
Monotone Classes Beyond VNP
Prerona Chatterjee # Ñ

Blavatnik School of Computer Science, Tel Aviv University, Israel

Kshitij Gajjar #

Indian Institute of Technology Jodhpur, Rajasthan, India

Anamay Tengse # Ñ

Department of Computer Science, University of Haifa, Israel

Abstract
In this work, we study the natural monotone analogues of various equivalent definitions of VPSPACE:
a well studied class (Poizat 2008, Koiran & Perifel 2009, Malod 2011, Mahajan & Rao 2013) that is
believed to be larger than VNP. We observe that these monotone analogues are not equivalent unlike
their non-monotone counterparts, and propose monotone VPSPACE (mVPSPACE) to be defined as
the monotone analogue of Poizat’s definition. With this definition, mVPSPACE turns out to be
exponentially stronger than mVNP and also satisfies several desirable closure properties that the
other analogues may not.

Our initial goal was to understand the monotone complexity of transparent polynomials, a
concept that was recently introduced by Hrubeš & Yehudayoff (2021). In that context, we show
that transparent polynomials of large sparsity are hard for the monotone analogues of all the known
definitions of VPSPACE, except for the one due to Poizat.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic Complexity, Monotone Computation, VPSPACE, Transparent
Polynomials

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.11

Related Version Full Version on Arxiv: https://arxiv.org/abs/2202.13103

Funding Prerona Chatterjee: Azrieli International Postdoctoral Fellowship, the Israel Science
Foundation (grant number 514/20) and the Len Blavatnik and the Blavatnik Family foundation.
Parts of this work was done while I was a PhD student at TIFR Mumbai, where I was partially
supported by a Google PhD Fellowship and also while I was a postdoctoral researcher at the
Czech Academy of Sciences, where I was supported by Grant GX19-27871X of the Czech Science
Foundation.
Kshitij Gajjar : Part of this work was done as a postdoc in NUS, where I was funded by NUS ODPRT
Grant WBS No. R-252-000-A94-133.
Anamay Tengse: Grant 716/20 of the Israel Science Foundation.

Acknowledgements We would like to thank the anonymous reviewers for the helpful comments. We
are also grateful to Meena Mahajan for suggestions that greatly improved the presentation of the
paper.

1 Introduction

The aim of algebraic complexity is to classify polynomials in terms of how hard it is to compute
them, and the most standard model for computing polynomials is that of an algebraic circuit.
An algebraic circuit is a rooted, directed acyclic graph where the leaves are labelled with
variables or field constants and internal nodes are labelled with addition (+) or multiplication
(×). Every node therefore naturally computes a polynomial and the polynomial computed
by the root is said to be the polynomial computed by the circuit. A formal definition can be

© Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prerona.ch@gmail.com
https://preronac.bitbucket.io/
https://orcid.org/0000-0003-2643-8142
mailto:kshitij@iitj.ac.in
https://orcid.org/0000-0003-0890-199X
mailto:anamay.tengse@gmail.com
https://anamay.bitbucket.io/
https://orcid.org/0000-0002-7305-8110
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.11
https://arxiv.org/abs/2202.13103
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Monotone Classes Beyond VNP

found in Section 2. The central question in the area is to show super-polynomial lower bounds
against algebraic circuits for explicit polynomials, or equivalently, to show that VP ̸= VNP:
the algebraic analogue of the famed P vs. NP question.

However, proving strong lower bounds against circuits has turned out to be a difficult
problem. Much of the research therefore naturally focusses on various restricted algebraic
models which compute correspondingly structured polynomials. One such syntactic restriction
is that of monotonicity, where the models are not allowed to use any negative constants.
Therefore, trivially, monotone circuits always compute polynomials with only non-negative
coefficients. Such polynomials are called monotone polynomials. We denote the class of all
polynomials that are efficiently computable by monotone algebraic circuits by mVP. Also
note that any monomial computed during intermediate computation in a monotone circuit
can never get cancelled out, making it a fairly weak model. As a result, several strong lower
bounds are known against monotone circuits.

Lower bounds in the monotone setting

There has been a long line of classical works that prove lower bounds against monotone
algebraic circuits [21, 22, 23, 12, 13, 7]. The most well-known among these, is the result of
Jerrum & Snir [12], where they showed exponential lower bounds against monotone circuits
for many polynomial families including the Permanent (Permn). In particular, they showed
that every monotone algebraic circuit computing the n2-variate Permn must have size at
least 2Ω(n). A few of the more recent works on monotone lower bounds include [20, 6, 1].

Additionally, many separations that are believed to be true in the general setting have
actually been proved to be true in the monotone setting [22, 9, 26, 24]. Most remarkably,
Yehudayoff [26] showed an exponential separation between the computational powers of the
monotone analogues of VP and VNP. We denote these classes by mVP (Definition 2.3) and
mVNP (Definition 2.4) respectively.

Another line of work in this setting tries to understand the power of non-monotone
computational models while computing monotone polynomials. Valiant [25], in his seminal
paper, showed that there is a family of monotone polynomials which can be computed by
polynomial sized non-monotone algebraic circuits such that any monotone algebraic circuit
computing them must have exponential size. More recent works [10, 4, 3, 5] have shown even
stronger separations between the relative powers of monotone and non-monotone models
while computing monotone polynomials.

Newton polytopes, transparency and monotone complexity

Returning briefly to the general setting, an interesting conjecture relating the algebraic
complexity of a bivariate polynomial to its geometric property is the “Tau-conjecture” (also
written as τ -conjecture). The Newton polytope of an n-variate polynomial f , denoted by
Newt(f), is the convex hull in Rn of the exponent vectors of the monomials in the support of
f . Recently, Hrubeš & Yehudayoff [11] proposed studying the Shadows of Newton polytopes
(projections to two-dimensional planes) as an approach to refute the τ -conjecture for Newton
polygons made by Koiran, Portier, Tavenas & Thomassé [16].

Informally, the τ -conjecture for Newton polygons [16] states that if f is a bivariate
polynomial that can be written as an s-sum of r-products of p-sparse polynomials, then its
Newton polygon has at most poly(s, r, p) vertices. A formal definition of Newton polytopes
and the τ -conjecture for Newton polygons can be found in Appendix A.

This conjecture is fairly strong, and it implies, among other things, that VP ̸= VNP.
However, observe that the Newton polygon retains no information about the coefficients
of the polynomial. Since the algebraic complexity of polynomials is believed to be heavily

P. Chatterjee, K. Gajjar, and A. Tengse 11:3

dependent on coefficients (for example the determinant (Detn) is efficiently computable by
algebraic circuits and this is expected to not be the case for Permn, even though they have
the same set of monomials), the τ -conjecture for Newton polygons is believed to be false.

The approach suggested by Hrubeš & Yehudayoff [11] used shadows of Newton polytopes
as a means to move from the multivariate setting to the bivariate setting, and use polynomials
like determinant (Detn) to refute the conjecture. The difficulty in this strategy however, is to
find a polynomial in VP that exhibits high shadow complexity (maximum number of vertices
in its projection), since even when a candidate polynomial is fixed, say Detn, it is not easy
to design a suitable bivariate projection.

As a means to tackle this issue, Hrubeš & Yehudayoff introduced the notion of transparent
polynomials – polynomials that can be projected to bivariates in such a way that all of their
monomials become vertices of the resulting Newton polygon. Further, they also gave examples
of polynomials with exponentially large sets of monomials that are provably transparent.
Therefore, a proof of any one of these polynomials being in VP would directly refute the
τ -conjecture for Newton polytopes.

Even though Hrubeš and Yehudayoff [11] were not able to actually use this approach to
refute the conjecture, they used the notions of shadows & transparency to come up with
yet another method for proving lower bounds against monotone algebraic circuits. They
showed that the monotone circuit complexity of a polynomial is lower bounded by its shadow
complexity when the polynomial is transparent.

▶ Theorem 1.1 ([11, Theorem 2]). If f is transparent then every monotone circuit computing
f has size at least Ω(|supp(f)|).

As a corollary, they present an n-variate polynomial such that any monotone algebraic
circuit computing it must have size Ω(2n/3).

1.1 Our Contribution
Here we state our contributions informally; the formal statements can be found in Section 3.
Throughout this work we assume that the underlying field is either the field of real numbers
or the field of rational numbers. The goal of this work is two-fold.

The first goal is to understand how restrictive the notion of transparency is. Our search
begins with an observation by Yehudayoff [26], that any lower bound against mVP depending
solely on the support of the hard polynomial, automatically “lifts” to mVNP with the same
parameters1. Since transparency is a property solely of the Newton polytope, and hence of
the support of the polynomial, the above observation shows that any transparent polynomial
that is non-sparse (has super-polynomially large support) is hard to compute even for mVNP.
However, we suspect that transparency is an even stronger property. Therefore, a natural
question for us is whether there are even larger classes of monotone polynomials that do not
contain non-sparse, transparent polynomials.

This brings us to the second goal of this work – studying monotone models of computation
that can possibly compute polynomials outside even mVNP. Classes larger than VNP had
not been defined in the monotone world prior to this work. We therefore turn to the
literature in the non-monotone setting. Here, VPSPACE is a well studied class [19, 14, 18, 17]

1 [26]: “If a monotone circuit-size lower bound for q(x) holds also for all polynomials that are equivalent to
q(x) then the same lower bound also holds for every mVNP circuit computing q(x).” Here mVNP circuit
denotes

∑
z∈{0,1}m C(x, z1, . . . , zm) where m = poly(n) and C(x, z) is a monotone algebraic circuit.

FSTTCS 2023

11:4 Monotone Classes Beyond VNP

that is believed to be strictly larger than VNP. Interestingly there are multiple definitions
of VPSPACE, resulting from varied motivations, all of which are known to be essentially
equivalent [18, 17]. We study the natural monotone analogues of these definitions and show
that unlike the non-monotone setting, the powers of the different resulting models vary
greatly. This allows us to then analyse if the technique of Hrubeš & Yehudayoff also works
against monotone classes that are possibly larger than mVNP.

The following figure succinctly describes some of our main results.

mVP msuccABP mVNP mVPquant mVPsum,prod mVPproj

[26] Theorem 3.12

Theorem 3.2

Figure 1 Nodes represent classes of polynomial families; A 99K B ≡ A ⊆ B and A −→ B ≡ A ⊊ B.
Transparent polynomials are hard for all models corresponding to orange, rectangular nodes.

In Figure 1, the node labels refer to the following classes of polynomial families that have
degree-poly(n) and poly(n)-complexity under the corresponding models.

msuccABP - monotone succinct ABPs (Definition 3.1),
mVPquant - quantified monotone circuits (Definition 3.4),
mVPsum,prod - monotone circuits with summation and production gates (Definition 3.8),
mVPproj - monotone circuits with projection gates (Definition 3.11).

The orange, rectangular nodes denote the classes in which sparsity of transparent polynomials
in it is bounded by a constant factor of the size of the smallest M computing it, if M is the
computational model corresponding to the class (Theorem 3.10).

An interesting point to note here is that there is an exponential separation between
mVPquant and mVPproj, which means that at least one of the inclusions: mVPquant to
mVPsum,prod, and mVPsum,prod to mVPproj is strict with an exponential separation.

Additionally, we show the following two statements about mVPquant.
mVPquant = mVNP if and only if homogeneous components of polynomials in mVPquant
are contained in mVPquant (Corollary 3.6). In particular, we show that homogeneous
polynomials in mVPquant are also in mVNP (Theorem 3.5).
mVPquant = mVPsum,prod if and only if quantified monotone circuits are closed under
compositions (Observation 3.9).

Finally, we also show that the homogeneous components of polynomials in mVPproj
are in mVPproj (Theorem 3.13). This property, along with the fact that Permn ∈ mVPproj
(Theorem 6.1), is the reason we propose “monotone VPSPACE” (mVPSPACE) to be defined
as the class of polynomial families that are efficiently computable by monotone circuits with
projection gates (without any restriction on degree).

1.2 Organization of the paper
We begin in Section 2 with formal definitions for all the models of computation that we will
be using. Next, we define the monotone analogues of the various definitions of VPSPACE,
and outline our results about them in Section 3. The proofs of our results are discussed
in Section 4, Section 5 and Section 6. We conclude with Section 7, where we discuss some
important open threads from our work.

P. Chatterjee, K. Gajjar, and A. Tengse 11:5

2 Preliminaries

We shall use the following notation for the rest of the paper.
We use the standard shorthand [n] = {1, 2, . . . , n}.
We use boldface letters like x, z, e to denote tuples/sets of variables or constants, individual
members are expressed using indexed version of the usual symbols: e = (e1, e2, . . . , en),
x = {x1, . . . , xn}. We also use |y| to denote the size/length of a vector y.
For vectors x and e of the same length n, we use the shorthand xe to denote the monomial
xe1

1 xe2
2 · · · xen

n .
For a polynomial f(x), we denote by deg(f) the degree of f in x.
For a polynomial f(x) and a monomial m = xe, we refer to the coefficient of m in f by
coefff (m). The support supp(f) of a polynomial f is given by {m : coefff (m) ̸= 0}, and
the sparsity of a polynomial is the size of its support, |supp(f)|.
For any polynomial f(x) and any k ≤ deg(f), we denote by homk(f) the k-th homogeneous
degree component of f in terms of x. That is, if f(x) = f0(x) + . . . + fdeg(f)(x) where
fk(x) is a homogeneous polynomial of degree k in x, then homk(f) = fk.
The permanent of an n × n symbolic matrix shall be denoted by Permn and is defined as
Permn =

∑
σ∈Sn

∏n
i=1 xi,σ(i), where Sn is the set of all permutations of [n].

We use {fn} to denote families of polynomials indexed by N. All complexity classes are
defined in terms of asymptotic properties of “polynomials” and are technically sets of
such polynomial families. Sometimes however, this technicality is ignored for the sake of
brevity, especially when the analogous statement about polynomial families is obvious.

▶ Definition 2.1 (Algebraic circuits). An algebraic circuit is a directed acyclic graph with
leaves (nodes with in-degree zero) labelled by formal variables and constants from the field,
and other nodes labelled by addition (+) and multiplication (×) have in-degree 2.

The leaves compute their labels, and every other node computes the operation it is labelled
by, on the polynomials along its incoming edges. A node of out-degree zero is called the output
of the circuit, and the circuit is said to compute the polynomial computed by the output gate.

In case there are multiple output gates, the circuit is said to be multi-output, and computes
a set of polynomials.

The size of a circuit, C, denoted by size(C), is the number of nodes in the graph.
An algebraic circuit over Q or R is said to be monotone, if all the constants appearing in

it are non-negative.

▶ Definition 2.2 (Algebraic Branching Programs (ABPs)). An algebraic branching program is
specified by a layered graph where each edge is labelled by an affine linear form and the first
and the last layer have one vertex each, called the “source” and the “sink” vertex respectively.
The polynomial computed by an ABP is equal to the sum of the weights of all paths from the
start vertex to the end vertex in the ABP, where the weight of a path is equal to the product
of the labels of all the edges on it.

The width of a layer in an ABP is the number of vertices in it and the width of an ABP
is the width of the layer that has the maximum number of vertices in it.

The size of an ABP is the number of vertices in it.

Basic monotone classes

▶ Definition 2.3 (Monotone VP (mVP)). A family {fn} of monotone polynomials is said to
be in mVP, if there exists a constant c ∈ N such that for all large n, fn depends on at most
nc variables, has degree at most nc, and is computable by a monotone algebraic circuit of
size at most nc.

FSTTCS 2023

11:6 Monotone Classes Beyond VNP

▶ Definition 2.4 (Monotone VNP (mVNP)). A family {fn} of monotone polynomials is said
to be in mVNP, if there exists a constant c ∈ N, and an m-variate family {gm} ∈ mVP with
m, size(gm) ≤ nc, such that for all large enough n, fn satisfies the following.

fn(x) =
∑

a∈{0,1}|y|

gm(x, y = a)

An expression of the above form is alternatively called an exponential sum computing fn.

Various definitions of VPSPACE
Koiran & Perifel [14, 15] were the first to define VPSPACE as the class of polynomials (of
degree that is potentially exponential in the number of underlying variables) whose coefficients
can be computed in PSPACE/ poly, and VPSPACEb to be the polynomials in VPSPACE that
have degree bounded by a polynomial in the number of underlying variables. They showed
that if VP ̸= VPSPACEb then either VP ̸= VNP or P/ poly ̸= PSPACE/ poly.

Later, Poizat [19] gave an alternate definition that does not rely on any boolean machinery,
but instead uses a new type of gate called a projection gate.

▶ Definition 2.5 (Projection gates [19]). A projection gate is a unary gate that is labelled by
a variable z and a constant b ∈ {0, 1}, denoted by fix(z=b). It returns the partial evaluation
of its input polynomial, at z = b, that is, fix(z=b)(f(z, x)) = f(b, x).

Poizat defined algebraic circuits with projection gates and then defined VPSPACE to be
the class of polynomial families that are efficiently computable by this model. Poizat showed2

that this definition is equivalent to that of Koiran & Perifel.

▶ Definition 2.6 (Algebraic circuits with projection gates [19]). An algebraic circuit with
projection gates is an algebraic circuit (Definition 2.1) in which the internal nodes can also
be projection gates (Definition 2.5), in addition to + or ×.

The size of an algebraic circuit with projection gates is the number of nodes in the
underlying graph.

Adding to Poizat’s work, Malod [18] characterized VPSPACE using exponentially large
algebraic branching programs (ABPs) that are succinct. Malod’s work defines the complexity
of an ABP as the size of the smallest algebraic circuit that encodes its graph – outputs the
corresponding edge label when given the two endpoints as input. An n-variate ABP is then
said to be succinct, if its complexity is poly(n).

▶ Definition 2.7 (Succinct ABPs [18]). A succinct ABP over the n variables x = {x1, . . . , xn}
is a triple (B, s, t) with |s| = |t| = r, where

s is the label of the source vertex, and t is the label of the sink(target) vertex.
B(u, v, x) is an algebraic circuit that describes a directed acyclic graph GB on the
vertex set {0, 1}r in the following way. For any two vertices a, b ∈ {0, 1}r, the output
B(u = a, v = b, x) is the label of the edge from a to b in the ABP.

The polynomial computed by the ABP is the sum of polynomials computed along all s to t
paths in GB; where each path computes the product of the labels of the constituent edges.

The size of the circuit B is said to be the complexity of the succinct ABP. The number
of vertices 2r is the size of the succinct ABP, and the length of the longest s to t path is
called the length of the succinct ABP.

2 The work of Poizat is written in French, Malod [18] provides an alternate exposition of some of the
main results in English.

P. Chatterjee, K. Gajjar, and A. Tengse 11:7

In the same work [18], Malod alternatively characterized VPSPACE using an interesting
algebraic model that resembles (totally) quantified boolean formulas that are known to
characterize PSPACE. This model, which we refer to as “quantified algebraic circuits”, is
defined using special types of projection gates called summation and production gates.

▶ Definition 2.8 (Summation and Production gates [18]). Summation and production gates are
unary gates that are labelled by a variable z, and are denoted by sumz and prodz respectively.
A summation gate returns the sum of the (z = 0) and (z = 1) evaluations of its input,
and a production gate returns the product of those evaluations. That is, sumz(f(z, x)) =
f(0, x) + f(1, x), and prodz(f(z, x)) = f(0, x) · f(1, x).

We sometimes use sum{z1,...,zk} to refer to the nested expression sumz1 · · · sumzk
(similarly

for prod); it can be checked that the order does not matter here.

A quantified algebraic circuit has the form Q1
z1

Q2
z2

· · · Qm
zm

C(x, z), where each Qi is a
summation or a production, and C(x, z) is a usual algebraic circuit.

▶ Definition 2.9 (Quantified Algebraic Circuits [18]). A quantified algebraic circuit is an
algebraic circuit that has the form,

Q(1)
z1

Q(2)
z2

· · · Q(m)
zm

C(x, z),

where |z| = m, Q(i) ∈ {sum, prod} for each i ∈ [m], and C is an algebraic circuit. The size of
such a quantified algebraic circuit is m + size(C).

Finally, Mahajan & Rao [17] defined algebraic analogues of small space computation
(e.g. L, NL) using the notion of width of an algebraic circuit. They use their definitions to
import some relationships known in the boolean world to the algebraic world (e.g, they show
VL ⊆ VP). They further show that their definition of uniform polynomially-bounded-space
computation coincides with that of uniform-VPSPACE as defined by Koiran & Perifel [14].

We now narrow our focus to the definitions due to Poizat [19] and Malod [18]. We choose
these definitions because they are algebraic in nature, and have fairly natural monotone
analogues. We elaborate a bit more about this decision in Appendix B.

▶ Remark. It should be noted that all the above-mentioned definitions of VPSPACE allow
for the polynomial families to have large degree – as high as exp(poly(n)). The main focus
of our work, however, is to compare the monotone analogues of these models with mVP and
mVNP. Since the latter classes only contain low-degree polynomials, we will only work with
polynomials of degree poly(n), or VPSPACEb as defined in [14], unless mentioned otherwise.

3 Monotone analogues of VPSPACE, and our contributions

We now define monotone analogues for the various definitions of VPSPACE outlined in the
previous section, and compare the powers of the resulting monotone models/classes.

3.1 Monotone succinct ABPs
We first consider the natural monotone analogue of the definition due to Malod [18] which
uses succinct algebraic branching programs (Definition 2.7).

Malod showed that every family {fn} in VPSPACE can be computed by 2poly(n) sized
ABPs that have complexity poly(n). Recall that the complexity of a succinct ABP is the
size of the smallest algebraic circuit that encodes its graph.

FSTTCS 2023

11:8 Monotone Classes Beyond VNP

We therefore define monotone succinct ABPs as ABPs that can be succinctly described
by monotone algebraic circuits of size poly(n). However, this restriction forces that if the
monomial xe appears in any edge-label (a, b), then it also appears in the label of (1̄, 1̄).
Therefore, self-loops are inevitably present in succinct ABPs in the monotone setting. To
handle this, we additionally allow the length of the ABP, say ℓ, to be predefined3 so that
now the polynomial computed by the ABP can be defined to be the sum of polynomials
computed by all s – t paths of length at most ℓ.

▶ Definition 3.1 (Monotone Succinct ABPs). A monotone succinct ABP over the n variables
x = {x1, . . . , xn} is a four tuple (B, s, t, ℓ) with |s| = |t| = r, where

ℓ is the length of the ABP.
s is the label of the source vertex, and t is the label of the sink (target) vertex.
B(u, v, x) is a monotone algebraic circuit that describes a directed graph GB on the
vertex set {0, 1}r in the following way. For any two vertices a, b ∈ {0, 1}r, the output
B(u = a, v = b, x) is the label of the edge from a to b in the ABP.

The polynomial computed by the ABP is the sum of polynomials computed along all s to t
paths in GB of length at most ℓ; where each path computes the product of the labels of the
constituent edges.

The size of the circuit B is said to be the complexity of the monotone succinct ABP. The
number of vertices 2r is the size of the succinct ABP.

Note that since B is a monotone algebraic circuit, all the edge-labels in the ABP are monotone
polynomials over x. It is also not hard to see that any polynomial f ∈ mVP is computable
by this model. If C is the monotone circuit computing f , then the monotone succinct ABP
computing f is (C′, 0, 1, 1) where C′(u, v, x) = v · C(x).

We show that the computational power of monotone succinct ABPs when computing
polynomials of bounded degree does not even go beyond mVNP.

▶ Theorem 3.2. If a polynomial family {fn} of degree poly(n) is computable by monotone
succinct ABPs of complexity poly(n), then {fn} ∈ mVNP.

In contrast, Malod [18] showed that every family in VPSPACE admits succinct ABPs of
polynomial complexity, and we expect VPSPACEb to be a much bigger class than VNP. The
proof of Theorem 3.2 is quite straightforward and relies on the following claim.

▷ Claim 3.3. For any fn, let A = (B, s, t, ℓ) be the monotone succinct ABP computing it,
with |s| = |t| = r. If ℓ > 1, then ℓ ≤ deg(fn) + 2.

This bound allows us to write the sum of all s to t paths in the ABP as an exponential sum
of an mVP expression, finishing the proof. A complete proof can be found in Subsection C.4.

It is not clear to us if the converse of Theorem 3.2 is true. Any obvious attack seems to
fail due to the restriction that the circuit encoding the ABP needs to be monotone.

3.2 Quantified monotone circuits
As mentioned earlier, Malod [18] had also characterized the class VPSPACE using the notion
of quantified algebraic circuits (Definition 2.9). We now consider its natural monotone
analogue, which we call quantified monotone circuits.

3 It is not hard to see that the analogous definition in the non-monotone setting is equivalent to Malod’s
definition (Definition 2.7). This is essentially because of the connection to Iterated Matrix Multiplication.

P. Chatterjee, K. Gajjar, and A. Tengse 11:9

▶ Definition 3.4 (Quantified Monotone Algebraic Circuits). A quantified monotone algebraic
circuit has the form

Q(1)
z1

Q(2)
z2

· · · Q(m)
zm

C(x, z)

where |z| = m, Q(i) ∈ {sum, prod} for each i ∈ [m], and C is a monotone algebraic circuit.
The size of the quantified monotone algebraic circuit above is m + size(C).

We denote by mVPquant the class of all n-variate polynomial families of degree poly(n)
that are computable by quantified monotone algebraic circuits of size poly(n).

Clearly mVNP ⊆ mVPquant. It is therefore interesting to check if the inclusion is tight.
We show that mVNP ̸= mVPquant if and only if there is a family {fn} ∈ mVPquant such that
the k-th homogeneous component of fn is not in mVPquant for some n and k ≤ deg(f).

In particular we show the following statement.

▶ Theorem 3.5. Let f be computable by a quantified monotone circuit of size s. If f is
homogeneous, then it is expressible as an exponential sum of size at most O(s · deg(f)).

Since mVNP is closed under addition, we get the following as a corollary.

▶ Corollary 3.6. The class mVPquant is closed under taking homogeneous components, if and
only if, mVPquant = mVNP. That is,

(∀f ∈ mVPquant, ∀k ≤ deg(f), homk(f) ∈ mVPquant) ⇐⇒ mVNP = mVPquant

A proof of Theorem 3.5 and Corollary 3.6 can be found in Section 4.
Even though we believe mVNP ⊊ mVPquant, we feel this might be tricky to prove. The

following theorem sheds some light on why that may be the case.

▶ Theorem 3.7. Suppose f(x) is an n-variate, degree-d polynomial computed by a quantified
monotone circuit of size s, which uses ℓ summation gates. Then for a set of variables w of
size at most d · ℓ, there is a monotone circuit h(x, w) of size at most d · s, and a monotone
polynomial A(w) such that,

f(x) =
∑

b∈{0,1}|w|

A(w = b) · h(x, w = b), (1)

where A(w) potentially has circuit size and degree that is exponential in n and ℓ.

Although the obvious size and degree bounds on A(w) above are exponential, it has a
somewhat succinct quantified expression that can be inferred from the proof (see Subsec-
tion C.5). We now discuss how Theorem 3.7 helps us understand a possible difficulty in
separating mVPquant from mVNP.

1. If the polynomial A(w) from Theorem 3.7 were to have degree and size that is polynomial
in n, then mVPquant would collapse to mVNP. Further, since A is free of x, its exponential
degree and size can be leveraged only for designing coefficients of f . Moreover, the
monotone nature of A and h ensures that A(1) is the largest value, and contributes
equally to all monomials in the support of f , since supp(f) = supp(h(x, w = 1)).

2. Another consequence that is quite interesting is the following. Suppose there is a different
monotone polynomial B(w) of small degree and size that agrees with A(w) on all {0, 1}-
inputs, then f(x) =

∑
b B(b)h(x, b). That is, we can replace A by B in our expression

and then f clearly has an efficient “mVNP-expression”.
Thus, any separation between mVNP and quantified monotone VP will provide a poly-
nomial A(w) which is hard to compute for mVNP, even as a function over the boolean
hypercube; a result that perhaps stands on its own.

FSTTCS 2023

11:10 Monotone Classes Beyond VNP

A proof sketch of Theorem 3.7 can be found in Section 4 and a complete proof can be
found in Subsection C.5.

3.3 Monotone circuits with summation and production gates
Note that it is unclear if quantified monotone circuits are closed under compositions. We
therefore also consider a model that generalizes quantified monotone circuits and is trivially
closed under compositions. Here summation and production gates are allowed to appear
anywhere in the circuit.

▶ Definition 3.8 (Algebraic circuits with summation and production gates). An algebraic circuit
with summation and production gates is an algebraic circuit (Definition 2.1) in which the
internal nodes can also be summation or production gates (Definition 2.8), in addition to +
or ×. A subset of the variables used by the circuit are marked as auxiliary. These variables
do not appear in the output polynomial(s) of the circuit, and the labels for all the summation
and production gates are required to be auxiliary variables.

The size of an algebraic circuit with summation and production gates is the number of
nodes in the graph.

An algebraic circuit with summation, production gates is said to be monotone, if all the
constants appearing in it are non-negative.

We denote by mVPsum,prod the class of all n-variate polynomial families of degree poly(n)
that are computable by monotone algebraic circuits with summation and production gates of
size poly(n).

Note that even in the non-monotone setting this model is clearly as powerful as quantified
circuits, but can be simulated by circuits with projection gates. Again, Malod [18] showed
that quantified circuits and circuits with projection gates are equivalent in power. So the
class of polynomials efficiently computable by this model is also VPSPACE.

In the monotone setting, however, it is not clear if the power of quantified monotone
circuits is the same as that of this model. In particular, we observe the following. Here, we
mean “closure under compositions” in a strong sense: if C1 and C2 are quantified monotone
circuits of size s1 and s2 respectively, then the polynomial computed by their composition to
have a quantified monotone circuit of size at most s1 + s2.

▶ Observation 3.9 (Informal). Quantified monotone circuits are closed under compositions,
if and only if, mVPquant = mVPsum,prod.

Theorem 5.1 gives a formal statement and its proof can be found in Subsection C.3.
We, however, show that even this seemingly stronger model does not help in computing

transparent polynomials.

▶ Theorem 3.10. Any monotone algebraic circuit with summation and production gates that
computes a transparent polynomial f , has size at least |supp(f)| /4.

This shows that transparent polynomials with large support are hard even for this model.
A proof sketch can be found in Section 5.

Recall that one way to refute the τ -conjecture for Newton polygons is to show a transparent
polynomial in (non-monotone) VP. Theorem 3.10 shows that any transparent polynomial
from VP that refutes the conjecture would also witness a separation between VP and a class

P. Chatterjee, K. Gajjar, and A. Tengse 11:11

potentially much bigger than mVNP4. Even though stark separations between monotone and
non-monotone models are not unheard of [10, 4], such a result would also be quite interesting
and would further highlight the power of subtractions.

3.4 Monotone circuits with projection gates
Finally, adapting the definition of VPSPACE due to Poizat (Definition 2.6) [19], we define
monotone circuits with projection gates.

▶ Definition 3.11 (Monotone algebraic circuits with projection gates). A monotone algebraic
circuit with projection gates is an algebraic circuit with projections (Definition 2.6) in which
only non-negative constants from the field are allowed to appear as labels of leaves.

As in Definition 3.8, only the auxiliary variables can be used as labels for the projection
gates. The size of a monotone algebraic circuit with projection gates is the number of nodes
in the underlying graph.

We denote by mVPproj the class of all n-variate polynomials of degree poly(n) that are
computable by size-poly(n) monotone algebraic circuits with projection gates.

This model is clearly at least as powerful as monotone circuits with summation and
production gates, since sumz = fix(z=0) + fix(z=1) and prodz = fix(z=0) × fix(z=1). It
would therefore be interesting to show a separation between the power of the two models.

Even though we are unable to do that, we show that monotone circuits with projection
gates are indeed more powerful than quantified monotone circuits, with a 2Ω(

√
m) separation.

▶ Theorem 3.12. The polynomial family {Permn} can be computed by monotone circuits
with projection gates of size O(n3), but quantified monotone circuits computing it must have
size 2Ω(n).

Finally we show that mVPproj is closed under taking homogeneous components.

▶ Theorem 3.13. Suppose f is computed by a size s monotone circuit with projections. Then
for any k ≤ deg(f), homk(f) has a monotone circuit with projections of size O(k2 · s).

Proof sketches of Theorem 3.12 and Theorem 3.13 can be found in Section 6.

3.5 Defining Monotone VPSPACE (mVPSPACE)
We propose the following definition for mVPSPACE.

▶ Definition 3.14 (Monotone VPSPACE). A family of polynomials {fn} is said to be in
mVPSPACE if for all large n, fn is computable by a monotone algebraic circuit with projection
gates (Definition 3.11) of size poly(n).

Further if {fn} has degree poly(n), then it is said to be in mVPSPACEb.

That is, we define mVPSPACEb := mVPproj and define mVPSPACE along the same lines,
but without the restriction on the degree being bounded (since VPSPACE does not impose
any restrictions on degree). Some of our reasons for this choice are as follows.

Firstly, being a complexity class, mVPSPACEb should be closed under (monotone) affine
projections, i.e. setting a few variables to monotone affine polynomials. All of mVPquant,
mVPsum,prod and mVPproj have this property.

4 That is, the class of bounded degree polynomials computable by monotone algebraic circuits with
summation and production gates.

FSTTCS 2023

11:12 Monotone Classes Beyond VNP

Further, as mVP and mVNP are closed under taking homogeneous components, it is
desirable for a more powerful class to also have this property. Even if mVPquant satisfies this,
it would not lead to a larger class (Corollary 3.6). Also, it is not clear mVPsum,prod is closed
under homogenization, while mVPproj is (Theorem 3.13).

Finally, we believe that having Permn ∈ mVPproj is an interesting property that further
strengthens the case for mVPproj being the definition for mVPSPACEb.

4 Quantified monotone circuits

Computing homogeneous polynomials

▶ Theorem 3.5. Let f be computable by a quantified monotone circuit of size s. If f is
homogeneous, then it is expressible as an exponential sum of size at most O(s · deg(f)).

Proof. Let d = deg(f), and let C be a quantified monotone circuit computing f , that uses
exactly k production gates. We can then assume that,

C(x) = sumy0prodz1
sumy1prodz2

· · · sumyk−1prodzk
sumyk

g(x, y, z),

without loss of generality, by using some empty yjs whenever necessary. Note that the yjs
are sets of variables, whereas each of the zjs are single variables.

We now prove the statement in two steps. First, we use the homogeneity of f , and the
monotonicity of the quantified circuit, to show that k ≤ log(d).

▷ Claim 4.1. k ≤ log d

Proof. For each i ∈ [k], let gi(zi, x, wi) = sumyi
prodzi+1

sumyi+1 · · · sumyk
g(x, y, z). Here wi

denotes all the auxiliary variables that are alive after “i rounds” of quantifiers. Further, let
hi(x, wi) = prodzi

gi(zi, x, wi).
Now, f(x) = sumy0h1(x, y0), and it is homogeneous. Therefore, since h1 is monotone, it is

also homogeneous in x with degree exactly d. But degx(h1) = degx(prodz1
g1) = degx(g1(z1 =

0)) + degx(g1(z1 = 1)). If we write g1(z1, x, w1) = g1,0(x, w1) + z · g1,1(z1, x, w1), then
we have that g1(z1 = 0) = g1,0(x, w1) and g1(z1 = 1) = g1,0(x, w1) + g1,1(z1 = 1, x, w1).
Since h1 is homogeneous in x and g1 is monotone in all the variables, this must mean that
degx(g1(z1 = 0)) = degx(g1(z1 = 1)) = degx(g1) = d/2. Also, g1 is homogeneous in x, and
thus we can repeat the same argument for h2, g2, and so on.

As a result, we see that deg(f) = 2k · degx(g), and hence k ≤ log d. ◁

We can now make 2k ≤ d many copies of the “inner circuit” g(x, y, z), one for each fixing
of the z variables. We then obtain the final exponential sum computing f by using the
following “product rule” for summations repeatedly.

(sumy1h1(x, y1)) · (sumy2h2(x, y2)) = sumỹ1 ,̃y2
(h1(x, ỹ1) · h2(x, ỹ2))

Note that in the above case the two summations are over disjoint sets of variables. This
can easily be ensured in our case, by treating the y variables in each of the 2k ≤ d copies as
mutually disjoint. It is easy to see that the exponential sum has size O(size(C), d). ◀

▶ Remark 4.2. The first step in the above proof extends more or less as it is, to an arbitrary
circuit with summation and production gates. Thus, any circuit with arbitrary summations
and productions that computes a homogeneous polynomial can be assumed to not contain
any production gates, with a polynomial blow-up in size.

P. Chatterjee, K. Gajjar, and A. Tengse 11:13

However, this does not directly give an efficient exponential sum, because of the second
step in the above argument. It crucially uses the fact that for any summation gate g, the
number of production gates on a path from g to the root was O(log d). This ensures that
no summation gate (or its auxiliary variable) has to be replicated more than poly(d) times,
which is not necessarily true if we start with an arbitrary circuit with summation gates.

Large exponential sums for arbitrary polynomials

▶ Theorem 3.7. Suppose f(x) is an n-variate, degree-d polynomial computed by a quantified
monotone circuit of size s, which uses ℓ summation gates. Then for a set of variables w of
size at most d · ℓ, there is a monotone circuit h(x, w) of size at most d · s, and a monotone
polynomial A(w) such that,

f(x) =
∑

b∈{0,1}|w|

A(w = b) · h(x, w = b), (1)

where A(w) potentially has circuit size and degree that is exponential in n and ℓ.

We shall need the following simple observation, which follows from the “product-rule” for
summations stated earlier.

▶ Observation 4.3 (Product of exponential sums).

prodzsumyg(x, y, z) = sumy0,y1 (g(x, y0, 0) · g(x, y1, 1))

Let us see a toy case of trivially moving from a quantified expression to an exponential
sum, using Observation 4.3.

f(x) = sumy1prodz1
sumy2prodz2,z3

sumy3g(x, y1, y2, y3, z1, z2, z3)

= sumy1prodz1
sumy2prodz2

sumy3,0,y3,1

 ∏
a3∈{0,1}

g(x, y1, y2, y3,a3 , z1, z2, a3)

= sumy1prodz1

sumy2,y3,(00),y3,(01),y3,(10),y3,(11)

 ∏
a2,a3∈{0,1}

g(. . . , y3,(a2a3), z1, a2, a3)

= sumy1sumy2,∗,y3,∗∗∗

 ∏
a1,a2,a3∈{0,1}

g(x, y1, y2,a1 , y3,(a1a2a3), a1, a2, a3)

In the last line, each ∗ runs over {0, 1}, so there are 1 + 2 + 8 = 11 auxiliary variables

in total. Note that y3 has 8 copies, which is due to the 3 production gates “above” the
summation gate labelled by it. Similarly, y2 has just 2 copies, while y1 has just one. Also, if
instead of single auxiliary variables y2 and y3 we had sets of auxiliary variables y2 and y3,
nothing much would change. That is, we would have had 8 copies of the set y3 and 2 copies
of y2, irrespective of their sizes.

What this shows in general, is that we can trivially move from a quantified expression to
an expression which has the form

f(x) = sumY
∏

a∈{0,1}r

ga(x, ya)

where Y = ∪a {ya}, r is the number of production gates in the quantified expression, |Y|
is potentially exponential (since the number of copies of some auxiliary variable might be
exponential) but ga(x, ya) = g(x, y = ya, z = a) for a poly-sized circuit g(x, y, z).

FSTTCS 2023

11:14 Monotone Classes Beyond VNP

The key observation that allows us to prove Theorem 3.7 is that if f has degree d, then
the number of copies of each auxiliary variable needed in the outer summation gate is at most
d. This is because, due to monotonicity, degx(ga(x, ya)) ̸= 0 for only d many a ∈ {0, 1}r. A
complete proof of Theorem 3.7 can be found in Subsection C.5.

5 Monotone circuits with summation and production gates

In this section, we give the proof overview of Theorem 3.10.

▶ Theorem 3.10. Any monotone algebraic circuit with summation and production gates that
computes a transparent polynomial f , has size at least |supp(f)| /4.

This result is an extension of the ideas in the work of Hrubeš & Yehudayoff [11]. Their
argument shows that any bivariate monotone circuit of size s that computes a polynomial
with convexly independent support outputs a polynomial with support at most 4s. They
achieve this by keeping track of the largest polygon (in terms of the number of vertices) that
one can build using the polynomials computed at all the gates in the circuit. They then
inductively show that no gate (leaf, addition, multiplication) can increase the number of
vertices by 4. We are able to show the same bound for production and summation gates, by
working with a monotone bivariate circuit over y1, y2 that is allowed some auxiliary variables
z for summations and productions.

An important component of the proof in [11] is that if the sum or product of two monotone
polynomials is convexly independent, then so are each of the two inputs. However, allowing
for summations and productions means that some monomials that are computed internally
could get “zeroed out”. In fact, summation and production gates do not quite “preserve
convex dependencies”. For example, the convexly dependent support

{
y1y2, y1y2z, y1y2z2}

when passed through sumz produces just {y1y2}, which is convexly independent.
In order to prove Theorem 3.10, one can get around this by working directly with the

support projected down to the “true” variables, which we call y-support in our arguments. It
turns out that summations and productions indeed preserve convex dependencies that are in
the y support of the input polynomial. Since the proof follows exactly along the same lines
as the one in [11], we omit the proof here. A formal proof can be found in the full version [2].

Quantified monotone circuits and compositions

▶ Observation 3.9 (Informal). Quantified monotone circuits are closed under compositions,
if and only if, mVPquant = mVPsum,prod.

Even though this statement appears to be straightforward, formally stating it requires a
bit more care. In particular, we require quantified circuits to be closed under compositions
in a strong sense, similar to usual algebraic circuits. Doing that yields the following theorem,
which we prove in Subsection C.3.

▶ Theorem 5.1. Suppose that for any multi-output quantified monotone circuit C of size s

with r inputs, and any multi-output quantified monotone circuit C′ of size s′ with r outputs,
we have that the polynomial computed by C ◦ C′ has a quantified monotone circuit of size at
most (s + s′).

Then, any multi-output, monotone circuit with summation and production gates of size s̃

can be simulated by a multi-output quantified monotone circuit of size at most s̃, and hence
mVPquant = mVPsum,prod.

The converse is also true.

P. Chatterjee, K. Gajjar, and A. Tengse 11:15

6 Monotone circuits with projection gates

Exponential separation from quantified circuits

▶ Theorem 3.12. The polynomial family {Permn} can be computed by monotone circuits
with projection gates of size O(n3), but quantified monotone circuits computing it must have
size 2Ω(n).

We begin by proving that Permn ∈ mVPproj.

▶ Theorem 6.1. There is a monotone circuit with projection gates of size O(n3) that computes
Permn.

Proof. We first define a polynomial P0 such that all its monomials contain exactly one
x-variable from each row.

Let P0(x, y) :=

 n∑
j=1

y1,jx1,j

 n∑
j=1

y2,jx2,j

 · · ·

 n∑
j=1

yn,jxn,j

 .

Note that P0 has n2 auxiliary variables y, one attached to each “true” variable xi,j . We now
want to use these to progressively prune the monomials that pick up multiple variables from
the jth column by projecting the n variables y1,j , . . . , yn,j .

Let e1, . . . , en ∈ {0, 1}n be such that ei(k) = 1 ⇔ i = k, and define for each j ∈ [n],

Pj :=
∑
i∈[n]

fix(y1,j=ei(1))
(
fix(y2,j=ei(2))

(
· · ·
(
fix(yn,j=ei(n)) (Pj−1)

)))
. (2)

The following claim is now easy to verify.

▷ Claim 6.2. For all j ∈ [n], Pj contains all the monomials from Pj−1 that are supported
on exactly one x-variable from the jth column.

As a result, the monomials in Pn are exactly those of the monomials in Permn. Additionally,
for each j, the auxiliary variables in Pj are only from the columns j + 1, . . . , n; thus
Pn = Permn.

The size of our circuit is O(n3), since size(P0) = O(n2) and size(Pj) = size(Pj−1)+O(n2).
This proves Theorem 6.1. ◀

▶ Remark 6.3. Our upper bound above also implies that any polynomial (family) that can
be expressed as the permanent of a monotone matrix of size poly(n) (called monotone p-
projection of Permn) can also be computed by efficient monotone circuits with projection gates.
Although Permn is complete for non-monotone VNP, it is not the case that all monotone
polynomials in VNP are monotone p-projections of Permn, as shown by Grochow [8].

The proof of Theorem 3.12 now follows from the following simple extension of an
observation due to Yehudayoff [26] and the classical lower bound of Jerrum & Snir [12] against
monotone algebraic circuits for Permn. A complete proof can be found in Subsection C.1.

▶ Lemma 6.4. Let f(x) be a monotone polynomial whose support cannot be written as a
non-trivial product of two sets, and for some monotone polynomial g(x, z), suppose we have
f(x) = Q(1)

z1 Q(2)
z2 · · · Q(m)

zm g(x, z) with Q(i) ∈ {sum, prod} for each i ∈ [m].
Then supp(f(x)) = supp(g(x, 1̄)).

FSTTCS 2023

11:16 Monotone Classes Beyond VNP

Closure under homogenization

▶ Theorem 3.13. Suppose f is computed by a size s monotone circuit with projections. Then
for any k ≤ deg(f), homk(f) has a monotone circuit with projections of size O(k2 · s).

We show this using the classical argument of “gate replication” and the complete proof
can be found in Subsection C.2.

7 Conclusion

Our work is an attempt at understanding the hardness of transparent polynomials for
monotone algebraic models. We observe that the lower bound of Hrubeš & Yehudayoff [11]
extends beyond monotone VNP, and therefore turn to exploring the class VPSPACE from
the non-monotone world. This exploration reveals that the natural monotone analogues
of the multiple equivalent definitions of VPSPACE have contrasting powers. Additionally,
transparent polynomials turn out to be as hard for some of these analogues as they are for
usual monotone circuits. The following are some interesting open threads from our work.

We suspect that transparency is a highly restrictive property, especially for monotone
computation. Therefore, we conjecture that if f is a transparent polynomial being
computed by a size-s monotone circuit with projection gates, then |supp(f)| ≤ 2polylog(s).

It would be interesting (at least to us) to see a proof or a refutation of this conjecture.
An immediate hurdle in extending the techniques in [11] (as in Theorem 3.10) to
mVPSPACE, is that unlike summations and productions, 0-projections do not preserve
convex dependencies, even if we restrict to the “true” variables.
Along similar lines, a possibly simpler goal is to show a non-monotone circuit upper
bound for a transparent polynomial. Since transparency only restricts the support of
the polynomial, one is free to choose any real coefficients to ensure that it is in VP. In
particular, this brings powerful non-monotone tricks like interpolation into play. Among
other things, such a result would refute the notoriously open τ -conjecture for Newton
polygons.
Another question we would like to highlight is separating mVNP and quantified monotone
circuits. As mentioned in the discussion following Theorem 3.7, such a separation would
yield a (high degree) polynomial that is hard for mVNP even as a function over the boolean
hypercube. Such a polynomial might be of interest, perhaps, even in the non-monotone
setting.

References
1 Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman. Monotone circuit lower

bounds from robust sunflowers. In Yoshiharu Kohayakawa and Flávio Keidi Miyazawa, editors,
LATIN 2020: Theoretical Informatics – 14th Latin American Symposium, São Paulo, Brazil,
January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes in Computer Science, pages
311–322. Springer, 2020. doi:10.1007/978-3-030-61792-9_25.

2 Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse. Monotone classes beyond VNP.
CoRR, abs/2202.13103, 2022. arXiv:2202.13103.

3 Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay. Monotone
complexity of spanning tree polynomial re-visited. In Mark Braverman, editor, 13th Innovations
in Theoretical Computer Science Conference, ITCS 2022, January 31 – February 3, 2022,
Berkeley, CA, USA, volume 215 of LIPIcs, pages 39:1–39:21. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.39.

https://doi.org/10.1007/978-3-030-61792-9_25
https://arxiv.org/abs/2202.13103
https://doi.org/10.4230/LIPIcs.ITCS.2022.39

P. Chatterjee, K. Gajjar, and A. Tengse 11:17

4 Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone
arithmetic circuits via communication complexity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 786–799. ACM, 2021. doi:10.1145/3406325.
3451069.

5 Arkadev Chattopadhyay, Utsab Ghosal, and Partha Mukhopadhyay. Robustly separating
the arithmetic monotone hierarchy via graph inner-product. In Anuj Dawar and Venkatesan
Guruswami, editors, 42nd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chen-
nai, India, volume 250 of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.12.

6 S. B. Gashkov and I. S. Sergeev. A method for deriving lower bounds for the complexity of
monotone arithmetic circuits computing real polynomials. Sbornik. Mathematics, 203(10),
2012.

7 S.B. Gashkov. The complexity of monotone computations of polynomials. Moscow University
Math Bulletin, 42(5):1–8, 1987.

8 Joshua A. Grochow. Monotone projection lower bounds from extended formulation lower
bounds. Theory of Computing, 13(18):1–15, 2017. doi:10.4086/toc.2017.v013a018.

9 Pavel Hrubes and Amir Yehudayoff. On isoperimetric profiles and computational complexity.
In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 89:1–89:12. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.89.

10 Pavel Hrubeš and Amir Yehudayoff. Formulas are exponentially stronger than monotone
circuits in non-commutative setting. In Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 10–14. IEEE
Computer Society, 2013. doi:10.1109/CCC.2013.11.

11 Pavel Hrubeš and Amir Yehudayoff. Shadows of newton polytopes. In Valentine Kabanets,
editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto,
Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.9.

12 Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations
over semirings. Journal of the ACM, 29(3):874–897, 1982. doi:10.1145/322326.322341.

13 O. M. Kasim-Zade. Arithmetic complexity of monotone polynomials. Theoretical Problems in
Cybernetics. Abstracts of lectures, pages 68–69, 1986.

14 Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the reals. Compu-
tational Complexity, 18(4):551–575, 2009. doi:10.1007/s00037-009-0269-1.

15 Pascal Koiran and Sylvain Perifel. Vpspace and a transfer theorem over the complex field. The-
oretical Computer Science, 410(50):5244–5251, 2009. Mathematical Foundations of Computer
Science (MFCS 2007). doi:10.1016/j.tcs.2009.08.026.

16 Pascal Koiran, Natacha Portier, Sébastien Tavenas, and Stéphan Thomassé. A τ -conjecture
for newton polygons. Foundations of Computational Mathematics, 15:185–197, 2015. doi:
10.1007/s10208-014-9216-x.

17 Meena Mahajan and B. V. Raghavendra Rao. Small space analogues of valiant’s classes
and the limitations of skew formulas. Computational Complexity, 22(1):1–38, 2013. doi:
10.1007/s00037-011-0024-2.

18 Guillaume Malod. Succinct algebraic branching programs characterizing non-uniform
complexity classes. In Fundamentals of Computation Theory – 18th International Sym-
posium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings, pages 205–216, 2011.
doi:10.1007/978-3-642-22953-4_18.

FSTTCS 2023

https://doi.org/10.1145/3406325.3451069
https://doi.org/10.1145/3406325.3451069
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.12
https://doi.org/10.4086/toc.2017.v013a018
https://doi.org/10.4230/LIPIcs.ICALP.2016.89
https://doi.org/10.1109/CCC.2013.11
https://doi.org/10.4230/LIPIcs.CCC.2021.9
https://doi.org/10.1145/322326.322341
https://doi.org/10.1007/s00037-009-0269-1
https://doi.org/10.1016/j.tcs.2009.08.026
https://doi.org/10.1007/s10208-014-9216-x
https://doi.org/10.1007/s10208-014-9216-x
https://doi.org/10.1007/s00037-011-0024-2
https://doi.org/10.1007/s00037-011-0024-2
https://doi.org/10.1007/978-3-642-22953-4_18

11:18 Monotone Classes Beyond VNP

19 Bruno Poizat. A la recherche de la definition de la complexite d’espace pour le calcul des
polynomes a la maniere de valiant. J. Symb. Log., 73(4):1179–1201, 2008. doi:10.2178/jsl/
1230396913.

20 Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and
mixed-sources extractors. Journal of Computer and System Sciences, 77(1):167–190, 2011.
doi:10.1016/j.jcss.2010.06.013.

21 Claus-Peter Schnorr. A lower bound on the number of additions in monotone computations.
Theor. Comput. Sci., 2(3):305–315, 1976. doi:10.1016/0304-3975(76)90083-9.

22 Eli Shamir and Marc Snir. Lower bounds on the number of multiplications and the number of
additions in monotone computations. IBM Thomas J. Watson Research Division, 1977.

23 Eli Shamir and Marc Snir. On the depth complexity of formulas. Math. Syst. Theory,
13:301–322, 1980. doi:10.1007/BF01744302.

24 Srikanth Srinivasan. Strongly exponential separation between monotone VP and monotone
VNP. ACM Transactions on Computing Theory, 12(4):23:1–23:12, 2020. doi:10.1145/
3417758.

25 Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314,
1980. doi:10.1016/0304-3975(80)90060-2.

26 Amir Yehudayoff. Separating monotone VP and VNP. In Moses Charikar and Edith Cohen,
editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 425–429. ACM, 2019. doi:10.1145/
3313276.3316311.

A Deferred Formal Definitions and Statements

▶ Definition A.1 (Newton polytopes). For a polynomial f(x), its Newton polytope Newt(f) ⊆
Rn, is defined as the convex hull of the exponent vectors of the monomials in its support.

Newt(f) := conv ({e : xe ∈ supp(f)})

A point e ∈ Newt(f) is said to be a vertex, if it cannot be written as a convex combination
of other points in Newt(f). We denote the set of all vertices of a polytope P using vert(P).

▶ Conjecture A.2 (τ conjecture for Newton polytopes [16]). Suppose f(x, y) is a bivariate
polynomial that can be written as

∑
i∈[s]

∏
j∈[r] Ti,j(x, y), where each Ti,j has sparsity at most

p. Then the Newton polygon of f has poly(s, r, p) vertices.

B Definitions of VPSPACE relying on boolean computation

In this section we briefly address why we did not study monotone analogues of the definitions
due to Koiran & Perifel [15, 14], and Mahajan & Rao [17].

Koiran & Perifel define uniform VPSPACE as the class of families {fn} of poly(n)-variate
polynomials of degree at most 2poly(n), such that there is a PSPACE machine that computes
the coefficient function of {fn}. Here, the coefficient function of {fn} can be seen to map a
pair (1n, e) to the coefficient of xe in fn.

Non-uniform VPSPACE is then defined by replacing PSPACE by its non-uniform analogue,
PSPACE/ poly. Since there are no monotone analogues of Turing machines, perhaps the only
possible monotone analogue of this definition is to insist on the coefficient function being
monotone, which results in an absurdly weak class (the “largest” monomial will always be
present).

https://doi.org/10.2178/jsl/1230396913
https://doi.org/10.2178/jsl/1230396913
https://doi.org/10.1016/j.jcss.2010.06.013
https://doi.org/10.1016/0304-3975(76)90083-9
https://doi.org/10.1007/BF01744302
https://doi.org/10.1145/3417758
https://doi.org/10.1145/3417758
https://doi.org/10.1016/0304-3975(80)90060-2
https://doi.org/10.1145/3313276.3316311
https://doi.org/10.1145/3313276.3316311

P. Chatterjee, K. Gajjar, and A. Tengse 11:19

Mahajan & Rao [17] look at the notion of width of a circuit – all gates are assigned
heights, such that the height of any gate is exactly one larger than the height of its highest
child. The width of the circuit is the maximum number of nodes that have the same height.
They then define VSPACE(S(n)), as the class of families that are computable by circuits of
width S(n) and size at most max

{
2S(n), poly(n)

}
.

The class uniform VSPACE(S(n)) further requires that the circuits be DSPACE(S(n))-
uniform. Although their non-uniform definition is purely algebraic, it is a bit unnatural for
space S(n) ≫ log n (as also pointed out in their paper), since such circuits may not even
have a poly(n)-sized description. We therefore do not analyse a monotone analogue for their
definition.

C Deferred Proofs

C.1 Proof of Theorem 3.12
We first consider Lemma 6.4, which is a simple extension of the following observation due to
Yehudayoff [26].

▶ Observation C.1 ([26]). Let g(x, z) be a monotone polynomial and let c > 0. Then for
any monomial xezj in the support of g, xe ∈ supp(g(x, z = c)).

We now formally prove Lemma 6.4. For sets of monomials A and B, their product is
defined as A × B = {m · m′ : m ∈ A, m′ ∈ B}; a non-trivial product is when neither A nor
B is just {1}.

▶ Lemma 6.4. Let f(x) be a monotone polynomial whose support cannot be written as a
non-trivial product of two sets, and for some monotone polynomial g(x, z), suppose we have
f(x) = Q(1)

z1 Q(2)
z2 · · · Q(m)

zm g(x, z) with Q(i) ∈ {sum, prod} for each i ∈ [m].
Then supp(f(x)) = supp(g(x, 1̄)).

Proof. By Observation C.1, it is enough to show the statement of the lemma for m = 1.
Therefore, suppose f(x) = sumzg(x, z). Then f(x) = g(x, 0) + g(x, 1), and hence supp(f) =
supp(g(x, 1)), since g is monotone.

Next, f(x) =
∏

z g(x, z) means that f(x) = g(x, 0) ·g(x, 1). As supp(f) cannot be written
as a non-trivial product of two sets, and since g is monotone, this must mean that g(x, 0) is
a constant and supp(f(x)) = supp(g(x, 1)) as claimed. ◀

Finally, let us complete the proof of Theorem 3.12.

▶ Theorem 3.12. The polynomial family {Permn} can be computed by monotone circuits
with projection gates of size O(n3), but quantified monotone circuits computing it must have
size 2Ω(n).

Proof. Let us assume that there is a quantified monotone circuit of size s computing Permn.
Then,

Permn(x) = Q(1)
z1

Q(2)
z2

· · · Q(m)
zm

f(x, z)

for some m ≤ s and Q(i) ∈ {sum, prod} for each i ∈ [m].
Note that, by definition, f(x, z) is computable by a monotone algebraic circuit of size at

most s and therefore f(x, 1̄) is computable by a monotone algebraic circuit of size at most s.
On the other hand, by Lemma 6.4, the support of f(x, 1̄) is the same as that of Permn since
Permn is irreducible. The required lower bound now follows from the fact that the 2Ω(n)

lower bound proved by Jerrum & Snir [12] for Permn against monotone algebraic circuits,
works for any polynomial that has support equal to the support of Permn. ◀

FSTTCS 2023

11:20 Monotone Classes Beyond VNP

C.2 Proof of Theorem 3.13
▶ Theorem 3.13. Suppose f is computed by a size s monotone circuit with projections. Then
for any k ≤ deg(f), homk(f) has a monotone circuit with projections of size O(k2 · s).

Proof. We show this using the classical argument of “gate replication”. Given a circuit C,
we construct another circuit C′ that has (k + 1) copies of each gate in C. For a gate g ∈ C,
the corresponding gates g0, g1, . . . , gk shall compute homi([g]) for each i ≤ k, where [g] is
the polynomial computed at g. Here and throughout the proof, the degree of a polynomial
always refers to its degree in the x-variables.

The following can now be easily checked, using the fact that [g] is always a monotone
polynomial.

If [g] is a leaf labelled with a “true” variable xi, then [g1] = xi and [gi] = 0 for all other i.
If [g] is any other leaf, then [g0] = [g] and [gi] = 0 for all other i.
If [g] = [u] + [v], then [gi] = [ui] + [vi] for all i.
If [g] = fix(z=b)[u], then [gi] = homi([g]) = fix(z=b) homi([u]) = fix(z=b)[ui].
If [g] = [u] × [v], then [gi] =

∑
j≤i[uj] × [vi−j], for each i.

The last case incurs the largest blow-up in size, which adds O(k2) many gates in C′ for
one gate in C. This finishes the proof. ◀

C.3 Proof of Theorem 5.1
▶ Theorem 5.1. Suppose that for any multi-output quantified monotone circuit C of size s

with r inputs, and any multi-output quantified monotone circuit C′ of size s′ with r outputs,
we have that the polynomial computed by C ◦ C′ has a quantified monotone circuit of size at
most (s + s′).

Then, any multi-output, monotone circuit with summation and production gates of size s̃

can be simulated by a multi-output quantified monotone circuit of size at most s̃, and hence
mVPquant = mVPsum,prod.

The converse is also true.

Proof. One direction of the implication is clearly true because circuits with (arbitrary)
summation and production gates have the stated property by definition.

For the converse, let us assume that quantified monotone circuits have the property. We
show that this implies that the two models in question have the same power.

Consider a circuit C of size s with summation and production gates. We group the gates
in C in “bands” numbered from the bottom to the top, in the following way.

The 0-th band consists only of leaves
Odd bands consist only of addition or multiplication gates.
Even bands (other than 0) only consist of summation or production gates.
The gates in band i can have edges incoming from only bands j ≤ i.

Now, given a circuit C̃ of size s̃ with summation and production gates, we express it as a
quantified monotone circuit of size O(s) by inducting on the number of bands in it.

For the base case, when C̃ has up to two bands, it is already a quantified monotone circuit.
In general, if C̃ has 2b′ bands, we look at the circuit formed by bands 2b′ and (2b′ − 1) as

a quantified monotone circuit; let its size be s. By induction, the multi-output circuit formed
by the bands 0 to 2b′ − 2 can be expressed as a multi-output, quantified monotone circuit of
size at most s′ = s̃ − s, call it C′. Now from the hypothesis, the composition C ◦ C′ is also
computable by a quantified monotone circuit of size at most s + s′ ≤ s̃. ◀

P. Chatterjee, K. Gajjar, and A. Tengse 11:21

C.4 Proof of Theorem 3.2
▶ Theorem 3.2. If a polynomial family {fn} of degree poly(n) is computable by monotone
succinct ABPs of complexity poly(n), then {fn} ∈ mVNP.

Proof. Let A = (B, s, t, ℓ) be the monotone succinct ABP computing f , with |s| = |t| = r.
Then we observe the following.

▷ Claim C.2. If ℓ > 1, then ℓ ≤ deg(f) + 2.

Proof. Let β(u, v, x) be the monotone (2r + n)-variate polynomial computed by the cir-
cuit B. Due to B being monotone, for any e ∈ Nn we have that if the monomial xe

appears in any edge-label (a, b), then it also appears in the label of (1̄, 1̄). Therefore,
degx(β(a, b, x)) ≤ degx(β(1̄, 1̄, x)) for all a, b. Similarly, degx(β(s, b, x)) ≤ degx(β(s, 1̄, x))
and degx(β(a, t, x)) ≤ degx(β(1̄, t, x)) for all a, b. This shows that if ℓ > 1, then

deg(f) = deg(β(s, 1̄, x) · β(1̄, 1̄, x)ℓ−2 · β(1̄, t, x)) ≥ ℓ − 2. ◁

As a result of the above claim, for d = deg(f), we have the following.

f(x) = β(s, t, x) +
d+1∑
j=1

(sum of s–t paths through j intermediate vertices)

= β(s, t, x) +
d+1∑
j=1

 ∑
a1,...,aj∈{0,1}r

β(s, a1, x) ·

(
j−1∏
k=1

β(ak, ak+1, x)
)

· β(aj , t, x)

= β(s, t, x)+∑

a1,...,ad+1∈{0,1}r

d+1∑
j=1

2−r(d+1−j)

(
β(s, a1, x) ·

(
j−1∏
k=1

β(ak, ak+1, x)
)

· β(aj , t, x)
)

.

This can be rewritten as follows.

∑
a1,...,ad+1

2−r(d+1)β(s, t, x) +
d+1∑
j=1

2−r(d+1−j)β(s, a1, x)
(

j−1∏
k=1

β(ak, ak+1, x)
)

β(aj , t, x)

This is clearly a poly-sized exponential sum as d = poly(n) and B is a monotone circuit of
size poly(n). ◀

C.5 Proof of Theorem 3.7
We introduce a new shorthand for this section. For a vector a = {a1, a2, . . . , aℓ} and a
number k ≤ ℓ, we use a[: k] to denote the prefix vector {a1, a2, . . . , ak}. With this new
notation, we can express the last line of our toy example in Section 4 is as follows.

f(x) = sumy1sumy2,∗,y3,∗∗∗

 ∏
a∈{0,1}3

g(x, y1, y2,a[:1], y3,a[:3], a1, a2, a3)

We are now ready to prove Theorem 3.7. We start by recalling the statement of the theorem.

FSTTCS 2023

11:22 Monotone Classes Beyond VNP

▶ Theorem 3.7. Suppose f(x) is an n-variate, degree-d polynomial computed by a quantified
monotone circuit of size s, which uses ℓ summation gates. Then for a set of variables w of
size at most d · ℓ, there is a monotone circuit h(x, w) of size at most d · s, and a monotone
polynomial A(w) such that,

f(x) =
∑

b∈{0,1}|w|

A(w = b) · h(x, w = b), (1)

where A(w) potentially has circuit size and degree that is exponential in n and ℓ.

Proof. The first step is to obtain a trivial exponential sum for the quantified expression, as
in the discussion above.

▷ Claim C.3. Suppose f(x) can be expressed as the following quantified circuit.

f(x) = sumy1prodz1
sumy2prodz2

· · · prodzk
sumyk+1g(x, y1, . . . , yk+1, z1, . . . , zk)

Let mi = |zi|, and further let Mi = m1 + m2 + · · · + mi, for each i ∈ [k]. Also, let
y = y1 ∪ y2 ∪ · · · ∪ yk+1, and z = z1 ∪ z2 ∪ · · · ∪ zk

Then f(x) can also be expressed as the following exponential sum.

f(x) = sumY

 ∏
a∈{0,1}Mk

g(x, y1, y2,a[:M1], y3,a[:M2], . . . , yk+1,a[:Mk], z = a)

Here Y is a set of all y-variables, of size

(
1 +

∑
i 2Mi

)
that is defined as follows.

Y =
⋃

a∈{0,1}Mk

(y1 ∪ y2,a[:M1] ∪ · · · ∪ yk+1,a[:Mk]) ◁

Even though the claim is fairly verbose, it is easy to verify given the discussion before the
lemma, so we will not explicitly prove it.

As the next step, we shall use the fact that the “inner circuit” g is monotone, to bound
the degree of f from below.

deg(f) = degx

sumY

 ∏
a∈{0,1}Mk

g(x, y1, y2,a[:M1], . . . , yk+1,a[:Mk], z = a)

(g is monotone) = degx

 ∏
a∈{0,1}Mk

g(x, 1, z = a)

≥

∑
a∈{0,1}Mk

deg(g(x, 1, z = a))

Therefore, since f has degree d = deg(f), it must be the case that for all but d fixings a of z,
g(x, y, a) is a constant in terms of x for any {0, 1}-assignment to the variables in y.

Let A :=
{

a ∈ {0, 1}Mk : degx (g(x, b, a)) > 0 for some b ∈ {0, 1}|y|
}

, and let A0 :=

{0, 1}Mk \ A. We therefore have that |A| ≤ d. Further, let Y1 :=
⋃

a∈A(y1 ∪ y2,a[:M1] ∪ · · · ∪
yk+1,a[:Mk]), and let Y0 := Y \ Y1. Note that now |Y1| ≤ |A| · |y| ≤ d · m.

P. Chatterjee, K. Gajjar, and A. Tengse 11:23

We can now simplify the exponential sum in Claim C.3 and finish the proof as follows,
where ya refers to (y1, y2,a[:M1], · · · , yk+1,a[:Mk]).

f(x) = sumY

 ∏
a∈{0,1}Mk

g(x, ya, z = a)

(for appropriate ya) = sumY

((∏
a∈A0

g(x, ya, z = a)
)

·

(∏
a∈A

g(x, ya, z = a)
))

(first term “x-free”) = sumY

((∏
a∈A0

g(0, ya, z = a)
)

·

(∏
a∈A

g(x, ya, z = a)
))

= sumY1,Y0

((∏
a∈A0

g(0, ya, z = a)
)

·

(∏
a∈A

g(x, ya, z = a)
))

(regroup terms) = sumY1

(
sumY0

(∏
a∈A0

g(0, ya, z = a)
))

·

(∏
a∈A

g(x, ya, z = a)
)

(simplify) = sumY1A(Y1) · h(x, Y1)

As claimed, the size of h is at most |A| · size(g) ≤ d · s, while A(Y1) is a fairly structured
polynomial despite its exponential size and degree. ◀

FSTTCS 2023

	1 Introduction
	1.1 Our Contribution
	1.2 Organization of the paper

	2 Preliminaries
	3 Monotone analogues of VPSPACE, and our contributions
	3.1 Monotone succinct ABPs
	3.2 Quantified monotone circuits
	3.3 Monotone circuits with summation and production gates
	3.4 Monotone circuits with projection gates
	3.5 Defining Monotone VPSPACE (mVPSPACE)

	4 Quantified monotone circuits
	5 Monotone circuits with summation and production gates
	6 Monotone circuits with projection gates
	7 Conclusion
	A Deferred Formal Definitions and Statements
	B Definitions of VPSPACE relying on boolean computation
	C Deferred Proofs
	C.1 Proof of Theorem 3.12
	C.2 Proof of Theorem 3.13
	C.3 Proof of Theorem 5.1
	C.4 Proof of Theorem 3.2
	C.5 Proof of Theorem 3.7

