus/Spielman/Stivastava solution to the Kadison-
Singer problem. CoRR, abs/1407.4768, 2014. arXiv:1407.4768.

8 Peter G Casazza, Matthew Fickus, Janet C Tremain, and Eric Weber. The Kadison-Singer
problem in mathematics and engineering: a detailed account. Contemporary Mathematics,
414:299, 2006.

9 Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for
minimizing discrepancy. In 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’11), pages 1607–1614, 2011.

10 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM Journal
on Computing, 33(4):837–851, 2004.

11 Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. Theory of
Computing, 16(15):1–25, 2020.

12 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

13 Richard Kadison and Isadore Singer. Extensions of pure states. American Journal of
Mathematics, 81:383–400, 1959.

14 Adam Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I: bipartite
Ramanujan graphs of all degrees. In 54th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’13), pages 529–537, 2013.

15 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families II: mixed
characteristic polynomials and the Kadison-Singer problem. Annals of Mathematics, 182(1):327–
350, 2015.

16 Elaine Rich. Automata, computability and complexity: theory and applications. Pearson
Prentice Hall Upper Saddle River, 2008.

17 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

18 Daniel A. Spielman and Peng Zhang. Hardness results for Weaver’s discrepancy problem.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM ’22), pages 40:1–40:14, 2022.

19 Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12(4):389–434, 2012.

20 Nicholas Weaver. The Kadison-Singer problem in discrepancy theory. Discrete Mathematics,
278(1-3):227–239, 2004.

21 Nik Weaver. The Kadison-Singer problem in discrepancy theory, II. CoRR, abs/1303.2405,
2013. arXiv:1303.2405.

A Omitted Proofs from Section 2

In this section we present the proofs omitted from Section 2.

Proof of Lemma 9. We will show that for any pair (S⋆, B⋆) constructed by Algorithm 1, B⋆

is equivalent to the output of the algorithm described in Lemma 8 when applied to S⋆. We
prove this by induction on i. The base case i = 0 follows immediately from the initialisation
of L0 = {(∅,0d×d)}. For the inductive step we show that the conclusion holds for every
pair in Li, assuming it holds for every pair in Li−1. For each pair (S⋆, B⋆) ∈ Li, the proof
proceeds by a case distinction.
Case 1: (S⋆, B⋆) ∈ Li−1. This case corresponds to the pairs (S,B) added on Line 16 of

Algorithm 1. Accordingly, by the inductive hypothesis, we have that B⋆ is equivalent to
the output of the algorithm described in Lemma 8 applied to S⋆.

ISAAC 2023

https://arxiv.org/abs/1407.4768
https://arxiv.org/abs/1303.2405

43:18 Is the Algorithmic Kadison-Singer Problem Hard?

Case 2: (S⋆, B⋆) ̸∈ Li−1. This case covers the pairs involving S′ added on Lines 16 and
18 of Algorithm 1. Let (S,Bi−1) be the pair in Li−1 from which (S⋆, B⋆) is constructed.
Notice that S⋆ = S ∪ {vi}. Then, by the construction of Algorithm 1, with probability
pi, we have

B⋆ = Bi−1 + 1
pi
vivi

⊺

and with probability 1− pi, we have B⋆ = Bi−1, where pi is the probability defined in
Lemma 8. As such, B⋆ is the result of applying an iteration of the algorithm defined in
Lemma 8, for the new vector vi. This maintains that B⋆ is equivalent to the output of
the Lemma 8 algorithm applied to S⋆ and completes the inductive argument. ◀

Proof of Lemma 10. We prove that one of the matrices B constructed by Algorithm 1 is
equivalent to the output of the algorithm defined in Lemma 8 applied to the set S. Although
the matrices constructed in Algorithm 1 are always part of a pair (S′, B), in this proof we
consider only the matrices B, and ignore the sets S′ which are constructed alongside them.

We now inductively define a sequence B0, B1, . . . , Bm, such that Bi is a matrix constructed
by the algorithm in iteration i and Bi ∈ Li corresponds to the output of the Lemma 8
algorithm applied to S ∩ {v1, . . . , vi}. Firstly, let B0 = 0d×d, which is the initial condition
for the algorithm in Lemma 8 and is constructed by Algorithm 1 on Line 5. Then, for the
inductive step, we assume that Bi−1 is the output of the Lemma 8 algorithm applied to
S ∩ {v1, . . . , vi−1} and we define Bi by case distinction.
Case 1: vi ̸∈ S. In this case, we set Bi = Bi−1, and notice that if Bi−1 is in the set Li−1

constructed by Algorithm 1, then Bi must be in the set Li since every matrix B in Li−1 is
included in Li on either Line 16 or Line 18. Since S∩{v1, . . . , vi−1} = S∩{v1, . . . , vi}, we
have that Bi is the output of the algorithm defined in Lemma 8 applied to S∩{v1, . . . , vi}
by the inductive hypothesis.

Case 2: vi ∈ S. In this case, we set Bi to be either Bi−1 or Bi−1 + (1/p)viv
⊺
i , according to

the result of the condition on Line 14 of Algorithm 1. Notice that, since the definition of
p in Algorithm 1 is the same as the definition in Lemma 8, Bi corresponds to the result
of applying an iteration of the algorithm in Lemma 8 with Bi−i and vi. Therefore, by the
induction hypothesis, Bi is equivalent to the output of the Lemma 8 algorithm applied to
S ∩ {v1, . . . , vi}, which completes the inductive construction of B1, . . . , Bm.

Finally, since our defined Bm corresponds to the output of the algorithm in Lemma 8
applied to S, we can apply Lemma 8 to S and Bm which completes the proof. ◀

Succinct Planar Encoding with Minor Operations
Frank Kammer #

THM, University of Applied Sciences Mittelhessen, Giessen, Germany

Johannes Meintrup #

THM, University of Applied Sciences Mittelhessen, Giessen, Germany

Abstract
Let G be an unlabeled planar and simple n-vertex graph. Unlabeled graphs are graphs where the
label-information is either not given or lost during the construction of data-structures. We present a
succinct encoding of G that provides induced-minor operations, i.e., edge contractions and vertex
deletions. Any sequence of such operations is processed in O(n) time in the word-RAM model. At
all times the encoding provides constant time (per element output) neighborhood access and degree
queries. Optional hash tables extend the encoding with constant expected time adjacency queries
and edge-deletion (thus, all minor operations are supported) such that any number of edge deletions
are computed in O(n) expected time. Constructing the encoding requires O(n) bits and O(n) time.
The encoding requires H(n) + o(n) bits of space with H(n) being the entropy of encoding a planar
graph with n vertices. Our data structure is based on the recent result of Holm et al. [ESA 2017]
who presented a linear time contraction data structure that allows to maintain parallel edges and
works for labeled graphs, but uses Θ(n log n) bits of space. We combine the techniques used by Holm
et al. with novel ideas and the succinct encoding of Blelloch and Farzan [CPM 2010] for arbitrary
separable graphs. Our result partially answers the question raised by Blelloch and Farzan whether
their encoding can be modified to allow modifications of the graph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases planar graph, r-division, separator, succinct encoding, graph minors

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.44

Related Version Full Version: https://arxiv.org/abs/2301.10564 [18]

Funding Johannes Meintrup: Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 379157101.

1 Introduction

Graphs are used to model systems as entities and relationships between these entities. Many
graphs that arise in real-world application are very large. This has given rise to an area of
research with the aim of reducing the required space [1, 7, 8, 12, 14, 19]. Practical examples
include large road-networks [26] or social-network graphs [10]. This has spawned research
inquiries into compact representation of graphs, especially those that posses certain structural
properties. The arguably most well-known such structural property is planarity. A graph is
planar if it can be drawn in the plane without crossings. In this work we consider the problem
of maintaining a succinct encoding of a given graph under edge contractions and vertex
deletions, referred to as induced-minor operations. An edge contraction in a graph G = (V, E)
consists of removing an edge {u, v} ∈ E from the graph and merging its endpoints to a new
vertex x. Edge contractions are a vital technique in a multitude of algorithms, prominent
examples include computing minimum cuts [20], practical treewidth computations [27] and
maximum matchings [6]. At the end of the paper we extend our result from induced-minor
operations to support all minor operations, which in addition to edge contractions and vertex
deletions includes edge deletions. We work on unlabeled graphs, meaning that labels are
either not given or lost when constructing our data structure.

© Frank Kammer and Johannes Meintrup;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frank.kammer@mni.thm.de
https://orcid.org/0000-0002-2662-3471
mailto:johannes.meintrup@mni.thm.de
https://orcid.org/0000-0003-4001-1153
https://doi.org/10.4230/LIPIcs.ISAAC.2023.44
https://arxiv.org/abs/2301.10564
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Succinct Planar Encoding with Minor Operations

Related Work. For encoding planar graphs without regards to providing fast access opera-
tions, Keeler et al. [21] showed an O(n) bits representation. For a compression within the
information theoretic lower bound refer to He et al. [13]. Due to Munro and Raman [24] there
exists an encoding using O(n) bits that allows constant-time queries which has subsequently
been improved by Chiang et al. [5]. We build on the succinct representation due to Blelloch
and Farzan, which allows encoding arbitrary separable graphs and subsequently allows
constant-time queries [3], which builds on the work of Blanford et al. [2]. Recently it was
shown that the encoding of Blelloch and Farzan can be constructed using O(n) bits in O(n)
time [17]. Our work can be thought of as extending the encoding of Blelloch and Farzan
to allow contraction operations. For edge contractions in planar graphs without regard to
space-usage, Klein and Mozes [22] presented an algorithm that runs in O(log n) time per
contraction. Their work is based on techniques by Brodal and Fagerberg [4]. For edge and
vertex deletions Holm and Rotenberg showed a data structure that provides any number
of such deletions in O(n) time [16]. The state-of-the-art by Holm et al. [15] provides edge
contractions in O(n) time total. Their data structure allows constant time (per element
output) neighborhood and degree queries and maintains parallel edges that occur due to
merges, while also allowing to view the graph as “simple”, i.e., skipping parallel edges
when querying the neighborhoods. Using optional hashing techniques they provide expected
constant time adjacency queries. Their data structure is based on the well-known notion of
r-divisions [9, 11, 23], a technique we use as well. The data structure of Holm et al. uses
Θ(n log n) bits to store mappings and initially applies graph transformations that increase
the number of vertices by a constant factor, making it not succinct, neither for unlabeled
nor labeled graphs. Even assuming these steps could trivially be adapted to use o(n) bits
when encoding unlabeled graphs, they additionally construct a lookup table for storing small
graphs such that each index encoding a graph with k vertices uses H(k) + Θ(H(k)) bits of
space, with H(k) the entropy of encoding planar graphs with k vertices. They then encode
graphs of at least n total vertices using such indices, i.e., they use H(n) + Θ(H(n)) bits for
storing all such small graph, i.e., their data structure is not succinct.

Our result. Let G be an unlabeled planar and simple graph with n vertices. We present
a succinct encoding of G that is able to process edge contractions and vertex deletions in
O(n) time for any number of such modifications. At all times, the data structure allows
constant time (per element output) neighborhood and degree queries. Using optional hashing
techniques, we provide constant expected time adjacency queries and can process any number
of edge deletions in O(n) expected time. This partially answers a question posed by Blelloch
and Farzan if their encoding for arbitrary separable graphs can be extended to allow graph
modifications [3]. Our data structure maintains the running time of the state-of-the-art
solution by Holm et al. [15] for labeled planar graphs, while using significantly less space.
The data structure of Holm et al. requires the input graph to be transformed by replacing
each vertex with degree larger than a constant by a cycle-gadget, which increases the number
of vertices by a linear factor1. Such a transformation is not necessary using our techniques,
but our data structure only works for unlabeled graphs, and we are not able to maintain
parallel edges that occur due to contractions, i.e., our graph is at all times simple. In the
next section we present our main result in an intuitive fashion. Our new result is based on
several previous data structures (Section 3) and on a table-lookup technique (Section 4).
In Section 5, we describe and extend a succinct encoding technique due to Blelloch and

1 Outlined in Appendix A.1 in the full version of their paper found on arXiv.

F. Kammer and J. Meintrup 44:3

Farzan [3]. One of our challenges was to extend mappings used by Blelloch and Farzan
to be semi-dynamic. Interestingly, for this we repurpose a graph data structure of Holm
et al. [15] and use it to construct dynamic mappings between vertex labels. The dynamic
mappings are described in Section 6, which we use in Section 7 to combine the results of all
the previous sections to achieve our dynamic encoding. We end this publication by extending
our encoding to provide vertex and edge deletions as well as adjacency and degree queries.
All proofs can be found in the full version of this paper.

2 A succinct graph encoding for edge contractions

We now give an overview of our new data structure for succinctly encoding a simple un-
labeled planar graph G = (V, E) with n vertices and maintaining this encoding under edge
contractions while allowing neighborhood and degree queries in constant time per element
output. Vertex deletions and edge deletions are discussed in Section 7. Note that while we
work with unlabeled graphs, internally we assume vertices are labeled as consecutive integers
from 1 to n. The intuitive idea is to construct a set X ⊂ V of boundary vertices such that
G[V \ X] (the vertex-induced graph on V \ X) contains multiple connected components
C1, . . . , Ck of “small” size at most r (which is defined later) with k = O(n/r), and X of size
O(n/

√
r). Based on this, we distinguish edges of three types: edges between vertices of X

(called boundary edges) edges between vertices of one Ci (called simple edges) and edges
between a vertex of X and a vertex of some Ci (called mixed edges). For each Ci denote
with Pi the graph induced by all simple edges between vertices of Ci and all mixed edges
with one endpoint in Ci. The set of all these Pi is known as an r-division, and each Pi is
called a piece. Note that an r-division has some additional characteristics which are defined
more precisely later, one such key characteristics that each Pi contains only O(

√
r) boundary

vertices, and therefore is of size O(|Ci| +
√

r) = O(r). Note that each boundary vertex is
contained in multiple pieces. Assume that there is a data structure that is able to easily
contract any number of edges in graphs of size O(r) in time O(r). As long as contractions are
only carried out between simple edges, we would be able to easily construct a data structure
that results in O(n) runtime for any number of contractions by simply constructing this
data structure for each piece individually. Problems occur when contracting boundary or
mixed edges because contractions are no longer able to be carried out locally in a single
piece as they affect vertices in multiple pieces. For example, when contracting a boundary
edge {u, v} this affects every Pi with i ∈ {1, . . . , k} that contains at least one of u and v. To
provide such contractions we construct a data structure sketched in the following. Note that
we distinguish between vertex merges of two vertices u, v and edge contractions between an
edge {u, v}, with the latter being analogous to the first with the distinction that u must be
adjacent to v.

For edges between vertices of the boundary X we construct a boundary graph F = G[X],
which at all times contains all boundary edges, including edges that occur due to contractions.
A key invariant that we uphold is that the “status” of a vertex, i.e., if it is a boundary or a
non-boundary vertex, never changes due to contractions. If a vertex is a boundary vertex
initially, it will be handled internally as a boundary vertex even when it no longer is incident
to boundary edges due to contractions. For non-boundary vertices we ensure that these
vertices are never incident to boundary edges. For each u ∈ X we maintain a mapping
containing all i with u ∈ V (Pi), i.e., the pieces that contains u. Now, when we contract a
boundary edge {u, v} we firstly merge v to u in all Pi that contain both u and v. For any
u ∈ V we denote with N(u) the neighborhood of u. We process the aforementioned merge by

ISAAC 2023

44:4 Succinct Planar Encoding with Minor Operations

setting N(u) := (N(u) ∪ N(v)) \ {u, v} in Pi and removing v from Pi. In all Pi that contain
only v, we simply relabel v to be u. In all Pi that do not contain v (but can contain u) we
do not have to make modifications. Finally, {u, v} is contracted in the boundary graph F as
well. To maintain F we can use a “slow” data structure, as F is small.

To contract a mixed edge {u, v} with u ∈ X we know there is only one Pi that contains
v, where we execute the contraction. This might result in u now being adjacent to some
x ∈ X ∩ V (Pi), for which we add the respective edge {u, x} to F . It helps to achieve our
runtime goal of O(n) for processing any number of edge contractions if we do not add this
edge {u, x} to all other pieces that contain both u and x. We therefore maintain a second
invariant: that edges between boundary vertices are only contained in the boundary graph
(for now ignoring the specifics of how this is maintained).

To handle contractions inside pieces, intuitively we build the same data structure we
outlined here to one more time, splitting each piece in tiny pieces of size at most r′, specified
later. We can categorize all graphs of size at most r′ by a lookup table, which allows us to
encode every such tiny piece as an index into the lookup table (Section 4). For each graph
of the lookup table we pre-compute all possible vertex merges. We then contract edges in
constant time by simply retrieving (the index of) the contracted graph from the lookup table.
Such a framework was previously used by Holm et al. [15] to maintain a planar graph under
contractions, but with a space usage of Θ(n log n) bits.

To output the neighborhood of a vertex we distinguish between two cases. First, to
output the neighborhood of a vertex u that is not a boundary vertex, we can simply output
the neighborhood in the only Pi that contains u. For a boundary vertex u we first output
the neighborhood of u in F , which are all neighbors being boundary vertices, and then do
the same for each piece Pi that contains neighbors of u.

To achieve a succinct data structure we build on a succinct encoding due to Blelloch
and Farzan [3], outlined in Section 5. They construct an r-division for the input graph,
and for each piece Pi of the r-division construct another r′-division. Each piece Pi,j of this
r′-division is categorized by a succinct index in a lookup table. They use succinct dictionaries
to translate information between the two levels. These translation data structures and the
lookup table can be realized with o(n) bits. We use the encoding of Blelloch and Farzan,
but enhance it with dynamic qualities (Section 5 and Section 6). This (partially) answers
the question posed by Blelloch and Farzan [3], if modifications of the succinctly encoded
graph are possible. A key notion is that most of the novel “building blocks” handle the small
number of boundary vertices, so non-space efficient data structures are used.

▶ Theorem 1. Let H(n) be the entropy of encoding a planar graph with n vertices and
G an unlabeled simple n-vertex planar graph. There exists an encoding of G that provides
induced-minor operations (i.e., vertex deletions and edge contractions) with these properties:
The encoding requires O(n) time to execute any number of induced-minor operations and
provides neighborhood and degree operations in constant time (per element output). The
encoding requires H(n) + o(n) bits can be initialized in O(n) time and O(n) bits.

Using optional hashing techniques adapted from the data structure of Holm et al. [15,
Lemma 5.15] we provide edge deletion and adjacency queries.

▶ Corollary 2. The encoding of Theorem 1 can be extended to provide expected O(1) time
adjacency queries and process any number of minor operations in expected O(n) time.

F. Kammer and J. Meintrup 44:5

3 Preliminaries

We denote by [k] = {1, . . . , k}, with k any integer. Our model of computation is the word-
RAM with a word length of w = Ω(log n) bits. We work with simple unlabeled graphs.
In the following let G = (V, E). We use G[V ′] with V ′ ⊆ V to denote the vertex induced
subgraph on V ′ of G. We also write V (G) for the vertices V of G and E(G) for E. A
merge of a pair of two vertices u, v ∈ V means replacing both vertices u, v with a vertex
x with N(x) = N(u) ∪ N(v) \ {u, v}. In our data structures we merge u and v by setting
N(u) := N(u) ∪ N(v) \ {u, v} and removing v from V , i.e., x is either u or v. We then
say that v is merged to u. Note that merging u to v is a different operation. Merging two
adjacent vertices u, v is called contracting the edge {u, v}. We denote by n the number of
vertices of the graph G under consideration. In this work we use nG to denote the number
of vertices of a given graph G. If the graph is clear from the context we simply write n.

Planar graph. A graph is planar exactly if it can be drawn in the plane such that no two
edges cross. The family of planar graphs is closed under taking minors. Any simple planar
graph G has O(n) edges. We only work with simple graphs and from this point onward
assume all (planar) graphs are simple. An operation that modifies a planar graph under
consideration is planarity preserving if afterwards the graph is still planar. For brevity’s sake,
we assume all merges discussed in our work are planarity preserving unless stated otherwise.
We denote with H(·) the entropy to encode a planar graph, a function dependent on the
number of vertices of the graph under consideration. It is known that H(n) = Θ(n) [28].

We assume w.l.o.g. that all input graphs for our data structure are connected. If this is
not the case, we add a dummy vertex and connect it to an arbitrary vertex in each connected
component. After our encoding of Theorem 1 is constructed, we can simply ignore the dummy
vertex and all its incident edges during any output of the provided operations. As we require
this modification to be space-efficient, concretely that it only uses O(n) bits of additional
space during the construction and runs in O(n) time, we provide an explicit lemma for this
modification. Note that a succinct encoding of a planar graph with this additional dummy
vertex requires only a constant number of additional bits, as H(n + 1) = H(n) + O(1).

▶ Lemma 3. Let G be a simple planar graph. We can add a dummy vertex vd to V and all
edges {vd, u} to E with u being one vertex in each connected component of G using O(n) bits
in O(n) time.

Graph divisions. Let G = (V, E) be a planar graph and r some integer. An r-division
R = {P1, . . . , Pk} of G is a division of G into k = O(n/r) edge-disjoint connected subgraphs
called pieces. Each piece has O(r) vertices. For each P ∈ R there exists a set of boundary
vertices δP ⊂ V (P) such that u ∈ δP if and only if u is incident to an edge {u, v} ∈ E with
v /∈ V (P). For each P it holds that |δP | = O(

√
r). We denote with δR =

⋃
P ∈R δP the set

of boundary vertices of R. For any r-division R we denote by k the number of pieces, and
assume they are numbered from [k] as R = P1, . . . , Pk. We use a subscript numbering to
distinguish between multiple r-divisions as follows: we use the same subscript numbering to
refer to the number of parts of the r-division, i.e., we use ki when talking about an r-division
Ri for some integer i. Linear time algorithms for computing r-divisions exists [11, 23]. Note
that an r-division requires each piece to be connected, and our encoding in some sense
maintains a dynamic r-division. Due to modifications, pieces may become disconnected. We
do not require each piece to be connected once the encoding is constructed, this abuses the
definition of r-divisions without consequence.

ISAAC 2023

44:6 Succinct Planar Encoding with Minor Operations

Forbidden-vertex graph data structure. We use a so-called forbidden-vertex graph data
structure that is initialized for a simple planar graph G = (V, E) and any set B ⊆ V of
forbidden vertices. It allows modifications of G in the form of edge insertions and deletions,
and in the form of vertex merges while maintaining two invariants: no edges between vertices
of B exist and G is simple and planar. This data structure was described by Holm et al. [15]
as a building block for their contraction data structure. We slightly modify their data
structure and change some notation to match our use-cases. We use this data structure
(among other things) for maintaining edges between so-called boundary vertices, as sketched
in Section 2. We refer to this data structure as forbidden-vertex graph data structure.

For each vertex and edge managed by the data structure we can access and modify
auxiliary data, which takes constant time per word written or read, if a reference to the
vertex or edge is given. When merging two vertices u, v some edge {u, x} might be removed
and inserted again as {v, x}. We view this as the same edge, but with different endpoints.
Meaning, auxiliary data of {u, x} is now stored at {v, x}. If {v, x} already existed before the
merge, we can decide what to do with the data of the discarded parallel edge. Self-loops and
forbidden edges that would occur due to a merge are output during the merge operation. All
operations are only permitted if they preserve planarity. In the following we more precisely
define the available modifications:

Merge. Given are two vertices u, v with u ̸= v. Merge v to u by setting N(u) :=
N(u)∪N(v)\{u, v} and removing v and all incident edges from V . Returns a reference to
u and reports and discards all parallel edges during the merge, and reports all non-parallel
edges inserted to N(u) during the merge. Edges that would occur between vertices of B

are discarded.
Insert. Given are two vertices u, v with u ̸= v and {u, v} /∈ E. Insert the edge e = {u, v}
into E, unless both u, v ∈ B.
Delete. Let {u, v} be a given edge. Remove the edge {u, v} from E.

▶ Lemma 4 ([15]). Let G = (V, E) be a simple planar graph and B ⊆ V . A forbidden
vertex graph data structure can be initialized for G and B in O(n log n) time. It provides
constant time (per element output) neighborhood and adjacency queries and access to the
label mappings. Edge insertion/deletion takes O(log n) time. Any number of free-assignment
vertex merges are executed in O(n log2 n) time. The data structure uses O(n log n) bits.

To achieve the runtime outlined in Lemma 4 for vertex merges, each merge of two vertices
u, v ∈ V is processed by merging the vertex with the lowest degree to the vertex with the
highest degree, i.e., we can not freely choose which vertex is merged. A simple mapping
using standard data structures allows us to label the vertex x ∈ {u, v} that remains after the
merge either u or v. The details of this are found in full version of our paper. We refer to a
merge of two vertices where we are able to freely decide the labeling of the remaining vertex
after the merge as free-assignment merge. We henceforth assume that all merges of the data
structure are free assignment merges. The following lemma summarizes this.

▶ Lemma 5. Let G = (V, E) be a simple planar graph and B ⊆ V managed by the forbidden-
vertex graph data structure of Lemma 4. Using O(n) additional time for initialization and
O(n log n) bits we are able to process any number of free-assignment merges in O(n log2 n)
time on G.

Indexable dictionaries. We use a data structure called indexable dictionary (ID), initialized
for a universe U of consecutive integers and a set S ⊆ U and supports membership, rank
and select queries. A rank query for some x ∈ U returns |{y ∈ S : y < x}|. A select query
for some integer i returns the value of x ∈ U such that x is stored at rank i.

F. Kammer and J. Meintrup 44:7

▶ Lemma 6 ([25]). Let s ≤ u be two integers. Given a set S of size s, which is a subset
of a universe U = [u], there is a succinct indexable dictionary (ID) on S that requires
log

(
u
s

)
+ o(s) + O(log log u) bits and supports rank/select on elements of S in constant time.

We use IDs with u = n and s = O(n/Λ(n)) for some function Λ(n) = ω(1), then each ID
requires o(n) bits. IDs can be can be constructed in O(u) time using O(u) bits [25].

4 Table lookup for small planar graphs

In this section we present our table lookup data structure for small graphs. Given an integer ℓ

the table lists for every positive integer ℓ′ ≤ ℓ every possible planar graph with at most ℓ′

vertices. Such a lookup table was used by Blelloch and Farzan [3] as a building block for
succinctly encoding planar and other separable graphs, which we outline Section 5. For every
graph G encoded by the table, they provide adjacency queries and neighborhood iteration
in constant time (per element). The table can be realized using O(2poly(ℓ)) bits and time,
including the data structures needed to provide the queries. To distinguish between all planar
graphs with ℓ′ vertices we requires H(ℓ′) + O(1) bits. This corresponds to an index into the
computed table. The table contains 2H(ℓ) entries. Everything mentioned so far was shown by
Blelloch and Farzan. In the following we introduce additional operations and extensions of
this lookup table. These modifications increase the size of the table by a negligible amount
of bits while maintaining the same (asymptotical) runtime for constructing the table. We
show that our modifications increase the size of each index encoding a graph with ℓ′ vertices
by o(ℓ′) bits, which is negligible for our use case.

Range filtered neighborhood iteration: Takes as input an index i into the lookup table,
three vertices u, a, b ∈ V , with G = (V, E) being the graph encoded at index i and
u ̸= a ̸= b. Provides an iterator over all neighbors v of u with a ≤ v ≤ b.
Batch edge deletion: Takes as input an index i into the lookup table, three vertices
u, a, b ∈ V with G = (V, E) the graph encoded at index i. Returns the index j encoding
the graph G′ = (V, E \ X) with X = {{u, v} : v ∈ N(u) and a ≤ v ≤ b}.
Label-preserving merge: Takes as input an index i into the lookup table and two vertices
u, v ∈ V , with G = (V, E) being the graph encoded at index i. Returns the index j

encoding the graph G′ obtained from G by setting N(u) := N(u) ∪ N(v) \ {u, v} and
deleting v. Only allowed when preserving planarity.

All these operations can easily be pre-computed for one entry of the table in time
O(poly(ℓ)) using the same amount of bits. The sum of computations over every entry of
the table is O(2poly(ℓ)). As a note on the label-preserving merge operation, vis-à-vis keeping
the vertex v, but marking it deleted, consider the following example. We want to merge the
vertices u and v in some graph G = (V, E) encoded by the table with ℓ′ vertices. If we would
simply merge them, the vertex v no longer exists. In particular, the vertex set after the
merge is V ′ = V \ {v}. As the vertex set for each graph encoded by the table is consecutively
numbered from [ℓ′], graphs with vertex set V ′ are possibly not encoded by the table. To
remedy this, we simply keep the vertex v in the graph but mark it deleted. It remains to
show how to handle ’mark v as deleted’. To each graph encoded by the table we add a
dummy vertex called deleted. The table lists every possible planar graph with at most ℓ + 1
vertices, where the vertex with the largest label is our dummy vertex deleted. To mark v

as deleted during the label preserving merge, we set N(deleted) := N(deleted) ∪ {v} (and
N(v) := {deleted}). We are now able to check if a vertex is deleted, by checking if it is
adjacent to deleted. When we later encode a graph G = (V, E) via an index into this lookup
table, we encode it as the graph G′ = (V ∪ {deleted}, E), i.e., with no vertices marked as
deleted initially.

ISAAC 2023

44:8 Succinct Planar Encoding with Minor Operations

It remains to observe how one additional extra vertex increases the size of the table. The
size of each entry encoded by the table stays asymptotically the same, and is thus of no
concern to us. The number of entries in the table is O(2H(ℓ+1)), and therefore each index
into the lookup table encoding a graph with ℓ′ vertices requires H(ℓ′ + 1) + O(1) bits to
be stored. As H(ℓ′ + 1) = Θ(ℓ′ + 1) [28] it holds that H(ℓ′ + 1) = H(ℓ′) + O(1), which is
negligible for our purpose. Therefore, our table uses 2poly(ℓ) bits, which is asymptotically
the same as the original table of Blelloch and Farzan. Each index of the table uses only a
constant number of additional bits over the theoretical lower bound. Note that indices into
the original unmodified table of Blelloch and Farzan also require this additional O(1) bits.
We introduce some further modifications that increase the additional space per index storing
a graph with r′ vertices by o(r′) bits, which is fine for our use-case.

When we later use the table lookup to contract edges, we do so by effectively replacing
an unlabeled graph with a different unlabeled one. Without care, this can break internal
labeling structures, e.g., a vertex in a graph encoded by the lookup table has an internal
label of 5, and after replacing the graph it now has a label of 7. Section 6 and Section 7
show how additionally maintain a dynamic label mapping structure for “important” vertices,
i.e., boundary vertices as described in Section 2. For this we require the graph encoded
by the table to be partially labeled. Concretely this means that the labels remain correct
for boundary vertices when replacing one graph with a different one. We store all possible
labels for boundary vertices, of which there are b = O(

√
ℓ) many. In detail, when encoding a

single graph G with ℓ vertices, we do not store a single unlabeled representative of G in the
table (i.e., a graph isomorphic to all labeled versions of G), but all graphs such that ℓ − b

vertices are unlabeled, e.g., have an arbitrary internal label, and b vertices have all possible
labelings in the range 0, . . . , ℓ. This increases the size of the table by a negligible factor,
outined now. Due to the partial labeling we require, the number of bits needed to store an
index into the table increases by O(log(

(
ℓ
b

)
)) = O(log(

(
ℓ√
ℓ

)
)) = o(ℓ), and thus is negligible for

our use-case. Later, when we modify a graph Gi encoded as an index i of lookup table (e.g.,
contract edges), we replace the index i with the index j such that the graph Gj encoded by
j represents the modified graph with the additional characteristic that all boundary vertices
of Gj have the same label in Gi. the labeling for the non-boundary vertices changes due to
this, but what we maintain is that a non-boundary vertex remains mapped to non-boundary
vertex, and that all boundary vertices maintain their same labeling, which is all that we
require for our data-structure. This is expressed via a set of invariants defined in Section 6
and Section 7.

▶ Lemma 7. Let ℓ be a positive integer. There exists a table that encodes all planar graphs
with vertex set {1, . . . , ℓ′} for all integers ℓ′ ≤ ℓ with the following properties. For every
graph encoded by the table, (range filtered) neighborhood iteration, adjacency queries and
label-preserving merge operations and batch edge deletion are provided in constant time (per
element). The table can be constructed in O(2poly(ℓ)) time using O(2poly(ℓ)) bits. Every index
of the table referencing a graph with ℓ′ vertices requires H(ℓ′) + o(ℓ′) bits.

5 Succinct encoding of planar graphs

We now describe the succinct encoding of unlabeled planar (and other separable) graphs
due to Blelloch and Farzan [3]. We use their data structure as a basis for our encoding.
Our result effectively extend their encoding with (induced-) minor operations. For this
we need to give a technical overview of their encoding. Let G = (V, E) be an unlabeled
planar graph, R = {P1, . . . , Pk} an r-division with r = log4 n, and for each Pi with i ∈ [k],

F. Kammer and J. Meintrup 44:9

let Ri = {Pi,1, . . . , Pi,k} be an r′-division of Pi with r′ = log4 log4 n. 2 The encoding assigns
three integer labels to each vertex u ∈ V . A label in the entire graph (called global label) a
label in each piece Pi ∈ R (called a mini label) and a label in each piece Pi,j ∈ Ri (called a
micro label). We refer to G with the newly assigned labels as the global graph, each labeled
Pi ∈ R as a mini graph, and each labeled Pi,j ∈ Ri as a micro graph. Note that boundary
vertices of δR receive multiple mini labels, and analogous boundary vertices of δRi receive
multiple micro labels. We refer to the boundary vertices of δR with their assigned global
labels as δG, and the set of boundary vertices of δRi with their assigned mini labels in Pi as
δPi. For a given boundary vertex u identified by its global label, we refer to all occurrences
u′ (as a mini label) of u in a mini graph Pi as duplicates, and the same for boundary vertices
of mini graphs Pi in regard to their occurrences in micro graphs. We refer to the set of (mini
labels of) duplicate vertices in a mini graph Pi as ∆Pi, and analogous the set of (micro labels
of) duplicate vertices in a micro graph Pi,j as ∆Pi,j . Global labels are consecutive integers
assigned first to all non-boundary vertices and then to boundary vertices, i.e., all boundary
vertices have larger labels than non-boundary vertices. Analogous for mini labels in mini
graphs. Micro labels are assigned arbitrarily. For operations vertices are identified by their
respective label. E.g., a neighborhood query of a vertex u ∈ V takes the global label of u as
an input and outputs the global labels of all v ∈ N(u), analogous for queries in a mini or
micro graph. Micro graphs are encoded as an index into a lookup table T , listing all planar
graphs of at most r′ vertices. Technically this is realized by an array with one entry for
each micro graph, which can be indexed by (i, j) when retrieving the entry for micro graph
Pi,j . For our use case we replace the table of Blelloch and Farzan with the table described
in Section 4, which provides additional operations. We now describe operations that the
encoding provides, which are used by Blelloch and Farzan in their original publication, but
are not defined outside of 1. All mappings are implemented using IDs (Lemma 6) over the
universe [n] combined with standard data structures such as lists and pointers. Let u ∈ V

be a vertex identified by its global label. For each such u, the encoding provides a mapping
to access a list ϕ(u) that contains tuples (i, u′) with i the index of a mini graph Pi that
contains mini label u′ of u. The lists are sorted in increasing order by i. Note that if u is a
non-boundary vertex the mapping contains only a single tuple. For each such tuple (i, u′) we
can access a mapping ϕ−1

i (u′) = u. For vertices u′ in each mini graph Pi (identified by their
mini label) analogous mappings ϕi(u′) containing tuples (j, u′′) with j the index of a micro
graph Pi,j that contains micro label u′′ of u′, and the analogous mappings ϕ−1

i,j (u′′) = u′ are
provided. We refer to all these mappings as static translation mappings.

Recall that Blelloch and Farzan assign micro labels in an arbitrary fashion. We instead
assign the labels according to a coloring we define in the following. Let Pi,j be the micro
graph we want to label. We first assign labels to vertices that are neither a boundary vertex of
δR nor of δRi, which we assign the color simple. Then we assign labels to vertices that are
in the boundary δR, but not in δRi, which we assign the color global-boundary. Then to
vertices that are not in the boundary δR, but in the boundary δRi, colored mini-boundary,
and finally to vertices in both the boundary δR and in δRi, colored double-boundary.
Consequently, for any four vertices of Pi,j it holds that a < b < c < d if a is colored simple, b

is colored global-boundary, c is colored mini-boundary and d is colored double-boundary.
For each mini graph we store the lowest labeled vertex of each color, which uses negligible
space of O((n/ log4 log4 n) log log4 log4 n) = o(n) bits overall.

2 Blelloch and Farzan use r′ = log n/ log log n in their publication, but make it clear that there is a large
degree in freedom as long as the choice is of size o(log n).

ISAAC 2023

44:10 Succinct Planar Encoding with Minor Operations

Combined with our novel way of assigning micro labels to vertices of micro graphs, the
range-filtered neighborhood operation provided by our table allows us to implement the
color-filtered neighborhood operation that outputs all neighbors x of a vertex u (in a micro
graph Pi,j) such that all x are colored with c ∈ {simple, global-boundary, mini-boundary,

double-boundary}. The operation runs in constant time (per element output). Using the
label preserving merge operation of the lookup table we can easily provide such merges for
every micro graph. Analogous for the vertex and edge deletion operation.

For a given unlabeled planar graph G we refer to the encoding described in this section
as basic encoding of G. Kammer and Meintrup [17] have shown that the encoding can be
constructed in O(n) time using O(n) bits. Our modifications have negligible impact on the
runtime and space usage of the construction. This results in the following theorem.

▶ Theorem 8. Let G be an unlabeled planar graph and H(n) the entropy of encoding a
planar graph with n vertices. There exists a basic encoding of G into a global graph, mini
graphs and micro graphs that uses H(n) + o(n) bits total. The basic encoding provides static
translation mappings for the global graph, each mini graph and each micro graph. For each
micro graph the encoding provides degree, adjacency, (color-filtered) neighborhood, (batch)
edge/vertex deletion and label-preserving merge operations in O(1) time. The basic encoding
can be constructed in O(n) time using O(n) bits.

6 Dynamic mapping data structures

For this section assume a planar graph G is given via the basic encoding of Theorem 8. We
now describe a set of dynamic mapping structures, for which we outline the use-case in the
following. We already mentioned in Section 2 that a vertex that is initially a boundary
vertex (globally or/and in mini graphs) will never become a non-boundary vertex, and a
non-boundary vertex will never become a boundary vertex due to any of our edge contractions.
We construct dynamic variants of the static translation mappings for boundary vertices
(in the global or in mini graphs). We ensure that the static translation mappings remain
valid for all non-boundary vertices. Later these mappings are concretely constructed for the
vertices of the initial graph (i.e., before any contractions are processed) and are maintained
for all of these vertices throughout. Concretely this means that the sets for which we define
mappings and data structures never change after initialization. Recall from Section 2 that
when contracting an edge {u, v} ∈ E we effectively forward the contraction operation to
mini graphs that contain mini labels u′ and v′ of u and v respectively, and then forward the
contraction to micro graphs in an analogous way. For our solution we require that these
cascading merge operations are handled independently without interfering with each other.

Consider for example the case where we contract an edge {u, v} ∈ E with u being a
boundary vertex and v a non-boundary vertex. In this case we want to contract v to u

(technical reasons for this are outlined in the next section). To fulfill this contraction, we
forward a request to the mini graph Pi to merge the vertices u′ and v′, the respective
mini labels of u and v in Pi. In the case that v′ is a boundary vertex in Pi, but u′ is a
non-boundary vertex in Pi, we want to merge u′ to v′, which is in conflict with our desire
to merge v to u in the global graph. The idea is to support free-assignment merges, whose
realization is described in the next paragraph. This sort of conflict only pertains to vertices
u that are part of the boundary δG (thus, a duplicate ∆Pi in Pi) and/or have a mini label
u′ in some Pi that is part of the boundary δPi, i.e., we need to provide free-assignment
merges for vertices of δPi ∪ ∆Pi. We construct a dynamic mapping that allows us to decide,
when merging two vertices u′, v′ ∈ δPi ∪ ∆Pi, if the vertex that remains after the merge is

F. Kammer and J. Meintrup 44:11

labeled u′ or v′. This is realized by assigning each such vertex an external mini label and
an internal mini label. Effectively we have no free choice on which internal mini label the
vertex has after a merge, but we are free to assign a new external label. We construct a
mapping internali : δPi ∪ ∆Pi → δPi ∪ ∆Pi that maps a given external label of a vertex
of δPi ∪ ∆Pi to its internal label, and a mapping externali : δPi ∪ ∆Pi → δPi ∪ ∆Pi that
maps a given internal label of a vertex δPi ∪ ∆Pi to its external label. For all other vertices
of Pi we ensure that the external and internal mini labels are identical, and therefore do not
need to construct any mapping. This is explicitly defined in Invariant 2 later in this section.

▶ Lemma 9. All mappings internali and externali can be constructed in O(n) time using
o(n) bits of space. They provide read/write access in O(1) time.

We also have the need for a dynamic version of the static translation mappings ϕ and ϕi

for boundary vertices δG in the global graph and boundary vertices δPi in mini graphs, and
the mappings ϕ−1

i and ϕ−1
i,j for the duplicate vertices ∆Pi in mini graphs and ∆Pi,j micro

graphs, outlined in the following paragraphs. Initially these are equal to the static mappings.
We first describe the dynamic versions of the mappings ϕ−1

i and ϕ−1
i,j , which we refer to as

Φ−1
i and Φ−1

i,j respectively. Afterwards we describe the dynamic versions of the mappings
ϕ and ϕi, referred to as Φ and Φi. To give an intuition for the use-case of these mappings,
consider a contraction of an edge e = {u, v} ∈ E with u, v ∈ δG. We contract this edge by
first merging all u′ and v′ in the mini graphs Pi that contain both the duplicate u′ of u and
v′ of v. In all Pi that contain only a duplicate of v′ of v we need to know that the global
label of v′ is now (i.e., after the contraction) u instead of v, for which we use the described
mappings. In all other mini graphs no changes need to be made.

▶ Lemma 10. All mappings Φ−1
i : ∆Pi → δG and Φ−1

i,j : ∆Pi,j → δPi can be constructed in
O(n) time using o(n) bits of space. They provide read/write access in O(1) time.

We now describe the dynamic mappings Φ and Φi. As mentioned, we initially require all
mappings Φ(u) to be equal to ϕ(u) for u ∈ δG and analogously all mappings Φi(u′) to be
initially equal to ϕi(u′) for u′ ∈ δPi for all mini graphs Pi. To represent these mappings we
construct a graph H that contains all boundary vertices u ∈ δG and, for each mini graph
Pi, a vertex pi, with edges {u, pi} added to H exactly if u has a duplicate u′ in Pi. Note
that the existance of a duplicate u′ in Pi means that u′ has a non-boundary neighbor in Pi

(initially). At each such edge we store the tuple (i, u′). We construct H using the forbidden
vertex graph data structure of Lemma 4. The tuples stored at the incident edges of a vertex
u ∈ δG in H are exactly the set ϕ(u). Note that H is a minor of G and therefore planar. We
can provide for all u ∈ δG: iteration over all elements Φ(u) (by iterating over N(u) in H),
insertion and removal of elements in Φi(u) (by inserting or removing edges in H), the merge
of two sets Φ(u) and Φ(v) for some v ∈ δG (by merging u to v or v to u in H). Some other
similar operations are provided, outlined in detail in the next section where we concretely
describe our edge contraction algorithm. For each mini graph Pi the analogous graph Hi

is constructed, which manages the mappings Φi. An important note is that for each tuple
(i, u′) ∈ Φ(u) for u ∈ δG the vertex u′ is the external mini label of some vertex in Pi. As
no external or internal micro labels are defined for micro graphs, each tuple (j, u′′) ∈ Φi(u′)
for all mini graphs Pi contains the concrete micro label u′′ in Pi,j . In the next section we
describe our neighborhood operation, for which we require a special version of the mappings
Φ, which we first motivate with an intuition. To output the neighborhood of a vertex u ∈ δG

we (intuitively) iterate over all (i, u′) ∈ Φ(u) and, for each such (i, u′), iterate (and translate
to global labels) over all neighbors of u′ in Pi. To achieve a runtime of O(|N(u)|) for this

ISAAC 2023

44:12 Succinct Planar Encoding with Minor Operations

operation, we require that each tuple (i, u′) “contributes” at least one such neighbor. While
this is true initially, due to edge contractions (and other modifications) the degree of each
such u′ can become 0. To remedy this, we store a special version of the mappings Φ(u) which
we refer to as Φ>0, containing only tuples (i, u′) ∈ Φ(u) such that the degree of u′ is > 0.
We construct the analogous mappings Φ>0

i for all Pi. During contractions, we update the
mappings Φ>0 and Φ>0

i to uphold the aforementioned characteristic, which is formalized in
Invariant 1. How this invariant is upheld, is discussed in the next section. We realize these
mappings exactly as Φ and Φi, respectively, i.e., as graphs H>0 and H>0

i . Initially H>0 = H

and all H>0
i = Hi, by the definition of boundary vertices in r-divisions (Section 3).

▶ Invariant 1 (non-zero-degree invariant). For all u ∈ δG, each entry (i, u′) ∈ Φ>0(u)
guarantees that u′ has degree > 0 in mini graph Pi. For all u′ ∈ δPi over all mini graphs Pi,
each entry (j, u′′) ∈ Φ>0

i (u′) guarantees that u′′ has degree > 0 in micro graph Pi,j.

▶ Lemma 11. Graphs H, H>0 and Hi, H>0
i can be constructed in O(n) time and o(n) bits.

Using all data structures described in this section we uphold invariants below while
running contractions on G – the details on this are described in the next section. For better
readability we slightly abuse the definition of our internal (external) mappings of by
assuming they return the identity function for u′ /∈ δPi ∪ ∆Pi.

▶ Invariant 2 (label-translation invariants).
a. Global to external mini label and vice-versa:

I. For each u ∈ V \ δG and (i, u′) = ϕ(u) it holds that u′ is the external mini label of u

in Pi and ϕ−1(u′) = u.
II. For each u ∈ δG and (i, u′) ∈ Φ(u) (Φ is the dynamic version of ϕ) it holds that u′

is the external mini label of u in Pi and Φ−1(u′) = u.
b. Internal to external mini label and vice-versa:

For each vertex u′ ∈ V (Pi) identified by its external mini label, it holds that u∗ =
internal(u′) is the internal mini label of u′ and external(u∗) = u′.

c. Mini to micro label and vice-versa:
I. For each u′ ∈ V (Pi) \ δPi (identified by its internal mini label) and (j, u′′) = ϕi(u′)

it holds that u′′ is the micro label of u′ in Pi,j and ϕ−1
i,j = u′.

II. For each u∗ ∈ δPi (identified by its internal mini label) and for each (j, u′′) ∈ Φi(u∗)
it holds that u′′ is the micro label of u∗ in Pi,j and Φ−1

i,j (u′′) = u∗.

7 Towards a succinct dynamic encoding

For this section let G = (V, E) be a graph encoded by the basic encoding of Theorem 8. Also,
assume that the mappings of Lemma 9, 10 and 11 are constructed and available. In this
section we describe our solution to support modifications of G. We denote by Ḡ = (V̄ , Ē)
the graph G before any modifications are processed, e.g., contractions of edges. Analogously
we define by P̄i, P̄i,j the initial mini and micro graphs, respectively, with its initial vertices
(as mini/micro labels). As sketched in Section 2 we handle contractions between so-called
boundary edges with a boundary graph F = G[δG] and analogously a mini boundary graph
Fi = Pi[δPi] for each mini graph Pi. These graphs are realized via the forbidden vertex
graph data structure (Lemma 4). For F we use as the set of forbidden vertices the empty
set. For each Fi we use the duplicate vertices ∆Pi of Pi as the set of forbidden vertices.
During initialization edges between forbidden vertices are removed. The forbidden-vertex
graph data structure makes sure that this remains true after initialization. Let {u, v} ∈ E

F. Kammer and J. Meintrup 44:13

be an edge. We say {u, v} is managed by F if {u, v} ∈ E(F), {u, v} is managed by Fi if
{u′, v′} ∈ E(Fi) with u′ and v′ the mini labels of u and v respectively, and finally we say
{u, v} is managed by Pi,j if it contains the edge {u′′, v′′} with u′′, v′′ being the micro labels
of u and v, respectively. We uphold the following invariant:

▶ Invariant 3 (edge-singleton invariant).
a. An edge {u, v} is managed by F exactly if u, v ∈ δG.
b. An edge {u, v} is managed by Fi exactly if u′, v′ ∈ δPi \ ∆Pi, with u′, v′ the respective

mini labels of u and v in Pi. In this case, no other Fj (j ̸= i) also manages {u, v}.
c. All edges {u, v} not managed by F or some Fi are managed by one micro graph Pi,j.

Our construction of F and each Fi is the first step to achieve this invariant. We now give
an intuition why this invariant is useful. Due to some edge contractions new edges {u, v}
might occur in G between boundary vertices (either global boundary vertices or vertices that
are boundary vertices in a mini graph). We can not afford to add this edge to all mini and
micro graphs that contain mini and micro labels of both u and v, respectively. Instead, we
only add this edge to F or some Fi. Moreover, if edges e ∈ E are managed multiple times,
the runtime of the neighborhood operation can increase.

An important note is that the basic encoding of G does not adhere to the edge-singleton
invariant from the get-go, i.e., edges managed by some F or Fi might be contained in one
or more micro graphs initially. Using the batch edge deletion operation provided for micro
graphs (Theorem 8) we can delete all edges that would initially violate our invariant. If this
violates Invariant 1, we remove the respective entries from Φ>0 (Φ>0

i). This uses O(n) time.
We refer to the combination of the basic encoding of G, the mappings of Lemma 9,

Lemma 10 and Lemma 11, the boundary graph F and each mini boundary graph Fi as
succinct dynamic encoding of G, summarized in the following corollary.

▶ Corollary 12. The succinct dynamic encoding of G can be constructed in O(n) time using
O(n) bits. After construction the encoding requires H(n) + o(n) bits. The encoding upholds
the label-translation, edge-singleton and non-zero degree invariant.

We now give an intuition how we implement the neighborhood operation for a vertex
u ∈ V identified by its global label. We first output all neighbors of u in F (which is ∅ if u

is not a boundary vertex) and then, for all Pi that contain a mini label u′ of u, compute
all neighbors v′ of u′ in Fi (which is again ∅ if u′ is not a boundary vertex) and output the
respective global label v of v′. We then go to all micro graphs Pi,j that contain a mini label
u′′ of u′, compute all neighbors v′′ of u′′ in Pi,j and output the respective global label v of
v′′. By the edge singleton invariant it is easy to see that each neighbor v of u in G is output
exactly once by this algorithm. Invariant 2 provides the necessary translation operations.
The missing details are discussed in the proof of the following lemma.

▶ Lemma 13. For any u ∈ V the neighborhood operation runs in time O(|N(u)|).

We now focus on our edge-contraction algorithm. For this we introduce one last invariant,
which we call the status invariant. As sketched in Section 2 we require that for every vertex
being a boundary vertex (either globally or in a mini graph) to remain a boundary vertex,
and for every non-boundary vertex to remain a non-boundary vertex. For this we slightly
abuse the definition of boundary vertices. By definition of r-divisions (Section 3) a boundary
vertex u ∈ δG has neighbors in more than one mini graph. Due to contractions (or other
modifications) this might at some point no longer be true. Nonetheless, we still consider such
a vertex to be a boundary vertex. We require that a boundary vertex remains a boundary
vertex, and a non-boundary vertex remains a non-boundary vertex. For this we maintain the
following invariant that depends on our slight abuse of the boundary vertex definition.

ISAAC 2023

44:14 Succinct Planar Encoding with Minor Operations

▶ Invariant 4 (status invariant). For every u ∈ V and every u′ ∈ V (Pi) over all mini graphs
Pi, it holds u ∈ δG if and only if u ∈ δḠ as well as u′ ∈ δPi if and only if u′ ∈ δP̄i.

We now give an overview of our edge-contraction algorithm, which we describe in three
levels: vertex merges in micro graphs, vertex merges in mini graphs and edge contractions in
the global graph. We guarantee the four invariants (Invariants 1, 2, 3 and 4) before and after
each edge contraction. Technically, merges are executed in (mini) boundary graph(s) and
micro graphs. Everything else is to maintain the mappings of Section 6. An edge {u, v} ∈ E

is contracted by determining all micro graphs Pi,j that contain (micro labels of) u and v,
all mini boundary graphs F that contain (mini labels of) u and v and check if F contains u

and v. In all structures that contain u and v we merge v to u and update the mappings of
Section 6. To guarantee the invariants we split the responsibilities among the three levels:

Global Graph-Responsibility. Contractions in the global graph maintain Invariant 1
regarding Φ>0, Invariant 2.a., Invariant 3.a and Invariant 4 for all u ∈ V .
Mini Graph-Responsibility. Vertex merges in a mini graph Pi maintain Invariant 1
regarding Φ>0

i , Invariant 2.b-c, Invariant 3.b, and Invariant 4 for all u′ ∈ V (Pi).
Micro Graph-Responsibility. Vertex merges in a micro graph maintain Invariant 3.c.

Our contraction algorithm is built up from bottom-to-top, i.e., we first describe merges
in micro graphs, then mini graphs (and mini boundary graphs) and edge contractions in G

(and merges in F). To uphold the responsibilities of micro graphs we implement a variant of
the forbidden-vertex graph data structure (Lemma 4) for micro graphs, summed up in the
following lemma. To uphold Invariant 4 we are not allowed to merge a vertex v′′ to a vertex
u′′ in a micro graph Pi,j if v′′ ∈ ∆Pi,j and u′′ /∈ ∆Pi,j , which we formulate explicitly.

▶ Lemma 14. For all micro graphs Pi,j we can provide free assignment merges for each
Pi,j such that no edges {u′′, v′′} exists that should be managed by F or Fi. If such an edge
would occur due to the merge, it is not inserted to Pi,j and instead returned. Computing
any number of such merges among all micro graphs can be done in O(n) total time. The
operation upholds the micro graph-responsibility. Merging a vertex v′′ to a vertex u′′ is not
allowed if v′′ /∈ ∆Pi,j and u′′ ∈ ∆Pi,j. All other (planar preserving) merges are allowed.

We first note, whenever we call the merge operation of Lemma 14 for a micro graph Pi,j

in the next paragraphs, the operation returns edges {u′′, v′′} that should be managed by
Fi or F , but not Pi,j . We then translate {u′′, v′′} to {u′, v′} with u′ and v′ the respective
mini labels of u′′ and v′′. If the edge {u′, v′} should be managed by Fi, we insert it to Fi.
Returned edges that should not be managed by Fi are instead returned after the merge
operation in Pi is executed. This upholds Invariant 3 (restricted to micro and mini graphs).
To uphold Invariant 1 (for mini graphs) we check, after any call to a merge of a vertex v′′ to
u′′ in a micro graph Pi,j if the degree of u′′ changed from 0 to non-zero or vice-versa. If it
does, we must possibly update the mapping Φ>0

i (u′) to either include the tuple (j, u′′) or
remove it, with u′ the mini label of u′′. Note that this is only done in the case that u′ is a
boundary vertex, as otherwise no mapping Φ>0

i (u′) exists.
Let u′, v′ ∈ V (Pi) be two vertices identified by their external mini label. To provide a

merge of u′ and v′ we distinguish between three cases: (M1) u′, v′ /∈ δPi, (M2) u′ ∈ δPi and
v′ /∈ δPi and (M3) u′, v′ ∈ δPi. In Case M1 we determine the micro graph Pi,j that contains
micro labels u′′ and v′′ of u′ and v′, respectively, via the static mappings ϕi(u′) = (j, u′′)
and ϕi(v′) = (j, v′′) as per Invariant 2. In Pi,j we merge v′′ to u′′ exactly if v′ should be
merged to u′, and otherwise merge u′′ to v′′ (Lemma 14). By this congruent choice of merge
we uphold Invariant 2.c without having to modify any mappings. Since the merged vertex

F. Kammer and J. Meintrup 44:15

remains a non-boundary vertex, Invariant 4 is guaranteed. This concludes all responsibilities
of merges in mini graphs. All operations take constant time. Note that all merges of Case
M1 are free-assignment merges.

Denote with u∗ = internal[u′] and v∗ = internal[v′] the internal mini labels of v′ and
u′ respectively. For Case M2 we are forced to merge v∗ to u∗ to uphold Invariant 4, i.e.,
internally this merge is not a free-assignment merge. To execute the merge we determine the
micro graph Pi,j containing the micro label v′′ of v∗ via ϕi(v∗) = (j, v′′). In Pi,j we merge
v′′ to u′′ (Lemma 14) with u′′ the micro label of u∗ in Pi,j .

Note that merging u′′ to v′′ is not allowed. We determine u′′ via an operation we call
micro-label search procedure, which searches for u′′ by iterating over all x′′ ∈ N(v′′) ∩ ∆Pi,j

(the neighbors of v′′ that are duplicates) and testing if Φ−1
i,j (x′′) = u∗. If this is the case, we

have found the duplicate u′′ := x′′ of u∗. Note that this operation can fail, as u′′ and v′′ are
not guaranteed to be adjacent. In this special case, we instead iterate over all x′′ ∈ ∆Pi,j .
A key characteristic to get a good runtime is that the special case only occurs if the edges
{u, v} exists in F , with u and v the global labels of u′ and v′, respectively, which allows us
to upper bound the number of encountered special cases by |E(F)| = O(n/ log2 n) times.

Once the merge is executed in Pi,j we must possibly update the mappings that translate
between the internal and external mini labels. Recall that the mappings internal and
external are only available for vertices of δPi ∪ ∆Pi. In the case that v′ ∈ δPi ∪ ∆Pi we
are able to provide a free assignment merge as follows: if the request was to merge u′ to
v′, we set internal[v′] = u∗ and external[u∗] = v′. Otherwise, no update is necessary. If
v′ /∈ δPi ∪ ∆Pi we are not able to provide a free assignment merge, instead we are forced to
merge v′ to u′. We refer to this situation as the M2 special case. If the merge was called
with the request to merge u′ to v′, and we are in this M2 special case, the operation is not
allowed. In our use case this case never arises. Intuitively, constraints (e.g., Invariant 4) that
force us to contract {u, v} by merging v to u either “line up” with being able (or forced) to
merge of v′ to u′ in Pi, with v′ and u′ the mini labels of v and u in Pi, respectively, or if
they do not line up, we make use of the internal/external mappings.

Finally, we consider Case M3. In this case both u′ and v′ are boundary vertices with
u∗ = internal[u′] and v∗ = internal[v′] being the internal mini labels of v′ and u′

respectively. As sketched in Section 2, our intuition for merging v′ to u′ is that we first
merge all v′′ to u′′ in all micro graphs Pi,j that contain both a duplicate u′′ of u∗ and v′′ of
v∗. Secondly, for all micro graphs Pi,j that contain only a duplicate v′′ of v∗, but not of u∗,
we update the mappings Φ−1

i,j (v′′) := u∗ and insert (i, v′′) to Φi(u∗). Finally, we merge v∗

to u∗ in Fi. To describe the realization technically we introduce some additional notation.
Denote with Zu∗∩v∗

i the set of all triples (j, u′′, v′′) with (j, u′′) ∈ Φi(u∗) and (j, v′′) ∈ Φi(v∗),
with Z

u∗\v∗

i the set of all tuples (j, u′′) with (j, u′′) ∈ Φi(u∗) such that no tuple (j, ·) is
contained in Φi(v∗), and with Zu∗⊕v∗

i all tuples (j, u′′) ∈ Φi(u∗) together with all tuples
(j′, v′′) ∈ Φi(v∗) for which it holds that no tuple (j′, ·) exists in Φi(u∗). To execute a merge
of v∗ to u∗ in Pi, first iterate over all triples (j, u′′, v′′) ∈ Zu∗∩v∗

i and merge v′′ to u′′ in Pi,j ,
then iterate over all tuples (j, v′′) ∈ Z

v∗\u∗

i and update all mappings Φ−1
i,j (v′′) := u∗. Finally,

set Φi(u∗) := Zu∗⊕v∗

i and merge v∗ to u∗ in Fi. In the proof we show how these sets occur
(intuitively) “naturally” via merges in the graph Hi, which manages Φi.

Combining Cases M1, M2 and M3 we show the following lemma.

▶ Lemma 15. All vertex merges in all mini graphs Pi are processed in O(n) time and uphold
their responsibilities. Edges that would occur due to a merge in Pi, but should be managed by
F are returned. All merges excluding the M2 special case are free assignment merges.

ISAAC 2023

44:16 Succinct Planar Encoding with Minor Operations

Contracting edges {u, v} in G effectively works exactly as the vertex merges in mini
graphs Pi with the exception that we do not need to maintain the translation between
internal and external labels, and we do not need to provide free assignment merges for any
case. We again distinguish between three cases: (G1) u, v /∈ δG, (G2) u ∈ δG and v /∈ δG

and (G3) u, v ∈ δG. For Case G2 we employ a procedure we call mini-label search procedure,
analogous to the micro-label search procedure for Case M2.

▶ Lemma 16. After O(n) initialization time, any number of edge contractions in G can be
computed in O(n) time and uphold the graph responsibility.

We additionally provide constant time degree queries. Intuitively, we store the degree
for boundary vertices (in G and each Pi) concretely, while for all other vertices Theorem 8
provides us with a degree query.

▶ Lemma 17. After O(n) initialization time the degree of any u ∈ V can be queried in
constant time.

Using the same data structures we use for edge contractions, we can process any number
of vertex deletions in O(n) time. To delete a vertex u we delete all mini labels u′ of u and
all micro labels u′′ of all u′. This mostly works analogously to the contraction algorithm.

▶ Lemma 18. Any number of vertex deletions in G can be processed in O(n) time and uphold
the graph responsibility.

We are now able to proof Theorem 1.

▶ Theorem 1. Let H(n) be the entropy of encoding a planar graph with n vertices and
G an unlabeled simple n-vertex planar graph. There exists an encoding of G that provides
induced-minor operations (i.e., vertex deletions and edge contractions) with these properties:
The encoding requires O(n) time to execute any number of induced-minor operations and
provides neighborhood and degree operations in constant time (per element output). The
encoding requires H(n) + o(n) bits can be initialized in O(n) time and O(n) bits.

Proof. Construct the dynamic encoding due to Corollary 12. Lemma 13 gives us the desired
neighborhood operation and Lemma 17 the desired degree operation, Lemma 16 the desired
contraction operation and Lemma 18 the desired vertex deletions. ◀

Using hash tables to implement the mappings Φ, Φ>0, Φi and Φ>0
i we are able to provide

expected constant time adjacency queries and is able to process any number of edge deletions
in O(n) expected time. Holm et al. used the same argument of replacing a mapping data
structure with a hash table to show Lemma 5.15 in their work [15].

▶ Corollary 2. The encoding of Theorem 1 can be extended to provide expected O(1) time
adjacency queries and process any number of minor operations in expected O(n) time.

References
1 Joyce Bacic, Saeed Mehrabi, and Michiel Smid. Shortest Beer Path Queries in Outerplanar

Graphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021),
volume 212 of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.
62.

2 Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. Compact representations of separ-
able graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’03, pages 679–688, USA, 2003. Society for Industrial and Applied Math-
ematics. doi:10.5555/644108.644219.

https://doi.org/10.4230/LIPIcs.ISAAC.2021.62
https://doi.org/10.4230/LIPIcs.ISAAC.2021.62
https://doi.org/10.5555/644108.644219

F. Kammer and J. Meintrup 44:17

3 Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In Amihood
Amir and Laxmi Parida, editors, Combinatorial Pattern Matching, pages 138–150. Springer
Berlin Heidelberg, 2010. doi:10.1007/978-3-642-13509-5_13.

4 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
In Proc. 6th International Workshop on Algorithms and Data Structures (WADS 99), pages
342–351. Springer-Verlag, 1999. doi:10.1007/3-540-48447-7_34.

5 Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with applications
to graph encoding and graph drawing. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’01, pages 506–515. Society for Industrial and
Applied Mathematics, 2001. doi:10.5555/365411.365518.

6 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

7 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient Basic Graph Algorithms.
In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015),
volume 30 of Leibniz International Proceedings in Informatics (LIPIcs), pages 288–301. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.288.

8 Amr Elmasry and Frank Kammer. Space-efficient plane-sweep algorithms. In 27th International
Symposium on Algorithms and Computation, ISAAC 2016, volume 64 of LIPIcs, pages 30:1–
30:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ISAAC.
2016.30.

9 Greg N. Federickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004–1022, 1987. doi:10.1137/0216064.

10 Volodymyr Floreskul, Konstantin Tretyakov, and Marlon Dumas. Memory-efficient fast shortest
path estimation in large social networks. Proceedings of the International AAAI Conference
on Web and Social Media, 8:91–100, 2014. doi:10.1609/icwsm.v8i1.14532.

11 Michael T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst.
Sci., 51(3):374–389, 1995. doi:10.1006/jcss.1995.1076.

12 Torben Hagerup. Space-efficient DFS and applications to connectivity problems: Simpler,
leaner, faster. Algorithmica, 82(4):1033–1056, 2020. doi:10.1007/s00453-019-00629-x.

13 Xin He, Ming-Yang Kao, and Hsueh-I Lu. A fast general methodology for information-
theoretically optimal encodings of graphs. SIAM Journal on Computing, 30(3):838–846, 2000.
doi:10.1137/S0097539799359117.

14 Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and
Andrej Sajenko. Multistage graph problems on a global budget. Theoretical Computer Science,
868:46–64, 2021. doi:10.1016/j.tcs.2021.04.002.

15 Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, Eva Rotenberg, and Piotr
Sankowski. Contracting a Planar Graph Efficiently. In 25th Annual European Symposium
on Algorithms (ESA 2017), volume 87 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 50:1–50:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.ESA.2017.50.

16 Jacob Holm and Eva Rotenberg. Good r-Divisions Imply Optimal Amortized Decremental
Biconnectivity. In 38th International Symposium on Theoretical Aspects of Computer Science
(STACS 2021), volume 187 of Leibniz International Proceedings in Informatics (LIPIcs), pages
42:1–42:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
STACS.2021.42.

17 Frank Kammer and Johannes Meintrup. Space-Efficient Graph Coarsening with Applications to
Succinct Planar Encodings. In 33rd International Symposium on Algorithms and Computation
(ISAAC 2022), volume 248 of Leibniz International Proceedings in Informatics (LIPIcs), pages
62:1–62:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ISAAC.2022.62.

18 Frank Kammer and Johannes Meintrup. Succinct planar encoding with minor operations,
2023. arXiv:2301.10564.

ISAAC 2023

https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.5555/365411.365518
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.4230/LIPIcs.ISAAC.2016.30
https://doi.org/10.4230/LIPIcs.ISAAC.2016.30
https://doi.org/10.1137/0216064
https://doi.org/10.1609/icwsm.v8i1.14532
https://doi.org/10.1006/jcss.1995.1076
https://doi.org/10.1007/s00453-019-00629-x
https://doi.org/10.1137/S0097539799359117
https://doi.org/10.1016/j.tcs.2021.04.002
https://doi.org/10.4230/LIPIcs.ESA.2017.50
https://doi.org/10.4230/LIPIcs.ESA.2017.50
https://doi.org/10.4230/LIPIcs.STACS.2021.42
https://doi.org/10.4230/LIPIcs.STACS.2021.42
https://doi.org/10.4230/LIPIcs.ISAAC.2022.62
https://doi.org/10.4230/LIPIcs.ISAAC.2022.62
https://arxiv.org/abs/2301.10564

44:18 Succinct Planar Encoding with Minor Operations

19 Frank Kammer, Johannes Meintrup, and Andrej Sajenko. Space-efficient vertex separators for
treewidth. Algorithmica, 84(9):2414–2461, 2022. doi:10.1007/s00453-022-00967-3.

20 David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’93, pages 21–30. Society for Industrial and Applied Mathematics, 1993. doi:10.5555/
313559.313605.

21 Kenneth Keeler and Jeffery Westbrook. Short encodings of planar graphs and maps. Discrete
Applied Mathematics, 58(3):239–252, 1995. doi:10.1016/0166-218X(93)E0150-W.

22 Philip N. Klein and Shay Mozes. Optimization algorithms for planar graphs. planarity.org,
2017. URL: http://planarity.org.

23 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator de-
compositions for planar graphs in linear time. In STOC ’13: Proceedings of the forty-fifth
annual ACM symposium on Theory of Computing. Association for Computing Machinery, 2013.
doi:10.1145/2488608.2488672.

24 J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

25 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43–es, November 2007. doi:10.1145/1290672.1290680.

26 Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-Efficient, Fast and Exact Routing
in Time-Dependent Road Networks. In 28th Annual European Symposium on Algorithms
(ESA 2020), volume 173 of Leibniz International Proceedings in Informatics (LIPIcs), pages
81:1–81:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ESA.2020.81.

27 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. J. Comb. Optim.,
37(4):1283–1311, 2019. doi:10.1007/s10878-018-0353-z.

28 György Turán. On the succinct representation of graphs. Discret. Appl. Math., 8(3):289–294,
1984. doi:10.1016/0166-218X(84)90126-4.

https://doi.org/10.1007/s00453-022-00967-3
https://doi.org/10.5555/313559.313605
https://doi.org/10.5555/313559.313605
https://doi.org/10.1016/0166-218X(93)E0150-W
http://planarity.org
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.4230/LIPIcs.ESA.2020.81
https://doi.org/10.4230/LIPIcs.ESA.2020.81
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1016/0166-218X(84)90126-4

Improved Approximation Algorithm for Capacitated
Facility Location with Uniform Facility Cost
Mong-Jen Kao #

Department of Computer Science, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan

Abstract
We consider the hard-capacitated facility location problem with uniform facility cost (CFL-UFC).
This problem arises as an indicator variation between the general CFL problem and the uncapacitated
facility location (UFL) problem, and is related to the profound capacitated k-median problem (CKM).

In this work, we present a rounding-based 4-approximation algorithm for this problem, built on
a two-staged rounding scheme that incorporates a set of novel ideas and also techniques developed
in the past for both facility location and capacitated covering problems. Our result improves the
decades-old LP-based ratio of 5 for this problem due to Levi et al. since 2004. We believe that the
techniques developed in this work are of independent interests and may further lead to insights and
implications for related problems.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Capacitated facility location, Hard capacities, Uniform facility cost

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.45

Related Version Full Version: https://arxiv.org/abs/2102.06613

Funding Mong-Jen Kao: Supported in part by National Science and Technology Council (NSTC),
Taiwan, under Grants 111-2221-E-A49-118-MY3, 112-2628-E-A49-017-MY3, and 112-2634-F-A49-
001-MBK.

1 Introduction

We consider the facility location problem with hard capacities and uniform facility cost
(CFL-UFC). In this problem, we are given a set F of facilities, a set D of clients, and a
distance metric c defined over F ∪ D. Each facility i ∈ F is associated with a uniform open
cost w and a capacity ui, which is the number of clients facility i can serve when opened up.
The cost of assigning a client to a facility is equal to the distance between them. The goal of
this problem is to compute a set of facilities A ⊆ F to open up and an assignment function
h : D → A that respects the capacity limits of the facilities in A such that, the total facility
open cost plus the assignment cost, w · |A| +

∑
j∈D cj,h(j), is minimized.

The CFL-UFC problem originates as an important variation of the classic capacitated
facility location problem (CFL), in which the open cost of each facility can be non-uniform,
and is deeply related to the profound capacitated k-median problem (CKM). To better
illustrate the literature of CFL-UFC, in the following we start with the introduction for the
CFL problem. Then we describe the implicit connection of CFL-UFC to CKM.

The classic problem of CFL was first addressed by Shmoys, Tardos, and Aardal [15]. Since
then, almost all results for this problem were based on local search heuristics, e.g., [3,13,14,18],
and the best ratio known for this problem is 5, due to Bansal et al. [3].

In contrast to the rich LP-based toolsets developed for the uncapacitated facility location
problem (UFL), the fact that no LP-based algorithm with constant approximation guarantee
for CFL was known for a long time was intriguing. In fact, devising an LP-based approxima-
tion with O(1) guarantee for CFL was listed as one of ten open problems in the textbook
due to Williamson and Shmoys [17]. This problem was resolved by the notable work of An

© Mong-Jen Kao;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 45; pp. 45:1–45:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mjkao@nycu.edu.tw
https://orcid.org/0000-0002-7238-3093
https://doi.org/10.4230/LIPIcs.ISAAC.2023.45
https://arxiv.org/abs/2102.06613
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 A 4-Approximation Algorithm for CFL-UFC

et al. [2], in which a novel multi-commodity flow network (MFN) relaxation was presented.
In a follow-up work, Kao [10] presented an iterative rounding approach and showed that, the
integrality gap of the MFN relaxation is at most (10 +

√
67)/2 ≈ 9.0927.

In the pursuit of settling down the approximability of the CFL problem, an important
variation between the general CFL problem and the UFL problem is when we have uniform
facility cost, i.e., CFL-UFC. This was studied by Levi et al. [11], in which a 5-approximation
via LP-rounding was presented. On the other hand, Aardal et al. [1] presented a 4.562-
approximation based on local search technique. Interestingly, the ratio of 5 due to Levi et
al. [11] also remains the best LP-based guarantee for CFL-UFC for a surprisingly long period
of time since 2004.

Comparing to local search algorithms, which often has the characteristics of being simple
and elegant, LP-based methods have the irreplaceable advantage of being applicable to
related problems to yield new results. One of such examples is the celebrating successful
story of LMP-algorithms for UFL to be combined with bi-point rounding algorithms to yield
state-of-the-art results for the uncapacitated k-median problem, see, e.g., [4–8,12,16].

So far, the phenomenon is very different for the capacitated version of facility location
and k-median problems. One primary reason is that, very little is known regarding LP-based
results for both CFL and CFL-UFC.

1.1 Our Contribution
In this work, we present an LP-based 4-approximation algorithm for CFL-UFC. Our main
result is the following theorem.

▶ Theorem 1. There is a rounding-based algorithm for CFL-UFC that produces a 4-
approximation in polynomial-time.

Theorem 1 improves the decades-old LP-based guarantee of 5 due to Levi et al. [11]
since 2004 and shows that the integrality gap of natural LP for this problem is at most 4.
The algorithm we present is built on a two-staged rounding scheme that incorporates a set
of novel ideas together with results and techniques developed in the past for both facility
location and capacitated covering problems [9, 11].

In the following, we describe the ideas we use to obtain the 4-approximation guarantee.
We believe that, the techniques developed in this work are of independent interests and may
lead to further insights and progress for further related problems.

Overview of our Algorithm and Techniques

The core part of our result can be seen as a delicate orchestration of rounding procedures
for the large and small instances incurred in the LP solution. In our procedure, we aim
at fractionally serving the clients while making sure that the rounded facilities of interests
are sufficiently sparsely-loaded so that a reasonable round-up of the assignments can be
made to fully-serve the clients. Intuitively, this is possible for small facilities as they are
sparsely-loaded by default. The large facilities, however, do not allow such a round-up in
general since they can be tightly-loaded by assignments made in the LP solution.

To overcome this issue, we introduce the concept of client redistribution: When the residue
demand of a client drops below a target threshold, we discard the client and redistribute part
of it to the large facilities in the vicinity, defined by the LP solution, to form the so-called
“outlier clients.” The outlier clients participate in the rounding process after created and
act as normal clients except for that, there is no threshold for them to be discarded, and

M.-J. Kao 45:3

we guarantee that they will be fully-assigned for the final feasibility. Moreover, the way
the outlier clients are created also guarantees that, the resulting assignment cost does not
increase too much.

The concept of client redistribution resolves the assignment of the clients. However, when
an outlier client is selected to form a cluster, we are no longer able to guarantee the overall
rounding cost of the facilities, since the total facility value in that cluster can be arbitrarily
small, rendering the rounding error unbounded. To prevent this undesirable situation, we
introduce a matching-yielding LP technique and leave the rounding decisions for the outlier
clusters as a global optimization problem to be resolved in the second stage of the algorithm.

In the second stage of the algorithm, we formulate the rounding problem of the remaining
outlier clusters as a carefully designed assignment LP. We deploy a technique, that was
originally developed for the capacitated covering problems [9], to show that, basic feasible
solutions of this simple LP corresponds naturally to a matching from the non-integral facilities
to the large facilities at which the outlier clients reside, and hence the rounding cost of these
facilities can be bounded. Together this yields a bound for our final unconditional rounding.

Organization of this paper

This paper is organized as follows. In Section 2, we formally define CFL-UFC and describe
preliminaries necessary to present our approximation algorithms. We present our approx-
imation algorithm for CFL-UFC in Section 3 and the analysis in Section 4. Due to space
limit, technical details and proofs omitted from the main content will be provided in the full
version of this paper.

2 Preliminaries

In the CFL-UFC problem, we are given a set F of facilities, a set D of clients, and a distance
metric c defined over F ∪ D. Each i ∈ F is associated with a uniform open cost w and a
capacity ui, which is the number of clients facility i can serve when opened up. A feasible
solution for CFL-UFC consists of a multiplicity function y : F → {0, 1} and an assignment
function x : F × D → {0, 1} such that the following conditions are met:∑

i∈F xi,j ≥ 1, for any j ∈ D, i.e., each client is assigned to some facility.∑
j∈D xi,j ≤ ui · yi, for any i ∈ F , i.e., the capacity limit of any facility is not violated.

xi,j ≤ yi, for any i ∈ F , j ∈ D, i.e., assignments can only be made to opened facilities.
The cost of the solution (x, y) is defined to be ψ(x, y) :=

∑
i∈F w ·yi +

∑
i∈F , j∈D ci,j ·xi,j .

Note that, by properly rescaling the distance metric c, we may assume that w = 1. Given
an instance Ψ = (F ,D, c,u) of CFL-UFC, the goal of this problem is to compute a feasible
solution (x, y) such that ψ(x, y) is minimized.

LP relaxation and the definition of Vicinity

A natural LP relaxation for CFL-UFC and its dual LP is given below in Figure 1. It follows
that, for optimal solutions (x, y) and (α, β,Γ, η) for LP-(N) and LP-(DN), αj ≥ ci,j holds
for any i ∈ F , j ∈ D with xi,j > 0. We will use the fact that αj is a valid estimation on the
assignment radius for any j ∈ D in x.

For the ease of presentation, in our algorithm, we use the following notion of vicinity that
is defined with respect to any given assignment function x. For any A ⊆ F and any j ∈ D, we
use N(A,x)(j) :=

{
i ∈ A : xi,j > 0

}
to denote the set of facilities in A to which j is assigned

to in x. Similarly, for any B ⊆ D and any i ∈ F , we use N(B,x)(i) :=
{
j ∈ B : xi,j > 0

}
to denote the set of clients in B that is assigned to i in x.

ISAAC 2023

45:4 A 4-Approximation Algorithm for CFL-UFC

LP-(N)

min
∑
i∈F

yi +
∑

i∈F ,j∈D
ci,j · xi,j

∑
i∈F

xi,j ≥ 1, ∀j ∈ D,

∑
j∈D

xi,j ≤ ui · yi, ∀i ∈ F ,

0 ≤ xi,j ≤ yi, ∀i ∈ F , j ∈ D,

0 ≤ yi ≤ 1, ∀i ∈ F .

LP-(DN)

max
∑
j∈D

αj −
∑
i∈F

ηi

αj ≤ βi + Γi,j + ci,j , ∀i ∈ F , j ∈ D,

ui · βi +
∑
j∈D

Γi,j ≤ 1 + ηi, ∀i ∈ F ,

αj , βi, Γi,j , ηi ≥ 0, ∀i ∈ F , j ∈ D.

Figure 1 LP relaxations for CFL-UFC.

3 4-Approximation for CFL-UFC

In the following, we describe our approximation algorithm A for CFL-UFC and prove
Theorem 1. Let Ψ = (F ,D, c,u) be an instance of CFL-UFC, and let (x′,y′), (α,β,Γ,η)
be optimal solutions for LP-(N) and its dual LP-(DN) on Ψ.

Let I :=
{
i ∈ F : 0 < y′

i <
1
2
}

and U :=
{
i ∈ F : y′

i ≥ 1
2
}

be the sets of small and
large facilities. Let J (I) and J (↔) be the clients that are served merely by I and the clients
that are served jointly by I and U , respectively. We round up the facilities in U directly and
keep the assignments made to them unchanged. What remains is the rounding problem for I
and J (I) ∪ J (↔).

Our rounding process for I and J (I) ∪ J (↔) consists of two stages. In the first stage, it
proceeds in iterations to select clients and form clusters. Depending on the status of the
client selected, the rounding decision for the cluster may be postponed. In the second stage,
our rounding process formulates the rounding decisions of the postponed clusters as a global
optimization problem and makes an overall rounding decision. In the following, we describe
the two stages in details.

3.1 The First Stage of the Rounding Process
In this stage, the algorithm proceeds in iterations to form clusters. Let F ′ and D′ be
the set of facilities and the set of clients remained to be processed. Initially, F ′ := I and
D′ := J (I) ∪ J (↔). The algorithm will maintain a rounded assignment function x∗ during
this stage. Initially x∗ := 0.

In each iteration, the algorithm first checks if
∑

i∈F ′ x′
i,j ≥ 1/2 holds for all j ∈ D′.

Intuitively, from the LP constraints, this condition guarantees that∑
i∈N(F ′,x′)(j)

y′
i ≥

∑
i∈F ′

x′
i,j ≥ 1

2 ,

and there will be a decent amount of facility values to be aggregated in the vicinity of client
j in F ′ for any j ∈ D′. If not, the algorithm makes it so by repeating the following steps:
1. Pick an arbitrary j ∈ D′ with

∑
i∈F ′ x′

i,j < 1/2.
2. Apply the procedure create_outlier(j),

which we later describe, to create a set of outlier clients for j.
3. Remove the client j from D′.

M.-J. Kao 45:5

Intuitively, each client j that is picked here will belong to the set J (↔), and via replacing j
with its outlier copies created by the procedure create_outlier(j), the rounding cost for
the remaining part of j will be charged to the large facilities to which j is assigned to, i.e.,
N(U,x′)(j).

The algorithm additionally maintains two sets H and H ′, where H denotes the set of
outlier clients created in this step and H ′ ⊆ H denotes those that have been created but not
yet processed by the rounding process. Initially H := ∅ and H ′ := ∅.

When the condition
∑

i∈F ′ x′
i,j ≥ 1/2 holds for all j ∈ D′, the algorithm applies another

procedure form_cluster, which we will later describe, to select a client from D′ ∪H ′ and
form a cluster centered at that client. Depending on whether or not the selected client is
outlier, the rounding decision for the cluster created may be postponed to the second stage.
The procedure then removes the corresponding parts of the cluster from the residual instance
(F ′, H ′,x′,y′).

When the procedure form_cluster is done, for each client j ∈ D′ ∩ J (I) with∑
i∈F ′ x′

i,j < 1/2, the algorithm removes j from D′ and sets x′
i,j to be zero for all i ∈ F ′.

Intuitively, for each client j that is picked in this step, the algorithm guarantees that, more
than half of its demand has already been assigned to a rounded facility. Hence the remaining
part can be discarded.

Then the algorithm iterates to the next iteration until D′ ∪ H ′ becomes empty. The
following high-level pseudo-code summarizes the first stage of our rounding process.

Repeat until D′ ∪H ′ = ∅, do
1. Repeat until

∑
i∈F ′ x′

i,j ≥ 1/2 for all j ∈ D′, do
Pick an arbitrary j ∈ D′ with

∑
i∈F ′ x′

i,j < 1/2.
Apply create_outlier(j) and remove j from D′.

2. Apply the procedure form_cluster().
3. For all j ∈ D′ ∩ J (I) with

∑
i∈F ′ x′

i,j < 1/2,
remove j from D′ and set x′

i,j to be zero for all i ∈ F ′.

Note that, the algorithm guarantees the invariant that, the client picked in step 1 must belong
to the set D′ ∩ J (↔). In the following we describe the two procedures create_outlier
and form_cluster in details.

The procedure create_outlier(j).

When this procedure is called, it relocates part of the remaining demand of j to facilities
in N(U,x′)(j), i.e., the large facilities in U for which j is assigned to in x′, to form outlier
clients in a way as if the demand were originated from these facilities. Then it updates the
assignment function x′ and the dual variables α accordingly.

Before describing the detail of this procedure, we describe the intuitions in the following.
The outlier clients created by this procedure will be used to replace the remaining part of j,
and the construction will serve for two purposes.

First, since
∑

i∈F ′ x′
i,j < 1/2 when this procedure is called,

∑
i∈N(F ′,x′)(j) y

′
i can be less

than 1/2. Therefore, when the outlier clients of j are selected to form clusters in later
iterations of the rounding algorithm, we will use the facility values in N(U,x′)(j) to amend
the short deficits of

∑
i∈N(F ′,x′)(j) y

′
i compared to 1/2.

Second, via the construction scheme of outlier clients, we will charge part of the assignment
costs of the outlier clients to the assignment costs of j to the large facilities in N(U,x′)(j).
We note that, this is reflected in the setting of the dual values of the outlier clients.

ISAAC 2023

45:6 A 4-Approximation Algorithm for CFL-UFC

In the following, we describe the procedure in details.
Let r′

j := min{
∑

i∈F ′ x′
i,j ,

∑
i∈U x

′
i,j } be the amount of residue demand of j to be

redistributed. For each w ∈ N(U,x′)(j), we create a client jw at the facility w with demand

djw
:=

r′
j∑

i∈U x
′
i,j

· x′
w,j and set x′

i,jw
:= djw∑

k∈F ′ x′
k,j

· x′
i,j

for each i ∈ N(F ′,x′)(j). We add jw to both H and H ′ and set αjw
:= αj + cw,j to reflect the

relocation of jw from j to w. Note that, this ensures that αjw
is still a valid estimation on

the assignment radius of jw.
Note that, by construction, we have∑
w∈N(U,x′)(j)

djw = r′
j and

∑
k∈N(F ′,x′)(j)

x′
k,jw

= djw ,

i.e., the designated residue demand r′
j of j is fully redistributed as outlier clients and each

jw is fully-assigned to facilities in F ′.
After the outlier client jw is created for each w ∈ N(U,x′)(j), the procedure removes j

from D′ and set x′
i,j to be zero for all i ∈ F ′. It is clear that, the above updates on x′ does

not violate the capacity constraints of the facilities in F ′.

The procedure form_cluster().

When this procedure is called, it selects a client j ∈ D′ ∪H ′ with the minimum αj to form a
cluster. Depending on the set to which j belongs, the procedure proceeds differently.

If j ∈ H ′, then a cluster centered at j with satellite facilities in N(F ′,x′)(j) is formed.
We use B(j) := N(F ′,x′)(j) to denote the set of satellite facilities at this moment. The
procedure removes j from H ′ and B(j) from F ′. The rounding decision for this cluster is
postponed to the second stage of the algorithm.
If j ∈ D′, the procedure selects a facility i ∈ N(F ′,x′)(j) with the maximum capacity ui.
Since ∑

k∈N(F ′,x′)(j)

y′
k ≥

∑
k∈F ′

x′
k,j ≥ 1

2

holds when this procedure is called, we will fractionally round y′
i to 1/2 by aggregating

both the facility values and the assignments from facilities in N(F ′,x′)(j) to the selected
facility i. This is done as follows.
Let

δi :=
(

1
2 − y′

i

)
· 1∑

k∈N(F ′,x′)(j)\{i} y
′
k

be the factor to relocate for each facility in N(F ′,x′)(j) \ {i}. For each facility ℓ ∈
N(F ′,x′)(j) \ {i}, scale down y′

ℓ by (1 − δi). For each k ∈ N(D′∪H′,x′)(ℓ), further scale
down x′

ℓ,k by (1 − δi) and increase x∗
i,k by the same amount x′

ℓ,k is decreased in this step.
Then the procedure increases x∗

i,k by x′
i,k for each k ∈ D′ and then removes i from F ′.

Intuitively, for each facility ℓ ∈ N(F ′,x′)(j) \ {i}, we move δi fraction of its facility value
and assignments to the facility i, and the assignment function x∗

i,k records the rounded
assignment of any k ∈ D′ to the selected facility i.

M.-J. Kao 45:7

Properties Guaranteed in the 1st-stage

To better illustrate how our rounding algorithm works, we summarize in the following the
important properties guaranteed by the rounding procedure in the first stage. To be precise
with notations, in the following, let x′(0) denote the initial assignment, i.e., the initial x′.
For each outlier client j ∈ H , we extend the definition of x′(0) to be the initial assignment of
j when it was created. Let (x′(II),y′(II)) denote the pair (x′,y′) the algorithm has when it is
about to enter the second stage, i.e., the pair (x′,y′) when the first stage ends.

Let G :=
⋃

j∈H B(j) be the set of satellite facilities whose rounding decisions are to be
postponed in the second stage and F ∗

D′ denote the set of facilities that are selected and
rounded up to 1/2 by the procedure form_cluster(). We have the following lemma.

▶ Lemma 2. When first stage of the rounding algorithm ends, the following holds.
For any i ∈ G,

∑
j∈D∪H x

′(II)
i,j ≤ ui · y′(II)

i .
For any j ∈ J (I),

∑
i∈I x

∗
i,j +

∑
i∈G x

′(II)
i,j > 1/2.

For any j ∈ J (↔),
∑

i∈I x
∗
i,j +

∑
i∈G x

′(II)
i,j +

∑
i∈U x

′(0)
i,j > 1/2.

For any outlier j ∈ H,
∑

i∈F ∗
D′
x∗

i,j +
∑

i∈G x
′(II)
i,j =

∑
i∈I x

′(0)
i,j .

Intuitively, Lemma 2 says that, in order to guarantee the feasibility of the final assignment,
for any j ∈ J (I), it suffices to scale up

∑
i∈I x

∗
i,j +

∑
i∈G x

′(II)
i,j by a factor at most two. Similar

argument applies to any j ∈ J (↔), too. However, as scaling up
∑

i∈U x
′(0)
i,j may not always

be possible, we will instead guarantee that all the outlier clients are fully-assigned in the
second stage. Note that this will provide extra amount of assignment needed to ensure the
feasibility of j.

To be precise, for any j ∈ D ∪H , define the scaling factor t′j as follows. If j ∈ D, i.e., j is
a normal client, and

∑
i∈I x

∗
i,j +

∑
i∈G x

′(II)
i,j > 0, then

t′j := 1∑
i∈I x

∗
i,j +

∑
i∈G x

′(II)
i,j

·

(
1 −

∑
i∈U

x
′(0)
i,j − r′

j

)
,

where we recall that r′
j is the amount of demand of j that is redistributed as outlier clients

for any j ∈ J (↔). In the remaining cases, we define t′ℓ := 1.
Intuitively, t′j is the factor for which

∑
i∈I x

∗
i,j +

∑
i∈G x

′(II)
i,j should be scaled up in order

for the client j to be fully-assigned. By the definition of t′j and Lemma 2, we obtain the
following corollary.

▶ Corollary 3. 0 ≤ t′j ≤ 2 for all j ∈ D.

3.2 The Second Stage of the Rounding Process
In the second stage, the algorithm formulates the rounding decisions left for the outlier
clusters, i.e., clusters centered at outlier clients in H, as a global optimization problem.

In particular, we formulate the rounding problem as a new instance of CFL-UFC with
facility set G :=

⋃
j∈H B(j) and client set U . Each w ∈ U is associated with a demand dw,

defined as

dw :=
∑

k∈H,
k located at w

∑
i∈B(k),

ℓ∈D∪H

t′ℓ · x′(II)
i,ℓ .

ISAAC 2023

45:8 A 4-Approximation Algorithm for CFL-UFC

Intuitively, in the above definition, for each large facility w ∈ U , we consider all the outlier
clusters that are centered at some outlier client located at w, and collect all the assignments
within these clusters to be the demand of w. As described in the previous section, we scale
up these assignment accordingly by the factor t′ℓ for each client ℓ to meet the final feasibility.

We formulate the above instance as a carefully designed assignment LP, denoted LP-(O)
and listed below. Our algorithm solves LP-(O) for a basic optimal solution (x′′,y′′).

LP-(O)

min
∑
i∈G

yi +
∑

i∈G, j∈U

ci,j · xi,j

∑
i∈G

xi,j = dj , ∀j ∈ U,

∑
j∈U

xi,j ≤ ui · yi, ∀i ∈ G,

yi ≤ 1, ∀i ∈ G,

xi,j , yi ≥ 0, ∀i ∈ G, j ∈ U.

Properties Guaranteed in the 2nd-stage

First we show that the feasible region of LP-(O) is nonempty, and the basic optimal solution
(x′′,y′′) can be computed. For any w ∈ U , let H(w) denote the set of outlier clients located
at w.

For any w ∈ U and i ∈ G such that i ∈ B(k) for some k ∈ H(w), i.e., i belongs to the
clusters centered at some k ∈ H(w), consider the bundled assignment gi,w, defined as

gi,w :=
∑

ℓ∈D∪H

t′ℓ · x′(II)
i,ℓ .

The following lemma is straightforward to verify.

▶ Lemma 4.
(

g, 2y′(II)) is a feasible solution for LP-(O).

One of the key properties LP-(O) provides is that, basic feasible solutions of this LP
provide a matching from the set of non-extremal facilities, i.e., i ∈ G with 0 < y′′

i < 1, to the
set of facilities in U , and hence an unconditional roundup can be performed on y′′ to obtain
an integral solution. The following lemma is proved by explicitly considering the rank of the
coefficient matrix.

▶ Lemma 5.

|L| ≤ |U |, where L :=
{
i ∈ G : 0 < y′′

i < 1
}
.

M.-J. Kao 45:9

3.3 Final Output
When the rounding process ends, the algorithm defines the integral multiplicity function y∗

as

y∗
i :=

1, if i ∈ U or i ∈ F ∗

D′ ,
⌈y′′

i ⌉ , if i ∈ G,
0, otherwise.

In particular, in addition to the large facilities in U and the facilities rounded up during
the first stage of the process, the algorithm also performs an unconditional roundup on
y′′ for the facilities in G. Then it solves the min-cost assignment problem on D and
F∗ := {i ∈ F : y∗

i = 1} for an optimal integral assignment x†, and outputs (x†,y∗) as the
approximation solution.

4 The Analysis

Let A denote the rounding algorithm in Section 3. We prove the following theorem.

▶ Theorem 6. Let Ψ be an instance of CFL-UFC and (x′,y′) be optimal for LP-(N) on Ψ.
The rounding algorithm A computes in polynomial time a feasible integral solution (x†, y∗)
for Ψ with ψ(x†, y∗) ≤ 4 · ψ(x′, y′).

The proof is outlined as follows. In Section 4.1, We define an assignment function x◦ and
shows that (x◦, y∗) is feasible for LP-(N) on Ψ. This shows that the feasible region of the
min-cost assignment problem for (D,F∗) is nonempty, and hence the integral assignment x†

can be computed. In Section 4.2, we establish the 4-approximation guarantee for (x◦, y∗).
This completes the proof for Theorem 6 since x† is the optimal solution for (D,F∗).

Notations used in the analysis

In the following, we define notations and notions to describe our rounding process precisely
in the analysis.

Consider the cluster-forming procedure. Let CD′ and CH′ denote the sets of clusters
centered at the non-outlier clients and outlier clients, respectively. Recall that F ∗

D′ denotes
the set of facilities that are selected and rounded up for the clusters in CD′ . Note that,
F ∗

D′ ∩G = ∅, and the set of satellite facilities B(j) for each j ∈ H forms a partition of G.
For each outlier client j ∈ H , we use w(j) to denote the facility in U at which j is located.

We use p(j) to denote the specific parent client in J (↔) from which j is created. On the
contrary, for any j ∈ J (↔), we use H(j) to denote the set of outlier clients that are created
from j. For each w ∈ U , we use H(w) to denote the set of outlier clients located at w.

Recall that, we use (x′(0),y′(0)) to denote the initial solution the algorithm has for Ψ.
For outlier clients j ∈ H and any i ∈ F , we use x

′(0)
i,j to denote the assignment made for j

to i at the moment when j is created. We use (x′(II),y′(II)) to denote the pair (x′,y′) the
algorithm maintains when it enters the second stage.

4.1 Feasibility of the Algorithm
In this section we define an intermediate assignment x◦ and show that (x◦,y∗) is a feasible
solution for LP-(N) on the input instance Ψ.

ISAAC 2023

45:10 A 4-Approximation Algorithm for CFL-UFC

Recall that, for any w ∈ U and i ∈ G such that i ∈ B(k) for some k ∈ H(w), we define
the bundled assignment gi,w as gi,w :=

∑
ℓ∈D∪H t′ℓ ·x′(II)

i,ℓ . Consider the basic optimal solution
(x′′,y′′) for LP-(O). For each i ∈ G and j ∈ D ∪H, we define the unbundled assignment h
for the original clients j as

hi,j :=
∑
w∈U

x′′
i,w · 1

dw
·

∑
k∈H(w), i′∈B(k)

t′j · x′(II)
i′,j .

Intuitively, in h we redistribute the assignment x′′ back for the original clients in D ∪H in a
proportional way. It follows that for any j ∈ D ∪H,∑

i∈G

hi,j =
∑

i∈G, w∈U

x′′
i,w · 1

dw
·

∑
k∈H(w), i′∈B(k)

t′j · x′(II)
i′,j

=
∑
w∈U

∑
k∈H(w), i′∈B(k)

t′j · x′(II)
i′,j =

∑
i∈G

t′j · x′(II)
i,j , (1)

where in the second equality we apply the first constraint of LP-(O) and in the last equality
we use the fact that the set of satellite facilities for each j ∈ H forms a partition of G.

The Assignment x◦

Provided the above, the assignment x◦ for each j ∈ D is defined as

x◦
i,j :=

x
′(0)
i,j , if i ∈ U ,

t′j · x∗
i,j +

∑
k∈H(j) x

∗
i,k, if i ∈ F ∗

D′ ,

hi,j +
∑

k∈H(j) hi,k, if i ∈ G,

0, otherwise.

Intuitively, the assignment of each j ∈ D in x◦ consists of its original assignments to U and
the rounded assignments for clients in {j} ∪H(j) to facilities in F ∗

D′ ∪G.
The following lemma is straightforward to verify.

▶ Lemma 7. (x◦,y∗) is feasible for LP-(N) on the input instance Ψ.

4.2 Approximation Guarantee
In this section we establish the 4-approximation guarantee for (x◦,y∗). First, we consider the
cost incurred by clusters in CH′ and CD′ separately. Then we establish the overall guarantee.

Recall that, we use p(j) for j ∈ H to denote the client in D from which j is created. We
extend the definition and define p(k) := k for any k ∈ D for notational convenience.

Moreover, for any assignment x of interest, we will use x|A,B to denote the assignments
made in x between A ⊆ F and B ⊆ D ∪ H. Similarly, for any multiplicity function y of
interest, we will use y|A to denote the multiplicity of facilities in A ⊆ F in y.

4.2.1 The clusters in CH′

The following lemma, which regards the assignment radius of the outlier clients in H , follows
directly from the construction and triangle inequality.

▶ Lemma 8. For any j ∈ H and i ∈ G such that x′(II)
i,j > 0, we have ci,j ≤ αj.

M.-J. Kao 45:11

In the following, we first bound the overall assignment cost in x◦|G,D in terms of that
in x′′ and x′(II)

∣∣
G,D∪H

. To this end, for any client j ∈ D ∪ H and any i ∈ G, we need to
bound the distance between i and p(j). Let w ∈ U , k ∈ H(w), and i′ ∈ B(k) is a satellite
facility of k such that x′(II)

i′,j > 0. By the triangle inequality, we have

ci,p(j) ≤ ci,w + ci′,w + ci′,p(j) ≤ ci,w + αk + ci′,p(j), (2)

where in the last inequality we apply Lemma 8. Also see Figure 2 for an illustration.

w

k ∈ H(w)

i
p(k)

i′

p(j)

j

Figure 2 An illustration on the bundled assignment from w ∈ U to i ∈ G and unbundled
assignments for k ∈ H(w), i′ ∈ B(k) such that x

′(II)
i′,j > 0.

By (2), we obtain the following lemma, which bounds the overall assignment cost in
x◦|G,D in terms of that in x′′ and x′(II)

∣∣
G,D∪H

.

▶ Lemma 9.∑
i∈G, j∈D

ci,j · x◦
i,j ≤

∑
i∈G, j∈U

ci,j · x′′
i,j +

∑
i∈G

∑
j∈D∪H

t′j ·
(
ci,p(j) + αj

)
· x′(II)

i,j .

In the following lemma, we expand x′′ and bound the overall cost incurred by y∗|G and x′′

by the cost of y′(II)
∣∣
G

, y′(0)
∣∣
U

, and x′(II)
∣∣
G,D∪H

.

▶ Lemma 10. We have∑
i∈G

⌈y′′
i ⌉ +

∑
i∈G, j∈U

ci,j · x′′
i,j ≤ 2 ·

∑
i∈G

y
′(II)
i + |L| +

∑
i∈G

∑
j∈D∪H

t′j · αj · x′(II)
i,j ,

where L :=
{
i ∈ G : 0 < y′′

i < 1
}

.

Applying Lemma 9, Lemma 10, Lemma 5, and the fact that y′(0)
i ≥ 1/2 for all i ∈ U , we

obtain the following bound for the cost incurred by
(

x◦|G,D , y∗|G
)

.∑
i∈G

y∗
i +

∑
i∈G, j∈D

ci,j · x◦
i,j ≤ 2 ·

∑
i∈G

y
′(II)
i +

∑
i∈G, j∈H

t′j ·
(
ci,p(j) + 2 · αj

)
· x′(II)

i,j

+ 2 ·
∑
i∈U

y
′(0)
i +

∑
i∈G, j∈D

t′j · (ci,j + 2 · αj) · x′(II)
i,j

≤ 2 ·
∑
i∈G

y
′(II)
i +

∑
i∈G, j∈H

(
ci,p(j) + 2 · αj

)
· x′(II)

i,j

+ 2 ·
∑
i∈U

y
′(0)
i +

∑
i∈G, j∈D

(
2 · ci,j + 2 · t′j · αj

)
· x′(II)

i,j , (3)

where in the last inequality we apply Corollary 3 the fact that t′j ≤ 2 for all j ∈ D and the
definition that t′j = 1 for all j ∈ H.

ISAAC 2023

45:12 A 4-Approximation Algorithm for CFL-UFC

4.2.2 The clusters in CD′

Consider the cost incurred by the clusters in CD′ . The following lemma, which bounds the
total cost incurred by x◦|F ∗

D′ ,D and y∗|F ∗
D′

, is obtained by considering the cost of each cluster
in CD′ .

▶ Lemma 11.

(i)
∑

i∈F ∗
D′

y∗
i ≤ 2 ·

∑
i∈I\G

y
′(0)
i + 2 ·

∑
i∈G

(
y

′(0)
i − y

′(II)
i

)
. (4)

(ii)
∑

i∈F ∗
D′ , j∈D

ci,j · x◦
i,j ≤

∑
i∈F ∗

D′ , j∈D
2 · t′j · αj · x∗

i,j +
∑

i∈F ∗
D′ , j∈H

2 · αj · x∗
i,j

+
∑

i∈G, j∈D
2 · ci,j ·

x′(0)
i,j −

∑
ℓ∈H(j)

x
′(0)
i,ℓ − x

′(II)
i,j

+
∑

i∈G, j∈H

ci,p(j) ·
(
x

′(0)
i,j − x

′(II)
i,j

)

+
∑

i∈I\G, j∈D

2 · ci,j ·

 x
′(0)
i,j −

∑
ℓ∈H(j)

x
′(0)
i,ℓ

 +
∑

i∈I\G, j∈H

ci,p(j) · x′(0)
i,j . (5)

4.2.3 The overall guarantee

Combining Inequality (3), Inequality (4), and Inequality (5), and the construction scheme of
outlier clients, we obtain the following lemma.

▶ Lemma 12.

ψ(x◦,y∗) ≤ 4 ·
∑
i∈U

y
′(0)
i + 3 ·

∑
i∈U, j∈D

ci,j · x′(0)
i,j

+ 2 ·
∑
i∈I

y
′(0)
i + 2 ·

∑
i∈I, j∈D

ci,j · x′(0)
i,j +

∑
j∈D

2 ·

(
1 −

∑
i∈U

x
′(0)
i,j

)
· αj .

The following lemma follows from complementary slackness between (x′,y′) and (α,β,Γ,η),
and the fact that 0 < y

′(0)
i < 1 for all i ∈ I.

▶ Lemma 13.

∑
j∈D

(
1 −

∑
i∈U

x
′(0)
i,j

)
· αj ≤

∑
i∈I

y
′(0)
i +

∑
i∈I, j∈D

ci,j · x′(0)
i,j .

Applying Lemma 13 on Lemma 12, we obtain

ψ(x◦,y∗) ≤ 4 ·
∑
i∈F

y
′(0)
i + 4 ·

∑
i∈F , j∈D

ci,j · x′(0)
i,j ,

and Theorem 6 is proved.

M.-J. Kao 45:13

References

1 Karen Aardal, Pieter L. van den Berg, Dion Gijswijt, and Shanfei Li. Approximation algorithms
for hard capacitated k-facility location problems. Eur. J. Oper. Res., 242(2):358–368, 2015.
doi:10.1016/j.ejor.2014.10.011.

2 Hyung-Chan An, Mohit Singh, and Ola Svensson. Lp-based algorithms for capacitated facility
location. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages 256–265. IEEE Computer Society, 2014.
doi:10.1109/FOCS.2014.35.

3 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated
facility location. In Leah Epstein and Paolo Ferragina, editors, Algorithms - ESA 2012 -
20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings,
volume 7501 of Lecture Notes in Computer Science, pages 133–144. Springer, 2012. doi:
10.1007/978-3-642-33090-2_13.

4 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2), March 2017. doi:10.1145/2981561.

5 Kishen N. Gowda, Thomas W. Pensyl, Aravind Srinivasan, and Khoa Trinh. Improved
bi-point rounding algorithms and a golden barrier for k-median. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 987–1011. SIAM, 2023.
doi:10.1137/1.9781611977554.ch38.

6 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J.
ACM, 50(6):795?824, November 2003. doi:10.1145/950620.950621.

7 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing, STOC ’02, pages 731–740, New York, NY, USA, 2002. Association for Computing
Machinery. doi:10.1145/509907.510012.

8 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, March 2001. doi:10.1145/375827.375845.

9 Mong-Jen Kao. Iterative partial rounding for vertex cover with hard capacities. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17,
pages 2638–2653, USA, 2017. Society for Industrial and Applied Mathematics.

10 Mong-Jen Kao. On the integrality gap of mfn relaxation for the capacitated facility location
problem. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1071–1089, 2023. doi:10.1137/1.9781611977554.ch40.

11 Retsef Levi, David B. Shmoys, and Chaitanya Swamy. Lp-based approximation algorithms for
capacitated facility location. In George L. Nemhauser and Daniel Bienstock, editors, Integer
Programming and Combinatorial Optimization, 10th International IPCO Conference, New
York, NY, USA, June 7-11, 2004, Proceedings, volume 3064 of Lecture Notes in Computer
Science, pages 206–218. Springer, 2004. doi:10.1007/978-3-540-25960-2_16.

12 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, page 901?910,
New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2488608.
2488723.

13 Mohammad Mahdian and Martin Pál. Universal facility location. In Giuseppe Di Battista
and Uri Zwick, editors, Algorithms - ESA 2003, 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003, Proceedings, volume 2832 of Lecture Notes in Computer
Science, pages 409–421. Springer, 2003. doi:10.1007/978-3-540-39658-1_38.

ISAAC 2023

https://doi.org/10.1016/j.ejor.2014.10.011
https://doi.org/10.1109/FOCS.2014.35
https://doi.org/10.1007/978-3-642-33090-2_13
https://doi.org/10.1007/978-3-642-33090-2_13
https://doi.org/10.1145/2981561
https://doi.org/10.1137/1.9781611977554.ch38
https://doi.org/10.1145/950620.950621
https://doi.org/10.1145/509907.510012
https://doi.org/10.1145/375827.375845
https://doi.org/10.1137/1.9781611977554.ch40
https://doi.org/10.1007/978-3-540-25960-2_16
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1007/978-3-540-39658-1_38

45:14 A 4-Approximation Algorithm for CFL-UFC

14 M. Pál, É. Tardos, and T. Wexler. Facility location with nonuniform hard capacities. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS ’01,
page 329, USA, 2001. IEEE Computer Society.

15 David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 265–274, New York, NY, USA, 1997.
Association for Computing Machinery. doi:10.1145/258533.258600.

16 Vincent Cohen-Addad Viallat, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn.
Breaching the 2 LMP approximation barrier for facility location with applications to k-median.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
940–986. SIAM, 2023. doi:10.1137/1.9781611977554.ch37.

17 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, USA, 1st edition, 2011.

18 Jiawei Zhang, Bo Chen, and Yinyu Ye. A multi-exchange local search algorithm for the
capacitated facility location problem: (extended abstract). In George L. Nemhauser and Daniel
Bienstock, editors, Integer Programming and Combinatorial Optimization, 10th International
IPCO Conference, New York, NY, USA, June 7-11, 2004, Proceedings, volume 3064 of Lecture
Notes in Computer Science, pages 219–233. Springer, 2004. doi:10.1007/978-3-540-25960-2_
17.

https://doi.org/10.1145/258533.258600
https://doi.org/10.1137/1.9781611977554.ch37
https://doi.org/10.1007/978-3-540-25960-2_17
https://doi.org/10.1007/978-3-540-25960-2_17

The st-Planar Edge Completion Problem Is
Fixed-Parameter Tractable
Liana Khazaliya #

Technische Universität Wien, Austria

Philipp Kindermann #

FB IV – Informatikwissenschaften, Universität Trier, Germany

Giuseppe Liotta #

Department of Engineering, University of Perugia, Italy

Fabrizio Montecchiani #

Department of Engineering, University of Perugia, Italy

Kirill Simonov #

Hasso Plattner Institute, Universität Potsdam, Germany

Abstract
The problem of deciding whether a biconnected planar digraph G = (V, E) can be augmented to
become an st-planar graph by adding a set of oriented edges E′ ⊆ V ×V is known to be NP-complete.
We show that the problem is fixed-parameter tractable when parameterized by the size of the set E′.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathe-
matics of computing → Graph algorithms

Keywords and phrases st-planar graphs, parameterized complexity, upward planarity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.46

Related Version Full Version: https://arxiv.org/abs/2309.15454 [16]

Funding Research of LK supported by WWTF (Project ICT22-029); European Union’s Horizon
2020 COFUND programme [LogiCS@TUWien, grant agreement No.101034440]. Research of GL
and FM partially supported by MUR of Italy, under PRIN Project n. 2022ME9Z78 – NextGRAAL:
Next-generation algorithms for constrained GRAph visuALization, and under PRIN Project n.
2022TS4Y3N – EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and
dynamic Networked Data.

Acknowledgements This research was initiated at Dagstuhl Seminar 23162: New Frontiers of
Parameterized Complexity in Graph Drawing.

1 Introduction

Edge modification problems have long been a subject of investigation in graph algorithms,
resulting in a vast body of literature dedicated to exploring their computational complexity
(refer, for instance, to Burzyn et al. [4] and to Natanzon et al. [17] for comprehensive surveys).
One specific category within this realm is the family of edge completion problems, which
can be succinctly described as follows: Given a graph G = (V, E) and a graph family G, the
objective is to determine whether it is possible to augment G with a set E′ ⊆ V × V of edges
such that G′ = (V, E∪E′) ∈ G. In such cases, we say that G becomes a member of G by adding
the edges in E′. Edge completion problems are frequently known to be NP-hard, thereby
inspiring numerous studies focusing on parameterized complexity. For a comprehensive
examination of parameterized algorithms addressing edge completion problems, we point the
reader to the exhaustive survey by Crespelle et al. [7].

© Liana Khazaliya, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lkhazaliya@ac.tuwien.ac.at
https://orcid.org/0009-0002-3012-7240
mailto:kindermann@uni-trier.de
https://orcid.org/0000-0001-5764-7719
mailto:giuseppe.liotta@unipg.it
https://orcid.org/0000-0002-2886-9694
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:kirill.simonov@hpi.de
https://orcid.org/0000-0001-9436-7310
https://doi.org/10.4230/LIPIcs.ISAAC.2023.46
https://arxiv.org/abs/2309.15454
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

(a) (b) (c)

Figure 1 (a) A digraph G with 2k + 1 = 7 sources and 1 sink; G has a unique planar embedding
up to the choice of the external face; (b) A completion of G to an st-planar graph obtained by
adding 2k = 6 edges; (c) An upward planar drawing of the completion of G.

This paper focuses on the investigation of an edge completion problem specifically applied
to directed graphs (digraphs for short). More precisely, let G = (V, E) be a digraph. A vertex
of G with no incoming edges is a source of G, while a vertex without outgoing edges is a sink
of G. A digraph G is an st-planar graph if it admits a planar embedding such that: (1) it
contains no directed cycle; (2) it contains a single source vertex s and a single sink vertex t;
(3) s and t both belong to the external face of the planar embedding.

Upward planarity is a rather natural and well-studied notion of planarity for directed
graphs (see, e.g., [5, 6, 8, 10, 13, 18]). In particular, a planar digraph is upward if it
admits a planar drawing where all edges are oriented upward. A well-known result in graph
drawing states that a digraph G is upward if and only if G is a subgraph of an st-planar
graph [8, 10]1. However, since testing for upward planarity is an NP-complete problem
already for biconnected graphs [13], determining whether a biconnected graph is a subgraph
of an st-planar graph is also computationally challenging. On the other hand, checking
whether a digraph is st-planar can be done efficiently in polynomial time. This observation
motivates for the investigation of the following problem.

st-Planar Edge Completion (st-PEC)
Input: A biconnected digraph G

Parameter: k ∈ N
Question: Is it possible to add at most k edges to G such that the resulting graph is an
st-planar graph?

In this paper, we present a fixed-parameter tractable algorithm for the st-Planar Edge
Completion problem. To help understanding the combinatorial and algorithmic challenges
behind the problem, we make the observation that the parameter k provides an upper bound
on the number of sources and sinks in the input digraph G. Since an edge can remove the
presence of at most one source and one sink, if the total number of sources and sinks in
G exceeds 2k + 2, we can promptly reject the instance. Conversely, a positive answer to
st-Planar Edge Completion implies that G is upward planar. In this respect, it is worth

1 From the proof in Lemma 4.1 of [10], one can in fact observe that a digraph is upward planar if and
only if it is a subgraph of an st-planar graph defined over the same set of vertices.

L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:3

(a) (b) (c)

Figure 2 (a) A biconnected digraph G with 4 sources and 4 sinks; (b) With the given embedding,
6 edges have to be added to complete G to an st-planar graph; (c) With a different embedding,
adding 3 edges is sufficient.

mentioning that Chaplick et al. [5] have previously demonstrated that testing a digraph
for upward planarity is fixed-parameter tractable when parameterized by the number of its
sources. However, for every k ≥ 1, there are upward planar digraphs with at most 2k + 1
sources that cannot be augmented to an st-planar graph by adding k edges; refer to Figure 1
for an illustration. Furthermore, while an upward planarity test halts upon finding an upward
planar embedding, not all upward planar embeddings of the same digraph can lead to an
st-planar graph after the addition of k edges. Figure 2 demonstrates an upward planar
digraph along with two of its upward planar embeddings: the embedding in Figure 2a requires
6 edges to be augmented into an st-planar digraph, whereas the embedding in Figure 2c can
be augmented with 3 edges.

In order to overcome the above technical challenges, our result is based on a structural
decomposition of the digraph into its triconnected components using SPQR-trees (similarly
as done in [5]), as well as on novel insights regarding the combinatorial properties of upward
planar digraphs. Since the proof is rather technical, after giving preliminaries and basic
notation in Section 2, we present an overview of the approach in Section 3. Next, the FPT
algorithm is described in full detail in Section 4. We conclude in Section 5. For space reasons,
the proof of statements marked with a “⋆” are omitted and can be found in the full version
of the paper [16].

2 Preliminaries

In this section, we provide basic definitions and tools that will be used throughout the paper.

Planar drawings and embeddings. A planar drawing of a graph G maps the vertices of G

to points of the plane and the edges of G to Jordan arcs such that no two arcs share a point
except at common end-vertices. A planar drawing partitions the plane into topologically
connected regions called faces, one of which is unbounded and called the external face, in
contrast with all other faces which are inner faces. For a digraph G, a planar drawing is called
upward if each edge oriented from a vertex u to a vertex v is represented by a Jordan arc
monotonically increasing from the point representing u to the point representing v. A graph
(digraph) is planar (upward planar) if it admits a planar drawing (upward planar drawing).
A planar embedding (upward planar embedding) E(G) of a planar graph (upward planar
digraph) G represents an equivalence class of planar drawings (upward planar drawings)
with the same inner faces and the same external face, up to a homeomorphism of the plane.
Graph G is plane if it comes with a fixed planar embedding E(G).

ISAAC 2023

46:4 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

SPQR-trees. We recall the definition of SPQR-tree, introduced in [8], which represents
the decomposition of a biconnected graph G into its triconnected components [15]. Each
triconnected component corresponds to a non-leaf node ν of T ; the triconnected component
itself is called the skeleton of ν and is denoted as skel(ν). Node ν can be: (i) an R-node, if
skel(ν) is a triconnected graph; (ii) an S-node, if skel(ν) is a simple cycle of length at least
three; (iii) a P-node, if skel(ν) is a bundle of at least three parallel edges. A degree-1 node
of T is a Q-node and represents a single edge of G. A real edge (resp. virtual edge) in skel(ν)
corresponds to a Q-node (resp., to an S-, P-, or R-node) adjacent to ν in T . Neither two S-
nor two P-nodes are adjacent in T . The SPQR-tree of a biconnected graph can be computed
in linear time [8, 14]. Let e be a designated edge of G, called the reference edge of G, let ρ

be the Q-node of T corresponding to e, and let T be rooted at ρ. For any P-, S-, or R-node
ν of T , skel(ν) has a virtual edge, called reference edge of ν and denoted as eν , associated
with a virtual edge in the skeleton of its parent. The end-vertices of the reference edge of ν

are called the poles of ν. For every node ν ̸= ρ, the pertinent graph Gν of ν is the subgraph
of G whose edges correspond to the Q-nodes in the subtree of T rooted at ν. Without loss of
generality, we shall consider SQPR-trees where every S-node has exactly two children (see,
e.g., [5, 9, 12]); this lifts the condition that two S-nodes cannot be adjacent in T .

Angles in upward drawings. Let G = (V, E) be a digraph. For each edge (u, v) ∈ E, we
write uv if (u, v) is oriented from u to v in G, and we write vu otherwise. A vertex v is a
switch of G, if it is either a source or a sink, and it is a non-switch otherwise. Recall that a
digraph is upward planar if and only if it is a subgraph of an st-planar graph [8]. Hence, being
upward planar is a necessary condition for YES-instances of st-Planar Edge Completion.
Consider now a biconnected plane digraph G. An angle is an incidence between a vertex
v and a face f of G. Let α be one such angle, and consider the two edges incident to v

that belong to the boundary of f . If such edges are one incoming and one outgoing, α is
a non-switch angle, while if the edges are both incoming or both outgoing, α is a switch
angle. Note that a switch angle in a face f can be made by two edges that are incident to
a non-switch vertex v: it is enough that the edges of f incident to v are both incoming or
both outgoing. In this case, v is a local switch for face f . An angle assignment is a labeling
λ of the angles of G with labels {−1, 0, +1} (see, e.g., [1, 2, 3, 11]). In particular, non-switch
angles can only receive the label 0, while switch angles can be labeled as either −1 or +1.
The planar embedding of G can be realized as an upward drawing if and only if there is an
angle assignment such that: (i) each switch vertex has exactly one angle labeled +1; (ii) each
non-switch vertex has exactly two angles labeled as 0, while all the others are switch angles
labeled −1; (iii) the difference between the number of angles labeled +1 and the number of
angles labeled −1 along the boundary of each inner face is −2; (iv) the difference between
the number of angles labeled +1 and the number of angles labeled −1 along the boundary of
the external face is +2. Observe that property (ii) implies that each non-switch vertex forms
exactly two non-switch angles. An angle assignment satisfying the above properties is called
upward. The restriction of an upward angle assignment to the angles of a single face f is an
upward angle assignment for f .

3 Overview of the Approach

Let G be a biconnected digraph. Since testing for planarity can be done in linear time, we
shall assume that G is planar. We begin by explaining two key ingredients for our algorithm,
namely, the use of SPQR-trees to encode all the planar embeddings of G, and the use of

L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:5

upward angle assignments to incrementally saturate G. The main crux of our algorithm
lies in blending these two ingredients together to design a dynamic program that solves the
problem in FPT time.

Let T be a rooted SPQR-tree of a planar graph G with reference edge e. The planar
embeddings of G in which the edge e lies on the boundary of the external face can be obtained
as follows (see, e.g., [8]). For a P- or R-node ν, denote by skel−(ν) the skeleton of ν without
its reference edge. If ν is a P-node, the embeddings of skel(ν) are the different permutations
of the edges of skel−(ν). If ν is an R-node, skel(ν) has two possible embeddings, obtained by
flipping skel−(ν) at its poles. No operations are needed at S- and Q-nodes.

Consider now an upward planar drawing Γ of G and hence assume that G is plane. Let λ

be the upward angle assignment induced by Γ. Precisely, the switch angles that are larger
(smaller) than π in Γ are labeled as +1 (−1), while the non-switch angles are labeled as 0.
Let v be a source (sink) of G and let f be the face of G in which v makes its +1 angle. Let
u be a vertex of f different from v. We say that adding uv (vu) to G saturates v, and that
uv (vu) is a saturating edge. Namely, v becomes a non-switch vertex in G′ = (V, E ∪ {uv}).
Notably, f is the only face in which an edge saturating v can be added: one easily verifies
that choosing any other face would lead to a non-upward angle assignment.

Based on the previous reasoning, at high-level, the algorithm will exploit a bottom-up
traversal of the SPQR-tree T to explore the planar embeddings of G. For each visited node,
it will keep track of the information related to the minimum number of edges required to
saturate all switches that lie in the inner faces of the corresponding pertinent graph. The
interface of a candidate solution is encoded in terms of “signatures” which, informally, are
strings containing all switches along the boundary of the external face of the pertinent graph
that do not yet have any angle labeled as +1 and all vertices that must instead contribute
with a −1 angle along the boundary. A running time bounded by a function of the budget k

is obtained by several crucial insights about how a bounded number of switches in the graph
affects the possible signatures and limits the relevant embeddings to be considered.

4 An FPT Algorithm for st-Planar Edge Completion

In this section, we describe our FPT algorithm, which leads to the following theorem.

▶ Theorem 1. Let G be an n-vertex biconnected plane digraph. There is an algorithm that
solves st-Planar Edge Completion in 2O(k2) · n2 time.

We begin by describing the records used by our dynamic program (Section 4.1), which
are used to encode the angles along the boundary of the external face of a pertinent graph.
Next, we describe the algorithm (Section 4.2), which constructs such records while traversing
bottom-up the SPQR-tree of the input graph.

4.1 Setting up the Records for Dynamic Programming
Signatures. We begin with some notation and definitions. Let G be a plane digraph. Let
Πuv be a simple undirected path of G from a vertex u to a vertex v. The signature of Πuv

is a string Σuv computed as follows. Consider a walk along Πuv from u to v. For each
encountered vertex w distinct from u and v, look at the two edges incident to w in Πuv. If the
two edges are one incoming and one outgoing, we do not append any symbol to Σuv. If the
two edges are both outgoing (incoming) and w is a switch of G, we append the symbol σ (τ).
If the two edges are both outgoing (incoming) and w is not a switch of G – hence, it is a
local switch for some face f –, we append the symbol σℓ (τℓ). Observe that, if Πuv is a single

ISAAC 2023

46:6 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

u

v Σuv = τσℓ

Σvu = στ

τ

σℓ τ

σ

Figure 3 The signatures of two paths Πuv (brown background) and Πvu (purple background).

edge connecting u to v, then Σuv = ∅. At high level, the idea is that when walking along
a piece of the boundary of some face f of G, non-switch angles are ignored as their only
possible value in an angle assignment is 0. On the other hand, the symbols σℓ and τℓ will
encode switch-angles whose only possible value is −1 (else the corresponding vertex would
be a switch of G). Finally, the symbols σ and τ will point to switch angles that may be
assigned either −1 or +1. Refer to Figure 3 for an illustration.

A signature is short if it contains at most 4k + 2 symbols. Let Σ∗ be the set of short
signatures; we observe the following.

▶ Observation 2. The cardinality of Σ∗ is 2O(k).

Half-boundaries. Let G be a biconnected planar digraph, and let T be the SPQR-tree
of G rooted at a Q-node representing an arbitrary edge e of G. For each node ν of T , we
recall that Gν is the pertinent graph, and we denote by u, v the poles of ν (omitting the
dependency on ν for simplicity). Assuming that Gν comes with a fixed planar embedding, let
f be the external face of Gν . The half-boundary Buv of ν is the path containing the vertices
of f encountered in a clockwise walk of the face from u to v. The half-boundary Bvu of ν is
defined analogously walking from v to u. A vertex w on the boundary of f is bifacial if it
belongs to both Buv and Bvu (which implies that w is a cutvertex of Gν and hence ν is an
S-node). For each of the two half-boundaries we can define the two corresponding signatures
Σuv and Σvu. We will assume that for each symbol of Σuv and Σvu we have a pointer to
the corresponding vertex. Let B be one of the two half-boundaries of ν and let Σ be its
signature. Let B′ be a path contained in B (possibly B = B′). The restriction of Σ to B′,
denoted as Σ[B′], is the substring of Σ containing the symbols whose corresponding vertices
belong to B′. The next lemma shows that working with short signatures is not restrictive.

▶ Lemma 3. Let G be a biconnected upward planar digraph with a fixed upward planar
embedding E(G). Let T be the SPQR-tree of G rooted at a Q-node representing an arbitrary
edge e of G. Let ν be a node of T . For any fixed k, if G can be augmented to an st-planar
graph by adding at most k saturating edges, then the signatures Σuv and Σvu of the two
half-boundaries Buv and Bvu of ν are both short.

Proof. Let Γ be an upward planar drawing of G whose corresponding upward planar
embedding is E(G), and consider the subdrawing Γ′ induced by Gν . Let λ be the upward
angle assignment induced by Γ′, and let f be the external face of Gν . We know that f

contains at most 2k + 2 switches, otherwise k saturating edges would not suffice to turn G

into an st-planar graph. Hence, λ can label +1 at most 2k + 2 angles along the boundary of
f . Also, since λ obeys to property (iv) of an upward angle assignment, it labels −1 at most
2k angles. Therefore, Σuv and Σvu can each contain at most 4k + 2 symbols. ◀

L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:7

Internal assignments. An angle of Gν is internal if it is defined in an inner face of Gν . An
internal assignment of Gν is an angle assignment λ that labels all the internal angles of Gν

and that respects properties (i)–(iii) for upward angle assignments (but ignoring property
(iv)). A switch vertex of G is called active with respect to λ if none if its internal angles (if
any) received value +1. The cost of an internal assignment λ of Gν is the minimum number
of saturating edges needed to saturate all switches of Gν that are not active with respect to λ.

Partial solutions. We are now ready to define the table used by our dynamic program. A
tuple ⟨Σ1, Σ2, b1, b2⟩, such that Σ1, Σ2 is a pair of short signatures and b1, b2 is a pair of
flags, is called a candidate tuple in the following. Given a node ν and a candidate tuple
⟨Σ1, Σ2, b1, b2⟩, the function X(ν, Σ1, Σ2, bu, bv) returns the minimum cost of an internal
assignment λ of Gν such that: (1) Σ1 and Σ2 are the signatures of its two half-boundaries
Buv and Bvu, respectively, (2) the flag bu is true if and only if u is an active switch with
respect to λ, (3) the flag bv is true if and only if v is an active switch with respect to λ. The
set of partial solutions for ν is given by the restriction of X to the single node ν. Also, a pair
of signatures is empty if both its signatures are empty (i.e., they do not contain any symbol).

4.2 Description of the Algorithm
The function X is computed by traversing T bottom-up. For each node ν of T , we initialize
X(ν, Σ1, Σ2, b1, b2) = +∞ for each candidate tuple ⟨Σ1, Σ2, b1, b2⟩. We only ensure that
X(ν, Σ1, Σ2, b1, b2) is computed precisely if the value is at most k; for any value larger than k

we assume that X(ν, Σ1, Σ2, b1, b2) = +∞ is the correct setting, since we are only interested
in the solutions that add at most k edges.

If ν is a leaf node, then it is a Q-node and Gν is a single edge. In this case, either u is
the source and v is the sink of Gν , or vice-versa. Then we set X(ν, ∅, ∅, true, true) = 0.

The lemma below deals with the case in which ν is an S-node. Since S-nodes have exactly
two children and are not used to describe the planar embeddings of G, the routine of the
algorithm at S-nodes is relatively simple. Next, we will consider P-nodes and R-nodes, which
require more involved arguments.

▶ Lemma 4. Let ν be an S-node of T . The set of partial solutions of ν can computed in
2O(k) time.

Proof. Let µ1 and µ2 be the two children of ν. In order to compute the partial solutions for
ν, we check whether pairs of internal assignments of Gµ1 and Gµ2 can be combined together.
Let ⟨Σ1,1, Σ1,2, b1,1, b1,2⟩ and ⟨Σ2,1, Σ2,2, b2,1, b2,2⟩ be a pair of candidate tuples. Also, let
C = X(µ1, Σ1,1, Σ1,2, b1,1, b1,2) + X(µ2, Σ2,1, Σ2,2, b2,1, b2,2).

We first verify that C ≤ k, and that b1,2 ∨ b2,1 = true. The first condition guarantees
that we have not exceeded our budget k of saturating edges, while the second condition
guarantees that the pole shared by µ1 and µ2 does not receive the value +1 twice in the
final internal assignment of Gν . If both conditions are satisfied, then we proceed as detailed
below, otherwise, we discard the pair of candidate tuples.

Denote by u and w the poles of µ1, and by w and v the poles of µ2. Observe that
Buv corresponds to the union of Buw and Bwv (vertex w is hence bifacial). Based on this
observation, we show how to compute Σ1 for Buv, the computation of Σ2 can be performed
analogously. We initially set Σ1 = Σ1,1. Consider the two edges incident to w along Buv. If
one edge is incoming and the other is outgoing, then we do not append any symbol. If both
edges are incoming or both outgoing, we check whether one of b1,2 and b2,1 is false. If so, we
append the symbol σℓ if w is a source of G, or the symbol τℓ otherwise. If none of b1,2 and

ISAAC 2023

46:8 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

σ

σ

σ

τ

τ

τℓ

SF

(a)

σ

σ

σ

τ

τ

τℓ

F S′

(b)

σ

σ

σ

τ

τ

τℓ

S′

(c)

Figure 4 Illustration for Lemma 5.

b2,1 is false, we append the symbol σ if w is a source of G, or the symbol τ otherwise. Next,
we concatenate the signature Σ2,1. Once both Σ1 and Σ2 have been computed, we verify
that each of them is short (a necessary condition by Lemma 3), otherwise we discard the
candidate tuples. Finally, we set X(ν, Σ1, Σ2, b1,1, b2,2) = C.

By Observation 2, we have 2O(k) possible pairs of signatures to consider, and performing
the above operations takes O(k) time for each pair. ◀

The next tools will be useful for the remaining lemmas. The next result is based on the
fact that face boundaries containing long sequences of non-switch vertices are irrelevant for
the sake of computing the least number of saturating edges; see Figure 4 for an illustration.

▶ Lemma 5 (⋆). Let f be an inner face of G with nf vertices, and let λf be an upward angle
assignment for f with h switch-angles. The minimum number of edges that saturate all switch
vertices of G forming an angle labeled +1 in f can be computed in O(2O(h2) + nf) time.

▶ Lemma 6. Let ν be a node of T and let µ be a child of ν. Suppose that Gν is plane and a
half-boundary B of ν contains a half-boundary B′ of µ (B and B′ may possibly coincide).
Given an internal assignment λ of Gν and the signature of B′, the restriction of the signature
of B to B′ can be computed in O(k) time.

Proof. Let Σ′ be the signature of B′, we compute the desired signature Σ as follows. If Σ′

does not contain any symbol in {σ, τ} whose corresponding vertex is bifacial, then Σ = Σ′.
Otherwise we initialize Σ = Σ′ and proceed as follows. For each σ or τ whose corresponding
vertex w is bifacial and incident to an inner face f of Gν , we verify whether λ has labeled +1
the angle that w makes in f . If so, we replace the symbol σ or τ with σℓ or τℓ, respectively.
By construction, Σ is the restriction of the signature of B to B′. ◀

The next result will be used to bound the number of interesting children of a P-node.

▶ Lemma 7 (⋆). Let ν be a P-node of T with poles u, v. Suppose that Gν is plane, and let
µ and µ′ be two children of ν none of which is a Q-node, and whose corresponding edges
of skel(ν)− are consecutive in the permutation fixed by the planar embedding of Gν . Also,
suppose that for both µ and µ′ it holds that the pair of signatures of its two half-boundaries
is empty. Let G′ be the digraph obtained from G by removing all vertices of Gµ′ except the
poles u, v. Then G is a YES-instance of st-PEC if and only if G′ is a YES-instance.

We are now ready to deal with P- and R-nodes.

▶ Lemma 8. Let ν be a P-node of T . The set of partial solutions of ν can be computed in
2O(k2) · n time.

L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:9

u

v

µi µi+1µ1 µhfi

f0
Bvu Buv

(a)
u

v

w
+1

f∗

µ1 µ2

µh

(b)

Figure 5 Illustration for the proof of (a) Lemma 8 and (b) Lemma 9.

Proof. Let u and v be the poles of ν, and let µ1, µ2, . . . , µh be the h ≥ 2 children of ν. In
order to compute the partial solutions for ν, similarly as for S-nodes, we check whether sets
of internal assignments of Gµ1 , Gµ2 , . . . , Gµh

can be combined together. For each child µi,
let ⟨Σ1,i, Σ2,i, b1,i, b2,i⟩ be a candidate tuple. Let C =

∑h
i=1 X(µi, Σ1,i, Σ2,i, b1,i, b2,i).

We first verify that C ≤ k, and that at most one flag b1,i is true, as well as at most one
flag b2,i is true. The first condition guarantees that we have not exceeded our budget k,
while the second condition guarantees that the poles u, v shared by the children of ν do not
receive the value +1 twice in the final internal assignment. If both conditions are satisfied,
then we proceed as detailed below, otherwise we discard the set of candidate tuples.

Observe that h might be unbounded with respect to k, thus we cannot afford to enumerate
all possible permutations of the edges of skel−(ν). To overcome this issue, we make the
following crucial observations. First, we know that G contains at most 2k + 2 switches,
otherwise we can safely reject the instance. Consequently, at most 2k + 2 children of ν may
contain switches different from u and v in their pertinent graphs. Second, consider now a
permutation of the edges of skel−(ν) and the corresponding planar embedding of Gν . Up
to a relabeling of the children, we shall assume that the half-boundary Bvu of µi and the
half-boundary Buv of µi+1 form a face fi of Gν , for i = 1, . . . , h − 1, and that the external
face f0 of Gν consists of Buv of µ1 and Bvu of µh; see Figure 5a. Observe now that each
of u and v can contribute at most one angle labeled +1 and at most two angles labeled 0;
all other angles at u and v must be labeled −1. Hence, besides the at most six faces in
which u or v contribute an angle labeled +1 or 0, all other faces are such that they either
contain an angle labeled +1, or all their angles (except those formed by u and v) are labeled
0. Therefore, the number of faces whose half-boundaries have non-empty signatures is at
most t = 2(2k + 2) + 6 = 4k + 10 (a switch vertex may be bifacial and hence belong to two
half-boundaries). Putting all together, if there exist more than t pairs that are not empty,
then we can safely discard the set of candidate tuples.

Based on the previous observations, we will now assume to have at least h − t empty
pairs. Furthermore, if h > 2t + 2, at least two children are such that Lemma 7 holds for them.
Consequently, removing all empty pairs except t + 1 preserves the existence of a solution (if
any). Therefore, we shall further assume that we have h ∈ O(t) ∈ O(k) pairs of signatures,
and we can now enumerate all possible permutations of such pairs, and hence all possible
putative planar embeddings described by skel−(ν).

Consider now a fixed permutation. Following the same notation as before, assume that
the half-boundary Bvu of µi and the half-boundary Buv of µi+1 form a face fi of Gν , for
i = 1, . . . , h. We call such faces active. If all values b1,i are true and u is a switch, we guess

ISAAC 2023

46:10 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

whether u has an angle labeled +1 in some active face fi or not. In the former case, we set
flag b1 to false and also guess which active face the angle belongs to, in the latter case we set
b1 to true. We do the same for v and flag b2.

Next, consider a non-empty signature containing a symbol σ or τ . Let w be the vertex
corresponding to that symbol. If w is not bifacial, the active face in which it forms the +1
angle is unique, otherwise we must guess in which of the two active faces sharing w the +1
angle is assigned to. After doing this procedure for all such symbols, we have exhaustively
branched over the 2O(k) angle assignments for the active faces. For each such angle assignment
we can check, in O(k) time, whether it is an upward assignment for each active face. If not,
we discard the angle assignment, otherwise we now have an internal assignment λ of Gν .

Next, for each active face fi, we can apply Lemma 5 to compute the minimum number ci

of saturating edges needed to saturate all switches in fi. Let C +
∑h

i=1 ci be the cost of the
internal assignment λ. If it is larger than k, the angle assignment is discarded.

We are now ready to construct the signatures Σ1 and Σ2 of the half-boundaries Buv

and Bvu of ν. Since the half-boundary Buv of ν coincides with Buv of µ1 (as fixed by
the permutation at hand), we can invoke Lemma 6 by using λ and Σ1,1 as arguments.
Similarly, the signature Σ2 is computed invoking Lemma 6 with arguments λ and Σ2,h.
Observe that both Σ1 and Σ2 are short, because Σ1,1 and Σ2,h are short. Then we set
X(Σ1, Σ2, b1, b2) = min{X(Σ1, Σ2, b1, b2), C +

∑h
i=1 ci}; taking the minimum is needed

because different permutations, as well as different angle assignments of the same permutation,
may yield the same pair of signatures and flags but different costs.

Putting all together, it suffices to first branch over sets of candidate tuples of size h ∈ O(k),
for each set we branch over kO(k) permutations, and for each permutation we further branch
over the 2O(k) possible angle assignments of the active faces. Computing the cost of an
internal assignment takes 2O(k2) · n time by using Lemma 5. ◀

▶ Lemma 9. Let ν be an R-node of T . The set of partial solutions of ν can be computed in
2O(k2) · n time.

Proof. Let u and v be the poles of ν, and let µ1, µ2, . . . , µh be the h ≥ 2 children of ν. For each
child µi, let ⟨Σ1,i, Σ2,i, b1,i, b2,i⟩ be a candidate tuple. Let C =

∑h
i=1 X(µi, Σ1,i, Σ2,i, b1,i, b2,i).

We first verify that C ≤ k, in order to avoid exceeding the budget. Next, we check the
consistency of the flags. Recall that the vertices of skel(ν) are the poles of the children of ν.
Namely, for each vertex w of skel(ν), we verify that at most one flag corresponding to it is
false. If these conditions are met we proceed as detailed below, otherwise we discard the set
of candidate tuples.

We now make important observations concerning the number of interesting children of ν.
As in the proof of Lemma 8, we can observe that at most 2k + 2 children of ν may contain
switches different from u and v in their pertinent graphs. Now consider a child µ of ν that
does not contain switches in its pertinent graph Gµ, and let uµ and vµ be its poles. If G

admits a solution, one immediately verifies that Gµ is st-planar and its two switches are uµ

and vµ. Consequently, in any solution, the two signatures Σuµvµ and Σvµuµ must be empty.
Based on this property, it suffices to consider sets of pairs of signatures in which at most
2k + 2 pairs are not empty.

Next, following the lines of the proof of Lemma 8, consider a non-empty signature
containing a symbol σ or τ . Let w be the vertex corresponding to that symbol. If w is
not bifacial, the face in which it forms the +1 angle is unique, otherwise we must guess in
which of the two faces sharing w the +1 angle is assigned to. This is however not enough
for R-nodes. Namely, observe that each face f∗ of skel(ν)− corresponds to a face f of Gν

L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:11

whose boundary is formed by one half-boundary for each child of ν represented by an edge
of f∗ (which can be a real edge or a virtual edge); see Figure 5b. We call such faces active
in the following. Moreover, the only angles that are not yet defined are those made by the
vertices of skel(ν) that are switches and whose corresponding flags are all true. For these
vertices we shall guess in which active face they make their +1 angle. Clearly, any such a
vertex w belongs to multiple active faces (possibly including the external face). On the other
hand, for an active face to be able to absorb a +1 angle, it must contain at least three angles
labeled −1. Since we have at most 2k + 2 non-empty pairs, there are at most 4k + 4 active
faces formed by non-empty signatures. For the other active faces, the only source of −1
angles are the vertices of skel(ν). Consequently, if w is incident to more than 4k + 5 active
faces in which the number of angles labeled −1 is larger than 2, we can safely discard the
set of candidate tuples. Putting all together, for each vertex w we can branch over its O(k)
interesting active faces to decide in which of them it will make its +1 angle. This procedure
leads to 2O(k) angle assignments for the active faces. For each such angle assignment we can
check, in O(k) time, whether it is an upward assignment for each of the active faces. If not,
we discard the angle assignment, otherwise we now have an internal assignment λ of Gν .

Next, for each active face fi, we can apply Lemma 5 to compute the minimum number ci

of saturating edges needed to saturate all switches in fi. Let C +
∑h

i=1 ci be the cost of the
internal assignment. If it is larger than k, the angle assignment is discarded.

We are now ready to construct the signatures Σ1 and Σ2 of the half-boundaries Buv and
Bvu of ν. Observe that the embedding of skel(ν) if fixed up to a flipping operation, which
corresponds to inverting the two signatures. Therefore, we construct Σ1 and Σ2 as follows.
Let Σ′

i, for i = 1, . . . , r be the r ≥ 1 signatures of the half-boundaries of the children of ν

that form the half-boundary Buv of ν, in the order they are encountered from u to v. Also
let wi, i = 1, . . . , r − 1 be the vertices of skel(ν) that belong to Buv. We initialize Σ1 with
the signature obtained by invoking Lemma 6 with arguments λ and Σ′

1. For vertex w1, we
distinguish whether it is a switch of G or not. In the former case, we concatenate the symbol
σ (τ) if none of its angles in Gν is labeled as +1, otherwise we concatenate σℓ (τℓ). In the
latter case, consider the two edges incident to w1 along Buv. If one edge is incoming and the
other is outgoing, then we do not append any symbol. If both edges are outgoing (incoming),
we append σℓ (τℓ). We then repeat the procedure for the remaining signatures and vertices.
The signature Σ2 is computed analogously. Once both Σ1 and Σ2 have been computed,
we verify that each of them is short (a necessary condition by Lemma 3), otherwise we
reject the set of candidate tuples. Concerning the flags, b1 (b2) is true if and only if all
flags corresponding to u (v) are true and none of its angles in the active faces is labeled +1
according to λ. Finally we set X(Σ1, Σ2, b1, b2) = min{X(Σ1, Σ2, b1, b2), C +

∑h
i=1 ci}, as

well as X(Σ2, Σ1, b2, b1) = min{X(Σ2, Σ1, b2, b1), C +
∑h

i=1 ci}.
Putting all together, it suffices to first branch over sets of candidate tuples of size

h ∈ O(k), for each set we branch over the 2O(k) possible angle assignments of the active faces.
Computing the cost of an internal assignment takes 2O(k2) · n time by using Lemma 5. ◀

It remains to deal with the root ρ of T . Recall that Gρ = G, and that ρ is a Q-node.

▶ Lemma 10 (⋆). Let G be an n-vertex biconnected digraph, let e be an edge of G, and
let k ∈ N. There exists an algorithm that decides, in O(2O(k2) · n) time, whether G can be
augmented to an st-planar graph with e on its external face by adding at most k edges.

Proof sketch. By using Lemmas 4, 8, and 9 we can traverse T bottom up until reaching
the root ρ, which is the Q-node of T representing e. Following a similar procedure as for P-
and R-nodes, we examine the two faces containing edge e on their boundaries and branch

ISAAC 2023

46:12 The st-Planar Edge Completion Problem Is Fixed-Parameter Tractable

over possible angle assignments. This eventually leads to an upward angle assignment of
the whole graph G such that all switches, except one source and one sink in the external
face, can be saturated with at most k edges (which implies that G is a positive instance),
otherwise G is rejected. ◀

The proof of Theorem 1 follows by applying Lemma 10 for each of the O(n) edges of G.

5 Discussion and Open Problems

We showed that st-PEC can be solved in 2O(k2) · n2 time for biconnected digraphs. It is
worth remarking that, while in principle the st-PEC problem needs not to be restricted to
biconnected digraphs (for which it is already NP-hard), considering simply connected graphs
would make the proof of our result more technical but not more interesting. In fact, one can
simply decompose the graph into its biconnected components through a block-cutvertex tree
and work with similar boundary conditions as those we already considered. More interestingly,
we ask whether st-PEC belongs to the FPL (fixed parameter linear) class. On a similar
note, improving the exponential function (or proving that it is asymptotically optimal under
standard assumptions) would also be interesting. Lastly, it remains open whether st-PEC
admits a kernel of polynomial size.

References
1 Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Quasi-upward planarity. Algo-

rithmica, 32(3):474–506, 2002.
2 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings

of triconnected digraphs. Algorithmica, 12(6):476–497, 1994.
3 Carla Binucci, Emilio Di Giacomo, Giuseppe Liotta, and Alessandra Tappini. Quasi-upward

planar drawings with minimum curve complexity. In GD, volume 12868 of Lecture Notes in
Computer Science, pages 195–209. Springer, 2021.

4 Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-completeness results for edge
modification problems. Discret. Appl. Math., 154(13):1824–1844, 2006. doi:10.1016/j.dam.
2006.03.031.

5 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N.
Raftopoulou, and Kirill Simonov. Parameterized algorithms for upward planarity. In SoCG,
volume 224 of LIPIcs, pages 26:1–26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

6 Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N.
Raftopoulou, and Kirill Simonov. Testing upward planarity of partial 2-trees. In GD, volume
13764 of Lecture Notes in Computer Science, pages 175–187. Springer, 2022.

7 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. Comput. Sci. Rev.,
48:100556, 2023. doi:10.1016/j.cosrev.2023.100556.

8 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

9 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal
drawings. SIAM J. Comput., 27(6):1764–1811, 1998.

10 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci., 61:175–198, 1988.

11 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward
planarity testing. SIAM J. Discret. Math., 23(4):1842–1899, 2009.

https://doi.org/10.1016/j.dam.2006.03.031
https://doi.org/10.1016/j.dam.2006.03.031
https://doi.org/10.1016/j.cosrev.2023.100556

L. Khazaliya, P. Kindermann, G. Liotta, F. Montecchiani, and K. Simonov 46:13

12 Walter Didimo, Michael Kaufmann, Giuseppe Liotta, and Giacomo Ortali. Rectilinear planarity
of partial 2-trees. In GD, volume 13764 of Lecture Notes in Computer Science, pages 157–172.
Springer, 2022.

13 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput., 31(2):601–625, 2001.

14 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In GD
2000, volume 1984 of LNCS, pages 77–90. Springer, 2001. doi:10.1007/3-540-44541-2.

15 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

16 Liana Khazaliya, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, and Kirill
Simonov. The st-planar edge completion problem is fixed-parameter tractable. CoRR,
abs/2309.15454, 2023. arXiv:2309.15454.

17 Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge mod-
ification problems. Discret. Appl. Math., 113(1):109–128, 2001. doi:10.1016/S0166-218X(00)
00391-7.

18 William T. Trotter and John I. Moore Jr. The dimension of planar posets. J. Comb. Theory,
Ser. B, 22(1):54–67, 1977.

ISAAC 2023

https://doi.org/10.1007/3-540-44541-2
https://doi.org/10.1137/0202012
https://arxiv.org/abs/2309.15454
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7

A Combinatorial Certifying Algorithm for Linear
Programming Problems with Gainfree Leontief
Substitution Systems
Kei Kimura #

Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

Kazuhisa Makino #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
Linear programming (LP) problems with gainfree Leontief substitution systems have been intensively
studied in economics and operations research, and include the feasibility problem of a class of Horn
systems, which arises in, e.g., polyhedral combinatorics and logic. This subclass of LP problems
admits a strongly polynomial time algorithm, where devising such an algorithm for general LP
problems is one of the major theoretical open questions in mathematical optimization and computer
science. Recently, much attention has been paid to devising certifying algorithms in software
engineering, since those algorithms enable one to confirm the correctness of outputs of programs
with simple computations. Devising a combinatorial certifying algorithm for the feasibility of the
fundamental class of Horn systems remains open for almost a decade. In this paper, we provide the
first combinatorial (and strongly polynomial time) certifying algorithm for LP problems with gainfree
Leontief substitution systems. As a by-product, we resolve the open question on the feasibility of
the class of Horn systems.

2012 ACM Subject Classification Theory of computation → Mathematical optimization

Keywords and phrases linear programming problem, certifying algorithm, Horn system

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.47

Related Version Full Version: https://arxiv.org/abs/2306.03368 [19]

Funding Partially supported by JSPS KAKENHI Grant Number JP19K22841.
Kei Kimura: Partially supported by JST, ACT-X Grant Number JPMJAX200C, Japan, and JSPS
KAKENHI Grant Number JP21K17700.
Kazuhisa Makino: Partially supported by JSPS KAKENHI Grant Number JP20H05967.

1 Introduction

In this paper, we focus on linear programming (LP) problems with Leontief substitution
systems. A matrix A is called Leontief if each column of A has at most one positive element.1
A linear system of the form

Ax = b and x ≥ 0 (1)

is called a Leontief substitution system if A is Leontief and b is nonnegative. Leontief
matrices and systems were first studied in 1950s within the context of input-output analysis
in economics (for which Wassily Leontief was awarded the Nobel Prize in economics in 1973;
see, e.g., Leontief [21] and Dantzig [9]), and have attracted much attention in economics
and operations research. There exists a line of research on algorithms for LP problems with

1 Leontief matrices defined in this paper are sometimes called pre-Leontief matrices in the literature.

© Kei Kimura and Kazuhisa Makino;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kkimura@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-0560-5127
mailto:makino@kurims.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2023.47
https://arxiv.org/abs/2306.03368
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

Leontief substitution systems; an O(m3n log n) strongly polynomial algorithm for a special
case where A has no more than two nonzero elements in any column [1], an O(m2n) strongly
polynomial algorithm for a special case of gainfree Leontief substitution systems [16], and
a simplex algorithm [4], where m and n respectively denote the number of equations and
variables in (1). The gainfree property will be defined in Section 2; it intuitively says that
the corresponding network, which will also be defined later, has no gain of flow.

We also remark that Leontief substitution systems play an important role in polyhedral
combinatorics and logic. For example, Horn systems are related to Leontief substitution
systems. A matrix A is called Horn if each row of A has at most one positive element,
and a linear system Ay ≤ c with Horn matrix A is called Horn. Thus, Horn matrices are
exactly transposed Leontief matrices, and the feasibility for Horn systems coincides with
that of the dual of LP problems with Leontief substitution systems. The feasibility for
Horn systems was inspired by the Horn Boolean satisfiability (SAT) problem, a well-studied
subclass of SAT in logic and computer science. Horn systems have been intensively studied
in the literature [8, 13, 32] because they have applications in diverse areas such as logic
programs, econometrics, program verification, and lattice optimization. Subclasses of Horn
systems called difference constraint (DC), unit Horn, and unit-positive Horn systems are also
extensively investigated, where a matrix A is difference if it is a {0,±1}-matrix having one
+1 and one -1 in each row [2, 11, 14, 26], unit Horn if it is a Horn {0,±1}-matrix [5, 30], and
unit-positive Horn if it is an integral Horn matrix with the positive elements being one [30,31]2.
We note that unit and unit-positive Horn systems are sometimes called Horn constraint and
extended Horn, respectively. By definition, difference matrices are unit Horn, and unit Horn
matrices are unit-positive Horn. All these matrices are transposed gainfree Leontief matrices,
which will be discussed in the next section. The feasibility problem is combinatorially solvable
in O(mn) for DC systems [2, 11] and O(m2n) for unit and unit-positive Horn systems [5],
where m and n respectively denote the number of variables and inequalities in the system.

In this paper, we study certifying algorithms for LP problems with gainfree Leontief
substitution systems. Recently, much attention has been paid to certifying algorithms in
software engineering; see [22] for a survey. Intuitively, an algorithm is called certifying if it
produces not only an answer but also a certificate with which we can easily confirm that the
answer is correct. For the shortest s-t path problem with positive edge length, the potential
of vertices (i.e., distances from s) is a certificate of a shortest s-t path. Certifying algorithms
have great advantages in practice because many commercial programs are reported to contain
bugs [22]. Certifying algorithms have been proposed for various problems in mathematical
optimization and computer science [3, 6, 7, 10, 12, 17, 20, 23, 24, 27, 29] in the past few decades.

Let us briefly summarize certifying algorithms related to gainfree Leontief substitution
systems. Standard LP solvers output a certificate of the optimality of an optimal solution;
however, no combinatorial and strongly polynomial time algorithm for general LP problems
is known and algorithms that work for special types of LP problems have been extensively
studied. We first note that the well-known Bellman-Ford algorithm for the shortest path
problem allowing negative edge length can be regarded as a certifying algorithm for the
feasibility of DC systems. In fact, the algorithm computes a feasible solution which correspond
to the potential of the associated graph G if it is feasible, and a minimal infeasible subsystem
that corresponds to a negative cycle in G if it is infeasible. This result was extended to the
unit-two-variable-per-inequality (UTVPI) systems, where a system is called unit-two-variable-

2 The unit-positive matrices coincide with the transposes of integral gainfree Leontief matrices considered
in [16], since in [16] any positive element of the matrices is assumed to be one.

K. Kimura and K. Makino 47:3

per-inequality if each inequality is of the form ±xi ± xj ≤ c for some integer c. Miné [25]
proposed a certifying algorithm for the feasibility for UTVPI systems by transforming such
systems to DC systems. Therefore, the feasibility for the systems admits combinatorial
O(mn) certifying algorithms. Gupta [15] reported that a combinatorial certifying algorithm
exists for the feasibility for unit Horn systems with nonpositivity constraints on variables,
and mentioned that it is open whether the feasibility problem admits combinatorial certifying
algorithms when the systems are unit Horn (without nonpositivity constraints) and unit-
positive Horn [15]. For LP problems with gainfree Leontief substitution systems, Jeroslow
et al. proposed a combinatorial O(m2n)-time certifying algorithm when it has an optimal
solution [16].

In this paper, we propose a combinatorial O(m3n)-time certifying algorithm for LP
problems with gainfree Leontief substitution systems when the LP problems have no optimal
solution, i.e., when they are unbounded or infeasible. This together with the algorithm
by Jeroslow et al. provides a combinatorial O(m3n)-time fully certifying algorithm for LP
problems with gainfree substitution systems. As a corollary of our result, we resolve the
open problem for the feasibility for unit-positive Horn systems.

Certifying infeasibility draws much attention in, e.g., the field of logic and it was open
how to make existing successive-approximation type combinatorial algorithms (e.g., [5,13,16])
certifying for a fundamental class of unit Horn systems. In those algorithms, the values
of variables are iteratively updated according to the constraints and for DC systems, it is
sufficient to store the previous edge (or constraint) that causes the value update of a variable
to obtain a certificate of infeasibility (i.e., a negative cycle). However, in unit Horn systems,
this is not enough; we have to store all the history of the value updates of the variables
to certify infeasibility. Our algorithm stores in which iteration the values of variables are
updated and how the values can be derived by the given constraints and utilizes these data
to compute a certificate of infeasibility when the system is infeasible.

Our algorithm is based on the directed hypergraph representation of Leontief substitution
systems introduced by Jeroslow et al. [16], and computes a certificate of infeasibility based
on Farkas’ lemma, called a Farkas’ certificate, which was also used by Gupta [15] for unit
Horn systems with nonpositivity constraints. Moreover, our algorithm for the dual feasibility
can be seen as an extension of the Bellman-Ford algorithm for the feasibility for DC systems.
In fact, if a DC system is given, then our algorithm finds a feasible solution if it is feasible,
and a minimal infeasible subsystem that corresponds to a negative cycle in the associated
graph if it is infeasible, which is the same as the Bellman-Ford algorithm.

The rest of the paper is organized as follows. Section 2 formally defines our problem and
introduces the same directed hypergraph representation of Leontief substitution systems as
in [16]. Section 3 provides our main algorithm, i.e., a combinatorial certifying algorithm for
LP problems with gainfree Leontief substitution systems. Section 4 concludes the paper.

2 Preliminaries

Let R, R+, and R++ denote the sets of reals, nonnegative reals, and positive reals, respectively.
For positive integers m and n, a matrix A ∈ Rm×n is called Leontief if each column contains
at most one positive entry. In this paper, it is always assumed that the positive elements of
A are all ones unless otherwise stated, since it is sufficient for our purpose as stated below.
Let A ∈ Rm×n be an m× n matrix, and let b ∈ Rm be a vector of dimension m. A linear
system of the form

Ax = b and x ∈ Rn
+

is called a Leontief substitution system if A is Leontief and b ∈ Rm
+ .

ISAAC 2023

47:4 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

In this paper, we consider the following linear programming (LP) problem:

minimize cT x

subject to Ax = b

x ∈ Rn
+,

(2)

where the constraint is a Leontief substitution system and c ∈ Rn. As stated above, we
assume throughout the paper that the positive elements of A are all ones unless otherwise
stated, since otherwise it can be obtained by scaling the variables in the LP problem (2).

We particularly focus on the subclass of LP with Leontief substitution systems satisfying
the gainfree property. To define gainfreeness, it is convenient to introduce a directed
hypergraph representation [16] of Leontief substitution systems. This representation is also
used to state our algorithms.

A directed hypergraph H is an ordered pair H = (V, E), where V is a finite set called a
vertex set and E is a set of hyperarcs. A hyperarc E ∈ E is an ordered pair (H(E), T (E)) of
its head and tail sets, where H(E), T (E) ⊆ V and H(E) ∩ T (E) = ∅. In our use, |H(E)| is
always at most one, i.e., |H(E)| ≤ 1. Hence, we denote H(E) by h(E), and when |h(E)| = 1,
we identify h(E) with the unique element in h(E), e.g., if v ∈ h(E), then we write h(E) = v.

Now, we explain how to define an associated directed hypergraph H = (V, E) from a
given LP problem with a Leontief substitution system (2). For a positive integer k, let
[k] = {1, . . . , k}. Let V = {vi | i ∈ [m]}, where vi corresponds to the ith row of A in (2)
for i ∈ [m], and let E = {Ej | j ∈ [n]}, where for each j ∈ [n] a hyperarc Ej is defined as
h(Ej) = vi if Aij = 1 for some i ∈ [m] and h(Ej) = ∅ otherwise (i.e., Aij ≤ 0 for all i ∈ [m]),
and T (Ej) = {vi ∈ V | Aij < 0}. Note that for each j ∈ [n] hyperarc Ej corresponds to
variable xj in (2). We also associate a length function ℓ : E → R to the hyperarc set E ,
where ℓ(Ej) = cj for each Ej ∈ E . Moreover, we associate a positive value to each element
of the tails of the hyperarcs in E , namely, γ :

⋃
j∈[n]({Ej} × T (Ej)) → R++ defined as

γ(Ej , vi) = −Aij (> 0) for each Ej ∈ E and vi ∈ T (Ej). Note that the directed hypergraph
is defined by matrix A and vector c (and b is irrelevant).

▶ Example 1. For the following input data, the associated directed hypergraph is drawn in
Figure 1.

A =

−(1/2) 0 1 1 0

1 −(1/3) 0 0 0
0 1 −9 0 1

−(1/3) −3 −1 0 0

 and c =

−6
5
3
−4
2

 . (3)

A directed path in directed hypergraph H from vertex v1 to vk+1 is defined by a nonempty
sequence v1E1v2E2v3 · · ·Ekvk+1, with no intermediate vertex or hyperarc repeated, such
that vi+1 = h(Ei) and vi ∈ T (Ei) for i = 1, . . . , k. A directed path from vertex v1 to vk+1 is
a directed cycle if v1 = vk+1.

Now, we are ready to define gainfreeness.

▶ Definition 2 (Gainfreeness). Let v1E1v2E2v3 · · ·Ekvk+1 be a directed cycle, where v1 = vk+1.
The gain of this directed cycle is defined by 1/

∏k
i=1 γ(Ei, vi). We term a Leontief substitution

system (and its defining matrix) gainfree if the gain of every directed cycle in the associated
directed hypergraph is at most one.

K. Kimura and K. Makino 47:5

Figure 1 The directed hypergraph representation corresponding to the input (3).

From definition, unit and unit-positive Horn matrices are transpose of gainfree Leontief
matrices.

▶ Example 3. In Example 1, the unique directed cycle of the directed hypergraph represent-
ation is v1E1v2E2v3E3v1, where each Ei corresponds to the ith column of A. The gain of
this cycle is 1/(1/2 · 1/3 · 9) = 2/3 ≤ 1. Hence, matrix A in (3) is gainfree.

Now, we recall some notion from LP theory. A vector x ∈ Rn
+ is called a feasible solution

of (2) if it satisfies the constraints in (2). An LP problem is feasible if it has a feasible solution,
and infeasible otherwise. A vector x ∈ Rn

+ is called an optimal solution of (2) if it is feasible
and cT x ≤ cT x′ for any feasible solution x′. When an LP problem has an optimal solution
x, the objective value cT x is called an optimal value. An LP problem is either feasible or
infeasible, and when it is feasible either it has an optimal solution or it is unbounded (i.e.,
its optimal value is not bounded below). Since we consider certifying algorithms, we have to
produce a certificate in each case. To state what constitutes a certificate in each case, we
recall the dual LP problem of (2):

maximize yT b

subject to yT A ≤ cT

y ∈ Rm.

(4)

To contrast, the LP problem (2) is sometimes called the primal LP problem in what follows.
The following duality theorem of LP is well-known.

▶ Theorem 4 (E.g., [28]). For the LP problem (2) and its dual problem (4), exactly one of
the following holds:

(i) both (2) and (4) have feasible solutions whose objective values are the same,
(ii) (2) is infeasible, and (4) feasible and unbounded,
(iii) (2) is feasible and unbounded, and (4) is infeasible;
(iv) both (2) and (4) are infeasible.

We regard a feasible solution as a certificate of feasibility of an LP problem. For
infeasibility we use the following lemma.

▶ Lemma 5 (E.g., [28]). The LP problem (2) is infeasible if and only if

zT A ≤ 0, zT b > 0, and z ∈ Rm (5)

is feasible. Moreover, the dual LP problem (4) is infeasible if and only if

Ar = 0, cT r < 0, and r ∈ Rn
+ (6)

is feasible.

ISAAC 2023

47:6 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

Now, we define what constitute certificates for the four possible cases in Theorem 4.

(i) Feasible solutions of (2) and (4) whose objective values are the same,
(ii) a feasible solution of (5) (called a Farkas’ certificate of infeasibility of (2)) and a feasible

solution of (4),
(iii) a feasible solution of (2) and a feasible solution of (6) (called a Farkas’ certificate of

infeasibility of (4)),
(iv) a feasible solution of (5) and a feasible solution of (6).

With those certificates, we can confirm the correctness of the output of our certifying
algorithm for solving the LP problem (2) by checking if given vectors satisfy the corresponding
linear systems. We note that for case (ii) (resp., (iii)) a feasible solution of (5) (resp., (6)) is
a direction of unboundedness.

3 Main algorithms

In this section, we provide a combinatorial certifying algorithm for LP problems with gainfree
Leontief substitution systems (2) and show the following theorem. Here, a combinatorial
algorithm consists only of additions, subtractions, multiplications, and comparisons. Recall
that m is the number of constraints and n is the number of variables in (2).

▶ Theorem 6 (Main). The LP problems with gainfree Leontief substitution systems (2) admit
a combinatorial strongly polynomial time certifying algorithm that runs in O(m3n) time.

Our algorithm extends the non-certifying algorithm in [16]. Let us first summarize the
algorithm in [16], which consists of ValueIteration and PrimalRetrieval. ValueIter-
ation determines feasibility of the dual LP problem (4). It starts from a sufficiently large
vector and iteratively compute an upper bound of the value of each variable derived from
the constraints in (4). For an LP problem with a gainfree Leontief substitution system, m

iterations are shown to be sufficient to obtain a feasible solution if the dual LP problem is
feasible. Then, feasibility of the primal LP problem (2) can be determined using the data
computed in ValueIteration, and when both primal and dual LP problems are feasible,
PrimalRetrieval computes a feasible solution of the primal LP problem. This algorithm
outputs feasible solutions of the primal and dual LP problems with the same objective values
as a certificate of primal and dual feasibility for case (i) in Theorem 4 in Section 2.

To make the algorithm in [16] also certifying for primal and dual infeasibility (i.e., for
cases (ii-iv) in Theorem 4), we modify the algorithm and add several subroutines to it. We
first modify ValueIteration to DualFeasibility (Algorithm 2). In DualFeasibility,
when the upper bound y(k) for the dual variables is updated in the kth iteration of the
for-loop starting from line 2, we store (i) variables changed in the iteration in array change(k)

and (ii) vectors r(k) that represents how an upper bound y(k) is derived from the constraint
in (4). This enables us to compute a Farkas’ certificate of dual infeasibility in FarkasCerti-
ficateOfDualInfeasibility (Algorithm 4) when the dual LP problem is infeasible. This
modification also makes our algorithm different from the one in [15]. Since the upper bound
y(m) computed in DualFeasibility contains symbol M as described below, we compute in
DualSolution (Algorithm 3) a feasible solution of the dual LP problem from y(m) when
the dual LP problem is feasible. Intuitively, if we substitute sufficiently large value for M ,
then y(m) becomes a feasible solution. Then PrimalFeasibility (Algorithm 6) determines
the feasibility of the primal LP problem (2) using the same criterion as in (ii) of Theorem
3.6 in [16]. PrimalSolution is almost the same as PrimalRetrieval in [16], however,

K. Kimura and K. Makino 47:7

the former computes a primal feasible solution even when the dual LP problem is infeasible
by running DualFeasibility for a feasible dual LP problem where c is set to 0. Finally, in
DualFeasibility we treat M as a symbol representing an “arbitrary large” number so that
we can compute a Farkas’ certificate of primal infeasibility in FarkasCertificateOfPrim-
alInfeasibility (Algorithm 8) by just taking the coefficient of M in y(m). More precisely,
for any real numbers α1, α2, β1, β2 ∈ R, we define α1M + β1 > α2M + β2 if and only if
α1 > α2 or (α1 = α2 and β1 > β2)3. In what follows, we denote by ei (resp., eE) an unit
vector of appropriate size, where its ith element (resp., its element indexed by hyperarc E)
is 1 and all other elements are 0.

For the readability, we first describe a certifying algorithm for the feasibility for the dual
of the LP problems (with gainfree Leontief substitution systems) in Subsection 3.1 and one
for the feasibility for the primal LP problems in Subsection 3.2. A proof of Theorem 6 will
be given in Subsection 3.3. Due to the space limitation, we omit proofs of most results.

3.1 A certifying algorithm for the feasibility for the dual LP problem
In this subsection, we provide a certifying algorithm for the feasibility for the dual (4) of the
LP problem with a gainfree Leontief substitution system. The main algorithm (Algorithm 1)
first calls subroutine DualFeasibility (Algorithm 2), which determines the feasibility of
the dual LP problem (4). If it is feasible, then subroutine DualSolution (Algorithm 3)
is called to compute a feasible solution of the dual LP problem; otherwise, subroutine
FarkasCertificateOfDualInfeasibility (Algorithm 4) is called to compute a Farkas’
certificate of dual infeasibility.

Algorithm 1 A combinatorial certifying algorithm for the feasibility for the dual of the
LP problems with gainfree Leontief substitution systems.

Input: A matrix A and a vector c for the constraint of the dual LP problem (4).
1 (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), nontriv(m), q, VALUE)←DualFeasibility(A, c).
2 if VALUE = true then
3 y∗ ← DualSolution(A, c, y(m)).
4 print “dual-feasible” and return y∗.
5 else
6 r∗ ← FarkasCertificateOfDualInfeasibility(A, c, y(m), r(k)(k =

0, ..., m), change(k)(k = 0, ..., m), p(k)(k = 0, ..., m)).
7 print “dual-infeasible” and return r∗.
8 end

Before going into proofs of correctness of these algorithms, we show an example how
these algorithms work. We only describe how upper bound y(k) and vector r

(k)
v are updated

in each iteration of the for-loop starting from line 2 in DualFeasibility in the example
for readability. Also, we omit the input vector b in the example, since b is irrelevant to
feasibility of the dual LP problem (4).

3 We may regard αM + β as an element (α, β) of R2 equipped with a lexicographical order, i.e., (α1, β1) >
(α2, β2) if and only if α1 > α2 or (α1 = α2 and β1 > β2). This fact was pointed out by a reviewer. We
use notation αM + β, since we substitute some value for M in our algorithm.

ISAAC 2023

47:8 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

Algorithm 2 DualFeasibility.

Input: A matrix A and a vector c for the constraint of the dual LP problem (4).
1 For each v ∈ V , y(0)(v)←M , r

(0)
v ← 0, change(0)(v)← false, p(0)(v)← ∅,

nontriv(0)(v)← false, and q(v)← 0.
2 for k = 1, . . . , m do
3 for v ∈ V do
4 if y(k−1)(v) > min

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(k−1)(u) | E ∈ E , h(E) = v

}
then

5 Choose an arbitrary
E ∈ argmin

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(k−1)(u) | E ∈ E , h(E) = v

}
.

6 y(k)(v)← ℓ(E) +
∑

u∈T (E) γ(E, u)y(k−1)(u).
7 p(k)(v)← E.
8 r

(k)
v ← eE +

∑
u∈T (E) γ(E, u)r(k−1)

u .
9 change(k)(v)← true.

10 if for every u ∈ T (E) nontriv(k−1)(u) = true (this includes the case that
T (E) = ∅) then

11 nontriv(k)(v)← true and q(v)← k.
12 else
13 nontriv(k)(v)← nontriv(k−1)(v).
14 end
15 else
16 y(k)(v)← y(k−1)(v), p(k)(v)← ∅, r

(k)
v ← r

(k−1)
v , change(k)(v)← false, and

nontriv(k)(v)← nontriv(k−1)(v).
17 end
18 end
19 end
20 if y(m)(v) > min

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u) | E ∈ E , h(E) = v

}
for some

v ∈ V then
21 VALUE← false.
22 else if 0 > ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u) for some E ∈ E with h(E) = ∅ then

23 VALUE← false.
24 else
25 VALUE← true.
26 end
27 return (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), nontriv(m), q, VALUE).

▶ Example 7. For the following matrix A (whose transpose is unit Horn) and vector c

A =

−1 0 1 1 0 0 0
1 −1 0 0 1 0 0
0 1 −1 0 0 1 0
−1 −1 −1 0 0 0 1

 and c =

−1
0
0
0
0
0
0

,

K. Kimura and K. Makino 47:9

Algorithm 3 DualSolution.

Input: A matrix A and a vector c for the constraint of the dual LP problem (4), and
an n-dimensional vector y(m) with each entry being a linear function of M .

1 for each E ∈ E do
2 Define two integers α(E) and β(E) such that

α(E)M + β(E) = y(m)(h(E))− ℓ(E)−
∑

u∈T (E) γ(E, u)y(m)(u) , if where we
define y(m)(∅) = 0.

3 end
4 if all E ∈ E satisfy α(E) ≥ 0 then
5 λ← 0.
6 else
7 λ← max

{
β(E)

−α(E) | E ∈ E , α(E) < 0
}

.
8 end
9 Let y∗ be the vector obtained from y(m) by substituting λ for M .

10 return y∗.

y(0) = (M, M, M, M)T and r
(0)
vi = 0 for i = 1, 2, 3, 4.

Iteration 1: y(1) = (0, 0, 0, 0)T and r
(1)
vi = ei+3 (i = 1, 2, 3, 4).

Iteration 2: y(2) = (0,−1, 0, 0)T and r
(2)
v2 = e1 + e4 + e7.

Iteration 3: y(3) = (0,−1,−1, 0)T and r
(3)
v3 = e1 + e2 + e4 + 2e7.

Iteration 4: y(4) = (−1,−1,−1, 0)T and r
(4)
v1 = e1 + e2 + e3 + e4 + 3e7.

Now, the first inequality is violated by y(4) as (−1, 0, 1,−1)y(4) = 0 > −1. Then, by running
FarkasCertificateOfDualInfeasibility, we have r∗ = r

(5)
v2 − r

(2)
v2 = e1 + e2 + e3 + 3e7.

Here, Ar∗ = (0, 0, 0, 0)T and cT r∗ = −1. Hence, r∗ is a Farkas’ certificate of infeasibility of
the dual LP problem (4).

In the remainder of this subsection, we will prove correctness of Algorithm 1. We show
correctness of subroutines DualFeasibility, DualSolution4, and FarkasCertific-
ateOfDualInfeasibility, and show the following proposition.

▶ Proposition 8. Algorithm 1 is a combinatorial strongly polynomial time certifying algorithm
that runs in O(m3n) time for the feasibility for the dual (4) of the LP problem with a gainfree
Leontief substitution system.

To show Proposition 8, we first deal with the case where Algorithm 1 prints “dual-feasible”
(or, equivalently, DualFeasibility returns true) in Lemma 9 below. Then, we deal with the
case where Algorithm 1 prints “dual-infeasible” (or, equivalently, DualFeasibility returns
false) in Lemma 10 below.

▶ Lemma 9. If DualFeasibility returns true, then the dual LP problem (4) is feasible
and DualSolution outputs a feasible solution to it.

Proof. We show that the output y∗ of DualSolution is a feasible solution of the dual LP
problem (4). We divide the proof into cases according to the conditions in the definition of λ

in DualSolution.

4 DualSolution uses a division, however, we can avoid the division by using ValueIteration in [16] to
obtain a feasible dual solution.

ISAAC 2023

47:10 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

Algorithm 4 FarkasCertificateOfDualInfeasibility.

Input: A matrix A and a vector c for the constraint of the dual LP problem (2),
y(m), and r(k), change(k), and p(k) for k = 0, ..., m.

1 if y(m)(v) > min
{

ℓ(E) +
∑

u∈T (E) γ(E, u)y(m)(u) | E ∈ E , h(E) = v
}

for some
v ∈ V then

2 Choose one v ∈ V such that
y(m)(v) > min

{
ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u) | E ∈ E , h(E) = v

}
.

3 Choose an arbitrary E ∈ E with h(E) = v that minimizes
ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u).

4 wm+1 ← v.
5 r

(m+1)
wm+1 ← eE +

∑
u∈T (E) γ(E, u)r(m)

u .
6 E(m+1) ← E.
7 /* Find a cycle */
8 for k = m + 1, . . . , 2 do
9 Choose an arbitrary u ∈ T (E(k)) such that change(k−1)(u) = true.

10 wk−1 ← u.
11 E(k−1) ← p(k−1)(wk−1).
12 if wk−1 = wq for some q ≥ k then
13 t← q.
14 s← k − 1.
15 Break.
16 end
17 end
18 r∗ ← r

(t)
wt − r

(s)
ws .

19 return r∗.
20 else
21 Choose one E ∈ E with h(E) = ∅ such that 0 > ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u).

22 r∗ ← eE +
∑

u∈T (E) γ(E, u)r(m)
u .

23 return r∗.
24 end

Fix E ∈ E . Note that we have

y(m)(h(E)) ≤ ℓ(E) +
∑

u∈T (E)

γ(E, u)y(m)(u),

since the conditions of “if ” and “else if ” in lines 20 and 22, respectively, are false in
DualFeasibility, where we define y(m)(∅) = 0. Hence, we have α(E)M + β(E) ≤ 0. It
follows that α(E) ≤ 0. If α(E) = 0, then β(E) ≤ 0 and y∗ satisfy the constraint in the dual
LP problem (4) corresponding to E. If α(E) < 0, then y∗ also satisfies the inequality in the
dual LP problem (4) corresponding to E, since λ ≥ β(E)

−α(E) by definition. This completes the
proof. ◀

Next, we treat the case where DualFeasibility returns false and show the following.

▶ Lemma 10. If DualFeasibility returns false, then the dual LP problem (4) is infeas-
ible and FarkasCertificateOfDualInfeasibility returns a Farkas’ certificate of dual
infeasibility.

K. Kimura and K. Makino 47:11

The proof of Lemma 10 is the most technical part of our results. Intuitively, when Dual-
Feasibility returns false, we can find a “negative cycle” as in the case of difference constraint
(DC) systems. Here, the gainfree property ensures that such a negative cycle, together with
paths to the tails of hyperarcs in the cycle, corresponds to an infeasible subsystem of (4). The
vectors r

(k)
v store how the negative cycle is derived from constraints in (4) and help to compute

such a subsystem (with multiplicity) in FarkasCertificateOfDualInfeasibility.
We first treat the case where the “if ” condition in line 20 is false and the “else if ”

condition in line 22 is true in DualFeasibility.

▶ Lemma 11. If DualFeasibility returns false as the “if ” condition in line 20 is false
and the “else if ” condition in line 22 is true, then the dual LP problem (4) is infeasible and
FarkasCertificateOfDualInfeasibility returns a Farkas’ certificate of dual infeasibility.

To show this lemma, we need some auxiliary claims, which can be shown by mathematical
induction on k.

▷ Claim 12. In the end of DualFeasibility, for all k ∈ {1, . . . , m} and v ∈ V , y(k)(v)
contains M if and only if nontriv(k)(v) = false. Moreover, if y(k)(v) contains M , the coefficient
of M is positive for all k = 1, . . . , m and v ∈ V .

▷ Claim 13. In the end of DualFeasibility, for all k ∈ {1, . . . , m} and v ∈ V , we have
Ar

(k)
v ≤ ev, r

(k)
v ≥ 0, and cT r

(k)
v equals the constant term of y(k)(v). If nontriv(k)(v) = true,

then Ar
(k)
v = ev and cT r

(k)
v = y(k)(v).

Proof of Lemma 11. We show that r∗ returned by FarkasCertificateOfDualInfeas-
ibility is actually a Farkas’ certificate of dual infeasibility, i.e., (i) r∗ ≥ 0, (ii) Ar∗ = 0, and
(iii) cT r∗ < 0 (see Lemma 5).

For (i), from Claim 13, we have that r∗(= eE +
∑

u∈T (E) γ(E, u)r(m)
u) is a sum of

nonnegative vectors. Hence, r∗ ≥ 0.
For (ii), observe that to satisfy 0 > ℓ(E) +

∑
u∈T (E) γ(E, u)y(m)(u), y(m)(u) must not

contain M for each u ∈ T (E), since otherwise the right-hand side of the inequality contains
M with a positive coefficient from Claim 12 and thus greater than zero. Hence, for each
u ∈ T (E) nontriv(m)(u) = true from Claim 12, implying that Ar

(m)
u = eu from Claim 13.

Therefore, we have

Ar∗ = AeE +
∑

u∈T (E)

γ(E, u)Ar(m)
u = −

∑
u∈T (E)

γ(E, u)eu +
∑

u∈T (E)

γ(E, u)eu = 0.

For (iii), for each u ∈ T (E) we have cT r
(m)
u = y(m)(u) from Claim 13 since nontriv(m)(u) =

true as shown above. Hence, we have cT r∗ = cT eE +
∑

u∈T (E) γ(E, u)cT r
(m)
u = ℓ(E) +∑

u∈T (E) γ(E, u)y(m)(u) < 0.

Therefore, r∗ is a Farkas’ certificate of dual infeasibility and by Lemma 5 the dual LP
problem (4) is infeasible. ◀

We then deal with the case where the “if ” condition in line 20 is true in DualFeasibility.

▶ Lemma 14. If DualFeasibility returns false as the “if ” condition in line 20 is true,
then the dual LP problem (4) is infeasible and FarkasCertificateOfDualInfeasibility
returns a Farkas’ certificate of the dual infeasibility.

To show Lemma 14, we need further auxiliary claims.

ISAAC 2023

47:12 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

▷ Claim 15. In FarkasCertificateOfDualInfeasibility, for each k = m+1, m, . . . , s+1,
there exists u ∈ T (E(k)) such that change(k−1)(u) = true.

Claim 15 implies the following claim.

▷ Claim 16. In FarkasCertificateOfDualInfeasibility, we can always obtain a cycle.

The following claim uses the gainfree property of the LP problem (2).

▷ Claim 17. In the end of FarkasCertificateOfDualInfeasibility, for any s+1 ≤ k ≤ t

and any u ∈ T (E(k)) \ {wk−1}, we have nontriv(k−1)(u) = true.

Now, we are ready to prove Lemma 14.

Proof of Lemma 14. We show that r∗ is actually a Farkas’ certificate of dual infeasibility,
i.e., (i) r∗ ≥ 0, (ii) Ar∗ = 0, and (iii) cT r∗ < 0. Due to page limitation, we only prove (ii).
For (ii), recall that for any s+1 ≤ k ≤ t and any u ∈ T (E(k))\{wk−1}, we have Ar

(k−1)
u = eu

from Claims 13 and 17. Moreover, we have AeE(k) = eh(E(k)) −
∑

u∈T (E(k)) γ(E(k), u)eu.
Hence, for each s + 1 ≤ k ≤ t,

Ar(k)
wk

= A(eE(k) +
∑

u∈T (E(k))

γ(E(k), u)r(k−1)
u)

= eh(E(k)) −
∑

u∈T (E(k))

γ(E(k), u)eu + A(
∑

u∈T (E(k))

γ(E(k), u)r(k−1)
u)

= ewk
+

∑
u∈T (E(k))

γ(E(k), u)(Ar(k−1)
u − eu)

= ewk
+

∑
u∈T (E(k))\{wk−1}

γ(E(k), u)(Ar(k−1)
u − eu)

+ γ(E(k), wk−1)(Ar
(wk−1)
k−1 − ewk−1)

= ewk
+ γ(E(k), wk−1)(Ar

(wk−1)
k−1 − ewk−1).

Namely, we have Ar
(k)
wk − ewk

= γ(E(k), wk−1)(Ar
(wk−1)
k−1 − ewk−1). Therefore, we have

Ar(t)
wt
− ewt

= γ(E(t), wt−1)(Ar(t−1)
wt−1

− ewt−1) = · · · =
t∏

k=s+1
γ(E(k), wk−1)(Ar(s)

ws
− ews

).

Hence, we have

Ar∗ = A(r(t)
wt
− r(s)

ws
)

= ewt +
t∏

k=s+1
γ(E(k), wk−1)(Ar(s)

ws
− ews)−Ar(s)

ws

= ewt +
(

t∏
k=s+1

γ(E(k), wk−1)− 1
)

Ar(s)
ws
−

t∏
k=s+1

γ(E(k), wk−1)ews
.

Now, if nontriv(t)(wt) = true, we can show that nontriv(s)(ws) = true. Hence, Ar
(s)
ws = ews

by Claim 13. Therefore, we have

K. Kimura and K. Makino 47:13

ewt
+
(

t∏
k=s+1

γ(E(k), wk−1)− 1
)

Ar(s)
ws
−

t∏
k=s+1

γ(E(k), wk−1)ews

= ewt
+ (

t∏
k=s+1

γ(E(k), wk−1)− 1)ews
−

t∏
k=s+1

γ(E(k), wk−1)ews

= ewt − ews = 0,

where the last equality holds since wt = ws. If nontriv(t)(wt) = false, we can show that∏t
k=s+1 γ(E(k), wk−1) = 1. Therefore, we have

ewt
+
(

t∏
k=s+1

γ(E(k), wk−1)− 1
)

Ar(s)
ws
−

t∏
k=s+1

γ(E(k), wk−1)ews

= ewt − ews = 0.

In either case, we have Ar∗ = 0. ◀

Combining Lemma 11 and Lemma 14, we obtain Lemma 10.
Now, we are ready to show Proposition 8.

Proof of Proposition 8. Note that subroutines DualFeasibility, DualSolution, and
FarkasCertificateOfDualInfeasibility constitute a certifying algorithm for the feasib-
ility for the dual LP problem (4) (Algorithm 1). The correctness of this algorithm follows
from Lemmas 9, 11, and 14.

Now, we analyze the running time of the algorithm. The most time-consuming part
of the algorithm is the for-loop from line 2 to 19 in DualFeasibility. This for-loop
has m iterations, and O(mn) operations for computing r

(k)
v each v ∈ V in each iteration.

Hence, it takes O(m3n) time. Moreover, since in each of the m iterations the numbers glow
O(max(maxi,j(Aij), maxi(bi), maxj(cj)) · n) time, the bit-lengths of the numbers appearing
during the algorithm can be bounded by a polynomial in the size of the input. Hence, the
algorithm is a strongly polynomial time one. ◀

3.2 A certifying algorithm for the feasibility for the primal LP problem
In this subsection, we provide a certifying algorithm for the feasibility for the primal LP
problem (2) with a gainfree Leontief substitution system, using the data computed in Dual-
Feasibility. More precisely, we show that subroutines PrimalFeasibility (Algorithm 6),
PrimalSolution (Algorithm 7), and FarkasCertificateOfPrimalInfeasibility (Al-
gorithm 8), together with DualFeasibility, constitute a certifying algorithm for the
feasibility for the primal LP problem (2) (Algorithm 5). PrimalFeasibility determines
feasibility of the primal LP problem (2) using the same criterion as in (ii) of Theorem
3.6 in [16]. PrimalSolution is similar to PrimalRetrieval in [16]; however, Prim-
alSolution also computes a primal feasible solution when the dual LP problem is infeasible.
FarkasCertificateOfPrimalInfeasibility returns a Farkas’ certificate of the primal
infeasibility, where the gainfree property is again crucial for the correctness.

The following example shows how these algorithms work.

▶ Example 18. Recall Example 7 in Subsection 3.1. In this example, we have nontriv(m)(v) =
true for each v ∈ V and PrimalFeasibility(b, nontriv(m)) = true for any b(≥ 0). Hence,
PrimalSolution is called in Algorithm 5. As the dual LP problem is infeasible, DualFeas-
ibility(A, 0) is called in PrimalSolution and in particular q = (1, 1, 1, 1)T is obtained.

ISAAC 2023

47:14 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

Algorithm 5 Combinatorial certifying algorithm for the feasibility for the primal LP
problems with gainfree Leontief substitution systems.

Input: A matrix A and vectors b and c for the primal LP problem (2).
1 (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), nontriv(m), q, VALUE)←DualFeasibility(A, c).
2 if PrimalFeasibility(b, nontriv(m)) = true then
3 x∗ ← PrimalSolution(A, b, nontriv(m), p(k)(k = 0, ..., m), q, VALUE).
4 print “primal-feasible” and return x∗.
5 else
6 z∗ ← FarkasCertificateOfPrimalInfeasibility(y(m), nontriv(m)).
7 print “primal-infeasible” and return z∗.
8 end

Then in the while-loop in PrimalSolution variables x∗ and f are updated as follows.
Initially, x∗ = 0 and f = (b1, b2, b3, b4)T . First, we may choose v1 according to q and since
p(1)(v1) = E4, x∗(E4) = b1 and f remains unchanged. Then we may choose v2 and since
p(1)(v2) = E5, x∗(E5) = b2 and f remains unchanged. Then we may choose v3 and since
p(1)(v3) = E6, x∗(E6) = b3 and f remains unchanged. Finally, we choose v4 and since
p(1)(v4) = E7, x∗(E7) = b4. Then we obtain a feasible solution x∗ = (0, 0, 0, b1, b2, b3, b4)T of
the primal LP problem (2).

Algorithm 6 PrimalFeasibility.

Input: A vector b and nontriv(m).
1 if b(v) = 0 for all v with nontriv(m)(v) = false then
2 return true.
3 else
4 return false.
5 end

Now, we show correctness of subroutines PrimalFeasibility, PrimalSolution, and
FarkasCertificateOfPrimalInfeasibility, and show the following proposition.

▶ Proposition 19. Algorithm 5 is a combinatorial strongly polynomial time certifying al-
gorithm that runs in O(m3n) time for the feasibility for the primal LP problem (2) with a
gainfree Leontief substitution system.

To show Proposition 19, we use the following lemmas.

▶ Lemma 20. If PrimalFeasibility returns true, then the primal LP problem (2) is
feasible and PrimalSolution returns a feasible solution of (2).

▶ Lemma 21. If PrimalFeasibility returns false, then the primal LP problem (2) is
infeasible and FarkasCertificateOfPrimalInfeasibility returns a Farkas’ certificate of
the primal infeasibility.

Proof of Proposition 19. Note that subroutines PrimalFeasibility, PrimalSolution,
and FarkasCertificateOfPrimalInfeasibility, together with DualFeasibility, con-
stitute a certifying algorithm for the feasibility for the primal LP problem (2) (Algorithm 5).
Correctness of this algorithm follows from Lemmas 20 and 21.

K. Kimura and K. Makino 47:15

Algorithm 7 PrimalSolution.

Input: A matrix A and a vector b for the constraint of the primal LP problem (2),
and nontriv(m), p(k)(k = 0, ..., m), q, VALUE.

1 if VALUE = false then
2 (y(m), r(k)(k = 0, ..., m), change(k)(k = 0, ..., m), p(k)(k =

0, ..., m), q, VALUE)←DualFeasibility(A, 0).
3 end
4 For each E ∈ E , x∗(E)← 0, Ṽ ← {i ∈ V | nontriv(m)(i) = true}, and for each v ∈ V ,

f(v)← b(v).
5 while Ṽ ̸= ∅ do
6 Choose an arbitrary v ∈ Ṽ with maximum q(v).
7 E ← p(q(v))(v).
8 x∗(E)← f(v).
9 f(u)← f(u) + γ(E, u)x(E) for each u ∈ T (E).

10 Ṽ ← Ṽ \ {v}.
11 end
12 return x∗.

Algorithm 8 FarkasCertificateOfPrimalInfeasibility.

Input: A vector y(m) and nontriv(m).
1 for each v ∈ V do
2 if nontriv(m)(v) = true then
3 z∗(v)← 0.
4 else
5 z∗(v)← the coefficient of M in y(m)(v).
6 end
7 end
8 return z∗.

Now, we analyze the running time of the above algorithm. The most time-consuming part
of is DualFeasibility, which runs in O(m3n) time as shown in the proof of Proposition 8.
This completes the proof. ◀

3.3 Proof of the main theorem (Theorem 6)

Combining the results in Subsections 3.1 and 3.2, we can show our main theorem.

Proof of Theorem 6. From Theorem 4, Algorithms 1 and 5 constitute a certifying algorithm
for solving the LP problem. Correctness and the running time of the algorithm follow from
Propositions 8 and 19. ◀

Finally, the following example shows that gainfreeness is necessary for convergence of
the for-loop from line 2 to 19 in DualFeasibility for a feasible dual LP problem of an LP
problem with a Leontief substitution system.

ISAAC 2023

47:16 Certifying Algorithm for LP with Gainfree Leontief Substitution Systems

▶ Example 22. For the following matrix A (which is Leontief but not gainfree) and vector c

A =
(

1 −1
−(1/2) 1

)
and c =

(
0
0

)
,

it is clear that (0, 0)T is a feasible solution of the dual LP problem (4). However, one
can see that y(0) = (M, M)T , y(1) = ((1/2)M, M)T , y(2) = ((1/2)M, (1/2)M)T , y(3) =
((1/4)M, (1/2)M)T , y(3) = ((1/4)M, (1/4)M)T , and so on, and the for-loop from line 2 to
19 in DualFeasibility does not converge in a finite number of iterations.

4 Conclusion

We proposed a combinatorial strongly polynomial time certifying algorithm for the LP
problems with gainfree Leontief substitution systems. Since the dual LP problems with
gainfree Leontief substitution systems contains the feasibility for unit-positive Horn systems,
we resolved the open questions raised in [15].

An interesting future direction would be to make other non-certifying algorithms certifying.
A candidate would be to extend our result on unit Horn systems to unit q-Horn systems,
introduced in [18]. Unit q-Horn systems include not only unit Horn systems but also unit-
two-variable-per-inequality (UTVPI) systems, and the feasibility for unit q-Horn systems is
solvable in polynomial time [18]. Furthermore, a certifying algorithm for the feasibility for
UTVPI systems is known [25]. Therefore, giving a certifying algorithm for the feasibility for
unit q-Horn systems would be an interesting future work.

References
1 Ilan Adler and Steven Cosares. A strongly polynomial algorithm for a special class of linear

programs. Operations Research, 39:955–960, 1991.
2 Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
3 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry

and dominance breaking for combinatorial optimisation. In Proceedings of the 36th AAAI
Conference on Artificial Intelligence (AAAI’22), 2022.

4 Riccardo Cambini, Giorgio Gallo, and Maria Grazia Scutellà. Flows on hypergraphs. Mathem-
atical Programming, 78(2):195–217, 1997.

5 R. Chandrasekaran and K. Subramani. A combinatorial algorithm for horn programs. Discrete
Optimization, 10:85–101, 2013.

6 Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, and Mingxian Zhong. Obstructions
for three-coloring graphs with one forbidden induced subgraph. In Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1774–1783. SIAM,
2016.

7 Derek G Corneil, Barnaby Dalton, and Michel Habib. Ldfs-based certifying algorithm for
the minimum path cover problem on cocomparability graphs. SIAM Journal on Computing,
42(3):792–807, 2013.

8 Richard W. Cottle and Arthur F. Veinott, Jr. Polyhedral sets having a least element.
Mathematical Programming, 3:238–249, 1972.

9 George B. Dantzig. Optimal solution of a dynamic leontief model with substitution. Econo-
metrica, 23(3):295–302, 1955.

10 Marcel Dhiflaoui, Stefan Funke, Carsten Kwappik, Kurt Mehlhorn, Michael Seel, Elmar
Schömer, Ralph Schulte, and Dennis Weber. Certifying and repairing solutions to large lps
how good are lp-solvers? In Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 255–256, 2003.

K. Kimura and K. Makino 47:17

11 Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica Ca, 1956.
12 Loukas Georgiadis and Robert E Tarjan. Dominator tree certification and divergent spanning

trees. ACM Transactions on Algorithms (TALG), 12(1):1–42, 2015.
13 Fred Glover. A bound escalation method for the solution of integer linear programs. Cahiers

du Centre d’Etudes de Recherche Operationelle, 6(3):131–168, 1964.
14 Andrew V Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on

Computing, 24(3):494–504, 1995.
15 Pratik Bijaiprakash Gupta. A certifying algorithm for Horn constraint systems. Master’s

thesis, The University of Texas at Dallas, 2014.
16 Robert G Jeroslow, Kipp Martin, Ronald L Rardin, and Jinchang Wang. Gainfree leontief

substitution flow problems. Mathematical Programming, 57(1):375–414, 1992.
17 Haim Kaplan and Yahav Nussbaum. Certifying algorithms for recognizing proper circular-arc

graphs and unit circular-arc graphs. Discrete Applied Mathematics, 157(15):3216–3230, 2009.
18 Kei Kimura and Kazuhisa Makino. Trichotomy for integer linear systems based on their sign

patterns. Discrete Applied Mathematics, 200:67–78, 2016. doi:10.1016/j.dam.2015.07.004.
19 Kei Kimura and Kazuhisa Makino. A combinatorial certifying algorithm for linear programming

problems with gainfree leontief substitution systems. arXiv, 2023. arXiv:2306.03368.
20 Dieter Kratsch, Ross M McConnell, Kurt Mehlhorn, and Jeremy P Spinrad. Certifying al-

gorithms for recognizing interval graphs and permutation graphs. SIAM Journal on Computing,
36(2):326–353, 2006.

21 Wassily W Leontief. The structure of American economy, 1919-1939. Oxford University Press,
second edition, 1951.

22 Ross M McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, 2011.

23 Kurt Mehlhorn, Stefan Naher, and Stefan Näher. LEDA: A platform for combinatorial and
geometric computing. Cambridge university press, 1999.

24 Kurt Mehlhorn, Adrian Neumann, and Jens M Schmidt. Certifying 3-edge-connectivity.
Algorithmica, 77(2):309–335, 2017.

25 Antoine Miné. The octagon abstract domain. Higher-order and symbolic computation, 19(1):31–
100, 2006.

26 Edward F Moore. The shortest path through a maze. In Proc. Int. Symp. Switching Theory,
1959, pages 285–292, 1959.

27 Jens M Schmidt. Contractions, removals, and certifying 3-connectivity in linear time. SIAM
Journal on Computing, 42(2):494–535, 2013.

28 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
29 K Subramani and Piotr Wojciechowski. A combinatorial certifying algorithm for linear

feasibility in utvpi constraints. Algorithmica, 78(1):166–208, 2017.
30 K Subramani and James Worthington. A new algorithm for linear and integer feasibility

in horn constraints. In International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems, pages 215–229. Springer, 2011.

31 J.D. Ullman and A. Van Gelder. Efficient test for top-down termination of logical rules.
Journal of the Association for Computing Machinery, 35:345–373, 1988.

32 Hans Van Maaren and Chuangyin Dang. Simplicial pivoting algorithms for a tractable class
of integer programs. Journal of Combinatorial Optimization, 6(2):133–142, 2002.

ISAAC 2023

https://doi.org/10.1016/j.dam.2015.07.004
https://arxiv.org/abs/2306.03368

Reconfiguration of the Union of Arborescences
Yusuke Kobayashi #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Ryoga Mahara #

Department of Mathematical Informatics, University of Tokyo, Japan

Tamás Schwarcz #

MTA-ELTE Momentum Matroid Optimization Research Group, Department of Operations
Research, ELTE Eötvös Loránd University, Budapest, Hungary

Abstract
An arborescence in a digraph is an acyclic arc subset in which every vertex except a root has exactly
one incoming arc. In this paper, we show the reconfigurability of the union of k arborescences for
fixed k in the following sense: for any pair of arc subsets that can be partitioned into k arborescences,
one can be transformed into the other by exchanging arcs one by one so that every intermediate arc
subset can also be partitioned into k arborescences. This generalizes the result by Ito et al. (2023),
who showed the case with k = 1. Since the union of k arborescences can be represented as a common
matroid basis of two matroids, our result gives a new non-trivial example of matroid pairs for which
two common bases are always reconfigurable to each other.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Combinatorial optimization

Keywords and phrases Arborescence packing, common matroid basis, combinatorial reconfiguration

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.48

Related Version Full Version: https://arxiv.org/abs/2304.13217

Funding This work was supported by the Research Institute for Mathematical Sciences, an Interna-
tional Joint Usage/Research Center located in Kyoto University and by the Lendület Programme of
the Hungarian Academy of Sciences – grant number LP2021-1/2021.
Yusuke Kobayashi: Yusuke Kobayashi was supported by JSPS KAKENHI Grant Numbers
JP20H05795, JP20K11692, and JP22H05001.
Tamás Schwarcz : Tamás Schwarcz was supported by the ÚNKP-22-3 New National Excellence
Program of the Ministry for Culture and Innovation from the source of the National Research,
Development and Innovation Fund.

Acknowledgements The authors thank members of the project “Fusion of Computer Science, Engin-
eering and Mathematics Approaches for Expanding Combinatorial Reconfiguration” for discussion
on this topic. The authors are grateful to András Frank for bringing the paper [1] to their attention.

1 Introduction

1.1 Reconfigurability of Common Bases of Matroids

Exchanging a pair of elements, i.e., adding one element to a set and removing another element
from it, is a fundamental operation in matroid theory. The basis exchange axiom for matroids
implies that, for any pair of bases of a matroid, one can be transformed into the other by
repeatedly exchanging pairs of elements so that all the intermediate sets are also bases. That
is, the basis family of a matroid is connected with respect to element exchanges. This is an
important property of matroid basis families that is used in various contexts, e.g., it is a key
to show the validity of a local search algorithm for finding a maximum weight basis.

© Yusuke Kobayashi, Ryoga Mahara, and Tamás Schwarcz;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 48; pp. 48:1–48:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yusuke@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:mahara@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-4471-7914
mailto:tamas.schwarcz@ttk.elte.hu
https://orcid.org/0000-0003-0373-7414
https://doi.org/10.4230/LIPIcs.ISAAC.2023.48
https://arxiv.org/abs/2304.13217
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Reconfiguration of the Union of Arborescences

In contrast to matroid basis families, a family of common bases of two matroids does not
necessarily enjoy this property. More precisely, for two matroids M1 and M2 over a common
ground set, the following condition, which we call Reconfigurability of Common Bases (RCB),
does not necessarily hold.

(RCB) For any pair of common bases B and B′ of two matroids M1 and M2, there exists a
sequence of common bases B0, B1, . . . , Bℓ such that B0 = B, Bℓ = B′, Bi is a common
basis, and |Bi−1 \ Bi| = |Bi \ Bi−1| = 1 for each i ∈ {1, 2, . . . , ℓ}.

As an example, suppose that G is a cycle of length four, which has exactly two perfect
matchings. Since G is a bipartite graph, the family of all the perfect matchings in G can be
represented as a family of common bases of two matroids, and we see that (RCB) does not
hold in this setting.

On the other hand, there are some special cases satisfying (RCB). When M1 is a graphic
matroid and M2 is the dual matroid of M1, it is known that (RCB) holds [10]. A conjecture
by White [28] that (RCB) holds when M1 is an arbitrary matroid and M2 is its dual has
been open for more than 40 years. The conjecture was verified for strongly base orderable
matroids [21] and for sparse paving matroids [4]. Recently, the conjecture was settled for
split matroids [3], a large class containing paving matroids as well.

Another special case with property (RCB) is the family of all arborescences in a digraph.
For a digraph D = (V, A) with a specified vertex r ∈ V called a root, an r-arborescence
is an acyclic arc subset of A in which every vertex in V \ {r} has exactly one incoming
arc. When the root vertex is not specified, it is simply called an arborescence. We see that
an r-arborescence (or an arborescence) is represented as a common basis of the graphic
matroid corresponding to the acyclic constraint and the partition matroid corresponding to
the indegree constraint. It is shown by Ito et al. [17] that the family of all arborescences (or
r-arborescences) in a digraph satisfies (RCB).

1.2 Our Results

In this paper, we study the union of k arc-disjoint r-arborescences, where k is a fixed positive
integer. For a digraph D = (V, A) and a root r ∈ V , let Fk,r ⊆ 2A denote the set of all arc
subsets that can be partitioned into k arc-disjoint r-arborescences. It is known that Fk,r

is represented as the common bases of two matroids M1 and M2, where M1 is the union
of k graphic matroids and M2 is the direct sum of uniform matroids corresponding to the
indegree constraint; see [26, Corollary 53.1c]. The main contribution of this paper is to show
that such a pair of M1 and M2 satisfies property (RCB). Formally, our main result is stated
as follows.

▶ Theorem 1. Let D = (V, A) be a digraph with a root r ∈ V and let k be a positive integer.
Let Fk,r ⊆ 2A denote the family of all arc subsets that can be partitioned into k arc-disjoint
r-arborescences. For any S, T ∈ Fk,r, there exists a sequence T0, T1, . . . , Tℓ such that T0 = S,
Tℓ = T , Ti ∈ Fk,r for i ∈ {0, 1, . . . , ℓ}, and |Ti−1 \ Ti| = |Ti \ Ti−1| = 1 for i ∈ {1, 2, . . . , ℓ}.
Furthermore, such a sequence can be found in polynomial time.

We also prove the analogue of Theorem 1 in the case when a feasible arc set is the union
of k arc-disjoint arborescences that may have distinct roots. Formally, our result is stated as
follows and will be discussed in Section 4.

Y. Kobayashi, R. Mahara, and T. Schwarcz 48:3

-- -

-

-
-

-- -

-

-
-

-- -

-

-
-

𝑟 𝑟 𝑟

𝐷 = (𝑉, 𝐴) 𝑆 𝑇

-- -

-

-
-
𝑟

𝑇!

-- -

-

-
-
𝑟

𝑇"

Figure 1 The leftmost figure represents a digraph D = (V, A) with a root r ∈ V . In each
figure, the union of thick black and gray arc subsets is in Fk,r, where k = 2. The sequence
T0 = S, T1, T2, T3 = T is a shortest reconfiguration sequence from S to T .

▶ Theorem 2. Let D = (V, A) be a digraph and let k be a positive integer. Let Fk ⊆ 2A

denote the family of all arc subsets that can be partitioned into k arc-disjoint arborescences.
For any S, T ∈ Fk, there exists a sequence T0, T1, . . . , Tℓ such that T0 = S, Tℓ = T , Ti ∈ Fk

for i ∈ {0, 1, . . . , ℓ}, and |Ti−1 \ Ti| = |Ti \ Ti−1| = 1 for i ∈ {1, 2, . . . , ℓ}. Furthermore, such
a sequence can be found in polynomial time.

When k = 1, Theorem 1 amounts to the reconfigurability of r-arborescences, which is an
easy result; see e.g. [1, 17]. In this special case, we can update an r-arborescence S so that
|S \ T | decreases monotonically, which immediately leads to the existence of a reconfiguration
sequence of length |S \ T |. Here, the length of a reconfiguration sequence is defined as the
number of exchange operations in it. Meanwhile, such an update of S is not always possible
when k ≥ 2, that is, there exists an example in which more than |S \ T | steps are required to
transform S into T ; see Example 3. This suggests that the case with k ≥ 2 is much more
complicated than the case with k = 1.

▶ Example 3. Let k = 2, let D = (V, A) be a digraph with a root r ∈ V , and let S, T ∈ Fk,r

be as in Figure 1. Then, the shortest reconfiguration sequence between S and T has length
3, while |S \ T | = |T \ S| = 2.

We here give another remark on the relationship between the case of k ≥ 2 and the case
of k = 1. We have already mentioned that an r-arborescence is represented as a common
basis of the graphic matroid M1 and the partition matroid M2 corresponding to the indegree
constraint. Then, Fk,r is represented as a family of common bases of kM1 and kM2, where
kMi is the matroid whose bases are the unions of k disjoint bases of Mi. Since the matroids
representing Fk,r have these special forms, to prove Theorem 1, it will be natural to expect
that the case of k ≥ 2 is reduced to the case of k = 1. However, the following theorem
suggests that such an approach does not work naively; see Section 5 for the proof.

▶ Theorem 4. There exist matroids M1 = (E, B1) and M2 = (E, B2) such that the pair of
matroids (M1, M2) satisfies (RCB), while (2M1, 2M2) does not satisfy it.

1.3 Related Work
The study of packing arborescences was initiated by Edmonds [9], who showed that a digraph
D = (V, A) contains k arc-disjoint r-arborescences if and only if every non-empty subset
of V \ {r} has at least k entering arcs; see Theorem 5. Lovász [22] gave a simpler proof
for this theorem. There are several directions of extension of Edmonds’ theorem. The first
one by Frank [12] is to extend directed graphs to mixed graphs. Second, Frank, Király, and

ISAAC 2023

48:4 Reconfiguration of the Union of Arborescences

Király [13] extended directed graphs to directed hypergraphs. Third, Kamiyama, Katoh,
and Takizawa [19] and Fujishige [14] extended the problem to the packing of rooted-trees
that cover only reachable vertex set. Lastly, de Gevigney, Nguyen, and Szigeti [8] considered
the packing of rooted-trees with matroid constraints. By combining these extensions, we can
consider further generalizations, which have been actively studied in [2, 11, 15, 20, 23].

Combinatorial reconfiguration is an emerging field in discrete mathematics and theoretical
computer science. One of the central problems in combinatorial reconfiguration is the
following algorithmic question; for two given discrete structures, determine whether one can
be transformed into the other by a sequence of local changes. See surveys of Nishimura [24]
and van den Heuvel [27], and see also solvers for combinatorial reconfiguration [18].

In this framework, if we focus on common bases of two matroids, then we can consider
the following reconfiguration problem.

▶ Matroid Intersection Reconfiguration.
Input. Two matroids M1 and M2 and their common bases B and B′.
Question. Determine whether B can be transformed into B′ by exchanging a pair of elements

repeatedly so that all the intermediate sets are common bases of M1 and M2.
Although this problem seems to be a fundamental problem, its polynomial solvability is still
open. If the pair of input matroids M1 and M2 satisfies (RCB), then Matroid Intersection
Reconfiguration is trivial, i.e., the transformation is always possible. If each common basis
corresponds to a maximum matching in a bipartite graph, then the pair of M1 and M2
does not necessarily satisfy (RCB), but Matroid Intersection Reconfiguration can be solved
in polynomial time [16]. Actually, it is shown in [16] that the reconfiguration problem of
maximum matchings in non-bipartite graphs is also solvable in polynomial time.

Since the spanning trees in a graph form a matroid basis family, the reconfiguration
problem on spanning trees is trivial, i.e., the transformation is always possible. However,
the problem becomes non-trivial if we add some constraints. Reconfiguration problems on
spanning trees with additional constraints were studied in [5, 6].

1.4 Overview
We now describe an outline of the proof of Theorem 1. For feasible arc subsets S and T , in
order to show that S can be transformed into T , it suffices to show that S can be transformed
into another feasible arc subset S′ such that |S′ \ T | = |S \ T | − 1. When k = 1, such S′ can
be easily obtained from S by exchanging only one pair of arcs; see [1, 17]. However, this
is not indeed the case when k ≥ 2 as shown in Example 3, that is, several steps may be
required to obtain S′. This is the main technical difficulty of the problem.

To overcome this difficulty, we introduce and use minimal tight sets and an auxiliary
digraph. Let T \ S = {f1, . . . , fp}. For each arc fi ∈ T \ S, we consider the inclusionwise
minimal vertex set Xi subject to Xi contains fi and exactly k arcs in S enter Xi (i.e., Xi

is tight). Then, Xi gives a characterization of arcs e ∈ S that can be replaced with fi; see
Lemma 9. By using X1, . . . , Xp, we construct an auxiliary digraph H, whose definition is
given in Section 3.2. Roughly speaking, H is similar to the exchangeability digraph when
Fk,r is represented as the common bases of two matroids. Then, we can show that H has a
dicycle; see Lemma 12. If H has a self-loop, then we can obtain a desired arc subset S′ by
exchanging only one pair of arcs. Otherwise, we update the arc set S so that the length of
the shortest dicycle in H becomes shorter, which is discussed in Section 3.3. By repeating
this procedure, we obtain a desired arc subset S′ in finite steps.

The rest of the paper is organized as follows. In Section 2, we introduce some notation
and show basic results on arborescence packing. In Section 3, we give a proof of Theorem 1,

Y. Kobayashi, R. Mahara, and T. Schwarcz 48:5

which is the main part of the paper. In Section 4, we show the analogue of Theorem 1 in the
case when arborescences may have distinct roots and give a proof of Theorem 2. In Section 5,
we show that (RCB) is not closed under sums (Theorem 4) by giving a concrete example.
Finally, in Section 6, we conclude this paper by giving some remarks.

2 Preliminaries

Let D = (V, A) be a digraph that may have parallel arcs. For an arc e ∈ A, the head and tail
of e are denoted by head(e) and tail(e), respectively. For e ∈ A and X ⊆ V , we say that X

contains e if X contains both head(e) and tail(e). For F ⊆ A and X, Y ⊆ V , let ∆F (X, Y)
denote the set of arcs in F from X to Y , i.e., ∆F (X, Y) = {e ∈ F | tail(e) ∈ X, head(e) ∈ Y }.
Let ∆−

F (X) denote ∆F (V \ X, X). Let δF (X, Y) = |∆F (X, Y)| and δ−
F (X) = |∆−

F (X)|. For
v ∈ V , δ−

F ({v}) is simply denoted by δ−
F (v).

For a digraph D = (V, A) with a specified vertex r ∈ V called a root, an r-arborescence is
an acyclic arc subset T ⊆ A such that δ−

T (v) = 1 for v ∈ V \ {r} and δ−
T (r) = 0. Note that

an arborescence is often defined as a subgraph of D in the literature, but it is regarded as an
arc subset in this paper. For a positive integer k, let Fk,r ⊆ 2A denote the family of all arc
subsets that can be partitioned into k arc-disjoint r-arborescences. If r and k are clear, an
arc subset in Fk,r is simply called feasible. Note that for any feasible arc subsets S and T ,
|S| = |T | holds. Edmonds [9] gave the following characterization of feasible arc subsets.

▶ Theorem 5 (Edmonds [9]). For a digraph D = (V, A) with r ∈ V , an arc subset T ⊆ A

is in Fk,r if and only if δ−
T (v) = k for any v ∈ V \ {r}, δ−

T (r) = 0, and δ−
T (X) ≥ k for any

X ⊆ V \ {r} with X ̸= ∅.

For a feasible arc subset T ⊆ A, we say that a vertex set X ⊆ V \ {r} is tight with respect to
T if δ−

T (X) = k. It is well-known that the tight sets are closed under intersection and union
as follows.

▶ Lemma 6. Let T ⊆ A be a feasible arc set and let X, Y ⊆ V \ {r} be tight sets with respect
to T with X ∩ Y ̸= ∅. Then, X ∩ Y and X ∪ Y are tight sets with respect to T . Furthermore,
T has no arc connecting X \ Y and Y \ X.

Proof. By a simple counting argument, we obtain

k + k = δ−
T (X) + δ−

T (Y)
= δ−

T (X ∩ Y) + δ−
T (X ∪ Y) + δT (X \ Y, Y \ X) + δT (Y \ X, X \ Y)

≥ k + k + 0 + 0,

which shows that δ−
T (X ∩ Y) = δ−

T (X ∪ Y) = k and δT (X \ Y, Y \ X) = δT (Y \ X, X \ Y) = 0.
This means that X ∩Y and X ∪Y are tight and T has no arc connecting X \Y and Y \X. ◀

For a positive integer p, let [p] = {1, 2, . . . , p}. For feasible arc subsets S, T ∈ Fk,r, we
say that T0, T1, . . . , Tℓ is a reconfiguration sequence between S and T if T0 = S, Tℓ = T ,
Ti ∈ Fk,r for any i ∈ [ℓ] ∪ {0}, and |Ti−1 \ Ti| = |Ti \ Ti−1| = 1 for any i ∈ [ℓ]. We call ℓ the
length of the sequence. With this terminology, Theorem 1 is rephrased as follows: for any
S, T ∈ Fk,r, there always exists a reconfiguration sequence between S and T .

We denote a matroid on ground set E with family of bases B by M = (E, B). See [25]
for the definition and basic properties of matroids.

ISAAC 2023

48:6 Reconfiguration of the Union of Arborescences

-- -

-

-
-
𝑟

𝑆

𝑓!

𝑒"

𝑒!

𝑓"

𝑋!𝑋"

Figure 2 Minimal tight sets Xi.

-

𝑋! 𝑋

--

-

𝑒

𝑓!

Figure 3 Proof of Lemma 9.

3 Proof of Theorem 1

In this section, we prove Theorem 1. For a digraph D = (V, A) with a root r, let S, T ∈ Fk,r

be feasible arc subsets. Let S \ T = {e1, . . . , ep} and T \ S = {f1, . . . , fp}, where p = |S \ T |.
By changing the indices if necessary, we may assume that head(ei) = head(fi) for any i ∈ [p].
To prove Theorem 1, it suffices to show that we can transform S to a new feasible arc subset
S′ such that |S′ \ T | = p − 1, which is formally stated as follows.

▶ Proposition 7. Let S ⊆ A and T ⊆ A be feasible arc subsets with |S \ T | = p. Then, there
is a new feasible arc subset S′ ⊆ A such that |S′ \ T | = p − 1 and there is a reconfiguration
sequence between S and S′.

In what follows in this section, we give a proof of Proposition 7 and prove Theorem 1. In
Section 3.1, we introduce a minimal tight set Xi for each i ∈ [p] and show some properties of
Xi. In Section 3.2, we construct an auxiliary digraph using Xi and show its properties. In
Section 3.3, we show that S can be modified so that the shortest dicycle length in the auxiliary
digraph becomes shorter until the desired S′ is found. Finally, we prove Proposition 7 and
Theorem 1 in Section 3.4.

3.1 Minimal Tight Sets
For i ∈ [p], define Xi ⊆ V as the inclusionwise minimal tight vertex set with respect to S

that contains fi. For notational convenience, define Xi = V if no such tight set exists. Note
that such Xi is uniquely defined since tight sets are closed under intersection; see Lemma 6.

▶ Example 8. Let k, D = (V, A), S, and T be as in Example 3. Then, X1 and X2 are as
shown in Figure 2.

We show some properties of Xi.

▶ Lemma 9. Let i ∈ [p]. If e ∈ S satisfies head(e) = head(fi) and e is contained in Xi, then
S′ = S − e + fi is feasible.

Proof. Since δ−
S′(v) = k for any v ∈ V \ {r} and δ−

S′(r) = 0, by Theorem 5, it suffices to
show that δ−

S′(X) ≥ k holds for any X ⊆ V \ {r} with X ̸= ∅.
Assume to the contrary that there exists a nonempty subset X of V \{r} with δ−

S′(X) < k.
Since δ−

S (X) ≥ k, we obtain δ−
S (X) = k, e ∈ ∆−

S (X), and fi ̸∈ ∆−
A(X). Hence, head(e) =

head(fi) ∈ X, tail(e) ̸∈ X, and tail(fi) ∈ X (Figure 3). This shows that X is a tight set
with respect to S containing fi. By Lemma 6, Y := X ∩ Xi is also a tight set with respect
to S containing fi, which contradicts the minimality of Xi as tail(e) ∈ Xi \ Y . ◀

Y. Kobayashi, R. Mahara, and T. Schwarcz 48:7

Suppose that f ′
1 ∈ S ∩ T is an arc such that head(f ′

1) = head(f1) and f ′
1 is contained

in X1. By Lemma 9, S′ := S − f ′
1 + f1 is feasible. For each i ∈ [p], define X ′

i ⊆ V as the
counterpart of Xi associated with S′, i.e., define X ′

i as the inclusionwise minimal tight vertex
set with respect to S′ that contains fi (f ′

i if i = 1), and X ′
i = V if no such set exists.

▶ Lemma 10. Let f ′
1 and X ′

1 be as above. Then, it holds that X ′
1 = X1.

Proof. We first show X ′
1 ⊆ X1. If X1 = V , then X ′

1 ⊆ V = X1 is obvious. Otherwise,
since X1 is a tight set with respect to S that contains both f1 and f ′

1, we obtain δ−
S′(X1) =

δ−
S (X1) = k, that is, X1 is a tight set with respect to S′. This shows that X ′

1 ⊆ X1 by the
minimality of X ′

1.
We next show X ′

1 ⊇ X1. If X ′
1 = V , then X ′

1 = V ⊇ X1 is obvious. Otherwise, since
X ′

1 is a tight set with respect to S′ that contains f ′
1, we obtain k = δ−

S′(X ′
1) ≥ δ−

S (X ′
1) ≥ k,

which shows that X ′
1 is a tight set with respect to S. This shows that X ′

1 ⊇ X1 by the
minimality of X1. This completes the proof. ◀

Note that Lemma 10 shows that the roles of S and S′ are symmetric by replacing f1 with
f ′

1. The following lemma shows a relationship between Xi and X ′
i, which plays a key role in

our argument.

▶ Lemma 11. Let f ′
1 be an arc and X ′

i be the vertex set for i ∈ [p] as above. Let e ∈ S be
an arc contained in X1. For i ∈ [p], we have one of the following:
1. Xi = X ′

i,
2. Xi contains e, or
3. X ′

i contains e.

Proof. By Lemma 10, it suffices to consider the case when i ∈ [p]\{1}. If Xi = V or X ′
i = V ,

then the second or third condition holds, and so we may assume that Xi, X ′
i ⊆ V \ {r}.

Assume that Xi ̸= X ′
i. Since the roles of S and S′ are symmetric as we have seen in

Lemma 10, without loss of generality, we may assume that Xi \ X ′
i ̸= ∅. Since Xi is the

inclusionwise minimal tight set containing fi with respect to S, Xi ∩ X ′
i is not a tight set

with respect to S, i.e.,

δ−
S (Xi ∩ X ′

i) ≥ k + 1, (1)

where we note that Xi ∩ X ′
i ̸= ∅ as both Xi and X ′

i contain fi; see Figure 4 (left). We also
see that

δ−
S (X ′

i) ≤ δ−
S′(X ′

i) + 1 = k + 1, (2)

because δ−
S′(X ′

i) = k and S′ = S − f ′
1 + f1.

By (1) and (2), we obtain

k + (k + 1) ≥ δ−
S (Xi) + δ−

S (X ′
i)

= δ−
S (Xi ∩ X ′

i) + δ−
S (Xi ∪ X ′

i) + δS(Xi \ X ′
i, X ′

i \ Xi) + δS(X ′
i \ Xi, Xi \ X ′

i)
≥ (k + 1) + k + 0 + 0.

This shows that all the inequalities are tight, which yields the following:
(a) δ−

S (X ′
i) = δ−

S′(X ′
i)+1 = k+1, which implies that head(f ′

1) = head(f1) ∈ X ′
i, tail(f ′

1) ̸∈ X ′
i,

and tail(f1) ∈ X ′
i; see Figure 4 (right),

(b) Xi ∪ X ′
i is a tight set with respect to S, and

(c) S contains no arc connecting Xi \ X ′
i and X ′

i \ Xi.

ISAAC 2023

48:8 Reconfiguration of the Union of Arborescences

-

𝑋! 𝑋′!

-

-
𝑓!

𝑋′!

-

-
𝑓"

-
𝑓′"

Figure 4 Location of the arcs fi, f1, and f ′
1.

𝑋!

- -
𝑒"

-
𝑓"

𝐼#𝑋!

- -
𝑒"-

𝑓"

𝐼$

Figure 5 Definitions of I+ and I−.

By (a) and (b), Xi ∪ X ′
i is a tight set with respect to S that contains f1, and hence

X1 ⊆ Xi ∪ X ′
i, because X1 is the unique minimal tight set containing f1. Therefore, any arc

e ∈ S contained in X1 is also contained in Xi ∪ X ′
i. This together with (c) shows that such e

is contained in either Xi or X ′
i, which completes the proof. ◀

3.2 Auxiliary Digraph
For two feasible arc subsets S and T , we construct an associated auxiliary digraph H =
(VH , AH) such that VH = [p] and AH contains an arc (i, j) if Xi contains ej . Recall that
Xi ⊆ V is the inclusionwise minimal tight vertex set with respect to S that contains fi, or
Xi = V if no such tight set exists. Note that H may contain self-loops. For example, in the
case of Example 3 (see also Example 8), H forms a dicycle of length 2. In this subsection,
we show some properties of H.

▶ Lemma 12. Every vertex in H has at least one outgoing arc (possibly, a self-loop).

Proof. Assume to the contrary that i ∈ VH = [p] has no outgoing arc in H. Then, by the
definition of H, Xi does not contain ej for any j ∈ [p]. Define I+, I− ⊆ [p] as

I+ = {j ∈ [p] | head(ej) = head(fj) ∈ Xi, tail(ej) ∈ Xi, tail(fj) ̸∈ Xi},

I− = {j ∈ [p] | head(ej) = head(fj) ∈ Xi, tail(ej) ̸∈ Xi, tail(fj) ∈ Xi};

see Figure 5. Since Xi contains fi but does not contain ei, it holds that i ∈ I−. We also see
that I+ = ∅ as Xi does not contain ej for each j. Then, we obtain

k ≤ δ−
T (Xi) = δ−

S (Xi) + |I+| − |I−| = k + |I+| − |I−| ≤ k − 1,

which is a contradiction. ◀

▶ Lemma 13. If H has an arc (i, j), then Xi ∩ Xj ̸= ∅.

Proof. Since Xi contains ej and Xj contains fj , both Xi and Xj contain the vertex
head(ej) = head(fj). This shows that Xi ∩ Xj ̸= ∅. ◀

▶ Lemma 14. If H has a dipath P such that
⋃

i∈V (P) Xi contains some arc e ∈ S, then
there exists i ∈ V (P) such that Xi contains e, where V (P) denotes the set of vertices in P .

Y. Kobayashi, R. Mahara, and T. Schwarcz 48:9

-

𝑋! 𝑌 = 𝑋" ∪𝑋# ∪ ⋯∪𝑋$

- -

- -𝑒"

𝑓!

Figure 6 Location of e2 and f1.

-

𝑋!

--

-

𝑓!

𝑌 = 𝑋" ∪𝑋# ∪ ⋯∪𝑋$

𝑓′!

Figure 7 Location of f ′
1.

Proof. If Xi = V for some i ∈ V (P), then the claim is obvious. Thus, it suffices to consider
the case when Xi ̸= V for any i ∈ V (P). By renaming the indices if necessary, we may
assume that P traverses 1, 2, . . . , |V (P)| in this order. Assume to the contrary that e is not
contained in Xi for any i ∈ V (P). Let 1 ≤ i < j ≤ |V (P)| be indices that minimize j − i

subject to Xi ∪ Xi+1 ∪ · · · ∪ Xj contains e. Let Y := Xi ∪ Xi+1 ∪ · · · ∪ Xj−1. By applying
Lemmas 6 and 13 repeatedly, we see that Y is tight and Y ∩ Xj ̸= ∅. Then, Lemma 6 shows
that no arc in S connects Y \ Xj and Xj \ Y . Hence, e ∈ S has to be contained in Y or Xj ,
which contradicts the minimality of j − i. ◀

3.3 Shortest Dicycle
We see that H has a dicycle by Lemma 12. Let C be a shortest dicycle in H , and let q denote
its length. If q = 1, i.e., H contains a self-loop incident to i ∈ VH , then Lemma 9 shows that
S′ := S − ei + fi is feasible and |S′ \ T | = p − 1. Thus, in what follows, we consider the case
when q ≥ 2. This implies that Xi ≠ V for any i ∈ [p]. By renaming the indices if necessary,
we may assume that C traverses 1, 2, . . . , q ∈ VH in this order. Let Y := X2 ∪ X3 ∪ · · · ∪ Xq.
Note that both Y and X1 ∩ Y are tight with respect to S by Lemmas 6 and 13.

▶ Lemma 15. Arc e2 is not contained in Y .

Proof. Assume to the contrary that e2 is contained in Y . Then, by Lemma 14, there exists
i ∈ {2, 3, . . . , q} such that Xi contains e2. In such a case, since H contains an arc (i, 2) by
definition, H has a dicycle traversing 2, 3, . . . , i in this order, which contradicts the choice of
C. ◀

▶ Lemma 16. Arc e2 is from X1 \ Y to X1 ∩ Y .

Proof. Since head(e2) = head(f2) ∈ X2 ⊆ Y , Lemma 15 shows that tail(e2) ̸∈ Y . We also
see that e2 is contained in X1 as H contains arc (1, 2). By combining them, e2 is from X1 \ Y

to X1 ∩ Y . ◀

▶ Lemma 17. Arc f1 is from X1 \ Y to X1 ∩ Y .

Proof. By definition, f1 is contained in X1, which means that head(f1) ∈ X1 and tail(f1) ∈
X1. Furthermore, since e1 is contained in Xq as H contains arc (q, 1), we have that
head(f1) = head(e1) ∈ Xq ⊆ Y . Thus, it suffices to show that tail(f1) ̸∈ Y .

Assume to the contrary that tail(f1) ∈ Y . Then, X1 ∩ Y contains f1. Since X1 ∩ Y is a
tight set with respect to S by Lemma 6 and X1 ∩ Y ⊆ X1 \ {tail(e2)} by Lemma 16, this
contradicts the minimality of X1. ◀

See Figure 6 for the illustration of Lemmas 15–17.

▶ Lemma 18. There exists an arc f ′
1 ∈ S with head(f ′

1) = head(f1) such that either
1. f ′

1 ∈ S \ T and f ′
1 is contained in X1, or

2. f ′
1 ∈ S ∩ T and f ′

1 is contained in X1 ∩ Y .

ISAAC 2023

48:10 Reconfiguration of the Union of Arborescences

Proof. If head(e2) = head(f1), then f ′
1 := e2 satisfies the first condition. Thus, suppose

that head(e2) ̸= head(f1). Then, since δ−
S (X1 ∩ Y) = k, δ−

S (head(f1)) = k, and e2 ∈
∆−

S (X1 ∩ Y) \ ∆−
S (head(f1)) by Lemma 16, we obtain ∆−

S (head(f1)) \ ∆−
S (X1 ∩ Y) ̸= ∅.

Therefore, S has an arc f ′
1 with head(f ′

1) = head(f1) such that f ′
1 ̸∈ ∆−

S (X1 ∩ Y), which
implies that f ′

1 is contained in X1 ∩ Y (Figure 7). Such an arc f ′
1 satisfies one of the

conditions. ◀

Let f ′
1 be an arc as in Lemma 18 and let S′ := S − f ′

1 + f1, which is feasible by Lemma 9.
If f ′

1 satisfies the first condition in the lemma (i.e., f ′
1 ∈ S \ T), then |S′ \ T | = p − 1, and

hence we are done. Thus, in what follows, we consider the case when f ′
1 satisfies the second

condition in the lemma. In this case, define X ′
i ⊆ V for each i ∈ [p] as in Section 3.1. Define

the auxiliary digraph H ′ associated with S′ and T in the same way as H.

▶ Lemma 19. Suppose that f ′
1 satisfies the second condition in Lemma 18. Then, the

auxiliary digraph H ′ associated with S′ = S − f ′
1 + f1 and T has a dicycle of length at most

q − 1.

Proof. We first show that Xi ≠ X ′
i for some i ∈ [q]. Assume to the contrary that Xi = X ′

i for
each i ∈ [q]. Then, we see that Y = X2 ∪ · · · ∪ Xq is a tight set with respect to S, and we also
see that Y = X ′

2 ∪ · · · ∪ X ′
q is tight with respect to S′. This shows that δ−

S (Y) = k = δ−
S′(Y).

However, we obtain ∆−
S′(Y) = ∆−

S (Y) ∪ {f1} by Lemma 17 and by the second condition in
Lemma 18, which is a contradiction.

Therefore, Xi ≠ X ′
i for some i ∈ [q]. Let i be the minimal index with Xi ̸= X ′

i, where
we note that i ≥ 2 by Lemma 10. Since C is a shortest dicycle, H does not contain an arc
(i, 2), that is, Xi does not contain e2. As Xi ̸= X ′

i and Xi does not contain e2, by applying
Lemma 11 with e = e2, we see that X ′

i contains e2, which means that H ′ contains an arc
(i, 2). By the minimality of i, X ′

j = Xj holds for j ∈ {2, . . . , i − 1}, and hence H ′ contains a
dicycle C ′ traversing 2, 3, . . . , i in this order. Since the length of C ′ is at most q − 1, this
completes the proof. ◀

3.4 Putting Them Together
By the above lemmas, we obtain Proposition 7 as follows. Suppose that S ⊆ A and T ⊆ A

are feasible arc subsets and H is the auxiliary digraph associated with S and T . If H has a
self-loop incident to i ∈ VH , then S′ := S − ei + fi satisfies the conditions in Proposition 7.
Otherwise, let q be the length of a shortest dicycle in H and let f ′

1 ∈ S be an arc satisfying
the condition in Lemma 18. By the description just after Lemma 18 and by Lemma 19,
S′ := S − f ′

1 + f1 satisfies the conditions in Proposition 7 or the auxiliary digraph H ′

associated with S′ and T has a dicycle of length at most q − 1. Since the shortest dicycle
length decreases monotonically, by applying such a transformation of S at most q times, we
obtain a feasible arc subset S′ satisfying the conditions in Proposition 7. This completes
the proof of Proposition 7. Furthermore, by applying Proposition 7 p times, we obtain
Theorem 1. Note that since all the proofs are constructive and each Xi can be computed
by using a minimum s-t cut algorithm, the reconfiguration sequence can be computed in
polynomial time.

4 Extension to Arborescences with Distinct Roots

In this section, we prove Theorem 2. That is, we extend Theorem 1 to the case when a
feasible arc set is the union of k arc-disjoint arborescences that may have distinct roots.

Y. Kobayashi, R. Mahara, and T. Schwarcz 48:11

Proof of Theorem 2. Extend V by adding a new vertex r̂. For an arc set A′ ⊆ A satisfying
δ−

A′(v) ≤ k for each v ∈ V , let Â′ denote the arc set of the digraph obtained from A′ by
adding k − δ−

A′(v) parallel arcs from r̂ to v for each v ∈ V . Observe that A′ ∈ Fk holds if and
only if r̂ has outdegree k in Â′ and Â′ can be partitioned into k arc-disjoint r̂-arborescences
on V + r̂. By Theorem 5, the latter is equivalent to that δ−

Â′
(X) ≥ k for any X ⊆ V with

X ̸= ∅.
We consider the case first when the multisets of roots in the decompositions of S and T

into k arc-disjoint arborescences are not the same.

▶ Lemma 20. Suppose that δ−
S (v) ̸= δ−

T (v) holds for a vertex v ∈ V . Then there exist arcs
e ∈ S \ T and f ∈ T \ S such that S − e + f ∈ Fk.

Proof. Since
∑

w∈V δ−
S (w) =

∑
w∈V δ−

T (w), there is a vertex v ∈ V with δ−
S (v) < δ−

T (v).
Then there exists an arc f ∈ T \S with head(f) = v. Let X denote the unique minimal subset
of V containing f which is tight with respect to Ŝ, i.e., δ−

Ŝ
(X) = k. Note that such a tight

set exists as δ−
Ŝ

(V) = k. Since δ−
Ŝ

(w) = δ−
T̂

(w) = k for any w ∈ V and δ−
T̂

(X) ≥ k = δ−
Ŝ

(X),

∆T (X, X) = k|X| − δ−
T̂

(X) ≤ k|X| − δ−
Ŝ

(X) = ∆S(X, X).

Therefore, X contains an arc e ∈ S \ T , since it contains the arc f ∈ T \ S.
We claim that S′ = S − e + f ∈ Fk. Let u = head(e), then

Ŝ′ = Ŝ − e + (r̂, u) + f − (r̂, v).

We easily see that δ−
S′(w) ≤ k holds for any w ∈ V , as δ−

S′(v) ≤ δ−
S (v) + 1 ≤ δ−

T (v) ≤ k. Thus,
it suffices to show that δ−

Ŝ′
(Z) ≥ k holds for any nonempty subset Z ⊆ V . Assume to the

contrary that there exists a nonempty subset Z ⊆ V with δ−
Ŝ′

(Z) ≤ k − 1. Then

k ≤ δ−
Ŝ

(Z) ≤ δ−
Ŝ−e+(r̂,u)

(Z) ≤ δ−
Ŝ′

(Z) + 1 ≤ (k − 1) + 1 = k,

thus δ−
Ŝ

(Z) = k and δ−
Ŝ

(Z) = δ−
Ŝ−e+(r̂,u)

(Z) = δ−
Ŝ′

(Z) + 1. These show that Z is a tight set

with respect to Ŝ, it does not contain e, and it contains f . Since X ∩ Z is a tight set with
respect to Ŝ by Lemma 6 and X ∩ Z ⊊ X as Z does not contain e, this contradicts the
minimality of X. ◀

We turn to the proof of the theorem. By the repeated application of Lemma 20, there
exists a sequence T0, T1, . . . , Tm such that T0 = S, δ−

Tm
(v) = δ−

T (v) for any v ∈ V , Ti ∈ Fk

for i ∈ [m] ∪ {0} and |Ti−1 \ Ti| = |Ti \ Ti−1| = 1 for i ∈ [m]. By Theorem 1, there exists
a sequence T ′

m, T ′
m+1, . . . , T ′

ℓ such that T ′
m = T̂m, T ′

ℓ = T̂ , T ′
i is a subset of T̂ ′

m ∪ T̂ which
can be partitioned into k arc-disjoint r̂-arborescences on V + r̂ for i ∈ {m, m + 1, . . . , ℓ}, and
|T ′

i−1\T ′
i | = |T ′

i \T ′
i−1| = 1 for i ∈ {m+1, m+2, . . . , ℓ}. Then for any i ∈ {m+1, m+2, . . . , ℓ}

there is an arc set Ti ⊆ A such that T ′
i = T̂i, as δ−

T ′
i
(v) = k for any v ∈ V . Since T ′

i ⊆ T̂ ′
m ∪ T̂

and T ′
i can be partitioned into k arc-disjoint r̂-arborescences, r̂ has outdegree k in T ′

i ,
and Ti can be partitioned into k arc-disjoint arborescences. Therefore, Ti ∈ Fk holds for
i ∈ {m + 1, m + 2, . . . , ℓ}, hence the sequence T0, T1, . . . , Tℓ satisfies the properties required
by the theorem. ◀

ISAAC 2023

48:12 Reconfiguration of the Union of Arborescences

5 Proof of Theorem 4

In this section, we give a proof of Theorem 4, which we restate here.

▶ Theorem 4. There exist matroids M1 = (E, B1) and M2 = (E, B2) such that the pair of
matroids (M1, M2) satisfies (RCB), while (2M1, 2M2) does not satisfy it.

Proof. Consider the matroids M1 = (E, B1) and M2 = (E, B2) on ground set E =
{a, b, c1, c2, c3, d1, d2, d3} defined by their families of bases

B1 = {B ⊆ E | |B| = 3, |B ∩ {c1, c2, c3}| ≤ 1, |B ∩ {d1, d2, d3}| ≤ 1},

B2 = {B ⊆ E | |B| = 3, |B ∩ {a, c1, d1}| = 1}.

Note that M1 is the truncation of the direct sum of the uniform matroids of rank 1 on {a},
{b}, {c1, c2, c3}, and {d1, d2, d3}, while M2 is the direct sum of the uniform matroid of rank
1 on {a, c1, d1} and the uniform matroid of rank 2 on {b, c2, c3, d2, d3}.

We prove that the pair (M1, M2) satisfies (RCB). The common bases of M1 and M2 are
the sets of the form

{a, b, ci}, {a, b, dj}, {a, ci, dj}, {b, c1, dj}, {b, ci, d1}

for i, j ∈ {2, 3}. It is enough to show the existence of a reconfiguration sequence between
{b, c1, d2} and each B ∈ B1 ∩ B2. For i, j ∈ {2, 3}, consider the sequence of common bases

{b, c1, d2}, {b, c1, dj}, {a, b, dj}, {a, ci, dj}, {a, b, ci}, {b, ci, dj},

where we omit the second term for j = 2. This sequence starts from {b, c1, d2}, contains each
B ∈ B1 ∩ B2 for appropriate values of i, j ∈ {2, 3}, and |B′ \ B′′| = |B′′ \ B′| = 1 holds for
each pair of adjacent terms B′, B′′ of the sequence, thus it proves our claim.

Next we show that the matroids 2M1 = (E, B2
1) and 2M2 = (E, B2

2) do not satisfy (RCB).
Recall that 2Mi is the matroid whose bases are the unions of two disjoint bases of Mi. We
have

B2
1 = {B ⊆ E | {a, b} ⊆ B, |B ∩ {c1, c2, c3}| = 2, |B ∩ {d1, d2, d3}| = 2},

B2
2 = {B ⊆ E | |B ∩ {a, c1, d1}| = 2, |B ∩ {b, c2, c3, d2, d3}| = 4},

thus

B2
1 ∩ B2

2 = {{a, b, c1, ci, d2, d3} | i ∈ {2, 3}} ∪ {{a, b, c2, c3, d1, dj} | j ∈ {2, 3}}.

Since |B \ B′| = |B′ \ B| = 2 for any B ∈ {{a, b, c1, ci, d2, d3} | i ∈ {2, 3}} and B′ ∈
{{a, b, c2, c3, d1, dj} | j ∈ {2, 3}}, the pair (2M1, 2M2) does not satisfy (RCB). ◀

6 Concluding Remarks

In this paper, we showed the reconfigurability of the union of k arborescences for fixed k. In
other words, we showed that the pair of matroids representing the union of k arborescences
satisfies (RCB). It will be interesting to investigate whether (RCB) holds or not for other
classes of matroid pairs, e.g., White’s conjecture [28].

Another interesting topic is the length of a shortest reconfiguration sequence. For the
union of k arborescences, in the full version of this paper, we give an upper bound on
the length of a shortest reconfiguration sequence, which is slightly smaller than k|S \ T |.

Y. Kobayashi, R. Mahara, and T. Schwarcz 48:13

Meanwhile, there is an example whose shortest length is 3
2 |S \ T |, which is obtained by

combining many copies of the digraph in Example 3. It will be interesting if we can close the
gap between these bounds. It is also open whether we can find a shortest reconfiguration
sequence from S to T in polynomial time if S and T are given as input.

The length of a shortest reconfiguration sequence can be considered also for other classes
of matroid pairs. When M2 is the dual matroid of M1, Hamidoune conjectured that there
always exists a reconfiguration sequence whose length is at most the size of each common
basis (or equivalently, the rank of the matroids); see [7]. This conjecture is stronger than
White’s conjecture [28], and is open even for some special cases, e.g. when M1 is a graphic
matroid and M2 is its dual.

Polynomial solvability of Matroid Intersection Reconfiguration (see Section 1.3) is also
an interesting and challenging open problem.

References
1 Francisco Barahona and William R Pulleyblank. Exact arborescences, matchings and cycles.

Discrete Applied Mathematics, 16(2):91–99, 1987. doi:10.1016/0166-218x(87)90067-9.
2 Kristóf Bérczi and András Frank. Variations for Lovász’ submodular ideas. In Building Bridges,

pages 137–164, 2010. doi:10.1007/978-3-540-85221-6_4.
3 Kristóf Bérczi and Tamás Schwarcz. Exchange distance of basis pairs in split matroids. arXiv

preprint, 2022. arXiv:2203.01779.
4 Joseph E. Bonin. Basis-exchange properties of sparse paving matroids. Advances in Applied

Mathematics, 50(1):6–15, 2013. doi:10.1016/j.aam.2011.05.006.
5 Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira

Suzuki, and Kunihiro Wasa. Reconfiguration of spanning trees with many or few leaves.
In 28th Annual European Symposium on Algorithms (ESA 2020), pages 24:1–24:15, 2020.
doi:10.4230/LIPIcs.ESA.2020.24.

6 Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira
Suzuki, and Kunihiro Wasa. Reconfiguration of spanning trees with degree constraint or
diameter constraint. In 39th International Symposium on Theoretical Aspects of Computer
Science (STACS 2022), pages 15:1–15:21, 2022. doi:10.4230/LIPIcs.STACS.2022.15.

7 Raul Cordovil and M. Leonor Moreira. Bases-cobases graphs and polytopes of matroids.
Combinatorica, 13(2):157–165, 1993. doi:10.1007/bf01303201.

8 Olivier Durand de Gevigney, Viet-Hang Nguyen, and Zoltán Szigeti. Matroid-based packing of
arborescences. SIAM Journal on Discrete Mathematics, 27(1):567–574, 2013. doi:10.1137/
120883761.

9 Jack Edmonds. Edge-disjoint branchings. In Combinatorial algorithms, Courant Computer
Science Symposium 9, pages 91–96. Algorithmics Press, New York, 1973.

10 Martin Farber, Bruce Richter, and Herbert Shank. Edge-disjoint spanning trees: A connected-
ness theorem. Journal of Graph Theory, 9(3):319–324, 1985. doi:10.1002/jgt.3190090303.

11 Quentin Fortier, Csaba Király, Marion Léonard, Zoltán Szigeti, and Alexandre Talon. Old and
new results on packing arborescences in directed hypergraphs. Discrete Applied Mathematics,
242:26–33, 2018. doi:10.1016/j.dam.2017.11.004.

12 András Frank. On disjoint trees and arborescences. In Algebraic Methods in Graph Theory,
pages 159–169. North-Holland, Amsterdam, 1978.

13 András Frank, Tamás Király, and Zoltán Király. On the orientation of graphs and hypergraphs.
Discrete Applied Mathematics, 131(2):385–400, 2003. doi:10.1016/S0166-218X(02)00462-6.

14 Satoru Fujishige. A note on disjoint arborescences. Combinatorica, 30(2):247–252, 2010.
doi:10.1007/s00493-010-2518-y.

15 Hui Gao and Daqing Yang. Packing of maximal independent mixed arborescences. Discrete
Applied Mathematics, 289:313–319, 2021. doi:10.1016/j.dam.2020.11.009.

ISAAC 2023

https://doi.org/10.1016/0166-218x(87)90067-9
https://doi.org/10.1007/978-3-540-85221-6_4
https://arxiv.org/abs/2203.01779
https://doi.org/10.1016/j.aam.2011.05.006
https://doi.org/10.4230/LIPIcs.ESA.2020.24
https://doi.org/10.4230/LIPIcs.STACS.2022.15
https://doi.org/10.1007/bf01303201
https://doi.org/10.1137/120883761
https://doi.org/10.1137/120883761
https://doi.org/10.1002/jgt.3190090303
https://doi.org/10.1016/j.dam.2017.11.004
https://doi.org/10.1016/S0166-218X(02)00462-6
https://doi.org/10.1007/s00493-010-2518-y
https://doi.org/10.1016/j.dam.2020.11.009

48:14 Reconfiguration of the Union of Arborescences

16 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

17 Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, and Kunihiro
Wasa. Reconfiguring (non-spanning) arborescences. Theoretical Computer Science, 943:131–141,
2023. doi:10.1016/j.tcs.2022.12.007.

18 Takehiro Ito, Jun Kawahara, Yu Nakahata, Takehide Soh, Akira Suzuki, Junichi Teruyama, and
Takahisa Toda. ZDD-based algorithmic framework for solving shortest reconfiguration problems.
In Andre A. Cire, editor, Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, pages 167–183. Springer, Cham, Switzerland, 2023. doi:10.1007/
978-3-031-33271-5_12.

19 Naoyuki Kamiyama, Naoki Katoh, and Atsushi Takizawa. Arc-disjoint in-trees in directed
graphs. Combinatorica, 29(2):197–214, 2009. doi:10.1007/s00493-009-2428-z.

20 Csaba Király. On maximal independent arborescence packing. SIAM Journal on Discrete
Mathematics, 30(4):2107–2114, 2016. doi:10.1137/130938396.

21 Michał Lasoń and Mateusz Michałek. On the toric ideal of a matroid. Advances in Mathematics,
259:1–12, 2014. doi:10.1016/j.aim.2014.03.004.

22 László Lovász. On two minimax theorems in graph. Journal of Combinatorial Theory, Series
B, 21(2):96–103, 1976. doi:10.1016/0095-8956(76)90049-6.

23 Tatsuya Matsuoka and Shin-ichi Tanigawa. On reachability mixed arborescence packing.
Discrete Optimization, 32:1–10, 2019. doi:10.1016/j.disopt.2018.10.002.

24 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
a11040052.

25 James Oxley. Matroid Theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, second edition, 2011.

26 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

27 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and
Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, Cambridge, UK,
2013. doi:10.1017/CBO9781139506748.005.

28 Neil L. White. A unique exchange property for bases. Linear Algebra and its Applications,
31:81–91, 1980. doi:10.1016/0024-3795(80)90209-8.

https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2022.12.007
https://doi.org/10.1007/978-3-031-33271-5_12
https://doi.org/10.1007/978-3-031-33271-5_12
https://doi.org/10.1007/s00493-009-2428-z
https://doi.org/10.1137/130938396
https://doi.org/10.1016/j.aim.2014.03.004
https://doi.org/10.1016/0095-8956(76)90049-6
https://doi.org/10.1016/j.disopt.2018.10.002
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1016/0024-3795(80)90209-8

An Approximation Algorithm for
Two-Edge-Connected Subgraph Problem via
Triangle-Free Two-Edge-Cover
Yusuke Kobayashi #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Takashi Noguchi #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
The 2-Edge-Connected Spanning Subgraph problem (2-ECSS) is one of the most fundamental and
well-studied problems in the context of network design. We are given an undirected graph G, and
the objective is to find a 2-edge-connected spanning subgraph H of G with the minimum number of
edges. For this problem, a lot of approximation algorithms have been proposed in the literature. In
particular, very recently, Garg, Grandoni, and Ameli gave an approximation algorithm for 2-ECSS
with a factor of 1.326, which is the best approximation ratio. In this paper, under the assumption
that a maximum triangle-free 2-matching can be found in polynomial time in a graph, we give a
(1.3 + ε)-approximation algorithm for 2-ECSS, where ε is an arbitrarily small positive fixed constant.
Note that a complicated polynomial-time algorithm for finding a maximum triangle-free 2-matching
is announced by Hartvigsen in his PhD thesis, but it has not been peer-reviewed or checked in any
other way. In our algorithm, we compute a minimum triangle-free 2-edge-cover in G with the aid of
the algorithm for finding a maximum triangle-free 2-matching. Then, with the obtained triangle-free
2-edge-cover, we apply the arguments by Garg, Grandoni, and Ameli.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Mathematics of computing → Combinatorial optimization

Keywords and phrases approximation algorithm, survivable network design, minimum 2-edge-
connected spanning subgraph, triangle-free 2-matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.49

Related Version Full Version: https://arxiv.org/abs/2304.13228

Funding This work was partially supported by the joint project of Kyoto University and Toyota
Motor Corporation, titled “Advanced Mathematical Science for Mobility Society”, and by JSPS
KAKENHI Grant Numbers JP20K11692 and JP22H05001.

1 Introduction

In the field of survivable network design, a basic problem is to construct a network with
minimum cost that satisfies a certain connectivity constraint. A seminal result by Jain [13]
provides a 2-approximation algorithm for a wide class of survivable network design problems.
For specific problems among them, a lot of better approximation algorithms have been
investigated in the literature.

In this paper, we study the 2-Edge-Connected Spanning Subgraph problem (2-ECSS),
which is one of the most fundamental and well-studied problems in this context. In 2-ECSS,
we are given an undirected graph G = (V, E), and the objective is to find a 2-edge-connected
spanning subgraph H of G with the minimum number of edges. It was shown in [4, 5]
that 2-ECSS does not admit a PTAS unless P = NP. Khuller and Vishkin [14] gave a
3/2-approximation algorithm for this problem, which was the starting point of the study of
approximation algorithms for 2-ECSS. Cheriyan, Sebő, and Szigeti [1] improved this ratio to

© Yusuke Kobayashi and Takashi Noguchi;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 49; pp. 49:1–49:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yusuke@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:tnoguchi@kurims.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2023.49
https://arxiv.org/abs/2304.13228
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Two-Edge-Connected Subgraph Problem via Triangle-Free Two-Edge-Cover

17/12. Later, Hunkenschröder, Vempala, and Vetta [12] gave a 4/3-approximation algorithm,
which rectifies flaws in [22]. By a completely different approach, Sebő and Vygen [19] achieved
approximation ratio and integrality gap of 4/3. Very recently, Garg, Grandoni, and Ameli [8]
improved this ratio to 1.326 by introducing powerful reduction steps and developing the
techniques in [12].

The contribution of this paper is to present a (1.3 + ε)-approximation algorithm for
2-ECSS for any ε > 0 under the assumption that a maximum 2-matching containing no cycle
of length at most 3 (called a maximum triangle-free 2-matching) can be found in polynomial
time in a graph.

▶ Theorem 1. Assume that there exists a polynomial-time algorithm for finding a maximum
2-matching that contains no cycle of length at most 3 in a graph. Then, for any constant
ε > 0, there is a polynomial-time (1.3 + ε)-approximation algorithm for 2-ECSS.

Note that a complicated polynomial-time algorithm for finding a maximum triangle-free 2-
matching is announced by Hartvigsen [10], which indicates that the assumption in Theorem 1
holds. However, since this result has not been peer-reviewed or checked in any other way, we
have retained the assumption in Theorem 1.

Our algorithm and its analysis are heavily dependent on the well-developed arguments
by Garg, Grandoni, and Ameli [8]. In our algorithm, we first apply the reduction steps
given in [8]. Then, instead of a minimum 2-edge-cover, we compute a minimum triangle-free
2-edge-cover in the graph, which is the key ingredient in our algorithm. We show that this can
be done in polynomial time with the aid of a polynomial algorithm for finding a maximum
triangle-free 2-matching. Finally, we convert the obtained triangle-free 2-edge-cover into a
spanning 2-edge-connected subgraph by using the arguments in [8].

Our main technical contribution is to point out the utility of a maximum triangle-free
2-matching in the arguments by Garg, Grandoni, and Ameli [8].

Related Work

A natural extension of 2-ECSS is the k-Edge-Connected Spanning Subgraph problem (k-
ECSS), which is to find a k-edge-connected spanning subgraph of the input graph with
the minimum number of edges. For k-ECSS, several approximation algorithms have been
proposed, in which approximation factors depend on k [2, 6, 7]. We can also consider the
weighted variant of 2-ECSS, in which the objective is to find a 2-edge-connected spanning
subgraph with the minimum total weight in a given edge-weighted graph. The result of
Jain [13] leads to a 2-approximation algorithm for the weighted 2-ECSS, and it is still the
best known approximation ratio. For the case when all the edge weights are 0 or 1, which
is called the forest augmentation problem, Grandoni, Ameli, and Traub [9] recently gave a
1.9973-approximation algorithm. Furthermore, for the tree augmentation problem, which is
the case when 0-weight edges are connected, the approximation ratio was improved to 1.5 + ε

for any ε > 0 in a series of works by Traub and Zenklusen [20, 21]. See references in [8, 9]
for more related work on survivable network design problems.

It is well-known that a 2-matching of maximum size can be found in polynomial-time
by using a matching algorithm; see e.g., [18, Section 30]. As a variant of this problem,
the problem of finding a maximum 2-matching that contains no cycle of length at most k,
which is called the C≤k-free 2-matching problem, has been actively studied. Hartvigsen [10]
announced a polynomial-time algorithm for the C≤3-free 2-matching problem (also called
the triangle-free 2-matching problem), and Papadimitriou showed the NP-hardness for k ≥ 5
(see [3]). The polynomial solvability of the C≤4-free 2-matching problem has been open

Y. Kobayashi and T. Noguchi 49:3

for more than 40 years. The edge weighted variant of the C≤3-free 2-matching problem is
also a relevant open problem in this area, and some positive results are known for special
cases [11, 15, 16, 17]. See references in [16] for more related work on the C≤k-free 2-matching
problem.

2 Preliminaries

Throughout the paper, we only consider simple undirected graphs, i.e., every graph has
neither self-loops nor parallel edges.1 A graph G = (V, E) is said to be 2-edge-connected
if G \ {e} is connected for every e ∈ E, and it is called 2-vertex-connected if G \ {v} is
connected for every v ∈ V and |V | ≥ 3. For a subgraph H of G, its vertex set and edge set
are denoted by V (H) and E(H), respectively. A subgraph H of G = (V, E) is spanning if
V (H) = V (G). In the 2-Edge-Connected Spanning Subgraph problem (2-ECSS), we are
given a graph G = (V, E) and the objective is to find a 2-edge-connected spanning subgraph
H of G with the minimum number of edges (if one exists).

In this paper, a spanning subgraph H is often identified with its edge set E(H). Let
H be a spanning subgraph (or an edge set) of G. A connected component of H which is
2-edge-connected is called a 2EC component of H. A 2EC component of H is called an
i-cycle 2EC component if it is a cycle of length i. In particular, a 3-cycle 2EC component is
called a triangle 2EC component. A maximal 2-edge-connected subgraph B of H is called
a block of H if |V (B)| ≥ 3 and B is not a 2EC component. An edge e ∈ E(H) is called a
bridge of H if H \ {e} has more connected components than H. A block B of H is called a
leaf block if H has exactly one bridge incident to B, and an inner block otherwise.

Let G = (V, E) be a graph. For an edge set F ⊆ E and a vertex v ∈ V , let dF (v) denote
the number of edges in F that are incident to v. An edge set F ⊆ E is called a 2-matching if
dF (v) ≤ 2 for every v ∈ V , and it is called a 2-edge-cover if dF (v) ≥ 2 for every v ∈ V .2

3 Algorithm in Previous Work

Since our algorithm is based on the well-developed 1.326-approximation algorithm given by
Garg, Grandoni, and Ameli [8], we describe some of their results in this section.

3.1 Reduction to Structured Graphs
In the algorithm by Garg, Grandoni, and Ameli [8], they first reduce the problem to the
case when the input graph satisfies some additional conditions, where such a graph is called
a (5/4, ε)-structured graph. In what follows in this paper, let ε > 0 be a sufficiently small
positive fixed constant, which will appear in the approximation factor. In particular, we
suppose that 0 < ε ≤ 1/24, which is used in the argument in [8]. We say that a graph
G = (V, E) is (5/4, ε)-structured if it is 2-vertex-connected, it contains at least 2/ε vertices,
and it does not contain the following structures:

(5/4-contractible subgraph) a 2-edge-connected subgraph C of G such that every
2-edge-connected spanning subgraph of G contains at least 4

5 |E(C)| edges with both
endpoints in V (C);
(irrelevant edge) an edge uv ∈ E such that G \ {u, v} is not connected;

1 It is shown in [12] that this assumption is not essential when we consider 2-ECSS.
2 Such edge sets are sometimes called simple 2-matchings and simple 2-edge-covers in the literature.

ISAAC 2023

49:4 Two-Edge-Connected Subgraph Problem via Triangle-Free Two-Edge-Cover

(non-isolating 2-vertex-cut) a vertex set {u, v} ⊆ V of G such that G \ {u, v} has
at least three connected components or has exactly two connected components, both of
which contain at least two vertices.

The following lemma shows that it suffices to consider (5/4, ε)-structured graphs when we
design approximation algorithms.

▶ Lemma 2 (Garg, Grandoni, and Ameli [8, Lemma 2.2]). Let ε be a sufficiently small positive
constant. For α ≥ 5

4 , if there exists a polynomial-time α-approximation algorithm for 2-ECSS
on (5/4, ε)-structured graphs, then there exists a polynomial-time (α + 2ε)-approximation
algorithm for 2-ECSS.

3.2 Semi-Canonical Two-Edge-Cover
A 2-edge-cover H of G (which is identified with a spanning subgraph) is called semi-canonical
if it satisfies the following conditions.

(1) Each 2EC component of H is a cycle or contains at least 7 edges.
(2) Each leaf block contains at least 6 edges and each inner block contains at least 4 edges.
(3) There is no pair of edge sets F ⊆ H and F ′ ⊆ E \H such that |F | = |F ′| ≤ 3, (H \F)∪F ′

is a 2-edge-cover with fewer connected components than H, and F contains an edge in
some triangle 2EC component of H.

(4) There is no pair of edge sets F ⊆ H and F ′ ⊆ E \H such that |F | = |F ′| = 2, (H \F)∪F ′

is a 2-edge-cover with fewer connected components than H , both edges in F ′ connect two
4-cycle 2EC components, say C1 and C2, and F is contained in C1 ∪ C2. In other words,
by removing 2 edges and adding 2 edges, we cannot merge two 4-cycle 2EC components
into a cycle of length 8.

▶ Lemma 3 (Garg, Grandoni, and Ameli [8, Lemma 2.6]). Let ε be a sufficiently small positive
constant. Suppose we are given a semi-canonical 2-edge-cover H of a (5/4, ε)-structured
graph G with b|H| bridges and t|H| edges belonging to triangle 2EC components of H. Then,
in polynomial time, we can compute a 2-edge-connected spanning subgraph S of size at most
(13

10 + 1
30 t − 1

20 b)|H|.

▶ Remark 4. In the original statement of [8, Lemma 2.6], H is assumed to satisfy a stronger
condition than semi-canonical, called canonical. A 2-edge-cover H is said to be canonical if
it satisfies (1) and (2) in the definition of semi-canonical 2-edge-covers, and also the following
condition: there is no pair of edge sets F ⊆ H and F ′ ⊆ E \ H such that |F | = |F ′| ≤ 3 and
(H \ F) ∪ F ′ is a 2-edge-cover with fewer connected components than H. However, one can
see that the condition “canonical” can be relaxed to “semi-canonical” by following the proof
of [8, Lemma 2.6]; see the proofs of Lemmas D.3, D.4, and D.11 in [8].

4 Algorithm via Triangle-Free Two-Edge-Cover

The idea of our algorithm is quite simple: we construct a semi-canonical 2-edge-cover H with
no triangle 2EC components and then apply Lemma 3. We say that an edge set F ⊆ E is
triangle-free if there are no triangle 2EC components of F . Note that a triangle-free edge set
F may contain a cycle of length three that is contained in a larger connected component.
In order to construct a semi-canonical triangle-free 2-edge-cover, we use a polynomial-time
algorithm for finding a triangle-free 2-matching given by Hartvigsen [10].

▶ Theorem 5 (Hartvigsen [10, Theorem 3.2 and Proposition 3.4]). For a graph G, we can find
a triangle-free 2-matching in G with maximum cardinality in polynomial time.

Y. Kobayashi and T. Noguchi 49:5

Note again that, since this result has not been published as a journal paper, we have
retained the assumption in Theorem 1.

In Section 4.1, we give an algorithm for finding a minimum triangle-free 2-edge-cover with
the aid of Theorem 5. Then, we transform it into a semi-canonical triangle-free 2-edge-cover
in Section 4.2. Using the obtained 2-edge-cover, we give a proof of Theorem 1 in Section 4.3.

4.1 Minimum Triangle-Free Two-Edge-Cover
As with the relationship between 2-matchings and 2-edge-covers (see e.g. [18, Section 30.14]),
triangle-free 2-matchings and triangle-free 2-edge-covers are closely related to each other,
which can be stated as the following two lemmas.

▶ Lemma 6. Let G = (V, E) be a connected graph such that the minimum degree is at least
two and |V | ≥ 4. Given a triangle-free 2-matching M in G, we can compute a triangle-free
2-edge-cover C of G with size at most 2|V | − |M | in polynomial time.

Proof. Starting with F = M , we perform the following update repeatedly while F is not a
2-edge-cover:

Choose a vertex v ∈ V with dF (v) < 2 and an edge vw ∈ E \ F incident to v.
(i) If F ∪ {vw} contains no triangle 2EC components, then add vw to F .
(ii) Otherwise, F ∪ {vw} contains a triangle 2EC component with vertex set {u, v, w}

for some u ∈ V . In this case, choose an edge e connecting {u, v, w} and V \{u, v, w},
and add both vw and e to F .

If F becomes a 2-edge-cover, then the procedure terminates by returning C = F . It is obvious
that this procedure terminates in polynomial steps and returns a triangle-free 2-edge-cover.

We now analyze the size of the output C. For an edge set F ⊆ E, define g(F) =∑
v∈V max{2 − dF (v), 0}. Then, in each iteration of the procedure, we observe the following:

in case (i), one edge is added to F and g(F) decreases by at least one; in case (ii), two edges
are added to F and g(F) decreases by at least two, because dF (v) = dF (w) = 1 before the
update. With this observation, we see that |C| − |M | ≤ g(M) − g(C) =

∑
v∈V (2 − dM (v)),

where we note that M is a 2-matching and C is a 2-edge-cover. Therefore, it holds that

|C| ≤ |M | +
∑
v∈V

(2 − dM (v)) = |M | + (2|V | − 2|M |) = 2|V | − |M |,

which completes the proof. ◀

▶ Lemma 7. Given a triangle-free 2-edge-cover C in a graph G = (V, E), we can compute a
triangle-free 2-matching M of G with size at least 2|V | − |C| in polynomial time.

Proof. Starting with F = C, we perform the following update repeatedly while F is not a
2-matching:

Choose a vertex v ∈ V with dF (v) > 2 and an edge vw ∈ F incident to v.
(i) If F \ {vw} contains no triangle 2EC components, then remove vw from F .
(ii) If F \ {vw} contains a triangle 2EC component whose vertex set is {v, v1, v2} for

some v1, v2 ∈ V , then remove vv1 from F .
(iii) If neither of the above holds, then F \ {vw} contains a triangle 2EC component

whose vertex set is {w, w1, w2} for some w1, w2 ∈ V . In this case, remove ww1
from F .

ISAAC 2023

49:6 Two-Edge-Connected Subgraph Problem via Triangle-Free Two-Edge-Cover

If F becomes a 2-matching, then the procedure terminates by returning M = F . It is obvious
that this procedure terminates in polynomial steps and returns a triangle-free 2-matching.

We now analyze the size of the output M . For an edge set F ⊆ E, define g(F) =∑
v∈V max{dF (v) − 2, 0}. Then, in each iteration of the procedure, we observe that one edge

is removed from F and g(F) decreases by at least one, where we note that dF (w) = 3 before
the update in case (iii). With this observation, we see that |C| − |M | ≤ g(C) − g(M) =∑

v∈V (dC(v) − 2), where we note that C is a 2-edge-cover and M is a 2-matching. Therefore,
it holds that

|M | ≥ |C| −
∑
v∈V

(dC(v) − 2) = |C| − (2|C| − 2|V |) = 2|V | − |C|,

which completes the proof. ◀

By using these lemmas and Theorem 5, we can compute a triangle-free 2-edge-cover with
minimum cardinality in polynomial time.

▶ Proposition 8. Suppose that a triangle-free 2-matching M with maximum cardinality in
a graph can be found in polynomial time. Then, for a graph G = (V, E), we can compute
a triangle-free 2-edge-cover C of G with minimum cardinality in polynomial time (if one
exists). Furthermore, |C| = 2|V | − |M |.

Proof. It suffices to consider the case when G is a connected graph such that the minimum
degree is at least two and |V | ≥ 4. Let M be a triangle-free 2-matching in G with maximum
cardinality, which can be computed in polynomial time by the assumption. Then, by Lemma 6,
we can construct a triangle-free 2-edge-cover C of G with size at most 2|V | − |M |.

We now show that G has no triangle-free 2-edge-cover C ′ with |C ′| < 2|V | − |M |. Assume
to the contrary that there exists a triangle-free 2-edge-cover C ′ of size smaller than 2|V |−|M |.
Then, by Lemma 7, we can construct a triangle-free 2-matching M ′ of G with size at least
2|V | − |C ′|. Since |M ′| ≥ 2|V | − |C ′| > 2|V | − (2|V | − |M |) = |M |, this contradicts that
M is a triangle-free 2-matching with maximum cardinality. Therefore, G has no triangle-
free 2-edge-cover of size smaller than 2|V | − |M |, which implies that C is a triangle-free
2-edge-cover with minimum cardinality. ◀

4.2 Semi-Canonical Triangle-Free Two-Edge-Cover
We show the following lemma saying that a triangle-free 2-edge-cover can be transformed
into a semi-canonical triangle-free 2-edge-cover without increasing the size. Although the
proof is almost the same as that of [8, Lemma 2.4], we describe it for completeness.

▶ Lemma 9. Let ε be a sufficiently small positive constant. Given a triangle-free 2-edge-
cover H of a (5/4, ε)-structured graph G = (V, E), in polynomial time, we can compute a
triangle-free 2-edge-cover H ′ of no larger size which is semi-canonical.

Proof. Recall that an edge set is identified with the corresponding spanning subgraph of
G. Starting with H ′ = H, while H ′ is not semi-canonical we apply one of the following
operations in this order of priority. We note that H ′ is always triangle-free during the
procedure, and hence it always satisfies condition (3) in the definition of semi-canonical
2-edge-cover.
(a) If there exists an edge e ∈ H ′ such that H ′ \ {e} is a triangle-free 2-edge-cover, then

remove e from H ′.

Y. Kobayashi and T. Noguchi 49:7

(b) If H ′ does not satisfy condition (4), then we merge two 4-cycle 2EC components into a
cycle of length 8 by removing 2 edges and adding 2 edges. Note that the obtained edge
set is a triangle-free 2-edge-cover that has fewer connected components.

(c) Suppose that condition (1) does not hold, i.e., there exists a 2EC component C of H ′

with fewer than 7 edges that is not a cycle. Since C is 2-edge-connected and not a
cycle, we obtain |E(C)| ≥ |V (C)| + 1. If |V (C)| = 4, then C contains at least 5 edges
and contains a cycle of length 4, which contradicts that (a) is not applied. Therefore,
|V (C)| = 5 and |E(C)| = 6. Since operation (a) is not applied, C is either a bowtie
(i.e., two triangles that share a common vertex) or a K2,3; see figures in the proof of [8,
Lemma 2.4].
(c1) Suppose that C is a bowtie that has two triangles {v1, v2, u} and {v3, v4, u}. If G

contains an edge between {v1, v2} and {v3, v4}, then we can replace C with a cycle of
length 5, which decreases the size of H ′. Otherwise, by the 2-vertex-connectivity of
G, there exists an edge zw ∈ E \ H ′ such that z ∈ V \ V (C) and w ∈ {v1, v2, v3, v4}.
In this case, we replace H ′ with (H ′ \ {uw}) ∪ {zw}. Then, the obtained edge
set is a triangle-free 2-edge-cover with the same size, which has fewer connected
components.

(c2) Suppose that C is a K2,3 with two sides {v1, v2} and {w1, w2, w3}. If every wi has
degree exactly 2, then every feasible 2-edge-connected spanning subgraph contains
all the edges of C, and hence C is a 5

4 -contractible subgraph, which contradicts the
assumption that G is (5/4, ε)-structured. If G contains an edge wiwj for distinct
i, j ∈ {1, 2, 3}, then we can replace C with a cycle of length 5, which decreases
the size of H ′. Otherwise, since some wi has degree at least 3, there exists an
edge wiu ∈ E \ H ′ such that i ∈ {1, 2, 3} and u ∈ V \ V (C). In this case, we
replace H ′ with (H ′ \{v1wi})∪{wiu}. Then, the obtained edge set is a triangle-free
2-edge-cover with the same size, which has fewer connected components.

(d) Suppose that the first half of condition (2) does not hold, i.e., there exists a leaf block
B that has at most 5 edges. Let v1 be the only vertex in B such that all the edges
connecting V (B) and V \ V (B) are incident to v1. Since operation (a) is not applied, we
see that B is a cycle of length at most 5. Let v1, . . . , vℓ be the vertices of B that appear
along the cycle in this order. We consider the following cases separately; see figures in
the proof of [8, Lemma 2.4].
(d1) Suppose that there exists an edge zw ∈ E \ H ′ such that z ∈ V \ V (B) and

w ∈ {v2, vℓ}. In this case, we replace H ′ with (H ′ \ {v1w}) ∪ {zw}.
(d2) Suppose that v2 and vℓ are adjacent only to vertices in V (B) in G, which implies

that ℓ ∈ {4, 5}. If v2vℓ ̸∈ E, then every feasible 2EC spanning subgraph contains
four edges (incident to v2 and vℓ) with both endpoints in V (B), and hence B is
a 5

4 -contractible subgraph, which contradicts the assumption that G is (5/4, ε)-
structured. Thus, v2vℓ ∈ E. Since there exists an edge connecting V \ V (B) and
V (B) \ {v1} by the 2-vertex-connectivity of G, without loss of generality, we may
assume that G has an edge v3z with z ∈ V \ V (B). In this case, we replace H ′

with (H ′ \ {v1vℓ, v2v3}) ∪ {v3z, v2vℓ}.
In both cases, the obtained edge set is a triangle-free 2-edge-cover with the same size.
Furthermore, we see that either (i) the obtained edge set has fewer connected components
or (ii) it has the same number of connected components and fewer bridges.

(e) Suppose that the latter half of condition (2) does not hold, i.e., there exists an inner
block B that has at most 3 edges. Then, B is a triangle. Let {v1, v2, v3} be the vertex set
of B. If there are at least two bridge edges incident to distinct vertices in V (B), say wv1

ISAAC 2023

49:8 Two-Edge-Connected Subgraph Problem via Triangle-Free Two-Edge-Cover

and zv2, then edge v1v2 has to be removed by operation (a), which is a contradiction.
Therefore, all the bridge edges in H ′ incident to B are incident to the same vertex
v ∈ V (B). In this case, we apply the same operation as (d).

We can easily see that each operation above can be done in polynomial time. We also see
that each operation decreases the lexicographical ordering of (|H ′|, cc(H ′), br(H ′)), where
cc(H ′) is the number of connected components in H ′ and br(H ′) is the number of bridges in
H ′. This shows that the procedure terminates in polynomial steps. After the procedure, H ′

is a semi-canonical triangle-free 2-edge-cover with |H ′| ≤ |H|, which completes the proof. ◀

4.3 Proof of Theorem 1
By Lemma 2, in order to prove Theorem 1, it suffices to give a 13

10 -approximation algorithm for
2-ECSS in (5/4, ε)-structured graphs for a sufficiently small fixed ε > 0. Let G = (V, E) be a
(5/4, ε)-structured graph. By Proposition 8, we can compute a minimum-size triangle-free
2-edge-cover H of G in polynomial-time. Note that the optimal value OPT of 2-ECSS in
G is at least |H|, because every feasible solution for 2-ECSS is a triangle-free 2-edge-cover.
By Lemma 9, H can be transformed into a semi-canonical triangle-free 2-edge-cover H ′

with |H ′| ≤ |H|. Since H ′ is triangle-free, by applying Lemma 3 with H ′, we obtain a
2-edge-connected spanning subgraph S of size at most (13

10 − 1
20 b)|H ′|, where H ′ has b|H ′|

bridges. Therefore, we obtain

|S| ≤
(

13
10 − 1

20b

)
|H ′| ≤ 13

10 |H| ≤ 13
10OPT,

which shows that S is a 13
10 -approximate solution for 2-ECSS in G. This completes the proof

of Theorem 1. ◀

5 Concluding Remarks

In this paper, we have presented a (1.3 + ε)-approximation algorithm (for any ε > 0) for
2-ECSS under the assumption that a maximum triangle-free 2-matching can be found in
polynomial time. If the correctness of Theorem 5 is acknowledged, then our result achieves
the best approximation ratio.

We conclude this paper by showing that the assumption in our main result (Theorem 1)
can be relaxed with the aid of the following proposition.

▶ Proposition 10. Let 0 < α < 1. Given a (1 − α)-approximate solution M ′ of a maximum
triangle-free 2-matching problem in a graph G = (V, E), we can compute a (1+α)-approximate
solution of the minimum triangle-free 2-edge-cover problem in G in polynomial time (if one
exists).

Proof. Let M and C be a maximum triangle-free 2-matching and a minimum 2-edge-cover in
G, respectively. By Proposition 8, it holds that |C| = 2|V |−|M |. Given a (1−α)-approximate
solution M ′ of a maximum triangle-free 2-matching problem, by Lemma 6, we can construct
a triangle-free 2-edge-cover C ′ in G with size at most 2|V | − |M ′|. Then, we have

|C ′| ≤ 2|V | − |M ′| ≤ 2|V | − (1 − α)|M |
= 2|V | − |M | + α|M | ≤ |C| + α|C| = (1 + α)|C|,

where we note that |M | ≤ |V | ≤ |C| as M is a 2-matching and C is a 2-edge-cover. This
shows that C ′ is a (1 + α)-approximate solution of the minimum triangle-free 2-edge-cover
problem. ◀

Y. Kobayashi and T. Noguchi 49:9

By using this proposition instead of Proposition 8, we obtain the following theorem in
the same way as Theorem 1.

▶ Theorem 11. Assume that, for any ε′ > 0, there exists a (1 − ε′)-approximation algorithm
for finding a maximum 2-matching that contains no cycle of length at most 3 in a graph.
Then, for any constant ε > 0, there is a polynomial-time (1.3 + ε)-approximation algorithm
for 2-ECSS.

This theorem suggests that an approximate solution for the maximum triangle-free 2-
matching problem is sufficient for our purpose. Therefore, it will be interesting to give a
simple PTAS for the maximum triangle-free 2-matching problem.

References
1 Joseph Cheriyan, András Sebő, and Zoltán Szigeti. Improving on the 1.5-approximation of

a smallest 2-edge connected spanning subgraph. SIAM Journal on Discrete Mathematics,
14(2):170–180, 2001. doi:10.1137/S0895480199362071.

2 Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM Journal on Computing, 30(2):528–560, 2000. doi:
10.1137/S009753979833920X.

3 Gérard Cornuéjols and William Pulleyblank. A matching problem with side conditions.
Discrete Mathematics, 29(2):135–159, 1980. doi:10.1016/0012-365x(80)90002-3.

4 Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost k-connected
spanning subgraph problem. In Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1999), pages 281–290, 1999.

5 Cristina G Fernandes. A better approximation ratio for the minimum size k-edge-connected
spanning subgraph problem. Journal of Algorithms, 28(1):105–124, 1998. doi:10.1006/jagm.
1998.0931.

6 Harold N. Gabow and Suzanne R. Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.
doi:10.1137/080732572.

7 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the smallest k-edge connected spanning subgraph by LP-rounding. Networks, 53(4):345–357,
2009. doi:10.1002/net.20289.

8 Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-
edge-connectivity. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2023), pages 2368–2410, 2023. doi:10.1137/1.9781611977554.ch92.

9 Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation
barrier for the forest augmentation problem. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2022), pages 1598–1611, 2022. doi:10.1145/
3519935.3520035.

10 David Hartvigsen. Extensions of Matching Theory. PhD thesis, Carnegie Mellon University,
1984. Available at https://david-hartvigsen.net.

11 David Hartvigsen and Yanjun Li. Polyhedron of triangle-free simple 2-matchings in subcubic
graphs. Mathematical Programming, 138:43–82, 2013.

12 Christoph Hunkenschröder, Santosh Vempala, and Adrian Vetta. A 4/3-approximation
algorithm for the minimum 2-edge connected subgraph problem. ACM Transactions on
Algorithms, 15(4):1–28, 2019. doi:10.1145/3341599.

13 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21:39–60, 1998. doi:10.1007/s004930170004.

14 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. Journal
of the ACM, 41(2):214–235, 1994. doi:10.1145/174652.174654.

ISAAC 2023

https://doi.org/10.1137/S0895480199362071
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1016/0012-365x(80)90002-3
https://doi.org/10.1006/jagm.1998.0931
https://doi.org/10.1006/jagm.1998.0931
https://doi.org/10.1137/080732572
https://doi.org/10.1002/net.20289
https://doi.org/10.1137/1.9781611977554.ch92
https://doi.org/10.1145/3519935.3520035
https://doi.org/10.1145/3519935.3520035
https://david-hartvigsen.net
https://doi.org/10.1145/3341599
https://doi.org/10.1007/s004930170004
https://doi.org/10.1145/174652.174654

49:10 Two-Edge-Connected Subgraph Problem via Triangle-Free Two-Edge-Cover

15 Yusuke Kobayashi. A simple algorithm for finding a maximum triangle-free 2-matching in
subcubic graphs. Discrete Optimization, 7:197–202, 2010. doi:10.1016/j.disopt.2010.04.
001.

16 Yusuke Kobayashi. Weighted triangle-free 2-matching problem with edge-disjoint for-
bidden triangles. Mathematical Programming, 192(1):675–702, 2022. doi:10.1007/
s10107-021-01661-y.

17 Katarzyna Paluch and Mateusz Wasylkiewicz. A simple combinatorial algorithm for restricted
2-matchings in subcubic graphs - via half-edges. Information Processing Letters, 171:106146,
2021. doi:10.1016/j.ipl.2021.106146.

18 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.

19 András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597–629, 2014. doi:10.1007/s00493-014-2960-3.

20 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In Proceedings of the IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS 2021), pages 1–12, 2022. doi:10.1109/FOCS52979.2021.00010.

21 Vera Traub and Rico Zenklusen. A (1.5+ε)-approximation algorithm for weighted connectivity
augmentation. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC 2023), STOC 2023, pages 1820–1833, 2023. doi:10.1145/3564246.3585122.

22 Santosh Vempala and Adrian Vetta. Factor 4/3 approximations for minimum 2-connected
subgraphs. In Proceedings of the Third International Workshop on Approximation Al-
gorithms for Combinatorial Optimization (APPROX 2000), pages 262–273, 2000. doi:
10.1007/3-540-44436-X_26.

https://doi.org/10.1016/j.disopt.2010.04.001
https://doi.org/10.1016/j.disopt.2010.04.001
https://doi.org/10.1007/s10107-021-01661-y
https://doi.org/10.1007/s10107-021-01661-y
https://doi.org/10.1016/j.ipl.2021.106146
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.1145/3564246.3585122
https://doi.org/10.1007/3-540-44436-X_26
https://doi.org/10.1007/3-540-44436-X_26

On Min-Max Graph Balancing with Strict Negative
Correlation Constraints
Ting-Yu Kuo #

Dept. of Computer Science, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan

Yu-Han Chen #

Dept. of Computer Science and Information Engineering, National Cheng-Kung University,
Tainan, Taiwan

Andrea Frosini #

Dept. of Mathematics and Informatics, University of Florence, Italy

Sun-Yuan Hsieh #

Dept. of Computer Science and Information Engineering, National Cheng-Kung University,
Tainan, Taiwan
Dept. of Computer Science and Information Engineering, National Chi-Nan University, Puli, Taiwan

Shi-Chun Tsai #

Dept. of Computer Science, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan

Mong-Jen Kao #

Dept. of Computer Science, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan

Abstract
We consider the min-max graph balancing problem with strict negative correlation (SNC) constraints.
The graph balancing problem arises as an equivalent formulation of the classic unrelated machine
scheduling problem, where we are given a hypergraph G = (V, E) with vertex-dependent edge
weight function p : E × V 7→ Z≥0 that represents the processing time of the edges (jobs). The SNC
constraints, which are given as edge subsets C1, C2, . . . , Ck, require that the edges in the same subset
cannot be assigned to the same vertex at the same time. Under these constraints, the goal is to
compute an edge orientation (assignment) that minimizes the maximum workload of the vertices.

In this paper, we conduct a general study on the approximability of this problem. First, we show
that, in the presence of SNC constraints, the case with maxe∈E |e| = maxi |Ci| = 2 is the only case
for which approximation solutions can be obtained. Further generalization on either direction, e.g.,
maxe∈E |e| or maxi |Ci|, will directly make computing a feasible solution an NP-complete problem to
solve. Then, we present a 2-approximation algorithm for the case with maxe∈E |e| = maxi |Ci| = 2,
based on a set of structural simplifications and a tailored assignment LP for this problem. We
note that our approach is general and can be applied to similar settings, e.g., scheduling with SNC
constraints to minimize the weighted completion time, to obtain similar approximation guarantees.

Further cases are discussed to describe the landscape of the approximability of this prbolem.
For the case with |V | ≤ 2, which is already known to be NP-hard, we present a fully-polynomial
time approximation scheme (FPTAS). On the other hand, we show that the problem is at least as
hard as vertex cover to approximate when |V | ≥ 3.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Unrelated Scheduling, Graph Balancing, Strict Correlation Constraints

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.50

Funding Shi-Chun Tsai: Supported in part by National Science and Technology Council (NSTC),
Taiwan, under Grants 112-2634-F-A49-001-MBK.
Mong-Jen Kao: Supported in part by National Science and Technology Council (NSTC), Taiwan,
under Grants 111-2221-E-A49-118-MY3, 112-2628-E-A49-017-MY3, and 112-2634-F-A49-001-MBK.

© Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 50; pp. 50:1–50:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qazwexsdc.cs11@nycu.edu.tw
mailto:ariel831025@gmail.com
mailto:andrea.frosini@unifi.it
https://orcid.org/0000-0001-7210-2231
mailto:hsiehsy@ncku.edu.tw
https://orcid.org/0000-0003-4746-3179
mailto:sctsai@nycu.edu.tw
https://orcid.org/0000-0002-0085-0377
mailto:mjkao@nycu.edu.tw
https://orcid.org/0000-0002-7238-3093
https://doi.org/10.4230/LIPIcs.ISAAC.2023.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

1 Introduction

In the min-max graph balancing problem with strict negative correlation (SNC) constraints, we
are given an edge-weighted hypergraph G = (V, E) with edge weight function p : E×V 7→ Z≥0

and a collection of edge subsets C = {C1, C2, . . . , Ck}. An edge orientation (assignment)
is a function σ that maps each edge to one of its endpoints, i.e., σ(e) ∈ e for all e ∈ E,
and the orientation is said to be feasible if, for any 1 ≤ i ≤ k, there exists e, e′ ∈ Ci

such that σ(e) ̸= σ(e′), i.e., not all edges in Ci are assigned to the same vertex. The
workload of a vertex v ∈ V is defined to be the total weight of the edges assigned to it, i.e.,∑

e∈E s.t. σ(e)=v pe,v. The goal of this problem is to compute a feasible edge orientation that
minimizes the maximum workload of the vertices.

The graph balancing problem is an equivalent formulation of the classic unrelated machine
scheduling problem [22], where the edges in E are interpreted as jobs, the vertices V are the
machines, and the weights of edges are the processing times of the jobs. In the following, we
start with an introduction on the unrelated scheduling problem.

Lenstra et al. [22] presented an elegant LP-rounding scheme that exploits the extreme
point structure and obtained a 2-approximation for the unrelated scheduling problem. They
also showed that (1.5 − ϵ)-approximation for any ϵ > 0 is NP-hard to obtain. Since then,
there has been no significant progress on the upper-bound nor lower-bound for this problem,
and closing the gap is known as a major open problems in this field for over 30 years [26, 29].

It is worth noting that, even the strongest LP formulation ever known for this problem,
i.e., the configuration LP [27, 4], has an integrality gap of 2 for this problem [28]. Due to the
above reasons, subsequent research has mostly focused on restricted cases of the problem.

An important subcase that is widely considered in the literature is the restricted assignment
case, which considers the vertex-independent edge weight function p : E 7→ Z≥0. Svensson [27]
showed that the configuration-LP has an integrality gap at most 33/17 ≈ 1.9412 for this
problem. This bound was later improved to 11/6 ≈ 1.833 by Jansen and Rohwedder [21]. In
terms of approximation guarantees, Chakrabarty et al. [9] showed that, when there are only
two different types of edge weights, a (2− δ)-approximation can be obtained for some small
fixed constant δ > 0.

For restricted assignment case without hyperedges, i.e. p : E 7→ Z≥0 and maxe∈E |e| = 2,
Ebenlendr et al. [16] presented a 1.75-approximation algorithm. They also showed that, even
for this case, a (1.5− ϵ)-approximation is still NP-hard to obtain. Moreover, the hardness
result in [16] holds when there are only two different types of edge weights. For this seemingly
simple case, a 1.5-approximation can be obtained [19, 23, 10]. Interestingly, this is the only
nontrivial special case of unrelated scheduling for which the exact approximability is known.

Our motivation for studying the SNC constraints originates from the growing attention
on the pairwise negative correlation between jobs to surpass the long-standing guarantees for
job scheduling to minimize the weighted completion time [3, 5]. In our setting, we consider
the extreme case for which the negative correlation between jobs in the same group is one.

In general, the presence of SNC constraints makes the problem much harder to consider.
Consider the constraint graph GC := (E, C) with the edges in E being the vertices and the
constraints in C being the hyperedges. Even for the case that G is a complete hypergraph, i.e.,
e = V for all e ∈ E, determining whether or not G has a feasible edge orientation is already
equivalent to the problem of determining whether or not GC has a |V |-coloring such that no
constraint in C is monochromatic. As graph coloring is NP-hard, determining the existence
of feasible edge orientation in the presence of SNC constraints is in general NP-hard.

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:3

There are essentially two directions to bypass the inherent hardness of the SNC constraints.
The first one is to assume that a feasible coloring for GC is given in advance, e.g., [7], and the
other is to consider restricted classes of GC for which a feasible orientation is polynomial-time
computable, e.g., [20, 13, 24, 25]. Notably, most of these works assumed restricted assignment
case with complete hypergraph, i.e., p : E 7→ Z≥0 and e = V for all e ∈ E, which is known as
the identical machine scheduling case in the literature, with special constraint graphs with
|Ci| = 2 for all 1 ≤ i ≤ k.

In the following we introduce the above results in more detail. Bodlaender et al. [7]
showed that, when a χ-coloring for the constraint graph GC is given in advance, a (χ + 2)/2-
approximation can be obtained when χ ≤ |V | − 1, and a 3-approximation can be obtained
when χ ≤ |V |/2 + 1. This is achieved by partitioning the vertices into χ groups in a way
such that no SNC constraints exist for each group. Different approximation guarantees are
obtained, based on different heuristics to distribute the number of vertices for each color.

Jansen et al. [20] considered the case for which GC is a complete multipartite graph,
i.e., the edges in E are partitioned into multiple groups, and each vertex must handle
edges that are within the same group. For this case, they provided a polynomial-time
approximation scheme (PTAS). Pikies et al. [25] further considered the unrelated scheduling
case and gave a (1 + ϵ)p-approximation for any ϵ > 0, where p = maxe,v pe,v/ mine,v pe,v is
the maximum ratio between the edge weights. This is done by ignoring the edge weights
and applying the algorithm of Jansen et al. [20]. Surprisingly, this straightforward algorithm
is proven to be tight. They also showed that, even when GC is complete bipartite, an
O(nbp1−c)-approximation is NP-hard to obtain for any b, c > 0.

Das and Wiese [13] considered the case for which GC is a collection of cliques, i.e., none
of the edges from the same clique can be assigned to the same machine. For this case, they
achieved a PTAS for identical machine scheduling. For unrelated machine scheduling, they
proved a (log n)1/4-inapproximability unless NP ⊆ ZPTIME(2(log n)O(1)). For the positive
side, Page and Solis-Oba [24] provided a b-approximation, where b is the number of cliques
in GC . They also gave a b/2-approximation for the restricted case that maxe∈E |e| = 2.

Further related works

A problem directly related to min-max graph balancing is the max-min fair allocation, for
which the goal is to maximize the minimum workload of the machines under the same set
of inputs [6, 4]. For the unrelated scheduling case, i.e., p : E × V 7→ Z≥0, it is known that,
(2− ϵ)-approximation for any ϵ > 0 is NP-hard to obtain [6]. For any ϵ = Ω(log log n/ log n),
Chakrabarty et al. [8] provided an O(nϵ)-approximation in O(n1/ϵ)-time. Furthermore, it is
known that, the integrality gap of configuration LP is Ω(

√
|V |) even when |E| = O(|V |) [4].

For the restricted assignment case, i.e., p : E 7→ Z≥0, it is known that (2 − ϵ)-
approximation is still NP-hard to obtain [6]. Bansal and Sviridenko [4] presented an
O(log log m/ log log log m)-approximation based on rounding the configuration LP. In a
series of follow-up works [17, 2, 12] and a very recent work due to Haxell and Szabó [18], the
integrality gap of configuration LP for this case is narrowed down to 3.534.

The first constant factor approximation for this case was obtained by Annamalai et al. [1],
which introduced the concept of lazy updates on the algorithm of [2] for polynomial-time
termination. The approximation guarantee was further improved to 6 [11, 14] and then
4 [12], by further deriving more structures for the local search algorithm. For the case for
which maxe |e| = 2, a tight 2-approximation can be obtained [8]. Notably, this is also the
only special case for which the exact approximability is known for max-min fair allocation.

ISAAC 2023

50:4 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Our Results and Contributions
In this paper, we study the complexity of unrelated graph balancing problem with SNC
constraints and provide a clear landscape on the approximability of this problem with respect
to different structures of input graphs. In contrast to the previous works, e.g., [20, 25, 13, 24],
which mostly considered SNC constraints with special structures, we always keep SNC
constraints in its most general form and discuss the complexity of the problem.

First, we show that, in the most general setting, either maxe∈E |e| ≥ 3 or maxi |Ci| ≥ 3
directly makes it NP-hard to even determine the existence of a feasible solution for the
input instance. Hence, the case that maxe∈E |e| = maxi |Ci| = 2 is the only case for which
approximation solutions can be obtained in terms of polynomial-time computations.

Even for the case maxe∈E |e| = maxi |Ci| = 2, determining the feasibility of the input
instance is still not a trivial task to accomplish. For this, we provide a characterization of
infeasible instances that can be checked in polynomial-time. This is done by transforming
the problem into an implication graph between the assignments.

Then, we present a 2-approximation algorithm for the case with maxe∈E |e| = maxi |Ci| =
2. Our ingredient for this part is LP-rounding that further exploits the implication between
assignments. We transform the concept into a directed acyclic graph (DAG), for which we
design a specific assignment LP. We provide a threshold-based rounding, which follows the
topological ordering of the DAG. The feasibility of the rounded solution is then ensured by
the DAG structure.

Note that, even when there is no SNC constraint, the ratio of 2 is still the best approxima-
tion guarantee known for the case with maxe∈E |e| = 2. We also remark that, our approach is
general and can be directly applied to similar problems, e.g., scheduling with SNC constraints
to minimize the weighted completion time, to obtain a 2-approximation guarantee.

It is also worth noting that, the techniques by Ebenlendr et al. [16] and Chakra-
barty et al. [8], which are used to obtain approximation results for the restricted assignment
case with no SNC constraints, do not seem to be applicable here. A key step in their rounding
algorithms is to fractionally-round a cycle for G while keeping the remaining assignments
unchanged. With the SNC constraints in place, such a rounding step is not guaranteed.

To compose a complete landscape for this problem, further special cases for G are
discussed. For the case when |V | ≤ 2, we show that a fully polynomial-time approximation
scheme (FPTAS) can be obtained, based on a pseudo-polynomial time dynamic programming
algorithm. Note that this case already contains the partition problem as its special case and
is NP-hard to solve. On the other hand, we show that the problem is at least as hard as
vertex cover to approximate when |V | ≥ 3. Hence, assuming the unique game conjecture,
our approximation result is already tight for this case.

Organization of this Paper

The rest of this paper is organized as follows. In Section 2, we provide the hardness result
when maxe∈E |e| ≥ 3 or maxi |Ci| ≥ 3. In Section 3, we present a characterization for
infeasible instances and our 2-approximation algorithm. We provide our FPTAS for |V | ≤ 2
and the hardness results for |V | ≥ 3 in Section 4.

2 Preliminaries

In the min-max SNC-graph balancing problem, we are given a tuple Ψ = (G = (V, E), p, C),
where G = (V, E) is a hypergraph, p : E × V 7→ Z≥0 is a vertex-dependent edge weight
function, and C = {C1, C2, . . . , Ck} is a collection of edge subsets that is referred to as the
SNC constraints.

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:5

An edge orientation (assignment) is a function σ that maps each edge to one of its
endpoints, i.e., σ(e) ∈ e for all e ∈ E, and the orientation σ is said to be feasible if, for any
1 ≤ i ≤ k, there exists e, e′ ∈ Ci such that σ(e) ̸= σ(e′), i.e., not all edges in Ci are assigned
to the same vertex. The workload of a vertex v ∈ V w.r.t. σ is defined to be the total weight
of the edges assigned to it, i.e.,

∑
e∈E s.t. σ(e)=v pe,v. The goal of this problem is to compute

a feasible edge orientation that minimizes the maximum workload of the vertices.
Let Ψ = (G = (V, E), p, C) be an instance of the min-max SNC-graph balancing. For

any edge orientation σ, we will use σ−1(v) := {e ∈ E | σ(e) = v} for any v ∈ V to denote
the set of edges that are assigned to v.

We say that Ψ is an (α, β)-instance if maxe∈E |e| = α and maxC∈C |C| = β. In the
min-max (α, β)-SNC graph balancing problem, we assume that Ψ is an (α, β)-instance.

Complexity of Min-Max (α, β)-SNC Graph Balancing

In the following, we show that, when max(α, β) ≥ 3, determining whether or not an (α, β)
instance has a feasible solution is already an NP-hard problem. Hence, min-max (2, 2)-SNC
graph balancing is the only case for which an approximation solution can be obtained in
terms of polynomial-time computations.

For this, we consider the cases α ≥ 3 and β ≥ 3 separately and construct NP-hard
reductions for them. We note that, as the weight function p plays no role in determining the
feasibility of the instance, we will omit the construction detail for p.

First, for the case α ≥ 3, we make a reduction from the 3-SAT problem. Let φ =
{c1, c2, . . . , cm} be a set of m clauses over n variables x1, . . . , xn. We construct an instance
Ψ = (G = (V, E), p, C) with maxe∈E |e| ≤ 3 as follows. For each variable xi, we create two
literal vertices vxi

and v¬xi
and an edge exi

= {vxi
, v¬xi

}. Intuitively, this edge is supposed
to be oriented to the negated value of xi in a satisfying assignment, i.e., exi

should be oriented
to v¬xi if xi is true in a satisfying assignment and vice versa.

For each clause cj , we construct a hyperedge ecj which contains the three literal vertices
that cj contains. Furthermore, for each clause cj and each variable, say, xi, that appears in cj ,
we create an SNC constraint Cj,i = {ecj

, exi
}. Intuitively, the hyperedge ecj

for each clause
cj is supposed to be oriented to one of the literals that is true in a satisfying assignment,
and the consistency between the orientations of the variables and clauses is provided by the
SNC constraints we created. We have the following lemma.

▶ Lemma 1. φ is satisfiable if and only if there exists a feasible orientation for Ψ.

For the case β ≥ 3, we make a reduction from 3-uniform hypergraph 2-coloring [15]. We
show that, the problem of computing a feasible orientation for (2, 3)-SNC graph balancing
already contains the 3-uniform hypergraph 2-coloring problem as one of its special cases.

Recall that, in the 3-uniform hypergraph 2-coloring problem, we are given a 3-uniform
hypergraph G = (V, E) and the goal is to decide if there exists a 2-coloring of the vertices in
V such that no edge is monochromatic.

We construct an instance Ψ′ = (G′ = (V ′, E′), p, C′) with maxC∈C′ |C| = 3 as follows.
The vertex set V ′ consists of two vertices v(0), v(1) which correspond to the colors we are
using. For each vertex v ∈ V , we create an edge ev in E′ with end-points v(0), v(1). Note
that this creates multi-edges between v(0) and v(1) in G′. Intuitively, the orientation of ev

corresponds to the color of vertex v in a valid 2-coloring.
For each 3-uniform hyperedge e ∈ E, say, with endpoints u, v, w ∈ V , we create an

SNC constraint Ce := {eu, ev, ew} in C′. Intuitively, the SNC constraint requires that not
all endpoints of e are assigned to the same vertex, and this models the feasibility of the
2-coloring for G. The following lemma establishes the correctness of the reduction.

ISAAC 2023

50:6 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

▶ Lemma 2. G is 2-colorable if and only if Ψ′ is feasible.

By Lemma 1 and Lemma 2, we obtain the following theorem.

▶ Theorem 3. When max(α, β) ≥ 3, it is NP-hard to determine the feasibility of (α, β)-
instances for the min-max SNC graph balancing problem.

3 Min-Max (2, 2)-SNC Graph Balancing

In this section, we consider the min-max (2, 2)-SNC graph balancing problem. First, we
present a characterization of feasible instances that can be tested in polynomial-time. Then,
we introduce a set of structural properties and modifications on the instance followed with
an assignment LP and obtain a 2-approximation for feasible instances of this problem.

Let Ψ = (G = (V, E), p, C) be an instance of min-max (2, 2)-SNC graph balancing, i.e.,
|e| ≤ 2 for all e ∈ E and |C| = 2 for all C ∈ C. To simply the notation, for any e ∈ E and
any v ∈ e, we will use e \ v to denote the endpoint of e other than v. Furthermore, e \ v is
defined to be ϕ if v is the only endpoint of e, i.e., e is a self-loop.

3.1 The Implication Graph and a Feasibility Characterization
In the following, we first define the concept of implication graph H for Ψ and a set of bad
implications in the implication graph H . Then we show that Ψ is feasible if and only if there
exists no bad implication in H.

Consider any SNC constraint {e, e′} ∈ C. If v is a common endpoint of e and e′, i.e.,
v ∈ e ∩ e′, and if e is already assigned to v, then e′ must not be assigned to v in any feasible
assignment. In other words, e′ must be assigned to e′ \ v. In this scenario, we say that the
assignment of e to v implies the assignment of e′ to e′ \ v.

The above observation defines the directed implication graph H = (VH , EH). The vertex
set VH consists of two types of nodes, namely,

ue,v for each e ∈ E and each v ∈ e, and
ue,ϕ for each e ∈ E with |e| = 1.

Intuitively, we construct H in a way such that, if ue,v is implied by a directed arc in EH ,
then e is supposed to be assigned to v in any feasible assignment. Furthermore, if ue,ϕ is
implied by an arc, then the instance Ψ is infeasible.

The directed arcs in EH are defined as follows. For each SNC constraint {e, e′} ∈ C and
each v ∈ e ∩ e′, we create two arcs: One from ue,v to ue′,e′\v and the other from ue′,v to
ue,e\v. Intuitively, the two arcs indicate that, if one of e or e′ is assigned to v, then the other
edge must be assigned to the vertex other than v.

Following the above concept, we use ue,v
+→ ue′,v′ to denote the scenario where there exists

a path of nonzero length from ue,v to ue′,v′ in H. If both ue,v
+→ ue′,v′ and ue′,v′

+→ ue,v,
then we write ue,v

+↔ ue′,v′ . Intuitively, if ue,v
+↔ ue′,v′ , then there exists a cycle that passes

both ue,v and ue′,v′ . Furthermore, the assignment of any edge on the nodes of this cycle will
uniquely determine the assignments of all the edges on the nodes of the same cycle.

▶ Definition 4 (Bad Implication). The following chains of implications are considered bad.
1. There exists a cycle in H that passes through both ue,v and ue,v′ for some e = {v, v′} ∈ E,

i.e., ue,v
+↔ ue,v′ for some e = {v, v′} ∈ E.

2. ue,ϕ is implied by ue,v for some e = {v} ∈ E, i.e., ue,v
+→ ue,ϕ for some e = {v} ∈ E.

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:7

Clearly, the instance Ψ is infeasible if ue,v and ue,v′ imply each other for some e = {v, v′}
or ue,ϕ is implied by ue,v for some e = {v} ∈ E. The following lemma, on the contrary, shows
that the obvious necessary condition is also sufficient.

▶ Lemma 5. Ψ has a feasible orientation if and only if there is no bad implication in H.

Although Lemma 5 can be proved directly, we chose to prove it in an implicit way. We
show in the following sections that, when there is no bad implication in H , a 2-approximation
for Ψ can be computed based on LP-rounding. This completes the proof of Lemma 5.

We also note that, the existence of bad implications can be tested in polynomial-time by
simple graph traversal in H. We obtain the following theorem.

▶ Theorem 6. The feasibility of Ψ can be tested in polynomial-time.

3.2 Unique Edge Orientation and Strongly Connected Components
In the following, we assume that no bad implication exists in the implication graph H. We
further simplify the structure of H by identifying
1. edges whose orientations can be uniquely determined, and
2. edges whose orientations are implied by each other.

In the former case, the edges will be assigned directly as dedicated workloads that each
vertex in V possesses. The latter case corresponds to strongly connected components (SCCs)
in H to be contracted and treated as a single vertex. When this process ends, we obtain a
simplified implication graph H ′′ = (VH′′ , EH′′), which is directed acyclic, and a dedicated
workload function q : V 7→ Z≥0 of the vertices. In the following we describe the details.

Unique Edge Orientation

Observe that, the assignment of an edge e ∈ E with v ∈ e can be uniquely determined if one
of the following two cases holds.

e = {v}, i.e., e is a self-loop. Then e must be assigned to v.
ue,v′

+→ ue,v, where e = {v, v′}. In this case, it also follows that e must be assigned to v.

In addition, provided that the edge e is to be assigned to v, all the nodes (assignments)
that are further implied by ue,v in H must be realized as well. On the other hand, the
opposite direction of the realized assignments, e.g., ue,e\v, must never be made and should
be removed from the implication graph H.

In the following, we describe a unifying approach to handle the above two cases. We start
with a zero dedicated workload function q ← 0 and repeat the following steps while there
exists some v ∈ e ∈ E such that either |e| = 1 or ue,e\v

+→ ue,v.
Inside the main while loop, we pick one such v ∈ e ∈ E and do the following. Let

A ← {ue,v} ∪
{

ℓ ∈ VH | ue,v
+→ ℓ

}
be the set of nodes (assignments) in H that are implied by ue,v, i.e., the set of nodes reachable
from ue,v. Intuitively, the assignments in A must be realized as well. On the contrary, let

B ←
{

ue′,e′\v′ | ue′,v′ ∈ A
}

be the set of nodes that make the opposite directions of assignments to the nodes in A.
Intuitively, the assignments in B must not be realized.

ISAAC 2023

50:8 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Then, we do the following updates. For each node, say, ue′,v′ ∈ A, we assign e′ to v′

and add pe′,v′ to qv′ as dedicated loads of v′ accordingly. Then we remove both A and B

from H and proceed to the next iteration until there exists no v ∈ e ∈ E with |e| = 1 or
ue,e\v

+→ ue,v. In the following, we use Algorithm A to denote the above process.
In the following, we show that, for any e ∈ E and any v ∈ e, the two nodes ue,v and

ue,e\v cannot belong to A at the same time. Hence, the concepts of A and B in Algorithm A
are well-defined. We begin with the following structural lemma for H . Intuitively, it provides
a reversed symmetric property for the conjugating pair of nodes in H in that, whenever
ue,v

+→ ue′,v′ for some ue,v, ue′,v′ ∈ VH , their conjugating partners, ue,e\v and ue′,e′\v′ , must
have a reversed implication relation ue′,e′\v′

+→ ue,e\v.

▶ Lemma 7. Let e, e′ ∈ E with v ∈ e, v′ ∈ e′. If ue,v
+→ ue′,v′ , then ue′,e′\v′

+→ ue,e\v.

Proof. We prove by induction on the length n of the shortest path from ue,v to ue′,v′ . If
n = 1, then by the definition of H , we have {e, e′} ∈ C and v ∈ e∩ e′, and v = e′ \ v′. Hence,
when e′ is assigned to v, e must be assigned to e \ v. Therefore we have ue′,e′\v′

+→ ue,e\v.
Assume that the statement holds when the length of the shortest path from ue,v to ue′,v′

is at most n. Then for the length n + 1, pick an arbitrary intermediate vertex ℓ on the
shortest path from ue,v to ue′,v′ . That is to say, ue,v

+→ ℓ and ℓ
+→ ue′,v′ . It follows that the

lengths of both subpaths is at most n. So by assumption, we have ue′,e′\v′
+→ ℓ′ +→ ue\v,

where ℓ′ is the conjugating pair of ℓ. This proves the lemma. ◀

The following lemma shows that the concepts of A and B in Algorithm A are well-defined.

▶ Lemma 8. For any v ∈ e ∈ E, ue,v ∈ A implies that ue,e\v /∈ A.

Proof. Consider any iteration in Algorithm A. Let (v∗, e∗), where v∗ ∈ e∗ ∈ E, denote
the pair that is selected in the beginning of the iteration such that either |e∗| = 1 or
ue∗,e∗\v∗

+→ ue∗,v∗ .
Assume for contradiction that, for some v ∈ e ∈ E, both ue,v and ue,e\v are in A.

Depending on whether or not e = e∗, we distinguish two cases and show that they both lead
to bad implications in H. Note that this will be a contradiction to our assumption in H.

e = e∗ and v = v∗, i.e., (e, v) is the pair chosen in the beginning of this iteration. In this
case, since ue∗,e∗\v∗ = ue,e\v ∈ A, we have ue∗,v∗

+→ ue∗,e∗\v∗ , which is a bad implication.
Assume that e ̸= e∗. Since both ue,v, ue,e\v ∈ A, it follows that

ue∗,v∗
+→ ue,v and ue∗,v∗

+→ ue,e\v (1)

hold at the same time. By Lemma 7, this implies that

ue,e\v
+→ ue∗,e∗\v∗ and ue,v

+→ ue∗,e∗\v∗ (2)

hold at the same time. We further consider the two subcases for which |e∗| = 1 or not.

If |e∗| ̸= 1, then we have ue∗,e∗\v∗
+→ ue∗,v∗ by the condition we pick at the beginning

of the while loop. Then we have ue,e\v
+→ ue∗,e∗\v∗

+→ ue∗,v∗
+→ ue,v by (1) and (2),

which is bad.
If |e∗| = 1, then ue∗,v∗

+→ ue,v
+→ ue∗,e∗\v∗ is a bad implication since ue∗,e∗\v∗ = ue∗,ϕ.

In all cases, it leads to a bad implication, which is a contradiction to the assumption that Ψ
is a feasible instance. This proves the lemma. ◀

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:9

By Algorithm A, we assume in the following that there are no self-loops in G and for any
e = {v, v′} ∈ E, none of ue,v or ue,v′ imply each other. Furthermore, we have a dedicated
workload function q for the vertices in V .

Handling the Strongly Connected Components

Consider the case that ℓ
+↔ ℓ′ for some ℓ, ℓ′ ∈ VH . Clearly this corresponds to a directed

cycle of implications, say, C, in H and constitutes as part of a strongly connected component
(SCC), say, C ′. It follows that, for any node on the cycle, say ue,v ∈ C, if the orientation of
e is determined, then the orientation of all the remaining edges to which the nodes on the
cycle correspond is also determined.

In fact, it is straightforward to verify that, the orientation of all the edges in the component
C ′ are mutually bound to each other. From this observation, the whole component C ′ can
be treated as a single node in the implication graph H , since the assignments of all the edges
on the nodes of this component are bound together.

In the following we formally define this concept. Let H ′ be the updated implication graph
after Algorithm A is applied and C ′

1, C ′
2, . . . , C ′

k be the SCCs we have in H ′.
Define the contracted implication graph H ′′ = (VH′′ , EH′′) as follows. For each 1 ≤ i ≤ k,

we have a vertex vi in VH′′ that represents the component C ′
i. For any 1 ≤ i, j ≤ k, we draw

an arc (vi, vj) in EH′′ if there is an arc (ℓ, ℓ′) that connects some ℓ ∈ C ′
i to some ℓ′ ∈ C ′

j .
Intuitively, the graph H ′′ is obtained by contracting each SCC in H ′ into a single vertex.

Since there is a one-to-one correspondence between SCCs in H ′ and the vertices in VH′′ , we
will use δ(s) for any s ∈ VH′′ to denote the SCC to which s corresponds in H ′. The following
lemma is straightforward to verify.

▶ Lemma 9. H ′′ is acyclic.

The following structural lemma for SCCs in H ′, obtained from Lemma 7, shows that
SCCs in H ′ also form conjugating pairs, regardless of their sizes.

▶ Lemma 10. For any e, e′ ∈ E with v ∈ e, v′ ∈ e′, if ue,v and ue′,v′ belong to the same
SCC, then ue,e\v and ue′,e′\v′ must belong to the same SCC as well.

ue,v

ue′,v′

δ(s) ++
ue,e\v

ue′,e′\v′

δ(s) ++

Figure 1 An illustration of the definition of conjugating pairs in VH′′ .

Lemma 10 allows the concept of conjugation for SCCs to be defined. Formally, for any
s ∈ VH′′ and any ue,v ∈ δ(s), define s to be the vertex in VH′′ such that δ(s) contains the
node ue,e\v. Note that, by Lemma 10, the vertex s is uniquely defined for each s ∈ VH′′ .
Also see Figure 1 for an illustration.

3.3 A 2-Approximation Algorithm
Let H ′′ = (VH′′ , EH′′) be the simplified implication graph we obtained from Section 3.2.
Note that H ′′ is acyclic by Lemma 9. Now we are ready to describe our assignment LP
LP-(T) for this problem and our 2-approximation algorithm.

ISAAC 2023

50:10 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

For each vertex s ∈ VH′′ , we introduce a decision variable xs ∈ {0, 1} to indicate whether
or not the assignments specified in the nodes of the SCC δ(s) should be realized. In this
regard, for any v ∈ V , define ps(v) :=

∑
e∈E s.t. ue,v∈δ(s) pe,v to be the workload vertex

v ∈ V will receive, if the assignments in δ(s) are realized.
Let T ≥ 0 be the target maximum workload of the vertices to be achieved. We have the

following feasibility LP relaxation with respect to the target value T .∑
s∈VH′′

ps(v) · xs + qv ≤ T, ∀v ∈ V, (3a)

xs + xs = 1, ∀s ∈ VH′′ , (3b)

xs ≤ xs′ , ∀(s, s′) ∈ EH′′ , (3c)

xs ≥ 0, ∀s ∈ VH′′ . (3d)

In the above LP formulation, the constraint (3a) models the maximum workload T for
each v ∈ V . The second constraint (3b) states that, for each conjugating pair of SCCs, exactly
one type of orientation is made. The third constraint (3c) models the arc of implication in
H ′′, namely, if (s, s′) ∈ EH′′ and xs is 1, then xs′ must also be 1.

The Algorithm

Our algorithm goes as follows. First, it uses binary search to compute the smallest T0 such
that LP-(T0) is feasible. Let σ̂ be an optimal assignment for Ψ and T̂ be the maximum
workload of σ̂. Then, it follows that T0 must be a lower-bound of T̂ , since σ̂ corresponds to
a set of feasible solution for LP-(T̂). Let x∗ be a fractional solution for LP-(T0).

In the following, we describe a procedure that rounds x∗ into an integer solution x̃ such
that the workload of each vertex is at most doubled. Define

S ̸= :=
{

s ∈ VH′′ | x∗
s ̸=

1
2

}
and S= :=

{
s ∈ VH′′ | x∗

s = 1
2

}
.

For any s ∈ S ̸=, define

x̃s :=
{

1, if x∗
s > 1/2,

0, if x∗
s < 1/2.

By constraint (3b), if x∗
s > 1/2 for some s ∈ S ̸=, then it follows that x∗

s < 1/2 and vice versa.
Hence, the above setting of x̃ keeps constraint (3b) satisfied. Furthermore, the workload
each vertex receives is at most doubled since x∗

s is rounded up only when it is at least 1/2.
However, for any component s ∈ S=, we have s ∈ S= as well. Hence, x∗

s and x∗
s cannot

both be rounded up at the same time since constraint (3b) will be violated. To resolve the
rounding problem for components in S=, we use the fact that H ′′ \ S ̸= is still a DAG and
consider the topological order of the components in S=.

Let S := H ′′ \ S ̸=. Repeat the following steps until S becomes empty. In each iteration,
pick a component s ∈ S with zero out-degree. Intuitively, the orientation of s does not affect
the orientation of the remaining components in S. We set x̃s to be 1 and x̃s to be zero. Then
we remove both s and s from S. This process is repeated until S becomes empty.

To obtain an orientation for the edges in E, we make the assignments specified in each
SCC s with x̃s = 1. In particular, for each s ∈ VH′′ with x̃s = 1 and each node, say,
ue,v ∈ δ(s), we assign e to v by setting σ(e) = v. Then we output σ to be the approximate
solution for Ψ.

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:11

The following lemma shows that, in any iteration of the above rounding procedure, if a
component s has zero out-degree, then s must have a zero in-degree. This shows that our
rounding procedure for components in S= is well-defined.

▶ Lemma 11. For any s ∈ VH′′ , if s has zero out-degree, then s must have a zero in-degree.

The following lemma shows that σ is a feasible orientation for Ψ. Note that this also
completes the proof for Lemma 5 and our characterization on the feasibility of (2, 2)-SNC
graph balancing.

▶ Lemma 12. σ is feasible for Ψ.

Proof. As an integer solution for LP-(T) corresponds naturally to a feasible assignment, it
suffices to show that x̃ is feasible for LP-(T) for some T .

Clearly x̃ satisfies constraint (3b) and (3d) in LP-(T0). For the constraint (3c), consider
any (s, s′) ∈ EH′′ . Since x∗ is a feasible solution for LP-(T0), we have x∗

s ≤ x∗
s′ . We will

show that x̃s ≤ x̃s′ . Depending on the values of x∗
s and x∗

s′ , we consider the following cases.
If 1/2 < x∗

s ≤ x∗
s′ or x∗

s ≤ x∗
s′ < 1/2, then x̃s = x̃s′ by our rounding scheme.

If x∗
s < 1/2 or 1/2 < x∗

s′ , then x̃s = 0 for the former case or x̃s′ = 1 for the latter case.
In both cases, x̃s ≤ x̃s′ holds.
For the remaining case for which x∗

s = x∗
s′ = 1/2, assume for contradiction that constraint

(3c) is not satisfied, i.e., x̃s = 1 and x̃s′ = 0.
Since x̃s = 1, we know that s′ has already been removed from H ′′ when s is selected to
be rounded up by the algorithm. Since x̃s′ = 0, we know that s′ was removed because its
conjugating pair was selected and removed. But this will be a contradiction to Lemma 11
since the in-degree of s′ was at least 1 at that time. Hence, constraint (3c) also holds.

This proves the feasibility of x̃ for LP-(T) for some T . ◀

It remains to prove the following theorem.

▶ Theorem 13. σ can be computed in polynomial-time and is a 2-approximation for Ψ.

Proof. It is clear that the computation can be done in polynomial-time. For each vertex
v ∈ V , we know that the workload of v is

∑
e∈σ−1(v)

pe,v =
∑

s∈VH′′

x̃s ·

 ∑
ue,v∈δ(s)

pe,v

 + qv =
∑

s∈VH′′

x̃s ps(v) + qv .

Observe that for any s ∈ VH′′ , x̃s = 1 only when x∗
s ≥ 1/2. Hence we have x̃s ≤ 2 · x∗

s. It
follows that, for each vertex v ∈ V , we have∑

s∈VH′′

x̃s ps(v) + qv ≤
∑

s∈VH′′

2 · x∗
s ps(v) + qv ≤ 2 · T0 ≤ 2 · T̂ ,

where T̂ is the maximum workload of the optimal assignment σ̂ and in the last inequality we
use the fact that T0 is the smallest value such that LP-(T0) is feasible. ◀

Integrality Gap of LP-(T)

In the following we show that the integrality gap of LP-(T) is 2. This shows that the
approximation ratio we obtained for this problem is tight in terms of the LP we use. Consider
the instance shown in Figure 2 with the weights pe1,a = pe5,b = pe3,a = pe3,b = 1 and all
other 0, and the SNC constraints C = {{e1, e2}, {e2, e3}, {e3, e4}, {e4, e5}}.

ISAAC 2023

50:12 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Observe that no matter e3 is oriented to a or b, it always forces e1 or e5 to be oriented
to the same vertex to which e3 is oriented. Hence, the maximum workload of any feasible
orientation is at least 2. On the other hand, consider the simplified implication graph H ′′

of the instance, shown on the r.h.s. of Figure 2. Observe that, by setting xs = 1/2 for all
s ∈ VH′′ , all the constraints of LP-(T) with T = 1 are satisfied and we obtain a fractional
orientation with maximum workload 1. This shows that the integrality gap is at least 2.

a b

c d

e3

e1e2 e4e5

e1, c

e2, a
e3, b

e4, d

e5, b

e1, a

e2, c
e3, a

e4, b

e5, d

Figure 2 An example which shows that the integrality gap of LP-(T) is 2. On the right hand
side, we use e, v to denote ue,v for notational simplicity.

Extension to Weighted Completion Time with SNC Constraints.

Our approach for graph balancing with SNC constraints is general and can be applied to
similar settings to obtain similar approximation guarantees. In the following, we sketch how
our algorithm framework can be used to obtain a 2-approximation when the objective is to
minimize the weighted completion time, instead of maximum workload.

In fact, apart from the different objective function we need in the LP formulation, the
remaining parts are exactly the same. We have the following corollary.

▶ Corollary 14. We can compute a 2-approximation for the (2, 2)-SNC graph balancing
problem to minimize the weighted completion time.

4 Min-Max (2, 2)-SNC Graph Balancing on Restricted Graphs

In this section, we present both approximation and hardness results for min-max (2, 2)-SNC
graph balancing on restricted graphs to describe a complete landscape of this problem.

Let Ψ = (G = (V, E), p, C) be an instance of min-max (2, 2)-SNC graph balancing.

▶ Theorem 15. There is an FPTAS for min-max (2, 2)-SNC graph balancing when |V | = 2.
When |V | ≥ 3, this problem is at least as hard as vertex cover to approximate.

Note that, Theorem 15 provides a clear landscape on this problem and shows that,
assuming the unique game conjecture (UGC), the approximation guarantee we obtained in
this work is already tight even when |V | = 3.

References
1 Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algorithm for

restricted max-min fair allocation. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1357–1372. SIAM, 2015. doi:10.1137/1.9781611973730.90.

https://doi.org/10.1137/1.9781611973730.90

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:13

2 Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings. In
Ashish Goel, Klaus Jansen, José D. P. Rolim, and Ronitt Rubinfeld, editors, Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, 11th Interna-
tional Workshop, APPROX 2008, and 12th International Workshop, RANDOM 2008, Boston,
MA, USA, August 25-27, 2008. Proceedings, volume 5171 of Lecture Notes in Computer Science,
pages 10–20. Springer, 2008. doi:10.1007/978-3-540-85363-3_2.

3 Nikhil Bansal, Aravind Srinivasan, and Ola Svensson. Lift-and-round to improve weighted
completion time on unrelated machines. In Daniel Wichs and Yishay Mansour, editors,
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 156–167. ACM, 2016. doi:10.1145/
2897518.2897572.

4 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Jon M. Kleinberg, editor,
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA,
May 21-23, 2006, pages 31–40. ACM, 2006. doi:10.1145/1132516.1132522.

5 Alok Baveja, Xiaoran Qu, and Aravind Srinivasan. Approximating weighted completion time
via stronger negative correlation. Journal of Scheduling, pages 1–10, 2023.

6 Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exch., 5(3):11–18,
2005. doi:10.1145/1120680.1120683.

7 Hans L. Bodlaender, Klaus Jansen, and Gerhard J. Woeginger. Scheduling with incom-
patible jobs. In Ernst W. Mayr, editor, Graph-Theoretic Concepts in Computer Science,
18th International Workshop, WG ’92, Wiesbaden-Naurod, Germany, June 19-20, 1992, Pro-
ceedings, volume 657 of Lecture Notes in Computer Science, pages 37–49. Springer, 1992.
doi:10.1007/3-540-56402-0_34.

8 Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maximize
fairness. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA, pages 107–116. IEEE Computer Society, 2009.
doi:10.1109/FOCS.2009.51.

9 Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1,)-restricted assignment makespan
minimization. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 1087–1101. SIAM, 2015. doi:10.1137/1.9781611973730.73.

10 Deeparnab Chakrabarty and Kirankumar Shiragur. Graph balancing with two edge types.
CoRR, abs/1604.06918, 2016. arXiv:1604.06918.

11 Siu-Wing Cheng and Yuchen Mao. Restricted max-min fair allocation. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 37:1–37:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.37.

12 Siu-Wing Cheng and Yuchen Mao. Restricted max-min allocation: Approximation and
integrality gap. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 38:1–38:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.38.

13 Syamantak Das and Andreas Wiese. On minimizing the makespan when some jobs cannot
be assigned on the same machine. In Kirk Pruhs and Christian Sohler, editors, 25th Annual
European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
volume 87 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ESA.2017.31.

14 Sami Davies, Thomas Rothvoss, and Yihao Zhang. A tale of santa claus, hypergraphs
and matroids. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
2748–2757. SIAM, 2020. doi:10.1137/1.9781611975994.167.

ISAAC 2023

https://doi.org/10.1007/978-3-540-85363-3_2
https://doi.org/10.1145/2897518.2897572
https://doi.org/10.1145/2897518.2897572
https://doi.org/10.1145/1132516.1132522
https://doi.org/10.1145/1120680.1120683
https://doi.org/10.1007/3-540-56402-0_34
https://doi.org/10.1109/FOCS.2009.51
https://doi.org/10.1137/1.9781611973730.73
https://arxiv.org/abs/1604.06918
https://doi.org/10.4230/LIPIcs.ICALP.2018.37
https://doi.org/10.4230/LIPIcs.ICALP.2019.38
https://doi.org/10.4230/LIPIcs.ESA.2017.31
https://doi.org/10.1137/1.9781611975994.167

50:14 On Min-Max Graph Balancing with Strict Negative Correlation Constraints

15 Irit Dinur, Oded Regev, and Clifford D. Smyth. The hardness of 3 - uniform hypergraph
coloring. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, page 33. IEEE Computer Society, 2002.
doi:10.1109/SFCS.2002.1181880.

16 Tomás Ebenlendr, Marek Krcál, and Jirí Sgall. Graph balancing: a special case of scheduling
unrelated parallel machines. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA,
January 20-22, 2008, pages 483–490. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?
id=1347082.1347135.

17 Uriel Feige. On allocations that maximize fairness. In Shang-Hua Teng, editor, Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008,
San Francisco, California, USA, January 20-22, 2008, pages 287–293. SIAM, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347114.

18 Penny Haxell and Tibor Szabó. Improved integrality gap in max-min allocation: or topology
at the north pole. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25,
2023, pages 2875–2897. SIAM, 2023. doi:10.1137/1.9781611977554.ch109.

19 Chien-Chung Huang and Sebastian Ott. A combinatorial approximation algorithm for graph
balancing with light hyper edges. In Piotr Sankowski and Christos D. Zaroliagis, editors,
24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, volume 57 of LIPIcs, pages 49:1–49:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.49.

20 Klaus Jansen, Alexandra Lassota, and Marten Maack. Approximation algorithms for scheduling
with class constraints. In Christian Scheideler and Michael Spear, editors, SPAA ’20: 32nd
ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July
15-17, 2020, pages 349–357. ACM, 2020. doi:10.1145/3350755.3400247.

21 Klaus Jansen and Lars Rohwedder. On the configuration-lp of the restricted assignment
problem. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2670–2678. SIAM, 2017. doi:10.1137/1.9781611974782.176.

22 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. In 28th Annual Symposium on Foundations of Computer Science,
Los Angeles, California, USA, 27-29 October 1987, pages 217–224. IEEE Computer Society,
1987. doi:10.1109/SFCS.1987.8.

23 Daniel R. Page and Roberto Solis-Oba. A 3/2-approximation algorithm for the graph balancing
problem with two weights. Algorithms, 9(2):38, 2016. doi:10.3390/a9020038.

24 Daniel R. Page and Roberto Solis-Oba. Makespan minimization on unrelated parallel machines
with a few bags. In Shaojie Tang, Ding-Zhu Du, David L. Woodruff, and Sergiy Butenko,
editors, Algorithmic Aspects in Information and Management - 12th International Conference,
AAIM 2018, Dallas, TX, USA, December 3-4, 2018, Proceedings, volume 11343 of Lecture Notes
in Computer Science, pages 24–35. Springer, 2018. doi:10.1007/978-3-030-04618-7_3.

25 Tytus Pikies, Krzysztof Turowski, and Marek Kubale. Scheduling with complete multipart-
ite incompatibility graph on parallel machines: Complexity and algorithms. Artif. Intell.,
309:103711, 2022. doi:10.1016/j.artint.2022.103711.

26 Petra Schuurman and Gerhard J Woeginger. Polynomial time approximation algorithms for
machine scheduling: Ten open problems. Journal of Scheduling, 2(5):203–213, 1999.

27 Ola Svensson. Santa claus schedules jobs on unrelated machines. In Lance Fortnow and Salil P.
Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC
2011, San Jose, CA, USA, 6-8 June 2011, pages 617–626. ACM, 2011. doi:10.1145/1993636.
1993718.

https://doi.org/10.1109/SFCS.2002.1181880
http://dl.acm.org/citation.cfm?id=1347082.1347135
http://dl.acm.org/citation.cfm?id=1347082.1347135
http://dl.acm.org/citation.cfm?id=1347082.1347114
https://doi.org/10.1137/1.9781611977554.ch109
https://doi.org/10.4230/LIPIcs.ESA.2016.49
https://doi.org/10.1145/3350755.3400247
https://doi.org/10.1137/1.9781611974782.176
https://doi.org/10.1109/SFCS.1987.8
https://doi.org/10.3390/a9020038
https://doi.org/10.1007/978-3-030-04618-7_3
https://doi.org/10.1016/j.artint.2022.103711
https://doi.org/10.1145/1993636.1993718
https://doi.org/10.1145/1993636.1993718

T.-Y. Kuo, Y.-H. Chen, A. Frosini, S.-Y. Hsieh, S.-C. Tsai, and M.-J. Kao 50:15

28 José Verschae and Andreas Wiese. On the configuration-lp for scheduling on unrelated
machines. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms - ESA
2011 - 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011.
Proceedings, volume 6942 of Lecture Notes in Computer Science, pages 530–542. Springer,
2011. doi:10.1007/978-3-642-23719-5_45.

29 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/
item5759340/?site_locale=de_DE.

ISAAC 2023

https://doi.org/10.1007/978-3-642-23719-5_45
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE

On the Line-Separable Unit-Disk Coverage and
Related Problems
Gang Liu #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Haitao Wang # Ñ

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Abstract
Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks
for a smallest subset of disks that together cover all points of P . The problem is NP-hard. In
this paper, we consider a line-separable unit-disk version of the problem where all disks have the
same radius and their centers are separated from the points of P by a line ℓ. We present an
m2/3n2/32O(log∗(m+n)) + O((n + m) log(n + m)) time algorithm for the problem. This improves
the previously best result of O(nm + n log n) time. Our techniques also solve the line-constrained
version of the problem, where centers of all disks of S are located on a line ℓ while points of P can be
anywhere in the plane. Our algorithm runs in O(m

√
n + (n + m) log(n + m)) time, which improves

the previously best result of O(nm log(m + n)) time. In addition, our results lead to an algorithm
of n10/32O(log∗ n) time for a half-plane coverage problem (given n half-planes and n points, find a
smallest subset of half-planes covering all points); this improves the previously best algorithm of
O(n4 log n) time. Further, if all half-planes are lower ones, our algorithm runs in n4/32O(log∗ n) time
while the previously best algorithm takes O(n2 log n) time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases disk coverage, line-separable, unit-disk, line-constrained, half-planes

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.51

Related Version Full Version: http://arxiv.org/abs/2309.03162

Funding This research was supported in part by NSF under Grants CCF-2005323 and CCF-2300356.

1 Introduction

Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks
for a smallest subset of disks such that every point of P is covered by at least one disk in the
subset. The problem is NP-hard, even if all disks have the same radius [15,20]. Polynomial
time approximation algorithms have been proposed for the problem and many of its variants,
e.g., [1, 6, 8, 9, 16,19].

Polynomial time exact algorithms are known for certain special cases. If all points of
P are inside a strip bounded by two parallel lines and the centers of all disks lie outside
the strip, then the problem is solvable in polynomial time [3]. If all disks of S contain the
same point, polynomial time algorithms also exist [12,13]; in particular, applying the result
in [8] (i.e., Corollary 1.7) yields an O(mn2(m + n)) time algorithm. In order to devise an
efficient approximation algorithm for the general coverage problem (without any constraints),
the line-separable version was considered in the literature [3, 7, 11], where disk centers are
separated from the points by a given line ℓ. A polynomial time 4-approximation algorithm is
given in [7]. Ambühl et al. [3] derived an exact algorithm of O(m2n) time. An improved
O(nm + n log n) time algorithm is presented in [11] and another algorithm in [21] runs in
O(n log n + m2 log n) in the worst case.

© Gang Liu and Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:u0866264@utah.edu
mailto:haitao.wang@utah.edu
https://www.cs.utah.edu/~hwang/
https://doi.org/10.4230/LIPIcs.ISAAC.2023.51
http://arxiv.org/abs/2309.03162
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 On the Line-Separable Unit-Disk Coverage and Related Problems

ℓ

Figure 1 Illustrating the line-separable unit-
disk case.

`

Figure 2 Illustrating the line-constrained case
(all disks are centred on ℓ).

The line-constrained version of the disk coverage problem has also been studied, where
disk centers are on the x-axis while points of P can be anywhere in the plane. Pedersen and
Wang [21] considered the weighted case in which each disk has a weight and the objective
is to minimize the total weight of the disks in the subset that cover all points. Their
algorithm runs in O((m + n) log(m + n) + κ log m) time, where κ is the number of pairs
of disks that intersect and κ = O(m2) in the worst case. They reduced the runtime to
O((m + n) log(m + n)) for the unit-disk case, where all disks have the same radius, as well
as the L∞ and L1 cases, where the disks are squares and diamonds, respectively [21]. The
1D problem where disks become segments on a line and points are on the same line is also
solvable in O((m + n) log(m + n)) [21]. Other types of line-constrained coverage problems
have also been studied in the literature, e.g., [2, 4, 5, 18].

A related problem is when disks of S are half-planes. For the weighted case, Chan and
Grant [8] proposed an algorithm for the lower-only case where all half-planes are lower ones;
their algorithm runs in O(n4) time when m = n. With the observation that a half-plane may
be considered as a unit disk of infinite radius, the techniques of [21] solve the problem in
O(n2 log n) time. For the general case where both upper and lower half-planes are present,
Har-Peled and Lee [17] solved the problem in O(n5) time. Pedersen and Wang [21] showed
that the problem can be reduced to O(n2) instances of the lower-only case problem and thus
can be solved in O(n4 log n) time. To the best of our knowledge, we are not aware of any
previous work particularly on the unweighted half-plane coverage problem.

1.1 Our result

We assume that ℓ is the x-axis and all disk centers are below or on ℓ while all points of P are
above or on ℓ. We consider the line-separable version of the disk coverage problem with the
following single-intersection condition: For any two disks, their boundaries intersect at most
once in the half-plane above ℓ. Note that this condition is satisfied in both the unit-disk
case (see Fig 1) and the line-constrained case (see Fig. 2; more to explain below). Hence, an
algorithm for this line-separable single-intersection case works for both the unit-disk case and
the line-constrained case. Note that all problems considered in this paper are unweighted
case in the L2 metric.

For the above line-separable single-intersection problem, we give an algorithm of O(m
√

n+
(n + m) log(n + m)) time in Section 3. Based on observations, we find that some disks are
“useless” and thus can be pruned from S. After pruning those useless disks, the remaining
disks have certain property so that we can reduce the problem to the 1D problem, which
can then be easily solved. The overall algorithm is fairly simple conceptually. One challenge,
however, is to show the correctness, namely, to prove why those “useless” disks are indeed
useless. The proof is rather lengthy and technical. The bottleneck of the algorithm is to find
those useless disks, for which we utilize the cuttings [10].

G. Liu and H. Wang 51:3

The line-constrained problem. Observe that the line-constrained problem where all disks
of S are centered on a line ℓ while points of P can be anywhere in the plane is also a special
case of the line-separable single-intersection problem. Indeed, for each point p of P below
ℓ, we could replace p by its symmetric point with respect to ℓ; in this way, we can obtain
a set of points that are all above ℓ. It is not difficult to see that an optimal solution using
this new set of points is also an optimal solution for P . Further, since disks are centered
on ℓ, although their radii may not be equal, boundaries of any two disks intersect at most
once above ℓ. Hence, the problem is an instance of the line-separable single-intersection
case. As such, applying our algorithm in Section 3 solves the line-constrained problem in
O(m

√
n + (n + m) log(n + m)) time; this improves the previous algorithm in [21], which runs

in O(n log n + m2 log m) time in the worst case.

The unit-disk case. To solve the line-separable unit-disk case, the algorithm in Section 3
still works. However, by making use of the property that all disks have the same radius, we
further improve the runtime to m2/3n2/32O(log∗(m+n)) + O((m + n) log(m + n)) in Section 4.
This improves the O(nm + n log n) time algorithm in [11] as well as the O(n log n + m2 log n)
time one in [21]. The main idea of the improvement (over the algorithm in Section 3) is to
explore the duality of certain subproblems in the algorithm (i.e., consider the corresponding
problems on the centers of all unit disks of S and the unit disks centered at the points of
P). We derive new algorithms for these dual subproblems and then combine them with the
algorithms in Section 3 using recursion (the number of recursions is O(log∗(n + m)) and this
is why there is a factor 2O(log∗(m+n)) in the time complexity).

The half-plane coverage problem. As in [21], our techniques also solve the half-plane
coverage problem. Specifically, for the lower-only case, let ℓ be a horizontal line that is below
all points of P . If we consider each half-plane as a unit disk of infinite radius with center below
ℓ, then the problem becomes an instance of the line-separable unit-disk coverage problem.
Therefore, applying our result leads to an m2/3n2/32O(log∗(m+n)) + O((m + n) log(m + n))
time algorithm. When m = n, this is n4/32O(log∗ n) time, improving the previous algorithm
of O(n2 log n) time [21]. For the general case where both the upper and lower half-plane are
present, using the method in [21] that reduces the problem to O(n2) instances of the lower-
only case, the problem is now solvable in m2/3n8/32log∗(m+n) +O(n2(m+n) log(m+n)) time.
When m = n, this is n10/32O(log∗ n) time, improving the previous algorithm of O(n4 log n)
time [21].

2 Preliminaries

This section introduces some concepts and notations that we will use in the rest of the paper.
We follow the notation defined in Section 1, e.g., P , S, m, n, ℓ. Without loss of generality,

we assume that ℓ is the x-axis and points of P are all above or on ℓ while centers of disks
of S are all below or on ℓ. Under this setting, for each disk s ∈ S, only its portion above ℓ

matters for our coverage problem. Hence, unless otherwise stated, a disk s only refers to its
portion above ℓ. As such, the boundary of s consists of an upper arc, i.e., the boundary arc
of the original disk above ℓ, and a lower segment, i.e., the intersection of s with ℓ. Notice
that s has a single leftmost (resp., rightmost) point, which is the left (resp., right) endpoint
of the lower segment of s.

We assume that each point of P is covered by at least one disk since otherwise there
would be no feasible solution. Our algorithm is able to check whether the assumption is met.
We make a general position assumption that no point of P lies on the boundary of a disk

ISAAC 2023

51:4 On the Line-Separable Unit-Disk Coverage and Related Problems

and no two points of A have the same x-coordinate, where A is the union of P and the set
of the leftmost and rightmost points of all disks. Degenerated cases can be easily handled by
standard techniques of perturbation, e.g., [14].

For any point p in the plane, we denote its x- and y-coordinates by x(p) and y(p),
respectively. We sort all the points of P in ascending order of their x-coordinates, resulting
in a sorted list p1, p2, · · · , pn. We also sort all disks in ascending order of the x-coordinates
of their leftmost points, resulting in a sorted list s1, s2, · · · , sm. We use S[i, j] to denote the
subset {si, si+1, · · · , sj}; for convenience, S[i, j] = ∅ if i > j. For each disk si, let li and ri

denote its leftmost and rightmost points, respectively.
For any disk s, we use Sl(s) (resp., Sr(s)) to denote the set of disks S whose leftmost points

are to the left (resp., right) of that of s. As such, if the index of s is i, then Sl(s) = S[1, i − 1]
and Sr(s) = S[i + 1, m]. If disk s′ ∈ Sl(s), then we also say that s′ is to the left of s; similarly,
if s′ ∈ Sr(s), then s′ is to the right of s.

For a point pi ∈ P and a disk sk ∈ S, we say that pi is vertically above sk if pi is outside
sk and x(lk) < x(pi) < x(rk).

If S′ is a subset of S that form a coverage of P , then we call S′ a feasible solution. If S′

is a feasible solution of minimum size, then S′ is an optimal solution.

The non-containment property. Suppose a disk si contains another disk sj . Then sj

is redundant for our problem since any point covered by sj is also covered by si. Those
redundant disks can be easily identified and removed from S in O(m log m) time (indeed,
this is a 1D problem by observing that si contains sj if and only if the lower segment of si

contains that of sj). Hence, for solving our problem, we first remove such redundant disks
and work on the remaining disks. For simplicity, from now on we assume that no disk of
S contains another. Therefore, S has the following non-containment property, which our
algorithm relies on.

▶ Observation 1. (Non-Containment Property) For any two disks si, sj ∈ S, x(li) < x(lj)
if and only if x(ri) < x(rj).

Cuttings. One algorithmic tool we use is the cuttings [10]. Let H denote the set of the
upper arcs of all disks of S. Note that |H| = m.

For a parameter r with 1 ≤ r ≤ m, a (1/r)-cutting Ξ of size O(r2) for H is a collection
of O(r2) constant-complexity cells whose union covers the plane such that for any cell σ,
|Hσ| ≤ m/r holds, where Hσ is the subset of arcs of H that intersect the interior of σ (Hσ is
often called the conflict list in the literature). In our algorithm descriptions, we often use Sσ,
defined as the subset of disks whose upper arcs are in Hσ.

Our algorithm actually uses hierarchical cuttings [10]. A cutting Ξ′ c-refines a cutting
Ξ if each cell of Ξ′ is contained in a single cell of Ξ and every cell of Ξ contains at most
c cells of Ξ′. Let Ξ0 denote the cutting whose single cell is the entire plane. We define
cuttings {Ξ0, Ξ1, ..., Ξk}, in which each Ξi, 1 ≤ i ≤ k, is a (1/ρi)-cutting of size O(ρ2i) that
c-refines Ξi−1, for two constants ρ and c. By setting k = ⌈logρ r⌉, the last cutting Ξk is a
(1/r)-cutting. The sequence {Ξ0, Ξ1, ..., Ξk} of cuttings is called a hierarchical (1/r)-cutting
of H. For a cell σ′ of Ξi−1, 1 ≤ i ≤ k, that fully contains cell σ of Ξi, we say that σ′ is the
parent of σ and σ is a child of σ′. Thus the hierarchical (1/r)-cutting can be viewed as a tree
structure with Ξ0 as the root. We often use Ξ to denote the set of all cells in all cuttings Ξi,
0 ≤ i ≤ k.

A hierarchical (1/r)-cutting of H can be computed in O(mr) time, e.g., by the algorithm
in [22], which adapts Chazelle’s algorithm [10] for hyperplanes. The algorithm also produces
the conflict lists Hσ (and thus Sσ) for all cells σ ∈ Ξ, implying that the total size of these

G. Liu and H. Wang 51:5

Figure 3 Illustrating a pseudo-trapezoid.

conflict lists is bounded by O(mr). In particular, each cell of the cutting produced by the
algorithm of [22] is a (possibly unbounded) pseudo-trapezoid that typically has two vertical
line segments as left and right sides, a sub-arc of an arc of H as a top side (resp., bottom
side) (see Fig. 3).

3 The line-separable single-intersection case

In this section, we present our algorithm for the disk coverage problem in the line-separable
single-intersection case. We follow the notation defined in Section 2.

For each disk si ∈ S, we define two indices a(i) and b(i) of points of P (where pa(i) and
pb(i) are not contained in si), which are critical to our algorithm.

▶ Definition 2.
Among all points of P covered by the union of the disks of S[1, i − 1] but not covered by si,
define a(i) to be the largest index of these points; if no such point exists, then let a(i) = 0.
Among all points of P covered by the union of the disks of S[i + 1, m] but not covered by
si, define b(i) to be the smallest index of these points; if no such point exists, then let
b(i) = n + 1.

We now describe our algorithm. Although the algorithm description looks simple, it is
quite challenging to prove the correctness. Due to the space limit, the correctness proof is
in the full version of the paper. The algorithm implementation, which is also not trivial, is
presented in Section 3.1.

Algorithm description. The algorithm has three main steps.

1. We first compute a(i) and b(i) for all disks si ∈ S. We will show in Section 3.1 that this
can be done in O(m

√
n + (n + m) log(n + m)) time using cuttings.

2. For each disk si, if a(i) ≥ b(i), we say that si a prunable disk. Let S∗ denote the subset
of disks of S that are not prunable. We prove in the full version of this paper that S∗

contains an optimal solution for the coverage problem on P and S. This means that it
suffices to work on S∗ and P .

3. We reduce the disk coverage problem on S∗ and P to a 1D coverage problem as follows.
For each point of P , we project it vertically onto ℓ. Let P ′ be the set of all projected
points. For each disk si ∈ S∗, we create a line segment on ℓ whose left endpoint has
x-coordinate equal to x(pa(i)+1) and whose right endpoint has x-coordinate equal to
x(pb(i)−1) (if a(i) + 1 = b(i), then let the x-coordinate of the right endpoint be x(pa(i)+1)).
Let S′ be the set of all segments thus created.

ISAAC 2023

51:6 On the Line-Separable Unit-Disk Coverage and Related Problems

We solve the following 1D coverage problem: Find a minimum subset of segments of
S′ that together cover all points of P ′. This problem can be easily solved in O((|S′| +
|P ′|) log(|S′| + |P ′|)) time [21],1 which is O((m + n) log(m + n)) since |P ′| = n and
|S′| ≤ m.
Suppose S′

1 is any optimal solution to the above 1D coverage problem. We create a subset
S1 of S∗ as follows. For each segment of S′

1, suppose it is created from a disk si ∈ S∗;
then we add si to S1. We prove in the full version of the paper that S1 is an optimal
solution to the coverage problem for S∗ and P .

We summarize the result in the following theorem.

▶ Theorem 3. Given a set P of n points and a set S of m disks in the plane such that the
disk centers are separated from points of P by a line, and the single-intersection condition is
satisfied, the disk coverage problem for P and S is solvable in O(m

√
n + (n + m) log(n + m))

time.

The unit-disk case. In Section 4, we will reduce the time to m2/3n2/32O(log∗(m+n)) +O((n+
m) log(n + m)) for the unit-disk case. The algorithm is exactly the same as above, except
that we compute a(i)’s and b(i)’s in a more efficient way by utilizing the property that all
disks have the same radius.

3.1 Algorithm implementation
In this section, we show that the first main step of the algorithm can be implemented in
O(m

√
n + (n + m) log(n + m)) time. The goal is to compute a(i) and b(i) for all disks si ∈ S.

We only discuss how to compute a(i) since computing b(i) can be done analogously. To this
end, we start with the following definition.

▶ Definition 4. For each point p ∈ P , define γ(p) as the smallest index k such that the disk
sk covers p.

One reason we introduce γ(p) is due to the following observation.

▶ Observation 5. For any disk si ∈ S and any point p ∈ P that is outside si, there is a disk
in Sl(si) covering p if and only if γ(p) < i.

Our algorithm for computing a(i) relies on γ(p) for all p ∈ P . Therefore, we first present
an algorithm in the following lemma to compute γ(p).

▶ Lemma 6. There is an algorithm that can compute γ(p) for all p ∈ P in O(m
√

n + (m +
n) log(m + n)) time.

Proof. Let H be the set of the upper arcs of all disks. As discussed in Section 2, we compute
a hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H in O(mr) time [10,22], for a parameter r ∈ [1, m]
to be determined later. We follow the notation about cutting as in Section 2, e.g., Ξ, Hσ, Sσ,
etc. Recall that Ξ denotes the set of all cells of all cuttings σi, i = 0, 1, . . . , k. As discussed
in Section 2, the cutting algorithm [10,22] also computes the conflict lists Hσ (and thus Sσ)
for all cells σ ∈ Ξ. Also,

∑
σ∈Ξ |Sσ| = O(mr).

1 The algorithm in [21], which uses dynamic programming, is for the weighted case where each segment
has a weight. Our problem is simpler since it is an unweighted case. We can use a simple greedy
algorithm to solve it.

G. Liu and H. Wang 51:7

For each i with 1 ≤ i ≤ k, for each cell σ ∈ Ξi, let S(σ) be the set of disks that contain
σ but do not contain σ′, where σ′ is the parent cell of σ (which is in Ξi−1). Note that Ξ0
consists of a single cell σ∗ that is the entire plane and thus we simply let S(σ∗) = ∅ as no
disk contains the entire plane.

We can compute S(σ) of all cells σ ∈ Ξ in O(mr) time as follows. For each i with
1 ≤ i ≤ k, for each cell σ′ ∈ Ξi−1, recall that Sσ′ is available from the cutting algorithm. For
each disk s of Sσ′ , for each child cell σ of σ′, we check whether s contains σ; if yes, we add
s to S(σ). As such, since the total size of Sσ of all cells σ of Ξ is O(mr) and each cell has
O(1) children, the total time for computing S(σ) for all cells σ ∈ Ξ is O(mr).

For each cell σ, by slightly abusing the notation, we define γ(σ) as the smallest index
of the disks in S(σ). After S(σ)’s are computed, the indices γ(σ) for all cells σ ∈ Ξ can be
computed in additional O(mr) time.

Next, we run the following point location step for each point p ∈ P to compute γ(p).
Initially, we set γ(p) = m + 1. Starting from the only cell of Ξ0, we locate the cell σi that
contains p in each cutting Ξi. This takes O(log r) time as each cell contains O(1) children
and k = O(log r). For each such cell σi, we update γ(p) = min{γ(p), γ(σi)}. As such, the
point location step on p takes O(log r) time. The total time for all points of P is O(n log r).

In addition, we do the following processing for the cell σk of the last cutting Ξk that
contains each p ∈ P . For each disk sj ∈ Sσk

, we check whether sj contains p. If yes, we
update γ(p) = min{γ(p), j}. After that, γ(p) is correctly computed. As |Sσk

| ≤ m/r, this
additional step for each point p takes O(m/r) time. Therefore, the total time of this step for
all points of P is O(nm/r).

In summary, computing γ(p) for all p ∈ P takes O(mr + n log r + nm/r) time. Setting
r = min{

√
n, m} leads to the lemma. ◀

The following lemma finally computes a(i).

▶ Lemma 7. Computing a(i) for all disks si ∈ S can be done in O(m
√

n+(m+n) log(m+n))
time.

Proof. We first compute γ(p) for all p ∈ P by Lemma 6.
Let H be the set of the upper arcs of all disks. As discussed in Section 2, we compute a

hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H in O(mr) time [10,22], for a parameter r ∈ [1, m]
to be determined later. We follow the notation about cutting as in Section 2, e.g., Ξ, Hσ,
Sσ, etc. Recall that Ξ denotes the set of all cells of all cuttings σi, i = 0, 1, . . . , k.

For each cell σ ∈ Ξ, let P (σ) denote the set of points of P inside σ, i.e., P (σ) = P ∩ σ.
We can compute P (σ) for all cells σ ∈ Ξ in O(n log r) time by the point location step as
discussed in Lemma 6. Note that the total size of P (σ) for all cells σ ∈ Ξ is also O(n log r).
In addition, if we invoke the point location step for points of P following their index order,
then points in each P (σ) can be sorted in their index order and the time is still O(n log r).

We need to perform a pruning procedure for P (σ) of each cell σ ∈ Ξ. Before we describe
it, we first explain the motivation. Our algorithm for computing a(i) needs to solve the
following subproblem. Given a disk si and a cell σ ∈ Ξ such that σ does not intersect si,
the problem is to compute aσ(i), which is defined as the largest index k of a point pk of
P (σ) with γ(pk) < i (if no such k exists, then aσ(i) = 0). In light of Observation 5, aσ(i) is
the largest index k of a point pk of P (σ) such that Sl(si) has a disk covering pk. To solve
the subproblem, consider two points pk and pj in P (σ) with k < j. A key observation is
that if γ(pk) ≥ γ(pj), then aσ(i) ̸= k holds for any such disk si with si ∩ σ = ∅, and thus
pk can simply be ignored. Indeed, assume to the contrary that aσ(i) = k. Then, we have

ISAAC 2023

51:8 On the Line-Separable Unit-Disk Coverage and Related Problems

γ(pk) < i. Hence, γ(pj) < i. By definition, we can obtain aσ(i) ≥ j > k, which contradicts
with aσ(i) = k. In light of the key observation, to facilitate computing aσ(i) for all such
disks si, we first perform the following pruning procedure.

The algorithm maintains a stack A of points of P (σ). Initially, A = ∅. We process the
points of P (σ) in their index order (recall that they are already sorted). Suppose we are
processing a point p ∈ P (σ). Let p′ be the point at the top of the stack. If A = ∅ or if
γ(p′) < γ(p), then we push p onto A. Otherwise, we pop p′ out of A (we say that p′ is
pruned) and repeat the above. After all points of P (σ) are processed, let P ′(σ) denote the
set of points in the stack. Due to the pruning, points of P ′(σ) are sorted by both their
indices and their γ(·) values. Clearly, the pruning procedure runs in O(|P (σ)|) time.

We use P ′(σ) in the following way. Recall that we wish to compute aσ(i). Let k be the
largest index of pk ∈ P ′(σ) such that γ(pk) < i. Then, the above key observation and our
pruning procedure guarantee that aσ(i) = k. Hence, we could compute aσ(i) by a binary
search on P ′(σ) using i, the index of the disk. However, doing binary search for each disk
would make the total runtime of the algorithm have one more logarithmic factor. To improve
it, we use the following strategy. For each cell σ, suppose S′(σ) is a set of disks si (with
si ∩ σ = ∅) that need to compute aσ(i) with respect to σ (the exact definition of S′(σ) will
be given later). Then, we search P ′(σ) with disks of S′(σ) altogether, by using a procedure
similar to that for merging two sorted lists in merge-sort. In this way, the total time is linear
in |P ′(σ)| + |S′(σ)| (in contrast, the time would be O(|S′(σ)| · log |P ′(σ)|) if we do binary
search for each disk of S′(σ)).

We are now ready to describe our overall algorithm for computing a(i). The above
has computed P (σ) for all cells σ ∈ Ξ, whose total size is O(n log r). We run the pruning
procedure on P (σ) for every cell σ ∈ Ξ to compute P ′(σ); this takes O(n log r) time in total
as

∑
σ∈Ξ |P (σ)| = O(n log r).

For each cell σ ∈ Ξ, we define S′(σ) as the subset of disks that do not intersect σ but
whose upper arcs intersect the parent cell of σ. We can compute S′(σ) for all cells σ ∈ Ξ in
O(mr) time as follows. Initially we set S′(σ) = ∅. Then, for each 0 ≤ i ≤ k − 1, for each cell
σ′ ∈ Ξi, for each disk s ∈ Sσ′ , for each child σ of σ′, if s does not intersect σ, then we add s

to S′(σ). As each cell σ′ has O(1) children and
∑

σ∈Ξ |Sσ| = O(mr), it takes O(mr) time to
compute S′(σ) for all cells σ ∈ Ξ. This also implies

∑
σ∈Ξ |S′(σ)| = O(mr).

Now that we have P ′(σ) and S′(σ) available for all cells σ ∈ Ξ, we compute a(i) for
all disks si as follows. Initially, we set a(i) = 0. Then, for each cell σ, we perform a
search with P ′(σ) and S′(σ) to compute aσ(i) for all disks si ∈ S′(σ) using the procedure
discussed above, which takes O(|P ′(σ)| + |S′(σ)|) time. Then, for each disk si ∈ S′(σ), we
update a(i) = max{a(i), aσ(i)}. Since

∑
σ∈Ξ |P ′(σ)| = O(n log r) and

∑
σ∈Ξ |S(σ)| = O(mr),

processing all cells σ of Ξ as above takes O(mr + n log r) time in total.

Finally, for each cell σ of the last cutting Ξk, we perform the following additional
processing: For each disk si ∈ Sσ, for each point pj ∈ P (σ), if pj is outside si and γ(pj) < i,
then we update a(i) = max{a(i), j}. After that, the values a(i) for all disks si ∈ S are
correctly computed. Since |Sσ| ≤ m/r for each cell σ ∈ Ξk, we spend O(m/r) time on each
point p ∈ P (σ). As

∑
σ∈Ξk

|P (σ)| = n, the total time of the additional processing as above
for all cells σ ∈ Ξk is O(nm/r).

In summary, we can compute a(i) for all disks si ∈ S in O(mr + n log r + nm/r) time in
total. Setting r = min{

√
n, m} leads to the lemma. ◀

G. Liu and H. Wang 51:9

4 The unit-disk case

In this section, we consider the unit-disk case where all disks of S have the same radius. As
remarked right after Theorem 3, our algorithm is the same as described in Section 3, except
that we are able to compute a(i)’s and b(i)’s more efficiently in m2/3n2/32O(log∗(m+n)) +
O((n + m) log(n + m)) time, by exploring the property that all disks have the same radius.
In the following, we only discuss how to compute a(i)’s because the case for b(i)’s is similar.

For each point pi ∈ P , define p̃i as the unit disk centered at pi, and we call p̃i the dual
disk of pi. For each disk si, let s̃i denote the center of si, and we call s̃i the dual point of si.
Let P̃ denote the set of all dual disks and S̃ the set of all dual points. Since all disks of S

have the same radius, we have the following easy observation.

▶ Observation 8. A disk si ∈ S contains a point pj ∈ P if and only if the dual point s̃i is
contained in the dual disk p̃j.

Our new algorithm for computing a(i)’s for the unit-disk case relies on exploring the
“duality” in Observation 8. Recall in Section 3.1 that the algorithm for computing a(i)’s
involves two steps: (1) compute γ(p)’s for all points p ∈ P (i.e., Lemma 6); (2) compute
a(i)’s for all si ∈ P (i.e., Lemma 7). We have new algorithms for both steps in the following
two subsections, respectively.

4.1 Computing γ(p)’s
We first introduce the following definition γ̃(·), which is “dual” to γ(·).

▶ Definition 9. For each dual disk p̃ ∈ P̃ , define γ̃(p̃) as the smallest index k such that p̃

contains the dual point s̃k.

The following observation follows immediately from Observation 8.

▶ Observation 10. For each point pi ∈ P , γ(pi) = γ̃(p̃i).

Observation 10 implies that computing γ(pi) for all points pi ∈ S is equivalent to
computing γ̃(p̃i) for all dual disks p̃i ∈ P̃ . To compute them, we will present two recursive
algorithms and then combine them to obtain our final algorithm. The first algorithm
computes γ(pi)’s using P and S while the second one computes γ̃(p̃i) using P̃ and S̃. The
combined algorithm will run the two algorithms alternatively using recursion.

The first algorithm. This algorithm follows the same framework as that for Lemma 6, but
when processing the cells σ in the last cutting Ξk, instead of brute-force, we form subproblems
and solve them recursively. We follow the notation from Lemma 6.

Let H be the set of the upper arcs of all disks of S. We compute a hierarchical (1/r)-
cutting Ξ0, . . . , Ξk for H in O(mr) time [10, 22], for a parameter r ∈ [1, m] to be determined
later. Let Ξ denote the set of all cells of all cuttings σi, i = 0, 1, . . . , k. As in Lemma 6, we
compute S(σ) and γ(σ) for all cells σ ∈ Ξ, which takes O(mr) time.

Next, we run the point location step for each point p ∈ P as in Lemma 6. Initially, we
set γ(p) = 0. Starting from Ξ0, we locate the cell σi that contains p in each cutting Ξi. For
each σi, we update γ(p) = min{γ(p), γ(σi)}. This point location step can also compute P (σ)
for all cells σ ∈ Ξ, where P (σ) denotes the set of points of P in σ. The total time for the
point locations for all points p ∈ P is O(n log r).

ISAAC 2023

51:10 On the Line-Separable Unit-Disk Coverage and Related Problems

Finally, we do the following additional processing for the last cutting Ξk. For each cell
σ ∈ Ξk, if |P (σ)| > n/r2, we partition P (σ) into subsets of sizes between n/(2r2) and n/r2,
called standard subsets (if |P (σ)| ≤ n/r2, then P (σ) itself is a standard subset). As Ξk has
O(r2) cells and

∑
σ∈Ξk

|P (σ)| = n, the total number of standard subsets for all cells σ ∈ Ξk is
O(r2). Recall that Sσ is the subset of disks whose upper arcs intersect σ. For each standard
subset P1(σ) of P (σ), we form a subproblem on (P1(σ), Sσ): Compute γσ(p) for all points
p ∈ P1(σ) with respect to disks of Sσ, where γσ(p) is defined to be the smallest index of the
disks of Sσ covering p. After the subproblem is solved, we update γ(p) = min{γ(p), γσ(p)}
for each point p ∈ P1(σ). This will compute γ(p) correctly. Note that there are O(r2)
subproblems in total and in each subproblem |P1(σ)| ≤ n/r2 and |Sσ| ≤ m/r.

If we use T (n, m) to denote the runtime of the entire algorithm on the original problem
(P, S), then we obtain the following recurrence relation:

T (n, m) = O(mr + n log r) + O(r2) · T (n/r2, m/r). (1)

The second algorithm. The second algorithm computes γ̃(p̃) for all dual disks p̃ ∈ P̃ .
Recall that all dual disks have their centers above ℓ. Therefore, each dual disk has a

“lower arc” below ℓ. Let H̃ denote the set of the lower arcs of all dual disks. We compute a
hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H̃ in O(nr) time [10,22], for a parameter r ∈ [1, n]
to be determined later. We use Ξ to denote the set of all cells of all cuttings Ξi, i = 0, 1, . . . , k.
For each cell σ ∈ Ξ, let P̃σ denote the set of dual disks whose lower arcs intersect σ.

For each cell σ ∈ Ξ, let S̃(σ) denote the subset of dual points of S̃ inside σ. For each cell
σ ∈ Ξ, by slightly abusing the notation, let γ̃(σ) denote the minimum index of all points of
S̃(σ). We can compute S̃(σ) as well as γ̃(σ) for all cells σ ∈ Ξ in O(m log r) time by point
locations as in the first algorithm.

We now compute γ̃(p̃)’s. Initially, we set each γ̃(p̃) = m + 1. For each 1 ≤ i ≤ k, for each
cell σ′ ∈ Ξi−1, for each dual disk p̃ ∈ P̃σ′ , for each child σ ∈ Ξi of σ′, if p̃ contains σ, then we
update γ̃(p̃) = min{γ̃(p̃), γ̃(σ)}. Since

∑
σ∈Ξ |P̃σ| = O(nr) and each cell has O(1) children,

the total time of this procedure is O(nr).
Finally, we do the following additional processing for the last cutting Ξk. For each cell

σ ∈ Ξk, as in the first algorithm, if |S̃(σ)| > m/r2, we partition S̃(σ) into standard subsets
of sizes between m/(2r2) and m/r2. The total number of standard subsets is O(r2). For
each standard subset S̃1(σ) of S̃(σ), we form a subproblem on (P̃σ, S̃1(σ)): Compute γ̃σ(p̃)
for all dual disks p̃ ∈ P̃ (σ) with respect to the dual points of S̃1(σ), where γ̃σ(p̃) is the
smallest index of the dual points of S̃1(σ) contained in p̃. After the subproblem is solved,
we update γ̃(p̃) = min{γ̃(p̃), γ̃σ(p̃)} for each p̃ ∈ P̃ (σ). This will compute γ̃(p̃) correctly.
Note that there are O(r2) subproblems in total and in each subproblem |S̃1(σ)| ≤ m/r2 and
|P̃σ| ≤ n/r.

Recall that T (n, m) refers to our problem for computing γ(p)’s on (P, S), which is
equivalent to computing γ̃(p̃)’s on (P̃ , S̃) by Observation 8. Hence, we can also obtain the
following recurrence relation using the second algorithm:

T (n, m) = O(nr + m log r) + O(r2) · T (n/r, m/r2). (2)

Combining the two algorithms. We now combine the two algorithms to compute γ(p)’s for
all p ∈ P .

We first discuss the symmetric case where m = n (if m ̸= n, it is the asymmetric case).
If we apply (1) and then (2) using the same r, we can obtain the following recurrence

T (n, n) = O(nr log r) + O(r4) · T (n/r3, n/r3).

G. Liu and H. Wang 51:11

Setting r = n1/3/ log n leads to the following

T (n, n) = O(n4/3) + O((n/ log3 n)4/3) · T (log3 n, log3 n).

The recurrence solves to T (n, n) = n4/32O(log∗ n).
We next tackle the asymmetric case, by using the above symmetric case result. Depending

on whether m ≥ n, there are two cases.

1. If m ≥ n, depending on whether m < n2, there are two subcases.
a. If m < n2, then set r = m/n so that n/r = m/r2. Applying (2) with r = m/n

and solving each subproblem T (n/r, m/r2) using the symmetric case result give us
T (n, m) = m2/3n2/32O(log∗ m).

b. If m ≥ n2, then applying (2) with r = n gives us T (n, m) = O(n2 + m log n) +
O(n2) · T (1, m/n2). Clearly, we have T (1, m/n2) = O(m/n2). Hence, we obtain
T (m, n) = O(m log n) since m ≥ n2.

Hence in the case where m ≥ n we have T (n, m) = O(m log n) + m2/3n2/32O(log∗ m).
2. If m < n, the analysis is similar (using (1) instead) and we can obtain T (n, m) =

O(n log m) + m2/3n2/32O(log∗ n).

In summary, computing γ(p)’s for all points p ∈ P can be done in O((n + m) log(m +
n)) + m2/3n2/32O(log∗(n+m)) time.

4.2 Computing a(i)’s
With γ(p)’s computed above, we describe our algorithm for computing a(i)’s for all disks
si ∈ S. As in Section 4.1, we first introduce the following definition, which is “dual” to a(i).

▶ Definition 11. For each dual point s̃i ∈ S̃, define ã(i) as the largest index k of the dual
disk p̃k ∈ P̃ such that p̃k contains a dual point s̃j with j < i but does not contain s̃i.

Based on Observation 8, we have the following lemma.

▶ Lemma 12. For each 1 ≤ i ≤ m, a(i) = ã(i).

Proof. Consider the point pk ∈ P with k = a(i). By definition, pk is outside si and S has
a disk sj that covers pk with j < i. Then, by Observation 8, the dual disk p̃k contains
the dual point s̃j but does not contain the dual point s̃i. By definition, it must hold that
ã(i) ≥ k = a(i).

Analogously, we can prove that a(i) ≥ ã(i). ◀

Lemma 12 implies that computing a(i) for all disks si ∈ S is equivalent to computing
ã(i) for all dual points s̃i ∈ S̃. To compute them, as in Section 4.1, we will also present two
recursive algorithms and then combine them. The first algorithm computes a(i)’s using P

and S while the second one computes ã(i)’s using P̃ and S̃. The combined algorithm will
run the two algorithms alternatively using recursion. In what follows, we assume that γ(p)
for all points p ∈ P and γ̃(p̃) for all p̃ ∈ P̃ have been computed.

The first algorithm. The first algorithm follows the framework of Lemma 7 but uses
recursion when we process the last cutting Ξk. Here we only discuss how to perform
additional preprocessing for the cells of the last cutting Ξk; the rest of the algorithm is the
same as before, which takes O(mr + n log r) time in total. We follow the notation in the
proof of Lemma 7.

ISAAC 2023

51:12 On the Line-Separable Unit-Disk Coverage and Related Problems

For each cell σ ∈ Ξk, if |P (σ)| > n/r2, we partition P (σ) into standard subsets of sizes
between n/(2r2) and n/r2. Recall that Sσ is the subset of disks of S whose upper arcs
intersect σ. For each standard subset P1(σ) of P (σ), we form a subproblem on (P1(σ), Sσ):
Compute aσ(i) for all disks si ∈ S(σ) with respect to points of P1(σ), where aσ(i) is the
largest index k of a point pk ∈ P1(σ) that is outside si but is covered by a disk sj with j < i.
After the subproblem is solved, we update a(i) = max{a(i), aσ(i)} for each disk si ∈ S(σ).
This will compute a(i) correctly. Note that there are O(r2) subproblems in total and in each
subproblem |P1(σ)| ≤ n/r2 and |Sσ| ≤ m/r.

If we use T (n, m) to denote the runtime of the entire algorithm on the original problem
(P, S), then we obtain the following recurrence relation:

T (n, m) = O(mr + n log r) + O(r2) · T (n/r2, m/r). (3)

The second algorithm. The second algorithm computes ã(i) for all dual points s̃i ∈ S.
Recall that all dual disks have their centers above ℓ. Therefore, each dual disk has a

“lower arc” below ℓ. Let H̃ denote the set of lower arcs of all dual disks. We compute a
hierarchical (1/r)-cutting Ξ0, . . . , Ξk for H̃ in O(nr) time [10,22], for a parameter r ∈ [1, n]
to be determined later. We use Ξ to denote the set of cells of all cuttings Ξi, i = 0, 1, . . . , k.
For each cell σ ∈ Ξ, let P̃σ denote the set of dual disks whose lower arcs intersect σ.

For each cell σ ∈ Ξ, let S̃(σ) be the set of dual points of S̃ inside σ. We can compute
S̃(σ) for all cells of Ξ in O(m log r) time using point locations as discussed before. Also,∑

σ∈Ξ |S̃(σ)| = O(m log r). In addition, points in each S̃(σ) can be sorted in their index
order if we invoke the point location step on dual points of S̃ in their index order; the total
time is still O(m log r).

For each cell σ ∈ Ξ, we define P̃ (σ) in the same way as S′(σ) in the proof of Lemma 7.
Specifically, P̃ (σ) is the subset of dual disks of P̃ that do not intersect σ but whose lower
arcs intersect the parent cell of σ. As in Lemma 7, P̃ (σ) for all σ ∈ Ξ can be computed in
O(nr) time and

∑
σ∈Ξ |P̃ (σ)| = O(nr).

Now consider the following problem on S̃(σ) and P̃ (σ). For each dual point s̃i ∈ S̃(σ), we
want to compute ãσ(i), which is the largest index k of a dual disk p̃k ∈ P̃ (σ) that contains
a dual point s̃j with j < i. After solving the problem, we update ã(i) = max{ã(i), ãσ(i)}.
To solve the problem, first notice that p̃k contains a dual point s̃j with j < i if and only if
γ̃(p̃k) < i. Then, consider two dual disks p̃k and p̃j in P̃ (σ) with k < j. A key observation is
that if γ̃(k) ≥ γ̃(j), then ãσ(i) ≥ j holds for any dual point s̃i ∈ S̃(σ) (and thus p̃k can be
ignored; this echoes the key observation in Lemma 7).

Using the key observation, as in the proof of Lemma 7, we run a pruning procedure on
P̃ (σ) to obtain a subset P̃ ′(σ) of dual disks that are sorted both by their indices and their
γ̃(·) values. The pruning procedure takes O(|P̃ (σ)|) time if dual disks of P̃ (σ) are already
sorted by their indices. We can produce the sorted lists of P̃ (σ) for all cells σ ∈ Ξ in O(nr)
time as follows. First, for each dual disk p̃i, we create a list Li that contains all cells σ ∈ Ξ
such that p̃i is in P̃σ. This can be done in O(nr) time by traversing the conflict lists of all
cells. Second, we process the lists L1, L2, . . . , Ln in this order. For each list Li, for each
cell σ ∈ Li, we add p̃i to the rear of a list L(σ) for σ (initially, L(σ) = ∅). Once all lists
L1, L2, . . . , Ln are processed as above, L(σ) contains the sorted list of the dual disks of P̃σ by
their indices. The total time of this sorting algorithm is linear in

∑
σ∈Ξ |P̃σ|, which is O(nr).

After the pruning procedure, we proceed with P̃ (σ) as follows. Suppose k is the largest
index of any dual disk p̃k ∈ P̃ (σ) such that γ̃(p̃k) < i; then we have ãσ(s̃i) = k. As such,
we can scan the two lists P̃ (σ) and S̃(σ) simultaneously (recall that dual points of S̃(σ) are

G. Liu and H. Wang 51:13

also sorted by their indices), which can compute ãσ(s̃i)’s for all dual points s̃i ∈ S̃(σ) in
O(|P̃ (σ)| + |S̃(σ)|) time. As

∑
σ∈Ξ |P̃ (σ)| = O(nr) and

∑
σ∈Ξ |S̃(σ)| = O(m log r), the total

time for doing this for all cells σ ∈ Ξ is O(m log r + nr).
Finally, we do the following additional processing for the last cutting Ξk. For each cell

σ ∈ Ξk, if |S̃(σ)| > m/r2, we partition S̃(σ) into standard subsets of sizes between m/(2r2)
and m/r2. Recall that P̃σ is the subset of dual disks whose lower arcs intersect σ. For each
standard subset S̃1(σ) of S̃(σ), we form a subproblem on (P̃σ, S̃1(σ)): Compute ãσ(i) for all
dual points s̃i ∈ S̃1(σ) with respect to dual disks of P̃σ, where ãσ(i) is the largest index k of
a dual disk p̃k ∈ P̃σ that contains a dual point s̃j with j < i but does not contain s̃i. After
the subproblem is solved, we update ã(i) = max{ã(i), ãσ(i)} for each dual point s̃i ∈ S̃1(σ).
This will compute ã(i) correctly. Note that there are O(r2) subproblems in total and in each
subproblem |P̃σ| ≤ n/r and |S̃1(σ)| ≤ m/r2.

Recall that T (n, m) refers to our problem for computing a(i)’s on (P, S), which is
equivalent to computing ã(i)’s on (P̃ , S̃) by Lemma 12. Hence, we can obtain the following
recurrence relation using the second algorithm:

T (n, m) = O(nr + m log r) + O(r2) · T (n/r, m/r2). (4)

Combining the two algorithms. Following exactly the same approach and the same analysis
as in Section 4.1 and using (3) and (4), we can obtain a combined algorithm that can compute
a(i) for all disks si ∈ S in O((n + m) log(n + m)) + m2/3n2/32O(log∗(n+m)) time.

We summarize our result in the following theorem.

▶ Theorem 13. Given a set P of n points and a set S of m unit disks in the plane such
that the disk centers are separated from points of P by a line, the disk coverage problem for
P and S is solvable in O((n + m) log(n + m)) + m2/3n2/32O(log∗(n+m)) time.

References
1 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and

set covers. Discrete and Computational Geometry, 63:460–482, 2020.
2 Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Christian

Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim Whittlesey. Minimum-cost
coverage of point sets by disks. In Proceedings of the 22nd Annual Symposium on Computational
Geometry (SoCG), pages 449–458, 2006.

3 Christoph Ambühl, Thomas Erlebach, Matús̆ Mihalák, and Marc Nunkesser. Constant-
factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In
Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), and the 10th International Conference on Randomization
and Computation (RANDOM), pages 3–14, 2006.

4 Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. Geo-
metric clustering to minimize the sum of cluster sizes. In Proceedings of the 13th European
Symposium on Algorithms (ESA), pages 460–471, 2005.

5 Ahmad Biniaz, Prosenjit Bose, Paz Carmi, Anil Maheshwari, J.Ian Munro, and Michiel Smid.
Faster algorithms for some optimization problems on collinear points. In Proceedings of the
34th International Symposium on Computational Geometry (SoCG), pages 8:1–8:14, 2018.

6 Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and efficient algorithms for the
geometric hitting set problem. Discrete Applied Mathematics, 240:25–32, 2018.

7 Paz Carmi, Matthew J. Katz, and Nissan Lev-Tov. Covering points by unit disks of fixed
location. In Proceedings of the International Symposium on Algorithms and Computation
(ISAAC), pages 644–655, 2007.

ISAAC 2023

51:14 On the Line-Separable Unit-Disk Coverage and Related Problems

8 Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results for geometric
packing and covering problems. Computational Geometry: Theory and Applications, 47:112–
124, 2014.

9 Timothy M. Chan and Qizheng He. Faster approximation algorithms for geometric set cover.
In Proceedings of 36th International Symposium on Computational Geometry (SoCG), pages
27:1–27:14, 2020.

10 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9(2):145–158, 1993.

11 Francisco Claude, Gautam K. Das, Reza dorrigiv, Stephane Durocher, Robert Fraser, Alejandro
López-Ortiz, Bradford G. Nickerson, and Alejandro Salinger. An improved line-separable
algorithm for discrete unit disk cover. Discrete Mathematics, Algorithms and Applications,
2:77–88, 2010.

12 Gruia Călinescu, Ion I. Măndoiu, Peng-Jun Wan, and Alexander Z. Zelikovsky. Selecting
forwarding neighbors in wireless ad hoc networks. Mobile Networks and Applications, 9:101–111,
2004.

13 Gautam K. Das, Sandip Das, and Subhas C. Nandy. Homogeneous 2-hop broadcast in 2D.
Computational Geometry: Theory and Applications, 43:182–190, 2010.

14 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9:66–104, 1990.

15 Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
434–444, 1988.

16 Shashidhara K. Ganjugunte. Geometric hitting sets and their variants. PhD thesis, Duke
University, 2011.

17 Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited. Journal of
Computational Geometry, 3:65–85, 2012.

18 Nissan Lev-Tov and David Peleg. Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks, 47:489–501, 2005.

19 Jian Li and Yifei Jin. A PTAS for the weighted unit disk cover problem. In Proceedings of the
42nd International Colloquium on Automata, Languages and Programming (ICALP), pages
898–909, 2015.

20 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete and Computational Geometry, 44:883–895, 2010.

21 Logan Pedersen and Haitao Wang. Algorithms for the line-constrained disk coverage and
related problems. Computational Geometry: Theory and Applications, 105-106:101883:1–18,
2022.

22 Haitao Wang. Unit-disk range searching and applications. In Proceedings of the 18th Scand-
inavian Symposium and Workshops on Algorithm Theory (SWAT), pages 32:1–32:17, 2022.

Improved Smoothed Analysis of 2-Opt for the
Euclidean TSP
Bodo Manthey # Ñ

Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente,
Enschede, The Netherlands

Jesse van Rhijn # Ñ

Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente,
Enschede, The Netherlands

Abstract
The 2-opt heuristic is a simple local search heuristic for the Travelling Salesperson Problem (TSP).
Although it usually performs well in practice, its worst-case running time is poor. Attempts to
reconcile this difference have used smoothed analysis, in which adversarial instances are perturbed
probabilistically. We are interested in the classical model of smoothed analysis for the Euclidean
TSP, in which the perturbations are Gaussian. This model was previously used by Manthey &
Veenstra, who obtained smoothed complexity bounds polynomial in n, the dimension d, and the
perturbation strength σ−1. However, their analysis only works for d ≥ 4. The only previous analysis
for d ≤ 3 was performed by Englert, Röglin & Vöcking, who used a different perturbation model
which can be translated to Gaussian perturbations. Their model yields bounds polynomial in
n and σ−d, and super-exponential in d. As the fact that no direct analysis exists for Gaussian
perturbations that yields polynomial bounds for all d is somewhat unsatisfactory, we perform this
missing analysis. Along the way, we improve all existing smoothed complexity bounds for Euclidean
2-opt with Gaussian perturbations.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Approximation algorithms analysis; Theory of computation
→ Discrete optimization

Keywords and phrases Travelling salesman problem, smoothed analysis, probabilistic analysis, local
search, heuristics, 2-opt

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.52

Related Version Full Version: https://arxiv.org/abs/2211.16908

Funding Jesse van Rhijn: Supported by NWO grant OCENW.KLEIN.176.

Acknowledgements We thank Ashkan Safari and Tjark Vredeveld for many useful discussions.

1 Introduction

The Travelling Salesperson problem is a standard combinatorial optimization problem, which
has attracted considerable interest from academic, educational and industrial directions. It
can be stated rather compactly: given a Hamiltonian graph G = (V, E) and edge weights
w : E → R, find a minimum weight Hamiltonian cycle (tour) on G.

Despite this apparent simplicity, the TSP is NP-hard [6]. A particularly interesting
variant of the TSP is the Euclidean TSP, in which the n vertices of the graph are identified
with a point cloud in Rd, and the edge weights are the Euclidean distances between these
points. Even this restricted variant is NP-hard [10].

As a consequence of this hardness, practitioners often turn to heuristics. One often-used
heuristic is 2-opt [1]. This heuristic takes as its input a tour T , and finds two sets of two
edges each, {e1, e2} ⊆ T and {f1, f2} ⊈ T , such that exchanging {e1, e2} for {f1, f2} yields

© Bodo Manthey and Jesse van Rhijn;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 52; pp. 52:1–52:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.manthey@utwente.nl
https://people.utwente.nl/b.manthey
https://orcid.org/0000-0001-6278-5059
mailto:j.vanrhijn@utwente.nl
https://people.utwente.nl/j.vanrhijn
https://orcid.org/0000-0002-3416-7672
https://doi.org/10.4230/LIPIcs.ISAAC.2023.52
https://arxiv.org/abs/2211.16908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

again a tour T ′, and the total weight of T ′ is strictly less than the total weight of T . This
procedure is repeated with the new tour, and stops once no such edges exist. The resulting
tour is said to be locally optimal.

Englert, Röglin and Vöcking constructed Euclidean TSP instances on which 2-opt can
take exponentially many steps to find a locally optimal tour [4]. Despite this pessimistic
result, 2-opt performs remarkably well in practice, usually requiring time sub-quadratic in n

and obtaining tours which are only a few percent worse than the optimum [1, chapter 8].
To explain this discrepancy, the tools of probabilistic analysis have been employed

[9, 2, 5, 3, 4]. In particular, smoothed analysis, a hybrid framework between worst-case and
average-case analysis, has been successfully used in the analysis of 2-opt [5, 4, 9]. In the
original version of this framework, the instances one considers are initially adversarial, and
then perturbed by Gaussians. The resulting smoothed time complexity is then generally a
function of the instance size n and the standard deviation of the Gaussian perturbations, σ.

Englert et al. obtained smoothed time complexity bounds for 2-opt on Euclidean instances
by considering a more general model, in which the points are chosen in the unit hypercube
according to arbitrary probability densities. The only restrictions to these densities are that
(i) they are independent, and (ii) they are all bounded from above by ϕ. Their results can be
transferred to Gaussian perturbations roughly by setting ϕ = σ−d, which yields a smoothed
complexity that is O(poly(n, σ−d)).

As the exponential dependence on d is somewhat unsatisfactory, Manthey & Veenstra [9]
performed a simpler smoothed analysis yielding bounds polynomial in n, 1/σ, and d. The
analysis they performed is however limited to d ≥ 4. While polynomial bounds for all d can
be obtained by simply taking the result of Englert et al. for d ∈ {2, 3}, no smoothed analysis
that directly uses Gaussian perturbations exists for these cases. We set out to perform this
missing analysis, improving the smoothed complexity bounds for all d ≥ 2 along the way.

Our analysis combines ideas from both Englert et al. and Manthey & Veenstra. From the
former, we borrow the idea of conditioning on the outcomes of some of the distances between
points in an arbitrary 2-change. We can then analyze the 2-change by examining the angles
between certain edges in the 2-change, which are themselves random variables. From the
latter, we borrow the Gaussian perturbation model (originally introduced by Spielman &
Teng for the Simplex Method [11]).

We also note that in addition to improving the results of Manthey & Veenstra, our approach
is significantly simpler than the analysis of Englert et al. The crux of the simplification is
a carefully constructed random experiment to model a single 2-change, which allows us to
bypass the need for the involved convolution integrals used by Englert et al.

We will begin by introducing some definitions and earlier results, before providing basic
probability theoretical results (Section 2) that we will make heavy use of throughout the
paper. We then proceed by analyzing a single 2-change in a similar manner as Englert et al.,
simplifying some of their analysis in the process (Section 3). Next, we prove a first smoothed
complexity bound by examining so-called linked pairs of 2-changes (Section 4), an idea used
by both Englert et al. and Manthey & Veenstra. Finally, we improve on this bound for d ≥ 3
(Section 5), yielding the best known bounds for all dimensions.

2 Preliminaries

2.1 Travelling Salesperson Problem
Let Y ⊆ [−1, 1]d be a point set of size n. The Euclidean Travelling Salesperson Problem
(TSP) asks for a tour that visits each point y ∈ Y exactly once, such that the total length
of the tour is minimized. The length of a tour in this variant of the TSP is the sum of the

B. Manthey and J. van Rhijn 52:3

Euclidean distances between consecutive points in the tour. Formally, if the points in Y are
visited in the order T = (yπ(i))n−1

i=0 defined by a permutation π of [n], then the length of the
tour T is

L(T) =
n−1∑
i=0

∥yπ(i) − yπ(i+1)∥,

where the indices are taken modulo n, and ∥ · ∥ denotes the standard Euclidean norm in Rd.
Since the Euclidean TSP is undirected, the tour T ′ in which the vertices are visited in the
reverse order has the same length as T . We consider these tours to be identical.

2.2 Smoothed Analysis
Smoothed analysis is a framework for the analysis of algorithms, which was introduced in
2004 by Spielman & Teng [11]. The method is particularly suitable to algorithms with a
fragile worst case input [7]. Since its introduction, the method has been applied to a wide
variety of algorithms [8, 12].

Heuristically, one imagines that an adversary chooses an input to the algorithm. The input
is then perturbed in a probabilistic fashion. The hope is that any particularly pathological
instances that the adversary might choose are destroyed by the random perturbation. One
then computes a bound on the expected number of steps that the algorithm performs, where
the expectation is taken with respect to the perturbation.

For our model of a smoothed TSP instance, we allow the adversary to choose a point set
Y ⊆ [−1, 1]d of size n. We then perturb each point yi ∈ Y with an independent d-dimensional
Gaussian random variable gi, i ∈ [n], with mean 0 and standard deviation σ. This yields a
new point set, X = {yi + gi | yi ∈ Y}. We will bound the expected number of steps taken by
the 2-opt heuristic on the TSP instance defined by X , with the expectation taken over this
Gaussian perturbation. We will refer to this quantity as the smoothed complexity of 2-opt.

For the purposes of our analysis, we always assume that σ ≤ 1. This is a mild restriction,
as the bound for σ = 1 also applies to all larger values of σ, and small perturbations are
particularly interesting in smoothed analysis.

For a general outline of the strategy, consider a 2-change where the edges {a, z1} and
{b, z2} are replaced by {a, z2} and {b, z1}. The change in tour length of this 2-change is

∆ = ∥a − z1∥ + ∥b − z2∥ − ∥a − z2∥ − ∥b − z1∥.

Since the locations of the points {a, b, z1, z2} are random variables, so is ∆. We seek to
bound the probability that there exists a 2-change whose improvement is exceedingly small,
enabling us to use a potential argument.

Let ∆min denote the improvement of the least-improving 2-change in the instance. If
P(∆min ≤ ϵ) is suitably small for small ϵ, then each iteration is likely to decrease the tour
length by a large amount. As long as the initial tour has bounded length, this then provides
a limit to the number of iterations that the heuristic can perform, since the tour length is
bounded from below by 0.

2.3 Basic Results
We state some general results that we will need at points throughout the paper.

The next lemma provides a simple framework that we can use to prove smoothed
complexity bounds for 2-opt.

ISAAC 2023

52:4 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

Let ∆min denote the smallest improvement of any 2-change, and let ∆link
min denote the

smallest improvement of any pair of linked 2-changes (see Section 4 for a definition of linked
pairs).

▶ Lemma 1 ([9, Lemma 2.2]). Suppose that the longest tour has a length of at most L

with probability at least 1 − 1/n!. Let α > 1 be a constant. If for all ϵ > 0 it holds that
P(∆min ∈ (0, ϵ]) = O(Pϵα), then the smoothed complexity of 2-opt is bounded from above by
O(P 1/αL). The same holds if we replace ∆min by ∆link

min, provided that P 1/αL = Ω(n2).

2.4 Probability Theory
We provide some basic probability theoretical results. Throughout the paper, given a random
variable X, we denote its probability density by fX and its cumulative distribution function
by FX . If we furthermore condition on some event Y , we write fX|Y for the conditional
density of X given Y .

2.4.1 Chi Distributions
Suppose we are given two points y1, y2 ∈ Y and perturb both points with independent
Gaussian random variables g1 and g2, resulting in xi = yi + gi, i ∈ [2]. Then the distance
∥x1 − x2∥ between the two perturbed points is distributed according to a noncentral d-
dimensional chi distribution with noncentrality parameter s = ∥y1 − y2∥, which we denote
χs

d. We call χ0
d a central d-dimensional χ distribution.

2.4.2 General Results
In the following, we use the notion of stochastic dominance. Let X and Y be two real-valued
random variables. We say that X stochastically dominates Y if for all x, it holds that
P(X ≥ x) ≥ P(Y ≥ x), and this inequality is strict for some x. We may equivalently say that
the density of X stochastically dominates the density of Y .

To use Lemma 1, we need to limit the probability that any TSP tour in our smoothed
instance is too long. This was previously done by Manthey & Veenstra; we state their result
in Lemma 2.

▶ Lemma 2 ([9, Lemma 2.3]). Let c ≥ 2 be a sufficiently large constant, and let D =
c · (1 + σ

√
n log n). Then P(X ⊈ [−D, D]d) ≤ 1/n!.

The next lemma is a reformulation of another result by Manthey & Veenstra [9]. The
lemma is very useful in conjunction with Lemma 4, as we will have cause to condition on the
outcome of drawing noncentral d-dimensional chi random variables.

▶ Lemma 3 ([9, Lemma 2.8]). The noncentral d-dimensional chi distribution with parameter
µ > 0 and standard deviation σ stochastically dominates the central d-dimensional chi
distribution with the same standard deviation.

The following lemma from Manthey & Veenstra is slightly generalized compared to its
original statement. We do not provide a proof, since the original proof remains valid when
simply replacing the original assumption with ours.

▶ Lemma 4 ([9, Lemma 2.7]). Assume c ∈ R≥0 is a fixed constant and d ∈ N is fixed and
arbitrary with d > c. Let χd denote the d-dimensional chi distribution with variance σ2.
Then∫ ∞

0
χd(x)x−c dx = Θ

(
1

dc/2σc

)
.

B. Manthey and J. van Rhijn 52:5

x µ

y

R g ∼ Nd(0, σ2)

s

ϕ

Figure 1 The setting of Theorem 5. As mentioned in the proof of Theorem 5, we may assume
without loss of generality that µ lies on L.

2.4.3 Limiting the Adversary
In our analysis we will closely study the angles between edges in the smoothed TSP instance.
These angles can be initially specified to our detriment by the adversary. However, the power
of the adversary is limited by the strength of the Gaussian perturbations. We quantify the
power of the adversary in Theorem 5. See Figure 1 for a sketch accompanying the theorem.

▶ Theorem 5. Let L be some line in Rd, and let x ∈ L. Let y be a point drawn from a
d-dimensional Gaussian distribution with mean µ ∈ Rd and variance σ2. Let ϕ denote the
angle between L and x − y, and let R = ∥x − y∥ and s = ∥x − µ∥. Let fϕ|R=r denote the
density of ϕ, conditioned on a specific outcome r > 0 for R. Then for all d ≥ 2,

sup
ϕ∈[0,π]

fϕ|R=r(ϕ) = O

(√
d +

√
rs

σ

)
.

Moreover, for d ≥ 3,

sup
ϕ∈(0,π)

fϕ|R=r(ϕ)
sin ϕ

= O

(√
d + rs

σ2
√

d

)
.

Theorem 5 yields the following corollary, which provides information on the angle between
two Gaussian random points in Rd with respect to some third point.

▶ Corollary 6. Let x ∈ Rd. Let y and z be drawn from d-dimensional Gaussian distributions
with arbitrary means and the same variance σ2. Let ϕ denote the angle between y − x and
z − x, and let R = ∥x − y∥ and S = ∥x − z∥. Let fϕ|R=r,S=s denote the density of ϕ

conditioned on some outcome r > 0 for R and s > 0 for S. Then for all d ≥ 2,

sup
ϕ∈[0,π]

fϕ|R=r,S=s(ϕ) = O

(
√

d +
√

min{rr̄, ss̄}
σ

)
,

where r̄ = ∥x − E(y)∥ and s̄ = ∥x − E(z)∥. Moreover, for d ≥ 3,

sup
ϕ∈(0,π)

fϕ|R=r,S=s(ϕ)
sin ϕ

= O

(√
d + min{rr̄, ss̄}

σ2
√

d

)
.

3 Analysis of Single 2-Changes

To improve upon the previous analyses, it pays to examine where the analysis of Euclidean
2-opt with Gaussian perturbations [9] fails for d ∈ {2, 3}. The problem is that in the course
of the proof, Manthey & Veenstra compute∫ ∞

0

1
x2 χd−1(x) dx,

where χd denotes the d-dimensional chi distribution. This integral is finite only when d ≥ 4.

ISAAC 2023

52:6 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

a

z1

b

z2

A1

A2

R

ϕ1

ϕ2

Figure 2 Labels of points and angles involved in a single 2-change.

This problem does not appear in the results obtained by Englert et al. [4]. They consider a
more general model of smoothed analysis wherein the adversary specifies a probability density
for each point in the TSP instance independently. Since the only information available on
the probability densities is their upper bound, they consider a simplified model of a 2-change
to keep the analysis tractable. The analysis is then translated to their generic model, which
incurs a factor which is super-exponential in d.

Even when one considers d to be a constant as Englert et al. do, the genericity of
their model still comes at a cost when translated to a smoothed analysis with Gaussian
perturbations, eventually yielding a bound which is polynomial in σ−d.

Specifying the perturbations as Gaussian enables us to analyze the true random experiment
modeling a 2-change more closely, as we know the distributions of the distances between
points in the smoothed instance. Combined with Theorem 5, which provides information
on the angles between edges in the instance, we can carry out an analysis that improves on
both Englert et al.’s as well as Manthey & Veenstra’s analysis.

We first set up our model of a 2-change perturbed by Gaussian perturbations. To obtain
a bound for this case, we first formulate a different analysis of single 2-changes. Consider a
2-change involving the points {a, b, z1, z2} ⊆ [−D, D]d, where the edges {a, z1} and {b, z2} are
replaced by {b, z1} and {a, z2}. The improvement to the tour length due to this 2-change is

∆ = ∥a − z1∥ − ∥b − z1∥ + ∥b − z2∥ − ∥a − z2∥.

To analyze ∆, we first define A1 := ∥a − z1∥, A2 := ∥b − z2∥, and R := ∥a − b∥. Moreover,
we identify the angle ϕ1 as the angle between a − z1 and a − b, and restrict it to [0, π]. The
corresponding angle ϕ2 is defined similarly. The restriction of these angles to [0, π] is without
loss of generality; one may readily observe from Figure 2 that flipping the sign of either ϕ1
or ϕ2 does not change the value of ∆.

While Figure 2 may give the impression that we are restricting the analysis to the d = 2
case, the analysis is valid for any d ≥ 2. The two triangles △az1b and △az2b will lie in two
separate planes in general. The distances involved must thus be understood as d-dimensional
Euclidean distances.

With these definitions, we have ∆ = η1 + η2, where for i ∈ [2]

ηi = Ai −
√

A2
i + R2 − 2AiR cos ϕi,

which follows from the Law of Cosines.
Suppose we condition on the events A1 = a1, A2 = a2, and R = r, for some a1, a2, r > 0.

Under these events, η1 and η2 are independent random variables. Moreover, ∆ is completely
fixed by revealing the angles ϕ1 and ϕ2. Since we condition on Ai = ai, we can then bound
the density of ϕi using Corollary 6.

B. Manthey and J. van Rhijn 52:7

We can use this independence to obtain bounds for P(∆ ∈ (0, ϵ]) for some small ϵ > 0
under these events, for various orderings of a1, a2 and r. These bounds are given in Lemma 10.

We begin by obtaining a bound to the density of ηi, i ∈ [2], using the fact that all
randomness in ηi is contained in the angle ϕi under the conditioning that Ai = ai and R = r.
We denote by fϕi|R=r,Ai=ai

the density of the angle ϕi, conditioned on R = r and Ai = ai.

▶ Lemma 7. Let i ∈ [2]. The density of ηi = ∥a − zi∥ − ∥b − zi∥, conditioned on Ai = ai

and R = r, is bounded from above by

ai + r

air
·

fϕi|R=r,Ai=ai
(ϕi(η))

| sin ϕi(η)| ,

where ϕi(η) = arccos
(

a2
i +r2−(ai−η)2

2air

)
.

Proof. Let the conditional density of ηi be fηi|R=r,Ai=ai
. Since ϕi is restricted to [0, π] by

assumption, there exists a bijection between ηi and ϕi. To be precise, we have

ϕi(ηi) = arccos
(

a2
i + r2 − (ai − ηi)2

2air

)
.

By standard transformation rules of probability densities, it holds that

fηi|R=r,A=ai
(η) =

∣∣∣∣dϕi(η)
dη

∣∣∣∣fϕi|R=r,Ai=ai
(ϕi(η)).

The derivative is easily evaluated:

dϕi(η)
dη

= −1√
1 −

(
a2

i
+r2−(ai−η)2

2air

) · ai − η

air
= −1

sin ϕ(η) · ai − η

air
.

Finally, we have ai −η ≤ ai +r, which follows from the triangle inequality. This concludes
the proof. ◀

By Corollary 6, we have an upper bound for fϕi|R=r,Ai=ai
. Unfortunately, simply inserting

this upper bound is not enough for us to bound fηi|Ai=ai,R=r, since the density as obtained
from Lemma 7 diverges for ϕ = 0 and ϕ = π. There is however a way to cure this divergence.

We now consider a full 2-change (cf. Figure 2). To analyze the improvement ∆ caused
by this 2-change, we construct a random experiment, conditioned on the outcomes A1 = a1,
A2 = a2, and R = r. We write this random experiment in Algorithm 1, since we will need
to execute different experiments depending on the ordering of the values of a1, a2 and r.
The parameters b1 and b2 of this algorithm will take values in {a1, a2, r}, depending on this
ordering.

The function RandomExpt outlined in Algorithm 1 branches on the outcome of the
variable Zi =

√
bi sin ϕi, i ∈ [2], where bi is some distance; we will choose bi among {r, ai} in

subsequent lemmas.
Note that RandomExpt returns a tuple (i, ϕ), where i ∈ [2]. We call the angle returned by

RandomExpt the good angle. Moreover, we label the event i = 1 as E1, and i = 2 by E2. The
crux of the analysis is now to analyze η1 if E1 occurs, and η2 if E2 occurs, as under Ei the
density of ηi is bounded from above.

ISAAC 2023

52:8 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

Algorithm 1 The algorithm we use to model a random 2-change with fixed A1 = a1,
A2 = a2, and R = r.

Data: Distances b1, b2 > 0.
Function RandomExpt(b1, b2):

Draw ϕ1 ∼ fϕ|R=r,A1=a1

Draw ϕ2 ∼ fϕ|R=r,A2=a2

if
√

b1 sin ϕ1 >
√

b2 sin ϕ2 then
return (1, ϕ1)

else
return (2, ϕ2)

end

▶ Lemma 8. Let (i, ϕ) = RandomExpt(b1, b2) for some b1, b2 > 0. Let j = 3 − i. The density
of ϕ, conditioned on R = r, A1 = a1, A2 = a2, is then bounded from above by

2Mϕ1Mϕ2

P(Ei)
· arcsin

(
min

{
1,

√
bi

bj
sin ϕ

})
,

where Mϕi
= max0≤ϕ≤π fϕi|R=r,Ai=ai

(ϕ).

Proof. We omit the conditioning on A1 = a1, A2 = a2 and R = r in the following, for the
sake of clarity. We prove only the case i = 1, thus conditioning on E1, as the proof for i = 2
proceeds essentially identically.

Let Xi =
√

bi sin ϕi, i ∈ [2]. The event E1 is then equivalent to X1 > X2. Let Z in turn
denote the random variable given by X1 conditioned on E1. The cumulative distribution
function of Z is equal to

FZ(x) = P(X1 ≤ x | X1 > X2) = P(X1 ≤ x ∧ X1 > X2)
P(E1) .

By the independence of X1 and X2, this is equal to

FZ(x) = 1
P(E1) ·

∫ x

0
fX1(y)

∫ y

0
fX2(z) dz dy.

Computing the density of Z is then simply a matter of differentiation. Since P(E1) does not
depend on x, we obtain

fZ(x) = 1
P(E1) · fX1(x)

∫ x

0
fX2(z) dz.

We next require the density of Xi =
√

bi sin ϕi. Observe that

P(Xi ≤ x) = P
(

ϕi ≤ arcsin(x/
√

bi)
)

+ P
(

ϕi ≥ π − arcsin(x/
√

bi)
)

. (1)

Differentiating this expression to x, we find for x <
√

bi

fXi
(x) = d

dx

(
P
(

ϕi ≤ arcsin(x/
√

bi)
)

+ 1 − P
(

ϕi ≥ π − arcsin(x/
√

bi)
))

= d
dx

(
arcsin

(
x√
bi

))
·
[
fϕi

(
arcsin

(
x√
bi

))
+ fϕi

(
π − arcsin

(
x√
bi

))]
= 1√

bi − x2 ·
[
fϕi

(
arcsin

(
x√
bi

))
+ fϕi

(
π − arcsin

(
x√
bi

))]
,

B. Manthey and J. van Rhijn 52:9

and 0 for x ≥
√

bi. Letting Mϕi = max0≤ϕ≤π fϕi|R=r,Ai=ai
(ϕ), which exists by Corollary 6,

we obtain

fXi
(x) ≤ 2Mϕi

·

1√

bi−x2
, if x <

√
bi,

0, otherwise.

Using this density, together with the identity
∫ x

0 (
√

b − y2)−1/2 dy = arcsin(x/
√

b) for
x <

√
b, we obtain

fZ(x) ≤ 2Mϕ1Mϕ2

P(E1) ·
arcsin

(
min

{
1, x√

b2

})
√

b1 − x2

if x <
√

b1, and fZ(x) = 0 otherwise. It remains to convert Z back to ϕ, where ϕ is the
good angle. Since we have conditioned on E1, we know that Z =

√
b1 sin ϕ. Using similar

considerations as used in Equation (1), we have

fZ(x) = 1√
b1 − x2 fϕ(arcsin(x/

√
b1)) + 1√

b1 − x2 fϕ(π − arcsin(x/
√

b1)).

Since this expression holds for all x ∈ (0,
√

b1), and since probability densities are non-negative,
it follows that

fϕ(ϕ) ≤ 2Mϕ1Mϕ2

P(E1) · arcsin
(

min
{

1,

√
b1

b2
sin ϕ

})
,

for all ϕ ∈ (0, π). ◀

For the next part, we apply Lemma 8 to Lemma 7 to bound the density of ηi, given that
Ei occurs.

▶ Lemma 9. Let i ∈ [2] and j = 3 − i. Let fηi|Ei
denote the density of ηi, conditioned on

Ei as well as the outcomes R = r, A1 = a1, and A2 = a2. Then

fηi|Ei
(η) ≤ 1

P(Ei)
· 2πMϕ1Mϕ2

min{a1, r} min{a2, r}
,

where Mϕi
= max0≤ϕ≤π fϕi|R=r,Ai=ai

(ϕ).

Proof. We prove only the case i = 1. From Lemma 7, we know that

fηi|Ei
(η) ≤ ai + r

air
·

fϕi|Ei,A1=a1,A2=a2(ϕ)
sin ϕ

.

Let (i, ϕ) = RandomExpt(b1, b2), for some b1, b2 > 0. We will choose values for b1 and b2
depending on the ordering of a1, a2 and r. Note that we may do this, since we know the
choices of a1, a2 and r before executing RandomExpt.

Since we condition on E1, we know that i = 1, and hence that ϕ1 is the good angle. By
Lemma 8, we can obtain a bound for fϕ|Ei,A1=a1,A2=a2,R=r. We thus find

fη1|E1(η) ≤ 2Mϕ1Mϕ2

P(E1) · a1 + r

a1r
·

arcsin
(

min
{

1,
√

b1
b2

sin ϕ
})

sin ϕ
.

ISAAC 2023

52:10 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

First, suppose sin ϕ ≥
√

b2/b1. Then the arcsine evaluates to π/2, and so the above is
bounded from above by

π

2

√
b1

b2
.

Second, suppose sin ϕ <
√

b2/b1. Since arcsin(x) ≤ πx/2 for x ∈ (0, 1), this case yields the
same bound, and we obtain

fη1|E1(η) ≤ πMϕ1Mϕ2

P(E1) · a1 + r

a1r
·
√

b1

b2

We now examine the four cases in the lemma statement.
Case 1: a1, a2 ≤ r.

We let b1 = a1 and b2 = a2. Then we have

a1 + r

a1r
·
√

a1

a2
= a1 + r

r
√

a1a2
≤ 2r

r
√

a1a2
= 2

√
a1a2

.

Case 2: a1, a2 ≥ r.
We let b1 = b2 = r, and obtain

a1 + r

a1r
≤ 2a1

a1r
= 2

r
.

Case 3: a1 ≥ r ≥ a2.
We let b1 = r and b2 = a2, which yields

a1 + r

a1r
·
√

r

a2
= a1 + r

√
a2ra1

≤ 2
√

a2r
.

Case 4: a2 ≥ r ≥ a1.
We let b1 = a1 and b2 = r, to find

a1 + r

a1r

√
a1

r
≤

2r
√

a1

a1r
√

r
= 2

√
a1r

.

This final case concludes the proof. ◀

The bound on the density of ηi from Lemma 9 puts us in the position to prove a bound
on the probability that ∆ ∈ (0, ϵ].

▶ Lemma 10. Let ∆ denote the improvement of a 2-change. Then

P(∆ ∈ (0, ϵ] | A1 = a1, A2 = a2, R = r) ≤ πMϕ1Mϕ2ϵ

min{a1, r} min{a2, r}
,

where Mϕi = max0≤ϕ≤π fϕi|R=r,Ai=ai
(ϕ).

Proof. We condition first on E1, and then let an adversary choose an outcome for η2, say,
η2 = t. Then we have ∆ ∈ (0, ϵ] iff η1 ∈ (−t, −t + ϵ], which is an interval of size ϵ.

Since the probability that η1 falls into an interval of size ϵ is at most ϵ · maxη fη1|E1(η), all
we need to conclude the proof for E1 is a bound on fη1|E1(η). This is provided by Lemma 9.

We then repeat the same argument for E2. The result is obtained by applying the Law
of Total Probability. ◀

B. Manthey and J. van Rhijn 52:11

4 Linked Pairs of 2-Changes

To obtain bounds on the smoothed complexity of 2-opt, we consider so-called linked pairs
of 2-changes, introduced previously by Englert et al [4]. A pair of 2-changes is said to be
linked if some edge removed from the tour by one 2-change is added to the tour by the other
2-change.

Such linked pairs have been considered in several previous works [4, 9]. In each case, the
distinction has been made between several types of linked pairs. In our analysis, only two of
these types are relevant, and so we will describe only these types for the sake of brevity.

We consider 2-changes which share exactly one edge, and subdivide them into pairs of
type 0 and of type 1. A generic 2-change removes the edges {z1, z2} and {z3, z6} while adding
{z1, z6} and {z2, z3}. The other 2-change removes {z3, z4} and {z5, z6} while adding {z3, z6}
and {z4, z5}. Note that {z3, z6} occurs in both 2-changes.

If |{z1, . . . , z6}| = 6, then we say the linked pair is of type 0.
If |{z1, . . . , z6}| = 5, then we say the linked pair is of type 1.

Type 1 can itself be subdivided into two types, 1a and 1b. We will detail this distinction
in Section 4.2.

Before moving on to analyzing linked pairs, we state a useful lemma that justifies limiting
the discussion to just linked pairs of types 0 and 1.

▶ Lemma 11 ([4, Lemma 9]). In every sequence of t consecutive 2-changes the number of
disjoint pairs of 2-changes of type 0 or type 1 is at least Ω(t) − O(n2).

4.1 Type 0
We begin with type 0, as this is by far the simplest linked pair. For clarity, see Figure 3 (left)
for an illustration of a type 0 linked pair. It should be noted that, while Figure 3 shows a
specific configuration of vertices in two dimensions, the results of this section hold generally;
the analysis does not depend on any point having a particular orientation with respect to its
neighbors. The same holds for the results in Section 4.2.

The improvement of a type 0 linked pair is completely specified by a small number of
random variables. We require five distances between vertices, R1 = ∥z1 −z3∥, A1 = ∥z3 −z6∥,
A2 = ∥z1 − z2∥, R2 = ∥z4 − z6∥ A3 = ∥z4 − z5∥. Additionally, we need the following angles:
1. ϕ1 between z2 − z1 and z3 − z1,
2. ϕ2 between z1 − z3 and z6 − z3,
3. ϕ′

1 between z3 − z6 and z4 − z6,
4. ϕ3 between z6 − z4 and z5 − z4.

Note that, if we condition on A1 = a1, the events ∆1 ∈ (0, ϵ] and ∆2 ∈ (0, ϵ] are
independent. We can then apply Lemma 10, together with several applications of Lemma 4.

▶ Lemma 12. Let ∆link
min denote the minimum improvement of any type 0 pair of linked

2-changes, and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
dD2n6ϵ2

σ4

)
.

4.2 Type 1
As mentioned previously, type 1 linked pairs can be subdivided into two distinct subtypes.
Subtype 1a shares exactly one edge between the two 2-changes, while subtype 1b shares two
edges.

ISAAC 2023

52:12 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

z1

z2 z3
z4

z5z6

ϕ2 ϕ1 ϕ′
1 ϕ3

z1

z2
z3

z4

z5

ϕ

z1 z2

z3

z4

z5

R

ϕ

Figure 3 Labels of points involved in the three types of pairs of linked 2-changes. Left: type 0.
Center: type 1a. Right: type 1b.

4.2.1 Type 1a
We first consider type 1a. See Figure 3 (center) for a graphical representation of the type, as
well as the labels of the points and edges involved.

Let the 2-change replacing {z1, z2} and {z3, z4} by {z2, z3} and {z1, z4} be called S1, and
the 2-change replacing {z1, z4} and {z3, z5} by {z1, z3} and {z4, z5} be called S2.

We proceed by conditioning on A2 = ∥z3 − z4∥ = a2 and A3 = ∥z4 − z5∥ = a3. Using
Lemma 10, we can then compute the probability that ∆1 ∈ (0, ϵ]. Moreover, the location
of z5 is then still random. Hence, the random variable η = ∥z3 − z5∥ − ∥z4 − z5∥ can be
analyzed independently from ∆1.

For the density of η, we have the following lemma from Englert et al [4].

▶ Lemma 13 ([4, Lemma 15, modified]). Let i ∈ [2], and assume that X ⊆ [−D, D]d. For
a2, a3 ∈ (0, 2

√
dD] and η ∈ (−a2, min{a2, 2a3 − a2}),

fη|A2=a2,A3=a3(η) ≤ Mϕ ·

√

2
a2

2−η2 , if a3 ≥ a2,√
2

(a2+η)(2a3−a2−η , if a3 < a2,

where Mϕ = max0≤ϕ≤π fϕ|A2=a2,A3=a3(ϕ). For η /∈ (−r, min{a2, 2a3 − a2}), the density
vanishes.

Note that the factor Mϕ was not present in the original statement of Lemma 13. This
is because the original statement concerned a simplified random experiment, wherein the
points z5 and z3 are chosen uniformly from a hyperball centered on z4. As such, ϕ is assumed
to be distributed uniformly1. Since we do not analyze a simplified random experiment, we
cannot make this assumption. However, examining the original proof of Lemma 13, this can
be resolved by simply inserting the upper bound of the density of ϕ, conditioned on A2 = a2
and A3 = a3. This bound is provided to us by Corollary 6.

▶ Lemma 14. Let ∆2 be the improvement yielded by S2, and assume that X ⊆ [−D, D]d.
Then

P(∆2 ∈ (0, ϵ] | A2 = a2) = O

((
d1/4

√
D

σ
+
√

d

a2

)
·
√

ϵ

)
.

1 This assumption is only valid for d = 2. To see this, observe that by conditioning on Ai = ai, the
point zi is distributed uniformly on the (d − 1)-sphere with radius ai. For d > 2, the density of ϕ is
thus concentrated near ϕ = π/2. An upper bound for this density can be obtained by setting s = 0
in Theorem 5, yielding O(

√
d). As Englert et al. assume d to be constant, this has no effect on their

eventual result.

B. Manthey and J. van Rhijn 52:13

Using Lemmas 4 and 14, we can easily prove the following statement about type 1a pairs
of 2-changes.

▶ Lemma 15. Let ∆link
min denote the minimum improvement of any type 1a pair of 2-changes,

and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
n5d3/4D3/2

σ3 ϵ3/2
)

.

4.2.2 Type 1b
The final type of linked pair we consider is type 1b. See Figure 3 (right) for a graphical
representation.

Let S1 denote the 2-change replacing {z1, z3} and {z2, z4} with {z2, z3} and {z1, z4}, and
let S2 denote the 2-change replacing {z2, z5} and {z1, z4} with {z1, z5} and {z2, z5}. From
Figure 3, it is evident that we can treat ∆1 and η = ∥z2 − z5∥ − ∥z1 − z5∥ as independent
variables, as long as we condition on R = r.

▶ Lemma 16. Let ∆link
min denote the minimum improvement of any type 1b pair of 2-changes,

and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
n5d3/4D3/2

σ3 ϵ3/2
)

.

Lemmas 12, 15, and 16 enable us to prove an upper bound to the smoothed complexity
of 2-opt in the present probabilistic model.

▶ Theorem 17. The expected number of iterations performed by 2-opt for smoothed Euclidean
instances of TSP in d ≥ 2 dimensions is bounded from above by O

(
dD2n4+ 1

3 /σ2
)

.

Proof. We assume for this proof that the entire instance is contained within [−D, D]d, with
D = Θ(1 + σ

√
n log n). This occurs with probability at least 1 − 1/n!. Thus, with probability

at least 1−1/n!, the longest tour in the instance has length at most 2
√

dDn. The assumption
that the entire instance lies within this hypercube enables us to use Lemmas 12, 15, and 16,
which were proved under this assumption.

Let E denote the event that, among all type 0 and type 1 linked pairs of 2-changes, the
pair with the smallest improvement is of type 0, and let Ec denote the event that this pair is
of type 1a or type 1b. Let the random variable T denote the number of iterations taken by
2-opt to reach a local optimum.

We first compute E(T | E). We apply Lemma 1 with α = 2 and β = 2, which is feasible
due to Lemma 12. We then obtain immediately that E(T | E) = O(dD2n4/σ2).

Next, we compute E(T | Ec). In this case, we apply Lemma 1 with α = 3/2 and β = 1
(cf. Lemmas 15 and 16). This yields E(T | Ec) = O(dD2n4+ 1

3 /σ2).
Combining the bounds for E and Ec yields the result. ◀

5 Improving the Analysis for d ≥ 3

The bottleneck in Theorem 17 stems from Lemmas 15 and 16, which bound the probability
that any linked pair of type 1a or type 1b improves the tour by at most ϵ. The probability
given by these lemmas is proportional to ϵ3/2, which yields an extra factor of n1/3 compared
to type 0 linked pairs.

ISAAC 2023

52:14 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

For d ≥ 3, we can improve this to ϵ2, yielding improved smoothed complexity bounds.
The key to this improvement is to use the second part of Corollary 6 to bound the density of
ηi as in Lemma 7. This immediately yields the following result on ηi = ∥a − zi∥ − ∥b − zi∥.

▶ Lemma 18. Let i ∈ [2], and assume that X ⊆ [−D, D]d. The density of ηi in d ≥ 3
dimensions, conditioned on Ai = ai and R = r, is bounded from above by

O

(
ai + r

air
·
(√

d + D min{r, ai}
σ2

))
.

Proof. We call the desired density fηi|A=ai,R=r. From Lemma 7, we know that

fηi|Ai=ai,R=r(η) ≤ ai + r

air
·

fϕi|Ai=ai,R=r(ϕi(η))
| sin ϕi(η)| .

Since d ≥ 3, we can use the second part of Corollary 6 to obtain the desired bound, making
use of the assumption that all points fall within [−D, D]d. ◀

Lemma 18 enables us to find an improved version of Lemma 10.

▶ Lemma 19. Let ∆ denote the improvement of a 2-change in d ≥ 3 dimensions. Let i ∈ [2],
and assume that X ⊆ [−D, D]d. Then

P(∆ ∈ (0, ϵ] | Ai = ai, R = r) = O

((√
d

min{ai, r}
+ D

σ2

)
· ϵ

)
.

The following lemma now yields the probability that any linked pair of 2-changes improves
the tour by at most ϵ. We omit the proof, since it follow easily from Lemma 19 along the
same lines as the lemmas in Section 4.

▶ Lemma 20. Let ∆link
min denote the minimum improvement of any linked pair of 2-changes

of type 0 or type 1 for d ≥ 3, and assume that X ⊆ [−D, D]d. Then

P(∆link
min ∈ (0, ϵ]) = O

(
D2n6ϵ2

σ4

)
.

We then obtain our result for d ≥ 3.

▶ Theorem 21. The expected number of iterations performed by 2-opt for smoothed Euclidean
instances of TSP in d ≥ 3 dimensions is bounded from above by O

(√
dD2n4/σ2

)
.

6 Discussion

For convenience, we provide comparisons of the previous smoothed complexity bounds with
our bound from Theorem 17 in Tables 1 and 2. These bounds are provided both for small
values of σ and for large values, meaning σ = Ω(1/

√
n log n) and σ = O(1/

√
n log n).

Observe from Tables 1 and 2 that the bound for d = 2 has a worse dependence on n

compared to the bound for d ≥ 3. The technical reasons for this difference can be understood
from Section 5. A more intuitive explanation for the difference is that our analysis benefits
from large angles between edges in the smoothed TSP instance. In d = 2, the density of
these angles is maximal when they are small, while for d ≥ 3 it is maximal when the angles
are large. In effect, this means that the adversary has less power to specify these angles to
our detriment when d ≥ 3.

B. Manthey and J. van Rhijn 52:15

Table 1 Previous and current smoothed complexity bounds for Gaussian noise, for σ =
O(1/

√
n log n). Note that for d ≥ 4, the bounds of Englert et al. include a factor cd which is

super-exponential in d.

Englert, Röglin & Vöcking [4] Manthey & Veenstra [9] This paper

d = 2 O
(

n4+ 1
3 /σ5+ 1

3 · log n
σ

)
– O

(
n4+ 1

3 /σ2
)

d = 3 O
(

n4+ 1
3 /σ8 · log n

σ

)
– O

(
n4/σ2)

d ≥ 4 O
(

cd · n4+ 1
3 /σ8d/3

)
O
(√

dn4/σ4) O
(√

dn4/σ2)
Table 2 Previous and current smoothed complexity bounds for Gaussian noise, for σ =

Ω(1/
√

n log n). Note that for d ≥ 4, the bounds of Englert et al. include a factor cd which is
super-exponential in d.

Englert, Röglin & Vöcking [4] Manthey & Veenstra [9] This paper

d = 2 O
(

n7 log3+ 2
3 n
)

– O
(

n5+ 1
3 log n

)
d = 3 O

(
n8+ 1

3 log5 n
)

– O
(
n5 log n

)
d ≥ 4 O

(
cd · n4+ 1+4d

3 log1+ 4d
3 n
)

O
(√

dn6 log2 n
)

O
(√

dn5 log n
)

From these tables, the greatest improvement is made for d = 3, where we improve
by n3+ 1

3 log4 n in the large σ case, and by 3
√

n log(n/σ)/σ6 for small σ. For d = 2, the
improvement is more modest at n1+ 2

3 log2+ 2
3 n for large σ and log(n/σ)/σ3+ 1

3 for small σ.
For d ≥ 4, we improve by n log n for large σ, and by σ−2 for small σ.

Note that we improve upon previous bounds mainly in the dependence on the perturbation
strength. In an intuitive sense, this is most substantial for instances that are weakly perturbed
from the adversarial instance, or in other words, that are close to worst case. In addition,
the small-σ case is considered more interesting for a smoothed analysis, since small σ model
the intuition of smoothed analysis of a small perturbation, while large σ reduce the analysis
basically to an average-case analysis In order to improve the explicit dependence on n, which
is the same as for Manthey & Veenstra [9], we believe new techniques are necessary.

As a final comment, we note that the techniques we employed in Sections 3 and 5 can
also be used to improve and significantly simplify the analysis of the one-step model used by
Englert et al [4]. For d ≥ 3, the improvement amounts to a factor of n1/3ϕ1/6 log(nϕ), while
for d = 2, the improvement is just log(nϕ), where ϕ denotes the upper bound of the density
functions used in the one-step model.

References

1 Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization.
Princeton University Press, 2003. doi:10.2307/j.ctv346t9c.

2 Barun Chandra, Howard Karloff, and Craig Tovey. New Results on the Old k-opt Algorithm
for the Traveling Salesman Problem. SIAM Journal on Computing, 28(6):1998–2029, January
1999. doi:10.1137/S0097539793251244.

3 Christian Engels and Bodo Manthey. Average-case approximation ratio of the 2-opt algorithm
for the TSP. Operations Research Letters, 37(2):83–84, March 2009. doi:10.1016/j.orl.
2008.12.002.

ISAAC 2023

https://doi.org/10.2307/j.ctv346t9c
https://doi.org/10.1137/S0097539793251244
https://doi.org/10.1016/j.orl.2008.12.002
https://doi.org/10.1016/j.orl.2008.12.002

52:16 Improved Smoothed Analysis of 2-Opt for the Euclidean TSP

4 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst Case and Probabilistic Analysis
of the 2-Opt Algorithm for the TSP. Algorithmica, 68(1):190–264, January 2014. Corrected
version: arXiv:2302.06889. doi:10.1007/s00453-013-9801-4.

5 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Smoothed Analysis of the 2-Opt
Algorithm for the General TSP. ACM Transactions on Algorithms, 13(1):10:1–10:15, September
2016. doi:10.1145/2972953.

6 Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg, 2000. doi:10.1007/
978-3-662-21708-5.

7 Bodo Manthey. Smoothed Analysis of Local Search. In Tim Roughgarden, editor, Beyond the
Worst-Case Analysis of Algorithms, pages 285–308. Cambridge University Press, Cambridge,
2021. doi:10.1017/9781108637435.018.

8 Bodo Manthey and Heiko Röglin. Smoothed Analysis: Analysis of Algorithms Beyond Worst
Case. it – Information Technology, 53(6):280–286, December 2011. doi:10.1524/itit.2011.
0654.

9 Bodo Manthey and Rianne Veenstra. Smoothed Analysis of the 2-Opt Heuristic for the
TSP: Polynomial Bounds for Gaussian Noise. In Leizhen Cai, Siu-Wing Cheng, and Tak-
Wah Lam, editors, Algorithms and Computation, Lecture Notes in Computer Science, pages
579–589, Berlin, Heidelberg, 2013. Springer. Full, improved version: Full, improved version:
arXiv:2308.00306. doi:10.1007/978-3-642-45030-3_54.

10 Christos H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical Computer Science, 4(3):237–244, June 1977. doi:10.1016/0304-3975(77)90012-3.

11 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, May 2004.
doi:10.1145/990308.990310.

12 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: An attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84, October 2009.
doi:10.1145/1562764.1562785.

https://arxiv.org/abs/2302.06889
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1145/2972953
https://doi.org/10.1007/978-3-662-21708-5
https://doi.org/10.1007/978-3-662-21708-5
https://doi.org/10.1017/9781108637435.018
https://doi.org/10.1524/itit.2011.0654
https://doi.org/10.1524/itit.2011.0654
https://arxiv.org/abs/2308.00306
https://doi.org/10.1007/978-3-642-45030-3_54
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/990308.990310
https://doi.org/10.1145/1562764.1562785

On the Complexity of the Eigenvalue Deletion
Problem
Neeldhara Misra # Ñ

Indian Institute of Technology, Gandhinagar, India

Harshil Mittal #

Indian Institute of Technology, Gandhinagar, India

Saket Saurabh # Ñ

Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Dhara Thakkar # Ñ

Indian Institute of Technology, Gandhinagar, India

Abstract
For any fixed positive integer r and a given budget k, the r-Eigenvalue Vertex Deletion (r-EVD)
problem asks if a graph G admits a subset S of at most k vertices such that the adjacency matrix of
G \ S has at most r distinct eigenvalues. The edge deletion, edge addition, and edge editing variants
are defined analogously. For r = 1, r-EVD is equivalent to the Vertex Cover problem. For r = 2, it
turns out that r-EVD amounts to removing a subset S of at most k vertices so that G \ S is a cluster
graph where all connected components have the same size.

We show that r-EVD is NP-complete even on bipartite graphs with maximum degree four for
every fixed r > 2, and FPT when parameterized by the solution size and the maximum degree of the
graph.

We also establish several results for the special case when r = 2. For the vertex deletion variant,
we show that 2-EVD is NP-complete even on triangle-free and 3d-regular graphs for any d ⩾ 2, and
also NP-complete on d-regular graphs for any d ⩾ 8. The edge deletion, addition, and editing variants
are all NP-complete for r = 2. The edge deletion problem admits a polynomial time algorithm if
the input is a cluster graph, while – in contrast – the edge addition variant is hard even when the
input is a cluster graph. We show that the edge addition variant has a quadratic kernel. The edge
deletion and vertex deletion variants admit a single-exponential FPT algorithm when parameterized
by the solution size alone.

Our main contribution is to develop the complexity landscape for the problem of modifying a
graph with the aim of reducing the number of distinct eigenvalues in the spectrum of its adjacency
matrix. It turns out that this captures, apart from Vertex Cover, also a natural variation of the
problem of modifying to a cluster graph as a special case, which we believe may be of independent
interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph Modification, Rank Reduction, Eigenvalues

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.53

Related Version Full Version: https://arxiv.org/abs/2310.00600

Funding Neeldhara Misra: Supported by DST-SERB and IIT Gandhinagar.
Harshil Mittal: Supported by IIT Gandhinagar.
Saket Saurabh: Supported by ERC, the University of Bergen, and IMSc.
Dhara Thakkar : Supported by CSIR-UGC NET JRF Fellowship.

Acknowledgements We thank Daniel Lokshtanov for helpful discussions.

© Neeldhara Misra, Harshil Mittal, Saket Saurabh, and Dhara Thakkar;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 53; pp. 53:1–53:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeldhara.m@iitgn.ac.in
https://www.neeldhara.com
https://orcid.org/0000-0003-1727-5388
mailto:mittal_harshil@iitgn.ac.in
mailto:saket@imsc.res.in
https://sites.google.com/view/sakethome
https://orcid.org/0000-0001-7847-6402
mailto:thakkar_dhara@iitgn.ac.in
https://sites.google.com/iitgn.ac.in/dharathakkar
https://orcid.org/0000-0002-4234-0105
https://doi.org/10.4230/LIPIcs.ISAAC.2023.53
https://arxiv.org/abs/2310.00600
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 On the Complexity of the Eigenvalue Deletion Problem

1 Introduction

Graph modification problems are a fundamental class of optimization problems where we
have a class of graphs F that satisfy some property of interest P, the input is a graph G, and
we are interested in a smallest subset of vertices S ⊆ V(G) such that G \ S ∈ F. This is a
rather general framework that captures several classical optimization problems as special
cases, for instance:

when F is the collection of edgeless graphs, then the problem is Vertex Cover;
when F is the collection of acyclic graphs, then the problem is Feedback Vertex Set;
when F is the collection of bipartite graphs, then the problem is Odd Cycle Traversal;

and so on. It has also been of interest to study modifications other than vertex deletion: the
most common alternate modifications considered include edge deletion, edge addition, and
edge editing (adding and removing edges). The optimization problems for these operations
may be posed analogously.

Meesum, Misra, and Saurabh [9] pose the question of modifying a graph with the goal of
reducing the rank of the associated adjacency matrix, which is to say that F⩽r is the class of
graphs whose adjacency matrices have rank at most r. We use AG to denote the adjacency
matrix of a graph G, and we use the phrase “spectrum of G” to refer to the (multi-)set of
eigenvalues of AG. Previous works focus separately on the settings of undirected [9] and
directed [10] graphs.

In the setting of simple undirected graphs, Meesum, Misra, and Saurabh [9] introduce and
study the r-Rank Vertex Deletion, r-Rank Edge Deletion, and r-Rank Editing
problems. These problems generalize the classical Vertex Cover problem. They show
that all the three problems are NP-complete, and are fixed parameter tractable (FPT)
in the standard parameter: in particular, they demonstrate an algorithm with running
time 2O(k log r)nO(1) for r-Rank Vertex Deletion, and an algorithm for r-Rank Edge
Deletion and r-Rank Editing running in time 2O(f(r)

√
k logk)nO(1), where k is the size of

the solution sought. The authors also leave the following question open:
“[. . .] what is complexity of the problem of reducing the number of distinct eigenvalues of

a graph by deleting a few vertices or editing a few edges?”
In this paper, we address this question at length, developing an initial picture of the

complexity landscape for what we call the r-Eigenvalue Vertex Deletion (r-EVD),
r-Eigenvalue Edge Deletion (r-EED), r-Eigenvalue Edge Addition (r-EEA), and
r-Eigenvalue Edge Editing (r-EEE) problems. All these problems are defined for an
arbitrary but fixed positive integer r.

The problem definitions are the following, where we are given an undirected graph G and
a positive integer k as input in all cases:

r-EVD. Is there a set S ⊆ V(G) of size ⩽ k such that the number of distinct eigenvalues
of AG\S is at most r?
r-EEE. Is there a set F ⊆

(
V(G)

2
)

of size ⩽ k such that the number of distinct eigenvalues
of AH is at most r, where H := (V(G),E(G)∆F)?
r-EEA. Is there a set F ⊆

(
V(G)

2
)
\ E(G) of size ⩽ k such that the number of distinct

eigenvalues of AH is at most r, where H := (V(G),E(G) ∪ F)?
r-EED. Is there a set F ⊆ E(G) of size ⩽ k such that the number of distinct eigenvalues
of AH is at most r, where H := (V(G),E(G) \ F)?

Note that if we have a solution S for the r-Rank Vertex Deletion problem, then S

is also a solution for the (r+ 1)-Eigenvalue Vertex Deletion problem; and analogous
statements hold for the other modification problems. This is because the r-Rank Vertex
Deletion problem can be equivalently stated as follows: given a graph G and a positive

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:3

Table 1 A summary of our results. The result marked † holds for all d except for d = 1, 2, 3, 4, 5, 7.
Some polynomial cases are omitted from this summary.

r = 2 Fixed r ⩾ 3

Vertex Deletion

NP-complete for d-regular graphs †
(Theorem 5)

NP-complete even on bipartite graphs
(Theorem 8)

FPT in k (Theorem 6) FPT in k and ∆(G)

(Theorem 9)Polynomial time on forests
(Proposition 7)

Edge Addition
NP-complete even on cluster graphs
(Theorem 10) NP-complete (Theorem 12)

Quadratic kernel in k (Theorem 11)

Edge Deletion
NP-complete (Theorem 16) NP-complete

(Theorem 15)FPT in k (Theorem 13)
Polynomial time on triangle-free graphs
(Proposition 14)

Edge Editing NP-complete (Theorem 16) OPEN

integer k, find a smallest subset of vertices S ⊆ V(G) such that G \ S has at most r non-zero
eigenvalues. However, the converse is not true (since, in general, bounding the number of
distinct eigenvalues is not sufficient to bound the rank), making the eigenvalue deletion
problems distinct from their rank deletion counterpart.

Our Contributions. We summarize our contributions below, and also in Table 1. We first
focus on the special case when r = 2. It is known that the adjacency matrix AG of a graph G

has at most two distinct eigenvalues if and only if G is a disjoint union of equal-sized cliques
(Lemma 1). Based on this, note that the 2-Eigenvalue Vertex Deletion problem is
equivalent to finding a subset S ⊆ V(G) of vertices such that G \ S is a disjoint union of
cliques of size ℓ for some 1 ⩽ ℓ ⩽ |V(G)|. Note that this is closely related to the Cluster
Vertex Deletion problem, which is a well-studied question that involves removing a
smallest subset of vertices to obtain a cluster graph. However, to the best of our knowledge,
the variant where we demand that the clusters have the same size has not been studied. Our
results about the “uniform” version of Cluster Vertex Deletion may therefore be of
independent interest.

Our main contributions in the context of vertex deletion are the following results:
We show that 2-EVD is NP-complete on d-regular graphs for all d except for d =

1, 2, 3, 4, 5, 7 (Theorem 5).
We also give a single-exponential FPT algorithm in the standard parameter (Theorem 6),
and show that the problem can be solved in polynomial time on forests and d-regular
graphs for d ⩽ 2 (Proposition 7).
Further, for any fixed r ⩾ 3, we show that r-EVD is NP-complete on bipartite graphs
(Theorem 8) and is FPT in the standard parameter combined with the maximum degree
of the graph (Theorem 9).

We now describe our findings for the edge modification variants.

ISAAC 2023

53:4 On the Complexity of the Eigenvalue Deletion Problem

We show that 2-EEA is already NP-complete when the input is either a cluster graph, a
forest, or a collection of cycles (Theorem 10).
We demonstrate that the problem has a quadratic kernel in the standard parameter
(Theorem 11).
We show that r-EEA is NP-complete for any fixed r ⩾ 3 (Theorem 12).
For the edge deletion variant, we show that r-EED is NP-complete for any fixed r ⩾ 2
(Theorems 15 and 16).
For 2-EED, we have a single-exponential FPT algorithm (Theorem 13) in the standard
parameter and a polynomial time algorithm on triangle-free graphs (Proposition 14).
Finally, for the edge editing variant, we show that 2-Eigenvalue Edge Editing is
NP-complete (Theorem 16).

Related Work. As we noted previously, the special case when r = 2 is closely related to
the problem of modifying to a cluster graph, in which we are allowed to modify the graph
such that the resulting graph is cluster i.e., it is disjoint union of cliques. Depending on
the modifications allowed, these problems are variously refered to as Cluster Vertex
Deletion, Cluster Edge Deletion, Cluster Edge Addition and Cluster Edge
Editing. Further, Shamir, Sharan, and Tsur [12] have studied a variant of cluster vertex
deletion where they additionally demand that the cluster graph obtained after the modification
has at most p components.

Problems related to modifying to a cluster graph are very well-studied because they
model the clustering problem in various ways. In a clustering problem we are given various
data points with some notion of distance between these points, and it is of interest to group
these points into “clusters”, where each cluster consists of points that are mutually close
with respect to the given distance metric. These scenarios can often be modeled with graphs,
and in fact graph structure can often be used to model additional constraints of interest.
Given the fundamental importance of clustering, it is no surprise that modifying to cluster
graphs has attracted substantial interest in the literature of graph algorithms. We refer the
reader to [11] for an overview of results related to cluster modification problems.

Another related problem is the problem of deleting to a graph where the connected
components have small diameter. This is known as the s-Club Cluster Vertex Deletion
problem [3]. Here, we are given a graph G and two integers s ⩾ 2 and k ⩾ 1; and the
question is if it is possible to remove at most k vertices from G such that each connected
component of the resulting graph has diameter at most s. Note that this naturally generalizes
the problem of modifying to cluster graphs: indeed, the problem is equivalent to Cluster
Vertex Deletion for s = 1. The edge modification variants have also been considered and
are well-studied.

We note that a solution to the r-Eigenvalue Vertex Deletion problem will also be a
valid solution to the (r − 1)-Club Cluster Vertex Deletion due to Lemma 2, which
states that graphs of diameter d have at least (d+1) distinct eigenvalues. This is analogously
true for the other modification problems as well. On the other hand, it is easy to see that
the converse is not necessarily true.

Remarks. Due to lack of space, we describe most proofs informally and defer a detailed
exposition to a full version of the paper. Such results are marked with a (⋆). The full version
also has a list of problem definitions and extended technical preliminaries. Throughout, we
use the O⋆(·) notation to suppress polynomial factors.

Sections 3,4,5, and 6 focus respectively on the problems of r-EVD, r-EEA, r-EED, and
r-EEE.

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:5

2 Preliminaries

Let G = (V,E) be a simple undirected graph, where, V(G) is the vertex set of G and E(G)

is the edge set of G. We typically use n and m to denote |V(G)| and |E(G)|, respectively.
The adjacency matrix AG = aij of a graph G is an n× n matrix with aij ∈ {0, 1} the entry
(i.j) = 1 if the pair (i, j) is an edge in G. We note that the spectrum of AG can be computed
in polynomial time. A principal submatrix of a square matrix A is a matrix obtained by
removing an equal number of rows and columns from A such that the indices of the removed
rows match with the indices of the removed columns.

The following known results will be relevant to our discussions:

▶ Lemma 1 ([8, 5]). Let G be a graph. Then, its adjacency matrix AG has at most two
distinct eigenvalues if and only if G is a disjoint union of equal-sized cliques.

▶ Lemma 2 ([2], Proposition 1.3.3). Let G be a connected graph with diameter d. Then, its
adjacency matrix AG has at least d+ 1 distinct eigenvalues.

▶ Lemma 3 (Cauchy interlacing; [2], Corollary 2.5.2). Let A be a symmetric matrix of size
n× n. Let B be a principal submatrix of A of size (n− 1)× (n− 1). Then, the eigenvalues
of B interlace the eigenvalues of A. That is,

µ1 ⩾ σ1 ⩾ µ2 ⩾ σ2 ⩾ µ3 ⩾ ⩾ µn−2 ⩾ σn−2 ⩾ µn−1 ⩾ σn−1 ⩾ µn

where, µ1 ⩾ µ2 ⩾ ⩾ µn denote the n eigenvalues of A, and σ1 ⩾ σ2 ⩾ ⩾ σn−1
denote the n− 1 eigenvalues of B.

▶ Lemma 4 ([2], Chapter 3, Exercise 1). Let G be a graph with smallest eigenvalue −1. Then,
G is a disjoint union of cliques.

Some examples of graph classes whose spectrum is well-known include complete graphs,
paths and cycles ([2], Chapter 1). A complete graph on n vertices has eigenvalues −1 and
n − 1 (with multiplicities n − 1 and 1 respectively). A path on n vertices has eigenvalues
2 cos

(
πj

n+1
)∣∣

1⩽j⩽n
. A cycle on n vertices has eigenvalues 2 cos

(2πj
n

)∣∣
0⩽j⩽n−1.

3 Reducing eigenvalues by deleting vertices

In this section, we show that the r-EVD problem is NP-complete for r ⩾ 1. Recall that for
r = 1, r-EVD is equivalent to Vertex Cover. For r = 2, we show that the problem is
NP-complete on general graphs, admits a single-exponential FPT algorithm in the standard
parameter, and is polynomial-time solvable on trees. For any fixed r ⩾ 3, we show that the
problem is NP-complete on bipartite graphs and is FPT in the standard parameter combined
with the maximum degree of the graph.

3.1 Deleting to Two Distinct Eigenvalues
Note that by Lemma 1, 2-EVD is equivalent to Uniform Cluster Vertex Deletion, a
problem where the input is a graph G and a positive integer k and the question is if there is
a subset S ⊆ V(G) of vertices such that G \ S is a disjoint union of ℓ-sized cliques for some
1 ⩽ ℓ ⩽ |V(G)|. Note that ℓ is not a part of the input. We begin by showing that the problem
is hard even when restricted to d-regular graphs for any d other than 1, 2, 3, 4, 5, 7.

▶ Theorem 5 (⋆). 2-Eigenvalue Vertex Deletion is NP-complete even on triangle-free
and 3d-regular graphs for any d ⩾ 2, and NP-complete on d-regular graphs for any d ⩾ 8.

ISAAC 2023

53:6 On the Complexity of the Eigenvalue Deletion Problem

To show this result we use two reductions: one from the Independent Set problem on
cubic triangle-free graphs and the other from Independent Set on planar cubic triangle-free
graphs.

In the first construction, we replace every vertex v with vertices v(1) and v(2), and extended
the edges as follows: an edge (u, v) maps to the edges (u(1), v(1)), (u(1), v(2)), (u(2), v(1)),
and (u(2), v(2)). Note that this construction preserves triangle-freeness and transforms a
cubic graph to a six-regular graph. For demonstrating hardness on 3d regular graphs for
d ⩾ 2, we make d copies of the vertices instead of two copies.

For the second construction, we make six copies of the graph and for every vertex, we
induce a clique on all its copies. This construction turns a cubic graph into a 8-regular graph.
For demonstrating hardness on d regular graphs for d ⩾ 8, we make (d − 2) copies of the
vertices instead of six.

Next, we note that 2-EVD admits a branch-and-bound-based FPT algorithm that is
similar in spirit to the naive branching algorithm for Cluster Vertex Deletion. As
long as our instance has an induced path on three vertices {u, v,w}, we recursively solve
the instances (G \ {u}, k− 1), (G \ {v}, k− 1) and (G \ {w}, k− 1). Note that this branching
algorithm enumerates all minimal subsets S of size at most k such that G \ S is a disjoint
union of cliques. At a leaf of any successful execution path of this branching algorithm, we
are left with a subgraph H of G that is a cluster graph, and a (possibly reduced) budget
k′ ⩽ k. At this point, we guess the value of ℓ, and extend our solution greedily by: (a)
deleting all cliques smaller than ℓ, and (b) for any cliques of size, say q where q > ℓ, we
delete an arbitrary subset of (q− ℓ) vertices. We have a valid solution at this if and only if
there is some ℓ for which the cost of “uniformizing” the cluster graph H to cliques of size ℓ is
within the remaining budget k′.

▶ Theorem 6. 2-Eigenvalue Vertex Deletion can be solved in time O⋆(3k).

Proof. Let us describe a recursive branching algorithm. Consider an instance, say (G, k),
of 2-Eigenvalue vertex Deletion. By Lemma 1, our goal is to decide whether we can
delete at most k vertices from G to get a disjoint union of equal-sized cliques. First, we check
if G has an induced path on three vertices. This takes polynomial time.

Case 1: G has no induced path on three vertices. The graph G is a disjoint union of
cliques, say C1, . . . ,Ct, of sizes s1, . . . , st respectively. We know that deleting the vertices of
any solution results in a disjoint union of equal-sized cliques

(
say, of size x

)
. Observe that

for each 1 ⩽ i ⩽ t,
If si ⩾ x, then si − x vertices of the clique Ci are deleted, leaving behind x of its vertices.
If si < x, then the entire clique Ci, i.e., all its si vertices, are deleted.

So, the overall solution size, i.e., total number of deleted vertices, is

∑
1⩽i⩽t:
si⩾x

(si − x) +
∑

1⩽i⩽t:
si<x

si =

t∑
i=1

si − x · µ(x)

where µ(x) denotes the number of si’s amongst s1, . . . , st such that si ⩾ x.
Thus, the size of any minimum-sized solution is
t∑

i=1
si − max

1⩽j⩽t

(
sj · µ(sj)

)
If this size is ⩽ k, we return YES; otherwise, we return NO. This takes polynomial time.

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:7

Case 2: G has an induced path on three vertices, say a− b− c. Note that any solution
must pick at least one of its three vertices, i.e., a,b, c. So, if k = 0, we return NO; otherwise,
we guess a vertex that is picked into solution. That is, we branch as follows: In the first(
resp. second and third

)
branch, we include the vertex a (resp. b and c) into solution,

delete it from G, and reduce the parameter k by 1. It takes polynomial time to create the
subproblems

(
G \ {a}, k− 1

)
,
(
G \ {b}, k− 1

)
and

(
G \ {c}, k− 1

)
. Next, we run our algorithm

on these three instances. If at least one of these three recursive calls returns YES, so do we;
otherwise, we return NO.

The depth of our search tree is at most k. Also, each of its internal nodes has three
children. Therefore, it has at most O(3k) nodes. Thus, as we spend polynomial time at each
node, the overall running time is at most O⋆(3k). ◀

We now show that 2-Eigenvalue Vertex Deletion can be solved in polynomial time
when the input is a forest. Let (G, k) be an instance of 2-EVD where G is a forest. Note
that if S is a valid solution, then G \ S is either independent or a disjoint collection of edges.

Therefore, we can arrive at an optimal solution by computing the size of a maximum
independent set and a maximum induced matching: this can be done in polynomial time on
forests [1, 13]. We also note that a similar argument applies to d-regular graphs for d ⩽ 2.

▶ Proposition 7 (⋆). 2-Eigenvalue Vertex Deletion admits polynomial time algorithms
on forests and d-regular graphs for d ⩽ 2.

3.2 r-EVD for r ⩾ 3
To demonstrate the hardness of r-EVD for any fixed r ⩾ 3, we give a reduction from Vertex
Cover on Cubic Graphs.

▶ Theorem 8 (⋆). Let r ⩾ 3 be an integer. Then, r-Eigenvalue Vertex Deletion is
NP-complete, even on bipartite graphs of maximum degree four.

Next, we show that r-EVD is FPT in the combined parmeter k+ ∆(G), where ∆(G) is
the maximum degree of G.

▶ Theorem 9. Let r ⩾ 3 be an integer. Then, r-Eigenvalue Vertex Deletion admits
an FPT algorithm running in time O⋆

(
(r+ 1)2k · 2k2 ·

(
∆(G)

)rk).

Proof Sketch. Let (G, k) be an instance of r-EVD. We claim that if G has more than
(r + 1) · 2k eigenvalues, then G is a NO instance, and we can detect this upfront. The
intuition is that the Cauchy interlacing structure (Lemma 3) allows us to conclude that
one vertex can reduce the number of distinct eigenvalues in the spectrum by a factor of at
most half: so if there are “too many” distinct eigenvalues in the spectrum to begin with, k
deletions will not suffice to reduce the number of distinct eigenvalues substantially enough.
We now quantify this argument: suppose, for the sake of contradiction, that G has more
than (r+ 1) · 2k eigenvalues, and let S ⊆ V(G) be a subset of at most k vertices such that
AG\S has at most r distinct eigenvalues. Denote the vertices of S by v1, v2, . . . , vt, where
t ⩽ k. By Lemma 3 applied to G, G \ {v1}, we know that the number of distinct eigenvalues
in G \ {v1} is at least ⌊ 1

2ηG⌋, where ηG is the number of distinct eigenvalues in G. Applying
this argument iteratively to G \ {v1} and G \ {v1, v2} and so on, it is clear that the number
of distinct eigenvalues in G \ S is at least ηG

2k − 1, but if ηG > (r + 1) · 2k, then we have a
contradiction.

ISAAC 2023

53:8 On the Complexity of the Eigenvalue Deletion Problem

So we assume that G has at most (r+ 1) · 2k eigenvalues in its spectrum. Note that if
G has a shortest path P with at least r edges then any solution S must contain one of the
vertices of P (c.f. Lemma 2). This gives us a branching strategy that can be executed in
O⋆((r+ 1)k) time. Let (H, k′) be an instance at a leaf of some successful execution path of
this branching algorithm. Note that H is a subgraph of G whose diameter is at most r− 1
and k′ ⩽ k is a residual budget.

Let C be a connected component of H. Note that |C| ⩽
(
∆(G)

)r, in other words, H is a
collection of “small” components. Note that if the spectrum of H has more than (r+ 1) · 2k′

eigenvalues, we say NO as before. On the other hand, if the spectrum of H has at most
r eigenvalues, then we are already done. So the spectrum of H has more than r and at
most (r + 1) · 2k′ eigenvalues. Otherwise, for the sake of analysis, assume that (H, k′) is
a YES-instance with solution S. Note that there is an eigenvalue λ that belongs to the
spectrum of H but not to the spectrum of H \ S. Note that there is at least one connected
component C such that λ belongs to the spectrum of H[C]. Therefore, S ∩ C ̸= ∅. Our
algorithm proceeds by guessing λ and a choice of vertex from S ∩ C, both of which we can
afford because the spectrum of H and the sizes of the components of H are bounded by
(r+ 1) · 2k′ and |C| ⩽

(
∆(G)

)r respectively. ◀

4 Reducing eigenvalues by adding edges

We show that the 2-Eigenvalue Edge Addition is NP-complete even on cluster graphs,
and demonstrate a quadratic kernel in the standard parameter. Also, for any fixed r ⩾ 3, we
show that the r-EEA problem is NP-complete.

For the first result, we reduce from 3-Partition which is known to be strongly NP-
complete [7]. The input for 3-Partition consists of a set T = {s1, . . . , s3n} and b, where
si’s are positive integers from

(
b
4 , b

2
)
, si’s and b are given in unary, and

∑3n
i=1 si = nb. The

goal of this problem is to decide whether there T can be partitioned into n triplets such that
the elements of any triplet sum up to b. The intuition for the reduction is the following:
the reduced instance is a disjoint union of cliques whose sizes are {s1, . . . , s3n} and a large
number of cliques of size b. The idea is that a solution to the 3-Partition instance can guide
the smaller cliques into appropriate mergers so that all cliques have size b, and the “large”
number of cliques of size b, combined with an appropriately chosen budget, essentially forces
this solution structure in the reverse direction, allowing us to derive a solution for 3-Partition.

▶ Theorem 10. 2-Eigenvalue Edge Addition is NP-complete, even when restricted to
cluster graphs, forests, and 2-regular graphs.

Proof. We describe the hardness for cluster graphs. Consider an instance, say (T ,b), of
3-Partition, where T = {s1, . . . , s3n} such that i) b

4 < si < b
2 for all 1 ⩽ i ⩽ 3n, and ii)∑3n

i=1 si = nb.
Let us construct a graph, say G, as follows: For every 1 ⩽ i ⩽ 3n, introduce a clique, say

Ci, of size si. Also, add M := 3nb cliques, each of size b; let us refer to them as dummy
cliques. The graph G is the disjoint union of 3n+M cliques, namely C1, . . . ,C3n and the M

dummy cliques. Let us show that (T ,b) is a YES instance of 3-Partition if and only if
(G,nb2) is a YES instance of 2-Eigenvalue Edge Addition.
(⇒) Suppose that (T ,b) is a YES instance of 3-Partition. Then, there exists a partition of
T into n triplets, say T = T1 ⊎ . . . ⊎ Tn, such that for every 1 ⩽ i ⩽ n, the elements of Ti add
up to b. That is, sxi

+ syi
+ szi

= b, where sxi
, syi

, szi
denote the three elements of Ti.

For every 1 ⩽ i ⩽ n, merge the three cliques Cxi
,Cyi

,Czi
into one clique, say Di, as

follows:

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:9

Make every vertex of Cxi
adjacent to every vertex of Cyi

.
Make every vertex of Cxi

adjacent to every vertex of Czi
.

Make every vertex of Cyi
adjacent to every vertex of Czi

.
See Figure 1 for an illustration.

Figure 1 An illustration of the merger of the three cliques Cxi
,Cyi

,Czi , when sxi
= syi

= szi = 4,
in Theorem 10.

Note that the number of edges so added to G is

n∑
i=1

(
sxi

· syi
+ sxi

· szi
+ syi

· szi

)
<

n∑
i=1

(
3 · b2 · b2

)
< nb2

For each 1 ⩽ i ⩽ n, the size of the clique Di is sxi
+ syi

+ szi
= b. The resulting graph,

say H, is the disjoint union of n+M cliques, each of size b, namely D1, . . . ,Dn and the M

dummy cliques. The adjacency matrix of H has two distinct eigenvalues, i.e., −1 and b− 1.
Thus, (G,nb2) is a YES instance of 2-Eigenvalue Edge Addition.
(⇐) Suppose that (G,nb2) is a YES instance of 2-Eigenvalue Edge Addition. That is,
there exists S ⊆

(
V(G)

2
)
\E(G) of size ⩽ nb2 such that adding the edges of S to G results in a

graph, say H, whose adjacency matrix has at most two distinct eigenvalues. Using Lemma 1,
the graph H is a disjoint union of equal-sized cliques. Observe that each clique of H is formed
by merging some of the 3n+M cliques of G, namely C1, . . . ,C3n and the M b-sized dummy
cliques.

First, let us show that no dummy clique participates in a merger. That is, in H, each of
the M b-sized dummy cliques of G remains as it is. For the sake of contradiction, assume
that there exists a dummy clique that merges with some other clique(s) of G to form a bigger
(i.e., of size > b) clique of H. Then, as all cliques of H have the same size, none of the other

ISAAC 2023

53:10 On the Complexity of the Eigenvalue Deletion Problem

M − 1 b-sized dummy cliques of G can remain as it is. Now, as each of the M b-sized
dummy cliques participates in some merger, it is incident to ⩾ b edges of S. Also, every
edge of S is incident to at most two dummy cliques. Therefore, we get |S| ⩾ Mb

2 > nb2, a
contradiction.

Let D1, . . . ,Dt denote the equal-sized cliques of H other than the M dummy cliques.
Note that their common size is the same as that of a dummy clique, i.e., b. Consider any
1 ⩽ i ⩽ t. The clique Di is formed by merging some (say pi) of the 3n cliques C1, . . . ,C3n.
Each of these pi cliques has size > b

4 and < b
2 . Also, their sizes add up to the size of the

clique Di, i.e., b. Therefore, we have pi · b
4 < b < pi · b

2 . So, we get pi = 3. Hence, each
of the t cliques D1, . . . ,Dt is obtained by merging three of the 3n cliques C1, . . . ,C3n. We
have t = n.

Consider any 1 ⩽ i ⩽ n. Let Cxi
,Cyi

,Czi
denote the three cliques amongst C1, . . . ,C3n

whose merger forms the clique Di. Let Ti denote the triplet that consists of sxi
, syi

, szi
. As the

sizes of the cliques Cxi
,Cyi

,Czi
add up to the size of the clique Di, we have sxi

+syi
+szi

= b.
That is, the elements of the triplet Ti add up to b. Thus, as T = T1 ⊎ . . . ⊎ Tn, it follows that
(T ,b) is a YES instance of 3-Partition.

In the reduction above, instead of adding a clique on si vertices, we could instead add a
cycle (resp. path) on si vertices, and adjust the budget to account for the missing edges,
thereby showing NP-completeness on 2-regular graphs (resp. forests) as well. ◀

Our next result gives a quadratic kernel for 2-Eigenvalue Edge Addition. Let (G, k)
be an instance of 2-EEA. We only describe the main intuition of the kernel informally and
defer a detailed argument to a full version of this paper. Since we are only allowed to add
edges, we “might as well” complete all the connected components of G to cliques and adjust
the budget accordingly. Thus, without loss of generality, G is already a cluster graph. Some
trivial cases are easily handled, such as: when we cannot afford to complete the original
components of G to cliques, or when we have no budget but cliques of different sizes, or
when all cliques are already of the same size.

Now, we are left with a situation where we have a non-trivial budget and cliques of at least
two distinct sizes. Let the largest sized clique have q vertices, and suppose we have t cliques
of size p in G, denoted by C1, . . . ,Ct, where p < q. Note that each of these cliques is merged
into a larger clique after edges from any valid solution are added to G. In particular, if S is a
valid solution, at least t·p

2 edges of S are incident to vertices of C1 ∪ . . . ∪ Ct. Therefore, if
tp/2 > k, we can say NO. This bounds the sizes of cliques with fewer than q vertices.

For the largest-sized cliques, note that if we have “too many” of them, then none of
them are merged into a larger clique after edges from any valid solution are added to G. In
particular, it can be shown that if there are s cliques of size q, then if sq > 2k, then these
cliques are untouched by any valid edge addition set of size at most k. This allows us to
throw away most of them, preserving just enough to remember that the cliques must indeed
remain untouched in any valid solution. This bounds the number of vertices among the
largest sized clique.

Combining these arguments, the overall bound on the total number of vertices in the
reduced instance turns out to be quadratic in k. We defer the a detailed proof to a full
version of this paper.

▶ Theorem 11. 2-Eigenvalue Edge Addition admits a kernel with O(k2) vertices.

Proof. Consider an instance, say (G, k), of 2-Eigenvalue Edge Addition. Owing to
Lemma 1, our goal is to decide if we can add ⩽ k edges to G to get a disjoint union of
equal-sized cliques. Let us apply the following reduction rules

(
in the specified order

)
:

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:11

Reduction rule 1: Suppose that there’s a component, say C, of G, that is not a clique. Then,
add the missing

(
|V(C)|

2
)
− |E(C)| edges to turn C into a clique, and reduce the parameter

k by
(
|V(C)|

2
)
− |E(C)|.

After exhaustively applying Reduction rule 1, G is a disjoint union of cliques; say, it
consists of n1 cliques of size x1, n2 cliques of size x2,, nt cliques of size xt, where
x1 < x2 < < xt.

Reduction rule 2:
If k < 0, then return NO.
If k ⩾ 0 and t = 1, then return YES.
If k = 0 and t ⩾ 2, then return NO.

After applying Reduction rule 2, we have k ⩾ 1 and t ⩾ 2.
Reduction rule 3: If there exists an 1 ⩽ i ⩽ t− 1 such that ni · xi > 2k, then return NO.
Safeness of Reduction rule 3: Suppose that (G, k) is a YES instance. Then, there exists

S ⊆
(
V(G)

2
)
\ E(G) of size ⩽ k such that adding the edges of S to G results in a disjoint

union of equal-sized (say, of size x) cliques. Observe that each of these x-sized cliques is
obtained by merging some cliques of G. Note that x is at least the size of a largest clique
in G. That is, we have x ⩾ xt. Also, each of the smaller cliques of G, i.e., those of sizes
x1, . . . , xt−1, must participate in some merger.
Now, consider any 1 ⩽ i ⩽ t − 1. Each of the ni cliques of size xi is incident to ⩾ xi
edges of S, for it must participate in some merger. Also, any edge of S is incident to at
most two of these ni cliques. Therefore, |S| ⩾ ni·xi

2 . So, as |S| ⩽ k, we get ni · xi ⩽ 2k.
Thus, Reduction rule 3 is safe.
After applying Reduction rule 3, we have ni · xi ⩽ 2k for all 1 ⩽ i ⩽ t − 1. Also, as
x1, . . . , xt−1 are t− 1 distinct integers in the interval [1, 2k], we get t− 1 ⩽ 2k.

Reduction rule 4: Suppose that nt · xt > 2k. Then, remove all but 2k+1
xt

cliques of size xt
from G.

Safeness of Reduction rule 4: If nt ·xt > 2k, then in any solution, none of the nt cliques of
size xt participate in a merger. That is, each of them remains as is after the edge additions,
and each merger

(
involving the remaining cliques, i.e., those of sizes x1, . . . , xt−1

)
results

in an xt-sized clique. This is because if any clique of size xt gets to participate in a
merger, then each of the remaining nt − 1 cliques of size xt must also participate in some
merger

(
because all cliques have the same size after the edge additions

)
, thereby needing

⩾ nt·xt

2 > k edge additions.
Also, we have nt ·xt > 2k before, as well as after, applying Reduction rule 4. Therefore, it
follows that any solution before applying RR4 remains a solution after applying Reduction
rule 4, and vice versa. Thus, Reduction rule 4 is safe.
If Reduction rule 4 wasn’t invoked, then nt · xt ⩽ 2k; otherwise, after applying Reduction
rule 4, we get nt · xt = 2k+ 1.
Finally, the number of vertices in G is at most

n1 · x1 + + nt−1 · xt−1 + nt · xt ⩽ (t− 1) · 2k+ (2k+ 1) ⩽ 4k2 + 2k+ 1.

This concludes the proof of Theorem 11. ◀

Next, we show that r-EEA is NP-complete for every fixed r ⩾ 3.

▶ Theorem 12 (⋆). Let r ⩾ 3 be an integer. Then, r-Eigenvalue Edge Addition is
NP-complete.

ISAAC 2023

53:12 On the Complexity of the Eigenvalue Deletion Problem

5 Reducing eigenvalues by deleting edges

In this section, we consider the r-Eigenvalue Edge Deletion problem. We defer the
NP-completeness of 2-EED to the proof of Theorem 16, where the hardness is implicit. In this
section, we present an O∗(2k)-time FPT algorithm for 2-EED and show that it can be solved
in polynomial time on triangle-free graphs. Finally, we prove that r-EED is NP-complete for
any fixed r ⩾ 3.

The FPT algorithm is similar in spirit to the one we use in the proof of Theorem 6: we
branch on induced paths of length three, except we now have a choice of two edges instead of
three vertices. In particular, if P is an induced path on {a,b, c} with edges {a,b} and {b, c},
we recursively solve the instances (G \ {a,b}, k− 1) and (G \ {b, c}, k− 1).

At the leaves of successful execution paths of this branching algorithm, as before, we
have cluster graphs where the cliques are not necessarily of the same size, and a residual
budget. Let (H, k′) denote such an instance, where H is a subgraph of G consisting of t

cliques of sizes s1, . . . , st, and k′ ⩽ k is the residual budget. Note that if S is such that G \ S

is a collection of x-sized cliques for some x, then x must divide each si. We show that for an
optimal choice of S, x is the GCD of the si’s. Based on this, it is straightforward to check if
the residual budget is sufficient or not.

▶ Theorem 13. 2-Eigenvalue Edge Deletion admits an algorithm with running time
O∗(2k).

Proof. Let us describe a recursive branching algorithm. Consider an instance, say (G, k), of
2-Eigenvalue Edge Deletion. Owing to Lemma 1, our goal is to decide whether we can
delete at most k edges from G to get a disjoint union of equal-sized cliques. First, we check
if G has an induced path on three vertices. This takes polynomial time.

Case 1: G has no induced path on three vertices. The graph G is a disjoint union of
cliques, say C1, . . . ,Ct, of sizes s1, . . . , st respectively. Observe that deleting the edges of
any solution breaks each of these t cliques into equal-sized cliques

(
say, of size x

)
. That is,

for every 1 ⩽ i ⩽ t, it breaks the clique Ci into si

x
cliques, each of size x. As each of these

si

x
cliques has

(
x
2
)

edges, the number of edges deleted from the clique Ci is

(
si

2

)
−

si

x

(
x

2

)
=

si
(
si − x

)
2

So, larger x corresponds to smaller solutions, i.e., fewer edge deletions. Also, x must divide
each of s1, . . . , st. Therefore, for any minimum-sized solution, we have x = gcd(s1, . . . , st),
and its size is

t∑
i=1

si
(
si − gcd(s1, . . . , st)

)
2

If this size is at most k, we return YES; otherwise, we return NO. This takes polynomial
time. See Figure 2 for an example.

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:13

Figure 2 An example illustrating the breaking of cliques in Theorem 13.

Case 2: G has an induced path on three vertices, say a− b− c. Note that any solution
must pick at least one of its two edges, i.e., {a,b} and {b, c}. So, if k = 0, we return NO;
otherwise, we guess an edge that is picked into solution. That is, we branch as follows:
In the first

(
resp. second

)
branch, we include the edge {a,b}

(
resp. {b, c}

)
into solution,

remove it from G, and reduce the parameter k by 1. It takes polynomial time to create the
sub-problems

(
G− {a,b}, k− 1

)
and

(
G− {b, c}, k− 1

)
. Next, we run our algorithm on these

two instances. If at least one of these two recursive calls returns YES, so do we; otherwise,
we return NO.

The depth of our search tree is at most k. Also, each of its internal nodes has two children.
Therefore, it has at most O(2k) nodes. Thus, as we spend polynomial time at each node, the
overall running time is at most O⋆(2k). This concludes the proof of Theorem 13. ◀

Our next claim takes advantage of the fact that the sizes of the cliques after the removal
of any solution is at most two when the input graph is triangle-free and we are only allowed
to delete edges. Therefore, the value of the optimal solution is |E(G)|− |V(G)|/2 if G has a
perfect matching and |E(G)| otherwise. The result follows from the fact that the existence of
a perfect matching can be determined in polynomial time [6].

ISAAC 2023

53:14 On the Complexity of the Eigenvalue Deletion Problem

▶ Proposition 14. 2-Eigenvalue Edge Deletion is polynomial time solvable on triangle-
free graphs.

Now, we show that r-EED is NP-complete by reducing it from Partition into Triangles
on graphs of clique number 3 which is known to be NP-complete [4]. The input for Partition
into Triangles is a graph G, and the goal is to decide whether V(G) can be partitioned
into |V(G)|

3 triplets such that every triplet induces a triangle in G.

▶ Theorem 15. Let r ⩾ 3 be an integer. Then, r-Eigenvalue Edge Deletion is NP-
complete.

Proof. Let us describe a polynomial-time many-one reduction from Partition into Tri-
angles on graphs of clique number 3 to r-Eigenvalue Edge Deletion. Consider an
instance, say G, of Partition into Triangles, where G is a graph, say on n vertices and
m edges, with clique number 3. Let us construct a graph, say H, from G, as follows: First,
we add G as it is. Next, for each 3 ⩽ i ⩽ r+ 1, we introduce M := m−n+ 1 cliques, each of
size i; let us refer to these cliques as dummy cliques. That is, the graph H is the disjoint
union of the graph G, M dummy cliques of size 3, . . ., M dummy cliques of size r+ 1. We
set the budget to be m− n. Let us show that G has n

3 pairwise vertex disjoint triangles if
and only if (H,m− n) is a YES instance of r-Eigenvalue Edge Deletion.

(⇒) Suppose that G has n
3 pairwise vertex disjoint triangles, say T1, . . . , Tn/3. Let S

denote the set that consists of those m− n edges of G that do not belong to any of these n
3

triangles. Note that the graph H \ S is the disjoint union of
n
3 +M triangles, namely T1, . . . , Tn/3 and the M dummy cliques of size 3. They contribute
two distinct eigenvalues, i.e., −1 and 2.
M dummy cliques of size 4. They contribute two distinct eigenvalues, i.e., −1 and 3.
...
...
M dummy cliques of size r+ 1. They contribute two distinct eigenvalues, i.e., −1 and r.

So, the adjacency matrix of the graph H\S has r distinct eigenvalues, namely −1, 2, 3, , r.
Thus, (H,m− n) is a YES instance of r-Eigenvalue Edge Deletion.

(⇐) Suppose that (H,m − n) is a YES instance of r-Eigenvalue Edge Deletion.
That is, there exists S ⊆ E(H) of size ⩽ m− n such that the adjacency matrix of the graph
obtained by deleting the edges of S from H has ⩽ r distinct eigenvalues.

Consider any 3 ⩽ i ⩽ r+ 1. Note that the number of i-sized dummy cliques, i.e., M, is
> m− n ⩾ |S|. So, there’s at least one i-sized dummy clique, say Ci, such that none of its
edges is deleted. That is, no edge of Ci belongs to S and thus, it appears as a component of
the graph H \ S, thereby contributing two distinct eigenvalues, namely −1 and i− 1. Thus, it
follows that the adjacency matrix of the graph H \ S must have −1, 2, 3, . . . , r as its r distinct
eigenvalues.

Now, using Lemma 4, it is clear that the graph H \ S must be a disjoint union of some
cliques, whose sizes are 3, 4, . . . , r+ 1. So, as G has clique number 3, after removing those
edges of G that belong to S, we’re left with n

3 pairwise vertex-disjoint triangles of G, as
desired. This concludes the proof. ◀

6 Reducing eigenvalues by editing edges

In this section, we show that 2-Eigenvalue Edge Editing is NP-complete. We give a
reduction from Partition into Triangles.

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:15

Figure 3 An example illustrating the construction in Theorem 16.

▶ Theorem 16. 2-Eigenvalue Edge Editing is NP-complete.

Proof. Let us describe a polynomial-time many-one reduction from Partition into Tri-
angles to 2-Eigenvalue Edge Editing. Consider an instance, say G, of Partition into
Triangles, where G is a graph on n vertices and m edges. Let us construct a graph H

based on G as follows: for every vertex v ∈ V(G), attach two triangles to v, as shown below.

See Figure 3 for an illustration.
Note that |V(H)| = 7n and |E(H)| = m+ 8n. Let us show that G has n

3 pairwise vertex
disjoint triangles if and only if (H,m + n) is a YES instance of 2-Eigenvalue Edge
Editing.
(⇒) Suppose that G has n

3 pairwise vertex disjoint triangles, say T1, . . . , Tn/3. Let S ⊆ E(H)

denote the set that consists of the 2n dummy edges, along with those m− n edges of G that
do not belong to any of these n

3 triangles. Note that the graph H \ S is the disjoint union of
7n
3 triangles, namely T1, . . . , Tn/3 and the 2n dummy triangles. Its adjacency matrix has two

distinct eigenvalues, i.e., −1 and 2. Thus, (H,m+ n) is a YES instance of 2-Eigenvalue
Edge Editing.
(⇐): Suppose that (H,m+n) is a YES instance of 2-Eigenvalue Edge Editing. That is,
there exist D ⊆ E(H) and A ⊆

(
V(H)

2
)
\E(H) such that: i) |A|+ |D| ⩽ m+n, and ii) deleting

the edges of D from H, and adding the edges of A to H, results in a graph, say H ′, whose
adjacency matrix has at most two distinct eigenvalues. Using Lemma 1, the graph H ′ is a
disjoint union of equal-sized cliques

(
say, of size x

)
. As each of these |V(H)|

x
cliques has

(
x
2
)

edges, the number of edges in H ′ is

|V(H)|

x
·
(
x

2

)
=

7n(x− 1)
2

ISAAC 2023

53:16 On the Complexity of the Eigenvalue Deletion Problem

Also, we have |E(H)|+ |A|− |D| = |E(H ′)|. Therefore,

(m+ 8n) + |A|− |D| =
7n(x− 1)

2 (1)

Adding (1) to the inequality |A|+ |D| ⩽ m+ n, we get

|A| ⩽
7n(x− 3)

4 (2)

Note that each saviour vertex has degrees 2 and x− 1 in H and H ′ respectively. So, each of
the 4n saviour vertices is incident to ⩾ x− 3 added edges

(
i.e., edges of A

)
. Also, any edge

of A is incident to at most two saviour vertices. Therefore,

|A| ⩾
4n(x− 3)

2 (3)

Using (2) and (3), we get x = 3 and |A| = 0. Thus, the graph H ′ is a disjoint union of 7n
3

triangles, obtained from H by only edge deletions: in other words, no edge additions are
involved. This implies that we have 7n

3 pairwise vertex disjoint triangles, say T1, . . . , T7n/3,
of the 7n-vertex graph H. Note that the vertices of any dummy triangle belong to a unique
triangle

(
i.e., the dummy triangle itself

)
in H. So, amongst T1, . . . , T7n/3, we must have the

2n dummy triangles. Now, it is clear that the remaining 7n
3 − 2n = n

3 triangles form a
collection of pairwise vertex disjoint triangles in G, as desired. ◀

7 Concluding Remarks

We considered the problem of modifying a graph optimally to reduce the number of distinct
eigenvalues in the spectrum of its adjacency matrix. These problems turned out to be closely
related to, but different from, modifications that aim to reduce the rank of the adjacency
matrix and the diameter of the graph.

The complexity of r-EEE for fixed r ⩾ 3 remains open. The parameterized complexity of
2-EEE in the standard parameter is open, and the question of finding polynomial kernels for
2-EVD and 2-EED remains open as well. Studying these problems from the perspective of
structural parameters or on directed graphs are interesting directions for future work.

References
1 Helmut Alt, Norbert Blum, Kurt Mehlhorn, and Markus Paul. Computing a maximum

cardinality matching in a bipartite graph in time o (n1. 5mlog n). Information Processing
Letters, 37(4):237–240, 1991.

2 Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science & Business
Media, 2011.

3 Dibyayan Chakraborty, L Sunil Chandran, Sajith Padinhatteeri, and Raji R Pillai. Al-
gorithms and complexity of s-club cluster vertex deletion. In Combinatorial Algorithms: 32nd
International Workshop, IWOCA 2021, pages 152–164. Springer, 2021.

4 Ante Ćustić, Bettina Klinz, and Gerhard J Woeginger. Geometric versions of the three-
dimensional assignment problem under general norms. Discrete Optimization, 18:38–55,
2015.

5 Michael Doob. On characterizing certain graphs with four eigenvalues by their spectra. Linear
Algebra and its applications, 3(4):461–482, 1970.

6 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
7 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman

San Francisco, 1979.

N. Misra, H. Mittal, S. Saurabh, and D. Thakkar 53:17

8 Felix Goldberg, Steve Kirkland, Anu Varghese, and Ambat Vijayakumar. On split graphs
with four distinct eigenvalues. Discrete Applied Mathematics, 277:163–171, 2020.

9 S.M. Meesum, Pranabendu Misra, and Saket Saurabh. Reducing rank of the adjacency matrix
by graph modification. Theoretical Computer Science, 654:70–79, 2016.

10 Syed M. Meesum and Saket Saurabh. Rank reduction of oriented graphs by vertex and edge
deletions. Algorithmica, 80(10):2757–2776, 2018.

11 Assaf Natanzon. Complexity and approximation of some graph modification problems. University
of Tel-Aviv, 1999.

12 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004.

13 Michele Zito. Linear time maximum induced matching algorithm for trees. Nord. J. Comput.,
7(1):58, 2000.

ISAAC 2023

Connected Vertex Cover on AT-Free Graphs
Joydeep Mukherjee #

Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, India

Tamojit Saha #

Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, India
Institute of Advancing Intelligence, TCG CREST, Kolkata, India

Abstract
Asteroidal Triple (AT) in a graph is an independent set of three vertices such that every pair of them
has a path between them avoiding the neighbourhood of the third. A graph is called AT-free if it
does not contain any asteroidal triple. A connected vertex cover of a graph is a subset of its vertices
which contains at least one endpoint of each edge and induces a connected subgraph. Settling the
complexity of computing a minimum connected vertex cover in an AT-free graph was mentioned as
an open problem in Escoffier et al. [6]. In this paper we answer the question by presenting an exact
polynomial time algorithm for computing a minimum connected vertex cover problem on AT-free
graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Graph Algorithm, AT-free graphs, Connected Vertex Cover, Optimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.54

1 Introduction

An Asteroidal Triple (AT) of a graph G = (V, E) is a set of three vertices of V (G) such that
these three vertices are mutually nonadjacent and for any two vertices of this set there exists
a path between these two vertices which avoids the neighborhood of the third vertex. A
graph is called asteroidal triple free (AT-free) if it does not contain any asteroidal triple.

We assume, in the rest of the paper, the graph G is undirected, unweighted and simple
graph. A subset of V (G) is a vertex cover of G if every edge of G has an endpoint in that
subset. The minimum vertex cover problem is to find a vertex cover of minimum cardinality.
A vertex cover which also induces a connected subgraph of G is called a connected vertex
cover. The minimum connected vertex cover problem is to find a vertex cover of minimum
cardinality such that the vertices of the vertex cover induces a connected subgraph. In the
rest of the paper we denote the minimum vertex cover problem by MVC and the minimum
connected vertex cover problem by MCVC.

In this paper we present a polynomial time algorithm for MCVC on connected AT-free
graphs. More precisely we provide an O(n4) algorithm for minimum connected vertex cover in
AT-free graphs. In [3] Broersma et al. presented a polynomial time algorithm for maximum
independent set problem. Our work is inspired by the technique developed in that paper. In
the following we define the problem more formally.

Connected Vertex cover On AT-free graphs
Instance: A connected AT-free graph G = (V, E), |V | = n, |E| = m.
Output: A set S∗ ⊆ V (G) of minimum cardinality such that G[S∗] is connected and S∗

contains at least one end point of every edge in G, i.e. S∗ is a vertex cover.

The MCVC problem is studied in several graph classes, and there exist various algorithms
for this problem in the fields of approximation algorithm, fixed parameter algorithm, and
polynomial time exact algorithm. In the following we discuss some of the known results for

© Joydeep Mukherjee and Tamojit Saha;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 54; pp. 54:1–54:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joydeep.m@gm.rkmvu.ac.in
mailto:tamojitsaha1@gmail.co
https://doi.org/10.4230/LIPIcs.ISAAC.2023.54
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Connected Vertex Cover on AT-Free Graphs

this problem. This problem was first introduced by Garey and Johnson [8]. This problem
is known to be NP-hard in planar bipartite graphs of maximum degree 4 [7], in planar
bi-connected graphs of maximum degree 4 [17], in H−free graphs if H contains a cycle
or a claw [16], and in 3-connected graphs [20]. It is APX-complete in bipartite graphs of
maximum degree 4, even if each vertex of one partite set has a degree at most 3 [6].

MCVC is polynomial time solvable in many special graph classes like graphs of maximum
degree 3 [19], (sP1 + P5)−free graphs [11]. Escoffier et al. [6] proved several results regarding
the connected vertex cover problem in special graph classes. They showed this problem is
polynomial time solvable in chordal graphs; in bipartite graphs if each vertex of one partite
set has maximum degree 2 and the vertices of the other partite set have no restriction on
the degree. They proved a PTAS for MCVC in planar graphs. In the same paper, they
provided a 5

3 −approximation algorithm for MCVC on all those graphs for which MVC is
solvable in polynomial time. On the complexity side they proved that MCVC is APX-hard
in bipartite graphs. Note that results of this paper along with the polynomial time algorithm
for independent set problem presented by Broersma et al. in [3], impliy a 5

3 −approximation
algorithm for AT-free graphs. Escoffier et al. in the paper [6], posed the complexity of
MCVC on AT-free graphs as an open problem.

We state known approximation algorithm and FPT algorithm results for MCVC. A
2-approximation algorithm for MCVC is known in general graphs [1, 18] but it is not possible
to approximate MCVC within ratio (10

√
5 − 21) in general graphs unless P = NP [7].

Several results for computing connected vertex cover are known in the field of fixed parameter
algorithms. First result was an algorithm with running time O(6k) [10] which was later
improved to O(2.7060k) [14], where k is the length of a minimum vertex cover in the given
graph and also an algorithm with running time O(2t · t(3t+2)n) where t is the treewidth and
n is the number of vertices in the given graph [15].

Asteroidal triple free graph class contains graph classes like permutation graphs, interval
graphs, trapezoid graphs, and cocomparability graphs [5]. AT-free graphs have many desirable
properties which make them amenable for designing polynomial time algorithms for many
problems which are NP-complete in general graphs. Such problems include minimum feedback
vertex set problem [13], maximum independent set [3], dominating set, total dominating
set [12] and connected dominating set [2], induced disjoint path problem [9]. However, to
the best of our knowledge, the complexity of computing connected vertex cover problem is
unknown in AT-free graphs.

2 Preliminaries

Let G = (V, E) be a simple unweighted graph. We denote the set of vertices by V (G) and
the set of edges by E(G). A graph H = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and
E′ ⊆ E. We denote |V | by n and |E| by m. A subgraph H = (V ′, E′) of G is an induced
subgraph if V ′ ⊆ V and for u, v ∈ V ′, (u, v) ∈ E′ if and only if (u, v) ∈ E. The induced
subgraph on any subset S ⊆ V is denoted by G[S].

The neighbourhood of a vertex v, denoted by N(v), is the set of all vertices that are
adjacent to v. Closed neighbourhood of v is denoted by N [v] = {v} ∪ N(v). The neigh-
bourhood of a set of vertices {v1, v2, . . . , vk} is denoted by N(v1, v2, . . . , vk) =

⋃k
i=1 N(vi)

and the closed neighbourhood is denoted by N [v1, v2, . . . , vk] =
⋃k

i=1 N [vi]. Assume C is a
connected component of G. The set NC(v) where v ∈ V (C), denotes the set of neighbour of
v that are in the component C.

A path is a graph, Y = (V, E), such that V = {y1, y2, . . . , yk} and E =
{y1y2, y2y3, . . . , yk−1yk}. We denote a path by the sequence of its vertices, that is
Y = y1y2 . . . yk. Here y1 and yk are called endpoints of path Y . The number of ver-

J. Mukherjee and T. Saha 54:3

tices present in Y is denoted by |Y |. We denote yiY yj = yiyi+1 . . . yj where 1 ≤ i ≤ j ≤ k.
A path on k vertices is denoted by Yk and the length of the path is denoted by the number
of edges present on the path that is k − 1. The distance between two vertices in a graph
is the length of the shortest path between them. A cycle is a graph, C = (V, E), such that
V (C) = {c1, c2, . . . , cl} and E(C) = {c1c2, . . . , cl−1cl, clc1}. The shortest distance between u

and v is denoted by distC(u, v) where u, v ∈ V (C). The number of vertices present in the
cycle C is denoted by |C|.

A dominating set D of G is a subset of vertices of G such that for every v outside D,
N(v) ∩ D ̸= ϕ. A dominating pair is a pair of vertices such that any path between them is a
dominating set. There is a linear time algorithm to find a dominating pair [4] in AT-free
graphs. We denote a shortest path between a dominating pair by DSP .

This paper is inspired by the technique developed by Broersma et al. in [3]. We use their
method of graph decomposition and supplement it with our new observations for connected
vertex cover in AT-free graphs to derive the results stated in this paper. Let G(V, E) denote
a connected AT-free graph. The components in the graph G\N [x], where x ∈ V , are denoted
by Cx

1 , . . . , Cx
r .

Let x and y be two nonadjacent vertices of the graph. We define an interval to be
I(x, y) ⊆ V (G) in the following :

I(x, y) = {s ∈ V (G) : there is a s, x-path which does not contain any neighbours of y

and there is a s, y-path which does not contain any neighbour of x}.
Assume a connected component C containing vertices x and y. We denote the interval

I(x, y) by IC(x, y) when we consider the induced subgraph on C instead of the whole graph G.

I(x, y)N(x) N(y)x y

Figure 1 An example of interval in an AT-free graph.

Let y ∈ V and the component of G \ N [x] containing y is Cx(y). The component in
G \ N [y] containing x is Cy(x). The vertices in Cx(y) ∩ Cy(x) form a separator of x and y

which is precisely the set I(x, y). Note that Cx(y) ∩ Cy(x) may be empty.
In the following we state the necessary lemma from [3] for our purpose which provide us

with some characterization for I(x, y).
In the following lemma we consider a connected AT-free graph G(V, E). We consider an

interval I(x, y) of G and assume that s ∈ I(x, y). Lemma 1 is obtained using the fact that G

is AT-free.

▶ Lemma 1 (Broersma et al. [3]). The vertices x and y are in different components of
G \ N [s] for each s ∈ I(x, y).

Thus every path between x and y either contains s or some neighbour of s. The next three
lemma states a decomposition of an interval into disjoint intervals and disjoint components.
Lemma 2 states that the intervals I(x, s) and I(s, y) have empty intersection. This implies
that Ps,x∩Ps,y ⊆ N [s], where Ps,x is an arbitrary s, x−path and Ps,y is an arbitrary s, y−path
in G.

▶ Lemma 2 (Broersma et al. [3]). The intervals I(x, s) and I(s, y) have no vertices in
common, that is I(x, s) ∩ I(s, y) = ϕ.

ISAAC 2023

54:4 Connected Vertex Cover on AT-Free Graphs

I(x, y)

Cy(x) Cx(y)N(x) N(y).
.

.
.
.

.x y

Cy
1

Cy
k1

Cx
1

Cx
k2

Figure 2 The component Cy(x) which contains x in G \ N [y].

Lemma 3 states a containment relation among the intervals. More precisely, if s ∈ I(x, y)
then I(x, s) ⊆ I(x, y) and so does I(s, y).

▶ Lemma 3 (Broersma et al. [3]). The intervals I(x, s) and I(s, y) are both contained in
I(x, y), that is I(x, s) ⊆ I(x, y) and I(s, y) ⊆ I(x, y), where s ∈ I(x, y).

Combining Lemma 2 and Lemma 3 we arrive at Lemma 4.

▶ Lemma 4 (Broersma et al. [3]). In the graph G \ N [s] there are components Cs
1 , Cs

2 , . . . , Cs
t

such that I(x, y) \ N [s] = I(x, s) ∪ I(s, y) ∪ (
⋃t

i=1 Cs
i).

N(x) N(y)

N(s)

I(x, s) I(s, y)
s

I(x, y)

.. .

x y

Cs
1 Cs

k

Figure 3 The interval decomposition.

Similarly the components of G\N [x] can also be decomposed. Consider such a component
containing y, recall that y ∈ Cx(y). The following lemma describes the structure of the graph
induced on Cx(y) \ N [y]. In the following we denote the component of G \ N [y] containing x

by Cy(x).
Consider the graph induced on Cx(y) \ N [y] and let D be a connected component of

that graph. Lemma 5 essentially states that any vertex of D reaches N [x] using at least one
vertex from I(x, y).

J. Mukherjee and T. Saha 54:5

▶ Lemma 5 (Broersma et al. [3]). Let D be a component of the graph Cx(y) \ N [y]. Then
N [D] ∩ (N [x] \ N [y]) = ϕ if and only if D is a component of G \ N [y].

3 Connected Vertex Cover

In the following sections we make some important observations related to the connectivity
constraint of the vertex cover and then we formulate the dynamic programming recurrence
relations.

3.1 Some structural observations
In this section and subsequent sections we assume G(V, E) is a connected AT-free graph.
Let αc be an independent set with maximum cardinality, while ensuring that the subgraph
G[V \ αc] remains connected. The complement of αc forms a connected vertex cover with
the smallest possible size. Observe that αc cannot include a cut vertex. This is because if a
vertex v belongs to αc, none of its neighbors can be in αc. If v is a cut vertex, its neighbors
would be divided into separate components, leading G[V \ αc] to be disconnected. Hence we
have the following observation.

▶ Observation 6. Let αc be an independent set with maximum cardinality, while ensuring
that the subgraph G[V \ αc] remains connected. The set αc does not include any cut vertex
of G.

Let V ′ denote the set of all cut vertices in G. We define some notations that are necessary
in the following set of lemma. Let x be a vertex of G which is not a cut vertex. Let Cx

1 , . . . , Cx
r

be the components of G \ N [x]. Let Zi be those vertices of N(x) which are reachable from
Cx

i in the graph G \ {x}, that is without using the vertex x or vertices from any other
components. In other words let C be the connected component in G[N(x) ∪ V (Cx

i)], then
Zi = V (C) \ V (Cx

i). Note that G[Zi] may not be connected. Suppose S is a connected vertex
cover of G and let x ∈ V \ V ′ such that x /∈ S. That is N(x) ⊆ S. Let Si = S ∩ (Zi ∪ V (Cx

i)).
Note that Si contains Zi, since Zi ⊆ N(x).

▶ Lemma 7. The graph induced on S ∩ (Zi ∪ V (Cx
i)) is connected.

Proof. Assume for the sake of contradiction, G[S ∩ (Zi ∪ V (Cx
i))] is not connected and

H1, . . . , Hk are the components of G[S∩(Zi ∪V (Cx
i))]. Each component Hj has V (Hj)∩Zi ̸=

ϕ, because otherwise Hj is a component of G \ N [x]. Consider two components Hl, Hr.
There is some vertex v ∈ Zi which is adjacent to some vertex of v′ ∈ V (Hl) and there is a
vertex u ∈ Zi which is adjacent to some vertex u′ ∈ V (Hr). Note that, v is not adjacent to u

and v′ is not adjacent to v′ since Hl and Hr are different components. Hence v′, u′, x forms
an AT. The paths leading v′, u′, x to form an AT is as follows. The vertices v′ and u′ are
in same component of G \ N [x] but not adjacent, hence there is a u′, v′ path avoiding the
neighbours of x. The path x, u, u′ avoids the neighbours of v′ and similarly the path x, v, v′

avoids the neighbours of v′. ◀

Also note that the graph S ∩ (Zi ∪ V (Cx
i)) is a vertex cover of the graph G[Zi ∪ V (Cx

i)],
since S is a vertex cover of G.

▶ Lemma 8. Let S∗
i be a minimum connected vertex cover in G[Zi ∪ V (Cx

i)] and let S∗ be a
minimum connected vertex cover in G. Then |S∗

i | ≤ |S∗ ∩ (Zi ∪ V (Cx
i))|.

Proof. Please find the proof in full version of the paper. ◀

ISAAC 2023

54:6 Connected Vertex Cover on AT-Free Graphs

u

v

u′

v′

Hl

Hr

x

N(x)

Figure 4 Illustrating proof of Lemma 7.

▶ Lemma 9. Let S′
i denote a connected vertex cover in G[Zi ∪ V (Cx

i)] containing Zi. The

graph induced on the set N(x) ∪
(

r⋃
i=1

S′
i

)
is connected.

Proof. Please find the proof in full version of the paper. ◀

3.2 The Dynamic Programming Formulation
The definition of intervals implies that, the set I(x, y) is unique for each pair of non adjacent
vertices x and y. The above property implies that the number of intervals is bounded
by a polynomial in |V (G)|. We shall use these intervals to decompose the AT-free graph
into smaller disjoint graphs. In the following sections, using this broad idea, we frame
the recurrences to find an independent set of maximum size such that its complement is
connected. We begin by a graph modification to incorporate the recurrence relation in terms
of the intervals.

3.2.1 Graph modification
We begin by constructing a modified graph. A result by Corneil et al. [5], ensures that there
exists a dominating pair in every AT-free graph which is pokable, that is we can append
pendant vertices to both of the vertices of the pair maintaining the AT-free property. The
following theorem by Corneil et al. [5] states that the process of composing two AT-free
graphs.

▶ Theorem 10 (The Composition Theorem; Corneil et al. [5]). Given two AT-free graphs G1
and G2, and pokable dominating pairs (x1, y1) and (x2, y2) in G1 and G2, respectively, let G′

be the graph constructed from G1 and G2 by identifying vertices x1 and x2. Then, G′ is an
AT-free graph.

Let p1, . . . , pk be a dominating path where p1 and pk is a pokable dominating pair in G.
An edge is AT-free, hence we append an edge (u, v) to p1, that is v is adjacent to p1 and an
edge (u′, v′) to pk, that is v′ is adjacent to pk. We add edges between v and p2, v′ and pk−1.
We denote this graph by G′. More formally, G′(V, E) where,

V (G′) = V (G) ∪ {u, v, u′, v′}

E(G′) = E(G) ∪ {(u, v), (u′, v′), (v, p1), (v, p2), (v′, pk), (v′, pk−1)}

J. Mukherjee and T. Saha 54:7

G

p2 pk−1p1vu pk v′ u′

Figure 5 Illustrating graph modification.

We denote by αc an independent set such that the remaining set of vertices induces a
connected graph.

▶ Lemma 11. The set αc is a maximum independent set of G such that G[V \ αc] is
connected if and only if αc is a maximum independent set of G′[I(u, u′)] such that G′[V \ αc]
is connected.

Proof. The set I(u, u′) contains all the vertices that has a path to u avoiding the neighbour-
hood of u′ and a path to u′ avoiding the neighbourhood of u in the graph G′. From the
construction of G′, every vertex of V (G) satisfies this property. Hence G and I(u, u′) are the
same. The claim follows since G and I(u, u′) are the same. ◀

Now we define the recurrence relations for dynamic programming on the modified graph.

3.2.2 The dynamic programming

We decompose the graph in such a way that for any two non adjacent vertices x and y

belonging to some connected component C has the property, IC(x, y) = IG(x, y). More
precisely we remove the closed neighbourhood of a vertex to achieve the smaller subgraphs.
From Lemma 1, we can see that the invariant IC(x, y) = IG(x, y) = I(x, y) is maintained
while solving the subproblems. Broadly our approach is to compute minimum connected
vertex cover in smaller connected components and take their disjoint union to obtain a
minimum connected vertex cover of a larger component of which the smaller components are
part. It is sufficient to calculate the minimum connected vertex cover for smaller components
and combine them, which is ensured by Lemma 8 and Lemma 9. We begin by stating a
recurrence for a component. In this recurrence we compute a maximum independent set of
the component, such that the complement of this independent set (w.r.t the component) is
connected. Note that we want the complement to be connected because of our observation in
Lemma 7. The recurrence consists of decomposing a given component into interval and some
connected components whose disjoint union is the given component as claimed in Lemma 2,
Lemma 3 and Lemma 4.

Now we define required notations to state the recurrence formally. Suppose C is a
connected component. Let x be a vertex in V (C) which belongs to the independent set.
Let the components in C \ N [x] be denoted by Cx

1 , . . . , Cx
k if C \ N [x] has k connected

components.

ISAAC 2023

54:8 Connected Vertex Cover on AT-Free Graphs

I(x, y)

Cx
i

N(x) N(y)

.

.

.
.
.

.x y

Dy
1

Dy
t

Cx
1

Cx
k

ZN(x) ZN(y)

Figure 6 Illustrating Lemma 12.

In the following we define some notations which are necessary to state the recurrence.
Consider a component Cx

i in C \ N(x).
Let V ′

Cx
i

be the set of cut vertices of C[V (Cx
i) ∪ ZN(x)]. We choose y ∈ V (Cx

i) \ V ′
Cx

i
as a

candidate for the independent set since from Lemma 7 we know that C[(V (Cx
i) ∪ ZN(x)) \

{y}] is connected.
Let I(x, y) be the interval for vertices x and y.
Let ZN(x) be those vertices of N(x) that are reachable from Cx

i in C[N(x)] without using
x or vertices from any other components.
Let ZN(y) be those vertices of N(y) that are reachable from I(x, y) in C[N(y)] without
using y or vertices from any other components.
Let Dy

1 , . . . , Dy
t be the components of C[Cx

i \ N [y]], and let Hj be those vertices of N(y)
that are reachable from N(y) ∩ N(V (Dy

j)) in C[N(y)] without using y or vertices from
any other components.
We define β(Cx

i , ZN(x)) to be a maximum independent set in Cx
i such that C[ZN(x) ∪

(V (Cx
i) \ β(Cx

i , ZN(x)))] is connected.
We define γ(I(x, y), ZN(x) ∪ ZN(y)) to be a maximum independent set in I(x, y) such that
G[ZN(x) ∪ ZN(y) ∪ (I(x, y) \ γ(I(x, y), ZN(x) ∪ ZN(y)))] is connected.

▶ Lemma 12. The recurrence for β is as follows.

|β(Cx
i , ZN(x))| = 1 + max

y∈Cx
i

\V ′
Cx

i

|γ(I(x, y), ZN(x) ∪ ZN(y))| +
t∑

j=1
|β(Dy

j , Hj)|

Proof. Please find the proof in the appendix. ◀

Note that if C is the whole graph then x is not a cut vertex of G.
Now we state recurrence for an interval. In this recurrence we compute a maximum

independent set of the interval, such that the complement of this independent set (w.r.t
the interval) is connected. Note that we want the complement to be connected because
of our observation in Lemma 7. The recurrence consists of decomposing a given interval
into disjoint sub intervals and some connected components whose disjoint union is the given
interval as claimed in Lemma 2, Lemma 3 and Lemma 4.

J. Mukherjee and T. Saha 54:9

▶ Observation 13. The graph G[I(x, y) ∪ ZN(x) ∪ ZN(y)] is connected.

Proof. Please find the proof in full version of the paper. ◀

Note that the definitions of x, y, ZN(x), ZN(y) and γ(I(x, y), ZN(x) ∪ZN(y)) remains same
as earlier.
Let V ′

I(x,y) be the set of cut vertices in C[I(x, y) ∪ ZN(x) ∪ ZN(y)]. We choose s ∈
I(x, y) \ V ′

I(x,y) as a candidate for the independent set in I(x, y), since from Lemma 7,
we know that C[(I(x, y) ∪ ZN(x) ∪ ZN(y)) \ {s}] is connected.
Let AN(x) be those vertices of N(x) that are reachable from I(x, s) in C[N(x)] without
using x and any vertex from other components.
Let AN(s) be those vertices of N(s) that are reachable from I(x, s) in C[N(s)] without
using s and any vertex from other components.
Let BN(y) be those vertices of N(y) that are reachable from I(y, s) in C[N(y)] without
using y and any vertex from other components.
Let BN(s) be those vertices of N(s) that are reachable from I(s, y) in C[N(s)] without
using s and any vertex from other components.
Let Y s

1 , . . . , Y s
l are the components of G[I(x, y) \ N [s]], and Hj are those vertices of N(s)

that are reachable from Y s
j is N(s) in G[N(s)] without using the vertex s and vertices

from other components.

We need the following lemma to prove the correctness of the recurrence for the intervals.
Lemma 14 is similar to 7 and Lemma 15 is similar to Lemma 9.

▶ Lemma 14. Let S be a connected vertex cover of G such that x, y /∈ S. Then S ∩ (I(x, y) ∪
ZN(x) ∪ ZN(y)) induces a connected subgraph.

Proof. Please find the proof in full version of the paper. ◀

Let SI(x,s) denote vertices of a connected vertex cover in G[ZN(x) ∪ I(x, s) ∪ AN(s)]
such that (ZN(x) ∪ AN(s)) ⊆ SI(x,s) and let SI(s,y) denote a connected vertex cover in
G[ZN(y) ∪ I(s, y) ∪ BN(s)] such that (ZN(y) ∪ BN(s)) ⊆ SI(s,y). Let Sj denote a connected
vertex cover in G[Hj ∪ V (Y s

j)] containing Hj .

▶ Lemma 15. The graph induced on the set N(s) ∪
(

r⋃
i=1

Si

)
∪ SI(x,s) ∪ SI(s,y) is connected.

Proof. Please find the proof in full version of the paper. ◀

Please see the Figure 7 for clarification of the following lemma. Note that ZN(x) and
AN(x) are same and ZN(y) and BN(y) are same.

▶ Lemma 16. The recurrence for γ is as follows. Let Z = ZN(x) ∪ ZN(y).

|γ(I(x, y), Z)| =

1 + max
s∈I(x,y)\V ′

I(x,y)

(
|γ(I(x, s), AN(x) ∪ AN(s))| + |γ(I(s, y), BN(y) ∪ BN(s))| +

s∑
j=1

|β(Y s
j , Hj)|

)
Proof. Please find the proof in the appendix. ◀

Consider the modified graph G′. Since (p1, p2) and (pk−1, pk) are edges of G (also of
G′), the connected vertex cover must contain at least one endpoint from each of those
edges. The γ(I(u, u′), {v, v′}) is a maximum independent set such that, G′[{v, v′}∪ (I(u, u′)\
γ(I(u, u′), {v, v′})] is connected. Since I(u, u′) is the graph G, G′[V \ γ(I(u, u′), {v, v′})] is
our desired solution from Lemma 11.

ISAAC 2023

54:10 Connected Vertex Cover on AT-Free Graphs

N(x) N(y)N(s)

I(x, s) I(s, y)
s

I(x, y)

.. .

x y

Y s
1 Y s

l

ZN(y)ZN(x)

AN(s) BN(s)

Figure 7 Illustrating Lemma 16.

3.3 Running time analysis
We employ dynamic programming technique to solve the above recurrences to obtain the
minimum connected vertex cover. Let C be a set of components of G as defined below.

C =
⋃

v∈V (G)

{C : C is a component of G \ N [v]}

We prove in the following observation that the components for which we compute β are
precisely the members of C. The proof of the following observation is a repeated application
of Lemma 5.

▶ Observation 17. The non-interval components in the above recurrence relations are
members of C.

Proof. Please find the proof in full version of the paper. ◀

Observation 17 ensures that the number of non-interval components is |C| = O(n2).
Let I denote the set of all possible intervals. The collection I has cardinality at most

n2, that is |I| ≤ n2, since I(x, y) is unique for each pair of non adjacent vertex x and y. We
arrange the list of all intervals and components in the non decreasing order of the number of
vertices. We compute the recurrences for this two lists in the order they are arranged.

First we discuss the complexity to solve the recurrence for intervals. Consider a particular
interval I(x, y). We have to go through all the vertices in that I(x, y) and there is at most
O(n) such vertices and for each vertex there can be at most O(n) components. Note that
these components are smaller than the component that I(x, y) is part of. Hence the solution
for each of the components are already stored in the dynamic programming table. Since
there is at most O(n2) intervals and each can take O(n2) time it takes O(n4) to find the
solutions.

The time complexity to solve the components is calculated similarly and it is also upper
bounded by O(n4). Since all the other computation can be done in time O(n4) the complexity
of our algorithm is O(n4).

J. Mukherjee and T. Saha 54:11

4 Conclusion

In this paper, we present a polynomial time algorithm to compute a minimum connected
vertex cover on AT-free graphs. Note that even though we have considered an unweighted
graph, this algorithm can be modified in such a way that it also works for weighted AT-free
graphs.

It will be interesting to explore the complexity of MCVC for those graph classes where
MVC is solvable in polynomial time.

References
1 Esther M Arkin, Magnús M Halldórsson, and Rafael Hassin. Approximating the tree and tour

covers of a graph. Information Processing Letters, 47(6):275–282, 1993.
2 Hari Balakrishnan, Anand Rajaraman, and C Pandu Rangan. Connected domination and

steiner set on asteroidal triple-free graphs. In Algorithms and Data Structures: Third Workshop,
WADS’93 Montréal, Canada, August 11–13, 1993 Proceedings 3, pages 131–141. Springer,
1993.

3 Hajo Broersma, Ton Kloks, Dieter Kratsch, and Haiko Müller. Independent sets in asteroidal
triple-free graphs. SIAM Journal on Discrete Mathematics, 12(2):276–287, 1999.

4 Derek G Corneil, Stephan Olariu, and Lorna Stewart. Computing a dominating pair in an
asteroidal triple-free graph in linear time. In Workshop on Algorithms and Data Structures,
pages 358–368. Springer, 1995.

5 Derek G Corneil, Stephan Olariu, and Lorna Stewart. Asteroidal triple-free graphs. SIAM
Journal on Discrete Mathematics, 10(3):399–430, 1997.

6 Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot. Complexity and approximation
results for the connected vertex cover problem in graphs and hypergraphs. Journal of Discrete
Algorithms, 8(1):36–49, 2010.

7 Henning Fernau and David F Manlove. Vertex and edge covers with clustering properties:
Complexity and algorithms. Journal of Discrete Algorithms, 7(2):149–167, 2009.

8 Michael R Garey and David S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

9 Petr A Golovach, Daniël Paulusma, and Erik Jan van Leeuwen. Induced disjoint paths in at-free
graphs. In Algorithm Theory–SWAT 2012: 13th Scandinavian Symposium and Workshops,
Helsinki, Finland, July 4-6, 2012. Proceedings 13, pages 153–164. Springer, 2012.

10 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of generalized
vertex cover problems. In WADS, pages 36–48. Springer, 2005.

11 Matthew Johnson, Giacomo Paesani, and Daniël Paulusma. Connected vertex cover for
(sp1 + p5)-free graphs. In Algorithmica82, pages 20–40, 2020.

12 Dieter Kratsch. Domination and total domination on asteroidal triple-free graphs. Discrete
Applied Mathematics, 99(1-3):111–123, 2000.

13 Dieter Kratsch, Haiko Müller, and Ioan Todinca. Feedback vertex set on at-free graphs.
Discrete Applied Mathematics, 156(10):1936–1947, 2008.

14 Daniel Mölle, Stefan Richter, and Peter Rossmanith. Enumerate and expand: New runtime
bounds for vertex cover variants. In Computing and Combinatorics: 12th Annual International
Conference, COCOON 2006, Taipei, Taiwan, August 15-18, 2006. Proceedings 12, pages
265–273. Springer, 2006.

15 Hannes Moser. Exact algorithms for generalizations of vertex cover. Institut für Informatik,
Friedrich-Schiller-Universität Jena, 12, 2005.

16 Andrea Munaro. Boundary classes for graph problems involving non-local properties. Theoret-
ical Computer Science, 692:46–71, 2017.

ISAAC 2023

54:12 Connected Vertex Cover on AT-Free Graphs

17 PK Priyadarsini and T Hemalatha. Connected vertex cover in 2-connected planar graph
with maximum degree 4 is np-complete. International Journal of Mathematical, Physical and
Engineering Sciences, 2(1):51–54, 2008.

18 Carla Savage. Depth-first search and the vertex cover problem. Information processing letters,
14(5):233–235, 1982.

19 Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating independent set
problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete
Mathematics, 72(1-3):355–360, 1988.

20 Toshimasa Watanabe, Satoshi Kajita, and Kenji Onaga. Vertex covers and connected vertex
covers in 3-connected graphs. In 1991 IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1017–1020. IEEE, 1991.

On the Fine-Grained Query Complexity of
Symmetric Functions
Supartha Podder #

Department of Computer Science, Stony Brook University, New York, NY, USA

Penghui Yao #

State Key Laboratory for Novel Software Technology, Nanjing University, China
Hefei National Laboratory, China

Zekun Ye #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract
Watrous conjectured that the randomized and quantum query complexities of symmetric functions
are polynomially equivalent, which was resolved by Ambainis and Aaronson [1], and was later
improved in [15, 12]. This paper explores a fine-grained version of the Watrous conjecture, including
the randomized and quantum algorithms with success probabilities arbitrarily close to 1/2. Our
contributions include the following:
1. An analysis of the optimal success probability of quantum and randomized query algorithms

of two fundamental partial symmetric Boolean functions given a fixed number of queries. We
prove that for any quantum algorithm computing these two functions using T queries, there
exist randomized algorithms using poly(T) queries that achieve the same success probability as
the quantum algorithm, even if the success probability is arbitrarily close to 1/2. These two
classes of functions are instrumental in analyzing general symmetric functions.

2. We establish that for any total symmetric Boolean function f , if a quantum algorithm uses T

queries to compute f with success probability 1/2 + β, then there exists a randomized algorithm
using O(T 2) queries to compute f with success probability 1/2 + Ω

(
δβ2) on a 1 − δ fraction of

inputs, where β, δ can be arbitrarily small positive values. As a corollary, we prove a randomized
version of Aaronson-Ambainis Conjecture [1] for total symmetric Boolean functions in the regime
where the success probability of algorithms can be arbitrarily close to 1/2.

3. We present polynomial equivalences for several fundamental complexity measures of partial
symmetric Boolean functions. Specifically, we first prove that for certain partial symmetric
Boolean functions, quantum query complexity is at most quadratic in approximate degree for any
error arbitrarily close to 1/2. Next, we show exact quantum query complexity is at most quadratic
in degree. Additionally, we give the tight bounds of several complexity measures, indicating their
polynomial equivalence. Conversely, we exhibit an exponential separation between randomized
and exact quantum query complexity for certain partial symmetric Boolean functions.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Query complexity, Symmetric functions, Quantum advantages

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.55

Related Version Full Version: https://arxiv.org/pdf/2309.11279.pdf [36]

Funding Supartha Podder : supported by US National Science Foundation (award no 1954311).
Penghui Yao: supported by National Natural Science Foundation of China (Grant No.
62332009, 61972191) and Innovation Program for Quantum Science and Technology (Grant No.
2021ZD0302900).
Zekun Ye: supported by National Natural Science Foundation of China (Grant No.
62332009, 61972191) and Innovation Program for Quantum Science and Technology (Grant No.
2021ZD0302900).

© Supartha Podder, Penghui Yao, and Zekun Ye;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 55; pp. 55:1–55:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:supartha@cs.stonybrook.edu
mailto:phyao1985@gmail.com
mailto:yezekun@smail.nju.edu.cn
https://doi.org/10.4230/LIPIcs.ISAAC.2023.55
https://arxiv.org/pdf/2309.11279.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 On the Fine-Grained Query Complexity of Symmetric Functions

1 Introduction

Exploring quantum advantages is a key problem in quantum computing. A lot of research
work has revolved around analyzing and characterizing quantum advantages, such as [14, 22,
16, 29, 45]. Query complexity is a complexity model commonly used to describe quantum
advantages. A comprehensive survey on the query complexity can be found in [24]. A series
of works [2, 44, 8, 41] has shown that for partial functions, quantum query complexity could
be exponentially smaller (or even less) than the randomized query complexity, while for total
functions, they are always polynomially related [4]. Although the query complexity model
has demonstrated the powerful ability of a quantum computer to solve certain “structured”
problems more efficiently than a classical computer, such as Simon’s problem [43] and integer
factorization problem [42], there only exist at most quadratic quantum speedups for some
“unstructured” problems, such as black-box search problems [23]. Thus, one natural question
is to explore how much structure is needed for significant quantum speedups [1].

Watrous conjectured that the randomized query complexity and quantum query complexity
of partial symmetric functions are polynomial equivalent [1]. Later, Aaronson and Ambainis [1]
initiated the study of quantum speedup on the quantum query complexity of symmetric
functions, showing that partial functions invariant under full symmetry do not exhibit super-
polynomial quantum speedups, which resolves the Watrous conjecture. Their result was
later improved by Chailloux [15], who achieved a tighter bound and removed a technical
dependence of output symmetry. Recently [12] performed a systematic analysis of functions
symmetric under other group actions and characterized when super-polynomial quantum
speedups are achievable. However, all these results work in the bounded error regime and do
not explicitly consider arbitrary small biases.

In this paper, we propose and investigate a fine-grained version of the Watrous conjecture
concerning the quantum and randomized query complexities of symmetric functions with
an arbitrary error. Before stating the conjecture, we need to introduce two notions which
are essential to this paper. For any Boolean function f and T > 0, let the classical T -bias
δC(f, T) be the optimal success probability of T -query randomized algorithms minus 1/2
over all possible inputs. The quantum T -bias δQ(f, T) is defined for quantum algorithms
analogously.

▶ Conjecture 1 (Fine-grained Watrous conjecture). There exists a constant c ≥ 2 satisfying
that for any partial symmetric function f and any T > 0, δC(f, c · T) ≥ poly

(
δQ(f,T)

T

)
.

The reason for c ≥ 2 is that the n-bit parity function can be exactly computed with
n/2 quantum queries, while any randomized algorithm with less n queries succeeds with
probability 1/2. It is also not hard to see the fine-grained Watrous conjecture implies that
quantum and randomized query complexities of symmetric functions are polynomially related.
Indeed, if δQ(f, T) is lower bounded by some constant, then δC(f, c · T) ≥ Ω(1

poly(T)), which
implies the randomized query complexity of f is poly(T) by error reduction.

1.1 Our Motivation and Contribution
To study the fine-grained Watrous conjecture, we start with the following two fundamental
symmetric Boolean functions, which are also essential to analyze general symmetric functions:

fk
n(x) =

{
0, if |x| ∈ {0, n},
1, if |x| ∈ {k, n− k},

S. Podder, P. Yao, and Z. Ye 55:3

where 1 ≤ k ≤ n/2 and

fk,l
n (x) =

{
0, if |x| = k,

1, if |x| = l,

where k < l. The famous Deutsch-Jozsa problem [18] and the decision version of the
unstructured search problem [23] can be interpreted as special cases of these two functions.
Fefferman and Kimmel considered the subset-sized checking problem [19, 21], where the n-bit
input string is promised to have either

√
n or 0.99

√
n many marked items, and the goal is to

decide which case. Their result together with [21] proved that it can be served as an oracle
separation between AM and QCMA. On a similar flavour, [5] introduced the approximate
counting problem, where the n-bit input has either ≤ w or ≥ 2w many marked items. Our
function fk,l

n (·) can be seen as a symmetric variant of these two problems1. We study the
tradeoff between the number of queries and the optimal success probabilities in quantum
and randomized settings for both functions with errors close to 1/2.

We further consider the relation between various complexity measures of partial symmetric
Boolean functions. For total Boolean functions, it has been proved that several fundamental
complexity measures are polynomial equivalent (See Table 1 in [4]). Moreover, the tight
bounds on several fundamental complexity measures of total symmetric Boolean functions
have also been obtained [24]. However, the result for partial symmetric Boolean functions
has not been fully characterized.

Our contribution is as follows. For convenience, if f is a symmetric Boolean function,
we denote f(k) = f(x) for any |x| = k. Additionally, we say an n-bit Boolean function
f : D → {0, 1} is even if f(x) = f(n− x) for any x ∈ D, where D ⊆ {0, 1}n.
1. For both randomized setting and quantum setting, we characterize the optimal success

probability of algorithms given the number of queries for the function fk
n (Theorem 3)

and fk,l
n (Theorems 4 and 5). As a corollary, we show for any T -query quantum algorithm

to compute fk
n and fk,l

n , there exist classical randomized algorithms using poly(T) queries
to simulate the success probability of the quantum algorithm (Corollaries 6 and 7).
Additionally, we characterize the exact quantum query complexity of fk

n (Theorem 8).
2. We establish a relation between the number of queries and the bias of quantum and

randomized algorithms to compute total symmetric Boolean functions, where the bias of
the algorithms can be arbitrarily small (Theorem 9). As a corollary, we prove a weak
version of Conjecture 2: the acceptance probability of a quantum query algorithm to
compute a total symmetric Boolean function can be approximated by a randomized
algorithm with only a polynomial increase in the number of queries, where the bias of
quantum algorithms can be arbitrarily small (Corollary 10).

3. We investigate the relation between different complexity measures of partial symmetric
Boolean functions. Specifically, Theorem 12 shows the relation between the quantum
query complexity and the approximate degree of even partial symmetric Boolean functions
for arbitrarily small bias2. Theorem 13 shows exact quantum query complexity and degree
are quadratically related. Theorem 14 presents tight bounds of block sensitivity, fractional
block sensitivity, quantum query complexity, and approximate degree, where quantum
query complexity and approximate degree are in a bounded-error setting. Corollary 15
shows block sensitivity is an upper bound of quantum query complexity. Since it has

1 Our problem can also be seen as a Gap-Threshold function. Threshold function is defined as fk
n(x) = 1

iff |x| ≥ k.
2 Theorem 12 is also a new result for total symmetric Boolean functions.

ISAAC 2023

55:4 On the Fine-Grained Query Complexity of Symmetric Functions

been known that Q(f) ≥ Ω(
√

bs(f)) for any (possibly partial) Boolean function f [11],
quantum query complexity and block sensitivity of partial symmetric Boolean functions
are polynomially related. On the converse, Theorem 16 shows an exponential gap between
the exact quantum query complexity and randomized query complexity for some partial
symmetric Boolean functions, which is different from total symmetric functions.

▶ Conjecture 2 (Aaronson-Ambainis Conjecture [1]). The acceptance probability of a T -query
quantum algorithm to compute a Boolean function can be approximated by a deterministic
algorithm using poly(T, 1/ϵ, 1/δ) queries within an additive error ϵ on a 1 − δ fraction of
inputs.

▶ Theorem 3. For T > 0, the quantum T -bias and classical T -bias of fk
n are

δQ

(
fk

n , T
)

=
{

Θ(k
n · T 2), if T ≤

√
n/k,

Θ (1) , if T >
√
n/k,

δC

(
fk

n , T
)

=

0, if T = 1,
Θ(k

n · T), if 2 ≤ T ≤ n/k,

Θ(1), if T > n/k.

▶ Theorem 4. For fk,l
n and T > 0, the quantum T -bias is

δQ

(
fk,l

n , T
)

=

Θ
(

min
{

l−k√
(n−k)l

· T, l−k
n · T 2

})
, if T = O

(√
(n−k)l

l−k

)
,

Θ(1), if T = Ω
(√

(n−k)l

l−k

)
.

▶ Theorem 5. If T = O
(

(n−k)l
(l−k)2

)
, the classical T -bias of fk,l

n satisfies that

δC

(
fk,l

n , T
)

= O

(
min

{
l − k√
(n− k)l

·
√
T + T

n
,
l − k

n
· T

})
,

δC

(
fk,l

n , T
)

= Ω
(

max
{

(l − k)2

(n− k)l · T, l − k

n
·
√
T

})
.

If T = Ω
(

(n−k)l
(l−k)2

)
, then δC

(
fk,l

n , T
)

= Θ(1).

▶ Corollary 6. For arbitrarily small bias β > 0, if there exists a quantum algorithm using
T queries to compute fk

n with success probability 1/2 + β, then there also exists a classical
randomized algorithm using O(T 2) queries to compute fk

n with the same success probability.

▶ Corollary 7. For arbitrarily small bias β > 0, if there exists a quantum algorithm using
T queries to compute fk,l

n with success probability 1/2 + β, then there also exist classical
randomized algorithms using T 2 queries to compute fk,l

n with success probability 1/2 + Ω
(
β2)

and using T 4 queries to compute fk,l
n with success probability 1/2 + Ω (β). Thus

δC

(
fk,l

n , T 2) ≥ Ω
(
δQ(fk,l

n , T)2) and δC

(
fk,l

n , T 4) ≥ Ω
(
δQ(fk,l

n , T)
)
.

S. Podder, P. Yao, and Z. Ye 55:5

▶ Theorem 8. The exact quantum query complexity of fk
n satisfies ⌈ π

2θ ⌉ ≤ QE(fk
n) ≤ ⌈ π

2θ ⌉+2,
where θ = 2 arcsin

√
k/n, whereas the zero-error randomized query complexity of fk

n is n−k+1.

▶ Theorem 9. For any total symmetric Boolean function f and arbitrarily small bias β > 0,
if there exists a quantum algorithm using T queries to compute f with success probability
1/2 + β, then for any δ ∈ (0, 1), there exists a randomized algorithm using O(T 2) queries to
compute f with success probability 1/2 + Ω

(
δβ2) on a 1 − δ fraction of inputs.

▶ Corollary 10. For any total symmetric Boolean function f and arbitrarily small bias β > 0,
if there exists a T -query quantum algorithm to compute f with success probability 1/2 + β,
then for any ϵ ∈ (0, β), δ ∈ (0, 1), there exists a randomized algorithm using O(T 2/(ϵ2δ2))
queries to compute f with success probability 1/2 + (β − ϵ) on a 1 − δ fraction of inputs.

▶ Remark 11. Corollary 10 is a randomized version of Conjecture 2. Moreover, Corollary 10
considers total symmetric Boolean functions, while Conjecture 2 refers to any Boolean
function.

▶ Theorem 12. For any (possibly partial) symmetric Boolean function f satisfying f(x) =
f(n−x) and arbitrarily small β > 0, if T = d̃eg 1

2 −β(f), there exists a quantum query algorithm

using ⌈T/2⌉ queries to compute f with success probability 1/2 + Ω
(
β/

√
T
)

. Namely,

δQ

(
f, d̃eg 1

2 −β(f)
)

= Ω

 β√
d̃eg 1

2 −β(f)

 .

As a corollary, we have Qϵ(f) = O(d̃egϵ(f)2) for any error ϵ arbitrarily close to 1/2.

▶ Theorem 13. For any partial symmetric Boolean function f , we have QE(f) = O(deg(f)2).

▶ Theorem 14. For any partial symmetric Boolean function f , we have

bs(f) = Θ (fbs(f)) =
(

max
k<l:f(k)̸=f(l)

n

l − k

)
,

Q(f) = Θ
(

d̃eg(f)
)

=
(

max
k<l:f(k) ̸=f(l)

√
(n− k)l
l − k

)
.

▶ Corollary 15. For any partial symmetric Boolean function f , we have Q(f) = O (bs(f)).

▶ Theorem 16. There exists a partial symmetric Boolean function f such that QE(f) = Ω(n)
and R(f) = O(1).

1.2 Proof Techniques

In this section, we give a high-level technical overview of our main results (See full version [36]
for the detailed proof).

ISAAC 2023

55:6 On the Fine-Grained Query Complexity of Symmetric Functions

1.2.1 Upper and Lower Bounds on Quantum T -bias
We use several methods to show the upper bound on the quantum T -bias of different
symmetric Boolean functions:
1. For fk

n , we show if the number of a quantum algorithm is no more than T queries, then
the bias β of the algorithm is at most O(T 2/ bs(fk

n)), where bs(fk
n) is the block sensitivity

of fk
n . By solving a lower bound of bs(fk

n), we obtain an upper bound on the quantum
T -bias of fk

n (Theorem 3).
2. For fk,l

n , using Paturi’s lower bound technique [35] for the approximate degree of symmetric
Boolean functions, we give the following lower bound:

Qϵ(fk,l
n) ≥ 1

2 d̃egϵ

(
fk,l

n

)
= Ω

(
max

{
β
√

(n− k) l
l − k

,

√
βn

l − k

})
,

where β = 1/2−ϵ. The quantum T -bias of fk,l
n is derived by this lower bound (Theorem 4).

To obtain the lower bound on the quantum T -bias, we also use diverse ideas to design
T -query quantum algorithms:
1. For fk

n and fk,l
n , we use various variants of amplitude amplification algorithm and analyze

the success probability of algorithms meticulously (Theorems 3 and 4).
2. For even symmetric Boolean functions, we design a novel quantum algorithm by taking

advantage of the Chebyshev expansion and constructing controlled Grover’s diffusion
operations (Theorem 12).

1.2.2 Upper and Lower Bounds on Classical T -bias
For fk

n and fk,l
n , we show the upper bound on the classical T -bias by analyzing the total

variation distance of distributions; for the lower bound, we give sampling algorithms to
estimate Hamming weights of the input and analyze the success probability of the algorithms
also by analyzing the distance between distributions (Theorems 3 and 5).

For the lower bound on the classical T -bias of total symmetric Boolean functions, we
design an innovative randomized algorithm by utilizing the Kravchuk polynomial when the
number of queries is T . The analysis of the algorithm also uses the orthogonality property of
the Kravchuk polynomial (Theorem 9).

1.2.3 The Relation Between Complexity Measures
The key ideas to build the relation between complexity measures of partial symmetric Boolean
functions are as follows:
1. In Theorem 13, we show the relation between the exact quantum query complexity and

the degree by giving the lower bound of the degree and designing a matching exact
quantum algorithm up to a polynomial level. Similar to the proof of Theorem 8, the
exact quantum algorithm makes use of a subroutine to distinguish |x| = k from |x| = l

exactly [25].
2. In Theorem 14, the analysis of block sensitivity and fractional block sensitivity relies

on the symmetry property of the function. Furthermore, we show the quantum query
complexity and the approximate degree of any partial symmetric Boolean function f are
equivalent to a constant factor. While the lower bound is well known (Fact 1), we show
Q(f) ≤ d̃eg(f) by giving a quantum approximate counting algorithm using O(d̃eg(f))
quantum queries.

3. The exponential gap in Theorem 16 is shown by giving a function easy to compute in a
bounded-error case but has a large degree.

S. Podder, P. Yao, and Z. Ye 55:7

1.3 Related Work

The need for structure in quantum speedups has been studied extensively. Beals, Buhrman,
Cleve, Mosca and de Wolf [9] showed that there exists at most polynomial quantum speedups
for total Boolean functions in the query model. Thus, the exponential speedups may
only occur at partial functions. Furthermore, Aaronson and Ambainis [1] showed that
symmetric functions do not allow super-polynomial quantum speedups, even if the functions
are partial. Chailloux [15] improved this result for a broader class of symmetric functions. Ben-
David, Childs, Gilyén, Kretschmer, Podder and Wang [12] further showed that hypergraph
symmetries in the adjacency matrix model allow at most polynomial separations between
quantum and randomized query complexities. Ben-David [10] proved a classical and quantum
polynomial equivalence for a class of functions satisfying a certain symmetric promise.
Aaronson and Ben-David [3] showed that there exists at most polynomial quantum speedups
to compute an n-bit partial Boolean function if the domain D = poly(n). Nonetheless, all
these results concern the algorithms with a constant probability of success. They do not
cover the query complexity with a subconstant probability of success.

We also survey some results about the optimal success probability of quantum algorithms
when the number of queries is fixed. For the unstructured search problem, Zalka [46] showed
an optimal success probability of a quantum algorithm given the number of queries. For
the collision finding problem, Zhandry [47] gave the upper bound on the success probability
of quantum algorithms when the number of queries is fixed, which matched the algorithm
proposed by Brassard, Høyer and Tapp [13]. Ambainis and Iraids [6] analyzed the optimal
success probability of one-query quantum algorithms to compute EQUALITYn and ANDn

functions. Montanaro, Jozsa, and Mitchison [33] indicated the optimal success probability of
small symmetric Boolean functions when given any number of queries by numerical results.
There is not much study about the optimal success probability with a given number of queries
for symmetric Boolean functions. Our work will fill the gap in this field.

For the complexity measures of a nonconstant n-bit total symmetric Boolean function f ,
it has been known that R(f), D(f), deg(f), s(f), bs(f) are Θ(n), and Q(f) = Θ

(
d̃eg(f)

)
=

Θ
(√

n(n− Γ(f))
)

, where Γ(f) = min {|2k − n+ 1| : f(k) ̸= f(k + 1)} [24]. Sherstov [40]
gave an almost tight characterization of degϵ(f) for specific ϵ ∈ [1/2n, 1/3]. Afterward,
de Wolf [17] obtained the optimal bound. Regarding the complexity measures of partial
symmetric Boolean functions, Aaronson and Ambainis [1] showed for any partial symmetric
Boolean function f , R(f) = O

(
Q(f)2) as mentioned before. Researchers also studied the

exact quantum query complexity for many instances of partial symmetric Boolean functions.
For example, Deutsch and Jozsa [18] studied the first partially symmetric Boolean function.
Afterward, generalized Deutsch-Jozsa problems were studied in [33, 37, 38]. He, Sun, Yang
and Yuan [25] established the asymptotically optimal bound for the exact quantum query
complexity of distinguishing whether |x| = k or l. Qiu and Zheng [37, 39] studied the exact
quantum query complexity of symmetric Boolean functions with degree 1 or 2. Additionally,
several works [7, 20, 31] explored the connections between block sensitivity, fractional block
sensitivity and degree for bounded functions.

In a similar work, Montanaro, Nishimura and Raymond [34] studied the unbounded
error query complexity of Boolean functions in a scenario where it is only required that
the query algorithm succeeds with a probability strictly greater than 1/2. They proved
quantum and classical query complexities are related by a constant factor for any (possibly
partial) Boolean function. Similar results are also known in the communication complexity
model [27, 26]. Compared to the result in [34], we aim to analyze the relation between

ISAAC 2023

55:8 On the Fine-Grained Query Complexity of Symmetric Functions

quantum/classical query complexity and bias more precisely. For instance, we show for
any quantum algorithm computing fk

n and fk,l
n using T queries, there exist randomized

algorithms using poly(T) queries that have the same bias as the quantum algorithm. Such a
conclusion is not implied by [34] since the unbounded error model only requires a strictly
positive bias without quantitative analysis.

1.4 Organization
The remainder of the paper is organized as follows. In Section 2, we review some definitions
and facts. In Section 3, we prove Theorem 9 pertaining to connections between quantum and
randomized algorithms of symmetric Boolean functions in the small-bias regime. In Section 4,
we prove Theorem 12 to show the relation between the quantum query complexity and the
approximate degree for arbitrarily small bias. Finally, a conclusion is made in Section 5.

2 Preliminaries

For an n-bit Boolean function f : D → {0, 1}, if D = {0, 1}n, f is a total function; if
D ⊂ {0, 1}n, f is a partial function. We say f is symmetric if f(x) only depends on |x|,
where |x| is the number of 1’s in x. Correspondingly, we say g : {−1, 1}n → R is symmetric
if g(x) only depends on |x|, where |x| is the number of −1’s in x. Every g : {−1, 1}n → R
can be uniquely expressed as g(x) =

∑
S⊆[n] ĝ(S)xS , where xS =

∏
j∈S xj and ĝ(S) is the

Fourier coefficient of g for any S ⊆ [n]. Let H (n, i, T) be the hypergeometric distribution
sampling T times from x ∈ {0, 1}n satisfying that |x| = i without replacement. A binomial
distribution with parameters n, p is written as B(n, p).

2.1 Query Models and Complexity Measures
In the classical query model, for an input x ∈ {0, 1}n, we can obtain xi for some i by making
one query. The deterministic query complexity of f , denoted by D(f), is the minimum
number of queries required by a deterministic algorithm to compute f on the worst input.
The randomized query complexity of f , denoted by Rϵ(f), is the minimum number of queries
required by a randomized algorithm to compute f with error ϵ on the worst input. If ϵ = 1/3,
we abbreviate Rϵ(f) to R(f). Moreover, R0(f) is called the zero-error randomized query
complexity of f .

In the quantum query model, a query algorithm can be described as follows: it starts
with a fixed state |ψ0⟩ and then performs the sequence of operations U0, Ox, U1, . . . , Ox, Ut,
where Ui’s are unitary operators not depend on x and the query oracle Ox is defined
as Ox |i⟩ |b⟩ = |i⟩ |xi ⊕ b⟩ for any i ∈ [n] and b ∈ {0, 1}. This leads to the final state
|ψx⟩ = UtOxUt−1 · · ·U1OxU0|ψ0⟩. The output result is obtained by measuring |ψx⟩. The
exact query complexity of f , denoted by QE(f), is the minimum number of queries required
by a quantum algorithm to compute f exactly on the worst input. Such a quantum algorithm
is called an exact quantum algorithm. The quantum query complexity of f , denoted by
Qϵ(f), is the minimum number of queries required by a quantum algorithm to compute f
with ϵ on the worst input. If ϵ = 1/3, we abbreviate Qϵ(f) to Q(f).

Then we overview some notations about complexity measures of Boolean functions. The
degree of f , denoted as deg(f), is the minimum degree of all real multilinear polynomial
representations of f . The approximate degree of f , denoted by d̃egϵ(f), is the minimum
degree among all real multilinear polynomials that approximate f with error ϵ. If ϵ = 1/3,
we abbreviate d̃egϵ(f) as d̃eg(f). The block sensitivity of f on x, denoted as bs(f, x), is the

S. Podder, P. Yao, and Z. Ye 55:9

maximum number of disjoint sensitive blocks in x. The block sensitivity of f is defined as
bs(f) = maxx bs(f, x). The value of bs(f, x) can be expressed as an integer linear program.
The fractional relaxation of the integer program yields the fractional block sensitivity of f on x,
denoted as fbs(f, x). The fractional block sensitivity of f is defined as fbs(f) = maxx fbs(f, x).

▶ Fact 1 ([9]). If f is a Boolean function, then QE(f) ≥ deg(f)/2 and Qϵ(f) ≥ d̃egϵ(f)/2.

2.2 Orthonormal Polynomials and Fourier Growth
▶ Fact 2 (Corollary 2.3 in [30]). For any 0 ≤ j ≤ T , the Kravchuk polynomial is defined as

Kj(t, T) =
j∑

i=0

(
t

i

)(
T − t

j − i

)
(−1)i.

Then for any 0 ≤ l,m ≤ T , there exists the following orthogonality property:
T∑

t=0

(
T

t

)
Kl(t, T)Km(t, T) = 2T

(
T

l

)
δl,m,

where δl,m = 1 if l = m, and δl,m = 0 if l ̸= m.

▶ Fact 3 (Parseval’s identity, Page 84 in [32]). For a function g : [−1, 1] → [−1, 1], if
g(x) =

∑T
i=0 aiTi(x) for any x ∈ [−1, 1], where Ti is the Chebyshev polynomial such that

Ti(cos θ) = cos(iθ), then∫ 1

−1

1√
1 − x2

(g(x))2
dx = πa2

0 + π

2

T∑
i=1

a2
i .

▶ Fact 4 (Theorem 1 in [28]). If symmetric function f : {−1, 1}n → [−1, 1] has degree d,
then ∑

S⊆[n]:|S|=l

|f̂(S)| ≤ dl

l! ,

where f̂(S) is the Fourier coefficients of f for any S ⊆ [n].

3 The Relation Between Quantum and Randomized Algorithms of
Symmetric Boolean Functions for Arbitrarily Small Bias

In this section, we give the proof of Theorem 9. First, we state Lemma 17, which is needed
to prove the theorem. In Lemma 17, since g is a symmetric function, we let ĝ(l) = ĝ(S) for
any |S| = l with a slight abuse of notation, where ĝ(S) is the Fourier coefficients of g for
S ⊆ [n]. Moreover, Kl(t, T) is the Kravchuk polynomial as Fact 2.

▶ Lemma 17. Given a symmetric function g : {−1, 1}n → [−1, 1] such that deg(g) = d, for
any d ≤ T ≤ n and x ∈ {−1, 1}n, we have

g(x) = Et∼H(n,|x|,T)

d∑
l=0

ĝ(l)
(
n

l

)
Kl(t, T)(

T
l

) ,

Et∼B(T, 1
2)

(
d∑

l=0
ĝ(l)

(
n

l

)
Kl(t, T)(

T
l

))2

≤ 2.

ISAAC 2023

55:10 On the Fine-Grained Query Complexity of Symmetric Functions

Proof. Since g : {−1, 1}n → [−1, 1] is a symmetric function and deg(g) = d, for any
d ≤ T ≤ n and x ∈ {−1, 1}n, we have

g(x) =
∑

S⊆[n]:|S|≤d

ĝ(S)xS

=
d∑

l=0
ĝ(l)

∑
S⊆[n]:|S|=l

xS

=
d∑

l=0
ĝ(l) 1(

n−l
T −l

) ∑
U⊆[n]:|U |=T

∑
S⊆U :|S|=l

xS

=
d∑

l=0
ĝ(l)

(
n
l

)(
n
T

)(
T
l

) ∑
U⊆[n]:|U |=T

∑
S⊆U :|S|=l

xS

= 1(
n
T

) ∑
U⊆[n]:|U |=T

d∑
l=0

ĝ(l)
(
n

l

)∑
S⊆U :|S|=l xS(

T
l

)
= 1(

n
T

) T∑
t=0

(
|x|
t

)(
n− |x|
T − t

) d∑
l=0

ĝ(l)
(
n

l

)∑l
i=0
(

t
i

)(
T −t
l−i

)
(−1)i(

T
l

)
= Et∼H(n,|x|,T)

d∑
l=0

ĝ(l)
(
n

l

)
Kl(t, T)(

T
l

) .

Let cl = ĝ (l)
(

n
l

)
. By Fact 4, we have |cl| ≤ dl

l! . Then we have

Et∼B(T, 1
2)

(
d∑

l=0
ĝ(l)

(
n

l

)
Kl(t, T)(

T
l

))2

= 1
2T

T∑
t=0

(
T

t

)(d∑
l=0

cl
Kl(t, T)(

T
l

))2

=
d∑

l=0

c2
l(

T
l

)
≤

d∑
l=0

dl

l! · d
l

l! · l!∏l−1
i=0 T − i

≤
d∑

l=0

1
l! · d2l∏l−1

i=0 T − i

≤
d∑

l=0

l−1∏
i=0

d2

T − i

≤
d∑

l=0

(
1
2

)l

≤ 2,

where the second equality comes from the orthogonality property of the Kravchuk polynomial
(Fact 2). ◀

Proof of Theorem 9. For any total symmetric Boolean function f and 0 < β < 1/2, 0 <
δ < 1, let ϵ = 1/2 −β. Suppose there exists a quantum algorithm using T queries to compute
f with success probability 1/2 +β. By Fact 1, we have d̃egϵ(f) ≤ 2T . Let d = d̃egϵ(f). Next,
it suffices to prove there exists a randomized algorithm using O(d2) queries to compute f
with success probability 1/2 + Ω

(
δβ2) on a 1 − δ fraction of inputs.

S. Podder, P. Yao, and Z. Ye 55:11

Since d = d̃egϵ(f), there exists a degree-d symmetric function f ′ : {0, 1}n → [0, 1]
satisfying if f(x) = 0, then f ′(x) ≤ 1/2 − β; if f(x) = 1, then f ′(x) ≥ 1/2 + β. It means
that (1 − 2f(x)) (1 − 2f ′(x)) ≥ 2β. Let h : {0, 1}n → [−1, 1] be defined as h(x) = 1 − 2f ′(x)
and g : {−1, 1}n → [−1, 1] defined as g(1 − 2x) = h(x) for any x ∈ {0, 1}n. Then g is also a
degree-d symmetric function. By Lemma 17, for any d ≤ T ≤ n and x ∈ {−1, 1}n, we have

g(x) = Et∼H(n,|x|,T)

d∑
l=0

ĝ(l)
(
n

l

)
Kl(t, T)(

T
l

) .

Let

At =
d∑

l=0
ĝ (l)

(
n

l

)
Kl(t, T)(

T
l

) . (1)

Then for x ∈ {0, 1}n, we have h(x) = Et∼H(n,|x|,T)At, where |x| is the number of 1’s in x.
For any 0 ≤ t ≤ T , let

A′
t =

min
{
At,

16
δβ

}
, if At ≥ 0,

max
{
At,− 16

δβ

}
, if At < 0.

(2)

Suppose x follows the uniform distribution of {0, 1}n. We give Algorithm 1 to compute
f(x) using T = 2d2 + d queries. The error analysis of Algorithm 1 is as follows. Given

Algorithm 1 A T -query quantum algorithm to compute f(x).

1 Query T distinct bits in x uniformly and denote the number of 1’s by t.
2 Compute the value of At as Equation (1).
3 Output 0 with the probability 1

2 (1 + δβ
16A

′
t) and output 1 with the probability

1
2 (1 − δβ

16A
′
t), where A′

t is defined as Equation (2).

x ∈ {0, 1}n, let h′(x) = Et∼H(n,|x|,T)A
′
t. Then the probability that the algorithm outputs 0

is 1
2

(
1 + δβ

16h
′(x)

)
and the probability that the algorithm outputs 1 is 1

2

(
1 − δβ

16h
′(x)

)
. By

Lemma 17, we have Et∼B(T, 1
2)A

2
t ≤ 2. Since

∣∣∣Et∼B(T, 1
2)At

∣∣∣ =

∣∣∣∣∣∣ 1
2n

∑
x∈{0,1}n

Et∼H(n,|x|,T)At

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2n

∑
x∈{0,1}n

h (x)

∣∣∣∣∣∣ ≤ 1, (3)

we have σ2 (At) = EA2
t − (EAt)2 ≤ 2 when t follows the binomial distribution B(T, 1

2). By
Chebyshev’s inequality, we have

P (|At − EAt| ≥ 2δ) ≤ 1
δ2 . (4)

By Equation (2), we have

A′
t =

At, if |At| ≤ 16

δβ .

− 16
δβ , if At < − 16

δβ .
16
δβ , if At >

16
δβ .

ISAAC 2023

55:12 On the Fine-Grained Query Complexity of Symmetric Functions

Thus if |At| ≤ 16
δβ , then |At − A′

t| = 0; if |At| > 16
δβ , then |At − A′

t| = |At| − 16
δβ . Then we

have

Et|At −A′
t| = Et:|At|≥ 16

δβ

(
|At| − 16

δβ

)
. (5)

By Equation (3), we have |EAt| ≤ 1. Since 0 < δ < 1, 0 < β < 1/2, if |At| > 16
δβ , then

|At − EAt| ≥ |At| − 1 ≥ 15
δβ . Thus, we have

Et:|At|≥ 16
δβ

(
|At| − 16

δβ

)
≤ Et:|At−EAt|≥ 15

δβ

(
|At| − 16

δβ

)
=

∞∑
a=0

E
t: 15·2a

δβ ≤|At−EAt|≤ 15·2a+1
δβ

(
|At| − 16

δβ

)

≤
∞∑

a=0
Et:|At−EAt|≥ 15·2a

δβ

(
15 · 2a+1

δβ
+ 1 − 16

δβ

)

≤
∞∑

a=0
Et:|At−EAt|≥ 15·2a

δβ

16
(
2a+1 − 1

)
δβ

≤
∞∑

a=0

(
δβ

15 · 2a−1

)2
·

16
(
2a+1 − 1

)
δβ

= 64
225δβ ·

∞∑
a=0

2a+1 − 1
4a

≤ δβ,

(6)

where the fourth inequality comes from Equation (4). Combining Equations (5) and (6), we
have

Et∼B(T, 1
2)|At −A′

t| ≤ δβ. (7)

For x ∈ {0, 1}n, we have h(x) = Et∼H(n,|x|,T)At and h′(x) = Et∼H(n,|x|,T)A
′
t. Then we have

1
2n

∑
x∈{0,1}n

|h(x) − h′(x)| = 1
2n

∑
x∈{0,1}n

Et∼H(n,|x|,T)|At −A′
t| = Et∼B(T, 1

2)|At −A′
t| ≤ δβ.

by Equation 7. Thus, there are at least 1−δ fractions of inputs x such that |h(x)−h′(x)| ≤ β.
For such x, since h(x)(1 − 2f(x)) ≥ 2β, we have h′(x)(1 − 2f(x)) ≥ β. Therefore, if f(x) = 0,
then h′(x) ≥ β; if f(x) = 1, then h′(x) ≤ −β. Thus, for at least 1 − β fractions of inputs,
the bias of the algorithm is at least β · δβ/16 = δβ2/16. ◀

4 The Relation Between Quantum Query Complexity and
Approximate Degree for Arbitrarily Small Bias

In this section, we give the proof of Theorem 12.

Proof of Theorem 12. Given a (possibly partial) n-bit symmetric Boolean function f :
D → {0, 1}, where D ⊆ {0, 1}n and f(x) = f(n − x) for any x ∈ D. For 0 < ϵ < 1/2, let
T = degϵ(f) and β = 1/2 − ϵ. Same as the proof of Theorem 9, for any function f ′ that
approximates f with error ϵ, we have (1 − 2f(x))(1 − 2f ′(x)) ≥ 2β.

Let g : [−1, 1] → [−1, 1] be defined as g (1 − 2|x|/n) = 1 − 2f(x) for any x ∈ D. Since
f(x) = f(n − x), g is an even function. Assume function h : [−1, 1] → [−1, 1] is the
optimal approximation polynomial of g with degree T . Then g(x)h(x) ≥ 2β and h is also an

S. Podder, P. Yao, and Z. Ye 55:13

even function. Thus, h(x) can be expressed as
∑⌈T/2⌉

i=0 aiT2i(x) for any x ∈ [−1, 1], where
T2i(x) is the Chebyshev polynomial of degree 2i and T2i(cos η) = cos 2iη for any η ∈ [0, π].
Furthermore, we have h(cos η) =

∑⌈T/2⌉
i=0 ai cos 2iη for any η ∈ [0, π]. Let cos ηx = 1 − 2|x|/n.

Then (1 − 2f(x))h (cos ηx) ≥ 2β and

h(cos ηx) =
⌈T/2⌉∑

i=0
ai cos 2iηx

=
∑

i:ai≥0
ai

(
2 cos2 iηx − 1

)
+
∑

i:ai<0
ai

(
1 − 2 sin2 iηx

)

=

 ∑
i:ai≥0

2ai cos2 iηx −
∑

i:ai<0
2ai sin2 iηx

+

 ∑
i:ai<0

ai −
∑

i:ai≥0
ai

= ∆x −M,

(8)

where ∆x = 2
(∑

ai≥0 ai cos2 iηx −
∑

ai<0 ai sin2 iηx

)
and M =

∑⌈T/2⌉
i=0 |ai|. By Fact 3,∑⌈T/2⌉

i=0 a2
i ≤ 2

π

∫ 1
−1

1√
1−x2 dx = 2. Thus,

M ≤
√

2⌈T/2⌉ + 1 ≤
√

2(T + 1). (9)

Let |ψ⟩ = 1√
n

∑
i∈[n] |i⟩ |−⟩. Then ⟨ψ|Ox|ψ⟩ = 1 − 2|x|/n = cos ηx. As a result, there exists

a state |ψ⊥⟩ such that ⟨ψ|ψ⊥⟩ = 0 and Ox |ψ⟩ = cos ηx |ψ⟩ + sin ηx |ψ⊥⟩. For the following
reflection operation

S0 = 2 |ψ⟩ ⟨ψ| − I, S1 = 2Ox |ψ⟩ ⟨ψ|Ox − I = OxS0Ox, (10)

we have

S1S0 |ψ⟩ = cos 2ηx |ψ⟩ + sin 2ηx |ψ⊥⟩ ,
S1S0 |ψ⊥⟩ = − sin 2ηx |ψ⟩ + cos 2ηx |ψ⊥⟩ .

(11)

Let R0 be the corresponding controlled operation of S0, i.e., for any |ϕ⟩,

R0 |ϕ⟩ |+⟩ = |ϕ⟩ |+⟩ , R0 |ϕ⟩ |−⟩ = (S0 |ϕ⟩) |−⟩ . (12)

Let |±i⟩ = |−⟩ · · · |−⟩︸ ︷︷ ︸
i

|+⟩ · · · |+⟩︸ ︷︷ ︸
⌈T/2⌉−i

. If ai ≥ 0, let

P+
i = (|ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|), P−

i = (I − |ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|).

If ai < 0, let

P−
i = (|ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|), P+

i = (I − |ψ⟩ ⟨ψ|) ⊗ (|±i⟩ ⟨±i|).

Let P0 =
∑

i P
+
i , P1 =

∑
i P

−
i . Then P0 + P1 = I. Let αi =

√
|ai|
M . Then

∑
i α

2
i = 1. We

give Algorithm 2 to compute f(x) and analyze the success probability of the algorithm as
follows. Since R0 is the corresponding controlled reflection operation of S0, the final state
after performing Step 2 of Algorithm 2 is

⌈T/2⌉∑
i=0

αi

(OxS0) · · · (OxS0)︸ ︷︷ ︸
i times

|ψ⟩

 |±i⟩ .

ISAAC 2023

55:14 On the Fine-Grained Query Complexity of Symmetric Functions

Algorithm 2 A T -query quantum algorithm to compute f(x).

1 Prepare the initial state
∑⌈T/2⌉

i=0 αi |ψ⟩ |±i⟩, which consists of the first qudit and
⌈T/2⌉ ancillary qubits, where αi, |ψ⟩ , |±i⟩ are defined on Page 11.

2 For i = 1 to ⌈T/2⌉, we perform unitary operation (Ox ⊗ I)R0 in the first qudit and
the i-th ancillary qubit, where R0 is given in Equation (12).

3 Perform the project measurement {P0, P1} defined on Page 11 to the final state and
output the measurement result.

If i is even, then(OxS0) · · · (OxS0)︸ ︷︷ ︸
i times

|ψ⟩

 |±i⟩ =

(OxS0OxS0) · · · (OxS0OxS0)︸ ︷︷ ︸
i/2 times

|ψ⟩

 |±i⟩

=

(S1S0) · · · (S1S0)︸ ︷︷ ︸
i/2 times

|ψ⟩

 |±i⟩

=
(
cos iηx |ψ⟩ + sin iηx |ψ⊥⟩

)
|±i⟩ ,

where the second equality comes from S1 = OxS0Ox and the third equality comes from
Equation (11). Similarly, if i is odd, by Equation (11) and S1 = OxS0Ox, we have(OxS0) · · · (OxS0)︸ ︷︷ ︸

i times

|ψ⟩

 |±i⟩ =

(OxS0) · · · (OxS0)︸ ︷︷ ︸
i−1 times

(
cos ηx |ψ⟩ + sin ηx |ψ⊥⟩

) |±i⟩

=

(S1S0) · · · (S1S0)︸ ︷︷ ︸
(i−1)/2

(
cos ηx |ψ⟩ + sin ηx |ψ⊥⟩

) |±i⟩

=
(
cos iηx |ψ⟩ + sin iηx |ψ⊥⟩

)
|±i⟩ .

Thus, after performing Step 2 of Algorithm 2, the final state is

⌈T/2⌉∑
i=0

αi

(
cos iηx |ψ⟩ + sin iηx |ψ⊥⟩

)
|±i⟩ .

By Equation (8), the probability that the measurement result is 0 is

px =
∑

i:ai≥0
α2

i cos2 iηx +
∑

i:ai<0
α2

i sin2 iηx

= 1
M

 ∑
i:ai≥0

ai cos2 iηx −
∑

i:ai<0
ai sin2 iηx

= ∆x

2M

= 1
2 + h(cos ηx)

2M ,

and the probability that the algorithm outputs 1 is 1/2 − h(cos ηx)/(2M). Since (1 −
2f(x))h(cos ηx) ≥ 2β, the probability that the algorithm outputs f(x) is at least 1/2 + β/M .

S. Podder, P. Yao, and Z. Ye 55:15

By Equation (9), the bias of the algorithm is at least β/M ≥ β/
√

2T + 2. Then we can
amplify the success probability to 1/2 + β by running O(T) times Algorithm 2 repetitively
(see full version [36] for the detailed proof). Thus, there exists a quantum algorithm using
O(T 2) queries to with success probability 1 − ϵ, which implies Qϵ(f) = O

(
degϵ(f)2). ◀

▶ Remark 18. We conjecture that f(x) = f(n− x) is not a necessary condition. If an n-bit
(possibly partial) symmetric Boolean function f satisfies that f(x) ̸= f(n − x) for some
x ∈ D, we can define a new 2n-bit Boolean function f∗ such that

f∗(x) =
{
f(x), if |x| ≤ n,

f(2n− x), if |x| > n.

Then f∗ satisfies that f∗(x) = f∗(2n− x). Although we can run Algorithm 2 to f∗, we do
not know how to relate d̃egϵ(f∗) and d̃egϵ(f) for any ϵ arbitrarily close to 1/2. Thus, the
query complexity of the algorithm is not promised. We leave this case as an open problem.

5 Conclusion

This paper analyzes the quantum advantage of computing two fundamental partial symmetric
Boolean functions by studying the optimal success probability of T -query quantum and
randomized algorithms. Moreover, we analyze the relation between the number of queries
and the bias of quantum and randomized algorithms to compute total symmetric Boolean
functions when the bias of the algorithms can be arbitrarily small. Furthermore, we show the
relation of several fundamental complexity measures of partial symmetric Boolean functions.
We leave the fine-grained Watrous conjecture as an open problem for further study.

References
1 Scott Aaronson and Andris Ambainis. The need for structure in quantum speedups. Theory

of Computing, 10:133–166, 2014. doi:10.4086/toc.2014.v010a006.
2 Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates

quantum from classical computing. SIAM Journal on Computing, 47(3):982–1038, 2018.
doi:10.1137/15M1050902.

3 Scott Aaronson and Shalev Ben-David. Sculpting quantum speedups. In Proceedings of
the 31st Conference on Computational Complexity, volume 50, pages 26:1–26:28, 2016. doi:
10.4230/LIPIcs.CCC.2016.26.

4 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of Huang’s sensitivity theorem. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1330–1342.
ACM, 2021. doi:10.1145/3406325.3451047.

5 Scott Aaronson, Robin Kothari, William Kretschmer, and Justin Thaler. Quantum lower
bounds for approximate counting via Laurent polynomials. In Proceedings of the 35th Compu-
tational Complexity Conference, pages 7:1–7:47, 2020. doi:10.4230/LIPIcs.CCC.2020.7.

6 Andris Ambainis and Janis Iraids. Optimal one-shot quantum algorithm for EQUALITY and
AND. Baltic Journal of Modern Computing, 4(4), 2016. doi:10.22364/bjmc.2016.4.4.09.

7 Arturs Backurs and Mohammad Bavarian. On the sum of L1 influences. In Proceedings
of the IEEE 29th Conference on Computational Complexity, pages 132–143, 2014. doi:
10.1109/CCC.2014.21.

8 Nikhil Bansal and Makrand Sinha. k-Forrelation optimally separates quantum and classical
query complexity. In Proccedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1303–1316, 2021. doi:10.1145/3406325.3451040.

ISAAC 2023

https://doi.org/10.4086/toc.2014.v010a006
https://doi.org/10.1137/15M1050902
https://doi.org/10.4230/LIPIcs.CCC.2016.26
https://doi.org/10.4230/LIPIcs.CCC.2016.26
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.4230/LIPIcs.CCC.2020.7
https://doi.org/10.22364/bjmc.2016.4.4.09
https://doi.org/10.1109/CCC.2014.21
https://doi.org/10.1109/CCC.2014.21
https://doi.org/10.1145/3406325.3451040

55:16 On the Fine-Grained Query Complexity of Symmetric Functions

9 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.
502097.

10 Shalev Ben-David. The structure of promises in quantum speedups. In Proceedings of the
11th Conference on the Theory of Quantum Computation, Communication and Cryptography,
volume 61, pages 7:1–7:14, 2016. doi:10.4230/LIPIcs.TQC.2016.7.

11 Shalev Ben-David. Lecture 6: The polynomial method. https://cs.uwaterloo.ca/
~s4bendav/CS867QIC890/CS867QIC890W21week4notes.pdf, 2021.

12 Shalev Ben-David, Andrew M. Childs, András Gilyén, William Kretschmer, Supartha Podder,
and Daochen Wang. Symmetries, graph properties, and quantum speedups. In Proceedings of
the 61st IEEE Annual Symposium on Foundations of Computer Science, pages 649–660, 2020.
doi:10.1109/FOCS46700.2020.00066.

13 Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free
functions. In LATIN 1998: Theoretical Informatics, Third Latin American Symposium, volume
1380, pages 163–169, 1998. doi:10.1007/BFb0054319.

14 Sergey Bravyi, David Gosset, Robert König, and Marco Tomamichel. Quantum advantage
with noisy shallow circuits in 3D. In Proccedings of the 60th IEEE Annual Symposium on
Foundations of Computer Science, pages 995–999, 2019. doi:10.1109/FOCS.2019.00064.

15 André Chailloux. A note on the quantum query complexity of permutation symmetric functions.
In Proceedings of the 10th Innovations in Theoretical Computer Science Conference, volume
124, pages 19:1–19:7, 2019. doi:10.4230/LIPIcs.ITCS.2019.19.

16 Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential separations
between learning with and without quantum memory. In Proccedings of the 62nd IEEE
Annual Symposium on Foundations of Computer Science, pages 574–585, 2021. doi:
10.1109/FOCS52979.2021.00063.

17 Ronald de Wolf. A note on quantum algorithms and the minimal degree of ϵ-error polynomials
for symmetric functions. Quantum Information and Computation, 8(10):943–950, 2008.
doi:10.26421/QIC8.10-4.

18 David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 439(1907):553–558, 1992. doi:10.1098/rspa.1992.0167.

19 Bill Fefferman and Shelby Kimmel. Quantum vs. Classical Proofs and Subset Verification. In
Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer
Science, volume 117, pages 22:1–22:23, 2018. doi:10.4230/LIPIcs.MFCS.2018.22.

20 Yuval Filmus, Hamed Hatami, Nathan Keller, and Noam Lifshitz. On the sum of L1 influences
of bounded functions. Israel Journal of Mathematics, 214(1):167–192, 2016. doi:10.1007/
s11856-016-1355-0.

21 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th annual ACM symposium on Theory of computing, pages
59–68, 1986. doi:10.1145/12130.12137.

22 Daniel Grier and Luke Schaeffer. Interactive shallow clifford circuits: quantum advantage
against NC1 and beyond. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 875–888, 2020. doi:10.1145/3357713.3384332.

23 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
28th IEEE Annual Symposium on Theory of Computing, pages 212–219, 1996.

24 Buhrman Harry and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

25 Xiaoyu He, Xiaoming Sun, Guang Yang, and Pei Yuan. Exact quantum query complexity of
weight decision problems. Science China Information Sciences, 66:129503, 2023. Also see
arXiv:1801.05717. doi:10.1007/s11432-021-3468-x.

https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.4230/LIPIcs.TQC.2016.7
https://cs.uwaterloo.ca/~s4bendav/CS867QIC890/CS867QIC890W21week4notes.pdf
https://cs.uwaterloo.ca/~s4bendav/CS867QIC890/CS867QIC890W21week4notes.pdf
https://doi.org/10.1109/FOCS46700.2020.00066
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1109/FOCS.2019.00064
https://doi.org/10.4230/LIPIcs.ITCS.2019.19
https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.26421/QIC8.10-4
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.4230/LIPIcs.MFCS.2018.22
https://doi.org/10.1007/s11856-016-1355-0
https://doi.org/10.1007/s11856-016-1355-0
https://doi.org/10.1145/12130.12137
https://doi.org/10.1145/3357713.3384332
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://arxiv.org/abs/1801.05717
https://arxiv.org/abs/1801.05717
https://doi.org/10.1007/s11432-021-3468-x

S. Podder, P. Yao, and Z. Ye 55:17

26 Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita. Unbounded-
error classical and quantum communication complexity. In Proceedings of the 18th International
Symposium on Algorithms and Computation, ISAAC 2007, volume 4835, pages 100–111, 2007.
doi:10.1007/978-3-540-77120-3_11.

27 Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita. Unbounded-
error one-way classical and quantum communication complexity. In Proceedings of the 34th
International Colloquium on Automata, Languages and Programming, ICALP 2007, volume
4596, pages 110–121, 2007. doi:10.1007/978-3-540-73420-8_12.

28 Siddharth Iyer, Anup Rao, Victor Reis, Thomas Rothvoss, and Amir Yehudayoff. Tight
bounds on the Fourier growth of bounded functions on the hypercube. arXiv preprint, 2021.
arXiv:2107.06309.

29 John Kallaugher. A quantum advantage for a natural streaming problem. In Proccedings of
the 62nd IEEE Annual Symposium on Foundations of Computer Science, pages 897–908, 2021.
doi:10.1109/FOCS52979.2021.00091.

30 Vladimir I. Levenshtein. Krawtchouk polynomials and universal bounds for codes and designs
in Hamming spaces. IEEE Transactions on Information Theory, 41(5):1303–1321, 1995.
doi:10.1109/18.412678.

31 Shachar Lovett and Jiapeng Zhang. Fractional certificates for bounded functions. In Proceedings
of the 14th Innovations in Theoretical Computer Science Conference, volume 251, pages 84:1–
84:13, 2023. doi:10.4230/LIPIcs.ITCS.2023.84.

32 John C. Mason and David C. Handscomb. Chebyshev polynomials. CRC Press, 2002.
33 Ashley Montanaro, Richard Jozsa, and Graeme Mitchison. On exact quantum query complexity.

Algorithmica, 71(4):775–796, 2015. doi:10.1007/s00453-013-9826-8.
34 Ashley Montanaro, Harumichi Nishimura, and Rudy Raymond. Unbounded-error quantum

query complexity. In Proceedings of the 19th International Symposium on Algorithms and Com-
putation, ISAAC 2008, volume 5369, pages 919–930, 2008. doi:10.1007/978-3-540-92182-0_
80.

35 Ramamohan Paturi. On the degree of polynomials that approximate symmetric Boolean
functions (preliminary version). In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, pages 468–474. ACM, 1992. doi:10.1145/129712.129758.

36 Supartha Podder, Penghui Yao, and Zekun Ye. On the fine-grained query complexity of
symmetric functions. arXiv preprint, 2023. arXiv:2309.11279.

37 Daowen Qiu and Shenggen Zheng. Characterizations of symmetrically partial Boolean functions
with exact quantum query complexity. arXiv preprint, 2016. arXiv:1603.06505.

38 Daowen Qiu and Shenggen Zheng. Generalized Deutsch-Jozsa problem and the optimal
quantum algorithm. Physical Review A, 97(6):062331, 2018. doi:10.1103/PhysRevA.97.
062331.

39 Daowen Qiu and Shenggen Zheng. Revisiting Deutsch-Jozsa algorithm. Information and
Computation, 2020(275):104605, 2020. doi:10.1016/j.ic.2020.104605.

40 Alexander A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions.
Computational Complexity, 18(2):219–247, 2009. doi:10.1007/s00037-009-0274-4.

41 Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An optimal separation of
randomized and quantum query complexity. In Proccedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1289–1302, 2021. doi:10.1145/3406325.3451019.

42 Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages
124–134, 1994. doi:10.1109/SFCS.1994.365700.

43 Daniel R. Simon. On the power of quantum computation. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 116–123, 1994. doi:10.1109/SFCS.
1994.365701.

ISAAC 2023

https://doi.org/10.1007/978-3-540-77120-3_11
https://doi.org/10.1007/978-3-540-73420-8_12
https://arxiv.org/abs/2107.06309
https://doi.org/10.1109/FOCS52979.2021.00091
https://doi.org/10.1109/18.412678
https://doi.org/10.4230/LIPIcs.ITCS.2023.84
https://doi.org/10.1007/s00453-013-9826-8
https://doi.org/10.1007/978-3-540-92182-0_80
https://doi.org/10.1007/978-3-540-92182-0_80
https://doi.org/10.1145/129712.129758
https://arxiv.org/abs/2309.11279
https://arxiv.org/abs/1603.06505
https://doi.org/10.1103/PhysRevA.97.062331
https://doi.org/10.1103/PhysRevA.97.062331
https://doi.org/10.1016/j.ic.2020.104605
https://doi.org/10.1007/s00037-009-0274-4
https://doi.org/10.1145/3406325.3451019
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1109/SFCS.1994.365701

55:18 On the Fine-Grained Query Complexity of Symmetric Functions

44 Avishay Tal. Towards optimal separations between quantum and randomized query complexities.
In Proccedings of the 61st Annual Symposium on Foundations of Computer Science, pages
228–239, 2020. doi:10.1109/FOCS46700.2020.00030.

45 Takashi Yamakawa and Mark Zhandry. Verifiable quantum advantage without structure. In
Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science, pages
69–74, 2022. doi:10.1109/FOCS54457.2022.00014.

46 Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746,
2000. doi:10.1103/PhysRevA.60.2746.

47 Mark Zhandry. A note on the quantum collision and set equality problems. Quantum
Information and Computation, 15(7&8):557–567, 2015. doi:10.26421/QIC15.7-8-2.

https://doi.org/10.1109/FOCS46700.2020.00030
https://doi.org/10.1109/FOCS54457.2022.00014
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.26421/QIC15.7-8-2

Testing Properties of Distributions in the
Streaming Model
Sampriti Roy #

Department of Computer Science and Engineering, IIT Madras, Chennai, India

Yadu Vasudev #

Department of Computer Science and Engineering, IIT Madras, Chennai, India

Abstract
We study distribution testing in the standard access model and the conditional access model when
the memory available to the testing algorithm is bounded. In both scenarios, we consider the
samples appear in an online fashion. The goal is to test the properties of distribution using an
optimal number of samples subject to a memory constraint on how many samples can be stored at a
given time. First, we provide a trade-off between the sample complexity and the space complexity
for testing identity when the samples are drawn according to the conditional access oracle. We
then show that we can learn a succinct representation of a monotone distribution efficiently with a
memory constraint on the number of samples that are stored that is almost optimal. We also show
that the algorithm for monotone distributions can be extended to a larger class of decomposable
distributions.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Property testing, distribution testing, streaming

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.56

Related Version Full Version: https://arxiv.org/abs/2309.03245 [22]

1 Introduction

Sublinear algorithms that analyze massive amounts of data are crucial in many applications
currently. Understanding the underlying probability distribution that generates the data is
important in this regard. In the field of distribution testing, a sub-field of property testing,
the goal is to test whether a given unknown distribution has a property P or is far from
having the property P (where the farness is defined with respect to total variation distance).
Starting from the work of Goldreich and Ron ([19]), a vast literature of work has studied the
problem of testing probability distributions for important properties like identity, closeness,
support size as well as properties relating to the structure of the distribution like monotonicity,
k-modality, and histograms among many others; see Canonne’s survey ([10]) for an overview
of the problems and results.

In the works of Canonne et al ([12]) and Chakraborty et al ([13]), distribution testing
with conditional samples was studied. In this model, the algorithm can choose a subset of
the support, and the samples of the distribution conditioned on this subset are generated.
This allows adaptive sampling from the distribution and can give better sample complexity
for a number of problems. In particular, ([12]) and ([13]) give testers for uniformity and
other problems that use only a constant number of samples.

The natural complexity measure of interest is the number of samples of the underlying
distribution that is necessary to test the property. In many cases, when data is large, it might
be infeasible to store all the samples that are generated. A recent line of work has been to
study the trade-off between the sample complexity and the space complexity of algorithms

© Sampriti Roy and Yadu Vasudev;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cs18d200@smail.iitm.ac.in
https://orcid.org/0009-0003-7938-945X
mailto:yadu@cse.iitm.ac.in
https://orcid.org/0000-0001-7918-7194
https://doi.org/10.4230/LIPIcs.ISAAC.2023.56
https://arxiv.org/abs/2309.03245
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Testing Properties of Distributions in the Streaming Model

for learning and testing properties of distributions. This model can be equivalently thought
of as a data stream of i.i.d samples from an unknown distribution, with the constraint that
you are allowed to store only a small subset of these samples at any point in time.

In this work, we study distribution testing problems in the standard model, and when
the algorithm is allowed to condition on sets to better understand the trade-off between the
sample complexity and size. In particular, we study identity testing and testing whether
the unknown distribution is monotone. Our work borrows ideas from the recent work of
Diakonikolas et al ([17]) and extends the ideas to these problems.

1.1 Related work
Testing and estimating the properties of discrete distributions is well-studied in property
testing; see ([10]) for a nice survey of recent results. In our work, we study property testing
of discrete distributions under additional memory constraints wherein the algorithm does
not have the resources to store all the samples that it obtains.

This line of work has received a lot of attention in recent times. Chien et al ([14]) propose
a sample-space trade-off for testing any (ϵ, δ)-weakly continuous properties, as defined by
Valiant ([23]). Another work by Diakonikolas et al ([17]) studies the uniformity, identity, and
closeness testing problems and presents trade-offs between the sample complexity and the
space complexity of the tester. They use the idea of a bipartite collision tester where instead
of storing all the samples in the memory, the testing can be done by storing a subset of
samples and counting the collisions between the stored set and the samples that come later.
Another line of work ([1, 2]) focuses on the task of estimating the entropy of distributions
from samples in the streaming model, where space is limited. In particular, ([1]) estimate the
entropy of an unknown distribution D up to ±ϵ using constant space. Berg et al ([7]) study
the uniformity testing problem in a slightly different model where the testing algorithm is
modeled as a finite-state machine.

Property testing with memory constraints has also been studied in the setting of streaming
algorithms as well. Streaming algorithms were first studied in a unified way starting from
the seminal work of Alon et al ([3]) where the authors studied the problem of estimating
frequency moments. There is a vast amount of literature available on streaming algorithms
(see [21, 20]). Bathie et al ([4]) have studied property testing in the streaming model for
testing regular languages. Czumaj et al ([16]) show that every constant-query testable
property on bounded-degree graphs can be tested on a random-order stream with constant
space. Since this line of work is not directly relevant to our work in this paper, we will not
delve deeper into it here.

1.2 Our results
In this work, we study the trade-off between sample complexity and space complexity in both
the standard access model and the conditional access model. In the standard access model,
a set of samples can be drawn independently from an unknown distribution. In the case of
the conditional access model, a subset of the domain is given and samples can be drawn
from an unknown distribution conditioned on the given set. This is similar to a streaming
algorithm where the samples are presented to the algorithm, and the algorithm has a memory
constraint of m bits; i.e., only up to m bits of samples can be stored in memory.

In the standard access model, which we will refer to as SAMP , we have a distribution D

over the support {1, 2, . . . , n} and the element i is sampled with probability D(i). In the
conditional access model, which we will refer to as COND , the algorithm can choose a set

S. Roy and Y. Vasudev 56:3

S ⊆ {1, 2, . . . , n} and will obtain samples from the conditional distribution over the set. I.e.
the sample i ∈ S is returned with probability D(i)/D(S). In this work, we will work with
the case when the conditioning is done on sets of size at most two - we will refer to this
conditional oracle as PCOND ([12]).

Our results are stated below.
We propose a memory-efficient identity testing algorithm in the PCOND model when
the algorithm is restricted by the memory available to store the samples. We adapt
the algorithm of Canonne et al ([12]) and reduce the memory requirement by using
the CountMin sketch ([15]) for storing the frequencies of the samples. The identity
testing algorithm uses O(log2 n log log n/mϵ2) samples from standard access model where
log n

√
log log n

ϵ ≤ m ≤ log2 n
ϵ and an Õ(log4 n/ϵ4) samples from conditional access model

and does the following, if D = D∗, it returns Accept with probability at least 2/3, and if
dT V (D, D∗) ≥ ϵ, it returns Reject with probability at least 2/3. It uses only O(m

ϵ) bits
of memory.
We also observe that by applying oblivious decomposition [8], performing identity and
closeness testing on monotone distributions over [n] can be reduced to performing the
corresponding tasks on arbitrary distributions over [O(log (nϵ)/ϵ)]. We use the streaming
model based identity tester from ([17]) and obtain an O(log (nϵ) log log (nϵ)/mϵ5) standard
access query identity tester for monotone distributions where log log (nϵ)/ϵ2 ≤ m ≤
(log (nϵ)/ϵ)9/10. Their closeness testing algorithm also implies a closeness tester for
monotone distributions which uses O(log (nϵ)

√
log log (nϵ)/

√
mϵ3) samples from standard

access model, where log log(nϵ) ≤ m ≤ Θ̃(min(log (nϵ)/ϵ, log2/3 (nϵ)/ϵ2)). Both testers
require m bits of memory.
We adapt the idea of the bipartite collision tester ([17]) and give an algorithm that uses
O(n log n

mϵ8) samples from SAMP and tests if the distribution is monotone or far from being
monotone. This algorithm requires only O(m) bits of memory for log2 n/ϵ6 ≤ m ≤

√
n/ϵ3.

This upper bound is nearly tight since we observe that the lower bound for uniformity
testing proved by Diakonikolas et al ([17]) applies to our setting as well. In particular, we
show that the “no” distribution that is used in [17] is actually far from monotone, and
hence the lower bound directly applies in our setting as well.
We extend the idea of the previous algorithm for learning and testing a more general
class of distribution called (γ, L)-decomposable distribution, which includes monotone
and k-modal distributions. Our algorithm takes O(nL log (1/ϵ)

mϵ9) samples from D and needs
O(m) bits of memory where log n/ϵ4 ≤ m ≤ O(

√
n log n/ϵ3).

2 Notation and Preliminaries

Throughout this paper, we study distributions D that are supported over the set
{1, 2, . . . , n} = [n]. The notion of distance between distributions will be total variation dis-
tance or statistical distance which is defined as follows: for two distributions D1 and D2, the
total variation distance, denoted by dT V (D1, D2) = 1

2 |D1−D2|1 = 1
2

∑
i∈[n] |D1(x)−D2(x)| =

maxS⊆[n]((D1(S) − D2(S)). We will use U to denote the uniform distribution over [n]. We
use |.|1 for the ℓ1 norm, ||.||2 for the ℓ2 norm.

Let D1 and D2 be two distributions over [n], if dT V (D1, D2) ≤ ϵ, for some 0 ≤ ϵ ≤ 1, we
say that D1 is ϵ close to D2. Let D be the set of all probability distributions supported on
[n]. A property P is a subset of D. We say that a distribution D is ϵ far from P, if D is ϵ

far from all the distributions having the property P. I.e. dT V (D, D′) > ϵ for every D′ ∈ P .

ISAAC 2023

56:4 Testing Properties of Distributions in the Streaming Model

We define the probability of self-collision of the distribution D by ||D||2. For a set S of
samples drawn from D, coll(S) defines the pairwise collision count between them. Consider
S1, S2 ⊂ S, the bipartite collision of D with respect to S is defined by coll(S1, S2) is the
number of collision between S1 and S2.

We will be using the count of collisions among sample points to test closeness to uniformity.
The following lemma connects the collision probability and the distance to uniformity.

▶ Lemma 1 ([6]). Let D be a distribution over [n]. If maxx D(x) ≤ (1 + ϵ). minx D(x) then
||D||22 ≤ (1 + ϵ2)/n. If ||D||22 ≤ (1 + ϵ2)/n then dT V (D, U) ≤ ϵ.

One way to test the properties of distributions is to first learn an explicit description of
the distribution. We now define the notion of flattened and reduced distributions that will
be useful towards this end.

▶ Definition 2 (Flattened and reduced distributions). Let D be a distribution over [n], and
there exists a set of partitions of the domain into ℓ disjoint intervals, I = {Ij}ℓ

j=1. The
flattened distribution (Df)I corresponding to D and I is a distribution over [n] defined as

follows : for j ∈ [ℓ] and i ∈ Ij; (Df)I(i) =
∑

t∈Ij
D(t)

|Ij | . A reduced distribution Dr is defined
over [ℓ] such that ∀i ∈ ℓ, Dr(i) = D(Ii).

If a distribution D is ϵ close to its flattened distribution according to some partition {Ij}ℓ
j=1,

we refer D to be (ϵ, ℓ)-flattened. We note that if a distribution is monotonically non-increasing,
then its flattened distribution is also monotonically non-increasing but its reduced distribution
is not necessarily the same.

The following folklore result shows that the empirical distribution is close to the actual
distribution provided sufficient number of samples are taken.

▶ Lemma 3 (Folklore). Given a distribution D supported over [n] and an interval partition
I = {I1, ..., Iℓ}, using S = O(ℓ2

ϵ2 log ℓ) points from SAMP, we can obtain an empirical
distribution D̃ in the following way: ∀Ij ∈ I; D̃(Ij) = occ(S,Ij)

|S| (occ(S, Ij) is the number of
samples from S lies inside Ij) over [ℓ] such that for all interval Ij, with probability at least
2/3, |D(Ij) − D̃(Ij)| ≤ ϵ

ℓ . Moreover, let the flattened distribution of D be (Df)I and the
flattened distribution of D̃ be (D̃f)I , we can say that dT V ((Df)I , (D̃f)I) < ϵ.

While designing a tester for monotonicity, we use the following theorem due to Birge ([8])

▶ Lemma 4 (Oblivious partitioning [8]). Let D be a non-increasing distribution over [n] and
I = {I1, ..., Iℓ} is an interval partitioning of D such that |Ij | = (1 + ϵ)j, for 0 < ϵ < 1, then
I has the following properties,

ℓ = O(1
ϵ log nϵ)

The flattened distribution corresponding to I, (Df)I is ϵ-close to D, or D is (ϵ, ℓ)-flattened.

Next, we describe a data structure called the CountMin sketch which is used to estimate
the frequencies of elements in a one-pass stream. It was introduced by Cormode et al ([15]).
As we are dealing with a one-pass streaming algorithm with a memory constraint, it would
be important to store samples in less space. CountMin sketch uses hash functions to store
frequencies of the stream elements in sublinear space and returns an estimate of the same.

▶ Definition 5 (CountMin sketch). A CountMin (CM) sketch with parameters (ϵ, δ) is repres-
ented by a two-dimensional array counts with width w and depth d: count[1, 1], ..., count[d, w].
Set w = e

ϵ and d = log 1/δ. Each entry of the array is initially zero. Additionally, d hash

S. Roy and Y. Vasudev 56:5

functions h1, ..., hd : {1, ..., n} → {1, ..., w} chosen uniformly at random from a pairwise-
independent family. The space requirement for the count min sketch is wd words. The sketch
can be queried for the frequency of an element from the universe U of elements, and will
return an estimate of its frequency.

The lemma below captures the fact that the frequency of any element xi can be estimated
from a CountMin sketch.

▶ Lemma 6 ([15]). Let {x1, ..., xS} be a stream of length S and fxi be the actual frequency
of an element xi. Suppose f̃xi

be the stored frequency in count min sketch, then the following
is true with probability at least (1 − δ), fxi

≤ f̃xi
≤ fxi

+ ϵS.

3 Testing identity in the streaming model using PCOND

In this section, we revisit the identity testing problem using PCOND queries: given sample
access and PCOND query access to an unknown distribution D we have to test whether D

is identical to a fully specified distribution D∗ or they are ϵ far from each other. Canonne
et al ([12]) address the problem and propose a PCOND query-based identity tester. In
their algorithm, the domain of D∗ is divided into a set of “buckets” where the points are
having almost the same weights. The algorithm samples Õ(log2 n/poly(ϵ)) points from D

and estimates the weight of each bucket. They prove if D and D∗ are far then there exists
at least one bucket where the weight of D∗ and weight of D̃ will differ. If not, then the
algorithm runs a process called Compare to estimate the ratio of the weight of each pair of
points (y, z) where y is taken from a set of samples drawn from D∗ and z is taken from a
set of samples according to D. The following lemma is used to compare the weights of two
points.

▶ Lemma 7 ([12]). Given as input two disjoint subsets of points X, Y together with parameters
η ∈ (0, 1], K ≥ 1 and δ ∈ (0, 1

2] as well as COND query access to a distribution D, there
exists a procedure Compare which estimates the ratio of the weights of two sets and either
outputs a value ρ > 0 or outputs High or Low and satisfies the following:

If D(X)/K ≤ D(Y) ≤ K · D(X) then with probability at least 1 − δ the procedure outputs
a value ρ ∈ [1 − η, 1 + η]D(Y)/D(X);
If D(Y) > K · D(X) then with probability at least 1 − δ the procedure outputs either High
or a value ρ ∈ [1 − η, 1 + η]D(Y)/D(X);
If D(Y) < D(X)/K then with probability at least 1 − δ the procedure outputs either Low
or a value ρ ∈ [1 − η, 1 + η]D(Y)/D(X).

The procedure performs O(K log 1/δ
η2) conditional queries on the set X ∪ Y .

However, for storing Õ(log2 n/poly(ϵ)) samples for estimating the weights of the buckets,
an Õ(log3 n/poly(ϵ)) space is required considering each sampled point takes log n bits of
memory. As we are dealing with a memory constraint of m bits, for m < O(log3 n),
implementing the algorithm is not memory efficient. We use the main idea of Canonne et
al ([12]), but instead of storing all samples, we use the CountMin sketch data structure for
storing the frequencies of the elements of the stream. Later, the frequencies are used to
estimate the weight of each bucket. By choosing the parameters of the CountMin sketch
suitably, the total space required for our algorithm is at most O(m/ϵ) bits. The main concept
of our algorithm lies in the theorem below,

▶ Theorem 8 (Testing Identity [12]). There exists an identity tester that uses an Õ(log4 n/ϵ4)
PCOND queries and does the following: for every pair of distributions D, D∗ over [n], where
D∗ is fully specified, the algorithm outputs Accept with probability at least 2/3 if D = D∗

and outputs Reject with probability at least 2/3 if dT V (D, D∗) ≥ ϵ.

ISAAC 2023

56:6 Testing Properties of Distributions in the Streaming Model

Before moving into the algorithm, we define the bucketization technique according to ([12]).
For an explicit distribution D∗, the domain is divided into ℓ buckets B = {B1, ..., Bℓ}, where
each bucket contains a set of points which satisfies Bj = {i ∈ [n] : 2j−1η/n ≤ D∗(i) ≤ 2jη/n}
and B0 = {i ∈ [n] : D∗(i) < η/n}, where η = ϵ/c for c to be a constant. The number of
buckets ℓ = O(⌈log n/η + 1⌉ + 1).

We are now ready to present our PCOND query-based one-pass streaming algorithm for
identity testing. Our algorithm and the correctness borrow from ([12]) with the extra use of
CountMin sketches to improve the trade-off between the sample complexity and the space
used.

Algorithm 1 PCOND Identity Testing Streaming.
Input : SAMP and PCOND access to D, an explicit distribution D∗, parameters

0 < ϵ ≤ 1, η = ϵ/6, ℓ buckets of D∗, space requirement O(m) bits
log n

√
log log n

ϵ ≤ m ≤ log2 n
ϵ

Output : Accept if D = D∗, Reject if dT V (D, D∗) ≥ ϵ

1 Sample S = O(log2 n log log n
mϵ2) points {x1, ..., xS} from SAMP

2 for (i = 1 to S) do
3 Estimate the frequency of xi using CountMin sketch (ϵ

m , 1
100) such that

fxi
≤ f̃xi

≤ fxi
+ ϵ

m S

4 Define the frequency of each bucket Bj to be fBj =
∑

xi∈Bj
fxi , such that

fBj
≤ f̃Bj

≤ fBj
+ ϵ

m S2

5 if f̃Bj

S < D∗(Bj) −
√

mϵ
log n or f̃Bj

S > D∗(Bj) +
√

mϵ
log n + log2 n log log n

ϵm2 then
6 Reject and Exit
7 Select s = O(ℓ/ϵ) points {y1, ..., ys} from D∗

8 for each yk ∈ s do
9 Sample s points {z1, ..., zs} from D as a stream

10 for each pair of points (yk, zl) such that D∗(yk)
D∗(zl) ∈ [1/2, 2] do

11 Run Compare (yk, zl, η/4ℓ, 2, 1/10s2))
12 if Compare returns Low or a value smaller than (1 − η/2ℓ) D∗(yk)

D∗(zl) then
13 Reject and Exit

14 Accept

▶ Theorem 9. The algorithm pcond identity testing streaming uses an
O(log2 n log log n/mϵ2) length stream of standard access query points and an Õ(log4 n/ϵ4)
length of conditional stream and does the following, If D = D∗, it returns Accept with
probability at least 2/3, and if dT V (D, D∗) ≥ ϵ, it returns Reject with probability at least
2/3. The memory requirement for the algorithm is O(m

ϵ) (due to the parameters set in

CountMin sketch) where log n
√

log log n

ϵ ≤ m ≤ log2 n
ϵ .

Proof.

Completeness. Suppose D = D∗. We prove that the algorithm does not return Reject in
Line 6. Let D̃(Bj) be the estimated weight of a bucket Bj where D̃(Bj) = fBj

S for S =
O(log2 n log log n/mϵ2). An additive Chernoff bound [followed by a union bound over the
buckets] shows that with high probability, ∀Bj , |D(Bj) − D̃(Bj)| ≤

√
mϵ

log n . Using Lemma 6,

S. Roy and Y. Vasudev 56:7

with probability at least 99/100, for every element xi in the stream, fxi ≤ f̃xi ≤ fxi + ϵS
m .

Summing over all the elements in a bucket Bj , we get f̃Bj
− ϵ

m S2 ≤ fBj
≤ f̃Bj

. Substituting

D̃(Bj) = fBj

S , we can see that f̃Bj

S − ϵS
m ≤ D̃(Bj) ≤ f̃Bj

S . As D = D∗, D̃(Bj) is a good

estimate of D∗(Bj). Using |D∗(Bj) − D̃(Bj)| ≤
√

mϵ
log n , we get f̃Bj

S − ϵS
m −

√
mϵ

log n ≤ D∗(Bj) ≤
f̃Bj

S +
√

mϵ
log n . This can be written as D∗(Bj) −

√
mϵ

log n ≤ f̃Bj

S ≤ D∗(Bj) +
√

mϵ
log n + log2 n log log n

ϵm2

by replacing S = O(log2 n log log n/mϵ2). Hence, the algorithm will not output Reject with
high probability. As D = D∗, for all pairs (yk, zl) such that D∗(yk)

D∗(zl) ∈ [1/2, 2], it follows from
Lemma 7 that the estimated ratio of weights of each pair (yk, zl) is less than (1 − η/2ℓ) D∗(yk)

D∗(zl)
[for η = ϵ/6] with probability at most 1/10s2. A union bound over all O(s2) pairs proves
that with a probability of at least 9/10 the algorithm outputs Accept .

Soundness. Let dT V (D, D∗) ≥ ϵ. In this case, if one of the estimates of f̃Bj
passes

Line 5, the algorithm outputs Reject . Let’s assume that the estimates are correct with
high probability. The rest of the analysis follows from ([12]), we give a brief outline of
the proof for making it self-contained. Define high-weight and low-weight buckets in the
following way, for η = ϵ/6, as follows: Hj = {x ∈ Bj : D(x) > D∗(x) + η/ℓ|Bj |}, and
Lj = {x ∈ Bj : D(x) ≤ D∗(x) − η/ℓ|Bj |}. It can be shown that at least one point
will occur from the low-weight bucket while sampling s points in Line 7 and at least one
point will come from the high-weight bucket while obtaining s points in Line 9. Using
the definition of high-weight and low-weight buckets, there exists a pair (yk, zl) such that
D(yk) ≤ (1 − η/2ℓ)D∗(yk) and D(zk) > (1 + η/2ℓ)D∗(zk). By Lemma 7, with probability at
least 1 − 1/10s2, Compare will return low or a value at most (1 − η/2ℓ) D∗(yk)

D∗(zl) in Line 12.
Hence, the algorithm outputs Reject with high probability. ◀

We use CountMin sketch with parameters (ϵ
m , 1

100) in our algorithm. Comparing it with (ϵ, δ)
CountMin sketch defined in ([15]), we set the width of the array to be w = em/ϵ and depth
d = log 100. So the space required for the algorithm is w.d words which imply O(m

ϵ) bits.
For running the Compare procedure, we are not using any extra space for storing samples.
This is because for every element in {y1, ..., ys} we are sampling s length stream {z1, ..., zs}
and running Compare for each pair of points taken from each stream respectively. This leads
to running compare process s2 times. A single run of compare works in the following way in
the streaming settings, for a pair (yk, zl), sample O(log2 n/ϵ2) points from D conditioned
on (yk, zl) and keep two counters for checking the number of times each of them appeared
in the stream. Each round of Compare process requires O(log2 n/ϵ2) length of the stream.
Hence, the total stream length is Õ(log4 n/ϵ4).

4 Testing Monotonicity in the streaming model using SAMP

In this section, we give an algorithm for testing monotonicity in the SAMP model when the
samples are obtained via a one-pass stream. The algorithm of Batu et al ([5]) provides a
sample-efficient algorithm for testing monotonicity, by dividing the support [n] into intervals
which are either low-weight or close to uniform. In our case, we start with the oblivious
decomposition of Birge ([8]) and check if the total weight of the intervals that are far from
uniform is small. To check if an interval is far from uniform, we count the number of collisions
in the sample obtained from the interval. To improve the space complexity of the algorithm,
we modify the part of counting collisions to counting bipartite collisions, like in ([17]). We
now describe the algorithm for testing monotonicity using bipartite collisions. The sample

ISAAC 2023

56:8 Testing Properties of Distributions in the Streaming Model

complexity for this algorithm is worse than the algorithm of Batu et al ([5]), but we will
then show that this can be converted to an algorithm in the one-pass streaming model with
better space complexity.

4.1 Testing Monotonicity using Bipartite Collisions
In this section, we perform the monotonicity testing in a slightly different fashion which
functions as the building block of a streaming-based monotonicity tester. Here, unlike
counting pairwise collisions between the samples, we divide the samples into two sets and
count the bipartite collisions between them. The idea of the bipartite collision tester is
adapted from ([17]). A key Lemma 11 proves how the bipartite collision is used to estimate
the collision probability. Given sample access to an unknown distribution D over [n], first,
we divide the domain according to the oblivious decomposition. We count the bipartite
collisions inside the intervals where enough samples lie. If D is monotone, the total weight of
high collision intervals can not be too high. Prior to describing the algorithm, the lemma
below clarifies the fact “enough samples” and the intervals holding them.

▶ Lemma 10. Let D be a distribution over [n], and I = {I1, ..., Iℓ} be an interval partitions
of [n]. Let J ⊂ I be the set of intervals and for all Ij ∈ J , D(Ij) ≥ ϵ1/ log n, where ϵ1 = ϵ2.
If S = O(n log n

ϵ8) samples are drawn according to D, then all Ij ∈ J contain |SIj | ≥ O(|Ij |/ϵ4)
samples.

Proof. Fix an Ij and define a random variable, Xi = 1 if ith sample is in Ij else 0. Let
X =

∑S
i=1 Xi = SIj

. Then the expectation E[X] = |S| · D(Ij) ≥ |S|ϵ1
log n .

By Chernoff bound, we can see that Pr
[
X < (1 − ϵ) |S|ϵ1

log n

]
= Pr

[
X < (1 − ϵ)E[X]

]
≤

e−ϵ2E[X] ≤ e−ϵ2 |S|ϵ2
log n < ϵ2

10 log n .
The last inequality is obtained from the fact that |S| = O(n log n

ϵ8) and using n
ϵ4 >

log(10 log n/ϵ2). Applying union bound over all ℓ = O(log n
ϵ1

) partitions, we can conclude that,
[ϵ1 = ϵ2] ∀Ij ; such that D(Ij) ≥ ϵ1

log n with probability at least 9/10, the following happens,
SIj ≥ (1 − ϵ) |S|ϵ1

log n ≥ (1 − ϵ) n
ϵ6 ≥ O(|Ij |/ϵ4) ◀

The main intuition behind our algorithm is counting the bipartite collision between a
set of samples. The next lemma, defines the necessary conditions for estimating collision
probability using bipartite collision count.

▶ Lemma 11. Let D be an unknown distribution over [n] and S be the set of samples drawn
according to SAMP . Let I ⊂ [n] be an interval and SI be the set of points lying in the
interval I. Let SI be divided into two disjoint sets S1 and S2; {S1} ∪ {S2} = {SI} such that
|S1| · |S2| ≥ O(|SI |/ϵ4), then with probability at least 2/3,

||DI ||22 − ϵ2

64|I|
≤ coll(S1, S2)

|S1||S2|
≤ ||DI ||22 + ϵ2

64|I|
.

Proof. Define the random variable Xij = 1 if ith sample in S1 is same as jth sample in S2, 0
otherwise.

X =
∑

(i,j)∈S1×S2

Xij = coll(S1, S2)

E[X] = |S1| · |S2| · ||DI ||22

S. Roy and Y. Vasudev 56:9

Where ||DI ||2 is collision probability. Let Yij = Xij − E[Xij] = Xij − ||DI ||22.

V ar[
∑

(i,j)∈S1×S2

Xij] = E
[
(

∑
(i,j)∈S1×S2

Yij)2
]

= E
[∑

(i,j)∈S1×S2

Y 2
ij +

∑
(i,j)̸=(k,l);|{i,j,k,l}|=3

YijYkl

]
We calculate the following,

E[Y 2
ij] = E[X2

ij] − 2(E[Xij])2 + (E[Xij])2

= ||DI ||22 − ||DI ||42
E[YijYkl] = E

[
(Xij − ||DI ||22)(Xkl − ||DI ||22)

]
= E

[
XijXkl

]
− ||DI ||22(E[Xij] + E[Xkl]) + ||DI ||42

= E
[
XijXkl

]
− ||DI ||42

Now,

V ar[
∑

(i,j)∈S1×S2

Xij] =
∑

(i,j)∈S1×S2

(||DI ||22 − ||DI ||42)+

∑
(i,j)̸=(k,l);|{i,j,k,l}|=3

(E
[
XijXkl

]
− ||DI ||42)

= |S1|.|S2|(||DI ||22 − ||DI ||42) +
∑

(i,j);(k,j)∈S1×S2;i̸=k

E
[
XijXkj

]
+

∑
(i,j);(i,l)∈S1×S2;j ̸=l

E
[
XijXil

]
−

∑
(i,j) ̸=(k,l);|{i,j,k,l}|=3

||DI ||42

= |S1|.|S2|(||DI ||22 − ||DI ||42) + |S2|
(

|S1|
2

)
||DI ||33

+ |S1|
(

|S2|
2

)
||DI ||33 −

(
|S2|

(
|S1|
2

)
+ |S1|

(
|S2|
2

))
||DI ||42

≤ |S1||S2|
[
(||DI ||22 − ||DI ||42) + (|S1| + |S2|)(||DI ||33 − ||DI ||42)

]
Applying Chebyshev’s inequality, we get,

Pr[|X − E[X]| >
ϵ2

64|I|
|S1||S2|] ≤ 642V ar[X]|I|2

ϵ4|S1|2|S2|2

≤
|S1||S2|

[
(||DI ||22 − ||DI ||42) + (|S1| + |S2|)(||DI ||33 − ||DI ||42)

]
642|I|2

ϵ4|S1|2|S2|2

≤

[
||DI ||22 − ||DI ||42 + (|S1| + |S2|)(||DI ||32 − ||DI ||42)

]
642|I|2

ϵ4|S1|.|S2|

≤

[
||DI ||22 − ||DI ||42 + (|S1| + |S2|)(||DI ||22 − ||DI ||42)

]
642|I|2

ϵ4|S1|.|S2|

≤
||DI ||22

[
1 − ||DI ||22 + (|S1| + |S2|)(1 − ||DI ||22)

]
642|I|2

ϵ4|S1|.|S2|

≤
||DI ||22

(
1 − ||DI ||22

)(
1 + |S1| + |S2|

)
642|I|2

ϵ4|S1|.|S2|

ISAAC 2023

56:10 Testing Properties of Distributions in the Streaming Model

Where the third inequality uses the fact that ||DI ||3 ≤ ||DI ||2 and the fourth inequality uses
the fact that ||DI ||32 ≤ ||DI ||22 as ||DI ||2 ∈ (0, 1]. To make the probability < 1/3, we have,

|S1|.|S2| ≥ 3 × 642|I|2 1
ϵ4 ||DI ||22

(
1 − ||DI ||22

)(
1 + |S1| + |S2|

)
≥ 3 × 642 |I|2

ϵ4 ||DI ||22
||DI ||22

100

(
|S1| + |S2|

)
≥ 3 × 642 1

100ϵ4

(
|S1| + |S2|

)
≥ O(SI

ϵ4)

In the second inequality we have used the fact that (1 − ||DI ||22) ≥ 1
100 ||DI ||22 as ||DI ||22 ≤

100
101 < 1. The third inequality is obtained from the fact that ||D||22 ≥ 1

|I| . The final inequality
is obtained from the fact that |SI | = |S1| + |S2|. Therefore, provided |S1|.|S2| ≥ O(|SI |

ϵ4),
with probability at least 2/3, ||DI ||22 − ϵ2

64|I| ≤ coll(S1,S2)
|S1||S2| ≤ ||DI ||22 + ϵ2

64|I| . ◀

The bipartite collision-based tester works by verifying the total weight of the intervals
where the conditional distributions are far from uniformity. Let SI be the set of samples
inside an interval I and let it satisfy the condition of Lemma 11. The following lemma shows
that bipartite collision count is used to detect such intervals.

▶ Lemma 12. Let D be an unknown distribution over [n] and I ⊂ [n] is an interval. Let SI

be the set of points lying in the interval I and SI can be divided into two sets S1 and S2 such
that |S1||S2| ≥ O(|SI |/ϵ4), then the following happens with probability at least 2/3

If dT V (DI , UI) > ϵ
4 , then coll(S1,S2)

|S1||S2| > 1
|I| + ϵ2

64|I|

If dT V (DI , UI) ≤ ϵ
4 , then, coll(S1,S2)

|S1||S2| ≤ 1+ϵ2/64
|I| + ϵ2

16

Proof. Let, dT V (DI , UI) > ϵ
4 , squaring both sides, we get (dT V (DI , UI))2 > ϵ2

16 > ϵ2

32 . Using
the fact that dT V (DI , UI) ≤

√
|I| · ||DI − UI ||2, we deduce |I| · ||DI − UI ||22 > ϵ2

32 . Simplifying
the inequality, we get ||DI − UI ||22 > ϵ2

32|I| . Now, we obtain the following inequality by using
||DI − UI ||22 = ||DI ||22 − 1

|I| .

||DI ||22 − 1
|I|

>
ϵ2

32|I|

||DI ||22 >
ϵ2

32|I|
+ 1

|I|

Consider SI is divided into two sets so that |S1| · |S2| ≥ O(|SI |/ϵ4), by Lemma 11 we obtain,

coll(S1, S2)
|S1||S2|

+ ϵ2

64|I|
>

ϵ2

32|I|
+ 1

|I|
coll(S1, S2)

|S1||S2|
>

1
|I|

+ ϵ2

64|I|

Similarly, when dT V (DI , UI) ≤ ϵ
4 , we get ||DI ||22 ≤ ϵ2

16 + 1
|I| . Given SI can be divided into

two sets such that |S1| · |S2| ≥ O(|SI |/ϵ4), by Lemma 11, coll(S1,S2)
|S1|·|S2| ≤ 1+ϵ2/64

|I| + ϵ2

16 . ◀

Now, we present the bipartite collision-based monotonicity tester.

S. Roy and Y. Vasudev 56:11

Algorithm 2 Bipartite Collision Monotonicity.

Input : SAMP access to D, ℓ = O(1
ϵ1

log (nϵ1 + 1)) oblivious partitions
I = {I1, .., Iℓ} and error parameter ϵ, ϵ1 ∈ (0, 1], where ϵ1 = ϵ2

Output : Accept if D is monotone, Reject if D is not 7ϵ close to monotone
1 Sample T = O(1

ϵ6 log2 n log log n) points from SAMP
2 Get the empirical distribution D̃ over ℓ

3 Obtain an additional sample S = O(n log n
ϵ8) from SAMP

4 Let J be the set of intervals where the number of samples (in each interval Ij) is
|SIj

| ≥ O(|Ij |/ϵ4) and SIj
can be partitioned into two disjoint sets S1 and S2 such

that |S1||S2| ≥ O(|Ij |/ϵ8) and coll(S1,S2)
|S1||S2| ≥ (1+ϵ2/64

|Ij | + ϵ2

16)
5 if

∑
Ij∈J D̃(Ij) > 5ϵ then

6 Reject and Exit
7 Define a flat distribution (D̃f)I over [n]
8 Output Accept if (D̃f)I is 2ϵ-close to a monotone distribution. Otherwise output

Reject

▶ Theorem 13. The algorithm bipartite collision monotonicity uses O(n log n
ϵ8)

SAMP queries and outputs Accept with probability at least 2/3 if D is a monotone dis-
tribution and outputs Reject with probability at least 2/3 when D is not 7ϵ-close to monotone.

Proof. While sampling O(n log n/ϵ8) points according to D, an application of Chernoff
bound shows that the intervals with D(Ij) ≥ ϵ2/ log n will contain at least SIj

= O(|Ij |/ϵ4)
points. There will be at least one such interval with D(Ij) ≥ ϵ2/ log n as there are O(log n/ϵ2)
partitions.
Completeness. Let D be monotone. By oblivious partitioning with parameter ϵ1 = ϵ2, we
have

∑ℓ
j=1

∑
x∈Ij

|D(x) − D(Ij)
|Ij | | ≤ ϵ1 which implies

∑ℓ
j=1 D(Ij)dT V (DIj , UIj) ≤ ϵ2. Let J ′

be the set of intervals where for all Ij , dT V (DIj
, UIj

) > ϵ
4 , then

∑
Ij∈J′ D(Ij) ≤ 4ϵ.

Let Ĵ is the set of intervals where |S1||S2| ≥ O(|SIj
|/ϵ4) and dT V (DIj

, UIj
) > ϵ

4 . So,
Ĵ ⊆ J ′. From Lemma 12, we know Ĵ is the set of intervals where coll(S1,S2)

|S1||S2| > 1
|Ij | + ϵ2

64|Ij | .

Let J be the set of intervals where |S1||S2| ≥ O(|SIj |/ϵ4) and coll(S1,S2)
|S1||S2| > 1+ϵ2/64

|Ij | + ϵ2

16 , then
J ⊆ Ĵ ⊆ J ′. We know

∑
Ij∈J′ D(Ij) ≤ 4ϵ. So, we can conclude that

∑
Ij∈J D(Ij) ≤ 4ϵ.

When dT V (DIj
, UIj

) ≤ ϵ
4 , the algorithm does not sum over such D(Ij) even if |S1||S2| ≥

O(|SIj |/ϵ4). This is because by Lemma 12 we know coll(S1,S2)
|S1||S2| ≤ 1+ϵ2/64

|Ij | + ϵ2

16 . As a result,
we can say that when D is monotone

∑
Ij∈J D(Ij) ≤ 4ϵ.

We use the empirical distribution D̃ and deduce that
∑

Ij∈J D̃(Ij) ≤ 5ϵ. Hence, the
algorithm will NOT output Reject in Step 6. We also conclude as D is monotone, the
flattened distribution (D̃f)I is 2ϵ close to monotone and the algorithm will output Accept in
Step 8.
Soundness. We prove the contrapositive of the statement. Let the algorithm outputs
Accept , then we need to prove that D is 7ϵ close to monotone.

As the algorithm accepts,
∑

Ij∈J D̃(Ij) ≤ 5ϵ, for the set of intervals J where |S1||S2| ≥
O(|SIj

|/ϵ4) and coll(S1,S2)
|S1||S2| ≥ (1+ϵ2/64

|Ij | + ϵ2

16). For all such intervals Ij ∈ J by Lemma 11, we
obtain dT V (DIj

, UIj
) ≥ ϵ

4 .
Now, we calculate the distance between D and the flattened distribution and we get

dT V (D, (Df)I) < 4ϵ

ISAAC 2023

56:12 Testing Properties of Distributions in the Streaming Model

We also know from Lemma 3, dT V ((Df)I , (D̃f)I) < ϵ. By triangle inequality,
dT V (D, (D̃f)I) < 5ϵ. As the algorithm outputs accept, there exists a monotone distribution
M , such that dT V (D̃f)I , M) ≤ 2ϵ. By triangle inequality, we have dT V (D, M) < 7ϵ. ◀

4.2 Testing Monotonicity in Streaming model
In this section, we present the monotonicity tester in the streaming settings. A set of samples
is drawn according to the standard access model that is revealed online one at a time. The
task is to test whether an unknown distribution is a monotone or ϵ far from monotonicity.
Also, there is a memory bound of m bits. We use the notion of bipartite collision monotonicity
tester 2 discussed in the previous section. For satisfying the memory bound, we store an
optimal number of samples for such intervals and count bipartite collision between the stored
samples and the remaining ones. We present the algorithm below,

Algorithm 3 Streaming Monotonicity.

Input : SAMP access to D, ℓ = O(1
ϵ1

log (nϵ1 + 1)) oblivious partitions
I = {I1, .., Iℓ} and error parameter ϵ, ϵ1 ∈ (0, 1], where ϵ1 = ϵ2, memory
requirement log2 n/ϵ6 ≤ m ≤

√
n/ϵ3

1 Sample T = Õ(1
ϵ6 log2 n) points from SAMP

2 Get the empirical distribution D̃ over ℓ

3 Obtain an additional sample S = O(n log n
mϵ8) from SAMP

4 For each interval store the first set of S1 = O(mϵ2

log2 n
) samples in memory

5 Let J be the set of intervals, where for the next set of S2 = O(n
mϵ4) points, the

following condition is satisfied, coll(S1,S2)
|S1||S2| ≥ (1+ϵ2/64

|Ij | + ϵ2

16)
6 Check if

∑
Ij∈J D̃(Ij) > 5ϵ then

7 Reject and Exit
8 Define a flat distribution (D̃f)I over [n]
9 Output Accept if (D̃f)I is 2ϵ-close to a monotone distribution. Otherwise output

Reject

▶ Theorem 14. The algorithm streaming monotonicity uses O(n log n
mϵ8) SAMP queries

and outputs Accept with probability at least 2/3 if D is a monotone distribution and outputs
Reject with probability at least 2/3 when D is not 7ϵ close to monotone. It uses O(m) bits of
memory for log2 n/ϵ6 ≤ m ≤

√
n/ϵ3.

Proof. As there are O(log n
ϵ2) partitions, there will be at least one interval with D(Ij) ≥ ϵ2

log n .
An application of Chernoff bound shows that with high probability all such intervals contain
|SIj

| = O(n/mϵ4) points. In the algorithm, we divide SIj
into two sets S1 and S2 such

that for log2 n/ϵ6 ≤ m ≤
√

n/ϵ3, |S1| + |S2| = O(mϵ2/ log2 n) + O(n/mϵ4) = O(n/mϵ4) and
|S1|.|S2| = O(n/ϵ2 log2 n) ≥ O(n/mϵ8) = (1/ϵ4)|SIj

|. (The inequality is obtained by the
fact that m ≥ log2 n/ϵ6). This implies that the condition of Lemma 11 is satisfied by these
intervals and they are eligible for estimating the collision probability using bipartite collision
count. The rest of the analysis follows from Theorem 13.

The algorithm uses O(m) bits of memory for implementation in a single-pass streaming
model. For obtaining the empirical distribution D̃, we will use one counter for each of the
ℓ intervals. When a sample x comes, if x ∈ Ij , the corresponding counter for Ij will be
incremented by 1. In the end, the counters will give the number of samples that fall in

S. Roy and Y. Vasudev 56:13

each of the intervals, and using those values we can explicitly obtain the distribution D̃.
Each counter takes O(log n) bits of memory. There are total ℓ = (log n/ϵ2) counters. So,
the memory requirement for this step is O(log2 n/ϵ2) < m bits. Also, using the distribution
D̃ we can obtain the flattened distribution (D̃f)I without storing it explicitly. Hence, the
Line 9 does not require any extra space for checking whether (D̃f)I is 2ϵ close to monotone
or not. For storing the first set of S1 = O(mϵ2/ log2 n) samples for an interval will take
O(mϵ2/ log n) bits of memory. As we are storing S1 samples for all ℓ = O(log n/ϵ2) intervals,
it will take total O(m) bits of memory. ◀

▶ Remark 15. If the input to the algorithm is a monotone distribution, then the streaming
algorithm computes a distribution over the intervals I such that the flattening is close to
a monotone distribution. Since the number of intervals in the partition is O(log n/ϵ), the
explicit description of the distribution can be succinctly stored.

We would also like to point out that the final step in the algorithm requires testing if
the learnt distribution is close to some monotone distribution, and we have not explicitly
bounded the space required for that.

4.2.1 Lower bound for testing monotonicity
In this section, we prove the lower bound for monotonicity testing problem in the streaming
settings. We start with the discussion of the uniformity testing lower bound by ([17]) in the
streaming model and later we show how the same lower bound is applicable in our case.

▶ Theorem 16 (Uniformity testing lower bound in streaming framework [17]). Let A be an
algorithm which tests if a distribution D is uniform versus ϵ-far from uniform with error
probability 1/3, can access the samples in a single-pass streaming fashion using m bits of
memory and S samples, then S.m = Ω(n/ϵ4). Furthermore, if S < n0.9 and m > S2/n0.9

then S · m = Ω(n log n/ϵ4).

The proof of the above lemma proceeds by choosing a random bit X ∈ {0, 1}, where X = 0
defines a Yes instance (uniform distribution) and X = 1 defines a No instance (ϵ-far from
uniform) and calculating the mutual information between X and the bits stored in the memory
after seeing S samples. In their formulation, the Yes instance is a uniform distribution over
2n and the No instance is obtained by pairing (2i − 1, 2i) indices together and assigning
values by tossing an ϵ-biased coin. In particular, the No distribution is obtained as follows,
pair the indices as {1, 2}, {3, 4}, ..., {2n − 1, 2n}. Pick a bin {2i − 1, 2i} and for each bin a
random bit Yi ∈ {±1} to assign the probabilities as,

(D(2i − 1), D(2i)) =
{

1+ϵ
2n , 1−ϵ

2n if Yi = 1
1−ϵ
2n , 1+ϵ

2n if Yi = −1

It is straightforward that the Yes distribution is a monotone distribution as well. We
show that any distribution D from the No instance set is O(ϵ)-far from monotonicity. We
start by choosing an α ∈ (0, ϵ/4) and defining a set of partitions I = {I1, ..., Iℓ} such that
|Ij | = ⌊(1 + α)j⌋ for 1 ≤ j ≤ ℓ. Let (Df)I be the flattened distribution corresponding to I.
We use the following lemma from ([9]) which reflects the fact if D is far from (Df)I , then D

is also far from being monotone. In particular, we define the lemma as follows,

▶ Lemma 17 ([9]). Let D be a distribution over domain [n] and I = {I1, ..., Iℓ} are the set of
partitions defined obliviously with respect to a parameter α ∈ (0, 1) where ℓ = O(1

α log nα) and
|Ij | = ⌊(1 + α)j⌋. If D is ϵ-close to monotone non-increasing, then dT V (D, (Df)I) ≤ 2ϵ + α

where (Df)I is the flattened distribution of D with respect to I.

ISAAC 2023

56:14 Testing Properties of Distributions in the Streaming Model

Let, D be a distribution chosen randomly from the No instance set. We have the following
observation,

▶ Lemma 18. Let I = {I1, ..., Iℓ} be the oblivious partitions of D with parameter α such
that |Ij | = ⌊(1 + α)j⌋.

If |Ij | is odd, then
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | = ϵ
2n (|Ij | − 1

|Ij |).

If |Ij | is even, then
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | ≥ ϵ
2n (|Ij | − 4

|Ij |).

Proof. If |Ij | is odd, it will contain k (any positive integer) number of bin where each bin is
of form (2x − 1, 2x) and an extra index i′ which can have the probability weight either 1+ϵ

2n

or 1−ϵ
2n . Let D(i′) = 1+ϵ

2n . In this case, D(Ij) = |Ij |
2n + ϵ

2n .

∑
i∈Ij

|D(i) − D(Ij)
|Ij |

| =
∑
i∈Ij

|D(i) − 1
2n

− ϵ

2n|Ij |
|

= ϵ

2n
(1 − 1

|Ij |
) |Ij | − 1

2 + ϵ

2n
(1 + 1

|Ij |
) |Ij | − 1

2 + ϵ

2n
(1 − 1

|Ij |
)

= ϵ

2n
(|Ij | − 1

|Ij |
)

When D(i′) = 1−ϵ
2n , similar calculation will follow.

If |Ij | is even, there are two possibilities, (i) Ij consists of k (positive integer) bins.
So, there will be equal number of 1+ϵ

2n and 1−ϵ
2n in Ij and D(Ij) = |Ij |

2n . In this case, it is
straightforward to observe that

∑
i∈Ij

|D(i) − D(Ij)
|Ij | | = ϵ|Ij |

2n . Another case is, (ii) Ij contains
bp, ..., bp+k−1 bins completely and i′ ∈ bp−1, and i′′ ∈ bp+k where D(i′) = D(i′′); the case
when D(i′) ̸= D(i′′) will be similar to (i) that we saw earlier. Let D(i′) = D(i′′) = 1+ϵ

2n . In
this case, D(Ij) = |Ij |

2n + ϵ
n .

∑
i∈Ij

|D(i) − D(Ij)
|Ij |

| =
∑
i∈Ij

|D(i) − 1
2n

− ϵ

n|Ij |
|

= ϵ

2n
(1 − 1

|Ij |
) |Ij | − 2

2 + ϵ

2n
(1 + 1

|Ij |
) |Ij | − 2

2 + ϵ

n
(1 − 2

|Ij |
)

= ϵ

2n
(|Ij | − 4

|Ij |
)

Combining (i) and (ii), we say
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | ≥ ϵ
2n (|Ij | − 4

|Ij |). Similar calculation will
follow when D(i′) = D(i′′) = 1−ϵ

2n . ◀

In our case, we apply oblivious partitions on D (chosen randomly from the No set) with
respect to the parameter α and use the above lemma, to conclude the following,

▶ Lemma 19. Let D be a randomly chosen distribution from the No instance set, then D is
ϵ/4-far from any monotone non-increasing distribution.

Proof. We calculate dT V (D, (Df)I) =
∑ℓ

j=1
∑

i∈Ij
|D(i)− D(Ij)

|Ij | | =
∑

|Ij |is even
∑

i∈Ij
|D(i)−

D(Ij)
|Ij | | +

∑
|Ij |is odd

∑
i∈Ij

|D(i) − D(Ij)
|Ij | |. Each odd length interval contributes

∑
i∈Ij

|D(i) −
D(Ij)

|Ij | | = ϵ
2n (|Ij | − 1

|Ij |) and each even length interval contributes
∑

i∈Ij
|D(i) − D(Ij)

|Ij | | ≥
ϵ

2n (|Ij | − 4
|Ij |).

S. Roy and Y. Vasudev 56:15

Hence, simplifying the distance, we get, dT V (D, (Df)I) ≥
∑

|Ij |is even
ϵ

2n (|Ij | − 4
|Ij |) +∑

|Ij |is odd
ϵ

2n (|Ij |− 1
|Ij |) ≥ ϵ

2n

∑
Ij∈ℓ |Ij |− ϵ

2n

(∑
|Ij |is even

4
|Ij | +

∑
|Ij |is odd

1
|Ij |

)
≥ ϵ− ϵ

2n .5ℓ ≥
3ϵ
4 > 2 ϵ

4 + α, for α = ϵ/4. The third inequality is obtained by using the fact that |Ij | ≥ 1 and
the fourth inequality considers ℓ < n/10. Now, by using the contra-positive of the Lemma
17, D is ϵ/4-far from any monotone non-increasing distribution. ◀

Therefore, the uniformity testing lower bound from [17] is applicable in our case for dis-
tinguishing monotone from ϵ/4-far monotone. We formalize this in the theorem below.

▶ Theorem 20. Let A be an algorithm that tests if a distribution D is monotone versus
ϵ/4-far from monotonicity with error probability 1/3, can access the samples in a single-pass
streaming fashion using m bits of memory and S samples, then S.m = Ω(n/ϵ4). Furthermore,
if n0.34/ϵ8/3 + n0.1/ϵ4 ≤ m ≤

√
n/ϵ3, then S.m = Ω(n log n/ϵ4).

We obtain the above theorem as analogous to the Theorem 16 by showing that lower bound for
uniformity implies lower bound for monotonicity in the streaming framework. In particular,
the uniform distribution is monotone non-increasing by default and we show that a randomly
chosen distribution from No instance set is ϵ/4-far from monotone no-increasing. Hence, the
correctness of the above theorem follows directly from the Theorem 16.

4.3 Learning decomposable distributions in the streaming model
The algorithm and analysis from the previous section of monotone distributions extend to a
more general class of structured distributions known as (γ, L)-decomposable distributions
([11, 18]). Formally, the class of (γ, L)-decomposable distributions is defined as follows.

▶ Definition 21 ((γ, L)-decomposable distribution). A class C of distributions is said to be
(γ, L)-decomposable, if for every D ∈ C, there exists an ℓ ≤ L and a partition I = {I1, .., Iℓ}
of [n] into intervals such that for every interval Ij ∈ I one of the following conditions hold.

D(Ij) ≤ γ
L

maxi∈Ij D(i) ≤ (1 + γ)mini∈Ij D(i)

In particular, monotone distributions, k-modal distributions, k-histograms are (γ, L)-
decomposable for suitable values of γ and L. We refer to the appendix for a discussion
regarding the same. We can use the ideas from the previous section and modify the algorithm
of Fischer et al ([18]) to obtain trade-offs between the sample complexity and space complexity
for learning the class of (γ, L)-decomposable distributions. In particular, we have the following
theorem,

▶ Theorem 22. If D is an (ϵ/2000, L)-decomposable distribution, then the algorithm learn-
ing L-decomposable distribution streaming outputs a distribution (D̃f)I such that
dT V (D, (D̃f)I) ≤ ϵ with probability at least 1 − δ. The algorithm requires O(nL log (1/ϵ)

mϵ9)
samples from D and needs O(m) bits of memory where log n/ϵ4 ≤ m ≤ O(

√
n log n/ϵ3).

5 Conclusion

We give efficient algorithms for testing identity, monotonicity and (γ, L)-decomposability
in the streaming model. For a memory constraint m, the number of samples required is a
function of the support size n and the constraint m. For monotonicity testing, our bounds
are nearly optimal. We note that the trade-off that we achieve, and lower bounds work for

ISAAC 2023

56:16 Testing Properties of Distributions in the Streaming Model

certain parameters of the value m. Furthermore, we have not tried to tighten the dependence
of the bound on the parameter ϵ. One natural question to ask is if the dependence of sample
complexity on m can be improved, and whether it can work for a larger range of values.

References

1 Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, and Ziteng Sun. Estimating entropy of
distributions in constant space. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

2 Maryam Aliakbarpour, Andrew McGregor, Jelani Nelson, and Erik Waingarten. Estimation of
entropy in constant space with improved sample complexity. arXiv preprint arXiv:2205.09804,
2022.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

4 Gabriel Bathie and Tatiana Starikovskaya. Property testing of regular languages with ap-
plications to streaming property testing of visibly pushdown languages. In ICALP 2021,
GLASGOW (virtual conference), United Kingdom, 2021.

5 T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. Rubinfeld, and P. White. Testing random
variables for independence and identity. In Proceedings of the 42Nd IEEE Symposium on
Foundations of Computer Science, FOCS ’01, pages 442–451, Washington, DC, USA, 2001.
IEEE Computer Society.

6 Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone
and unimodal distributions. In Proceedings of the Thirty-sixth Annual ACM Symposium on
Theory of Computing, STOC ’04, pages 381–390, New York, NY, USA, 2004. ACM.

7 Tomer Berg, Or Ordentlich, and Ofer Shayevitz. On the memory complexity of uniformity
testing. In Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth Conference
on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages 3506–3523.
PMLR, 02–05 July 2022.

8 Lucien Birge. On the Risk of Histograms for Estimating Decreasing Densities. The Annals of
Statistics, 15(3):1013–1022, 1987.

9 Clément L. Canonne. Big Data on the rise: Testing monotonicity of distributions. In 42nd
International Conference on Automata, Languages and Programming (ICALP), 2015.

10 Clément L. Canonne. Topics and techniques in distribution testing: A biased but rep-
resentative sample. Found. Trends Commun. Inf. Theory, 19(6):1032–1198, 2022. doi:
10.1561/0100000114.

11 Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, and Ronitt Rubinfeld. Testing
shape restrictions of discrete distributions. Theory of Computing Systems, 62(1):4–62, January
2018. Publisher Copyright: © 2017, Springer Science+Business Media New York.

12 Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions
using conditional samples. SIAM Journal on Computing, 44(3):540–616, 2015.

13 Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of
conditional samples in distribution testing. SIAM Journal on Computing, 45(4):1261–1296,
2016.

14 Steve Chien, Katrina Ligett, and Andrew McGregor. Space-efficient estimation of robust
statistics and distribution testing. In Andrew Chi-Chih Yao, editor, Innovations in Computer
Science – ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings,
pages 251–265. Tsinghua University Press, 2010.

15 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. In J. Algorithms, 2004.

https://doi.org/10.1561/0100000114
https://doi.org/10.1561/0100000114

S. Roy and Y. Vasudev 56:17

16 Artur Czumaj, Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Testable proper-
ties in general graphs and random order streaming. In 24th International Conference on
Randomization and Computation (RANDOM), 2020.

17 Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, and Sankeerth Rao. Communication
and memory efficient testing of discrete distributions. In Annual Conference Computational
Learning Theory, 2019.

18 Eldar Fischer, Oded Lachish, and Yadu Vasudev. Improving and extending the testing of
distributions for shape-restricted properties. Algorithmica, Springer, 81,3765–3802, 2019.
arXiv:1609.06736.

19 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Electron
Colloq Comput Complexity, 7, January 2000.

20 Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20, May
2014.

21 Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applications.
Foundations and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

22 Sampriti Roy and Yadu Vasudev. Testing properties of distributions in the streaming model,
2023. arXiv:2309.03245.

23 Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

ISAAC 2023

https://arxiv.org/abs/1609.06736
https://arxiv.org/abs/2309.03245

A Strongly Polynomial-Time Algorithm for
Weighted General Factors with Three Feasible
Degrees
Shuai Shao # Ñ

School of Computer Science and Technology, University of Chinese Academy of Sciences,
Beijing, China

Stanislav Živný # Ñ

Department of Computer Science, University of Oxford, UK

Abstract
General factors are a generalization of matchings. Given a graph G with a set π(v) of feasible
degrees, called a degree constraint, for each vertex v of G, the general factor problem is to find a
(spanning) subgraph F of G such that degF (v) ∈ π(v) for every v of G. When all degree constraints
are symmetric ∆-matroids, the problem is solvable in polynomial time. The weighted general factor
problem is to find a general factor of the maximum total weight in an edge-weighted graph. Strongly
polynomial-time algorithms are only known for weighted general factor problems that are reducible
to the weighted matching problem by gadget constructions.

In this paper, we present a strongly polynomial-time algorithm for a type of weighted general
factor problems with real-valued edge weights that is provably not reducible to the weighted matching
problem by gadget constructions. As an application, we obtain a strongly polynomial-time algorithm
for the terminal backup problem by reducing it to the weighted general factor problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases matchings, factors, edge constraint satisfaction problems, terminal backup
problem, delta matroids

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2023.57

Related Version Full Version: https://arxiv.org/abs/2301.11761

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 714532). This research was also funded by UKRI EP/X024431/1. All data is provided
in full in the results section of this paper. Part of the work was done while the first author was a
postdoctoral research associate at the University of Oxford.

1 Introduction

A matching in an undirected graph is a subset of the edges that have no vertices in common,
and it is perfect if its edges cover all vertices of the graph. Graph matching is one of the
most studied problems both in graph theory and combinatorial optimization, with beautiful
structural results and efficient algorithms described, e.g., in the monograph of Lovász and
Plummer [38] and in relevant chapters of standard textbooks [43, 34]. In particular, the
weighted (perfect) matching problem is to find a (perfect) matching of the maximum total
weight for a given graph of which each edge is assigned a weight. This problem can be solved
in polynomial time by the celebrated Edmonds’ blossom algorithm [14, 15]. Since then, a
number of more efficient algorithms have been developed [20, 35, 31, 8, 22, 27, 24, 23, 26, 29].
Table III of [10] gives a detailed review of these algorithms.

© Shuai Shao and Stanislav Živný;
licensed under Creative Commons License CC-BY 4.0

34th International Symposium on Algorithms and Computation (ISAAC 2023).
Editors: Satoru Iwata and Naonori Kakimura; Article No. 57; pp. 57:1–57:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shao10@ustc.edu.cn
http://staff.ustc.edu.cn/~wwwucuc/
https://orcid.org/0000-0003-0935-2929
mailto:standa.zivny@cs.ox.ac.uk
https://www.cs.ox.ac.uk/standa.zivny/
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.4230/LIPIcs.ISAAC.2023.57
https://arxiv.org/abs/2301.11761
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Weighted General Factors with Three Feasible Degrees

The f -factor problem is a generalization of the perfect matching problem in which one is
given a non-negative integer f(v) for each vertex v ∈ V of G = (V, E). The task is to find a
(spanning) subgraph F = (VF , EF) of G such that degF (v) = f(v) for every v ∈ V .1 The
case f(v) = 1 for every v ∈ V is the perfect matching problem. This problem, as well as the
weighted version, can be solved efficiently by a gadget reduction to the perfect matching
problem [16]. In addition, Tutte gave a characterization of graphs having an f -factor [47],
which generalizes his characterization theorem for perfect matchings [46]. Subsequently, the
study of graph factors has attracted much attention with many variants of graph factors, e.g.,
b-matchings, [a, b]-factors, (g, f)-factors, parity (g, f)-factors, and anti-factors introduced,
and various types of characterization theorems proved for the existence of such factors. We
refer the reader to the book [1] and the survey [40] for a comprehensive treatment of the
developments on the topic of graph factors.

In the early 1970s, Lovász introduced a generalization of the above factor problems [36, 37],
for which we will need a few definitions. For any nonnegative integer n, let [n] denote
{0, 1, . . . , n}. A degree constraint D of arity n is a subset of [n].2 We say that a degree
constraint D has a gap of length k if there exists p ∈ D such that p + 1, . . . , p + k /∈ D

and p + k + 1 ∈ D. An instance of the general factor problem (GFP) [36, 37] is given by a
graph G = (V, E) and a mapping π that maps every vertex v ∈ V to a degree constraint
π(v) ⊆ [degG(v)] of arity degG(v). The task is to find a subgraph, if one exists, F of G

such that degF (v) ∈ π(v) for every v ∈ V . The case π(v) = {0, 1} for every v ∈ V is the
matching problem, and the case π(v) = {1} for every v ∈ V is the perfect matching problem.
Cornuéjols showed that the GFP is solvable in polynomial time if each degree constraint has
gaps of length at most 1 [7]. When a degree constraint having a gap of length at least 2
occurs, the GFP is NP-complete [37, 7] except for the case when all constraints are either
0-valid or 1-valid. A degree constraint D of arity k is 0-valid if 0 ∈ D, and 1-valid if k ∈ D.
When all constraints are 0-valid, the empty graph is a factor. When all constraints are
1-valid, the underlying graph is a factor of itself. In both cases, the GFP is trivially tractable.

In this paper, we consider the weighted general factor problem (WGFP) where each edge
is assigned a real-valued weight and the task is to find a general factor of the maximum total
weight. We suppose that each degree constraint has gaps of length at most 1 for which the
unweighted GFP is known to be polynomial-time solvable. Some cases of the WGFP are
reducible to the weighted matching or perfect matching problem by gadget constructions,
and hence are polynomial-time solvable. In these cases, the degree constraints are called
matching-realizable (see Definition 18). For instance, the degree constraint D = [b] where
b > 0, for b-matchings is matching realizable [48]. The weighted b-matching problem is
interesting in its own right in combinatorial optimization and has been well studied with
many elaborate algorithms developed [41, 39, 21, 3, 25]. Besides b-matchings, Cornuéjols
showed that the parity interval constraint D = {g, g + 2, . . . , f} where f ≥ g ≥ 0 and
f ≡ g mod 2, is matching realizable [7], and Szabó showed that the interval constraint
D = {g, g + 1, . . . , f} where f ≥ g ≥ 0, for (g, f)-factors is matching realizable [45]. Thus,
the WGFP where each degree constraint is an interval or a parity interval is reducible to
the weighted matching problem (with some vertices required to have degree exactly 1) and
hence solvable in polynomial-time by Edmonds’ algorithm, although Szabó gave a different

1 In graph theory, a graph factor is usually a spanning subgraph. Here, without causing ambiguity, we
allow F to be an arbitrary subgraph including the empty graph and we adapt the convention that
degF (v) = 0 if v ∈ V \ VF .

2 We always associate a degree constraint with an arity. Two degree constraints are different if they have
different arities although they may be the same set of integers.

S. Shao and S. Živný 57:3

algorithm for this problem [45]. By reducing the WGFP with interval and parity interval
constraints to the weighted (g, f)-factor problem, a faster algorithm was obtained in [11]
based on Gabow’s algorithm [21].

In [45], Szabó further conjectured that the WGFP is solvable in polynomial time without
requiring each degree constraint should be an interval or a parity interval, as long as each
degree constraint has gaps of length at most 1. To prove the conjecture, a natural question
is then the following: Are there other WGFPs that are polynomial-time solvable by a gadget
reduction to weighted matchings? In other words, are there other degree constraints that are
matching realizable? In this paper, we show that the answer is no.

▶ Theorem 1. A degree constraint with gaps of length at most 1 is matching realizable if
and only if it is an interval or a parity interval.

Previous results beyond matchings realizable degree constraints. With the answer to the
above question being negative, new algorithms need to be devised for the WGFP with degree
constraints that are not intervals or parity intervals. Unlike the weighted matching problem
and the weighted b-matching problem for which various types of algorithms have been
developed, only a few algorithms have been presented for the more general and challenging
WGFP: For the cardinality version of WGFP, i.e., the WGFP where each edge is assigned
weight 1, Dudycz and Paluch introduced a polynomial-time algorithm for this problem with
degree constrains having gaps of length at most 1, which leads to a pseudo-polynomial-time
algorithm for the WGFP with non-negative integral edge weights [11].

The algorithm in [11] is based on a structural result showing that if a factor is not optimal,
then a factor of larger weight can be found by a local search, which can be done in polynomial
time. However, it is not clear how much larger the weight of the new factor is. In order to
get an optimal factor, the algorithm needs to repeat local searches iteratively until no better
factors can be found, and the number of local searches is bounded by the total edge weight,
which makes the algorithm pseudo-polynomial-time. Later, in an updated version [12], by
carefully assigning edge weights, the algorithm was improved to be weakly polynomial-time
with a running time O(log Wmn6), where W is the largest edge weight, m is the number of
edges and n is the number of vertices. Later, Kobayash extended the algorithm to a more
general setting called jump system intersections [33].

Our main contribution. Independently of [12], in this paper, we make a step towards
a strongly polynomial-time algorithm for the WGPF. Let p ≥ 0 be an arbitrary integer.
Consider the following two types of degree constraints {p, p + 1, p + 3} and {p, p + 2, p + 3} (of
arbitrary arity). We will call them type-1 and type-2 respectively. These are the “smallest”
degree constraints that are not matching realizable.

▶ Theorem 2. There is a strongly polynomial-time algorithm for the WGFP with real-valued
edge weights where each degree constraint is an interval, a parity interval, a type-1, or a
type-2 (of arbitrary arities). The algorithm runs in time O(n6) for a graph with n vertices.

The requirement of degree constraints in our result may look overly specific. However,
the scope of our algorithm is not narrow. First, our result implies a complexity dichotomy for
the WGFP on all subcubic graphs (see the following Theorem 3), which for many is a large
and interesting class of graphs. More importantly, there are interesting problems arising from
applied areas that are encompassed by the WGPF with constraints considered in this paper.

For instance, the terminal backup problem from network design is the following problem.
Given a graph consisting of terminal nodes, non-terminal nodes, and edges with non-negative
costs. The goal is to find a subgraph with the minimum total cost such that each terminal node

ISAAC 2023

57:4 Weighted General Factors with Three Feasible Degrees

is connected to at least one other terminal node (for the purpose of backup in applications).
It is known that an optimal solution of the terminal backup problem consists of edge-disjoint
paths containing 2 terminals and stars containing 3 terminals [49]. In other words, in an
optimal subgraph of the terminal backup problem, each terminal node has degree 1 and each
non-terminal node has degree 0, 2 or 3. Thus, the terminal backup problem can be expressed
as a WGFP with degree constraints {1} and {0, 2, 3} (both of arbitrary arities). A weakly
polynomial-time algorithm was given for the terminal backup problem in [2]. Our result
gives a strongly polynomial-time algorithm for this problem.

In addition, our algorithm gives a tractability result for the WGFP with degree constraints
that are provably not matching realizable, thus going beyond existing algorithms. The
algorithm is a recursive algorithm, reducing the problem to a smaller sub-problem of itself
by fixing the parity of degree constraints on vertices. Its correctness is based on a delicate
structural result, which is stronger than that of [12].3 Equipped with this result, our algorithm
can directly find an optimal factor (not just a better one) of an instance of a larger size
by performing only one local search from an optimal factor of a smaller instance. Here,
the important part is not how to find a better factor by local search (the main result of
[12]) but rather how to ensure that the better factor obtained by only one local search is
actually optimal under certain assumptions. This is the key to making our algorithm strongly
polynomial. In addition, as a by-product, we give a simple proof of the result of [12] for the
special case of WGFP with interval, parity interval, type-1 and type-2 degree constraints by
reducing the problem to WGFP on subcubic graphs and utilizing the equivalence between
2-vertex connectivity and 2-edge connectivity of subcubic graphs.

Relation with (edge) constraint satisfaction problems. The graph factor problem is
encompassed by a special case of the Boolean constraint satisfaction problem (CSP), called
edge-CSP, in which every variable appears in exactly two constraints [30, 17]. When every
constraint is symmetric (i.e, the value of the constraint only depends on the Hamming weight
of its input), the Boolean edge-CSP is a graph factor problem.

For general Boolean edge-CSPs, Feder showed that the problem is NP-complete if a
constraint that is not a ∆-matroid occurs, except for those that are tractable by Schaefer’s
dichotomy theorem for Boolean CSPs [42]. In a subsequent line of work [9, 28, 18, 13],
tractability of Boolean edge-CSPs has been established for special classes of ∆-matroids,
most recently for even ∆-matroids [32]. A complete complexity classification of Boolean edge-
CSPs is still open with the conjecture that all ∆-matroids are tractable. A degree constraint
(i.e., a symmetric constraint) is a ∆-matroid if and only if it has gaps of length at most 1.
Thus, the above conjecture holds for symmetric Boolean edge-CSPs by Cornuéjols’ result on
the general factor problem [7]. A complexity classification for weighted Boolean edge-CSPs
is certainly a more challenging goal: The complexity of weighted Boolean edge-CSPs with
even ∆-matroids as constraints is still open. Our result in Theorem 2 gives a tractability
result for weighted Boolean edge-CSPs with certain symmetric ∆-matroids as constraints.
Combining our main result with known results on Boolean valued CSPs [6], we obtain a
complexity dichotomy for weighted Boolean edge-CSPs with symmetric constraints of arity
no more than 3, i.e., the WGFP on subcubic graphs.

3 The result in [12] holds for the more general WGFP with all degree constraints having gaps of length
at most 1, while our result only works for the WGFP with interval, parity interval, type-1 and type-2
degree constraints.

S. Shao and S. Živný 57:5

Let D be a degree constraint of arity at most 3. If D ̸= {0, 3}, then D is an interval, a
parity interval, a type-1, or a type-2. Thus, if the constraint {0, 3} (of arity 3) does not occur,
then the WGFP is strongly polynomial-time solvable by our main theorem. Otherwise, the
constraint {0, 3} occurs. In this case, for a vertex v labeled by {0, 3}, the three edges incident
to it must take the same assignments in a feasible factor (i.e., the three edges are all either
present or absent in any factor). Thus, the vertex v can be viewed as a Boolean variable
and it appears in three other degree constraints connected to it. By viewing all vertices with
{0, 3} as variables appearing three times and the other edges as variables appearing twice,
the WGFP becomes a special case of valued CSPs where some variables appear three times
and the other variables appear twice. It is known that once variables are allowed to appear
three times in a CSP, then they can appear arbitrarily many times [9]. Thus, the WGPF
with {0, 3} occurring is equivalent to a standard (non-edge) CSP [19]. By the dichotomy
theorem for valued CSPs [6], one can check that the problem is tractable if and only if for
every degree constraint D of arity k ≤ 3, D ⊆ {0, k}. Thus, we have the following complexity
dichotomy.

▶ Theorem 3. The WGFP on subcubic graphs is strongly polynomial-time solvable if
1. the degree constraint {0, 3} of arity 3 does not occur,
2. or for every degree constraint D of arity k ≤ 3, D ⊆ {0, k}.
Otherwise, the problem is NP-hard.

Organization. In Section 2, we present basic definitions and notation. In Section 3, we
describe our algorithm and give a structural result for the WGFP that ensures the correctness
and the strongly polynomial-time running time of our algorithm. In Section 4, we introduce
basic augmenting subgraphs as an analogy of augmenting paths for weighed matchings and
give a proof of the structural result. The proof is based on a result regarding the existence
of certain basic factors for subcubic graphs, for which we give a proof sketch in Section 5.
Finally, we discuss matching realizability and its relation with ∆-matroids in Appendix A.
All omitted proofs can be found in the full version [44].

2 Preliminaries

Let D be a (possibly infinite) set of degree constraints.

▶ Definition 4. The weighted general factor problem parameterized by D, denoted by
WGFP(D), is the following computational problem. An instance is a triple Ω = (G, π, ω),
where G = (V, E) is a graph, π : V → D assigns to every v ∈ V a degree constraint Dv ∈ D

of arity degG(v), and ω : E → R assigns to every e ∈ E a real-valued weight w(e) ∈ R. The
task is to find, if one exists, a general factor F of G such that the total weight of edges in F

is maximized.
The general factor problem GFP(D) is the decision version of WGFP(D); i.e., deciding

whether a general factor exists or not.

Suppose that Ω = (G, π, ω) is a WGFP instance. If F is a general factor of G under π,
then we say that F is a factor of Ω, denoted by F ∈ Ω. In terms of this inclusion relation,
Ω can be viewed as a set of subgraphs of G. We extend the edge weight function ω to
subgraphs of G. For a subgraph H of G, its weight ω(H) is

∑
e∈E(H) ω(e) (ω(H) = 0 if H

is the empty graph). If H contains an isolated vertex v, then ω(H) = ω(H ′), where H ′ is
the graph obtained from H by removing v. Moreover, H ∈ Ω if and only if H ′ ∈ Ω. In the

ISAAC 2023

57:6 Weighted General Factors with Three Feasible Degrees

following, without other specification, we always assume that a factor does not contain any
isolated vertices. The optimal value of Ω, denoted by Opt(Ω), is maxF ∈Ω ω(F). We define
Opt(Ω) = −∞ if Ω has no factor. A factor F of Ω is optimal in Ω if ω(F) = Opt(Ω).

For a WGFP instance Ω′ = (G′, π′, ω′), where G′ ⊆ G4 and ω′ is the restriction of ω

on the edges of G′, we say Ω′ is a sub-instance of Ω, denoted by Ω′ ⊆ Ω, if F ∈ Ω for
every F ∈ Ω′. In particular, Ω′ is a subset of Ω by viewing them as two sets of subgraphs
of G. If Ω′ ⊆ Ω, then Opt(Ω′) ≤ Opt(Ω). For two WGFP instances Ω1 = (G, π1, ω) and
Ω2 = (G, π2, ω), we use Ω1 ∪ Ω2 to denote the union of factors of these two instances, i.e.,
Ω1 ∪ Ω2 = {F ⊆ G | F ∈ Ω1 or F ∈ Ω2}, and Ω1 ∩ Ω2 to denote the intersection, i.e.,
Ω1 ∩ Ω2 = {F ⊆ G | F ∈ Ω1 and F ∈ Ω2}. Note that Ω1 ∪ Ω2 and Ω1 ∩ Ω2 are sets of
subgraphs of G and may not define WGFP instances on G.

We use G1 and G2 to denote the set of degree constraints that are intervals and parity
intervals, respectively, and T1 and T2 to denote the set of degree constraints that are type-1
and type-2, respectively. Let G = G1 ∪ G2 and T = T1 ∪ T2. In this paper, we study the
problem WGFP(G ∪ T).

Let H1 = (V1, E1) and H2 = (V2, E2) be two subgraphs of G. The symmetric difference
graph H1∆H2 is the induced subgraph of G induced by the edge set E1∆E2. Note that there
are no isolated vertices in a symmetric difference graph. When E1 ∩ E2 = ∅, we may write
H1∆H2 as H1 ∪H2. When E2 ⊆ E1, we may write H1∆H2 as H1\H2. A subcubic graph is
defined to be a graph where every vertex has degree 1, 2 or 3. Unless stated otherwise, we
use VG and EG to denote the vertex set and the edge set of a graph G, respectively.

3 Algorithm

We give a recursive algorithm for the problem WGFP(G ∪ T), using the problems WGFP(G)
and the decision problem GFP(G ∪ T) as oracles.

Given an instance Ω = (G, π, ω) of WGFP(G ∪ T), we define the following sub-instances
of Ω = (G, π, ω) that will be used in the recursion. Recall that VG denotes the vertex set of
the graph G. Let TΩ denote the set {v ∈ VG | π(v) ∈ T}. (We may omit the subscript Ω of
TΩ when it is clear from the context.)

For every vertex v ∈ TΩ, we split the instance Ω in two by splitting the degree constraint
π(v) in two parity intervals. More precisely, we define

D0
v = {pv + 1, pv + 3} and D1

v = {pv} if π(v) = {pv, pv + 1, pv + 3} ∈ T1;
D0

v = {pv, pv + 2} and D1
v = {pv + 3} if π(v) = {pv, pv + 2, pv + 3} ∈ T2.

We have D0
v, D1

v ∈ G2. For i ∈ {0, 1} and v ∈ TΩ, we define Ωi
v = (G, πi

v, ω) to be the
sub-instance of Ω where πi

v(x) = π(x) for every x ∈ VG\{v} and πi
v(v) = Di

v. Then, for
every v ∈ TΩ, we have Ω0

v ∩ Ω1
v = ∅ and Ω0

v ∪ Ω1
v = Ω. Moreover, TΩ0

v
= TΩ1

v
= TΩ\{v}.

Let F be a factor of Ω. Similarly to above, one can partition Ω into 2|TΩ| many sub-
instances according to F such that each one is an instance of WGFP(G) – for each v ∈ TΩ, we
choose one of the two splits of π(v) as above. (We note that the algorithm will not consider
all exponentially many sub-instances.) In detail, for every vertex v ∈ TΩ, we define DF

v = Di
v

where degF (v) ∈ Di
v as follows:

4 We use the term “subgraph” and notation G′ ⊆ G throughout for the standard meaning of a “normal”
subgraph i.e., if G = (V ′, E′) and G = (V, E) then G′ ⊆ G means V ′ ⊆ V and E′ ⊆ E.

S. Shao and S. Živný 57:7

DF
v = {pv} if π(v) = {pv, pv + 1, pv + 3} ∈ T1 and degF (v) = pv,

DF
v = {pv + 1, pv + 3} if π(v) = {pv, pv + 1, pv + 3} ∈ T1 and degF (v) ̸= pv;

DF
v = {pv + 3} if π(v) = {pv, pv + 2, pv + 3} ∈ T2 and degF (v) = pv + 3,

DF
v = {pv, pv + 2} if π(v) = {pv, pv + 2, pv + 3} ∈ T2 and degF (v) ̸= pv + 3.

By definition, degF (v) ∈ DF
v ⊆ π(v) and DF

v ∈ G2. In fact, DF
v is the maximal set such

that degF (v) ∈ DF
v ⊆ π(v) and DF

v ∈ G2. One can also check that for every v ∈ TΩ,
π(v)\DF

v ∈ G2, and moreover for every p ∈ DF
v and q ∈ π(v)\DF

v , p ̸≡ q mod 2.
For every W ⊆ TΩ, we define ΩF

W = (G, πF
W , ω) to be the sub-instance of Ω where

πF
W (v) = π(v)\DF

v for v ∈W , πF
W (v) = DF

v for v ∈ TΩ\W , and πF
W (v) = π(v) for v ∈ V \TΩ.

Then for every W , ΩF
W is an instance of WGFP(G). Moreover, we have ∪W ⊆T ΩF

W = Ω and
ΩF

W1
∩ ΩF

W2
= ∅ for every W1 ̸= W2. Thus, {ΩF

W }W ⊆TΩ is a partition of Ω (viewed as a set
of subgraphs of G). When W = ∅, we write ΩF

W as ΩF .
Our algorithm is given in Algorithm 1.

Algorithm 1 Finding an optimal factor for an instance of WGFP(G ∪ T).

1 Function Decision:
Input : An instance Ω = (G, π, ω) of WGFP(G ∪ T).
Output : A factor of Ω, or “No” if Ω has no factor.

2 Function Optimization:
Input : An instance Ω = (G, π, ω) of WGFP(G).
Output : An optimal factor of Ω, or “No” if Ω has no factor.

3 Function Main:
Input : An instance Ω = (G, π, ω) of WGFP(G ∪ T).
Output : An optimal factor F ∈ Ω, or “No” if Ω has no factor.

4 T ← {v ∈ V | π(v) ∈ T};
5 if T is the empty set then
6 return Optimization (Ω);
7 else
8 Arbitrarily pick u ∈ T ;
9 if Decision (Ω0

u) returns “No” then
10 return Main (Ω1

u);
11 else
12 F opt ← Main (Ω0

u);
13 foreach v ∈ T do
14 // Elements of T can be traversed in an arbitrary order.
15 W ← {u} ∪ {v};
16 if Optimization(ΩF opt

W) ̸= “No” then F ′ ← Optimization(ΩF opt

W);
17 if ω(F ′) > ω(F opt) then F opt ← F ′;
18 end
19 return F opt;
20 end
21 end

ISAAC 2023

57:8 Weighted General Factors with Three Feasible Degrees

The key that makes our algorithm running strongly polynomial-time is the following
structural result (Theorem 5) for the problem WGFP(G ∪ T). It says that given an optimal
factor F of Ω0

u for some u ∈ TΩ, if F is not optimal in Ω, then we can directly find an optimal
factor of Ω by searching at most n sub-instances of Ω which are in WGFP(G). Note that
the number of searches is independent of the edge weights. Thus, the problem of finding an
optimal factor in Ω can be reduced to finding an optimal factor in Ω0

u, where there is one
fewer vertex u with constraints in T. By recursively reducing an instance to another with
fewer vertices with constraints in T, we eventually get an instance of WGFP(G) which can
be solved in polynomial-time. This leads to a strongly polynomial-time algorithm for finding
an optimal factor.

▶ Theorem 5. Suppose that Ω = (G, π, ω) is an instance of WGFP(G ∪ T), F is a factor of
Ω and F is optimal in Ω0

u for some u ∈ TΩ. Then a factor F ′ is optimal in Ω if and only if
ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF

W) for every W where u ∈W ⊆ TΩ and |W | = 1 or 2.
In other words, if F is not optimal in Ω, then there is an optimal factor of Ω which

belongs to ΩF
W for some W where u ∈W ⊆ TΩ and |W | = 1 or |W | = 2.

▶ Remark 6. This result is stronger than the main result (Theorem 2) of [12], and it is not
simply implied by [12]. To clarify this, we give a simple proof outline of Theorem 5 here.

In order to prove Theorem 5, it suffices to prove the direction that if ω(F ′) ≥ ω(F) and
ω(F ′) ≥ Opt(ΩF

W) for every W where u ∈ W ⊆ TΩ and |W | = 1 or 2, then F ′ is optimal
in Ω. We prove this by contradiction. Suppose that F ′ is not optimal in Ω, and F ∗ is an
optimal factor of Ω. Then, ω(F ∗) > ω(F ′) ≥ Opt(ΩF

W) for every W ⊆ TΩ where |W | ≤ 2.
Also, ω(F ∗) /∈ Ω0

u since ω(F ∗) > ω(F) = Opt(Ω0
u). Thus, degF ∗(u) ̸≡ degF (u) mod 2.

By [12], a canonical path M ⊆ F ∆F ∗ with positive weight5 can be found, and then F ∆M

is a factor of Ω with larger weight than F and F ∆M ∈ ΩF
W for some W ⊆ TΩ where |W | ≤ 2.

However, this does not lead to a contradiction. To get a contradiction, we need to show
that the positive weighted canonical path M (a basic augmenting subgraph) further satisfies
degM (u) ≡ 0 mod 2. Then, degF ∆M (u) ≡ degF (u) mod 2. Thus, F∆M is a factor with
larger weight than F and F∆M ∈ Ω0

u, which contradicts with F being optimal in Ω0
u.

The existence of a basic augmenting subgraph M satisfying degM (u) ≡ 0 mod 2 is
formally stated in the second property of Lemma 12. The main technical part of the paper
(Section 5.2 of the full paper) is devoted to prove it. In Section 5 of this short version, we
give an example to illustrate the proof ideas. The existence of such a basic augmenting
subgraph is highly non-trivial. In fact, it does not hold anymore after a subtle change of
the condition “F is optimal in Ω0

u” to “F is optimal in Ω1
u” for some u ∈ TΩ. We give the

following example (see Figure 1) to show this.

Figure 1 An example that violates Theorem 5 when F is optimal in Ω1
u instead of Ω0

u.

In this instance, π(u) = π(v) = π(t) = {0, 1, 3} (denoted by hollow nodes) and π(s) =
{0, 2, 3} (denoted by the solid node), and ω(C1) = ω(pvs) = ω(psu) = ω(p′

su) = ω(put) =
ω(C2) = 1. Inside the cycles C1 and C2, and the paths pvs, psu, put, and p′

su, there are

5 See definition 3 of [12]. They are defined as basic augmenting subgraphs (Definition 11) in this paper.

S. Shao and S. Živný 57:9

other vertices of degree 2 with the degree constraint {0, 2} so that the graph G is simple.
We omit these vertices of degree 2 in Figure 1. In this case, TΩ = {u, v, s, t}. Consider the
sub-instance Ω1

u = (G, π1
u, ω). We have π1

u(u) = D1
u = {0} since π(u) = {0, 1, 3}. Then, the

only factor F of Ω1
u is the empty graph (assuming there are no isolated vertices in factors),

and F is not optimal in Ω. Also, the only optimal factor of Ω is the graph G and G ∈ ΩF
TΩ

where |TΩ| = 4. Clearly, degG(u) ̸≡ degF (u) mod 2. One can check that for any factor F ′ of
Ω with larger weight than F , degF ′(u) ̸≡ degF (u) mod 2. In other words, there is no basic
augmenting subgraph M such that degM (u) ≡ 0 mod 2. Moreover, one can check that in
this case, Theorem 5 also does not hold. In other words, the existence of a basic augmenting
subgraph satisfying degM (u) ≡ 0 mod 2 is crucial for the correctness of Theorem 5.

Using Theorem 5, we now prove that Algorithm 1 is correct.

▶ Lemma 7. Given an instance Ω = (G, π, ω) of WGFP(G,T), Algorithm 1 returns either
an optimal factor of Ω, or “No” if Ω has no factor.

Proof. Recall that for an instance Ω = (G, π, ω), we define TΩ = {v ∈ VG | π(v) ∈ T} where
VG is the vertex set of G . We prove the correctness by induction on the |TΩ|.

If |TΩ| = 0, Ω is an instance of WGFP(G). Algorithm 1 simply returns Optimization
(Ω). By the definition of the function Optimization, the output is correct.

Suppose that Algorithm 1 returns correct results for all instances Ω′ of WGFP(G,T)
where |TΩ′ | = k. We consider an instance Ω of WGFP(G,T) where |TΩ| = k + 1. Algorithm 1
first calls the function Decision (Ω0

u) for some arbitrary u ∈ T .
We first consider the case that Decision (Ω0

u) returns “No”. By the definition, Ω0
u has no

factor. Moreover, since Ω = Ω0
u ∪ Ω1

u, we have F ∈ Ω if and only if F ∈ Ω1
u. Then, a factor

F ∈ Ω1
u is optimal in Ω if and only if it is optimal in Ω1

u. Note that Ω1
u is an instance of

WGFP(G,T) where |TΩ1
u
| = k. By the induction hypothesis, Algorithm 1 returns a correct

result Main (Ω1
u) for the instance Ω1

u, which is also a correct result for the instance Ω.
Now, we consider the case that Decision (Ω0

u) returns a factor of Ω0
u. Then, Main (Ω0

u)
returns an optimal factor F of Ω0

u. After the loop (lines 13 to 17) in Algorithm 1, we get a
factor F opt of Ω such that ω(F opt) ≥ Opt(ΩF

W) for every u ∈W ⊆ TΩ where |W | = 1 (when
u = v) or |W | = 2 (when u ̸= v) and ω(F opt) ≥ ω(F). By Theorem 5, F opt is an optimal
factor of Ω. Thus, Algorithm 1 returns a correct result. ◀

Now, we consider the time complexity of Algorithm 1. The size of an instance is defined
to be the number of vertices of the underlying graph of the instance.

▶ Lemma 8. Run Algorithm 1 on an instance Ω = (G, π, ω) of size n. Then,
the algorithm will stop the recursion after at most n recursive steps;
the algorithm will call Decision at most n many times, call Optimization at most
n(n+1)

2 + 1 many times, and perform at most n(n+1)
2 many comparisons;

the algorithm runs in time O(n6).

Proof. Let Ωk = (G, πk, ω) be the instance after k many recursive steps. Here Ω0 = Ω. Recall
that TΩk = {v ∈ V | πk(v) ∈ T}. For an instance Ωk with |TΩk | > 0, the recursive step will
then go to the instance (Ωk)0

u or (Ωk)1
u for some u ∈ TΩk . Thus, Ωk+1 = (Ωk)0

u or (Ωk)1
u. In

both cases, TΩk+1 = TΩk\{u} and hence |TΩk+1 | = |TΩk |−1. By design, the algorithm will stop
the recursion and return Optimization (Ωm) when it reaches an instance Ωm with |TΩm | = 0.
Thus, #recursive steps = m = |TΩ| − 0 ≤ |V | = n. To prove the second item, we consider the
number of operations inside the recursive step for the instance Ωk = (G, πk, ω). Note that k ≤
n and |TΩk | = |TΩ|−k ≤ n−k. If |TΩk | = 0, then the algorithm will simply call Optimization

ISAAC 2023

57:10 Weighted General Factors with Three Feasible Degrees

once. If |TΩk | > 0, then inside the recursive step, the algorithm will call Decision once,
and call Optimization once or |TΩk | many times depending on the answer of Decision.
Moreover, in the later case, the algorithm will also perform |TΩk | many comparisons. Thus,
we have #calls of Decision =

∑
|TΩk |>0 1 =

∑|TΩ|
i=1 1 = |TΩ| ≤ n, #calls of Optimization ≤

1+
∑

|TΩk |>0 |TΩk | = 1+
∑|TΩ|

i=1 i ≤ n(n+1)
2 +1, and #comparisons ≤

∑
|TΩk |>0 |TΩk | ≤ n(n+1)

2 .

Let tMain(n) denote the running time of Algorithm 1 on an instance of size n, and tDec(n) and
tOpt(n) denote the running time of algorithms for functions Decision and Optimization,
respectively. Then, tDec(n) = O(n4) by the algorithm in [7] and tOpt(n) = O(n4) by the
algorithm in [11]. Thus, tMain(n) ≤ ntDec(n) + n(n+1)+2

2 tOpt(n) + n(n+1)
2 = O(n6). ◀

4 Proof of Theorem 5

In this section, we give a proof of Theorem 5. The general strategy is that starting with
a non-optimal factor F of an instance Ω = (G, ω, π), we want to find a subgraph H of G

such that by taking the symmetric difference F∆H, we get another factor of Ω with larger
weight. The existence of such subgraphs is trivial (Lemma 10). However, the challenge is
how to find one efficiently. As an analogy of augmenting paths in the weighted matching
problem, we introduce basic augmenting subgraphs (Definition 11) for the weighted graph
factor problem, which can be found efficiently. We will show that given a non-optimal
factor F , a basic augmenting subgraph always exists (Lemma 12, property 1). Then, we can
efficiently improve the factor F to another factor with larger weight. As shown in [12], this
already gave a weakly polynomial-time algorithm. However, the existence of basic augmenting
subgraphs is not enough to get a strongly polynomial-time algorithm, which requires the
number of improvement steps being independent of edge weights. Thus, in order to prove
Theorem 5, which leads to a strongly polynomial-time algorithm, we further establish that
there exists a basic augmenting subgraph that satisfies certain stronger properties under
suitable assumptions (Lemma 12, property 2). This result will imply Theorem 5.

▶ Definition 9 (F -augmenting subgraphs). Suppose that F is a factor of an instance Ω =
(G, π, ω). A subgraph H of G is F -augmenting if F∆H ∈ Ω and ω(F∆H)− ω(F) > 0.

▶ Lemma 10. Suppose that F is a factor of an instance Ω. If F is not optimal in Ω, then
there exists an F -augmenting subgraph.

Proof. Since F is not optimal, there is some F ′ ∈ Ω such that ω(F ′) > ω(F). Let H = F ∆F ′.
We have F∆H = F ′ ∈ Ω and ω(H) = ω(F ′)− ω(F) > 0. Thus, H is F -augmenting. ◀

Recall that for an instance Ω = (G, π, ω) of WGFP(G,T), TΩ is the set {v ∈ VG | π(v) ∈ T}.
For two factors F, F ∗ ∈ Ω, we define T F ∆F ∗

Ω = {v ∈ TΩ | degF ∆F ∗(v) ≡ 1 mod 2}.

▶ Definition 11 (Basic augmenting subgraphs). Suppose that F and F ∗ are factors of an
instance Ω = (G, π, ω) and ω(F) < ω(F ∗). An F -augmenting subgraph H = (VH , EH) is
(F, F ∗)-basic if H ⊆ F∆F ∗, |V odd

H | ≤ 2, and V odd
H ∩ TΩ ⊆ T F ∆F ∗

Ω where V odd
H = {v ∈ VH |

degH(v) ≡ 1 mod 2}.

▶ Lemma 12. Suppose that F and F ∗ are two factors of an instance Ω = (G, π, ω).
1. If ω(F ∗) > ω(F), then there exists an (F, F ∗)-basic subgraph.
2. If ω(F ∗) > Opt(ΩF

W) for every W ⊆ T F ∆F ∗

Ω with |W | ≤ 2, and T F ∆F ∗

Ω contains a vertex
u such that F ∈ Ω0

u (i.e., degF (u) ∈ D0
u), then there exists an (F, F ∗)-basic subgraph H

where degH(u) ≡ 0 mod 2.

S. Shao and S. Živný 57:11

▶ Remark 13. The first property of Lemma 12 implies the following: a factor F ∈ Ω is
optimal if and only if ω(F) ≥ Opt(ΩF

W) for every W ⊆ TΩ with |W | ≤ 2. This is a special
case of the main result (Theorem 2) of [12] where the authors consider the WGFP for all
constraints with gaps of length at most 1. The second property of Lemma 12 is more refined
than the first property and it implies our main result (Theorem 5). In this paper, as a
by-product of the proof of property 2, we give a simple proof of Theorem 2 of [12] for the
special case WGFP(G ∪ T) based on certain properties of subcubic graphs.

Using the second property of Lemma 12, we can prove Theorem 5.

▶ Theorem (Theorem 5). Suppose that F is a factor of an instance Ω = (G, π, ω), and F is
optimal in Ω0

u for some u ∈ TΩ. Then a factor F ′ is optimal in Ω if and only if ω(F ′) ≥ ω(F)
and ω(F ′) ≥ Opt(ΩF

W) for every W where u ∈W ⊆ TΩ and |W | = 1 or 2.

Proof. If F ′ is optimal in Ω, then clearly ω(F ′) ≥ ω(F) and ω(F ′) ≥ Opt(ΩF
W) for every W

where u ∈ W ⊆ TΩ and |W | = 1 or 2. Thus, to prove the theorem, it suffices to prove the
other direction. Since ω(F ′) ≥ ω(F) and F is optimal in Ω0

u, we have ω(F ′) ≥ Opt(ΩF
W) for

every W ⊆ TΩ where u /∈W and |W | ≤ 2. Also, since ω(F ′) ≥ Opt(ΩF
W) for every W where

u ∈W ⊆ TΩ and |W | = 1 or 2, we have ω(F ′) ≥ Opt(ΩF
W) for every W ⊆ TΩ where |W | ≤ 2.

For a contradiction, suppose that F ′ is not optimal in Ω. Let F ∗ be an optimal factor of Ω.
Then, ω(F ∗) > ω(F ′). Thus, ω(F ∗) > ω(F ′) ≥ Opt(ΩF

W) for every W ⊆ TΩ where |W | ≤ 2.
Also, F ∗ /∈ Ω0

u since ω(F ∗) > ω(F) and F is optimal in Ω0
u. Thus, degF ∗(u) ̸≡ degF (u)

mod 2. Then, T F ∆F ∗

Ω contains the vertex u such that F ∈ Ω0
u. By Lemma 12, there exists an

(F, F ∗)-basic subgraph H where degH(u) ≡ 0 mod 2. Let F ′′ = F∆H. Then F ′′ ∈ Ω and
ω(F ′′) > ω(F). Also, F ′′ ∈ Ω0

u since degF ′′(u) ≡ degF (u) mod 2. This is a contradiction
with F being optimal in Ω0

u. ◀

Now it suffices to prove Lemma 12. By a type of normalization maneuver, we can transfer
any instance of WGFP(G,T) to an instance of WGFP(G,T) defined on subcubic graphs, called
a key instance (Definition 14). Recall that a subcubic graph is a graph where every vertex
has degree 1, 2 or 3. For key instances, there are five possible forms of basic augmenting
subgraphs, called basic factors (Definition 15). Then, the crux of the proof of Lemma 12 is
to establish the existence of certain basic factors of key instances (Theorem 16). For a proof
of Lemma 12 using Theorem 16, please refer to the proof of Lemma 4.4 in the full paper.

▶ Definition 14 (Key instance). A key instance Ω = (G, π, ω) is an instance of WGFP(G,T)
where G is a subcubic graph, and for every v ∈ VG, π(v) = {0, 1} if degG(v) = 1, π(v) = {0, 2}
if degG(v) = 2, and π(v) = {0, 1, 3} (i.e., type-1) or {0, 2, 3} (i.e., type-2) if degG(v) = 3.
We say a vertex v of degree 3 is of type-1 or type-2 if π(v) is type-1 or type-2 respectively.
We say a vertex v of any degree is 1-feasible or 2-feasible if 1 ∈ π(v) or 2 ∈ π(v) respectively.

▶ Definition 15 (Basic factor). Let Ω be a key instance. A factor of Ω is a basic factor if it is
in one of the following five forms: a path, a cycle, a tadpole graph (i.e., a graph consisting
of a cycle and a path such that they intersect at one endpoint of the path), a dumbbell graph
(i.e., a graph consisting of two vertex disjoint cycles and a path such that the path intersects
with each cycle at one of its endpoints), and a theta graph (i.e., a graph consisting of three
vertex disjoint paths with the same two endpoints).

▶ Theorem 16. Suppose that Ω = (G, π, ω) is a key instance.
1. If ω(G) > 0, then there is a basic factor F of Ω such that ω(F) > 0.
2. If ω(G) > 0, ω(G) > ω(F) for every basic factor F of Ω, and G contains a vertex u with

degG(u) = 1 or degG(u) = 3 and π(u) = {0, 2, 3}, then there is a basic factor F ∗ of Ω
such that ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2. (Recall that degF ∗(u) = 0 if u /∈ VF ∗ .)

ISAAC 2023

57:12 Weighted General Factors with Three Feasible Degrees

▶ Remark 17. For the second property of Theorem 16, the requirement of π(u) = {0, 2, 3}
when degG(u) = 3 is crucial. Consider the instance Ω = (G, π, ω) as shown in Figure 1. Note
that Ω is a key instance. and π(u) = {0, 1, 3}. In this case where π(u) = {0, 1, 3}, it can be
checked that the second property does not hold.

5 Proof Sketch of Theorem 16

In this section, we give a proof sketch of Theorem 16 and we focus on the proof of the second
property using the first property. Omitted proofs can be found in Section 5 of the full paper.

Proof sketch. By property 1 of Theorem 16, there exists at least one basic factor of Ω such
that its weight is positive. Among all such basic factors, we pick an F such that ω(F) is
the largest. Consider the graph G′ = G\F , i.e., the subgraph of G induced by the edge set
EG\EF . We consider the instance Ω′ = (G′, π′, ω′) where for every x ∈ VG′ , π′(x) = {0, 1} if
degG′(x) = 1, π′(x) = {0, 2} if degG′(x) = 2 and π′(x) = π(x) if degG′(x) = 3, and ω′ is the
weight function ω restricted to G′. Note that Ω′ is also a key instance, but it is not necessarily
a sub-instance of Ω. Since ω(G) > ω(F), we have ω′(G′) = ω(G′) = ω(G) − ω(F) > 0.
Without causing ambiguity, we may simply write ω′ as ω in the instance Ω′. By property 1 of
Theorem 16, there exists a basic factor F ′ of Ω′ such that ω(F ′) > 0. Since EF ′ ⊆ EG\EF ,
F and F ′ are edge-disjoint. Let H = F ∪ F ′, which is the subgraph of G induced by the
edge set EF ∪ EF ′ . We will show that we can find a subgraph F ∗ of H such that F ∗ is the
desired basic factor of Ω satisfying ω(F ∗) > 0 and degF ∗(u) ≡ 0 mod 2.

First, we show that H is a factor of Ω. Let V∩ = VF ∩ VF ′ . We show that for every
x ∈ VH\V∩, degH(x) ∈ π(x). If x ∈ VF \V∩, then degH(x) = degF (x). Since F ∈ Ω,
degF (x) ∈ π(x). Then, degH(x) ∈ π(x). If x ∈ VF ′\V∩, then degH(x) = degF ′(x). Since
x /∈ VF and G′ = G\F , degG′(x) = degG(x). Then, by the definition of Ω′, we have
π′(x) = π(x). Since F ′ is a factor of Ω′, degF ′(x) ∈ π′(x). Thus, degH(x) ∈ π(x). Now,
we consider vertices in V∩. Since F and F ′ are edge disjoint, for every x ∈ V∩ we have
degH(x) = degF (x) + degF ′(x) ≤ degG(x) ≤ 3. Also, degF (x), degF ′(x) ≥ 1 since F and F ′

are subcubic graphs which have no isolated vertices.
If degF (x) = 1, then 1 ∈ π(x). The vertex x is 1-feasible. Thus, degG(x) ̸= 2. Since
degG(x) > degF (x) = 1, degG(x) = 3. Then, degG′(x) = degG(x) − degF (x) = 2,
π′(x) = {0, 2} and degF ′(x) = 2.
If degF (x) = 2, then degG(x) = 3 since degG(x) > degF (x). Then, degG′(x) = degG(x)−
degF (x) = 1, π′(x) = {0, 1} and degF ′(x) = 1.

Thus, for every x ∈ V∩, degH(x) = degF (x) + degF ′(x) = 3 ∈ π(x). Thus, H is a factor of Ω.
Then, we finish the proof by a careful analysis of possible forms of F and F ′, and possible

intersection vertices in V∩. Here, we give an example where F is a tadpole graph with a
vertex u of degree 3 and a vertex v of degree 1 to illustrate this. Since degF (u) = 3, by
assumption, π(u) = {0, 2, 3}. Also, since degF (v) = 1 ∈ π(v), v is 1-feasible.

Consider possible vertices in V∩. Recall that for every x ∈ V∩, degF (x) = 1 and
degF ′(x) = 2, or degF (x) = 2 and degF ′(x) = 1. Since degF (u) = 3 = degG(u), we have
u /∈ V∩. Also, consider the possible forms of F ′. We show that F ′ is not a cycle. For a
contradiction, suppose that F ′ is a cycle. Then, all vertices of F ′ have degree 2. Thus, the
only possible vertex in V∩ is v. If V∩ = ∅, then for every x ∈ VF ′ , degF ′(x) = degH(x) ∈ π(x).
Thus, F ′ is a basic factor of Ω where ω(F ′) > 0 and degF ′(u) = 0. We are done. Otherwise,
V∩ = {v}. Then, degF (v) = 1 and degF ′(v) = 2. Since F is a tadpole graph, the graph H is
a dumbbell graph where u and v are the two vertices of degree 3. Thus, H is a basic factor
of Ω. Since ω(F ′) > 0, we have ω(H) = ω(F) + ω(F ′) > ω(F) which leads to a contraction

S. Shao and S. Živný 57:13

with F being a basic factor with the largest weight. Thus, F ′ is a basic factor which is not a
cycle. By Definition 15, F ′ contains exactly two vertices of odd degree, denoted by s and t.
Then, we have V∩ ⊆ {v, s, t}.

Recall that F is a tadpole graph consisting of a path and a cycle. We use C to denote the
cycle part of F , and VC denotes its vertex set. Consider {s, t}∩VC . Now, we handle possible
subcases according to intersection vertices appearing in VC . There are three subcases. Below,
for two points x and y, we use pxy or p′

xy to denote a path with endpoints x and y.

1. {s, t} ⊆ VC . Then, degF (s) = degF (t) = degC(s) = degC(t) = 2. In this case, degH(u) =
degH(s) = degH(t) = 3 and π(u) = π(s) = π(t) = {0, 2, 3}. Also, degF ′(s) = degF ′(t) =
1. Thus, F ′ is a path with endpoints s and t. Note that in this case, it is possible that
v ∈ VF ′ . If v ∈ VF ′ , then degH(v) = 3 and π(v) = {0, 1, 3}; otherwise, degH(v) = 1 and
π(v) = {0, 1} or {0, 1, 3}. The points u, s, and t split C into three paths, pus, pst, ptu.
Then, C = pus ∪ pst ∪ ptu. (See Figure 2.) If ω(C) > 0, then we are done since C is a
basic factor of Ω and degC(u) = 2. Thus, we may assume that ω(C) ≤ 0.

Figure 2 The two possible forms of graph H when {s, t} ∈ VC . Hollow nodes denote 1-feasible
vertices, and solid nodes denote 2-feasible vertices; red-colored lines denote paths in F , and blue-
colored lines denote paths in F ′.

Consider the graph H1 = H\pst = (F\pst) ∪ F ′. Note that VH1 = (VH\Vpst) ∪ {s, t}.
For every x ∈ VH1\{s, t}, we have degH1

(x) = degH(x) ∈ π(x) since H is a factor of Ω.
Also, degH1

(s) = 2 ∈ π(s) and degH1
(t) = 2 ∈ π(t). Thus, H1 is a factor of Ω. Also,

H1 is a tadpole graph if degH(v) = 1 or a theta graph if degH(v) = 3. Thus, in both
cases, H1 is a basic factor of Ω. Since F is a basic factor of Ω with the largest weight,
we have ω(F) ≥ ω(H1) = ω(F) − ω(pst) + ω(F ′). Thus, ω(pst) ≥ ω(F ′) > 0. Since
ω(C) = ω(pst) + ω(pus) + ω(ptu) ≤ 0, ω(pus) + ω(ptu) < 0. Without loss of generality,
we may assume that ω(pus) < 0. Then, consider the graph H2 = H\pus. Similarly, one
can check that H2 is a factor of Ω, and degH2

(u) = 2. Also, H2 is a tadpole graph if
degH(v) = 1, or a theta graph if degH(v) = 3. Thus, H2 is a basic factor of Ω. Moreover,
ω(H2) = ω(H)− ω(pus) > 0. We are done.

2. {s, t} ∩ VC = {s} or {t}. Without loss of generality, we may assume that s ∈ VC . Then,
degH(u) = degH(s) = 3 and π(u) = π(s) = {0, 2, 3}. If ω(C) > 0, then we are done since
C is a basic factor of Ω and degC(u) = 2. Thus, we may assume that ω(C) ≤ 0. Vertices
s and u split C into two paths pus and p′

us. Since ω(C) = ω(pus) + ω(p′
us) ≤ 0, among

them at least one is non-positive. Without loss of generality, we assume that ω(pus) ≤ 0.
Consider the graph H ′ = H\pus. We have ω(H ′) = ω(H)−ω(pus) > 0, and degH′(u) = 2.
Similar to the above case, one can check that H ′ is a factor of Ω. However, it is not
clear whether H ′ is a basic factor of Ω. Consider the sub-instance Ω′

H = (H ′, πH′ , ωH′)
of Ω defined on the subgraph H ′ of G where πH′(x) = π(x)∩ [degH′(x)] ⊆ π(x) for every
x ∈ VH′ and ωH′ is the restriction of ω on EH′ (we may write ωH′ as ω for simplicity).
Since ω(H ′) > 0, by property 1 of Theorem 16, there is a basic factor F ∗ ∈ ΩH′ such
that ω(F ∗) > 0. Then, degF ∗(u) ∈ πH′(u) = {0, 2}. Now, F ∗ is a basic factor of Ω.

ISAAC 2023

57:14 Weighted General Factors with Three Feasible Degrees

3. {s, t} ∩ VC = ∅. In this case, the cycle C does not intersect with F ′. Then, by viewing
the cycle C as an enlargement of the vertex u, this case is similar to the case that F is a
path with endpoints u and v, which is proved separately. Please refer to the full paper
for its proof. ◀

References
1 Jin Akiyama and Mikio Kano. Factors and factorizations of graphs: Proof techniques in factor

theory, volume 2031. Springer, 2011.
2 Elliot Anshelevich and Adriana Karagiozova. Terminal backup, 3d matching, and covering

cubic graphs. SIAM Journal on Computing, 40(3):678–708, 2011.
3 Richard P. Anstee. A polynomial algorithm for b-matchings: an alternative approach. Inform-

ation Processing Letters, 24(3):153–157, 1987.
4 André Bouchet. Greedy algorithm and symmetric matroids. Mathematical Programming,

38(2):147–159, 1987. doi:10.1007/BF02604639.
5 André Bouchet. Matchings and ∆-matroids. Discrete Applied Mathematics, 24(1-3):55–62,

1989.
6 David A Cohen, Martin C Cooper, Peter G Jeavons, and Andrei A Krokhin. The complexity

of soft constraint satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.
7 Gérard Cornuéjols. General factors of graphs. Journal of Combinatorial Theory, Series B,

45(2):185–198, 1988. doi:10.1016/0095-8956(88)90068-8.
8 William H. Cunningham and Alfred B. Marsh. A primal algorithm for optimum matching. In

Polyhedral Combinatorics, pages 50–72. Springer, 1978.
9 Víctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences per

variable: A study through delta-matroid parity. In Proceedings of the 28th International
Symposium on Mathematical Foundations of Computer Science (MFCS’03), volume 2747,
pages 358–367. Springer, 2003. doi:10.1007/978-3-540-45138-9_30.

10 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal
of the ACM, 61(1):1–23, 2014. doi:10.1145/2529989.

11 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. Lecture Notes in Computer
Science, 11159 LNCS:176–189, 2018. doi:10.1007/978-3-030-00256-5_15.

12 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. arXiv, version 3, 2021.
arXiv:1706.07418v3.

13 Zdeněk Dvořák and Martin Kupec. On Planar Boolean CSP. In Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP’15), volume
9134, pages 432–443. Springer, 2015. doi:10.1007/978-3-662-47672-735.

14 Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

15 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

16 Jack Edmonds and Ellis L Johnson. Matching: A well-solved class of integer linear programs.
In Combinatorial Structures and Their Applications, pages 89–92. Gordon & Breach, New
York, 1970.

17 Tomás Feder. Fanout limitations on constraint systems. Theoretical Computer Science,
255(1-2):281–293, 2001. doi:10.1016/S0304-3975(99)00288-1.

18 Tomás Feder and Daniel K. Ford. Classification of bipartite Boolean constraint satisfaction
through Delta-matroid intersection. SIAM J. Discrete Math., 20(2):372–394, 2006. doi:
10.1137/S0895480104445009.

19 Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

https://doi.org/10.1007/BF02604639
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1007/978-3-540-45138-9_30
https://doi.org/10.1145/2529989
https://doi.org/10.1007/978-3-030-00256-5_15
https://arxiv.org/abs/1706.07418v3
https://doi.org/10.1007/978-3-662-47672-7 35
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1016/S0304-3975(99)00288-1
https://doi.org/10.1137/S0895480104445009
https://doi.org/10.1137/S0895480104445009
https://doi.org/10.1137/S0097539794266766

S. Shao and S. Živný 57:15

20 Harold N. Gabow. Implementation of algorithms for maximum matching on nonbipartite
graphs. PhD thesis, Stanford University, 1974.

21 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the fifteenth annual ACM symposium on
Theory of computing, pages 448–456, 1983.

22 Harold N. Gabow. A scaling algorithm for weighted matching on general graphs. In Proceedings
of the 26th Annual IEEE Symposium on Foundations of Computer Science (FOCS’85), pages
90–100, 1985.

23 Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms,
pages 434–443, 1990.

24 Harold N. Gabow, Zvi Galil, and Thomas H. Spencer. Efficient implementation of graph
algorithms using contraction. Journal of the ACM (JACM), 36(3):540–572, 1989.

25 Harold N. Gabow and Piotr Sankowski. Algebraic algorithms for b-matching, shortest
undirected paths, and f -factors. In Proceedings of the 54th IEEE Annual Symposium on
Foundations of Computer Science (FOCS’13), pages 137–146, 2013.

26 Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph matching
problems. Journal of the ACM (JACM), 38(4):815–853, 1991.

27 Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(EV \ log V) algorithm for finding a
maximal weighted matching in general graphs. SIAM Journal on Computing, 15(1):120–130,
1986.

28 James F. Geelen, Satoru Iwata, and Kazuo Murota. The linear delta-matroid parity prob-
lem. Journal of Combinatorial Theory, Series B, 88(2):377–398, 2003. doi:10.1016/
S0095-8956(03)00039-X.

29 Chien-Chung Huang and Telikepalli Kavitha. Efficient algorithms for maximum weight
matchings in general graphs with small edge weights. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1400–1412. SIAM, 2012.

30 Gabriel Istrate. Looking for a version of Schaefer’s dichotomy theorem when each variable
occurs at most twice. Technical report, University of Rochester, 1997. UR CSD/TR652.

31 Aleksandr V. Karzanov. Efficient implementations of Edmonds’ algorithms for finding match-
ings with maximum cardinality and maximum weight. Studies in Discrete Optimization, pages
306–327, 1976.

32 Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and the
complexity of planar Boolean CSPs. ACM Transactions on Algorithms (TALG), 15(2):1–33,
2018.

33 Yusuke Kobayashi. Optimal general factor problem and jump system intersection. In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pages 291–305.
Springer, 2023.

34 Bernhard Korte and Jens Vygen. Combinatorial optimization: Theory and Algorithms,
volume 21. Springer, 2018.

35 Eugene L. Lawler. Combinatorial optimization: networks and matroids. Holt, Reinhart and
Winston, New York., 1976.

36 László Lovász. The factorization of graphs. In Combinatorial Structures and Their Applications,
pages 243–246. Gordon & Breach, New York, 1970.

37 László Lovász. The factorization of graphs. II. Acta Mathematica Academiae Scientiarum
Hungarica, 23(1-2):223–246, 1972. doi:10.1007/BF01889919.

38 László Lovász and Michael D. Plummer. Matching theory, volume 367. American Mathematical
Soc., 2009.

39 Alfred B. Marsh. Matching algorithms. PhD thesis, The Johns Hopkins University, 1979.
40 Michael D. Plummer. Graph factors and factorization: 1985–2003: a survey. Discrete

Mathematics, 307(7-8):791–821, 2007.

ISAAC 2023

https://doi.org/10.1016/S0095-8956(03)00039-X
https://doi.org/10.1016/S0095-8956(03)00039-X
https://doi.org/10.1007/BF01889919

57:16 Weighted General Factors with Three Feasible Degrees

41 William R. Pulleyblank. Faces of Matching Polyhedra. PhD thesis, University of Waterloo,
1973.

42 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 216–226, 1978.

43 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

44 Shuai Shao and Stanislav Živný. A Strongly Polynomial-Time Algorithm for Weighted General
Factors with Three Feasible Degrees. arXiv, 2023. arXiv:2301.11761.

45 Jácint Szabó. Good characterizations for some degree constrained subgraphs. Journal of
Combinatorial Theory, Series B, 99(2):436–446, 2009. doi:10.1016/J.JCTB.2008.08.009.

46 William Thomas Tutte. The factorization of locally finite graphs. Canadian Journal of
Mathematics, 2:44–49, 1950.

47 William Thomas Tutte. The factors of graphs. Canadian Journal of Mathematics, 4:314–328,
1952.

48 William Thomas Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of mathematics, 6:347–352, 1954.

49 Dahai Xu, Elliot Anshelevich, and Mung Chiang. On survivable access network design:
Complexity and algorithms. In IEEE INFOCOM 2008-The 27th Conference on Computer
Communications, pages 186–190. IEEE, 2008.

A ∆-Matroids and Matching Realizability

A ∆-matroid is a family of sets obeying an axiom generalizing the matroid exchange axiom.
Formally, a pair M = (U,F) is a ∆-matroid if U is a finite set and F is a collection of subsets
of U satisfying the following: for any X, Y ∈ F and any u ∈ X∆Y in the symmetric difference
of X and Y , there exits a v ∈ X∆Y such that X∆{u, v} belongs to F [4]. A ∆-matroid is
symmetric if, for every pair of X, Y ⊆ U with |X| = |Y |, we have X ∈ F if and only if Y ∈ F.
A ∆-matroid is even if for every pair of X, Y ⊆ U , |X| ≡ |Y | mod 2.

Suppose that U = {u1, u2, . . . , un}. A subset V ⊆ U can be encoded by a binary string
αV of n-bits where the i-th bit of αV is 1 if ui ∈ V and 0 if ui /∈ V . Then, a ∆-matroid
M = (U,F) can be represented by a relation RM of arity |U | which consists of binary strings
that encode all subsets in F. Such a representation is unique up to a permutation of variables
of the relation. A degree constraint D of arity n can be viewed as an n-ary symmetric
relation which consists of binary strings with the Hamming weight d for every d ∈ D. By
the definition of ∆-matroids, it is easy to check that a degree constraint D (as a symmetric
relation) represents a ∆-matroid if and only if D has all gaps of length at most 1.

▶ Definition 18 (Matching Gadget). A gadget using a set D of degree constraints consists
of a graph G = (U ∪ V, E) where degG(u) = 1 for every u ∈ U and there are no edges
between vertices in U , and a mapping π : V → D. A matching gadget is a gadget where
D = {{0, 1}, {1}}. A degree constraint D of arity n is matching realizable if there exists a
matching gadget (G = (U ∪ V, E), π : V → {{0, 1}, {1}}) such that |U | = n and for every
k ∈ [n], k ∈ D if and only if for every W ⊆ U with |W | = k, there exists a matching
F = (VF , EF) of G such that VF ∩ U = W and for every v ∈ V where π(v) = {1}, v ∈ VF .

The definition of matching realizability can be extended to a relation R of arity n by
requiring the set U of n vertices in a matching gadget to represent the n variables of R. If
R is realizable by a matching gadget G = (U ∪ V, E), then for every α ∈ {0, 1}n, α ∈ R if
and only if there is a matching F = (VF , EF) of G such that VF ∩ U is exactly the subset of
U encoded by α (i.e., for every ui ∈ U , ui ∈ VF if and only if αi = 1), and for every v ∈ V

https://arxiv.org/abs/2301.11761
https://doi.org/10.1016/J.JCTB.2008.08.009

S. Shao and S. Živný 57:17

where π(v) = {1}, v ∈ VF . Note that the matching realizability of a relation is invariant
under a permutation of its variables. We say that a ∆-matroid is matching realizable if the
relation representing it is matching realizable.6

The following result generalizes Lemma A.1 of [32].

▶ Lemma 19. Suppose that M = (U,F) is a matching realizable ∆-matroid, and V1, V2 ∈
F. Then, V1∆V2 can be partitioned into single variables S1, . . . , Sk and pairs of vari-
ables P1, . . . , Pℓ such that for every P = Si1 ∪ · · · ∪ Sir

∪ Pj1 ∪ · · · ∪ Pjt
({i1, . . . , ir} ⊆

[k], {j1, . . . , jt} ⊆ [ℓ]), V1∆P ∈ F and V2∆P ∈ F.

▶ Theorem 20. A degree constraint D of gaps of length at most 1 is matching realizable if
and only if all its gaps are of the same length 0 or 1.

Proof. By the gadget constructed in the proof of [7, Theorem 2], if a degree constraint has
all gaps of length 1 then it is matching realizable.7 We give the following gadget (Figure 3)
to realize a degree constraint D with all gaps of length 0, which generalizes the gadget in [48].
Suppose that D = {p, p + 1, . . . , p + r} of arity n where n ≥ p + r ≥ p ≥ 0. Consider the
following graph G = (U ∪ V, E): U consists of n vertices of degree 1, and V consists of two
parts V1 with |V1| = n and V2 with |V2| = n− p; the induced subgraph G(V) of G induced
by V is a complete bipartite graph between V1 and V2, and the induced subgraph G(U ∪ V1)
of G induced by U ∪ V1 is a bipartite perfect matching between U and V1. Every vertex in
V1 is labeled by the constraint {1}. There are r vertices in V2 labeled by {0, 1} and the other
n− p− r vertices in V2 labeled by {1}. One can check that this gadget realizes D.

Figure 3 A matching gadget realizing D = {p, p + 1, . . . , p + r} of arity n.

For the other direction, without loss of generality, we may assume that {p, p+1, p+3} ⊆ D

and p + 2 /∈ D. Since D has gaps of length at most 1, it can be associated with a symmetric
∆-matroid M = (U,F). Then, there is V1 ∈ F with |V1| = p and V2 ∈ F with |V2| = p + 3.
Since M is symmetric, we may pick V2 = V1 ∪ {v1, v2, v3} for some {v1, v2, v3} ∩ V1 = ∅.
Let S = V1∆V2 = {v1, v2, v3}. By Lemma 19, S can be partitioned into single variables
and/or pairs of variables such that for any union P of them, V2\P ∈ F. Since |S| = 3, there
exists at least a single variable xi in the partition of S such that V2\{vi} ∈ F. Note that
|V2\{vi}| = p + 2. Thus, p + 2 ∈ D. A contradiction. ◀

6 This definition of matching realizability for ∆-matroids is different from the one that is usually used for
even ∆-matroids [5, 13, 32], in which the gadget is only allowed to use the constraint {1} for perfect
matchings, and hence the resulting ∆-matroid must be even.

7 We remark that [7] includes gadgets for other types of degree constraints, including type-1 and type-2,
but only under a more general notion of gadget constructions that involve edges and triangles. The
gadget that only involves edges is a matching gadget defined in this paper.

ISAAC 2023

	p000-Frontmatter
	Preface
	PC

	p001-Elkind
	1 Talk Summary

	p002-Hong
	p003-A.Akitaya
	1 Introduction
	2 Preliminaries
	3 exists {R}-Completeness for Continuous Curves
	3.1 Higher Dimensions

	4 NP-Hardness and Algorithmic Results for Continuous Curves in {R}^1
	5 exists {R}-Completeness for Discrete Curves in {R}^2
	6 A Polynomial Time Algorithm for Discrete Curves in {R}^1
	A Omitted Proofs and Details from Section 3
	B Omitted Details from Section 6

	p004-Adamson
	1 Introduction
	2 Preliminaries
	3 Decision Problems
	4 Counting and Ranking
	5 Conclusions

	p005-Ahn
	1 Introduction
	2 Preliminaries
	3 Kernels for the (p,r,F)-Covering problems
	4 Kernels for the (p,r,F)-Packing problems

	p006-Alkema
	1 Introduction
	2 A subexponential algorithm for Euclidean One-of-a-Set TSP
	3 Rectlinear One-of-a-Cube TSP
	A Running time of the One-of-a-Set TSP algorithm
	B Proof of Lemma 8
	C Proof of Lemma 10
	D Running time of the Rectilinear One-of-a-Cube TSP algorithm

	p007-Amano
	1 Introduction
	1.1 Inner Product
	1.2 Majority
	1.3 Our Contributions and Implications
	1.4 Organization

	2 Preliminaries
	3 Improving Depth-3 Circuits for Inner Product
	4 Negations may Help Depth-3 Circuits computing Majority
	4.1 Motivating Example
	4.2 Negations are useless for k less than or equal to 2
	4.3 Negations may be useful for k greater than or equal to 3
	4.3.1 Blow-up Lemma
	4.3.2 Construction for k=3
	4.3.3 Construction for k=4
	4.3.4 Construction for k=5

	4.4 Construction based on Covering Design
	4.5 Summary

	5 Concluding Remark
	A Appendix
	A.1 Certificates for Inner Product of n
	A.2 Proof of Lemma 11

	p008-ArdevolMartinez
	1 Introduction
	2 Definitions
	3 Hardness of recognizing unit multiple interval graphs
	3.1 Hardness of Colored Unit 2-Interval Recognition
	3.2 Hardness of Unit 2-Interval Recognition
	3.3 Consequences and generalizations

	4 Concluding remarks

	p009-Bampis
	1 Introduction
	2 Further related works
	3 Problem Definition, Notations and Preliminaries
	3.1 Our contribution and articulation of the paper

	4 Non-preemptive Scheduling
	4.1 Lower Bounds
	4.2 Common Release Dates
	4.3 Arbitrary Release Dates

	5 Preemptive Scheduling
	5.1 Lower bounds
	5.2 Competitive Algorithm

	p010-Bathie
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Hamming distance, palindromes, and squares
	2.2 Models of computation

	3 Warm-up: Streaming algorithms for the LHD problems
	3.1 A streaming algorithm for k-LHD-PAL
	3.2 A streaming algorithm for k-LHD-SQ
	3.2.1 Reporting k-mismatch occurrences with nondecreasing delay
	3.2.2 Algorithm

	4 Deterministic read-only algorithms for the LHD problems
	4.1 Structure of k-mismatch occurrences
	4.2 Read-only algorithm for the pattern matching with k mismatches
	4.3 Read-only algorithm for k-LHD-PAL
	4.4 Read-only algorithm for k-LHD-SQ

	5 Language Edit Distance problems

	p011-Bergougnoux
	1 Introduction
	2 Related Definitions and Tools
	3 Proof of Theorem 1.2
	3.1 Proving Step I
	3.2 Proving Step II
	3.3 Concluding the Main Proof
	3.4 Case of Twin-width 3

	4 Conclusions

	p012-Bernardini
	1 Introduction
	2 Preliminaries
	3 O(n^3/b) Time Using O(b) Space in the Comparison Model
	4 O(frac{n^3log b}{b^2}) Time Using O(b) Space in the Comparison Model
	5 O~(frac{n^2}{b}) Time Using O~(b) Space for b > = sqrt{n} in the word RAM model
	5.1 Computing S_T(k) for Small k
	5.2 b-Runs and b-Gaps
	5.3 Processing the b-Gaps
	5.4 Processing the b-Runs
	5.5 Computing S_T(k) for Large k

	6 Substring Complexity from the Combinatorial Point of View
	7 Approximating delta in Sublinear Space

	p013-Berndt
	1 Introduction
	2 Preliminaries
	3 Refined Support Size Bounds for Integer Linear Programs
	4 An Efficient Approximation Scheme for Makespan Minimization on Uniformly Related machines
	4.1 Preprocessing
	4.2 Solving an MILP Formulation
	4.3 Constructing a Schedule

	5 Faster Schedule Construction
	5.1 The Hybrid-MILP Formulation
	5.2 Constructing a Schedule

	p014-Blauth
	1 Introduction
	1.1 Motivating questions
	1.2 Our results
	1.3 Our techniques
	1.4 Further related work

	2 Upper bound on the approximation ratio of random sampling
	2.1 An optimization problem to bound the approximation ratio
	2.2 Obtaining a single linear program
	2.3 The dual LP
	2.4 Bounding the error term (Proof of lemma:bounddelta)

	3 Discussion

	p015-Borzechowski
	1 Introduction
	2 Preliminaries
	2.1 Separability and Unique Solutions
	2.2 Graph-Theoretic Aspects

	3 An FPT Algorithm for 2-Thief-Necklace-Splitting
	4 Testing Separability
	5 Conclusion and Further Directions

	p016-Brand
	1 Introduction
	2 Preliminaries
	3 Convexity Measures
	4 Convolution Problems
	5 Open Questions

	p017-Chakraborty
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm for DMC
	4 Inapproximability of the DMC problem
	5 Conclusion
	A Approximation Algorithm for the DRMC Problem

	p018-Chen
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Definitions
	2.2 Static Data Structure for Distances in Interval Graphs

	3 Fully Dynamic Proper Interval Graphs
	4 Dynamic Interval Graphs in Incremental and Decremental Settings
	4.1 Data Structure for Decremental Interval Graphs

	5 Fully Dynamic Interval Graphs
	5.1 Distance Computation
	5.2 Data Structures for Analyzing Jumps in Block
	5.3 Maintaining Data Structure under Update Operations

	6 A Lower Bound for Axis-Aligned Line Segments in 3D

	p019-Chu
	1 Introduction
	1.1 Overview of our techiniques
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Basic Notations
	2.2 Problems
	2.3 Tree Decomposition

	3 Exact Algorithm for CVC
	3.1 Definition of the Tables
	3.1.1 Expected Properties for R_{alpha}
	3.1.2 Recursive Rules for R_{alpha}

	4 Approximation Algorithm for CVC
	4.1 Recursive Rules for R^_{alpha}
	4.2 Theorem 7 Proof Sketch

	5 Approximation algorithms for TSS and VDS
	5.1 The Algorithm Framework

	A Proof Sketch of Theorem 5
	B Proof of Theorem 7
	B.1 Proof of (A)
	B.2 Proof of (B)

	C Proof of Theorem 14

	p020-Cohen
	1 Introduction
	1.1 Prior Work
	1.2 Technical Overview
	1.3 Organization

	2 Preliminaries
	2.1 Associated Instances
	2.2 Restriction to {epsilon}-Nice Instances
	2.3 Two-dimensional Vector Bin Packing

	3 Approximation Algorithm for {epsilon}-Nice Instances
	3.1 Self-Bounding Functions
	3.2 Profit of the Sampled Configurations
	3.3 The Solution for the Residual Items

	4 APX-hardness
	5 Concluding Remarks

	p021-Conte
	1 Introduction
	2 Structure of MCSs
	2.1 Modeling MCS as an Exponentially Large DAG
	2.2 Concepts Borrowed from MCS Enumeration

	3 Polynomial-Size MDAG
	3.1 Equivalence Relation for Defining MDAG
	3.2 Direct and Incremental Construction of MDAG
	3.3 Cubic Size of the MCS DAG

	4 Efficient Operations on MDAG
	4.1 CAT Enumeration of MCSs
	4.2 Searching, Selecting, and Ranking

	5 Conclusions

	p022-Cotumaccio
	1 Introduction
	2 Preliminaries
	2.1 Relation with Previous Work
	2.2 Notation and First Definitions
	2.3 Our Approach

	3 Classifying Strings
	4 Computing the min-partition
	4.1 Classifying Minima
	4.2 Recursive Step
	4.3 Merging
	4.4 The Complementary Case

	5 Computing the min/max-partition

	p023-DeBerg
	1 Introduction
	2 k-Median and k-center with outliers in a polygonal domain
	2.1 Applying the Separator Theorem to {G}*
	2.2 Guessing and embedding the separator
	2.3 The k-Center problem with outliers

	3 A coreset for the k-center of points in a simple polygon
	4 Coresets for 1-center clustering with outliers

	p024-DeBerg
	1 Introduction
	2 Preliminaries
	2.1 Distributive Lattices
	2.2 Submodular Function Minimization
	2.3 Minimum Cuts

	3 A Polynomial Time Algorithm for SUM-k-DMC and COV-k-DMC
	3.1 Proof of Distributivity
	3.2 Proof of Submodularity
	3.3 Finding the Set of Join-Irreducibles

	4 A Simple Algorithm for Finding Disjoint Minimum s-t Cuts
	4.1 When the input is an s-t path graph
	4.2 Handling the general case

	5 Concluding remarks

	p025-Dhar
	1 Introduction
	2 Preliminaries
	3 Polynomial cases for Euclidean Steiner Minimal Tree
	3.1 Isosceles Trapezoids and Vertical Forks
	3.2 Euclidean Steiner Minimal Tree and Large Polygons with Large Aspect Ratios

	4 Euclidean Steiner Minimal Tree on f(n)-Almost Convex Point Sets
	5 Approximation Algorithms for Euclidean Steiner Minimal Tree
	5.1 Hardness of Approximation for Euclidean Steiner Minimal Tree on Cases of Almost Convex Sets

	6 Conclusion

	p026-Didimo
	1 Introduction
	2 Basic Definitions and Properties
	3 NP-Completeness of Rectilinear-Upward Planarity Testing
	4 Testing Upward Plane Digraphs in Linear Time
	5 Testing in the Variable Embedding Setting
	5.1 Rectilinear-Upward Spirality
	5.2 Testing Series-Parallel Digraphs in Polynomial Time
	5.3 FPT Testing Algorithm by the Number of Sources and Sinks

	6 Open Problems
	A Appendix

	p027-Disser
	1 Introduction
	2 Preliminaries
	3 An Exponential Lower Bound for Bland's pivot rule
	4 A Combined Exponential Bound

	p028-ElMaalouly
	1 Introduction
	2 Preliminaries
	3 Reducing EM to BCPM in FPT time
	3.1 Tools from Prior Work
	3.2 The Main Algorithm
	3.3 Proof of the main lemmas
	3.4 Main theorem for general graphs
	3.5 Main theorem for bipartite graphs
	3.6 Main theorem without oracle access

	4 Correct Parity Matching for General Graphs
	5 Conclusion and Open Problems

	p029-Englert
	1 Introduction
	2 The General Setting and Our Technical Contribution
	2.1 Overlap Graph, Cycle-Closing Edges, and Overlap Inequalities
	2.2 Main technical result
	2.3 Overview of the proof of Theorem 3

	3 Analysis
	3.1 Proof Outline
	3.2 Important Lemmas
	3.3 The Induction Step

	A Deriving Approximation Guarantees from Theorem 3
	A.1 The GREEDY Algorithm for SSP
	A.2 SSP Algorithms Based on Max-ATSP Approximations

	B Dealing with extra large cycles (as in [7])
	C Lemma 11 (slightly modified from[7])

	p030-Eppstein
	1 Introduction
	1.1 Our contribution
	1.2 Main results
	1.3 The framework: recursive flow construction
	1.4 Projection-restriction and prior work on the hardcore model
	1.5 Paper organization

	2 Preliminaries
	2.1 Glauber dynamics
	2.2 Mixing time
	2.3 Treewidth and vertex separators

	3 lambda = 1: Bounded treewidth and degree
	3.1 Partitioning the vertices of M_{IS}(G) into classes
	3.2 Rapid mixing for the hardcore Glauber dynamics when G has bounded treewidth and degree
	3.3 Abstraction into framework conditions

	4 lambda = 1: Unbounded degree
	4.1 Hierarchical framework
	4.2 Independent sets
	4.3 Hierarchical Framework Conditions

	p031-Feghali
	1 Introduction
	1.1 Other Relevant Known Results
	1.2 Our Results

	2 Preliminaries
	3 Hardness for Arbitrary Given Girth
	3.1 Matching Cut and d-Cut
	3.2 Disconnected Perfect Matching
	3.3 Perfect Matching Cut

	4 Hardness for Forbidden Subdivided H-Graphs
	4.1 Matching Cut
	4.2 Disconnected Perfect Matching
	4.3 Perfect Matching Cut

	5 Consequences and Open Problems
	5.1 H-Free Graphs
	5.2 H-subgraph-free Graphs
	5.3 Open Problems

	p032-Fomin
	1 Introduction
	1.1 Overview of the proof of Theorem 1

	2 Rerouting paths and cycles
	2.1 Rerouting paths and cycles
	2.2 Equivalent instances of small treewidth
	2.3 Proof of Theorem 1

	3 Conclusion

	p033-Gregor
	1 Introduction
	1.1 The Lucas–Roelants van Baronaigien–Ruskey algorithm
	1.2 Our results
	1.3 Outline of this paper

	2 Preliminaries
	2.1 Binary tree notions
	2.2 Pattern-avoiding binary trees

	3 Encoding binary trees by permutations
	3.1 Pattern-avoiding permutations
	3.2 Mesh patterns
	3.3 From binary tree patterns to mesh patterns

	4 Generating pattern-avoiding binary trees
	4.1 Tree rotations and slides
	4.2 A simple greedy algorithm
	4.3 Efficient implementation

	5 Tree patterns on at most 5 vertices
	6 Bijections between binary trees and Motzkin paths
	6.1 Bijection between Tn(123,1-) and Motzkin paths Mn
	6.2 Bijection between Tn(1432,-1-) and Motzkin left factors Ln-1
	6.3 Bijection between Tn(21543,-01-) and Motzkin paths with catastrophes Cn

	7 Open Problems

	p034-Gudmundsson
	1 Introduction
	2 Preliminaries
	3 Technical Overview
	3.1 Computing the Free Space Diagram
	3.2 Reference trajectory is vertex-to-vertex
	3.3 Reference trajectory is arbitrary

	4 Computing the Free Space Diagram
	4.1 Simplifying the Free Space
	4.2 Compute the Non-empty Cells
	4.3 Constructing the Simplified Free Space Diagram

	5 Reference trajectory is vertex-to-vertex
	5.1 Using a Directed Graph to Store Candidate Monotone Paths
	5.2 Storing and Reusing Pre-computed Paths

	6 Reference trajectory is arbitrary
	6.1 Improve Further with an Interval Management Data Structure

	7 Conclusion

	p035-Gudmundsson
	1 Introduction
	2 Preliminaries
	3 Shortest path and distance queries
	3.1 Preliminaries
	3.2 Shortest path and distance query algorithms
	3.3 Our improved shortest path query algorithm

	4 Shortest beer path and beer distance queries
	4.1 Preliminaries
	4.2 Defining a semigroup

	5 A dynamic shortest beer path query structure
	5.1 On the shortest path query time
	5.2 Dynamic shortest beer path and beer distance queries

	6 Another dynamic shortest path query structure
	6.1 Preliminaries
	6.2 The preprocessing
	6.3 Answering shortest path and distance queries
	6.3.1 Shortest path query algorithm

	6.4 Handling edge weight update

	7 A dynamic shortest beer path query structure

	p036-Gutowski
	1 Introduction
	2 Recognition of Containment Interval Graphs
	3 A 2-Approximation Algorithm for Coloring Containment Interval Graphs
	4 Coloring Containment Interval Graphs Is NP-Hard
	5 Coloring Bidirectional Interval Graphs Is NP-Hard
	6 Coloring General Mixed Interval Graphs
	7 Open Problems

	p037-Hanaka
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Shortest Path Problem and Beer Path Problem / Query
	2.2 SPQR tree
	2.3 Query Problems

	3 Triconnected component decomposition-based indexing
	3.1 Definition of the mapping F_1 and its computation
	3.2 Definition of the mapping F_2 and its computation
	3.3 Definition of the mapping F_3 and its computation
	3.4 Definition of the mapping F_4 and its computation

	4 Algorithm based on triconnected component decomposition
	4.1 Definition of binary operations
	4.2 Representation of distance and beer distance using mapping and algorithms for Beer Path Query

	A Missing Proofs
	A.1 Proof of Lemma 8
	A.2 Preprocessing algorithms
	A.2.1 Algorithm for preprocessing F_1,F_2
	A.2.2 Algorithm for preprocessing F_1,F_2,F_3
	A.2.3 Algorithm for preprocessing F_1,F_2,F_3,F_{4R}

	A.3 Computational complexity for each mapping
	A.3.1 Computational complexity for F_1
	A.3.2 Computational complexity for F_2
	A.3.3 Computational complexity for F_3
	A.3.4 Computational complexity for F_4

	A.4 Proofs for the algorithms

	B Algorithm based on tree decomposition
	C Algorithm for connected graphs
	D Figures

	p038-Harutyunyan
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Temporal Separators with Deadlines on General Graphs
	4.1 Hardness of Exact and Approximate Solutions
	4.2 Approximation Algorithms

	5 Temporal Separators with Deadlines on Special Families of Graphs
	5.1 Temporal Graphs with Branchwidth at most 2
	5.2 Temporal Graphs with a ``Tree-like'' Underlying Graph
	5.3 Temporal Graphs with Bounded Pathwidth

	6 Conclusions
	A Figures
	B Pseudocode

	p039-Hirahara
	1 Introduction
	1.1 Regularization of Low Error PCPs
	1.2 Regularization Technique
	1.3 An Application to MCSP

	2 Regularization and Degree Reduction For General PCPs
	2.1 Preliminaries
	2.1.1 Expanders and Dispersers
	2.1.2 PCP Verifiers and Their Parameters

	2.2 Our Regularization and Its Analysis

	3 Application: NP-Hardness of Partial MCSP
	3.1 Collective Minimum Monotone Satisfying Assignment Problem
	3.2 Technical Tools
	3.3 Proof of NP-hardness of MCSP*

	4 Open Problems

	p040-Jaffke
	1 Introduction
	2 Preliminaries
	2.1 Width measures
	2.1.1 Linear mim-width
	2.1.2 Twin-width

	2.2 The class XNLP

	3 Pathwidth
	4 Neighborhood Diversity
	5 Twin Cover
	6 Conclusion

	p041-Jaiswal
	1 Introduction
	1.1 Preliminaries
	1.2 Our results
	1.3 Comparison with earlier work
	1.4 Our Techniques

	2 Algorithm
	3 Analysis
	References
	A Tables

	p042-Jansen
	1 Introduction
	2 Preliminaries
	3 The enumeration algorithm
	4 Conclusion

	p043-Jourdan
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work
	1.4 Notation

	2 Algorithm Based on Spectral Equivalence Classes
	2.1 Algorithm
	2.2 Analysis

	3 FNP-Hardness of KS_2 (1/(4sqrt{2}))
	3.1 The FNP Complexity Class
	3.2 NP-Completeness of NAE-3SAT-KS
	3.3 FNP-Hardness of KS_2 (1/(4sqrt{2}))

	4 Conclusion
	A Omitted Proofs from Section 2

	p044-Kammer
	1 Introduction
	2 A succinct graph encoding for edge contractions
	3 Preliminaries
	4 Table lookup for small planar graphs
	5 Succinct encoding of planar graphs
	6 Dynamic mapping data structures
	7 Towards a succinct dynamic encoding

	p045-Kao
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 4-Approximation for CFL-UFC
	3.1 The First Stage of the Rounding Process
	3.2 The Second Stage of the Rounding Process
	3.3 Final Output

	4 The Analysis
	4.1 Feasibility of the Algorithm
	4.2 Approximation Guarantee
	4.2.1 The clusters in {C}_{H'}
	4.2.2 The clusters in {C}_{D'}
	4.2.3 The overall guarantee

	p046-Khazaliya
	1 Introduction
	2 Preliminaries
	3 Overview of the Approach
	4 An FPT Algorithm for st-Planar Edge Completion
	4.1 Setting up the Records for Dynamic Programming
	4.2 Description of the Algorithm

	5 Discussion and Open Problems

	p047-Kimura
	1 Introduction
	2 Preliminaries
	3 Main algorithms
	3.1 A certifying algorithm for the feasibility for the dual LP problem
	3.2 A certifying algorithm for the feasibility for the primal LP problem
	3.3 Proof of the main theorem (Theorem 6)

	4 Conclusion

	p048-Kobayashi
	1 Introduction
	1.1 Reconfigurability of Common Bases of Matroids
	1.2 Our Results
	1.3 Related Work
	1.4 Overview

	2 Preliminaries
	3 Proof of Theorem 1
	3.1 Minimal Tight Sets
	3.2 Auxiliary Digraph
	3.3 Shortest Dicycle
	3.4 Putting Them Together

	4 Extension to Arborescences with Distinct Roots
	5 Proof of Theorem 4
	6 Concluding Remarks

	p049-Kobayashi
	1 Introduction
	2 Preliminaries
	3 Algorithm in Previous Work
	3.1 Reduction to Structured Graphs
	3.2 Semi-Canonical Two-Edge-Cover

	4 Algorithm via Triangle-Free Two-Edge-Cover
	4.1 Minimum Triangle-Free Two-Edge-Cover
	4.2 Semi-Canonical Triangle-Free Two-Edge-Cover
	4.3 Proof of Theorem 1

	5 Concluding Remarks

	p050-Kuo
	1 Introduction
	2 Preliminaries
	3 Min-Max (2,2)-SNC Graph Balancing
	3.1 The Implication Graph and a Feasibility Characterization
	3.2 Unique Edge Orientation and Strongly Connected Components
	3.3 A 2-Approximation Algorithm

	4 Min-Max (2,2)-SNC Graph Balancing on Restricted Graphs

	p051-Liu
	1 Introduction
	1.1 Our result

	2 Preliminaries
	3 The line-separable single-intersection case
	3.1 Algorithm implementation

	4 The unit-disk case
	4.1 Computing gamma(p)'s
	4.2 Computing a(i)'s

	p052-Manthey
	1 Introduction
	2 Preliminaries
	2.1 Travelling Salesperson Problem
	2.2 Smoothed Analysis
	2.3 Basic Results
	2.4 Probability Theory
	2.4.1 Chi Distributions
	2.4.2 General Results
	2.4.3 Limiting the Adversary

	3 Analysis of Single 2-Changes
	4 Linked Pairs of 2-Changes
	4.1 Type 0
	4.2 Type 1
	4.2.1 Type 1a
	4.2.2 Type 1b

	5 Improving the Analysis for d geq 3
	6 Discussion

	p053-Misra
	1 Introduction
	2 Preliminaries
	3 Reducing eigenvalues by deleting vertices
	3.1 Deleting to Two Distinct Eigenvalues
	3.2 r-EVD for r 3

	4 Reducing eigenvalues by adding edges
	5 Reducing eigenvalues by deleting edges
	6 Reducing eigenvalues by editing edges
	7 Concluding Remarks

	p054-Mukherjee
	1 Introduction
	2 Preliminaries
	3 Connected Vertex Cover
	3.1 Some structural observations
	3.2 The Dynamic Programming Formulation
	3.2.1 Graph modification
	3.2.2 The dynamic programming

	3.3 Running time analysis

	4 Conclusion

	p055-Podder
	1 Introduction
	1.1 Our Motivation and Contribution
	1.2 Proof Techniques
	1.2.1 Upper and Lower Bounds on Quantum T-bias
	1.2.2 Upper and Lower Bounds on Classical T-bias
	1.2.3 The Relation Between Complexity Measures

	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Query Models and Complexity Measures
	2.2 Orthonormal Polynomials and Fourier Growth

	3 The Relation Between Quantum and Randomized Algorithms of Symmetric Boolean Functions for Arbitrarily Small Bias
	4 The Relation Between Quantum Query Complexity and Approximate Degree for Arbitrarily Small Bias
	5 Conclusion

	p056-Roy
	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Notation and Preliminaries
	3 Testing identity in the streaming model using PCOND
	4 Testing Monotonicity in the streaming model using SAMP
	4.1 Testing Monotonicity using Bipartite Collisions
	4.2 Testing Monotonicity in Streaming model
	4.2.1 Lower bound for testing monotonicity

	4.3 Learning decomposable distributions in the streaming model

	5 Conclusion

	p057-Shao
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Proof of Theorem 5
	5 Proof Sketch of Theorem 16
	A Delta-Matroids and Matching Realizability

