
Reachability Games and Friends: A Journey
Through the Lens of Memory and Complexity
Thomas Brihaye #

UMONS – Université de Mons, Belgium

Aline Goeminne #

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

James C. A. Main #

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Mickael Randour #

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Abstract
Reachability objectives are arguably the most basic ones in the theory of games on graphs (and
beyond). But far from being bland, they constitute the cornerstone of this field. Reachability is
everywhere, as are the tools we use to reason about it. In this invited contribution, we take the
reader on a journey through a zoo of models that have reachability objectives at their core. Our goal
is to illustrate how model complexity impacts the complexity of strategies needed to play optimally
in the corresponding games and computational complexity.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Solution concepts in game theory

Keywords and phrases Games on graphs, reachability, finite-memory strategies, complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.1

Category Invited Talk

Funding This work has been supported by the Fonds de la Recherche Scientifique – FNRS under
Grant n° T.0027.21 (PDR RatBeCoSi) and Grant n° T.0188.23 (PDR ControlleRS).
Aline Goeminne: Postdoctoral Researcher of the Fonds de la Recherche Scientifique – FNRS.
James C. A. Main: Research Fellow of the Fonds de la Recherche Scientifique – FNRS, member of
the TRAIL Institute.
Mickael Randour : Research Associate of the Fonds de la Recherche Scientifique – FNRS, member of
the TRAIL Institute.

Acknowledgements The authors are grateful to Patricia Bouyer-Decitre for carefully reading through
previous versions of this paper and providing valuable comments.

1 Introduction

Games on Graphs. We consider infinite-duration multi-player turn-based games played on
graphs [34], often called arenas. The set of vertices of the graph is partitioned between the
players. Players interact by moving a pebble from vertex to vertex, ad infinitum, following
edges of the graph. The game starts in a given vertex, and the owner of the current vertex
decides where to send the pebble next. The infinite path thereby created is called a play.

Objectives and Strategies. Each player has an objective function, which is essentially a
measure of the utility of plays: players aim to optimise their utility. Players choose their
actions (i.e., where to move the pebble) according to a strategy.

© Thomas Brihaye, Aline Goeminne, James C. A. Main, and Mickael Randour;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 1; pp. 1:1–1:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.brihaye@umons.ac.be
https://orcid.org/0000-0001-5763-3130
mailto:aline.goeminne@umons.ac.be
mailto:james.main@umons.ac.be
mailto:mickael.randour@umons.ac.be
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Reachability Games and Friends

A key question in the field is to understand how complex strategies need to be for players
to play optimally, when possible. In full generality, strategies may look at the current history
– which may be arbitrarily long as we consider infinite-duration games – to pick an action.
They may also use randomness, that is, prescribe a probability distribution over possible
actions. However, in the simplest settings, this is superfluous. In particular, players may
often resort to pure memoryless strategies, which simply associate a single action to each
vertex, independently of what happened before.

When Are Complex Strategies Needed? Games on graphs and related models, such as
Markov decision processes or stochastic games (both involving probabilistic arenas), have
been studied extensively for decades, for a plethora of objectives [34]. An interesting line of
work tries to understand, classify, and characterise broad classes of games and objectives
for which strategies of restricted classes of complexity suffice to play optimally. One can
notably mention [42] for (pure) memoryless (resp. [11] for finite-memory) strategies in two-
player zero-sum games, [43] for (pure) memoryless (resp. [12] for finite-memory) strategies
in two-player zero-sum stochastic games, [53] for finite-memory strategies when considering
combinations of objectives, or [63] for multi-player games.

The Different Flavours of Complexity. As discussed above, the recent years have seen a
surge in research to understand when (specific classes of) complex strategies are needed. Yet,
one may take a step back and ask what does it really mean for a strategy to be complex?
And what is the role of this complexity? With respect to memory, for example, we know
that different models co-exist: see, e.g., the discussion on chromatic vs. chaotic memory in a
recent survey [13]. Similarly, the various ways one may allow strategies to use randomness
has a huge impact on the (expressive) power of strategies [56].

Formalising the nature of complexity is not an easy feat, and subject to almost-
philosophical debates. What we aim to do in this work is a small step along the way:
we will take a walk together among various game models and objectives, of (arguably)
increasing complexity, and try to understand how this complexity percolates through the
corresponding strategies, as well as on the computational standpoint. It is easy to get lost in
the zoo of models and objectives that exist in the literature; to avoid that, we will focus on
the familiar yet surprisingly interesting reachability objectives.

Reachability. In its simplest form, a reachability objective [34] simply asks to visit once
any vertex belonging to a given target set. This objective is often considered to be the
most elementary, and the main tool to solve reachability games, attractors, has made its
way in virtually all algorithms on games on graphs. That is because, in one way or another,
strategies for most game objectives do involve going from a point A to a point B as part of
their inner mechanisms. This small part is exactly a reachability objective.

One may also note that the prevalence of reachability is not limited to games on graphs.
Consider for example the effort put in understanding the reachability problem in Petri
nets [54, 28], or in more distant models, the Skolem problem [74].

Outline. Our journey will go through reachability, generalised reachability (i.e., multiple
target sets), shortest path (i.e., minimise the costs up to the first visit), repeated reachability
(aka Büchi) objectives. . . and consider various models such as multi-player or stochastic
games. As stated before, our goal is to illustrate how and when complexity arises, and
what is the role of that complexity in strategies. To do so, we will work our way through
increasingly complex models and objectives, grouped with respect to the resulting complexity
of the corresponding strategies.

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:3

Our presentation is high-level and far from exhaustive: we do not aim to provide a
fully-filled table of all possible combinations of models and objectives. Instead, we pick and
choose particular settings that exemplify interesting phenomena. As such, this work should
not be seen as a definitive overview of reachability games, but as a particular (and hopefully
interesting) path through this crowded zoo.

2 Preliminaries

Notation. We let R (resp. N, Z) denote the set of real (resp. non-negative integer, integer)
numbers and R = R ∪ {+∞,−∞} (resp. N = N ∪ {+∞}, Z = Z ∪ {+∞,−∞}). For any
integer k ≥ 1, we let JkK = {1, . . . , k}.

Games. Let (V,E) be a directed graph where V is a finite set of vertices and E ⊆ V × V is
a set of edges. An (n-player) arena (on (V,E)) is a tuple A = ((Vi)i∈JnK, E) where JnK is a
set of n players and (Vi)i∈JnK is a partition of V (between the different players). We assume
that our arena is deadlock-free, i.e., for all v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E.
For i ∈ JnK, we write Pi to denote the ith player.

Players take turns choosing the next vertex depending on which player controls the
current vertex. This forms an infinite path in the arena called a play. Formally, a play in
A is an infinite sequence of vertices ρ = ρ0ρ1 . . . such that for all ℓ ∈ N, (ρℓ, ρℓ+1) ∈ E. A
history is a finite prefix of a play h = h0 . . . hℓ; we denote hℓ by last(h). The set of plays
(resp. histories) is denoted by Plays (resp. Hist) and Histi is the set of histories ending in
a vertex of Pi. For v ∈ V , Plays(v), Hist(v), Histi(v) denote respectively the sets of plays,
histories and histories ending in a vertex of Pi that begin in v. In an arena, it is common to
fix an initial vertex v0 ∈ V and consider only plays and histories starting in v0.

A (n-player) game G = (A, (Obji)i∈JnK) is an arena equipped with a profile of objective
functions Obj = (Obji)i∈JnK. For i ∈ JnK, Obji : Plays → R measures the utility of each play
of A; Pi aims to optimise Obji. If Pi wants to maximise (resp. minimise) Obji, we say that
Obji is a gain (resp. cost) function and we denote it by Gaini (resp. Costi). In what follows,
unless otherwise stated, we assume that the considered objective functions are gain functions.

A two-player game G = (A, (Obj1,Obj2)) is zero-sum if, for all ρ ∈ Plays, we have that1

Obj1(ρ) + Obj2(ρ) = 0. Zero-sum games are often abusively denoted G = (A,Obj1), as Obj2
can be deduced from Obj1. Given a play ρ, whenever Obj1 represents a Boolean objective,
i.e., Obj1 has codomain {0, 1}, we say that P1 wins (resp. loses) if Obj1(ρ) = 1 (resp. 0).
The Boolean designation is abusive for P2, as their gains range in {0,−1}.

Reachability Objective Functions. We now define the (generalised) reachability objective
functions. Quantitative variants are discussed and defined in Section 3.3.

Let T ⊆ V be a target (set), the reachability objective (for T) consists in visiting
T. Formally, we have that Reach[T](ρ) = 1, if there exists a position ρℓ ∈ T, otherwise
Reach[T](ρ) = 0. Let T1, . . .Tk ⊆ V be target sets. The generalised reachability objective
(for T1, . . .Tk) consists in visiting all the sets Tj in any order. Formally we have that
GReach[T1, . . . ,Tk](ρ) =

∏k
j=1 Reach[Tj](ρ).

▶ Remark 1. We refer to games of the form G = (A, (Reach[Ti])i∈JnK) as reachability games. In
the two-player zero-sum case, we speak of zero-sum reachability games if P1 has a reachability
objective, although P2 does not have a reachability objective. We proceed similarly for the
other considered objective functions.

1 If Obj1 can take infinite values, we apply the convention (+∞) + (−∞) = 0.

FSTTCS 2023

1:4 Reachability Games and Friends

v0 t1

t2 t3

(a) A one-player gener-
alised reachability game
where Tj = {tj} for all
j ∈ J3K.

m0 m1 m2
(v0, t1) (v0, t2)

¬(v0, t1) ¬(v0, t2)

(b) An illustration of a Mealy ma-
chine update scheme. The next-
move function of the machine is
partly given by nxt(m0, v0) = t1,
nxt(m1, v0) = t2 and nxt(m2, v0) =
t3.

v0

t3

v1 v2

t12

(c) A three-player reachability
game with an NE that is not
an SPE. Double arrows denote a
(memoryless) strategy profile.

Figure 1 A one-player game (Figure 1a) with a Mealy machine encoding a strategy that is winning
from v0 (Figure 1b) and a game illustrating the difference between NEs and SPEs (Figure 1c).

Strategies. A (pure) strategy σi of Pi, i ∈ JnK, provides the next action of Pi based
on what occurred previously. Formally, σi : Histi → V is a function such that for all
h = h0 . . . hℓ ∈ Histi, (hℓ, σi(h)) ∈ E. We denote by Σi the set of strategies of Pi. We say that
a play ρ is played according to σi if, whenever ρℓ ∈ Vi, we have that σi(ρ0 . . . ρℓ) = ρℓ+1. We
differentiate two classes of strategies: memoryless strategies and finite-memory strategies. A
memoryless strategy σi only depends on the last vertex of the history, i.e., for all h, h′ ∈ Histi,
if last(h) = last(h′), then σi(h) = σi(h′).

A strategy is finite-memory if it can be encoded by a finite-state Mealy machine. Formally,
such a machine (for Pi) is a tuple M = (M,m0, up, nxt) where M is a finite set of states, m0 is
an initial memory state, up : M ×E → M is a memory update function and nxt : M ×Vi → V

is a next-move function. Intuitively, the strategy encoded by a Mealy machine prescribes
moves through the nxt function based on the current memory state and game vertex, and
the memory state is updated at each round via the up function based on the traversed edge.
In the following, the size of a memory for a strategy refers to an upper bound on the number
of states of some Mealy machine that encodes the strategy.

Mealy machines combine memoryless strategies: a next-move function assigns a memory-
less strategy to each memory state. In particular, memoryless strategies are finite-memory
strategies that can be represented by Mealy machines with a single memory state.
▶ Remark 2. In some presentations, the update function of a Mealy machine is defined using
vertices rather than edges. Memory bounds for strategies may vary depending on the model,
e.g., when the objective function depends on edge-specific information (e.g., the shortest
path games of Section 4.2). The vertex-update model is less compact in general.

A strategy profile σ = (σi)i∈JnK assigns a strategy to each player. To highlight the role of
Pi, we sometimes write σ = (σi, σ−i), where σ−i denotes the strategy profile of the players
other than Pi. Once a strategy profile σ is fixed together with an initial vertex v0, there
exists a unique play starting from v0 and played according to all strategies of σ. We denote
this unique play by ⟨σ⟩v0 (or just ⟨σ⟩ when v0 is clear from the context).

▶ Example 3. Let us consider the one-player game played on the arena given in Figure 1a
with the objective GReach[T1,T2,T3] where Tj = {tj} for all j ∈ J3K and the initial vertex
v0. We provide in Figure 1b a Mealy machine M that encodes a strategy σ1 with a memory
of size 3. The three memory states are m0, m1 and m2 and the memory update function is
illustrated as follows: (i) a label (v, v′) ∈ E (resp. ¬(v, v′)) on a transition (m,m′) ∈ M × M
represents up(m, (v, v′)) = m′ (resp. up(m, e) = m′ for all e ∈ E \ {(v, v′)}) and (ii) an
unlabelled transition (m,m′) means up(m, e) = m′ for all e ∈ E. We consider the next-move
function partly defined as nxt(mj−1, v0) = tj for all j ∈ J3K. The outcome of the strategy
σ1 is obtained as follows: the play begins in v0 and the initial memory state is m0, thus
the first move prescribed by σ1 is nxt(m0, v0) = t1. Once transition (v0, t1) is crossed, the

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:5

memory state is updated to m1. Since from t1 the only outgoing edge enters v0, the current
vertex is v0 again and the memory state does not change. This time, from v0, we move to
nxt(m1, v0) = t2 and the memory state is updated to m2. Continuing this way results in the
outcome ⟨σ1⟩ = v0t1v0t2v0t

ω
3 which visits all targets.

Solution Concepts. Let G = (A, (Gaini)i∈JnK) be a game with an initial vertex v0.
Given α ∈ R, a strategy σi is said to ensure α (from v0) if for all strategy profiles of the

opponents σ−i, we have that Gaini(⟨σi, σ−i⟩) ≥ α. A strategy σi is said to be optimal (for
Pi) if there exists α ∈ R such that σi ensures α and for all β > α, no strategy of Pi ensures
β. If such an α exists, it is called the value of vertex v0 in the two-player zero-sum game
Gi = (((Vi, V \ Vi), E),Gaini), called the coalition game for Pi, in which Pi is opposed to
the coalition of the other players.

In a two-player zero-sum (or one-player) game with Boolean objective functions, we say
that σ1 is a winning strategy (for P1) if σ1 ensures 1. In this case, σ1 is necessarily optimal.

A strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate
unilaterally in order to increase his gain, i.e., for all i ∈ JnK, for all σ′

i ∈ Σi, Gaini(⟨σ′
i, σ−i⟩) ≤

Gaini(⟨σ⟩). By essence, NEs do not take into account the sequential nature of games played
on graphs. This implies existence of incredible threats in some NEs (see Example 4). The
concept of subgame perfect equilibrium (SPE) proposes a classical remedy to this problem.

To formally define SPEs, we introduce the concept of subgame. Given a history hv ∈
Hist(v0), the game G↾hv with initial vertex v is called a subgame of G and is such that
G↾hv = (A, (Gaini↾hv)i∈JnK) with, for all i ∈ JnK and for all plays ρ ∈ Plays(v), Gaini↾hv(ρ) =
Gaini(hρ). Given a strategy of Pi in G, σi↾hv denotes its restriction in the subgame G↾hv and
is defined by, for all histories h′ ∈ Histi(v), σi↾hv(h′) = σi(hh′).

A strategy profile σ is an SPE in G, if for all histories hv ∈ Hist(v0), σ↾hv = (σi↾hv)i∈JnK

is an NE in G↾hv. Notice that, in particular, an SPE is an NE.

▶ Example 4. Let us consider the three-player reachability game played on the arena depicted
in Figure 1c with initial vertex v0. P1, P2 and P3 control circle, square and diamond vertices
respectively and their targets are T1 = T2 = {t12} and T3 = {t3}. A (memoryless) strategy
profile σ is depicted by double arrows. We can prove that σ is an NE such that no player
visits his target. However, it is not an SPE: P2 has an incentive to change his strategy in
the subgame G↾v0t3 by visiting t12 ∈ T2 instead of v2. We define another strategy profile τ
such that (i) τ1(v0) = t3 and τ1(v) = v if v ∈ {v2, t12}, (ii) τ2(t3) = t12 and (iii) τ3(v1) = v2.
This strategy profile is an SPE (thus also an NE) such that all players reach their target.

Studied Problems. We now define decision problems that arise naturally in our setting. In
a one-player or two-player zero-sum setting, we study how well a player can perform.

▶ Problem 1 (Threshold-ensuring strategy existence (TSE) problem). Given a two-player
zero-sum (or one-player) game G = (A,Gain1) with initial vertex v0 and a threshold α ∈ R,
does there exist a strategy σ1 of P1 such that σ1 ensures α?

We say that a strategy solves the problem if it provides a positive answer to the problem.
When studying a two-player zero-sum (or one-player) game with a Boolean objective function,
by solving the game, we mean deciding the existence of a winning strategy for P1, i.e.,
deciding the TSE problem for a threshold α = 1.

Regarding equilibria, SPEs (and therefore NEs) are guaranteed to exist in all games with
ω-regular Boolean objectives [69]; these games subsume all Boolean objectives considered in
Section 3. SPEs exist also in all games with continuous gain functions [40]. These games

FSTTCS 2023

1:6 Reachability Games and Friends

include shortest path games (see Section 3.3) with positive weights on the edges through
an appropriate transformation [17]. Furthermore, we have seen in Example 4 that an NE
where no player visits his target may coexist with another NE such that all players visit their
targets, i.e., there is not a unique equilibrium gain profile in a given game. Therefore, instead
of studying the existence of equilibria, which is often guaranteed, the following decision
problem is considered.

▶ Problem 2 (Constrained equilibrium existence (CEE) problem). Given an n-player game
G = (A, (Gaini)i∈JnK) with initial vertex v0 and a threshold tuple α ∈ Rn, does there exist an
equilibrium σ (NE or SPE) such that for all i ∈ JnK, Gaini(⟨σ⟩) ≥ αi?

We say that a strategy profile solves the CEE problem if it provides a positive answer to
it. When studying an n-player game with Boolean objective functions, we only consider
threshold tuples in {0, 1}n.

SAT, QBF and Generalised Reachability. We consider two classical problems: the Boolean
satisfiability (SAT) problem and the quantified Boolean formula (QBF) problem, and their
relations with generalised reachability. Although generalised reachability in the two-player
zero-sum setting is discussed in Section 3.1.3, we present a hardness argument and an
algorithm to solve such games below, as we refer to these throughout Section 3.1.

The QBF problem asks whether a fully quantified formula (in conjunctive normal form)
is true or false. To be more specific, let us consider finitely many variables x1, . . . , xm. A
literal is a variable xi or its negation ¬xi. A clause C is a finite disjunction of literals. Let Q
denote a quantifier, i.e., Q ∈ {∃,∀}. The QBF problem asks whether a formula of the form
ψ = Q1x1 Q2x2 . . . Qmxm C1 ∧ C2 ∧ . . . ∧ Ck is true.

It is classical to view the QBF problem as reachability in an And-Or graph (exponential
in the size of the formula) [60]. Equivalently, one can also solve the QBF problem via a
two-player zero-sum game (linear in the size of the formula) with a generalised reachability
objective [35, 36]. We describe a generic construction to derive a graph from the formula ψ.
For each quantifier Qi and corresponding bound variable xi, we introduce three vertices Qi,
xi and ¬xi with edges from Qi to the other two vertices and, if i < m, edges from xi and ¬xi

to Qi+1. The resulting graph is represented in the small dashed rectangle QBF1 of Figure 2.
We postpone the explanation of the whole figure QBF2; it is used in a specific reduction
in Section 3.1.3. We say that vertex Qi is an existential (resp. universal) vertex if Qi is an
existential (resp. universal) quantifier. For each clause Cℓ of the formula, we introduce a
target Tℓ consisting of the vertices that are literals occurring in Cℓ.

When reducing the QBF instance given by ψ to a two-player zero-sum generalised
reachability game, we assign existential and universal vertices in the graph above to P1 and
P2 respectively. The objective of P1 is given by GReach[T1, . . . ,Tk]. Intuitively, the players,
through their strategies, select the assignments of the variables bound to their quantifiers
in the order of quantification and a clause holds if its matching target is visited. It follows
that there is a winning strategy for P1 if and only if there is a way to assign existentially
quantified variables such that, no matter how universally quantified variables are assigned,
all clauses hold, i.e., if ψ holds [35, 36]. As the QBF problem is PSPACE-complete [60], the
above reduction directly implies that solving two-player zero-sum games with generalised
reachability objectives is PSPACE-hard.

One can prove that the problem of solving generalised reachability games is actually
PSPACE-complete, following the lines of [35, 36]. It can be solved via an alternating
polynomial time algorithm. The algorithm relies on the fact that there exists a winning
strategy for P1 if and only if there is one that visits all targets within at most k · |V | steps. To

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:7

decide the winner, one simulates plays by choosing the next state existentially or universally
depending on the player and until the previous bound is reached. Although the step counter
only requires space logarithmic in k · |V |, the algorithm does not use logarithmic space overall
as it must keep track of the set of visited targets along a play.

The SAT problem, which is known to be NP-complete [26], can be seen as the restriction of
the QBF problem where all the quantifiers are existential. The SAT problem can be reduced
to solving a one-player generalised reachability game via the previously described reduction.
It follows that solving one-player generalised reachability games is NP-hard [35, 36].

QBF1

QBF2

Q1 Q2 Q3 . . . Qm C1 . . . Ck

t∃t∀x1

¬x1

x2

¬x2

xm

¬xm

Figure 2 A graph derived from the formula ψ = Q1x1 Q2x2 . . . Qmxm C1 ∧ C2 ∧ . . . ∧ Ck. For
ℓ ∈ JkK, all the literals of the clause Cℓ are encoded in a target Tℓ. For instance, given the clause
x1 ∨ ¬x2 ∨ x3, the associated target is {x1,¬x2, x3}.

3 The Structure and Properties of Memory

In this section, we overview strategies in games with reachability-related objectives. First,
we consider Boolean objectives. We present (generalised) reachability in Section 3.1. In
Section 3.2, we discuss games in which targets have to be visited infinitely often. Finally, in
Section 3.3, we consider a quantitative variant of reachability, where we aim at reaching the
target(s) with minimal cost. The problems in each section are presented in increasing order
of complexity required by strategies that solve the problems. The complexity of a strategy
refers not only to its memory size but also to the variety of the behaviours it encodes.

3.1 Boolean Reachability

We focus here on (generalised) reachability objectives. The section is divided into three parts.
Section 3.1.1 is dedicated to problems where memoryless strategies suffice. In Section 3.1.2, we
consider problems where it suffices to use a memory of polynomial size that encodes a (fixed)
sequence representing the order in which targets are to be seen. Finally, in Section 3.1.3, we
deal with problems where a memory that branches based mainly on the set of visited targets
suffices. In this latter case, an exponential memory size may be required.

3.1.1 Memoryless Strategies

There are two simple situations where no memory is needed: (i) one-player games with
reachability objectives and (ii) two-player zero-sum reachability games. In both settings,
despite the Boolean nature of the objectives, a natural winning strategy consists in reaching
the target as soon as possible, i.e., by minimising the length of the path from the initial
vertex to the target.

FSTTCS 2023

1:8 Reachability Games and Friends

One-player Reachability Games. A one-player game with a reachability objective is nothing
but a connectivity problem in a graph (see [73] and [1] for surveys). If there is a path from
an initial vertex to the target, there is a simple path, thus no memory is needed. Several
algorithms have exploited this idea in order to solve the shortest-path(s) problem.2

As pointed in [1], the problem of finding a path from one vertex to another in a directed
graph is the first problem that was identified as being complete for a natural subclass of P;
it was shown to be NL-complete [49].

Two-player Zero-sum Reachability Games. Let P1 be the player with the reachability
objective. In this two-player zero-sum framework, although it is not sufficient for P1 to
exhibit a simple path from the initial vertex to the target, the resolution has the same flavour
as the one-player case. Indeed, if P2, whose objective is to avoid the target, can force a loop
before the target is reached, then P2 can avoid it forever. In particular, if P1 has a winning
strategy, he can force a visit to the target via a simple path no matter the behaviour of P2.
In other words, as shown in [66, 44], memoryless strategies are sufficient for P1 (the same
holds for P2).

It can be shown that solving zero-sum reachability games is P-hard, even in acyclic
graphs [48]. Furthermore, the alternating algorithm previously described for generalised
reachability objectives runs in alternating logarithmic space when there is only one target.
This implies the problem is in P, i.e., deciding the TSE problem for two-player zero-sum
reachability games is P-complete.

The classical algorithm to solve two-player zero-sum reachability games is the attractor
algorithm [66]. Starting from the target, it computes, layer by layer, the set of vertices from
which P1 can win. In step j of the computation, the algorithm computes the vertices from
which P1 can force a visit to the target in at most j steps.

3.1.2 Sequential-memory Strategies
We now consider two situations where a memory of polynomial size is necessary: (i) one-player
generalised reachability games and (ii) NEs in n-player reachability games. In both cases,
the structure of the memory encodes the (fixed) order in which the targets are to be visited,
and its role is to remember previously visited targets. This explains the sequential-memory
designation: there is only one maximal chain of sets of visited targets compatible with the
strategy (profile). In the case of NEs, additional memory is needed to ensure stability, via
the so-called classical mechanism of punishment.

One-player Generalised Reachability Games. Solving a one-player game with a generalised
reachability objective equates to finding a path that visits all targets in the underlying graph.
The game illustrated by Figure 3a, with three targets Tj = {tj} for j ∈ J3K, provides a
simple situation where memoryless strategies are not sufficient. Indeed, starting from v0, any
memoryless strategy visits only one target. To ensure a visit to all targets, one should first
order them, for instance (T1,T2,T3).

In the present example, any order works. However, this is not the case in the game
illustrated in Figure 1a, in which target T3 = {t3} must be the last to be reached. Once
the order is fixed, the memory indicates the next target to be reached (via a memoryless
strategy). In general, a memory of size k, encoded via a Mealy machine similar to the one in
Figure 1b, is sufficient to win in a one-player game with objective GReach[T1, . . . ,Tk].

2 Let us cite Bellman-Ford algorithm [38, 6], Dijkstra’s algorithm [31], the Floyd–Warshall algorithm [37,
72, 64] (also used to compute the transitive closure of a graph), and the closely related Kleene’s algorithm
used to convert a deterministic finite automaton into a regular expression [51].

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:9

v0t1 t3

t2

(a) A one-player generalised reachability game
where a sequential-memory strategy suffices to win.

v0 v1 v2

v3

t1

t2 t3

(b) A three-player reachability game where punish-
ment memory is needed to ensure NE stability.

Figure 3 Examples where memoryless strategies do not suffice.

From the discussion about SAT in Section 2, we already know that solving one-player
generalised reachability games is NP-hard. In fact, the problem is NP-complete: the altern-
ating algorithm proposed in [35, 36] to solve two-player zero-sum generalised reachability
games (cf. Section 2) uses only non-determinism, not alternation, when applied to one-player
games, providing the desired result.

Nash Equilibria in n-player Reachability Games. We now consider the CEE problem for
NEs. Strategy profiles that solve this problem in n-player reachability games may require
memory, the role of which is two-fold. The first role matches that of a sequential memory.
Consider the arena illustrated by Figure 3a, interpreted as a three-player game where P1
controls all vertices and the targets of the players are given by Ti = {ti} for i ∈ J3K. Memory
is necessary to obtain an NE from v0 that visits all targets, as described in the one-player
generalised reachability setting.

The second role of memory is to ensure the stability of the equilibrium. Consider the
three-player reachability game on the arena of Figure 3b. P1, P2 and P3 control circle, square
and diamond vertices respectively and the target of Pi is Ti = {ti}. An NE from v0 such
that P1 wins requires memory. The only play that satisfies this requirement is v0v1v2t

ω
1 .

However, P1 cannot ensure the stability of this outcome with a memoryless strategy: from
v3, P1 has to remember if P2 (resp. P3) tried to deviate to v3 and has to choose t3 (resp. t2)
to avoid P2 (resp. P3) from having a profitable deviation. Let σ1 denote the latter strategy
of P1 and σ2 (resp. σ3) the memoryless strategy of P2 (resp. P3) defined by σ2(v1) = v2
(resp. σ3(v2) = t1). One can check that (σ1, σ2, σ3) is an NE.

In general, outcomes of NEs can be characterised using the values of the coalition games
Gi for each i ∈ JnK. A play ρ is an outcome of an NE if and only if, for each player i who
loses along ρ, the value of ρℓ in Gi for Pi is 0 for all ℓ ∈ N. Any NE outcome satisfies this
characterisation as otherwise a losing player would have a profitable deviation by playing his
winning strategy in his coalition game Gi from a vertex with a value of 1 in Gi. Conversely,
the following strategy profile is an NE with outcome ρ: all players follow ρ and play an
optimal strategy in Gi if Pi deviates from ρ, i.e., the coalition punishes Pi. This behaviour
ensures the stability of the equilibrium. This construction is inspired by the proof of the folk
theorem in repeated games [39, 59]. In the NE in the game of Figure 3b defined above, from
v3, P1 punishes P2 (resp. P3) if P2 (resp. P3) deviates to v3 by using his optimal strategy
in G2 (resp. G3).

Using the characterisation above, we can show that, from any NE outcome, we can
derive an NE outcome with a simple structure and the same visited targets. These outcomes
are such that the path between two consecutive targets is simple and the last target is
followed by a lasso hcω such that hc is a simple history. It follows that such outcomes have a
representation of polynomial size.

FSTTCS 2023

1:10 Reachability Games and Friends

From these simple outcomes, we can design a strategy profile solving the CEE problem
for NEs with memory size quadratic in the number of players (and independent of the size
of the arena) as follows [55]. Memory states keep track of the next target vertex and who
last controlled a vertex of the (simple) path to it. If this path is exited by Pi, then the
memory detects Pi deviated and is updated to its Pi punishment state; the coalition of other
players punish Pi using a memoryless punishing strategy. We remark that if Pi deviates
without exiting the path to the next target, then it is not necessary for the other players
to punish Pi and they continue to try progressing along the path to the next target. This
punishment memory is not required for players who see their target, as there can be no
profitable deviations for them. In particular, if all players see their target, then no punishment
memory is needed and a memory size matching the number of players is sufficient as in
one-player generalised reachability games. Furthermore, it is known that in every n-player
reachability game there exists an NE with memory at most linear in the size of the game [19].

The CEE problem for NEs is NP-complete [14, 18]. The characterisation of NE outcomes
and the existence of polynomial-size lasso outcomes above imply that the CEE problem
for NEs in n-player reachability games is in NP. Hardness can be recovered from the NP-
completeness of the TSE problem in one-player generalised reachability games. The player
wins the one-player generalised reachability game with objective GReach[T1, . . . ,Tn] if and
only if there exists an NE such that all players win in the n-player reachability game on the
same arena such that Pi, i ∈ JnK, has Ti as target.

3.1.3 Branching-memory Strategies

We now consider two situations where a memory of exponential size is necessary: (i) two-
player zero-sum generalised reachability games and (ii) SPE in n-player reachability games.
Again, the memory is used to remember the set of visited targets. In the two-player setting
with objective GReach[T1, . . . ,Tk], the memory of P1 needs to adapt to the choices of P2.
This leads to an exponential blow up in the memory as the whole lattice of subsets of JkK
has to be remembered. This differs from the one-player setting discussed in Section 3.1.2,
where only a chain of the lattice was sufficient. Regarding SPE, players may have to adapt
their behaviour depending on the different subgames. These phenomena motivate the name
of branching memory.

Two-player Zero-sum Generalised Reachability Games. Solving a two-player zero-sum
game with a generalised reachability objective is more involved than one could expect [36].
From the discussion about QBF in Section 2, we know that the problem is PSPACE-complete.
To exhibit a game where an exponential memory is needed for P1, we rely on the reduction
from the QBF problem to two-player zero-sum generalised reachability games presented
in Section 2 (involving the graph depicted in QBF1 from the small dashed rectangle of
Figure 2). We consider the two-player game derived, via this reduction, from the formula:

ψ = ∀y1∀y2 . . . ∀yk ∃z1∃z2 . . . ∃zk

k∧
i=1

(yi ∨ zi) ∧ (¬yi ∨ ¬zi). (1)

We first note that ψ holds. Thus, P1 (the existential player) has a winning strategy to visit
all the targets. To win, P1 has to assign, to each variable zi, the negation of the assignment
of yi. A branching memory of size 2k is thus necessary to react to all potential assignments
of P2. In particular, the order in which P1 visits the targets cannot be fixed a priori.

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:11

Notice that all the clauses of the formula ψ from (1) are of size 2. From [4], we know that
such a QBF instance can be solved in linear time.3 At first glance, this could look paradoxical
with the memory requirement of P1 above. But as zero-sum generalised reachability games
are determined, i.e., one of the two players has a winning strategy from any initial vertex, we
can adopt the point of view of P2. From [4, Theorem 2], we can deduce that when a formula
with at most two literals per clause is not satisfied, then P2 has a winning strategy in the
corresponding game with memory of size at most 2.

In the general setting of two-player zero-sum generalised reachability games, both players
may require memory of exponential size. Tight memory bounds are provided in [35, 36].
Regarding computational complexity, we note that PSPACE-hardness is only known when
targets contain at least three vertices. The particular case where each target is composed
of only one vertex (resp. two vertices) is solvable in polynomial time (resp. is still an open
problem) [36].

Subgame Perfect Equilibria in n-player Reachability Games. Since SPEs are NEs, strategy
profiles that solve the CEE problem for SPEs in n-player reachability games are no less
complex than those needed for NEs. In particular, punishment memory may be necessary.
Furthermore, due to the fact that a player should act rationally in all subgames, branching
memory is needed to choose the next action, and may be more sophisticated than for NEs.
It may be exponential for reasons similar to two-player zero-sum generalised reachability
games.

In this setting, the CEE problem is PSPACE-complete [16]. The PSPACE membership
relies on the following property: if there exists an SPE that solves the problem, then there
exists an SPE that solves the problem and has a finite representation. This representation is
a set of lassoes of polynomial length, mainly one per element of JnK × V × 2n, that satisfy
some property on the players’ gains. This characterisation allows the design of an alternating
algorithm that runs in polynomial time. More details can be found in [16].

PSPACE-hardness is due to a reduction from the QBF problem (explained in Section 2).
From a quantified formula ψ = Q1x1 Q2x2 . . . Qmxm C1 ∧ C2 ∧ . . . ∧ Ck we build a
(k+ 2)-player reachability game on the graph illustrated by the big dashed rectangle (QBF2)
of Figure 2. In addition to the structure of QBF1, we consider one additional vertex per
clause and two more vertices t∀ and t∃, linked by the edges depicted in the figure. This is
a (k + 2)-player reachability game with initial vertex Q1 such that Pi, i ∈ JkK represents
the clause Ci, controls the vertex Ci and wants to visit a literal of his clause or vertex t∀.
The other two players are P∃ and P∀: P∃ (resp. P∀) controls existential (resp. universal)
vertices and wants to reach t∃ (resp. t∀). In an equilibrium, P∃ cannot win if some clause
Ci is not satisfied since Pi should move to t∀ from vertex Ci. Moreover, P∃ wins if and
only if P∀ loses. With this construction, it can be shown that ψ is true if and only if there
exists an SPE such that all players win except P∀. Notice that this reduction is no longer
correct if we replace SPE by NE: the subgame rationality imposed by SPEs plays a crucial
role. Indeed, let us consider the formula ψ = ∀x1∃x2(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)
and the memoryless strategy profile σ such that σ∀(∀1) = ¬x1, σ∃(∃2) = x2, σ1(C1) = C2,
σ2(C2) = C3 and σ3(C3) = t∃. We can prove that σ is an NE such that all players but P∀
win, although ψ is false. In particular, P∀ has no incentive to move towards x1 since, even if
P2 does not visit his target along this outcome, he still chooses to move towards t∃. However,

3 The algorithm is based on a smart analysis of the strongly connected components of a directed graph
associated with the formula.

FSTTCS 2023

1:12 Reachability Games and Friends

this latter behaviour is not rational in the subgames induced by the P∀’s choice to go to x1,
since P2 should choose t∀ and win. Thus σ is not an SPE. Finally, remark that deciding if
there exists an SPE such that all players win is easier; it amounts to deciding if there exists a
winning strategy for the player of the one-player generalised reachability game with objective
GReach[T1, . . . ,Tn]. That can be done with a nondeterministic polynomial time algorithm.

Thanks to the finite representation of an SPE mentioned before, it can be deduced
from [16] that strategy profiles with memory size exponential in the number of players and
polynomial in the size of the arena are sufficient to solve the CEE problem for SPEs.

3.2 Repeated Reachability
We now consider the (generalised) Büchi objective functions. Let T ⊆ V be a target,
the Büchi objective (for T) consists in visiting T infinitely often. Formally we have that
Büchi[T](ρ) = 1, if for all j ∈ N there exists a position ρℓ ∈ T with ℓ > j, otherwise
Büchi[T](ρ) = 0. Let T1, . . .Tk ⊆ V be target sets. The generalised Büchi objective
(for T1, . . .Tk) consists in visiting all the sets Tj infinitely often. Formally we have that
GBüchi[T1, . . . ,Tk](ρ) =

∏k
j=1 Büchi[Tj](ρ).

This section follows a line of progression similar to that of Section 3.1.

3.2.1 Memoryless Strategies
As in Section 3.1.1, memoryless strategies are sufficient in two situations: (i) one-player
games with Büchi objectives and (ii) two-player zero-sum Büchi games. These memoryless
strategies are essentially reachability strategies for targets that can be visited infinitely often.

3.2.2 Looping-sequential-memory Strategies
Let us now consider (i) one-player generalised Büchi games and (ii) NEs in n-player Büchi
games, the counterparts of the games studied in Section 3.1.2, and (iii) two-player generalised
Büchi games, the counterpart of the games studied in the first part of Section 3.1.3. For (i)
and (ii), the required memory is similar to the reachability case. Indeed, in the two examples
of Figure 3 the (generalised) reachability objectives can be translated into (generalised)
Büchi objectives without affecting the memory requirements of the players. Although Büchi
objectives appear more complex than reachability objectives, in both cases, the decision
problems are simpler and can be solved in polynomial time, whereas the reachability variants
are NP-complete. For (iii), the decision problem can also be solved in polynomial time, with a
memory of polynomial size, even though the generalised reachability variant is PSPACE-hard
and requires strategies with exponential memory.

One-player Generalised Büchi Games. Solving a one-player game with a generalised Büchi
objective GBüchi[T1, . . . ,Tk] amounts to finding a reachable strongly connected component
(SCC) which contains elements of each target T1, . . . ,Tk. This can be done in polynomial
time [65]. The structure of the memory encodes a (fixed) order in which the targets have
to be repeatedly visited. We speak here of looping sequential memory as the reachability
scheme has to be repeated. As an example, let us consider the one-player game depicted
on Figure 3a with objective GBüchi[{t1}, {t2}, {t3}]. The memory structure of a winning
strategy can be derived from the Mealy machine of Figure 1b with an additional transition
from m2 to m0 when reading edge (v0, t3) to complete the loop.

An alternative polynomial time algorithm to solve a one-player generalised Büchi game is
to transform it into a one-player (simple) Büchi game of polynomial size and then solve this
Büchi game. Given a game with objective GBüchi[T1, . . . ,Tk], the Büchi game is obtained by

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:13

juxtaposing k copies of the original game. We move from the jth copy to the (j + 1)th copy
(when j ̸= k) or to the first (when j = k) whenever Tj is visited within the jth copy. The
(simple) Büchi condition on this expanded game consists in visiting infinitely often the first
copy of T1. Details of the construction and its correctness can be found in [5, Theorem 4.56].

Such an elegant polynomial-size construction would not work for a generalised reachability
objective. This construction relies on the fact that if the objective GBüchi[T1, . . . ,Tk] is
satisfied, we can visit targets in any order as there are vertices of each target that are
connected. In particular, it is suitable to first visit T1, then T2 and so on. By contrast,
recall that enforcing GReach[T1, . . . ,Tk] may require visiting targets in a specific order (see
Example 3). The analogue of the construction above for generalised reachability games is to
include the sets of previously visited targets in the vertices of the arena, which comes at an
exponential price [35, 36].

Equilibria in n-player Büchi Games. Let us now turn to NEs in n-player Büchi games. In
this setting, a polynomial-size memory is sufficient [70]. Once more, SCCs play a crucial
role to obtain a polynomial algorithm. A deterministic polynomial algorithm is presented
in [70]. This algorithm relies on a characterisation of outcomes of NEs as explained for
n-player reachability games and on an algorithm tailored for the Büchi objective that finds
an adequate reachable SCC in refined arenas of the game.

In contrast to the NE case, memory requirements as well as the exact complexity class of
the CEE problem for SPEs in n-player Büchi games are still open. Nevertheless, this latter
problem is in NP since it is the case for the more general parity games [15].

Two-player Generalised Büchi Games. Two-player zero-sum generalised Büchi games can
also be solved in polynomial time and a memory of polynomial size is sufficient [32, 23]. The
construction discussed above for one-player generalised Büchi games can be adapted to the
two-player zero-sum setting. As memoryless strategies suffice to win in (simple) Büchi games,
it follows from the construction that a polynomial-size memory suffices to win in generalised
Büchi games. The role of the memory is to ensure that T1 is visited, then T2 until Tk and
then restart from T1.

3.3 Reaching Targets Quickly: Shortest-path Games

In this section, we focus on reaching a target as soon as possible. In order to formalise this
idea, we first need to enrich our arenas with weights on edges. A weighted arena is couple
(A, w) where A is an arena and w : E → Z is a weight function.

Let T ⊆ V be a target. We introduce the shortest-path objective described by the cost
function SPathw[T] that players intend to minimise. It is a quantitative variant of the
Boolean reachability objective function. Formally, SPathw[T] : Plays → Z is defined by:

SPathw[T](ρ) =
{∑ℓ−1

j=0 w(ρj , ρj+1) if ℓ is the least index such that ρℓ ∈ T
∞ otherwise.

Definitions using gain functions can be recovered for cost functions by reversing inequalities
(e.g., solution concepts and the CEE problem).

In Section 3.3.1, we study shortest-path games whose weight function is restricted to
non-negative weights, while Section 3.3.2 considers unrestricted weights.

FSTTCS 2023

1:14 Reachability Games and Friends

v0 v1 v2

v3

t123

t2 t3

5

(a) A game where punishment memory is
needed even if all targets are visited.

v0 t
0

−1

(b) A one-player game
where any cost can
be ensured using step-
counting memory.

v0 v1

t

0

−1
0 −10

(c) A game where a
step-counting memory
suffices to play optim-
ally.

Figure 4 Weighted arenas for shortest-path games. Unlabelled edges have a weight of 1.

3.3.1 Same Strategies as the Boolean Case: Non-negative Weights
First, we consider the case where w : E → N. In a one-player or two-player zero-sum setting,
there is always a memoryless optimal strategy in shortest-path games. The memory needed
to solve the natural shortest-path variants of the CEE problem differs only slightly from the
Boolean case. Namely, for NEs, punishment memory could be required even when all players
visit their target.

Let us consider the three-player shortest-path game played on the arena of Figure 4a
with initial vertex v0. P1, P2 and P3 control circle, square and diamond vertices respectively
and their targets are {t123}, {t2, t123} and {t3, t123}. To obtain an NE visiting targets of all
players, P1 needs memory. Indeed, the only possible such outcome is v0v1v2t

ω
123 with a cost

of 7. However, if P1 uses a memoryless strategy and chooses t2 (resp. t3) from v3 then, P3
(resp. P2) should deviate towards v3 to obtain a cost of 3. Punishment memory, matching
that required in the game illustrated in Figure 3b, is needed.

One could say that nothing differs in terms of computational complexity for the TSE
problem in shortest-path one-player or two-player zero-sum games (e.g., [31, 52, 50, 21]).
In general, the philosophy of the algorithms remains the same, as the algorithms for the
Boolean case already compute shortest paths in some sense.

Let us now turn to the shortest-path variants of the CEE problem. In this case, nothing
differs in terms of complexity classes. The NP membership for NEs in n-player shortest-
path games can be derived from the arguments used in the Boolean case. As the hardness
argument in the Boolean setting of one-player generalised reachability games is not applicable
in this case, NP-hardness relies on a reduction from the SAT problem. This reduction
is in the same spirit as the construction presented for SPEs but restricted to existential
formulas [18]. To obtain PSPACE-completeness for SPEs in n-player shortest-path games,
non-trivial adaptations of the Boolean case are needed (specifically for PSPACE membership),
see [17].4

We now mention another setting where an exponential memory size is needed. In the
Boolean setting, the simplest such case is when solving two-player zero-sum generalised
reachability games. We present here a multi-dimensional variant of the TSE problem where
an exponential size memory is needed even with a single target T.

We consider a two-player arena equipped with a multi-dimensional weight function
w : E → Nk. The (multi-dimensional) cost function of P1 is such that, for all plays ρ ∈ Plays,
SPathw[T](ρ) = (SPathw1 [T](ρ), . . . , (SPathwk

[T](ρ)). Given α ∈ Nk, we study the existence
of a strategy σ1 of P1 such that for all σ2 of P2, SPathwj

[T](⟨σ1, σ2⟩) ≤ αj for each j ∈ JkK.

4 Notice that in [17], authors assume that w(e) = 1 for all e ∈ E.

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:15

∀1

x1

¬x1

∀2

(20, 0)

(0, 20)

(0, 0)

(0, 0)

. . . ∀ℓ

xℓ

¬xℓ

(2ℓ−1, 0)

(0, 2ℓ−1)

∃1

(0, 0)

(0, 0)

y1

¬y1

(20, 0)

(0, 20)

∃2

(0, 0)

(0, 0)

. . . ∃ℓ

yℓ

¬yℓ

(2ℓ−1, 0)

(0, 2ℓ−1)
t

(0, 0)

(0, 0)

Figure 5 A multi-dimensional shortest-path game where an exponential memory size is required.

Consider the game played on the arena depicted in Figure 5 where P1 (resp. P2) controls
circles (resp. squares) and T = {t}. This illustrates a situation where exponential memory is
needed: a strategy that solves the game for the threshold (2ℓ − 1, 2ℓ − 1) requires a memory
with size exponential in the number of vertices. Intuitively, P1 has to remember the choice of
P2 in vertex ∀j and do the opposite in ∃j for all j ∈ JℓK. This multi-dimensional version of
the TSE problem is PSPACE-complete [22]. The PSPACE-hardness, proved via a reduction
from the quantified subset-sum problem [67, Lemma 4], holds even if | T | = 1 and k = 2.

3.3.2 Step-counting-memory Strategies: Unrestricted Weights
We now turn to the case where w : E → Z. In this setting, complex phenomena already occur
in one-player shortest-path games. We consider the one-player shortest-path game on the
arena depicted in Figure 4b with target {t}. There is no optimal strategy to reach t from v

in this game. Indeed, given any strategy σ1 ensuring the cost α, there exists a better strategy
σ′

1 ensuring α− 1 (remember that we aim at minimising the cost). For a given threshold α,
there exists a strategy ensuring α, but this strategy needs memory. The memory is used to
count the number of loops to take before moving to t.

We call strategies that follow a memoryless strategy that accumulates negative weight for
a fixed number of steps before switching to a memoryless shortest-path strategy a strategy
with step-counting memory. If there exists a strategy ensuring a threshold α (encoded in
binary), then there is a strategy with step-counting memory that ensures α with a memory
of pseudo-polynomial size, i.e., of size exponential in the size of the encoding of α (recall
that the size of the memory refers to the size of the Mealy machine).

When considering two-player zero-sum shortest-path games, similar, but slightly more
subtle phenomena occur. Let us consider the shortest-path game on the arena of Figure 4c
where P1 (resp. P2) controls the circle (resp. square) vertices with target {t}. Starting from
v0, P1 has an optimal strategy σ1 ensuring −10. At first glance, one could think that the
memoryless strategy consisting in reaching v1 is optimal, but in this case, t will never be
reached as P2 will always go back to v0. An optimal strategy σ1 consists in counting 10 visits
to v1 before reaching t. Facing σ1, the optimal (memoryless) strategy for P2 is to directly
reach t, whose resulting outcome is a simple path. Two-player zero-sum shortest-path games
can be solved in pseudo-polynomial time. In general, P1 does not necessarily have an optimal
strategy, but if he has one, there is one with step-counting memory of pseudo-polynomial
size. This contrasts with P2 who always has an optimal memoryless strategy [20, 21].

On the one hand, the multi-dimensional variant of the TSE problem discussed in Sec-
tion 3.3.1 is undecidable if we allow unrestricted weights [61]. On the other hand, regarding
NEs in n-player shortest-path games, the example from Figure 4b directly implies that NEs
are not guaranteed to exist in this setting.

4 Stochastic Arenas

In this section, we consider arenas with randomised transitions. We focus on the case where
one player progresses in a stochastic environment, i.e., one-player stochastic games, also
known as Markov decision processes. In Section 4.1, we introduce our formal model as an

FSTTCS 2023

1:16 Reachability Games and Friends

v0

v1

v2

t

v3

1
2

1
2

1
4

3
4

(a) An MDP where P1 has an incentive
to move to v2 only if the number of steps
to visit t is limited.

v0

t1

t2

v′
0

v1 t′1

v2 t′2

v3

1
2
1
2

1
2

1
2

(b) An MDP where both randomisation and memory are
necessary to visit {t1, t′1} and {t2, t′2} with probability at least
3
4 .

Figure 6 Example MDPs. Circles and diamonds resp. represent P1 and stochastic vertices.

extension of the model of Section 2 and describe the problems we consider. Section 4.2 is
the counterpart of Section 3 for the problems described in this section; we overview the
complexity of strategies necessary to address these problems and comment on algorithms.

4.1 Markov Decision Processes
In this section, we extend notions of Section 2 to the one-player probabilistic setting.

Probability Distributions. Let A be a finite or countable set. We let D(A) denote the set of
(discrete) probability distributions over A, i.e., functions p : A → [0, 1] with

∑
a∈A p(a) = 1.

For any p ∈ D(A), we let supp(p) = {a ∈ A | p(a) > 0} denote the support of p.

Markov Decision Processes. Let (V,E) be a directed graph as in Section 2. A Markov de-
cision process (MDP) or one-player stochastic arena (on (V,E)) is a tuple M = (V1, V∆, E,∆)
where (V1, V∆) is a partition of V into vertices of P1 and stochastic vertices and ∆: V∆ →
D(V) is a stochastic transition function such that supp(∆(v)) = {v′ ∈ V | (v, v′) ∈ E} for all
v ∈ V∆ (i.e., ∆(v) assigns a positive probability to all successors of v and only to them). We
assume that MDPs are deadlock-free. MDPs subsume one-player game arenas.
▶ Remark 5. MDPs can alternatively be defined by a set of states, a set of actions, and a
probabilistic transition function that assigns distributions over successor states to pairs of
states and actions. The definition of MDPs presented here is equivalent [27], in addition to
being compatible with the definitions of the previous section.

Definitions of plays and histories are identical to those provided in Section 2 for non-
stochastic arenas. We will use the same notation. A multi-weighted MDP is a pair (M, w)
where w : E → Nk is a multi-dimensional (non-negative) weight function. An event is a set
of measurable plays (for the Borel σ-algebra on the set of plays).

We illustrate two MDPs in Figure 6. Plays in MDPs proceed differently than in determ-
inistic games: due to the presence of stochastic vertices, there may be several outcomes from
an initial vertex for a given strategy of P1. At each round of a play, if the current vertex v is
controlled by P1, then he chooses the next vertex, however if v is stochastic, then the next
vertex is chosen randomly according to the distribution ∆(v). For instance, in the MDP of
Figure 6a, the next vertex from v1 is chosen uniformly at random between v0 or t.

Randomised Strategies. In MDPs, we consider more general strategies than in Section 3.
Randomised strategies yield a distribution over the possible choices of P1 instead of providing
an action deterministically. These strategies allow a trade-off between different (and possibly

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:17

incompatible) goals. For instance, in the MDP depicted in Figure 6b, if P1 wants to ensure
that the states t1 and t2 are each visited with probability 1

2 , he cannot do so without
randomisation. In this example, both states t1 and t2 cannot be visited along the same path.

Formally, a (randomised) strategy (of P1) is a function σ : Hist1 → D(V) such that, for
all histories h = h0 . . . hℓ ∈ Hist1, supp(σ(h)) ⊆ {v ∈ V | (hℓ, v) ∈ E}. A strategy σ is pure if
it does not use randomisation, i.e., if for all histories h ∈ Hist1, |supp(σ(h))| = 1. Memoryless
(randomised) strategies are defined in the same way as previously.

We say that a randomised strategy is finite-memory if it can be encoded by a (stochastic)
Mealy machine M = (M,m0, up, nxt) where M, m0 and up are defined in the same way
as previously and nxt : M ×V1 → D(V) is changed to output distributions over successors
vertices rather than a single successor. The strategy induced by a Mealy machine is defined
similarly to the case of deterministic arenas, except it outputs distributions instead of vertices.

We remark that finite-memory randomised strategies can be defined in alternative ways,
e.g., by also including randomisation in the initialisation or in the updates of the Mealy
machine. Such alternatives are not equivalent to the one given above [56]. We do not consider
richer models: the one above is sufficient to solve the problems considered in this section.

Outcomes. Let σ be a strategy of P1 and v0 be an initial vertex. By fixing a strategy
and initial vertex, we obtain a purely stochastic process, i.e., a Markov chain over the set
of histories of the MDP. Intuitively, for each history h, one can assign a probability to the
plays that extend h, defined as the product of the probability each edge along the history
being taken according to the strategy of P1 and the stochastic transition function. This
distribution extends in a unique manner to all events. We denote it by Pσ

v0
. We refer the

reader to, e.g., [5], for a formal definition of this distribution.
We stress that the nature of outcomes differs from the non-stochastic case. On the one

hand, the outcome of a strategy profile from a vertex is a singular play in the non-stochastic
setting. On the other hand, with MDPs, we obtain a Markov chain after fixing the strategy
of P1 and the initial vertex. Furthermore, there can be infinitely many plays resulting from
the Markov chain, even when the strategy of P1 is pure. This can be observed on the MDP
of Figure 6a by considering the initial vertex v0 and the pure memoryless strategy of P1 that
moves from v0 to v1. Due to the stochastic vertex v1, there are infinitely many plays played
according to this strategy.

Relevant Events and Problems. In the following, we consider two types of events derived
from gain and cost functions. Let T denote a target set and w a (one-dimensional) weight
function. The first type of event relates to the purely Boolean reachability objective. Such
an event is a set {ρ ∈ Plays | Reach[T](ρ) = 1}. For conciseness, we will abusively denote
this event by Reach[T]. The second type of event pertains to shortest-path problems, and
these events are given by sets {ρ ∈ Plays | SPathw[T](ρ) ≤ α} for some threshold α ∈ N.

We study both one-dimensional and multi-dimensional problems. In the one-dimensional
case, we are interested in the maximal probability of an event and computing strategies that
realise this probability. A strategy is optimal if it attains this probability.

In the multi-dimensional case, we want to satisfy lower-bound constraints on the probab-
ility of several events. More precisely, let v0 ∈ V be an initial vertex, Ω1, . . . , Ωk be events
(of the same type) and β1, . . . , βk ∈ [0, 1] be thresholds. We want to decide the existence of
strategy σ such that for all j ∈ JkK, Pσ

v0
(Ωj) ≥ βj , and synthesise such a strategy if it exists.

We remark that there also exist metrics other than probability to measure the quality of
strategies that we do not discuss here. For instance, given a cost function, one could aim to
find a strategy minimising the expected cost (e.g., see [8] for the shortest path cost function).

FSTTCS 2023

1:18 Reachability Games and Friends

4.2 Reachability Problems in Markov Decision Processes
In this section, we overview the problems introduced at the end of the previous section. In
Section 4.2.1, we present one-dimensional problems for which pure strategies suffice. We
follow with their multi-dimensional counterparts in Section 4.2.2, for which randomised
strategies are required. In both sections, we first discuss the Boolean reachability objective,
then the shortest-path variant. For the former, memoryless strategies suffice in the one-
dimensional case, and the same memory structure as in two-player generalised reachability
games suffices in the multi-dimensional case. In the shortest-path case, the memory keeps
track of the accumulated weight (for each dimension) in addition to the information used in
the unweighted case. We fix an MDP M = (V1, V∆, E,∆) for this section.

4.2.1 Pure Strategies: One-dimensional Problems
Memoryless Strategies: Reachability. The maximum reachability probability can always
be achieved using a pure memoryless strategy. Such a strategy can be obtained once the
optimal probabilities have been computed for all vertices. First, we restrict edges that leave
P1 vertices to those that enter a successor vertex with highest maximum probability. A
memoryless strategy is optimal if and only if it uses only the restricted edges and, from all
vertices with a positive maximum reachability probability, there is a path according to the
strategy to a target state. A natural way to compute such a strategy is to select one such
that, from all states with positive maximum reachability probability, there is a path to a
target that is as short as possible (e.g., by a backwards induction approach).

Due to the nature of outcomes in this setting, in contrast with the non-stochastic setting,
it is not possible to enforce that targets are reached by simple paths, even if a target is
reached almost-surely. This can be observed on the MDP of Figure 6a. The (only) optimal
memoryless strategy of P1 is the one that moves from v0 to v1, and it ensures t is reached
with probability 1 from v0 (and v1). As explained previously, there are infinitely many plays
played according to this strategy, and the time to reach a target in these plays is not bounded
from above.

Computing the maximum probability of reaching a target set T in M can be done in
polynomial time via linear programming [5]. Furthermore, deciding whether there is a
strategy ensuring that a target is reached almost-surely is P-hard (for reasons similar to
two-player zero-sum Boolean reachability games). The existence of strategies that ensure
that T is reached almost-surely depends only on the graph underlying M and the partition of
vertices, and is independent of the probabilities assigned by ∆. We remark that this special
case is no easier than the general one from a complexity standpoint.

Counting-memory Strategies: Weight-constrained Reachability. Let T be a target set,
α ∈ N, β ∈ [0, 1] be thresholds and w be a one-dimensional weight function. In general,
strategies that maximise the probability of the event Ω = {ρ ∈ Plays | SPathw[T](ρ) ≤ α}
require memory.

To illustrate this, let us consider the MDP of Figure 6a, assume that all edges have a
weight of 1 (i.e., we count steps), and that P1 wants to maximise the probability of reaching
t within four steps from v0. We only describe the strategy in v0 when two or four steps
remain, as it is the only decision state and two steps are required to return to it. If two steps
remain, the only optimal move is to go from v0 to v2, as it ensures the target is reached with
probability 3

4 instead of 1
2 . If four steps remain, moving to v1 is the only optimal move, as

it ensures a greater probability of success than 3
4 due to the probability of success from v0

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:19

when two steps remain being 3
4 . We observe that optimal strategies in this setting may select

edges that would otherwise not be chosen when maximising the probability of Reach[{t}]. In
other words, P1 has an incentive to select riskier moves due to the weight constraints.

Deciding whether the maximum probability of Ω is at least β is PSPACE-hard, even for
acyclic MDPs, for which it is PSPACE-complete [45]. In full generality, the problem can
be solved in time polynomial in the size of the MDP and the threshold α, i.e., in pseudo-
polynomial time. To compute the maximum probability and derive a maximising strategy,
we can augment vertices of the MDP with the accumulated weight from the initial vertex and
make vertices with an accumulated weight exceeding α absorbing (i.e., all edges leaving these
vertices return to it). This ensures the expanded MDP is finite. On this expanded MDP,
the optimal probabilities and an optimal strategy can be computed using the techniques
described above, by considering as targets the expanded original target vertices with an
accumulated weight of at most α.

Due to memoryless strategies being sufficient to maximise reachability probabilities,
it follows that finite-memory strategies of pseudo-polynomial size that keep track of the
accumulated weight suffice to maximise the probability of Ω, i.e., a counting memory is
sufficient. A memory of pseudo-polynomial size is necessary in certain cases. Whether a
move is optimal in a vertex in this setting is an intrinsic property of the difference between
the bound α and the weight accumulated when entering the vertex. Unlike strategies with
step-counting memory presented in Section 3.3.2, the strategies here do not only switch once
from one memoryless strategy to another based on the number of steps taken, but instead
make decisions based on the accumulated weight. In particular, in a given state, there may
be more than two different memoryless strategies assigned to the memory states of a Mealy
machine encoding an optimal strategy (e.g., this would occur if there were an additional
state in the MDP of Figure 6a that reaches t with probability 7

8 in exactly three steps).

4.2.2 Randomised Strategies: Multi-dimensional Problems
Branching-memory Strategies: Multi-objective Reachability. We now consider multiple
targets T1, . . . Tk and probability thresholds β1, . . . , βk ∈ [0, 1], and the problem of existence
and synthesis of a strategy σ such that for all j ∈ JkK, Pσ

v0
(Reach[Tj]) ≥ βj . Instead of

maximising the probability of having GReach[T1, . . . ,Tk] = 1, we treat each target separately.
This allows one to study the trade-off between the different reachability objectives. The
special case where, for all j ∈ JkK, βj = 1, is nonetheless equivalent to deciding the existence
of a strategy ensuring that GReach[T1, . . . ,Tk] = 1 almost-surely.

Unlike all previously introduced problems, randomised strategies are necessary to satisfy
these multi-dimensional constraints, as was explained when introducing randomised strategies.
Furthermore, memory may be necessary. Consider the MDP of Figure 6b and the target sets
T1 = {t1, t′1} and T2 = {t2, t′2}. To visit both target sets with probability 3

4 from v0, pure
strategies do not suffice; at best, one target can be visited almost-surely and the other with
a probability of 1

2 . Furthermore, randomised memoryless strategies can also be argued to be
insufficient. A suitable strategy is one that selects a successor of v0 uniformly at random,
and then moves (deterministically) from v′

0 to v3−j if tj was visited (i.e., the memory keeps
track of previously visited target sets).

Furthermore, a memory of size exponential in the number of targets is necessary and
sufficient. Consider the graph QBF1 of Figure 2 for the formula in Equation (1), and let
existential (resp. universal) vertices be controlled by P1 (resp. be stochastic). For the targets
we considered for generalised reachability, exponential memory is necessary to ensure all
targets are visited almost-surely. In general, the same type of branching memory as in
two-player zero-sum generalised reachability games is sufficient.

FSTTCS 2023

1:20 Reachability Games and Friends

In a nutshell, the role of the randomisation in strategies is to balance the different
objectives, whereas the role of the memory in strategies is to recall the visited targets. In the
special case where all targets are absorbing, no memory is required [33], therefore randomised
memoryless strategies suffice.

The problem can be shown to be PSPACE-hard using the previously sketched construction
for general QBF formulas [62]. The case where β1 = . . . = βk = 1 is PSPACE-complete [62].
The case where targets are absorbing can be solved in polynomial time by linear programming.
The general problem can be solved in time polynomial in the size of the MDP and exponential
in the number of targets, by reduction to the case where targets are absorbing [33].

Branching-counting-memory Strategies: Multi-objective Weight-constrained Reachability.
In addition to the targets and probability thresholds fixed above, we consider a multi-
dimensional weight function w : E → Nk and thresholds α1, . . . , αk ∈ N. A strategy σ such
that Pσ

v0
(SPathwj

[Tj] ≤ αi) ≥ βj holds for all j ∈ JkK, if it exists, can always be found with
a combination of the traits of the counting-memory and branching-memory strategies from
the two previous problems. In other words, for such constraints, randomised finite-memory
strategies that keep track of the accumulated weight and the sets of visited targets suffice.
Therefore, memory exponential in the number of targets and the encoding of the bounds αj

is sufficient. The need for an exponential-sized memory in general follows from the need for
an exponential-size memory for unweighted multi-objective reachability.

These strategies can be synthesised by merging the algorithmic ideas for the two previous
problems [62]. First, one augments the MDP vertices with vectors of accumulated weights for
dimensions j for which the bound αj has not been exceeded yet. Next, by defining targets
for each dimension in the augmented MDP as in the one-dimensional shortest-path problem,
checking the existence of a strategy and synthesising it can be done via algorithms for
multi-dimensional reachability. It follows that this problem can be solved in time polynomial
in the size of the MDP and exponential in the number of targets and encoding of the bounds
αj . It also inherits PSPACE-hardness from the previous problem. This problem is undecidable
if we allow weights in Z [62].

5 Conclusion

The goal of this paper was to look at reachability-related problems through the lens of
memory. Now that our journey has reached its end, we briefly comment on what lies beyond
the intended scope of this paper.

We have only considered perfect information turn-based games. Relaxing these hypotheses
induces a need for more complex strategies, even in zero-sum Boolean reachability games.
For instance, in concurrent games, neither player may have a winning strategy. Furthermore,
randomisation may be necessary to maximise one’s probability of winning. There may not
be a strategy that ensures the maximal probability of P1, although this probability can
be approached by memoryless randomised strategies [29, 47]. Moreover, without perfect
information, P1 may need a memory of exponential size, in addition to randomisation,
to maximise the reachability probability [7]. Deciding whether P1 has an almost-surely
winning strategy in a concurrent reachability game of imperfect information is 2-EXPTIME-
complete [7], a stark contrast with the turn-based perfect information setting.

Throughout this paper, we have only dealt with finite arenas. Reachability problems on
infinite arenas with a finite description have also garnered interest. Notable such problems
include the halting problems for Turing [68] or Minsky [57] machines, which are undecidable.

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:21

The problem of solving zero-sum reachability games on the configuration graph of a pushdown
automaton is EXPTIME-complete [71]. The reachability problem in Petri nets and vector
addition systems was recently shown to be Ackermann-complete [54, 28]. Regarding questions
related to strategy complexity in infinite games, one can mention [10] where the memory
requirements of winning strategies are studied in zero-sum games where the goal is to
construct (i.e., reach) a word from a regular language.

When considering strategies, we only introduced randomisation in situations were it
was required. In particular, we did not discuss the potential trade-off between the size of
a deterministic Mealy machine and the use of randomisation. In some cases, as discussed
in [58, 24, 46, 25], considering randomised strategies in situations where pure strategies suffice
can yield smaller memory bounds for optimal (or close-to-optimal) strategies. Specifically
studying the existence of pure strategies to solve certain problems can sometimes turn out
more complex than searching for randomised strategies [30].

We have highlighted some similarities in the memory structure needed to solve some
problems that are often treated as different. We believe that the memory structure of
strategies should be investigated deeper, in line with the effort to understand when complex
strategies are required that is described in Section 1. There exist works that study alternatives
to Mealy machine to represent strategies, e.g., models based on Turing machine [41], decision
trees for memoryless strategies (e.g., [2, 3]) or compact counter-based models in a setting
with limited resources [9].

In Section 3.2, we noted that although Büchi objectives appear more complex than
reachability objectives, solving games with objectives derived from the former is often simpler
than dealing with games based on the latter. A key ingredient enabling efficient algorithms to
solve games involving Büchi objectives is the ability to heavily rely on SCCs. From this, one
could question whether there is a relation between the SCC decomposition of a reachability
game and the memory structure needed to solve it.

References
1 Eric Allender. Reachability problems: An update. In S. Barry Cooper, Benedikt Löwe,

and Andrea Sorbi, editors, Computation and Logic in the Real World, Third Conference on
Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007, Proceedings, volume
4497 of Lecture Notes in Computer Science, pages 25–27. Springer, 2007. doi:10.1007/
978-3-540-73001-9_3.

2 Pranav Ashok, Mathias Jackermeier, Jan Kretínský, Christoph Weinhuber, Maximilian Wein-
inger, and Mayank Yadav. dtControl 2.0: Explainable strategy representation via decision
tree learning steered by experts. In Jan Friso Groote and Kim Guldstrand Larsen, editors,
Proceedings (Part II) of the 27th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2021, Held as Part of ETAPS 2021, Luxemburg
City, Luxemburg, March 27–April 1, 2021, volume 12652 of Lecture Notes in Computer Science,
pages 326–345. Springer, 2021. doi:10.1007/978-3-030-72013-1_17.

3 Pranav Ashok, Jan Kretínský, Kim Guldstrand Larsen, Adrien Le Coënt, Jakob Haahr
Taankvist, and Maximilian Weininger. SOS: safe, optimal and small strategies for hybrid
markov decision processes. In David Parker and Verena Wolf, editors, Proceedings of the 16th
International Conference on Quantitative Evaluation of Systems, QEST 2019, Glasgow, UK,
September 10–12, 2019, volume 11785 of Lecture Notes in Computer Science, pages 147–164.
Springer, 2019. doi:10.1007/978-3-030-30281-8_9.

4 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing
the truth of certain quantified Boolean formulas. Information Processing Letters, 8(3):121–123,
1979. doi:10.1016/0020-0190(79)90002-4.

FSTTCS 2023

https://doi.org/10.1007/978-3-540-73001-9_3
https://doi.org/10.1007/978-3-540-73001-9_3
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1016/0020-0190(79)90002-4

1:22 Reachability Games and Friends

5 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
6 Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.
7 Nathalie Bertrand, Blaise Genest, and Hugo Gimbert. Qualitative determinacy and decidability

of stochastic games with signals. Journal of the ACM, 64(5):33:1–33:48, 2017. doi:10.1145/
3107926.

8 Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580–595, 1991. doi:10.1287/moor.16.3.580.

9 Frantisek Blahoudek, Tomás Brázdil, Petr Novotný, Melkior Ornik, Pranay Thangeda, and
Ufuk Topcu. Qualitative controller synthesis for consumption Markov decision processes. In
Shuvendu K. Lahiri and Chao Wang, editors, Proceedings (Part II) of the 32nd International
Conference on Computer Aided Verification, CAV 2020, Los Angeles, CA, USA, July 21–24,
2020, volume 12225 of Lecture Notes in Computer Science, pages 421–447. Springer, 2020.
doi:10.1007/978-3-030-53291-8_22.

10 Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove. How to play
optimally for regular objectives? In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors,
Proceedings of the 50th International Colloquium on Automata, Languages, and Programming,
ICALP 2023, July 10–14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 118:1–
118:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.
2023.118.

11 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vand-
enhove. Games where you can play optimally with arena-independent finite memory. Logical
Methods in Computer Science, 18(1), 2022. doi:10.46298/lmcs-18(1:11)2022.

12 Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-
independent finite-memory determinacy in stochastic games. In Serge Haddad and Daniele
Varacca, editors, Proceedings of the 32nd International Conference on Concurrency Theory,
CONCUR 2021, Virtual Conference, August 24–27, 2021, volume 203 of LIPIcs, pages 26:1–
26:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.
2021.26.

13 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. The true colors of memory: A tour
of chromatic-memory strategies in zero-sum games on graphs (invited talk). In Anuj Dawar
and Venkatesan Guruswami, editors, Proceedings of the 42nd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, IIT
Madras, Chennai, India, December 18–20, 2022, volume 250 of LIPIcs, pages 3:1–3:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.3.

14 Romain Brenguier. Equilibres de Nash dans les jeux concurrents : application aux jeux
temporisés. (Nash equilibria in concurrent games : application to timed games). PhD thesis,
École normale supérieure de Cachan, France, 2012. URL: https://tel.archives-ouvertes.
fr/tel-00827027.

15 Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. On the complexity of SPEs
in parity games. In Florin Manea and Alex Simpson, editors, Proceedings of the 30th EACSL
Annual Conference on Computer Science Logic, CSL 2022, Göttingen, Germany, February
14–19, 2022, volume 216 of LIPIcs, pages 10:1–10:17. Schloss Dagstuhl –Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.10.

16 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained
existence problem for weak subgame perfect equilibria with ω-regular Boolean objectives.
Information and Computation, 278:104594, 2021. doi:10.1016/j.ic.2020.104594.

17 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie
van den Bogaard. The complexity of subgame perfect equilibria in quantitative reachability
games. Logical Methods in Computer Science, 16(4), 2020. URL: https://lmcs.episciences.
org/6883.

https://doi.org/10.1145/3107926
https://doi.org/10.1145/3107926
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1007/978-3-030-53291-8_22
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.3
https://tel.archives-ouvertes.fr/tel-00827027
https://tel.archives-ouvertes.fr/tel-00827027
https://doi.org/10.4230/LIPIcs.CSL.2022.10
https://doi.org/10.1016/j.ic.2020.104594
https://lmcs.episciences.org/6883
https://lmcs.episciences.org/6883

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:23

18 Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomasset. On relevant
equilibria in reachability games. Journal of Computer and System Sciences, 119:211–230, 2021.
doi:10.1016/j.jcss.2021.02.009.

19 Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer cost games with simple Nash
equilibria. In Sergei N. Artëmov and Anil Nerode, editors, Proceedings of the International
Symposium on Logical Foundations of Computer Science, LFCS 2013, San Diego, CA, USA,
January 6–8, 2013, volume 7734 of Lecture Notes in Computer Science, pages 59–73. Springer,
2013. doi:10.1007/978-3-642-35722-0_5.

20 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or not to
reach? Efficient algorithms for total-payoff games. In Luca Aceto and David de Frutos-Escrig,
editors, Proceedings of the 26th International Conference on Concurrency Theory, CONCUR
2015, Madrid, Spain, September 1–4, 2015, volume 42 of LIPIcs, pages 297–310. Schloss
Dagstuhl –Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.297.

21 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseudopolyno-
mial iterative algorithm to solve total-payoff games and min-cost reachability games. Acta
Informatica, 54(1):85–125, 2017. doi:10.1007/s00236-016-0276-z.

22 Thomas Brihaye and Aline Goeminne. Multi-weighted reachability games. CoRR,
abs/2308.09625, 2023. doi:10.48550/arXiv.2308.09625.

23 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the complexity of
heterogeneous multidimensional games. In Josée Desharnais and Radha Jagadeesan, editors,
Proceedings of the 27th International Conference on Concurrency Theory, CONCUR 2016,
Québec City, Canada, August 23–26, 2016, volume 59 of LIPIcs, pages 11:1–11:15. Schloss
Dagstuhl –Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

24 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Trading memory for
randomness. In Proceedings of the 1st International Conference on Quantitative Evaluation
of Systems, QEST 2004, Enschede, The Netherlands, 27–30 September 2004, pages 206–217.
IEEE Computer Society, 2004. doi:10.1109/QEST.2004.1348035.

25 Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129–163, 2014. doi:
10.1007/s00236-013-0182-6.

26 Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, STOC 1971, Shaker Heights, Ohio, USA, May 3–5,
1971, pages 151–158. ACM, 1971. doi:10.1145/800157.805047.

27 Costas Courcoubetis and Mihalis Yannakakis. Markov decision processes and regular events.
IEEE Transactions on Automatic Control, 43(10):1399–1418, 1998. doi:10.1109/9.720497.

28 Wojciech Czerwiński and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7–10, 2022, pages 1229–1240.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00120.

29 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games.
Theoretical Computer Science, 386(3):188–217, 2007. doi:10.1016/j.tcs.2007.07.008.

30 Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Randour. Simple
strategies in multi-objective MDPs. In Armin Biere and David Parker, editors, Proceedings
(Part I) of the 26th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2020, Held as Part of ETAPS 2020, Dublin, Ireland, April
25–30, 2020, volume 12078 of Lecture Notes in Computer Science, pages 346–364. Springer,
2020. doi:10.1007/978-3-030-45190-5_19.

31 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390.

32 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, LICS 1997, Warsaw, Poland, June 29 – July 2, 1997, pages 99–110. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614939.

FSTTCS 2023

https://doi.org/10.1016/j.jcss.2021.02.009
https://doi.org/10.1007/978-3-642-35722-0_5
https://doi.org/10.4230/LIPIcs.CONCUR.2015.297
https://doi.org/10.1007/s00236-016-0276-z
https://doi.org/10.48550/arXiv.2308.09625
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.1109/QEST.2004.1348035
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/9.720497
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/LICS.1997.614939

1:24 Reachability Games and Friends

33 Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis. Multi-
objective model checking of Markov decision processes. Logical Methods in Computer Science,
4(4), 2008. doi:10.2168/LMCS-4(4:8)2008.

34 Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on graphs. CoRR, abs/2305.10546, 2023. doi:10.48550/
arXiv.2305.10546.

35 Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games. CoRR,
abs/1010.2420, 2010. doi:10.48550/arXiv.1010.2420.

36 Nathanaël Fijalkow and Florian Horn. Les jeux d’accessibilité généralisée. Technique et Science
Informatiques, 32(9-10):931–949, 2013. doi:10.3166/tsi.32.931-949.

37 Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.
doi:10.1145/367766.368168.

38 Lester R. Ford. Network flow theory. Paper P-923, The RAND Corporation, Santa Monica,
California, August 14, 1956. URL: http://www.rand.org/pubs/papers/P923.html.

39 James Friedman. A non-cooperative equilibrium for supergames. Review of Economic Studies,
38(1):1–12, 1971. URL: https://EconPapers.repec.org/RePEc:oup:restud:v:38:y:1971:
i:1:p:1-12.

40 Drew Fudenberg and David Levine. Subgame-perfect equilibria of finite-and infinite-horizon
games. Journal of Economic Theory, 31(2):251–268, 1983.

41 Marcus Gelderie. Strategy machines: representation and complexity of strategies in infinite
games. PhD thesis, RWTH Aachen University, 2014. URL: http://darwin.bth.rwth-aachen.
de/opus3/volltexte/2014/5025.

42 Hugo Gimbert and Wiesław Zielonka. Games where you can play optimally without any
memory. In Martín Abadi and Luca de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory, CONCUR 2005, San Francisco, CA, USA, August 23–26,
2005, volume 3653 of Lecture Notes in Computer Science, pages 428–442. Springer, 2005.
doi:10.1007/11539452_33.

43 Hugo Gimbert and Wiesław Zielonka. Pure and Stationary Optimal Strategies in Perfect-
Information Stochastic Games with Global Preferences. Unpublished, 2009. URL: https:
//hal.archives-ouvertes.fr/hal-00438359.

44 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

45 Christoph Haase and Stefan Kiefer. The odds of staying on budget. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Proceedings (Part II) of
the 42nd International Colloquium on Automata, Languages, and Programming, ICALP 2015,
Kyoto, Japan, July 6–10, 2015, volume 9135 of Lecture Notes in Computer Science, pages
234–246. Springer, 2015. doi:10.1007/978-3-662-47666-6_19.

46 Florian Horn. Random fruits on the Zielonka tree. In Susanne Albers and Jean-Yves
Marion, editors, Proceedings of the 26th International Symposium on Theoretical Aspects of
Computer Science, STACS 2009, Freiburg, Germany, February 26–28, 2009, volume 3 of
LIPIcs, pages 541–552. Schloss Dagstuhl –Leibniz-Zentrum für Informatik, Germany, 2009.
doi:10.4230/LIPIcs.STACS.2009.1848.

47 Rasmus Ibsen-Jensen. Concurrent games. In Nathanaël Fijalkow, editor, Games on Graphs.
arXiv, 2023.

48 Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

49 Neil D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer
and System Sciences, 11(1):68–85, 1975. doi:10.1016/S0022-0000(75)80050-X.

https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.48550/arXiv.1010.2420
https://doi.org/10.3166/tsi.32.931-949
https://doi.org/10.1145/367766.368168
http://www.rand.org/pubs/papers/P923.html
https://EconPapers.repec.org/RePEc:oup:restud:v:38:y:1971:i:1:p:1-12.
https://EconPapers.repec.org/RePEc:oup:restud:v:38:y:1971:i:1:p:1-12.
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/5025
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/5025
https://doi.org/10.1007/11539452_33
https://hal.archives-ouvertes.fr/hal-00438359
https://hal.archives-ouvertes.fr/hal-00438359
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1016/S0022-0000(75)80050-X

T. Brihaye, A. Goeminne, J. C. A. Main, and M. Randour 1:25

50 Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich,
Gábor Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-wise
limited interdiction. Theory of Computing Systems, 43(2):204–233, 2008. doi:10.1007/
s00224-007-9025-6.

51 Stephen Cole Kleene. Representation of events in nerve nets and finite automata. C. E.
Shannon and J. McCarthy (ed.). Automata Studies. Princeton University Press, pages 3–42,
1956.

52 François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Model-checking timed ATL
for durational concurrent game structures. In Eugene Asarin and Patricia Bouyer, editors,
Proceedings of the 4th International Conference on Formal Modeling and Analysis of Timed
Systems, FORMATS 2006, Paris, France, September 25–27, 2006, volume 4202 of Lecture
Notes in Computer Science, pages 245–259. Springer, 2006. doi:10.1007/11867340_18.

53 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by
Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya, editors,
Proceedings of the 38th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2018, Ahmedabad, India, December 11–13, 2018,
volume 122 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.FSTTCS.2018.38.

54 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In
Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7–10, 2022, pages 1241–1252. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00121.

55 James C. A. Main. Arena-independent memory bounds for nash equilibria in reachability
games. CoRR, abs/2310.02142, 2023. doi:10.48550/arXiv.2310.02142.

56 James C. A. Main and Mickael Randour. Different strokes in randomised strategies: Revisiting
Kuhn’s theorem under finite-memory assumptions. In Bartek Klin, Slawomir Lasota, and
Anca Muscholl, editors, Proceedings of the 33rd International Conference on Concurrency
Theory, CONCUR 2022, Warsaw, Poland, September 12–16, 2022, volume 243 of LIPIcs,
pages 22:1–22:18. Schloss Dagstuhl –Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.CONCUR.2022.22.

57 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA,
1967.

58 Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Reaching your goal optimally
by playing at random with no memory. In Igor Konnov and Laura Kovács, editors, Proceedings
of the 31st International Conference on Concurrency Theory, CONCUR 2020, Vienna, Austria,
September 1–4, 2020, volume 171 of LIPIcs, pages 26:1–26:21. Schloss Dagstuhl –Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.26.

59 Martin J. Osborne and Ariel Rubinstein. A course in game theory. The MIT Press, 1994.
60 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
61 Mickael Randour. Games with multiple objectives. In Nathanaël Fijalkow, editor, Games on

Graphs. arXiv, 2023.
62 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-

dimensional Markov decision processes. Formal methods in system design, 50(2-3):207–248,
2017. doi:10.1007/s10703-016-0262-7.

63 Stéphane Le Roux and Arno Pauly. Extending finite-memory determinacy to multi-player
games. Information and Computation, 261:676–694, 2018. doi:10.1016/j.ic.2018.02.024.

64 Bernard Roy. Transitivité et connexité. Comptes Rendus de l’Académie des Sciences Paris,
249:216–218, 1959.

65 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972. doi:10.1137/0201010.

FSTTCS 2023

https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1007/11867340_18
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.48550/arXiv.2310.02142
https://doi.org/10.4230/LIPIcs.CONCUR.2022.22
https://doi.org/10.4230/LIPIcs.CONCUR.2022.22
https://doi.org/10.4230/LIPIcs.CONCUR.2020.26
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.1016/j.ic.2018.02.024
https://doi.org/10.1137/0201010

1:26 Reachability Games and Friends

66 Wolfgang Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and
Claude Puech, editors, Proceedings of the 12th Annual Symposium on Theoretical Aspects of
Computer Science, STACS 1995, Munich, Germany, March 2–4, 1995, volume 900 of Lecture
Notes in Computer Science, pages 1–13. Springer, 1995. doi:10.1007/3-540-59042-0_57.

67 Stephen D. Travers. The complexity of membership problems for circuits over sets of integers.
Theoretical Computer Science, 369(1-3):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

68 Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937. doi:10.1112/plms/
s2-42.1.230.

69 Michael Ummels. Rational behaviour and strategy construction in infinite multiplayer games.
In S. Arun-Kumar and Naveen Garg, editors, Proceedings of the 26th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FST TCS 2006,
Kolkata, India, December 13–15, 2006, volume 4337 of Lecture Notes in Computer Science,
pages 212–223. Springer, 2006. doi:10.1007/11944836_21.

70 Michael Ummels. The complexity of Nash equilibria in infinite multiplayer games. In Roberto M.
Amadio, editor, Proceedings of the 11th International Conference on Foundations of Software
Science and Computational Structures, FoSSaCS 2008, Held as Part of ETAPS 2008, Budapest,
Hungary, March 29 – April 6, 2008, volume 4962 of Lecture Notes in Computer Science, pages
20–34. Springer, 2008. doi:10.1007/978-3-540-78499-9_3.

71 Igor Walukiewicz. Pushdown processes: Games and model-checking. Information and Compu-
tation, 164(2):234–263, 2001. doi:10.1006/inco.2000.2894.

72 Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12, 1962.
doi:10.1145/321105.321107.

73 Avi Wigderson. The complexity of graph connectivity. In Ivan M. Havel and Václav Koubek,
editors, Proceedings of the 17th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 1992, Prague, zechoslovakia, August 24–28, 1992, volume 629 of Lecture
Notes in Computer Science, pages 112–132. Springer, 1992. doi:10.1007/3-540-55808-X_10.

74 James Worrell. The Skolem landscape (invited talk). In Kousha Etessami, Uriel Feige, and
Gabriele Puppis, editors, Proceedings of the 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10–14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 5:1–5:2. Schloss Dagstuhl –Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ICALP.2023.5.

https://doi.org/10.1007/3-540-59042-0_57
https://doi.org/10.1016/j.tcs.2006.08.017
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1007/11944836_21
https://doi.org/10.1007/978-3-540-78499-9_3
https://doi.org/10.1006/inco.2000.2894
https://doi.org/10.1145/321105.321107
https://doi.org/10.1007/3-540-55808-X_10
https://doi.org/10.4230/LIPIcs.ICALP.2023.5
https://doi.org/10.4230/LIPIcs.ICALP.2023.5

	1 Introduction
	2 Preliminaries
	3 The Structure and Properties of Memory
	3.1 Boolean Reachability
	3.1.1 Memoryless Strategies
	3.1.2 Sequential-memory Strategies
	3.1.3 Branching-memory Strategies

	3.2 Repeated Reachability
	3.2.1 Memoryless Strategies
	3.2.2 Looping-sequential-memory Strategies

	3.3 Reaching Targets Quickly: Shortest-path Games
	3.3.1 Same Strategies as the Boolean Case: Non-negative Weights
	3.3.2 Step-counting-memory Strategies: Unrestricted Weights

	4 Stochastic Arenas
	4.1 Markov Decision Processes
	4.2 Reachability Problems in Markov Decision Processes
	4.2.1 Pure Strategies: One-dimensional Problems
	4.2.2 Randomised Strategies: Multi-dimensional Problems

	5 Conclusion

