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Abstract
The fundamental task of rank aggregation is to combine multiple rankings on a group of candidates
into a single ranking to mitigate biases inherent in individual input rankings. This task has a myriad
of applications, such as in social choice theory, collaborative filtering, web search, statistics, databases,
sports, and admission systems. One popular version of this task, maximum rank aggregation (or the
center ranking problem), aims to find a ranking (not necessarily from the input set) that minimizes
the maximum distance to the input rankings. However, even for four input rankings, this problem
is NP-hard (Dwork et al., WWW’01, and Biedl et al., Discrete Math.’09), and only a (folklore)
polynomial-time 2-approximation algorithm is known for finding an optimal aggregate ranking
under the commonly used Kendall-tau distance metric. Achieving a better approximation factor
in polynomial time, ideally, a polynomial time approximation scheme (PTAS), is one of the major
challenges.

This paper presents significant progress in solving this problem by considering the Mallows
model, a classical probabilistic model. Our proposed algorithm outputs an (1 + ε)-approximate
aggregate ranking for any ε > 0, with high probability, as long as the input rankings come from a
Mallows model, even in a streaming fashion. Furthermore, the same approximation guarantee is
achieved even in the presence of outliers, presumably a more challenging task.
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1 Introduction

Ranking a set of candidates or a list of alternatives is ubiquitous in diverse fields ranging
from social choice theory [7] to information retrieval [23]. Given a set of different, potentially
conflicting rankings of a list of candidates, a fundamental task is to combine them to obtain
a consensus ranking that best represents the preferences in the individual rankings. This
process, known as rank aggregation, has applications in many areas, including voting systems,
sports, databases, web search engines, collaborative filtering, machine translation, and
statistics [19, 20, 41, 22]. One of the primary objectives is to mitigate apparent biases in
individual rankings, such as search engine spam, strategic manipulation of web pages to
achieve an undeserved high rank, or biases towards candidates/alternatives based on gender,
ethnicity, and so on.

Rank aggregation is often formulated as an optimization problem. One popular version
involves finding a ranking (not necessarily from the input set) that minimizes the maximum
distance to the input rankings, known as the maximum rank aggregation problem in the
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literature. The optimization task considered here is the well-known center problem, with
the underlying domain being the set of rankings/permutations. The general center problem
dates back to the nineteenth century [44] and has been studied for various metric spaces,
including Euclidean (both constant [36] and high dimension [4, 46]), Hamming [21, 30, 34],
the edit metric [37], Jaccard distance [9], rankings [3, 5, 40, 13], and others. The hardness of
the center problem varies with the metric space considered.

Several distance metrics have been explored to quantify the dissimilarity between two
rankings or permutations. The Kendall-tau distance [27, 17, 26, 47, 48], which counts the
number of inversions between two rankings (equivalently, the number of transpositions
required by the bubble sort algorithm), is perhaps the most widely used metric. It is known
to satisfy several desirable properties, such as neutrality, consistency, and the extended
Condorcet property [26, 47]. In this paper, we focus on the maximum rank aggregation
problem under the Kendall-tau metric, as is common in most of the rank aggregation
literature [19, 1, 28, 3, 5]. Unfortunately, the problem is known to be NP-hard, even when
there are only four input rankings [19, 5]. For most practical applications, computing an
approximate maximum aggregate ranking suffices. A simple (folklore) algorithm that outputs
one of the input rankings can achieve a 2-approximation factor, which is the case for any
arbitrary metric space. However, finding a polynomial-time algorithm that can achieve
a better than 2-approximation factor remains a significant open challenge. The ultimate
goal is to develop a polynomial-time approximation scheme (PTAS) that can provide a
(1 + ε)-approximation algorithm for any ε > 0.

Given the difficulty of the maximum rank aggregation problem, it is natural to consider
this problem in the context of probabilistic models (i.e., when the input is generated from
some probabilistic model). Various probabilistic ranking models have been proposed in the
literature to capture preference or choice behavior, such as Bradley-Terry model [6], Luce
model [33], Plackett-Luce model [39], and Cayley-Mallows model [16], along with several
ranking algorithms and statistical analysis techniques [25, 43, 24]. Mallows model [35], a
subclass of the Bradley-Terry model for noisy rankings, is a more tractable probabilistic
ranking model. The model is defined by an underlying ranking π and a dispersion parameter
ϕ ∈ (0, 1), and the probability of observing a ranking σ decreases exponentially with respect
to the Kendall-tau distance between π and σ and the dispersion parameter ϕ. Being a
problem of utter importance, the rank aggregation problem under the Mallows model has
already sought attention from the researchers [8, 10, 45], albeit mostly on minimizing the
sum of distances (the median objective) instead of minimizing the maximum distance (that
we consider in this paper), where the latter task is considered to be more challenging than
the first one in the context of aggregating rankings.

1.1 Our Contribution

In this paper, we study the maximum rank aggregation problem when the input is sampled
from the Mallows model. So far, nothing better than the folklore 2-approximation algorithm
is known, even under this probabilistic ranking model. We make significant progress by
providing an (1 + ε)-approximation algorithm.

▶ Theorem 1. Consider a ϕ ∈ (0, 1), ε > 0 and a ranking π on n candidates. There is
a polynomial-time algorithm that, given a set S of size at least 50

(1−ϕ)2

(
log 9

εϕ + log 1
1−ϕ

)
drawn from a Mallows model M(π, ϕ), outputs a permutation πc that is a (1 + ε)-approximate
center (maximum aggregate) ranking with probability at least 2/3.
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Although, for simplicity, we state the success probability to be 2/3, a slightly careful look
into our analysis1 reveals that we can actually attain a success probability of at least
1− e−Ω((1−ϕ)2|S|). Our algorithm runs in O(n3 log n) time, where the O(·) notation hides a
constant that depends on 1/ε and 1/(1− ϕ). The running time can further be reduced to
O(n log2 n) when the size of the input set is at least Ω(log n). We also remark that as such,
our algorithm does not need to know the parameter ϕ as long as the input set size satisfies the
required minimum bound of 50

(1−ϕ)2

(
log 9

εϕ + log 1
1−ϕ

)
. It is worth highlighting that when

ϕ is close to 1, the Mallows model defines a distribution close to the uniform distribution.
A set of rankings drawn from such a (close to) uniform distribution has little similarity;
thus, aggregating them into a representative ranking has little importance. Therefore, the
problem is more interesting when ϕ is away from 1, where our algorithm only needs a constant
(dependent on parameters ε, ϕ) number of samples. We pose the problem of showing whether
so many samples are essential to achieve a (1 + ε)-approximation as an interesting open
problem.

Our result consists of two parts. In the first part, we prove that when the input set is drawn
from a Mallows model M(π, ϕ), the underlying ranking π gives an additive approximation of

n
1−ϕ e− s(1−ϕ)2

50 , where the input set is of size s (Theorem 5). Such an equivalence between the
hidden ranking in the Mallows model and an approximate center ranking was not known
before. We exploit the relation between the Mallows model and the Repeated Insertion model
to show our result. This allows us to argue that the distances of rankings in the input set
to π are almost the same (Lemma 7). To show the additive approximation guarantee, we
consider an arbitrary optimal center ranking σ and then view it as being obtained from π by
performing a sequence of swap operations of adjacent symbols (as in bubble sort). Ideally,
one would like to show that such swaps would not reduce the (center) objective value by
much. However, that is not true. We argue that such swaps can be categorized into two
types. In the first one, on a pair of symbols involved in the swap, π and the majority of
input rankings agree about their relative ordering. We argue that performing swaps on them
cannot significantly improve the (center) objective value. Roughly speaking, the decrease in
the distance caused by these swaps “almost equally” spreads out over all the input rankings.
On the other hand, the second category constitutes all the pairs of symbols involved in swaps
for which π and the majority of input rankings do not agree about their relative ordering.
Although these swaps can improve the objective value, we argue that only a few such pairs
exist (Lemma 9). Consequently, we derive that the objective value obtained by π is up to a
small additive factor of the optimum objective value (i.e., the objective value obtained by σ).

Next, we show how to reconstruct a ranking πc that is close (in the Kendall-tau distance)
to π, without even knowing the parameter ϕ as long as there are sufficiently many input
samples (Theorem 10). For that purpose, we build a tournament graph by looking into the
pairwise relative ordering of the candidates in the majority of the input rankings and then use
a PTAS by [28, 42] to solve the feedback arc set problem on this instance of tournament graph.
Then, we remove the edge set returned by that PTAS from the constructed tournament
graph and, finally, use the topological ordering of the resulting acyclic graph. The main
difficulty lies in the analysis, where we show that this algorithm indeed reconstructs π up to
some small distance. Interestingly, we only need a constant (depending on the dispersion
parameter ϕ and the closeness requirement) number of input rankings for the reconstruction.

1 The success probability of Lemma 9 can easily be improved to 1 − e−Ω((1−ϕ)2|S|) by adjusting certain
parameters (and bounds) in the proof, and as a consequence, a similar success probability holds for
both Theorem 5 and Theorem 10, and thus also for Theorem 1.

FSTTCS 2023



12:4 Approximate Maximum Rank Aggregation: Beyond the Worst-Case

It is worth highlighting that the problem of approximate reconstruction of π (for the Mallows
model) has been studied before [14]. However, our reconstruction result significantly differs
from that of [14], primarily because [14] requires Ω(log n) samples (with Ω(·) hiding a factor
that depends on 1/(1− ϕ)) while achieving a slightly different approximation guarantee, and
thus the reconstruction result of [14] does not help us proving Theorem 1.

Since we only need constantly many inputs for the reconstruction, we can implement
our algorithm in a streaming manner (when the input rankings arrive one by one in a
streaming fashion) only using O(n) space (note, the input size is O(n|S|)) by using a
standard sampling technique. Furthermore, our algorithm can be extended to a more general
setting (see Section 6) when the input set contains a small number of outliers chosen by the
adversary (similar to that in [32]).

1.2 Related Works
In addition to the center objective that is the main focus of this paper, the rank aggregation
problem has also been studied under the median objective function [19, 1]. This variant
seeks to find a ranking (not necessarily from the input set) that minimizes the sum of
distances to the input rankings. Under the Kendall-tau metric, the median ranking problem
is also NP-hard [19], but it has a PTAS [28]. However, finding a similar PTAS or proving
an impossibility result for the center variant remains a significant challenge. While the
rank aggregation problem has been studied under Spearman’s rho distance [19] or Ulam
distance [11, 13, 12], Kendall-tau distance is the most prevalent for aggregating ranks.

The difficulty of the rank aggregation task has led researchers to explore data-driven
approaches, such as using various probabilistic models [38, 8, 29]. The Mallows model is
a classic probabilistic model for rankings, and [8] presented an algorithm that can find an
optimal median of rankings drawn from a Mallows model in polynomial time. Other work
has focused on estimating parameters and reconstructing the hidden permutation in more
general mixtures of Mallows models [14, 2, 31, 15] or in the presence of outliers chosen by
a malicious adversary [32]. [11] investigated a different probabilistic model for finding an
approximate median ranking (although under the Ulam metric), but none of these results
have yielded a better approximate center ranking than the folklore algorithm under the
Mallows model.

2 Preliminaries

Let [n] denote the set {1, 2, ..., n}. Let Sn denote the set of all rankings/permutations over [n].
We use the terms ranking and permutation interchangeably in this paper. Given a ranking π,
let the notation π(i) refer to the symbol at rank i in π. Let the notation π−1(a) refer to the
rank of the symbol a in π. Given a pair of symbols a, b, we say a ≺π b if π−1(a) < π−1(b).
Throughout this paper, we will use the variables i, j when referring to ranks and a, b when
referring to symbols. Also, note that all the logarithms in this paper are base e.

We consider the distance between the two rankings as their Kendall-tau distance.

▶ Definition 2 (Kendall-tau Distance). Given two rankings π, σ, the Kendall-tau distance,
denoted by d(π, σ), is the total number of ordered pairs (a, b) ∈ [n]× [n] such that a ≺π b and
b ≺σ a.

Suppose we have some pair of symbols (a, b) and two rankings π and σ such that a ≺π b

but b ≺σ a. We say that the pair (a, b) is inverted in relative order in σ compared to π.
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Center and c-approximate center

Given a set S ⊆ Sn and ranking σ ∈ Sn, we refer to the center objective value of σ with
respect to S as Obj(S, σ) := maxπr∈S d(σ, πr). Then an (optimal) center of a set S ⊆ Sn is
a ranking π∗ ∈ Sn that minimizes Obj(S, σ), i.e., π∗ = arg minσ∈Sn

Obj(S, σ). We refer to
Obj(S, π∗) as OPT(S), or simply OPT when S is clear from the context. We call a ranking
π̃ a c-approximate center (for some c ≥ 1) for the set S iff Obj(S, π̃) ≤ c · OPT(S).

Mallows model

The Mallows model defines a distribution over rankings, where the probability of a ranking
being sampled is dependent on its distance to a reference ranking.

▶ Definition 3 (Mallows model). A Mallows model, denoted by M(π, ϕ), on n elements is
defined by two parameters, a ranking π and a dispersion parameter ϕ ∈ (0, 1).

The probability that a ranking σ is sampled by the Mallows model is

Pr [σ | π, ϕ] = 1
Z (π, ϕ)ϕd(π,σ),

where Z (π, ϕ) =
∑

ρ∈Sn
ϕd(π,ρ) is the normalization constant.

In the literature, sometimes the sampling probability is defined as 1
Z(π,ϕ) exp (−ϕ · d (π, σ))

while allowing any ϕ > 0. However, since both the definitions are equivalent, throughout this
paper, we follow Definition 3. Observe, as ϕ→ 1, the distribution induced by the Mallows
model tends towards the uniform distribution over rankings. Also, the normalization constant
Z (π, ϕ) is, in fact, independent of the ranking π (when considering the Kendall-tau distance,
which is the case in this paper).

An alternative and mathematically equivalent way of formulating the Mallows model
using the Kendall-tau distance is by using a more general Repeated Insertion Model [18].
This definition helps to establish many interesting properties of the sampling distribution.

▶ Definition 4 (Repeated Insertion model). Given a ranking π and a dispersion parameter
ϕ ∈ (0, 1), the Repeated Insertion model creates a new ranking σ by the following iterative
process: First, initialize σ to be empty. Then for each i = 1, 2, · · · , n, take the element at
π(i) and insert it at rank j in σ with probability ϕi−j

1+ϕ+···+ϕi−1 .

3 Approximating a Center

In this section, we show that the hidden ranking π of the Mallows model is a “good”
approximation to an (optimal) center.

▶ Theorem 5. Consider a ϕ ∈ (0, 1) and a ranking π ∈ Sn. Let S be a set of rankings
sampled from the Mallows model M(π, ϕ), of size s. Then

Obj(S, π) ≤ OPT(S) + n

1− ϕ
e− s(1−ϕ)2

50 + o(n)

with probability at least 9/10− 2s/n.

We first provide a high-level overview of the proof. First, for all πr ∈ S, d(πr, π) are
the same up to some small factor (see Lemma 7). Next, let σ be an (arbitrary optimal)
center of S. Now, we can view σ as being obtained from π by performing a sequence of swap
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operations of adjacent symbols (as in bubble sort). Each such pair of symbols fall into two
categories. For a particular such pair, either the majority of rankings in S agree with π

on the pairwise (relative) order of that pair or the majority of rankings in S disagree with
π on that pair. We argue that for all the pairs for which the majority of rankings agree,
performing swaps on them cannot improve the objective value by much (roughly speaking,
the decrease in the distance caused by these swaps “almost equally” spreads out over all the
input rankings). On the other hand, if the majority of rankings disagree, we can improve the
objective value by that particular swap; however, we show that there cannot be too many
such pairs of symbols (see Lemma 9). Putting these together, we show that the objective
value of σ cannot be much better than that of π.

Let us now start proving formally by first providing an upper and lower bound on the
distance of any sampled ranking from π. For this section, fix

k = 2
log (1/ϕ) .

Now, we bound the number of inversions created at each step of the Repeated Insertion
Model.

▶ Lemma 6. The probability that any step of the Repeated Insertion model creates at least
k log n inversions compared to π is at most 1

n .

Proof. Recall that from the definition of the Repeated Insertion model (Definition 4), the
probability that m inversions are created at the i-th step (for any i ∈ [n]) is equal to

ϕm

1+ϕ+...+ϕi−1 .
Therefore, the probability that at least k log n inversions are created is

Pr[At least k log n inversions are created] = ϕk log n + ϕk log n+1 + ... + ϕi−1

1 + ϕ + ... + ϕi−1

= ϕk log n 1 + ϕ + ... + ϕi−1−k log n

1 + ϕ + ... + ϕi−1

≤ ϕk log n = 1
n2

where the last equality follows since we set k = 2
log(1/ϕ) . Taking a union bound over n steps

gives the desired probability bound. ◀

Now, we prove a concentration bound on the distance of any sampled ranking from π,
which we show by first bounding the expected number of inversions created by any step of
the Repeated Insertion model.

▶ Lemma 7. Consider a πr drawn from M(π, ϕ). With probability at least 1− 2
n ,

(1− λ) ϕ

1− ϕ
n ≤ d(π, πr) ≤ (1 + λ) ϕ

1− ϕ
n,

for some λ = o(1).

Proof. We first consider the inversions caused by any step i of the Repeated Insertion model,
where j > k log n. Let the number of inversions at step j (where j > k log n) in the model
be represented by a random variable Xj . Let X =

∑n
j=k log n+1 Xj . Let us now calculate

E[Xj ] for each j > k log n.
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By the definition of the Repeated Insertion model, the probability that at step j we have
m inversions created is equal to ϕm

1+ϕ+...+ϕj−1 . Therefore the expected number of inversions
caused by π(j) with symbols π(i) for all i < j is equal to

1
1 + ϕ + ... + ϕj

j−1∑
i=0

iϕi = ϕL

(1− ϕ)L + jϕj−1 , (1)

where L = 1 + 2ϕ + 3ϕ2 + ... + (j − 1)ϕj−2.
Then by the linearity of expectation,

E[X] =
n∑

j=k log n+1
E[Xj ] =

(
ϕ

1− ϕ
− δ

)
n

where δ = O(1/n2). The last equality follows since for j > k log n and k = 2
log(1/ϕ) ,

jϕj−1 = O
( 1

n2

)
.

Let us now consider the good event G1 that none of the steps of the Repeated Insertion
model creates more than k log n inversions. By Lemma 6, Pr[Ḡ1] ≤ 1/n. From now on, we
assume that the event G1 happens. Then the random variables Xj ’s take on values only in
the range [0, k log n]. Thus, by the standard Hoeffding bound,

Pr
[
|X − E[X]| ≥ k

√
n(log n)3

]
≤ 2 exp (−2 log n) .

That means given the event G1,

Pr
[
X ∈ (1± λ′)

(
ϕ

1− ϕ
− δ

)
n

]
≥ 1− 2

n2

where λ′ = o(1).
It is straightforward to see that the first k log n steps can create at most k2(log n)2

inversions. Recall that d(π, πr) is equal to the total number of inversions created by all the
steps of the Repeated Insertion Model while sampling πr. Therefore,

(1− λ′)
(

ϕ

1− ϕ
− δ

)
n ≤ d(π, πr) ≤ (1 + λ′)

(
ϕ

1− ϕ
− δ

)
n + k2(log n)2

with probability at least 1 − 2/n (since Pr[Ḡ1] ≤ 1/n). Since δ = O( 1
n2 ), the lemma

follows. ◀

Next, we consider the set S of rankings sampled from the Mallows model M(π, ϕ). We
show that there are not too many pairs of symbols (a, b) such that a ≺π b, but the majority
of rankings πr ∈ S have b ≺πr

a. Let us start with a known result on the probability that a
given pair is inverted in a sampled ranking compared to π.

▶ Lemma 8 ([14]). Let us consider a j ∈ [1, n] and an i < j. The probability that a ranking
πr drawn from M(π, ϕ) has π(j) ≺πr π(i) is equal to ϕk(ϕk+1−(k+1)ϕ+k)

(1−ϕk+1)(1−ϕk) , where k = j − i.

For a set S drawn from M(π, ϕ), let us now consider the set PS of pairs (a, b) that are
inverted in relative order in at least |S|

2 rankings in S compared to π. More formally,

PS := {(a, b) ∈ [n]× [n] | a ≺π b but b ≺πr
a for at least |S|/2 many πr ∈ S} .

We show that the size of PS would not be “too large” with a probability at least 9/10.

FSTTCS 2023
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▶ Lemma 9. Consider ϕ ∈ (0, 1) and a set S drawn from M(π, ϕ), of size s. Then with a
probability at least 9/10,

|PS | ≤
n

1− ϕ
exp

(
−s(1− ϕ)2

50

)
.

Proof. Let H be a random variable whose value is equal to |PS |.
First, we fix a specific value of j ∈ [1, n]. Let us consider an i ∈ [0, j− 1] and let k = j− i.

Let Ik be a random variable whose value is equal to the number of rankings πr ∈ S such
that π(j) ≺πr

π(i). Then it follows from Lemma 8 that

µ := E [Ik] = s · ϕk(ϕk+1 − (k + 1)ϕ + k)
(1− ϕk+1)(1− ϕk)

= s · ϕk · k(1− ϕ)− ϕ(1− ϕk)
(1− ϕk+1)(1− ϕk)

≤ s · ϕk · k − ϕ

(1− ϕk+1)

≤ skϕk

1− ϕ
.

Applying the standard Chernoff bound,

Pr
[
Ik ≥

s

2

]
≤ 2 exp

(
−( s

2µ − 1)2µ

3

)
≤ 2 exp

(
−( s

3µ )2µ

3

)

≤ 2 exp
(
− s2

27µ

)
≤ 2 exp

(
− s

27 ·
1− ϕ

kϕk

) (
as µ ≤ skϕk

1− ϕ

)
.

Let Jk be a random variable that takes on 1 if Ik ≥ s
2 ; and 0 otherwise. Let Hj =

∑j−1
k=1 Jk.

Then by the linearity of expectation,

E[Hj ] ≤
j−1∑
k=1

2 exp
(
− s

27 ·
1− ϕ

kϕk

)
=

j−1∑
k=1

2 exp
(
−s(1− ϕ)

27

) 1
k ϕ−k

. (2)

Let θ := 1− ϕ. We have that for any k,

1
k

ϕ−k = 1
k(1− θ)k

≥ 1
k

(1 + kθ) ≥ θ. (3)

Let K = 4
θ log(4/θ). Then, it is not hard to see that

for all k ≥ K,
1
k

ϕ−k ≥ k. (4)

For brevity, let t := exp
(
− s(1−ϕ)

27

)
. Then we rewrite Equation 2 as follows
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E[Hj ] ≤
K−1∑
k=1

2t
1
k

ϕ−k

+
j−1∑

k=K

2t
1
k

ϕ−k

≤
K−1∑
k=1

2tθ +
j−1∑

k=K

2tk (by Equation 3 and Equation 4)

≤ 2Ktθ + 2tK 1
1 − t

≤ 2K exp
(

−θ2s

27

)
+ 2 exp

(
−θsK

27

) 1
1 − exp

(
− sθ

27

)
≤ 12

θ
log 4

θ
exp
(

−θ2s

27

) (
by setting K = 4

θ
log(4/θ)

)
≤ 1

θ
exp
(

−θ2s

40

)
.

Since H =
∑

j Hj , by the linearity of expectation, we have

E[H] ≤ n

θ
exp

(
−θ2s/40

)
.

Then by Markov’s inequality,

Pr
[
H ≥ 10n

θ
exp

(
−θ2s/40

)]
≤ 1/10

and the lemma follows. ◀

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let σ be an (arbitrary optimal) center of the set S (where |S| = s).
Let us consider a sequence of swaps (or inversion) of adjacent pair(s) of symbols to convert
the ranking π into the ranking σ. (For example, while performing bubble sort on π with σ as
the total order of the symbols, we get a sequence of swaps of consecutive symbols.) Further,
let this sequence of swaps converts π → π1 → π2 → · · · → σ. Next, we categorize each such
pair of symbols into two cases.

The first case is when the pair of symbols (a, b) is inverted in relative order in at most half
the rankings of S compared to π (i.e., (a, b) ̸∈ PS). Suppose the swap of adjacent pair (a, b)
is performed in the intermediate step while converting πj → πj+1 (for some j). Observe,
for at most s/2 rankings πr ∈ S, d(πj+1, πr) = d(πj , πr)− 1, whereas for all other rankings
πf ∈ S, d(πj+1, πf ) = d(πj , πf ) + 1. Hence∑

πi∈S

d(πj+1, πi) ≥
∑

πi∈S

d(πj , πi). (5)

The second case is when the pair of symbols (a, b) is inverted in relative order in more
than half the rankings of S compared to π (i.e., (a, b) ∈ PS). Again, suppose the swap of
adjacent pair (a, b) is performed in the intermediate step while converting πj → πj+1 (for
some j). Since in the worst case, all the rankings in S have a distance of one less to πj+1

than to πj ,∑
πi∈S

d(πj+1, πi) ≥
∑

πi∈S

d(πj , πi)− s. (6)

Let us now assume that the events of Lemma 7 and Lemma 9 occur. More specifically,
let us consider the good event G that
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For all πr ∈ S, (1− λ) ϕ
1−ϕ n ≤ d(π, πr) ≤ (1 + λ) ϕ

1−ϕ n, for some λ = o(1), and

|PS | ≤ n
1−ϕ exp

(
− s(1−ϕ)2

50

)
.

By a union bound, Pr[Ḡ] ≤ 1/10 + 2s/n. From now on, let us assume that G occurs.
In the process to transforming π → π1 → π2 → · · · → σ, by repeatedly applying Equa-

tion 5 and Equation 6, we get that

d(πi, σ) ≥
(∑

πi∈S

d (πi, π)− sn

1− ϕ
e

−s(1−ϕ)2
50

)
. (7)

Hence, we derive that

OPT(S) = Obj(S, σ) ≥ 1
s

∑
πi∈S

d(πi, σ) (by averaging)

≥ 1
s

(∑
πi∈S

d (πi, π)− sn

1− ϕ
e

−s(1−ϕ)2
50

)
(by Equation 7)

≥ 1
s

∑
πi∈S

d(πi, π)− n

1− ϕ
e

−s(1−ϕ)2
50

≥ min
πi∈S

d(πi, S)− n

1− ϕ
e

−s(1−ϕ)2
50

≥ (1− λ) ϕ

1− ϕ
n− n

1− ϕ
e

−s(1−ϕ)2
50 (assuming the event G).

Recall that assuming the event G, we have that Obj(S, π) ≤ (1 + λ) ϕ
1−ϕ n. Therefore,

Obj(S, π) ≤ OPT(S) + 2λ
ϕ

1− ϕ
n + n

1− ϕ
e

−s(1−ϕ)2
50

≤ OPT(S) + n

1− ϕ
e

−s(1−ϕ)2
50 + o(n) (as λ = o(1))

which concludes the proof. ◀

4 Reconstructing the Hidden Ranking

In this section, we discuss an algorithm that, given samples from a Mallows model, approx-
imately reconstructs the hidden ranking/permutation π in polynomial time.

▶ Theorem 10. Consider ϕ ∈ (0, 1), α > 0 and a π ∈ Sn. There exists a polynomial-time
algorithm that, given a set S of size s ≥ 50

(1−ϕ)2

(
log 3

α + log 1
1−ϕ

)
drawn from M(π, ϕ),

computes a ranking πc such that d(πc, π) ≤ αn with probability at least 9/10.

It is important to note that the number of samples required in the above theorem is only
a constant (that depends on the dispersion parameter ϕ and the closeness parameter α). It
is worth mentioning that if the size of the input set is Ω(log n), then it is easy to recover the
hidden ranking exactly. We now prove Theorem 10.

Description of the algorithm

We start by describing the algorithm. We first build a graph G on the vertex set [n]. Add a
directed edge from vertex a to vertex b if at least half the rankings in S rank symbol a before
b, i.e., for at least s/2 samples πr ∈ S, a ≺πr b. Observe the graph obtained is a tournament
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Algorithm 1 ApproxReconstruct.
Input: S ⊂ Sn of size s

Output: A ranking πc over [n]
G← ([n], E) where E = {(a, b) | a is ranked before b in at least s

2 rankings}.
Run the PTAS of [28] to get a subset F of edges.
G′ is obtained by removing the edge set F from G.
πc ← topological ordering of G′.
return πc.

graph2. However, it may contain a cycle. Next, we want to remove as few edges as possible
from G to make it acyclic, which is the well-known feedback arc set problem. Kenyon-Mathieu
and Schudy [28, 42] designed a PTAS for the feedback arc set problem over tournament
graphs. We run that PTAS to obtain a (1 + ε)-approximation of the optimal feedback arc set
and remove those edges to form a directed acyclic graph G′. Finally, we obtain a topological
order on the vertices of G′ and return this as ranking πc. (See Algorithm 1.)

Approximation guarantee on the reconstructed ranking

We call an edge (b, a) in G bad if a ≺π b. Let B be the set of all the bad edges. Recall,
we define PS to be the set of pairs (a, b) that are inverted in relative order in at least |S|

2
rankings in S compared to π. By the construction of the graph G, the pairs of symbols in
PS essentially constitute the bad edge set B. Thus |B| = |PS |.

So by Lemma 9 we have that the size of B is at most n
1−ϕ exp

(
− s(1−ϕ)2

50

)
with probability

at least 9/10. For s ≥ 50
(1−ϕ)2

(
log 3

α + log 1
1−ϕ

)
, we have that

|B| ≤ n

1− ϕ
exp

(
− log 3

α
− log 1

1− ϕ

)
≤ α

3 n. (8)

It is straightforward to observe that removing the set B of bad edges from G makes it
acyclic. So |B| (which is at most αn/3 by Equation 8) serves as an upper bound on the size
of an optimal feedback arc set of G. Since by applying the PTAS of [28], we get the subset
F of edges to remove from G to make it acyclic, |F | ≤ (1 + ε)αn/3, for any ε > 0.

Since πc is the resulting ranking from taking a topological ordering of the resulting
directed acyclic graph G′ = G− F ,

d(πc, π) ≤ |B|+ |F | ≤ (2 + ε) · αn

3

which completes the proof of Theorem 10.

▶ Remark 11. Note the running time of constructing the graph and finding a topological
ordering is O(sn2). However, since for the reconstruction, s = poly(log(1/α), 1/(1 − ϕ))
samples suffice, the running time is O(n2), where O(·) hides the constant term that depends
(polynomially) on 1/α and 1/(1−ϕ). This is dominated by the running time of the PTAS for
the feedback arc set on tournaments from [28, 42], which is O

(
n3 log n

ε

)
+ n2O(ε−6), where ε

comes from the (1 + ε)-factor of PTAS. We can significantly improve the running time of

2 A directed graph is called a tournament if there is a (directed) edge between every pair of vertices.
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this algorithm by increasing the input size required by a constant factor, and then instead
of running the PTAS algorithm, we can run a randomized algorithm by [1] that finds a
3-approximation of the optimal feedback arc set and runs in only O(n log n) time.

Exact reconstruction of the hidden ranking

In Theorem 10, we provide an approximate reconstruction algorithm using only constantly
many samples. It is worth mentioning that a polynomial time exact reconstruction algorithm
is already known due to [14]; however, that requires Ω(log n) samples. We also want to
mention that as long as the sampled set is of size at least 12(1+ϕ)2

(1−ϕ)2 log n, for every pair of
symbols (a, b), their relative ordering in at least half of the samples will be exactly the same
as that in π with high probability (with probability at least 1− 1/poly(n)). Hence, by using
any standard comparison-based sorting algorithm, we can reconstruct π exactly in time
O(n log2 n). Although this simple approach is quite standard and well-known, just for the
sake of completeness, we provide detailed proof of this simple argument in Appendix B.

5 Completing the proof of Theorem 1

We first show a lower bound of OPT(S) for any set S drawn from a Mallows model.

▶ Lemma 12. Consider a set S (of size at least two) drawn from M(π, ϕ). Then, with
probability at least 1− 6

n , OPT(S) ≥ ϕn− o(n) .

Proof. Let π1, π2 ∈ S. Let I be the set of pairs that are inverted in relative order in both π1
and π2 compared to π.

First, take some fixed j ∈ [1, n] and consider the step j in the Repeated Insertion model.
Let Bj be a random variable that takes on a value equal to the size of the set

{i | i < j, π(j) ≺π1 π(i), π(j) ≺π2 π(i)} .

Let Cj be a random variable that takes on a value t if
π(j) is placed at rank j − t in π1 (i.e., creating t inversions), and
π(j) is placed at some rank j−r for t ≤ r ≤ j−1 in π2 (i.e., creating at least t inversions).

Observe that if |{i | i < j, π(j) ≺π1 π(i), π(j) ≺π2 π(i)}| = t, then the insertion of the
symbol at rank j must have created at least t inversions in both π1 and π2. Therefore for
any t > 0, Pr[Bj ≥ t] ≤ Pr[Cj ≥ t].

Now, let B =
∑n

j=1 Bj and C =
∑n

j=1 Cj . Observe that the size of the set I is equal to
B. Recall that each step of the Repeated Insertion model is independent of each other.

Consider Pr[Cj = m] for some j ∈ [1, n] and m ∈ [0, j − 1]. As sampling both rankings is
independent, by Definition 4, we get that

Pr[Cj = m] = ϕm

1 + ϕ + ... + ϕj−1 ·
ϕm + ... + ϕj−1

1 + ϕ + ... + ϕj−1 .

Thus, we deduce that

E[Cj ] =
j−1∑
m=1

m · ϕm

1 + ϕ + ... + ϕj−1 ·
ϕm + ... + ϕj−1

1 + ϕ + ... + ϕj−1

≤
j−1∑
m=1

m · ϕm ϕm

1 + ϕ + ... + ϕj−1
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≤ ϕ

1 + ϕ + ... + ϕj−1

j−1∑
m=1

mϕm

≤ ϕ · ϕ + 2ϕ2... + (j − 1)ϕj−1

1 + ϕ + ... + ϕj−1

≤ ϕ · ϕ(1 + 2ϕ + ... + (j − 1)ϕj−2)
(1− ϕ)(1 + 2ϕ + ... + (j − 1)ϕj−2) + iϕj−1

≤ ϕ2

1− ϕ
.

By the linearity of expectation, E[C] ≤ ϕ2

1−ϕ n.
Let us now assume that the events of Lemma 6 and Lemma 7 occur. More specifically,

let us consider the good event G2 that
None of the steps of the Repeated Insertion model creates more than k log n inversions,
and
For r = 1, 2, (1− λ) ϕ

1−ϕ n ≤ d(π, πr) ≤ (1 + λ) ϕ
1−ϕ n, for some λ = o(1).

By a union bound of the failure probability of Lemma 6 and Lemma 7, Pr[Ḡ2] ≤ 5/n. From
now on, let us assume that G2 occurs.

So the random variables Cj ’s take on values in the range [0, k log n]. Thus, by applying
the standard Hoeffding bound,

Pr
[
C − E[C] ≥ k

√
n(log n)3/2

]
≤ exp(−2 log n). (9)

So we have that given the event G2 occurs, with a probability at least 1− 1/n2,

|I| ≤ (1 + γ) ϕ2

1− ϕ
n, for some γ = o(1). (10)

Let π∗
1,2 be an (arbitrary optimal) center of π1 and π2. Then by the triangle inequality,

d(π1, π∗
1,2) ≥ 1

2d(π1, π2).

Also, by definition, d(π1, π2) = d(π1, π) + d(π2, π)− 2|I|. Further, observe that OPT(S) ≥
d(π1, π∗

1,2) (as each of the other rankings in S can only increase the objective value).
Therefore,

OPT(S) ≥ d(π1, π) + d(π2, π)− 2|I|
2

≥ (1− λ) ϕ

1− ϕ
n− |I| (assuming the event G2)

≥ (1− λ) ϕ

1− ϕ
n− (1 + γ) ϕ2

(1− ϕ)n (by Equation 10)

≥ ϕ

1− ϕ
n(1− λ− (1 + γ)ϕ) (11)

≥ ϕn− o(n) (as λ and γ are o(1)). (12)

The success probability follows from the failure probability of Equation 10 and Pr[Ḡ2] ≤
5/n. ◀
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Proof of Theorem 1. Set α = εϕ
3 . Recall that by Theorem 10, we find a permutation πc

such that d(πc, π) ≤ αn. Next, recall that from Theorem 5 we have that given s samples,

Obj(S, π) ≤ OPT(S) + n

1− ϕ
e− s(1−ϕ)2

50 + o(n)

≤ OPT(S) + α

3 n + o(n) (13)

where the last inequality follows for s ≥ 50
(1−ϕ)2

(
log 3

α + log 1
1−ϕ

)
.

So, finally, we get that

Obj(S, πc) ≤ Obj(S, π) + d(π, πc) (by the triangle inequality)

≤ OPT(S) + 4
3αn + o(n) (by Equation 13)

≤ OPT(S) + εϕ

2 n (for α = εϕ/3)

≤ OPT(S) + ε · OPT(S) (by Lemma 12)
≤ (1 + ε)OPT(S).

Since the failure probabilities of Theorem 5, Theorem 10 and Lemma 12 are 1/10 +
2s/n, 1/10 and 6/n respectively, by a union bound, we have that all three simultaneously
hold with probability at least 2/3, for large enough n (since we can assume that s =

50
(1−ϕ)2

(
log 3

α + log 1
1−ϕ

)
).

It follows from the discussion in Remark 11 that the running time of our algorithm is
O(n3 log n), where the O(·) notation hides a constant that depends on 1/ε and 1/(1 − ϕ).
The running time can further be reduced to O(n log2 n) when the size of the input set is at
least Ω(log n). ◀

6 Extension to Input with Outliers

Our algorithm can be extended to the scenario when a small number of outliers is also present
in the input set. In the context of the clustering (or center) problem, outliers are the data
points that are not part of the intended cluster. In the case of the probabilistic generating
model, outliers can be considered a set of adversarially chosen points (that do not come from
the generating model). Formally, we consider the following Strong Contamination Model. In
this model, a set of s samples are first generated from a Mallows model M(π, ϕ) (for some
π ∈ Sn and ϕ ∈ (0, 1)). Then, an arbitrary subset of size at most δs (for some δ ∈ [0, 1)) is
replaced with an arbitrary set of rankings in Sn. We call this resulting set (π, ϕ, δ)-corrupted
sample. This model was previously considered in the literature (e.g., see [32]).

Given a set S of rankings, the δ-maximum rank aggregation with outliers problem seeks
to find a ranking that minimizes the maximum distance to a subset S′ ⊆ S of size at least
(1− δ)|S|. We show that we can find a (1 + ε)-approximate δ -maximum rank aggregation
with outliers for (π, ϕ, δ)-corrupted sample sets.

▶ Theorem 13. Consider a ϕ ∈ (0, 1), ε > 0, δ ∈ (0, 0.5) and a ranking π on n candid-
ates. There is a polynomial-time algorithm that, given a (π, ϕ, δ)-corrupted sample set S

of size at least poly (1/ε, 1/(1− ϕ), 1/(0.5− δ)) log n, outputs a ranking πc that is a (1 + ε)-
approximation to the δ-maximum rank aggregation with outliers problem with probability at
least 2/3.
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It is worth noting that the running time mentioned in the above theorem is nO(1) where
O(·) notation hides a constant that depends (polynomially) on log(1/ε), 1/(1 − ϕ) and
1/(0.5− δ). The brief idea for this extension is to first sample O(log n) rankings from the
input uniformly at random. Then, we try out all possible subsets of this sample set and apply
the algorithm from Theorem 10 on each of these subsets. We treat all of these computed
rankings as potential centers. Finally, output the best one (that minimizes the objective value)
among all these potential centers. We argue that the output will be a (1 + ε)-approximation
of the optimal solution. The key (though simple) observation is that it suffices to use only
O(log n) samples in Theorem 1, and also, in polynomial time, we can try out all possible
subsets. We defer the details to Appendix A.

7 Conclusion

This paper focuses on the maximum rank aggregation, also known as the center problem,
concerning the Kendall-tau metric on inputs generated from the well-established Mallows
model. Although a folklore algorithm can compute a 2-approximate center in any metric
space, no better approximation guarantee is known for the Kendall-tau metric despite its
significant importance in various applications. Therefore, finding an (1 + ε)-approximation
algorithm for this problem remains an essential open problem. This paper proposes a data-
driven algorithm that provides a (1 + ε)-approximation algorithm for any ε > 0, given that
the input set is sampled from a Mallows model with dispersion parameter ϕ ∈ (0, 1), and the
number of input rankings is at least poly(log(1/ε), 1/(1− ϕ)). The proposed algorithm can
also be extended to datasets containing a few adversarially chosen outliers.

An apparent open direction is to obtain similar results without any assumptions about the
input set. Even breaking below the 2-factor in the worst-case would be an exciting direction.
Another interesting open problem is to show whether the number of samples required to
achieve (1 + ε)-approximation in Theorem 1 is tight. Also, developing a similar result for
other probabilistic generating models for rankings, as in [29], would be interesting.
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A Detailed Description of Extension to Input with Outliers

We start with formally defining the input (sample) generating model and the problem
statement.

▶ Definition 14 (Strong Contamination Model). Consider any ϕ, δ ∈ (0, 1) and a ranking
π ∈ Sn. A set of samples S of size s is said to be a (π, ϕ, δ)-corrupted sample set if it is
generated as follows: First, sample s rankings from M(π, ϕ). Then, a malicious adversary
observes these s rankings and replaces up to δs of them with any arbitrary rankings it chooses,
and then returns the resulting set of s rankings in an arbitrary order.

Now, let us formally define the δ-maximum rank aggregation with outliers problem. Given
a set S of rankings, the δ-maximum rank aggregation with outliers problem seeks to find a
ranking (not necessarily from S) that minimizes the maximum distance to a subset S′ ⊆ S

of size at least (1− δ)|S|.
Given a ranking ρ and set S, we define the objective value of ρ on S for the δ-maximum

rank aggregation with outliers problem as

Objδ(S, ρ) := min
S′⊆S:|S′|≥(1−δ)|S|

max
πr∈S′

d(πr, ρ).

Recall, Obj(S′, ρ) = maxπr∈S′ d(πr, ρ). So we can simply say

Objδ(S, ρ) = min
S′⊆S:|S′|≥(1−δ)|S|

Obj(S′, ρ).

Let us denote the optimum objective value for the δ-maximum rank aggregation with outliers
problem for a set S by OPTδ(S). We call a ranking π̃ a c-approximate δ-maximum aggregate
ranking with outliers (for some c ≥ 1) for the set S iff Objδ(S, π̃) ≤ c · OPTδ(S), i.e., there
exists a subset T ⊆ S with |T | ≥ (1 − δ)|S| such that Obj(T, π̃) ≤ c · OPTδ(S). Note
when δ = 0, the definition coincides with that without outliers. More specifically, we have
Obj0(S, ρ) = Obj(S, ρ) and OPT0(S) = OPT(S).

▶ Theorem 13. Consider a ϕ ∈ (0, 1), ε > 0, δ ∈ (0, 0.5) and a ranking π on n candid-
ates. There is a polynomial-time algorithm that, given a (π, ϕ, δ)-corrupted sample set S

of size at least poly (1/ε, 1/(1− ϕ), 1/(0.5− δ)) log n, outputs a ranking πc that is a (1 + ε)-
approximation to the δ-maximum rank aggregation with outliers problem with probability at
least 2/3.

Before proving the above theorem, let us introduce a few notations and show a few
lemmas that will help us in proving the above theorem. Let G ⊆ S be the set of rankings
sampled from the Mallows model M(π, ϕ).

▶ Lemma 15. Consider a ϕ ∈ (0, 1), α > 0, δ ∈ (0, 0.5), a ranking π ∈ Sn. There is
a polynomial-time algorithm that, given a (π, ϕ, δ)-corrupted sample set S of size at least
poly(log(1/α), 1/(1 − ϕ), 1/(0.5 − δ)}) log n, constructs a set of rankings P of size poly(n)
such that there exists πc ∈ P satisfying d(πc, π) ≤ αn with probability at least 9/10.

Proof. Let s = |S|. Set p = 2s′ log n
s where s′ is the minimum required size of the input set

in Theorem 10, multiplied with the factor 1/(0.5− δ)2.
Now, sample each ranking in S independently uniformly at random with probability p,

and let this sample set be T . It is easy to see that E[|T |] = ps = 2s′ log n. By applying the
standard Chernoff bound,

Pr [|T | ≥ 5s′ log n] ≤ exp
(
−9s′ log n

7

)
≤ n−2.
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So with high probability, we have that |T | ≤ 5s′ log n. Further,

E[|G ∩ T |] ≥ (1− δ)ps = 2(1− δ)s′ log n.

Again, by applying the standard Chernoff bound,

Pr [|G ∩ T | ≤ s′ log n] ≤ exp
(
− (0.5− δ)2s′ log n

(1− δ)

)
≤ n−2

where the last inequality holds since s′ ≥ 2/(0.5 − δ)2. So we get with high probability
|G ∩ T | ≥ s′ log n. Taking a union bound, we have that with a high probability,

|T | ≤ 5s′ log n and |G ∩ T | ≥ s′ log n.

From now on, we continue the proof by assuming the event that |T | ≤ 5s′ log n and |G∩T | ≥
s′ log n.

Next, we exhaustively try all possible subsets of the set T and run our reconstruction
algorithm from Theorem 10 on each such subset, and finally return the set of all these
rankings.

Among all these possible subsets, one of them contains only rankings from the set G

and is of size at least s′ log n. Using this set, the reconstruction algorithm of Theorem 10
reconstructs a ranking πc such that d(πc, π) ≤ αn.

Now, we have that s′ = 1
(0.5−δ)2 · 50

(1−ϕ)2

(
log 3

α + log 1
1−ϕ

)
. Since |T | ≤ 5s′ log n, we

will have at most n5s′ = npoly(log(1/α),1/(1−ϕ),1/(0.5−δ)) many subsets. By Remark 11, the
reconstruction algorithm will require at most O(s′n3 log n) time for each subset, and thus
the lemma follows. ◀

▶ Lemma 16. Consider ϕ ∈ (0, 1), δ ∈ (0, 0.5), a ranking π ∈ Sn. Let S be a (π, ϕ, δ)-
corrupted sample set (of size at least 2/(1− 2δ)). Then OPTδ(S) ≥ ϕn− o(n) with a high
probability.

Proof. To prove the above lemma, it suffices to show that for any S′ ⊆ S where |S′| ≥
(1− δ)|S|, OPT(S′) ≥ ϕn− o(n).

By definition, the set S′ ∩G only contains the rankings drawn from M(π, ϕ) and is of size
at least two. Then by Lemma 12, OPT(S′ ∩G) ≥ ϕn− o(n) (with a high probability). By
definition, OPT(S′) ≥ OPT(S′ ∩G) (since each of the rankings in S′ \G can only increase
the value of OPT(S′)). So we have OPT(S′) ≥ ϕn− o(n). ◀

We are now ready to finish the proof of Theorem 13.

Proof of Theorem 13. Given as input a (π, ϕ, δ)-corrupted sample set S, we first apply
the algorithm of Lemma 15 to obtain a set of rankings P . We then simply return a
ranking π̃ ∈ P that achieves the minimum objective value, i.e., π̃ := arg minρ∈P Objδ(S, ρ).
Observe that we can compute Objδ(S, ρ) (for each ρ ∈ P ) naïvely in polynomial-time because
Objδ(S, ρ) = Obj(S′, ρ), where S′ ⊆ S is the set of (1− δ)|S| many nearest rankings (of S)
to ρ.

Next, we argue that π̃ is a (1 + ε)-approximate δ-maximum aggregate ranking with
outliers, i.e., Objδ(S, π̃) ≤ (1 + ε)OPTδ(S). We know that there exists some set G of size at
least (1− δ)|S| such that all the rankings in G are drawn from M(π, ϕ). By Lemma 7, we
can assume that for every πi ∈ G, d(πi, π) ≤ (1 + λ) ϕ

1−ϕ n for some λ = o(1). Therefore we
know that OPT(G) ≤ (1 + λ) ϕ

1−ϕ n.
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Now, consider any S′ ⊆ S such that |S′| ≥ (1 − δ)|S|. Then we must have |S′ ∩ G| ≥
(1− 2δ)|S|. Further, from Theorem 5 we have that for the set S′ ∩G,

OPT(S′ ∩G) ≥ (1− λ) ϕ

1− ϕ
n− n

1− ϕ
e− (1−2δ)|S|(1−ϕ)2

50 .

As argued in the proof of Lemma 16, OPT(S′) ≥ OPT(S′ ∩G). Therefore, we have that

OPT(G) ≤ (1 + λ) ϕ

1− ϕ
n

≤ OPT(S′) + 2λ
ϕ

1− ϕ
n + n

1− ϕ
e− (1−2δ)|S|(1−ϕ)2

50

≤ OPT(S′) + n

1− ϕ
e− (1−2δ)|S|(1−ϕ)2

50 + o(n).

Since the above is true for all S′ ⊆ S of size at least (1− δ)|S|, we derive that

OPT(G) ≤ OPTδ(S) + n

1− ϕ
e− (1−2δ)|S|(1−ϕ)2

50 + o(n).

By Theorem 5 (considering G as the sample set), we have

Obj(G, π) ≤ OPT(G) + n

1− ϕ
e− |G|(1−ϕ)2

50 + o(n)

≤ OPTδ(S) + n

1− ϕ
e− (1−2δ)|S|(1−ϕ)2

50 + n

1− ϕ
e− |G|(1−ϕ)2

50 + o(n).

Now, set α = εϕ
4 . By Lemma 15, there exists πc ∈ P such that d(πc, π) ≤

αn. By Lemma 16, we have that OPTδ(S) ≥ ϕn − o(n). Consider |S| ≥
50

(0.5−δ)2(1−ϕ)2

(
log 3

α + log 1
1−ϕ

)
. By the triangle inequality, we have

Obj(G, πc) ≤ OPTδ(S) + 2αn + o(n)
≤ OPTδ(S) + 3αn

≤ (1 + ε)OPTδ(S).

Since |G| ≥ (1− δ)|S|, by the construction,

Objδ(S, π̃) ≤ Obj(G, πc) ≤ (1 + ε)OPTδ(S).

The running time of the algorithm is dominated by the time required to construct the set
of rankings P . Therefore the algorithm requires npoly(log(1/ε),1/(1−ϕ),1/(0.5−δ)) time. ◀

B A Simple Exact Reconstruction of the Hidden Ranking

From the previous section, we see that if the number of sampled rankings is large enough,
we expect that with a large probability, taking the majority will give the correct order of
most pairs of symbols in π. We now prove that exact reconstruction is possible with high
probability if the sampled set is of size at least 12(1+ϕ)2

(1−ϕ)2 log n. Further, we describe a simpler
algorithm for the reconstruction if this condition is met.

▶ Theorem 17. Consider a ϕ ∈ (0, 1) and a π ∈ Sn. There exists a deterministic algorithm
that, given a set S of size at least 12(1+ϕ)2

(1−ϕ)2 log n drawn from M(π, ϕ), computes π with
probability at least 1− 1

n in time O(n log2 n).
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The algorithm constructs a new ranking using any comparison-based algorithm on [n]
and returns this as the hidden ranking. When comparing two symbols a and b, we set a ≺ b

if at least half the sampled rankings rank a before b and set a ≻ b otherwise.
We first need to prove an upper bound on the probability that a ranking drawn from the

Mallows model has a given pair of symbols inverted in relative order compared to π.

▶ Lemma 18. Consider a ranking ρ drawn from a Mallows model M(π, ϕ). The probability
that for a given pair of symbols (a, b) that a ≺ρ b and b ≺π a is at most ϕ

1+ϕ .

Proof. Recall that from Lemma 8, for some i < j and some sampled ranking πr, we have
π(j) ≺πr

π(i) with probability ϕk(ϕk+1−(k+1)ϕ+k)
(1−ϕk)(1−ϕk+1) where k = j − i.

This value is smallest at k = 1. Substituting k = 1, we get the probability of an inversion
is at most ϕ

1+ϕ . ◀

We now want to prove that with high probability, for every pair of symbols, the majority
of rankings in S have that pair of symbols in the same relative order as π. If this holds, then
following the majority when deciding the relative order of each pair of symbols will exactly
reconstruct π.

▶ Lemma 19. Let S be a set of at least 12(1+ϕ)2

(1−ϕ)2 log n rankings drawn from M(π, ϕ). Then
we have that with probability at least 1− 1

n , for every pair of symbols (a, b), if a ≺π b, then

|{πr | a ≺πi b, πr ∈ S}| ≥ |S|2 .

Proof. Let s = |S| and take any pair of symbols a, b ∈ [n].
Given a ranking πr ∈ S, let Xr be an indicator random variable that takes on 1 if πr

has an inversion in relative order of a and b compared to π. By Lemma 18, we have that
E[Xr] ≤ ϕ

1+ϕ .
Let X =

∑s
r=1 Xr. Then by the linearity of expectation, E[X] ≤ s ϕ

1+ϕ . Applying the
standard Hoeffding bound,

Pr
[
X − E[X] >

(
1
2 −

ϕ

1 + ϕ

)
s

]
≤ exp

−2
((

1
2 −

ϕ
1+ϕ

)
s
)2

s


≤ exp

(
−2
(

1
2 −

ϕ

1 + ϕ

)2 12(1 + ϕ)2

(1− ϕ)2 log n

)
≤ exp (−3 log n)
≤ n−3.

As there are n(n− 1)/2 pairs of symbols, taking a union bound over all such pairs gives
that with probability at most 1/n, there exists at least one pair in different pairwise order
compared to π. Therefore, with probability at least 1 − 1/n, we have that every pair of
symbols has the same relative order in at least half of the rankings in S and in π. ◀

Finally, the proof of Theorem 17 follows directly from Lemma 19.

Proof of Theorem 17. Consider the execution of the comparison-based sorting algorithm.
Consider each time the algorithm compares some pair of symbols (a, b). If a ≺π b and
|{πi|a ≺πi

b}| ≥ |S|
2 , then it will order this pair of symbols identically to π. If this holds

for every pair it compares, then it will produce the ranking π at the end of the execution.
From Lemma 19, with probability at least 1− 1/n, this holds for every pair of symbols, and
so the algorithm correctly returns π. ◀
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