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Abstract
We study regular separators of vector addition systems (VASS, for short) with coverability semantics.
A regular language R is a regular separator of languages K and L if K ⊆ R and L ∩ R = ∅. It was
shown by Czerwiński, Lasota, Meyer, Muskalla, Kumar, and Saivasan (CONCUR 2018) that it is
decidable whether, for two given VASS, there exists a regular separator. In fact, they show that a
regular separator exists if and only if the two VASS languages are disjoint. However, they provide a
triply exponential upper bound and a doubly exponential lower bound for the size of such separators
and leave open which bound is tight.

We show that if two VASS have disjoint languages, then there exists a regular separator with at
most doubly exponential size. Moreover, we provide tight size bounds for separators in the case of
fixed dimensions and unary/binary encodings of updates and NFA/DFA separators. In particular,
we settle the aforementioned question.

The key ingredient in the upper bound is a structural analysis of separating automata based on
the concept of basic separators, which was recently introduced by Czerwiński and the second author.
This allows us to determinize (and thus complement) without the powerset construction and avoid
one exponential blowup.
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1 Introduction

Safety verification of concurrent systems typically consists of deciding whether two languages
K, L ⊆ Σ∗ are disjoint: If each of the languages describes the set of event sequences that
(i) are consistent with the behavior of a system component and (ii) reach an undesirable
state, then their intersection is exactly the set of event sequences that are consistent with
both components and reach the undesirable state.

If we wish to not only decide, but certify disjointness of languages K, L ⊆ Σ∗, then a
natural kind of certificate is a regular separator : a regular language R ⊆ Σ∗ such that K ⊆ R

and L ∩ R = ∅. Regular separators can indeed act as disjointness certificates: Deciding
whether a given language intersects (resp. is included in) a regular language is usually simple.

The regular separability problem asks whether for two given languages there exists a
regular separator. This decision problem has recently attracted a significant amount of
interest. After the problem was shown to be undecidable for context-free languages in the
1970s [18, 33], recent work has a strong focus on vector addition systems (VASS), which
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are automata with counters that can be incremented, decremented, but not tested for zero.
Typically, VASS are considered with two possible semantics: With the reachability semantics,
where a target configuration has to be reached exactly, and the coverability semantics,
where the target only has to be covered. Decidability of regular separability remains an
open problem for reachability semantics. However, decidability has been established for
coverability languages of VASS [10] and several other subclasses, such as one-dimensional
VASS [9], integer VASS [6] (where counters can become negative), and commutative VASS
languages [7]. Moreover, for each of these subclasses, decidability is retained if one of the
input languages is an arbitrary VASS reachability language [13].

The decidability result about VASS coverability languages is a consequence of a remarkable
and surprising result by Czerwiński, Lasota, Meyer, Muskalla, Kumar, and Saivasan [10]:
Two languages of finitely-branching well-structured transition systems (WSTS) are separable
by a regular language if and only if they are disjoint. (In fact, very recently, Keskin and
Meyer [20] have even shown that the finite branching assumption is not required.) Moreover,
VASS (with coverability semantics) are a standard example of (finitely branching) WSTS.

Despite this range of work on decidability, very little is known about a fundamental
aspect of the separators: What is the size of the separator, if they exist? Here, by size, we
mean the number of states in an NFA or DFA. In fact, the only result we are aware of is a
partial answer for VASS coverability languages: In [10] a triply exponential upper bound and
a doubly exponential lower bound is shown for NFA separating VASS coverability languages,
leaving open whether there always exists a doubly-exponential separator.

Contribution. We study the size of regular separators in VASS coverability languages. Our
first main result is that if two VASS coverability languages are disjoint, then there exists
a doubly exponential-sized separating NFA. We then provide a comprehensive account of
separator sizes for VASS languages: We study separator sizes in (i) fixed/arbitrary dimension,
(ii) with unary/binary counter updates and (iii) deterministic/non-deterministic separators.
In each case, we provide a tight polynomial or singly, doubly, or triply exponential bound.

Related work. There also exists some work on separability of relations by recognizable
relations [1, 5] (which, in some precise sense, is also an instance of regular separability).

The equivalence between regular separability and disjointness for WSTS [10,20] and the
fact that decidability of the two problems usually coincide, raise the question of whether
they are inter-reducible in general. However, there are language classes where disjointness is
decidable and regular separability is undecidable [21,34] and vice-versa [34].

Decidability of separability by piecewise testable languages is quite well understood. There
is a language theoretic characterization [12] (which also holds for more general separator
classes [35]) and a more abstract characterization (that also applies to trees) [15] of when
separability is decidable.

There is long line of work on separability of regular languages of finite words by languages
from smaller subclasses [11,23–31]. Beyond finite words, separability has been studied for
languages of infinite words (for regular languages [17] and Büchi VASS [2]) and for regular
languages of finite trees [3] and infinite trees [8].

2 Preliminaries

Let d ∈ N+ be a positive number. A vector v⃗ over Z is an element v⃗ ∈ Zd. For a vector
v⃗ = (v1, . . . , vd) ∈ Zd and a number 1 ≤ i ≤ d we write v⃗[i] for the i-th component vi of v⃗.
By 0⃗ ∈ Zd we denote the zero vector satisfying 0⃗[i] = 0 for each 1 ≤ i ≤ d. For two vectors
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u⃗, v⃗ ∈ Zd we write u⃗ + v⃗ for the vector w⃗ ∈ Zd with w⃗[i] = u⃗[i] + v⃗[i] for each 1 ≤ i ≤ d, i.e.,
+ is the component-wise addition. We write u⃗ ≤ v⃗ if, and only if, we have u⃗[i] ≤ v⃗[i] (for the
natural ordering in Z) for each 1 ≤ i ≤ d. Note that ≤ is a partial ordering on Zd, but in
the case of d > 1 no linear ordering.

Now, let c, d ∈ N+, u⃗ ∈ Zc, and v⃗ ∈ Zd. By (u⃗, v⃗) we denote the vector w⃗ ∈ Zc+d with
w⃗[i] = u⃗[i] for each 1 ≤ i ≤ c and w⃗[i + c] = v⃗[i] for each 1 ≤ i ≤ d, i.e., (u⃗, v⃗) is the
concatenation of u⃗ and v⃗.

Vector Addition Systems. Let d ∈ N+. A (d-dimensional) vector addition system with
states or (d-)VASS is a tuple V = (Q, Σ, ∆, s, t) where Q is a finite set of states, Σ is an
alphabet, ∆ ⊆ Q × Σε × Zd × Q is a finite set of transitions, and s, t ∈ Q are its source
resp. target states. Here, Σε denotes the set Σ ∪ {ε}. The vector x⃗ ∈ Zd of a transition
(p, a, x⃗, q) ∈ ∆ is called the counter update of this transition.

A pseudo-configuration is a tuple from Q × Zd; it is called a configuration if this tuple is
even contained in Q × Nd. A pseudo-run is a sequence (qi, v⃗i)0≤i≤ℓ of pseudo-configurations
such that for each 1 ≤ i ≤ ℓ there is a transition (qi−1, ai, x⃗i, qi) ∈ ∆ with v⃗i = ⃗vi−1 + x⃗i.
The label of such pseudo-run is a1a2 . . . aℓ ∈ Σ∗; its length is ℓ (note that due to ε-labeled
transitions we have ℓ ≥ |a1a2 . . . aℓ|). A pseudo-run is called a run if we have v⃗i ∈ Nd for
each 0 ≤ i ≤ n, i.e., if each intermediate pseudo-configuration is actually a configuration. For
two configurations (p, u⃗), (q, v⃗) ∈ Q × Nd and w ∈ Σ∗ we write (p, u⃗) w−→V (q, v⃗) if there is a
run (qi, v⃗i)0≤i≤ℓ with label w, (p, u⃗) = (q0, v⃗0), and (q, v⃗) = (qℓ, v⃗ℓ). For a natural number
ℓ ∈ N we write (p, u⃗) →ℓ

V (q, v⃗) if there is a run from (p, u⃗) to (q, v⃗) of length ℓ. We write
(p, u⃗) →V (q, v⃗) if there exists such an ℓ.

The (coverability) language of V is L(V) = {w ∈ Σ∗ | ∃v⃗ ∈ Nd : (s, 0⃗) w−→V (t, v⃗)} (note
that v⃗ ≥ 0⃗ holds for any v⃗ ∈ Nd; we say that (t, v⃗) covers the so-called target configuration
(t, 0⃗)). We say L ⊆ Σ∗ is a (coverability) d-VASS-language if there is a d-VASS V with
L = L(V).

Now, let Vi = (Qi, Σ, ∆i, si, ti) be two d-VASS (i = 1, 2). We want to construct the
product VASS V1 ×V2 which simulates V1 and V2 in parallel. To this end, set the 2d-VASS
V1 × V2 := (Q1 × Q2, Σ, ∆, (s1, s2), (t1, t2)) with the following transitions in ∆:

((p1, p2), a, (v⃗1, v⃗2), (q1, q2)) ∈ ∆ if (p1, a, v⃗1, q1) ∈ ∆1 and (p2, a, v⃗2, q2) ∈ ∆2,
((p1, p2), ε, (v⃗1, 0⃗), (q1, p2)) ∈ ∆ if (p1, ε, v⃗1, q1) ∈ ∆1, and
((p1, p2), ε, (⃗0, v⃗2), (p1, q2)) ∈ ∆ if (p2, ε, v⃗2, q2) ∈ ∆2.

Then the following statement is easy to see:

▶ Lemma 2.1. Let V1 and V2 be two d-VASS. Then L(V1 × V2) = L(V1) ∩ L(V2), i.e.,
the intersection of two d-VASS-languages is a 2d-VASS-language.

For a vector v⃗ ∈ Zd let ∥v⃗∥ = max{|v⃗[i]| : 1 ≤ i ≤ d} be the norm of v⃗ (where |x| is the
absolute value of x ∈ Z). We also define the norm of the transition relation ∆ as follows:
∥∆∥ := max{∥v⃗∥ : (p, a, v⃗, q) ∈ ∆}. Then the size |V| of the d-VASS V is |Q| + d · |∆| · ∥∆∥.

We can define the Rackoff-number Rack(V) of V: Rack(V) := (|Q| · ∥∆∥ + 2)(3d)!+1.
Then we can show that for each run from a configuration c ∈ Q × Nd covering the target
configuration (t, 0⃗) there is also such run of length bounded by the Rackoff-number. This is
the following central statement:

▶ Theorem 2.2 ([4,32]). Let V = (Q, Σ, ∆, s, t) be a d-VASS and c ∈ Q×Nd be a configuration
such that there is a vector v⃗ ∈ Nd with c →V (t, v⃗). Then there are ℓ ∈ N and w⃗ ∈ Nd with
0 ≤ ℓ ≤ Rack(V) and c →ℓ

V (t, w⃗).

FSTTCS 2023
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Table 1 An overview of the (matching) upper and lower bounds for finite automata separating
two disjoint d-VASS. We distinguish between (i) whether the dimension d ∈ N+ is part of the input,
(ii) whether the separating automaton should be an NFA or a DFA, and (iii) whether counter updates
are encoded in unary or binary. The colors denote the employed lower bound technique.

NFAs DFAs
unary binary unary binary

d as input 2-exp. 2-exp. 3-exp. 3-exp.

d fixed d ≥ 2 poly. exp. exp. 2-exp.
d = 1 poly. exp. exp. exp.

The bound above is due to Bozelli and Ganty [4], which is slightly tighter than Rackoff’s
original bound of 22O(∥∆∥ log ∥∆∥) [32]. It should be noted that very recently, a significantly
better upper bound has been obtained [22]).

Regular languages. A non-deterministic finite automaton or NFA is a tuple A =
(Q, Σ, δ, I, F ) where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q × Σ × Q is a
set of transitions, and I, F ⊆ Q are the sets of initial resp. accepting states. It is called
deterministic or DFA if |I| = 1 and for each p ∈ Q and a ∈ Σ there is exactly one q ∈ Q with
(p, a, q) ∈ δ. The size |A| of A is |Q|. For p, q ∈ Q and w ∈ Σ∗ we write p

w−→A q if there are
a1, . . . , aℓ ∈ Σ and q0, q1, . . . , qℓ ∈ Q with w = a1a2 . . . aℓ, p = q0, q = qℓ, and (qi−1, ai, qi) ∈ δ

for each 1 ≤ i ≤ ℓ. The accepted language of A is L(A) = {w ∈ Σ∗ | ∃ι ∈ I, f ∈ F : ι
w−→A f}.

A language L ⊆ Σ∗ is called regular if there is an NFA A with L = L(A).

Regular Separability. Let Σ be an alphabet. Two languages K, L ⊆ Σ∗ are called regular
separable (denoted K | L) if there is a regular language R ⊆ Σ∗ with K ⊆ R and L ∩ R = ∅.
In this case R is called a regular separator of K and L. We say that any NFA accepting R

separates K and L. Since the class of regular languages is closed under complement, we learn
that if K | L holds, then also L | K (via the complementary separator).

The following equivalence is known about the languages of coverability VASS. Note that
actually Czerwiński et al. [10] have shown this result for the languages of a more general
notion – so-called well structured transition systems (or WSTS for short, cf. e.g. [14]).

▶ Theorem 2.3 ([10]). Let V and W be two VASS. Then we have L(V) | L(W) if, and only
if, L(V) ∩ L(W) = ∅.

3 Main Results

In this section, we present the main results of this work. An overview can be found in Table 1.
Here, by i-exp, we mean that there is an i-fold exponential upper bound. More precisely,
there exists a separator with at most expi(poly(n)) states for input VASS of size n. Here
exp0(n) = n and expi+1(n) = 2expi(n) for i ≥ 0. All our bounds are tight in the sense that
for each i-fold exponential upper bound with i ≥ 1, we present a sequence of VASS pairs of
size polynomial in n such that the smallest separator requires expi(n) states. Proofs can be
found in Sections 5 and 6 (upper bounds and lower bounds, resp.).

First upper bound. Our first upper bound result is the following.
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▶ Theorem 3.1. Let V1 and V2 be d-VASS with at most n ≥ 1 states and updates of norm
at most m ≥ 1. If L(V1) ∩ L(V2) = ∅, then L(V1) and L(V2) are separated by an NFA with
at most (n + m)2poly(d) states.

This provides almost all upper bounds in Table 1. In particular, it closes the gap left by [10]
by providing a doubly exponential upper bound for NFA separators in the general case.

Let us explain how we avoid one exponential blow-up compared to [10]. In [10], the authors
first construct VASS V′

1 and V′
2 such that (i) V′

2 is deterministic, (ii) L(V′
1) ∩L(V′

2) = ∅ and
(iii) any separator for L(V′

1) and L(V′
2) can be transformed into a separator for L(V1) and

L(V2). Then, relying on Rackoff-style bounds for covering runs in VASS, they construct a
doubly exponential NFA separator for L(V′

1) and L(V′
2). The latter step yields an inherently

non-deterministic separator. However, the transformation mentioned in (iii) requires a
complementation, which results in a triply exponential bound overall.

Instead, roughly speaking, we first apply an observation from [13] to reduce to an even
more specific case: We construct V such that for the language Cd of all counter instruction
sequences that keep the d counters above zero, we have (a) L(V) ∩ Cd = ∅ and (b) any
separator of L(V) and Cd can be transformed into a separator for L(V1) and L(V2). Then,
we rely on the fact that a particular family (Bk)k∈N of regular languages is a family of
basic separators (a concept introduced by Czerwiński and the second author in [13]): Every
language regularly separable from Cd is included in a finite union of sets Bk. Here, Bk

contains all sequences of counter instructions such that at least one counter at some point
falls below zero, but before that, it never exceeds the value k. We prove a version of this
with complexity bounds: We show that L(V) ∩ Cd = ∅ implies that L(V) is included in
Bk for some doubly exponential bound k. Here, the key advantage is that we understand
the structure of the Bk so well that we can just observe that the separator Bk is already
deterministic. Thus, the complementation step will not result in another exponential blow-up.

Second upper bound. Theorem 3.1 provides all upper bounds for NFA separators in Table 1.
It also provides all upper bounds for DFAs where the DFA bound is exponential in the
corresponding NFA bound (via the powerset construction). The only exception to this is the
dark gray entry: Here, the tight DFA bound is actually the same as for NFA.

▶ Theorem 3.2. Let V1 and V2 be 1-VASS with binary updates. If L(V1) ∩ L(V2) = ∅, then
there exists a separating DFA with at most exponentially many states.

For this, we observe that the states of NFA resulting from Theorem 3.1 for d = 1 can be
equipped with a partial ordering ≤ such that (i) if p ≤ q, then all words accepted from p are
also accepted from q and (ii) every anti-chain in this ordering has at most polynomial size.
This permits determinization without a blow-up.

Lower bounds. The lower bounds for the first row of Table 1 are known from [10]. For the
others, we use two types of pairs. The first is similar to the language pairs in [10]:

Kf,n = {w ∈ {a, b} | the f(n)-th last letter of w is an a and |w| ≥ f(n)}
Lf,n = {w ∈ {a, b} | the f(n)-th last letter of w is a b or |w| < f(n)}

(1)

where f : N → N is one of the functions n 7→ n (a separating DFA needs 2n states; the blue
entries) or n 7→ 2n (a separating DFA needs 22n states, the yellow entry). In [10], these
are used for n 7→ 22n . The second language pair consists of Ln = {am | m ≥ 2n}, and
Kn = {am | m < 2n} (an NFA needs 2n states, the light and dark gray entries).

FSTTCS 2023
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4 Basic Separators

As already mentioned in the previous section we want to apply the approach from [13] to show
our main theorem. To this end, we first have to introduce languages following the courses of
the counters of our VASS. We introduce two (basic) actions ai and ai for each 1 ≤ i ≤ d to
indicate that counter i gets increased resp. decreased by one. By Γd := {ai, ai | 1 ≤ i ≤ d}
we denote the alphabet of basic actions. Then a word w ∈ Γ ∗

d encodes the course of
updates of the d counters on some pseudo-run of a d-VASS. For 1 ≤ i ≤ d we introduce a
homomorphism ϕi : Γ ∗

d → Z induced by the equations ϕi(ai) = 1, ϕi(ai) = −1, and ϕi(b) = 0
for b ∈ Γd \ {ai, ai}. In other words, ϕi(w) is the value of counter i after application of the
actions specified in w.

For w ∈ Γ ∗
d define dropi(w) := min{ϕi(v) | v is a prefix of w} ∈ [−|w|, 0], i.e., dropi(w)

is the lowest value the counter i had while applying the actions in w. In a run counter i

starts with value 0 and stays non-negative. Therefore, any run w ∈ Γ ∗
d of a d-VASS satisfies

dropi(w) = 0. By Gi := {w ∈ Γ ∗
d | dropi(w) = 0} we define the language of all action

sequences where counter i never falls below zero. Then the language of all runs of a d-VASS
is Cd :=

⋂d
i=1 Gi. Next, we want to describe the courses w ∈ Γ ∗

d of pseudo-runs of a given
VASS V. To this end, we first have to recall the notion of rational transductions:

Rational Transductions. Let Σ and Γ be two alphabets. A transducer is a tuple T =
(Q, δ, I, F ) where Q is a finite set of states, δ ⊆ Q × Γ ∗ × Σ∗ × Q is a finite set of transitions,
and I, F ⊆ Q are the initial resp. accepting states. A pair (v, w) ∈ Γ ∗ × Σ∗ is accepted by
T if there are q0, q1, . . . , qn ∈ Q, v1, . . . , vn ∈ Σ∗, and w1, . . . , wn ∈ Γ ∗ with v = v1 . . . vn,
w = w1 . . . wn, q0 ∈ I, qn ∈ F , and (qi−1, vi, wi, qi) ∈ δ for each 1 ≤ i ≤ n. The accepted
relation of T is R(T) = {(v, w) ∈ Γ ∗ ×Σ∗ | (v, w) is accepted by T}. A relation T ⊆ Γ ∗ ×Σ∗

is called a rational transduction if there is a transducer T with R(T) = T . For a relation
T ⊆ Γ ∗ × Σ∗ and a language L ∈ Γ ∗ we write T (L) for the language {w ∈ Σ∗ | ∃v ∈
L : (v, w) ∈ T}. Additionally, we write T −1 for the relation {(w, v) ∈ Σ∗ × Γ ∗ | (v, w) ∈ T}.
The following connection between d-VASS and transducers is well-known:

▶ Lemma 4.1 (cf. [16,19]). A language L ⊆ Σ∗ is a coverability d-VASS-language if, and
only if, there is a rational transduction T ⊆ Γ ∗

d × Σ∗ with L = T (Cd).

Proof idea. We only show the implication “⇒” (for the converse implication cf. e.g.
[13]). So, let V = (Q, Σ, ∆, s, t) be a d-VASS with L(V) = L. We construct the fol-
lowing transducer TV = (Q, δ, {s}, {t}): set δ = {(p, code(v⃗), a, q) | (p, a, v⃗, q) ∈ ∆},
where code(v⃗) = a

v⃗[1]
1 a

v⃗[2]
2 . . . a

v⃗[d]
d and an

i := ai
|n| holds for n < 0. Then we can see

(R(TV))(Cd) = L(V). ◀

Regular separability is, in some sense, compatible with rational transductions:

▶ Lemma 4.2 ([13]). Let K ⊆ Σ∗, L ⊆ Γ ∗ be two languages and T ⊆ Γ ∗ × Σ∗ be a rational
transduction. Then K | T (L) if, and only if, T −1(K) | L.

We include the (very simple) proof of this lemma, as it hints at our proof of Theorem 5.1:

Proof. For the “only if”, suppose K | T (L) with a regular separator R ⊆ Σ∗. It is easy to
check that then, T −1(R) ⊆ Γ ∗ is a regular separator of T −1(K) and L. Thus T −1(K) | L

holds. Conversely, assume T −1(K) | L via the regular separator R ⊆ Γ ∗. Then we also
know L | T −1(K) via Γ ∗ \ R. The proof of the “only if” direction yields T (L) | K via
T (Γ ∗ \ R) ⊆ Σ∗. Finally, we obtain K | T (L) via Σ∗ \ T (Γ ∗ \ R). ◀
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Basic separators. From Theorem 2.3 and Lemma 4.2 we learn that two d-VASS-languages
L, K ⊆ Σ∗ are regular separable if, and only if, T −1(K) | Cd holds, where T is a rational
transduction with L = T (Cd). Czerwiński and the second author of this work have introduced
in [13] the notion of basic separators of any language from the language Cd. These are families
of regular languages disjoint from Cd such that each regular language, which is disjoint from
Cd, is included in a finite union of basic separators. For coverability d-VASS suitable basic
separators are the languages Bk ⊆ Γ ∗

d which contain all action sequences having one counter
1 ≤ i ≤ d falling below zero, but before that, counter i never exceeds the value of k. To this
end, we first define the value µi(w) := max{ϕi(v) | v is a prefix of w with dropi(v) = 0} of
a word w ∈ Γ ∗

d . This is the greatest value of counter i before it falls below zero for the first
time (or it is the maximal value of counter i if it always stays non-negative). Then Bk (for
k ∈ N) is defined as follows:

Bk := {w ∈ Γ ∗
d | ∃1 ≤ i ≤ d : w /∈ Gi and µi(w) ≤ k} .

As shown in [13], the following equivalence holds for coverability d-VASS:

▶ Corollary 4.3. Let V and W be two d-VASS and T ⊆ Γ ∗
d × Σ∗ be a rational transduction

with L(W) = T (Cd). Then the following properties are equivalent:
1. L(V) ∩ L(W) = ∅
2. L(V) | L(W)
3. T −1(L(V)) | Cd

4. there is k ∈ N such that Bk is a regular separator of T −1(L(V)) and Cd.

In the proof of our main result Theorem 5.1, we will show that there is a “small” k ∈ N such
that Bk separates T −1(L(V)) and Cd.

5 Upper Bounds

We now prove Theorems 3.1 and 3.2. For Theorem 3.1, we prove a more concrete bound:

▶ Theorem 5.1. Let Vi = (Qi, Σ, ∆i, si, ti) (for i = 1, 2) be two d-VASS with L(V1) ∩
L(V2) = ∅. Then there is an NFA of size at most O(|Q1| · ∥∆1∥d · Rack(V1 × V2)d) separ-
ating L(V1) and L(V2).

This clearly implies Theorem 3.1. To show this, let Vi = (Qi, Σ, ∆i, si, ti) (for i = 1, 2)
be two disjoint d-VASS and let V1 × V2 = (Q1 × Q2, Σ, ∆, (s1, s2), (t1, t2)) be the product
VASS as constructed in Lemma 2.1. Note that L(V1 × V2) = ∅ holds due to the disjointness
of V1 and V2. Additionally, let TV1 be the transducer constructed in the proof of Lemma 4.1
satisfying the property (R(TV1))(Cd) = L(V1). According to Corollary 4.3 the assumption
L(V1) ∩ L(V2) = ∅ implies (R(TV1))−1(L(V2)) | Cd. Our aim is to find a “small” number
k̂ ∈ N such that Bk̂ is a regular separator of K(V1,V2) := (R(TV1))−1(L(V2)) and Cd.

Let w ∈ K(V1,V2) ⊆ Γ ∗
d be some word. Then there is another word w′ ∈ Σ∗

with (w, w′) ∈ R(TV1) and w′ ∈ L(V2). From this fact we obtain a w′-labeled pseudo-
run of V1 from s1 to t1 such that w encodes the counter updates of this pseudo-run.
Additionally, we obtain a w′-labeled run of V2 from s2 to t2. We can compose these
two pseudo-runs to one w′-labeled pseudo-run of V1 × V2 from (s1, s2) to (t1, t2). So,
there is a sequence πw := ((pi, qi), (x⃗i, y⃗i))0≤i≤n of pseudo-configurations and transitions
((pi−1, qi−1), bi, (u⃗i, v⃗i), (pi, qi)) ∈ ∆ (for 1 ≤ i ≤ n) with (p0, q0) = (s1, s2), (pn, qn) = (t1, t2),
(x⃗0, y⃗0) = (⃗0, 0⃗), (x⃗i, y⃗i) = ( ⃗xi−1 + u⃗i, ⃗yi−1 + v⃗i) for each 1 ≤ i ≤ n, w = code(u⃗1) . . . code(u⃗n)
(note that this equation holds by the choice of our transducer TV1 from Lemma 4.1), and
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w′ = b1b2 . . . bn. Since we have L(V1) ∩ L(V2) = ∅ by assumption, πw is a pseudo-run of
V1 × V2, but actually not a run, i.e., at least one counter of V1 × V2 falls below zero at
some time. As stated above, w′ labels a run of V2, i.e., no counter of V2 ever falls below
zero. This implies the existence of 0 ≤ i ≤ n with x⃗i ∈ Zd \ Nd.

Set k̂ := ∥∆1∥ · Rack(V1 × V2). By definition we know that Bk̂ ∩ Cd = ∅ holds. So, we
only have to prove K(V1,V2) ⊆ Bk̂, i.e., we show that for each w ∈ K(V1,V2) there is a
counter 1 ≤ i ≤ d having a value at most k̂ before falling below zero. We show this result
by contradiction: assume there is w ∈ K(V1,V2) \ Bk̂. This means, in w for each counter
1 ≤ i ≤ d we have two possibilities: (i) the counter i stays non-negative (i.e., w ∈ Gi) or (ii)
the counter i falls below zero and before this happens for the first time it exceeds the value
k̂. We construct then another word v ∈ K(V1,V2) \ Bk̂ having more counters 1 ≤ i ≤ d

satisfying v ∈ Gi than w. By induction we obtain a word v ∈ K(V1,V2) \ Bk̂ with v ∈ Gi

for each 1 ≤ i ≤ d. This implies v ∈ Cd and therefore the existence of another word v′ ∈ Σ∗

with (v, v′) ∈ R(TV1) and v′ ∈ L(V2). Then v′ is the label of runs in V1 (since v ∈ Cd) and
V2 (since v′ ∈ L(V2)). Hence, we obtain v′ ∈ L(V1) ∩ L(V2), which is a contradiction to
our assumption that V1 and V2 accept disjoint languages.

▶ Lemma 5.2. We have K(V1,V2) ⊆ Bk̂.

To show this lemma we first have to introduce another notion: let I ⊆ {1, . . . , d}. For
a vector v⃗ ∈ Zd we define the projection v⃗I to the components specified in I as follows:
v⃗I [j] = v⃗[j] if j ∈ I and v⃗I [j] = 0 if j /∈ I. Now, let V = (Q, Σ, ∆, s, t) be a d-VASS. For a
pseudo-configuration c = (q, v⃗) ∈ Q × Zd we define cI := (q, v⃗I). The projection VI of V to
I is the d-VASS VI = (Q, Σ, ∆I , s, t) with ∆I := {(p, a, v⃗I , q) | (p, a, v⃗, q) ∈ ∆}.

Proof. Let w ∈ K(V1,V2). Towards a contradiction we suppose that w /∈ Bk̂ holds. Then
for each 1 ≤ i ≤ d we have either w ∈ Gi (i.e., the i-th counter never falls below 0), or
w /∈ Gi and µi(w) > k̂ (i.e., the i-th counter reaches a value > k̂ before falling below 0 for
its first time). Let Iw ⊆ {1, . . . , d} be the set of indices 1 ≤ i ≤ d with w ∈ Gi. Assuming
|Iw| < d we want to construct from w another word v ∈ K(V1,V2) \ Bk̂ with |Iv| > |Iw|.

k̂

0

2
3

4

1 = i

j

Figure 1 The values of the counters in the course of a run encoded by some word w ∈ K(V1,V2)\
Bk̂. The values of the counters 2 and 3 never fall below zero implying w ∈ G2 ∩ G3. The counters
1 and 4 exceed the value k̂ before they fall below zero the first time (i.e., w /∈ G1 ∪ G4 and
µ1(w), µ4(w) > k̂). Since counter 1 exceeds k̂ after counter 4 does, we choose i = 1 in our proof.
The first intersection of counter 1’s curve and k̂ marks the step j.

So, let i ∈ {1, . . . , d} \ Iw be the index of the last counter exceeding the upper bound k̂

before it falls below zero for its first time, i.e., i is the number of the counter having the longest
prefix w1 of w with µi(w1) ≤ k̂. Additionally, let 0 ≤ j < n be the first computational step in
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which counter i exceeds k̂, i.e., x⃗j [i] > k̂ and x⃗h[i] ≤ k̂ for each 0 ≤ h < j. Now, restrict the
pseudo-run πw to the counters in Iw and all of V2’s counters. Since none of these counters falls
below zero, the pseudo-run πw is actually a run in VIw

1 × V2. This especially holds for πw’s
sub-run from ((pj , qj), (x⃗j

Iw , y⃗j)) to ((pn, qn), (x⃗n
Iw , y⃗n)) in VIw

1 ×V2. Since (pn, qn) = (t1, t2)
holds, there is – according to Theorem 2.2 – also a run from ((pj , qj), (x⃗j

Iw , y⃗j)) to some
configuration ((pn, qn), (x⃗′

m

Iw
, y⃗′

m)) of length at most Rack(VIw
1 × V2) ≤ Rack(V1 × V2).

Since VIw
1 is a projection of V1 to the counters in Iw, we can also extend this run to a

pseudo-run with all counters. Let ((p′
h, q′

h), (x⃗′
h, y⃗′

h))j≤h≤m be this pseudo-run extended
to all 2d counters satisfying ((pj , qj), (x⃗j , y⃗j)) = ((p′

j , q′
j), (x⃗′

j , y⃗′
j)), p′

m = pn = t1, and
q′

m = qn = t2. Let ((p′
h−1, q′

h−1), b′
h, (u⃗′

h, v⃗′
h), (p′

h, q′
h)) ∈ ∆ be the corresponding transitions

(for j < h ≤ m). Set v := code(u⃗1) . . . code(u⃗j) code( ⃗u′
j+1) . . . code(u⃗′

m). Our next aim is to
prove that |Iv| > |Iw| and v ∈ K(V1,V2) \ Bk̂ holds.

▷ Claim 5.3. |Iv| > |Iw|

Proof. We show Iw ⊎ {i} ⊆ Iv. By the choice of our pseudo-run we have Iw ⊆ Iv (recall
that all counters from Iw always stay ≥ 0). So, we only have to show i ∈ Iv. We have
x⃗j [i] = x⃗′

j [i] > k̂ = ∥∆1∥ · Rack(V1 × V2), m − j ≤ Rack(V1 × V2), and u⃗′
h[i] ≤ ∥∆1∥ for

each j < h ≤ m. Hence, we obtain x⃗′
h[i] ≥ 0 for each j ≤ h ≤ m, i.e., on our new run the

counter i never falls below zero. We infer v ∈ Gi and, therefore, i ∈ Iv. ◁

▷ Claim 5.4. v ∈ K(V1,V2) \ Bk̂

Proof. First, we show v ∈ K(V1,V2). The sequence

((ph−1, qh−1), bh, (u⃗h, v⃗h), (ph, qh))1≤h≤j , ((p′
h−1, q′

h−1), b′
h, (u⃗′

h, v⃗′
h), (p′

h, q′
h))j<h≤m

of transitions in V1 × V2 induces some accepting run (q0, 0⃗)
b1...bjb′

j+1...b′
m−−−−−−−−−−→V2 (q′

m, v⃗′
m) in

V2, i.e., we have b1 . . . bjb′
j+1 . . . b′

m ∈ L(V2). Additionally, the word v encodes the counters’
course of updates in the transition sequence (ph−1, bh, u⃗h, ph)1≤h≤j , (p′

h−1, b′
h, u⃗′

h, p′
h)j<h≤m

in V1. According to p0 = s1, pj = p′
j , and p′

m = t1 this transition sequence is a pseudo-
run of V1 labeled by b1 . . . bjb′

j+1 . . . b′
m. By the choice of our transducer TV1 (which is

the one from the proof of Lemma 4.1), we learn (v, b1 . . . bjb′
j+1 . . . b′

m) ∈ R(TV1) implying
v ∈ (R(TV1))−1(b1 . . . bjb′

j+1 . . . b′
m). We finally obtain v ∈ K(V1,V2).

Now, we prove v /∈ Bk̂. If we have Iv = {1, . . . , d} then we learn v ∈
⋂d

h=1 Gh = Cd.
Since Cd ∩ Bk̂ = ∅ holds, we have v /∈ Bk̂ in this case. Now, assume Iv ≠ {1, . . . , d}. Let
i′ ∈ {1, . . . , d} \ Iv be arbitrary. From Iw ∪ {i} ⊆ Iv we learn i′ /∈ Iw and i′ ̸= i. Hence, we
have v, w /∈ Gi′ . Since w /∈ Bk̂ holds (by the assumption at the outset of this claim’s proof),
we infer µi′(w) > k̂, i.e., the counter i′ exceeds k̂ in w before it falls below zero for the first
time. Additionally, in v the counter i′ falls below zero sometime. We have to show that it
exceeds the value k̂ before it first drops below zero.

Recall that i was the counter with the longest prefix w1 of w with µi(w1) ≤ k̂. This
implies µi′(w1) > k̂. Note that w1 is a prefix of code(u⃗1) . . . code(u⃗j) and therefore also of v.
Hence, we have µi′(v) > k̂. Since i′ was arbitrary, this holds for all counters in {1, . . . , d} \ Iv.
In other words, for each h ∈ {1, . . . , d} we have either v ∈ Gh or µh(v) > k̂. Hence, v /∈ Bk̂

holds in this case. ◁

So, we have learned that there is another word v ∈ K(V1,V2) \ Bk̂ having more non-
negative counters Iv than w. Finally, induction yields a word v̂ ∈ K(V1,V2) \ Bk̂ with
Iv̂ = {1, . . . , d}, i.e., v̂ ∈

⋂d
h=1 Gh = Cd. This implies v̂ ∈ Cd ∩ K(V1,V2) - a contradiction

to K(V1,V2) | Cd. ◀
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With the help of Lemma 5.2 we are able to finally prove our main result Theorem 5.1.

−1 0 1 2 . . . k̂ k̂+1

Γd

ai

ai

Γd \ {ai, ai}

ai

ai

Γd \ {ai, ai}

ai

ai

Γd \ {ai, ai}

ai

ai

ai

ai

Γd \ {ai, ai} Γd

Figure 2 A DFA Ai accepting the language Bk̂,i. It simulates the counter i bounded by k̂.

Proof of Theorem 5.1. Since we have K(V1,V2) ⊆ Bk̂ and Bk̂ ∩ Cd = ∅, the set Bk̂ is a
separator of K(V1,V2) and Cd. This language is also regular: in Figure 2 we depict a DFA
Ai accepting the language Bk̂,i := {w ∈ Γ ∗

d | w /∈ Gi and µi(w) ≤ k̂} for 1 ≤ i ≤ d. Since
Bk̂ =

⋃d
i=1 Bk̂,i holds, we obtain a DFA accepting Bk̂ using the classical product construction.

The resulting DFA has the size
∏d

i=1 |Ai| =
∏d

i=1(k̂ + 3) ∈ O(k̂d).
We have seen that Bk̂ separates K(V1,V2) and Cd. With the same arguments as in

Lemma 4.2, one shows that if R witnesses T −1(K) | L, then T (Σ∗ \ R) witnesses T (L) | K.
Since K(V1,V2) = R(TV1)−1(L(V2)) and L(V1) = R(TV1)(Cd), we conclude that

R(TV1)(Γ ∗
d \ Bk̂) (2)

witnesses L(V1) | L(V2). Since we have a DFA of size O(k̂d) for Bk̂ and thus such a DFA for
Γ ∗

d \Bk̂, we obtain an NFA for (2) of size O(|Q1| · k̂d) = O(|Q1| ·∥∆1∥d ·Rack(V1 ×V2)d). ◀

The term O(|Q1| · ∥∆1∥d · Rack(V1 ×V2)d) from Theorem 5.1 is doubly exponential in d

(and polynomial in the remaining numbers). In other words, for two given disjoint d-VASS
V1 and V2 there is a doubly exponential sized NFA separating their languages L(V1) and
L(V2). If we are looking for a deterministic automaton separating these languages, we can
use the power set construction to obtain a DFA of triply exponential size. The lower bounds
by Czerwiński et. al. [10] show that these upper bounds are tight.

▶ Corollary 5.5. From a given number d ∈ N+ and two disjoint d-VASS V1 and V2 we can
compute
(1) an NFA separating L(V1) and L(V2) of size doubly exponential in d, |V1|, and |V2|.
(2) a DFA separating L(V1) and L(V2) of size triply exponential in d, |V1|, and |V2|.

Proof.
(1) By Theorem 5.1 we can compute an NFA separating L(V1) and L(V2) with the following

number of states:

O(|Q1| · ∥∆1∥d · Rack(V1 × V2)d)

= O(|Q1| · ∥∆1∥d · (|Q1| · |Q2| · max{∥∆1∥, ∥∆2∥} + 2)((6d)!+1)·d) ,

which is doubly exponential in d, |V1|, and |V2|.
(2) We can determinize the NFA from (1) using the classical power set construction. This

results in an equivalent DFA of size exponential in the size of the NFA. ◀

Since the exponent of the term O(|Q1| · ∥∆1∥d · Rack(V1 × V2)d) only depends on the
dimension d, we could also ask for an upper bound of an NFA or DFA separating the
languages of two VASS of fixed dimension. In this scenario we have to distinguish two cases:
the numbers in our VASS are encoded in unary or binary. First, we consider the unary case.
Here, we can construct a separating NFA of polynomial size and a DFA of exponential size.
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▶ Corollary 5.6. Fix a number d ∈ N+. From two disjoint d-VASS V1 and V2 in which the
numbers are encoded in unary, we can compute
(1) an NFA separating L(V1) and L(V2) of size polynomial in |V1| and |V2|.
(2) a DFA separating L(V1) and L(V2) of size exponential in |V1| and |V2|.

Proof.
(1) Since d is assumed to be fixed, the size of the regular separator of L(V1) and L(V2) from

Theorem 5.1 is a polynomial in the sizes of V1 and V2.
(2) To achieve this result, we only have to determinize the NFA from statement (1). ◀

Now, we have to consider VASS of fixed dimension d with binary encoded numbers. To
this end, we first have to introduce a binary norm: for a vector v⃗ ∈ Zd set ∥v⃗∥2 := log ∥v⃗∥.
Based on this, we define the binary norm ∥∆∥2 of a set of transitions ∆. Slightly abusing
terminology, when we speak of VASS with binary encoding (or with binary encoded numbers),
then this only means we measure its size with ∥ · ∥2 in place of ∥ · ∥. In this case, for two
given VASS we find a separating NFA of exponential size and a separating DFA of doubly
exponential size.

▶ Corollary 5.7. Fix a number d ∈ N+. From two disjoint d-VASS V1 and V2 with binary
encoding, we can compute
(1) an NFA separating L(V1) and L(V2) of size exponential in |V1| and |V2|.
(2) a DFA separating L(V1) and L(V2) of size doubly exponential in |V1| and |V2|.

Proof.
(1) Since we encode numbers in binary the values ∥∆1∥ and ∥∆2∥ are exponential in the

description size of V1 resp. V2. Hence, the NFA constructed in Theorem 5.1 has size
exponential in the sizes of V1 and V2.

(2) Again, this is a direct consequence of the first statement using the classical power set
construction to determinize the constructed NFA. ◀

5.1 Upper Bound for Binary Encoded 1-VASS
Interestingly, the given upper bound for a DFA separating the languages of two given binary
encoded VASS of dimension 1 is not tight, yet. We can use a better construction than the
classical power set construction to determinize our constructed separating NFA. In this case,
we obtain a DFA which also has exponential size (in comparison to doubly exponential size
with the power set construction).

▶ Theorem 5.8. Given disjoint 1-VASS V1 and V2 with binary-encoded numbers, we can
compute a DFA separating L(V1) and L(V2) of size exponential in |V1| and |V2|.

We take a closer look at the resulting NFA constructed in the last step of the proof of
Theorem 5.1 (resp. in Corollary 5.7(1)). With the knowledge about this special NFA, we will
apply an improved power set construction resulting in a DFA separating L(V1) and L(V2)
without the exponential blowup.

So, let Vi = (Qi, ∆i, si, ti) be two 1-VASS, TV1 = (Q1, δ1, {s1}, {t1}) be the rational
transducer constructed from V1 as described in the proof of Lemma 4.1 and let A =
(S, Γ1, δA, {0}, FA) be the DFA depicted in Figure 2 accepting Bk̂ where k̂ = ∥∆1∥·Rack(V1×
V2). In other words, we have S = {−1, 0, 1, . . . , k̂, k̂ + 1} and FA = {−1}. The complement
of Bk̂ is accepted by the DFA A = (S, Γ1, δA, {0}, FA) with FA = {0, 1, . . . , k̂ + 1}. In
the following let ≤ denote the natural ordering on S ⊆ Z. Then we can observe that A’s
transition relation δA is compatible with the ordering ≤:
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▶ Observation 5.9. Let w ∈ Γ ∗
1 be a word and m, m′, n ∈ S with m

w−→A n and m′ ≥ m.
Then there is n′ ∈ S with n′ ≥ n and m′ w−→A n′.

In the next step we apply the rational transduction R(TV1) to L(A) = Γ ∗
1 \ Bk̂. We

do this with the help of the classical construction resulting in the following NFA B =
(QB, Σ, δB, IB, FB) accepting (R(TV1))(Γ ∗

1 \ Bk̂):
QB = Q1 × S and IB = {(s1, 0)},
for all (p, m), (q, n) ∈ QB and a ∈ Σ: ((p, m), a, (q, n)) ∈ δB if, and only if, there is
w ∈ Γ ∗

1 with p
(w , a)−−−−→TV1

q and m
w−→A n, and

for all (p, m) ∈ QB: (p, m) ∈ FB if, and only if, there are w ∈ Γ ∗
1 and n ∈ FA with

p
(w , ε)−−−−→TV1

t1 and m
w−→A n.

Hence, B is the separating NFA of exponential size from Corollary 5.7(1). We show next that
the determinization of B is possible without exponential blowup. To this end, we first need
the following observation of B’s behavior namely that the compatibility of A’s transition
relation δA with ≤ is passed on to B’s transition relation δB:

▶ Lemma 5.10. Let w ∈ Σ∗, (p, m), (q, n) ∈ QB, and m′ ∈ S with (p, m) w−→B (q, n) and
m′ ≥ m. Then there is n′ ∈ S with n′ ≥ n and (p, m′) w−→B (q, n′).

Proof. We prove this by induction on the length of w. If w = ε, then our statement is true:
since B has no ε-transitions, (p, m) ε−→B (q, n) implies p = q and m = n. Therefore, our
statement holds for n′ = m′.

Now, assume w = w′a for some word w′ ∈ Σ∗ and a letter a ∈ Σ. From (p, m) w−→B (q, n)
we learn that there is an intermediate state (r, ℓ) ∈ QB with (p, m) w′

−→B (r, ℓ) a−→B (q, n).
Since |w′| < |w| holds, the induction hypothesis yields an ℓ′ ∈ S with ℓ′ ≥ ℓ and (p, m′) w′

−→B

(r, ℓ′). By the definition of the transition relation of B we obtain from (r, ℓ) a−→B (q, n) a word
v ∈ Γ ∗

1 with r
(v,a)−−−→TV1

q and ℓ
v−→A n. According to Observation 5.9 there is n′ ∈ S with

n′ ≥ n and ℓ′ v−→A n′. But this implies (r, ℓ′) a−→B (q, n′) and therefore (p, m′) w−→B (q, n′). ◀

We can also show that the set of accepting states of B is upwards closed wrt. the natural
ordering of its set of states. This is the following lemma:

▶ Lemma 5.11. Let (p, m) ∈ FB and m′ ∈ S with m′ ≥ m. Then we also have (p, m′) ∈ FB.

Proof. By definition of FB there are w ∈ Γ ∗
1 and n ∈ FA = {0, 1, . . . , k̂ + 1} with p

(w,ε)−−−→TV1

t1 and m
w−→A n. Due to Observation 5.9 there is n′ ∈ S with n′ ≥ n and m′ w−→A n′. Since

n′ ≥ n ≥ 0 holds, we also learn n′ ∈ FA implying (p, m′) ∈ FB. ◀

Finally, we have to determinize the NFA B. To this end, we recall the classical power
set construction of B: the result of this construction is the DFA P = (2QB , Σ, δP, {ιP}, FP)
where

ιP = {(s1, 0)},
(X, a, Y ) ∈ δP if, and only if, Y = {y ∈ QB | ∃x ∈ X : (x, a, y) ∈ δB}, and
FP = {X ⊆ QB | X ∩ FB ̸= ∅}.

By induction we learn that X
w−→P Y holds if, and only if, Y is exactly the set of states that

are reachable from X via w, i.e., y ∈ Y iff there is x ∈ X with x
w−→B y. In particular, if Y

is accepting and we have ιP
w−→P Y , then there is y ∈ Y ∩ FB ̸= ∅ with (s1, 0) w−→B y. This

means, an accepting run in P also witnesses an accepting run in B.
Now, let X ⊆ QB be some intermediate state of this w-labeled run from {(s1, 0)} to

Y , i.e., we have ιP
u−→P X

v−→P Y with w = uv. Let (p, m) ∈ X and (q, n) ∈ Y ∩ FB with
(s1, 0) u−→B (p, m) v−→B (q, n). Assume that there is another state (p, m′) ∈ X with m′ ≥ m.
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(s1, 0)

ιP

(p, m)

(p, m′)

≥

X

(q, n)

(q, n′)

≥

Y

u

u

v

v

Figure 3 Visualization of the power set construction on the NFA B. The states in gray are states
of the DFA P, the white ones are states of B. The reachability of and acceptance of (q, n′) (red) is
ensured by Lemmas 5.10 and 5.11.

Then Lemmas 5.10 and 5.11 state that there is also another state (q, n′) ∈ Y ∩ FB with
n′ ≥ n and (s1, 0) u−→B (p, m′) v−→B (q, n′), which also witnesses acceptance of w (cf. Figure 3,
colored in red). This means, the set of w-labeled accepting runs of B also is in some sense
upwards closed. Therefore, it suffices to store only the greatest value m ∈ S for each state
p ∈ Q1 such that (p, m) ∈ X holds. This can be represented by a partial mapping from Q1
into S. Here, we extend these partial mappings to maps with the help of a new symbol
⊥ /∈ S, such that f(q) = ⊥ means that f is undefined at q, that is, there is no such state
(q, n). The result is a DFA having (|S| + 1)|Q1| many states, which is exponential in the sizes
of V1 and V2. This is much smaller than the size of P: it contains 2|Q1|·|S| many states
which is doubly exponential in |V1| and |V2|.

Concretely, our DFA C = (QC, Σ, δC, {ιC}, FC) accepting L(B) = (R(TV1))(Γ ∗
1 \ Bk̂) is

defined as follows:
QC = (S ∪{⊥})Q1 , i.e., the set of all maps from Q1 to S ∪{⊥} with ⊥ /∈ S; here, f(q) = ⊥
means that no state (q, n) ∈ QB is reachable,
ιC : Q1 → S ∪ {⊥} with ιC(s1) = 0 and ιC(q) = ⊥ for each q ∈ Q1 \ {s1},
for all f, g ∈ QC and a ∈ Σ: (f, a, g) ∈ δC if, and only if, for each q ∈ Q1 we have
g(q) = max{n ∈ S | ∃p ∈ Q1 : ((p, f(p)), a, (q, n)) ∈ δB} where max ∅ := ⊥, and
FC = {f ∈ QC | ∃q ∈ Q1 : (q, f(q)) ∈ FB}.

We have to show now that our construction is correct, i.e., we show L(C) = L(B). We do
this with the help of the following two propositions each proving one inclusion.

▶ Proposition 5.12. L(C) ⊆ L(B).

Proof. To prove this inclusion we first have to prove the following helping statement:

▷ Claim 5.13. Let g ∈ QC and w ∈ Σ∗ with ιC
w−→C g. Then we have g(q) = max{n ∈ S |

(s1, 0) w−→B (q, n)} for each q ∈ Q1 with g(q) ̸= ⊥.

Proof. We first show g(q) ≥ max{n ∈ S | (s1, 0) w−→B (q, n)} for each q ∈ Q1 with g(q) ̸= ⊥.
We do this by induction on the length of w. So, if w = ε the statement is obvious since
g = ιC holds in this case. Now, let a ∈ Σ and w′ ∈ Σ∗ with w = w′a. Then there is a state
f ∈ QC with ιC

w′

−→C f
a−→C g.

Let (p, m), (q, n) ∈ QB be arbitrary states with (s1, 0) w′

−→B (p, m) a−→B (q, n). Since
|w′| < |w| holds, the induction hypothesis yields f(p) ≥ max{m′ ∈ S | (s1, 0) w′

−→B (p, m′)}
implying f(p) ≥ m. From Lemma 5.10 we know that there is n′ ∈ S with n′ ≥ n and
(p, f(p)) a−→B (q, n′). Additionally, we know (f, a, q) ∈ δB implying g(q) = max{n′′ ∈ S |
∃p ∈ Q1 : ((p, f(p)), a, (q, n′′)) ∈ δB} and therefore g(q) ≥ n′ ≥ n. Since (q, n) ∈ QB was
arbitrary, we infer g(q) ≥ max{n ∈ S | (s1, 0) w−→B (q, n)}.
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Now we show the inverse inequality. To this end, we show (s1, 0) w−→B (q, g(q)) holds for
all q ∈ Q1 with g(q) ̸= ⊥. Again, we show this by induction on |w|. So, let w = ε. Then we
have g = ιC and g(q) ̸= ⊥ if, and only if, q = s1. Obviously, we have (s1, 0) ε−→B (s1, 0). Next,
let w = w′a for a letter a ∈ Σ and a word w′ ∈ Σ∗. There is f ∈ QC with ιC

w′

−→C f
a−→C g.

The induction hypothesis yields (s1, 0) w′

−→ (p, f(p)) for each p ∈ Q1 with f(p) ̸= ⊥. Let
q ∈ Q1 with g(q) ̸= ⊥. Due to (f, a, g) ∈ δC there is p ∈ Q1 with ((p, f(p)), a, (q, g(q))) ∈ δC

(this also implies f(p) ̸= ⊥). Hence, we have (s1, 0) w′

−→B (p, f(p)) a−→B (q, g(q)). ◁

Let w ∈ L(C). Then there is g ∈ FC with ιC
w−→C g. Since g is accepting, there is a state

q ∈ Q1 with (q, g(q)) ∈ FB. By definition of B we know g(q) ̸= ⊥ in this case. By Claim 5.13
we know g(q) = max{n ∈ S | (s1, 0) w−→B (q, n)}. Hence, we learn (s1, 0) w−→B (q, g(q)) ∈ FB.
This finally implies w ∈ L(B). ◀

▶ Proposition 5.14. L(B) ⊆ L(C).

Proof. Again, we first need some helping statement:

▷ Claim 5.15. Let w ∈ Σ∗ and (q, n) ∈ QB with (s1, 0) w−→B (q, n). Then there is g ∈ QC

with ιC
w−→C g and g(q) ≥ n.

Proof. We show this statement by induction on the length |w| of the word w. The case w = ε

is obvious since g := ιC satisfies ιC
ε−→C ιC and ιC(s1) = 0 ≥ 0 (note that (q, n) = (s1, 0)

holds). Now, let a ∈ Σ and w′ ∈ Σ∗ with w = w′a. Then there is a state (p, m) ∈ QB with
(s1, 0) w′

−→B (p, m) a−→B (q, n). By induction hypothesis there is f ∈ QC with ιC
w−→C f and

f(p) ≥ m. According to Lemma 5.10 we also know that there is n′ ∈ S with n′ ≥ n and
(p, f(p)) a−→B (q, n′). In this case, we have ((p, f(p)), a, (q, n′)) ∈ δB.

Let g ∈ QC be the uniquely defined state with (f, a, g) ∈ δC. Then we have g(q) is the
maximal value n ∈ S with ((r, f(r)), a, (q, n)) ∈ δB for some r ∈ Q1. In particular, we have
g(q) ≥ n′ ≥ n and ιC

w′

−→C f
a−→C g. ◁

Now, let w ∈ L(B). Then there is a state (q, n) ∈ FB with (s1, 0) w−→B (q, n). According
to Claim 5.15 there is a state g ∈ QC with ιC

w−→C g and g(q) ≥ n. By Lemma 5.11 we also
know (q, g(q)) ∈ FB. But then we infer g ∈ FC, i.e., w ∈ L(C). ◀

Finally, we are able to prove the previously stated Theorem 5.8.

Proof of Theorem 5.8. The DFA C as constructed above accepts the language L(C) =
L(B) = (R(TV1))(Γ ∗

1 \ Bk̂) according to Propositions 5.12 and 5.14. This automaton has

|QC| = |(S ∪ {⊥})Q1 | = |S ∪ {⊥}||Q1| ∈ O(k̂|Q1|) = O((∥∆1∥ · Rack(V1 × V2))|Q1|)

= O((∥∆1∥ · (|Q1| · |Q2| · max{∥∆1∥, ∥∆2∥} + 2)6!+1)|Q1|)

many states. The last term is exponential in the size of V1 and V2. ◀

From the proof technique, we can extract a slightly more abstract statement that might
be of independent interest. An ordered NFA is an NFA A together with a quasi-ordering
(Q,≼) on its set of states Q such that if p ≼ q, then all words accepted from p are also
accepted from q. An anti-chain of A is an anti-chain in (Q,≼).

▶ Proposition 5.16. If A is an ordered NFA whose anti-chains have at most ℓ states, then
A has an equivalent DFA with |Q|ℓ states.
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s t
ε | 2n − 1

a | −1

s t
ε | −2n

a | 1

Figure 4 1-VASS Vn (left) and Wn (right) in the proof of Proposition 6.3.

Here, the states of the DFA are the anti-chains of (Q,≼). This is useful whenever ℓ is small
(e.g. logarithmic) in the size of A (i.e., in |Q|). In our proof, for example, one can equip
QB = Q1 × [−1, k̂ + 1] with the ordering (p, m) ≼ (q, n) if and only if p = q and m ≤ n.
Then clearly, an anti-chain in (QB,≼) contains at most |Q1| states.

6 Lower Bounds

In this final section we want to show that all of the upper bounds shown in Section 5 are tight.
This means, whenever Corollaries 5.5–5.7 and Theorem 5.8 gives an i-fold exponential upper
bound for separators with i ≥ 1, then we shall here provide a sequence (V1,W1), (V2,W2), . . .

of VASS Vn,Wn of size polynomial in n such that any separator of L(Vn) and L(Wn) requires
at least expi(n) states. Recall that exp0(n) = n and expi+1(n) = 2expi(n) for i ≥ 0.

The case where d is part of the input was already considered by Czerwiński et al. in [10]
(they use the languages in Eq. (1) with f : n 7→ 22n). We mention this without proof:

▶ Proposition 6.1 (Czerwiński et al. [10]). For any n ∈ N there are disjoint VASS Vn and
Wn of size polynomial in n such that
(1) any NFA separating L(Vn) and L(Wn) has at least 22n states.
(2) any DFA separating L(Vn) and L(Wn) has at least 222n

states.

This provides the lower bounds of the first row in Table 1. In the construction of
Czerwiński et al., the dimension of Vn and Wn grows (polynomially) with n. This means,
we need different constructions for fixed dimension. Moreover, in fixed dimension, we cannot
translate between VASS with unary and binary encodings. This means, we have to distinguish
between the two encodings. Let us begin with unary encodings (i.e. the blue entries in
Table 1). In the case of NFA separators, our upper bounds are polynomial, so we need
not prove any lower bounds. For DFA separators, the exponential lower bound is already
achieved for VASS that have no counters:

▶ Proposition 6.2. For any n ∈ N there are disjoint NFAs An and Bn of size polynomial in
n such that any DFA separating L(An) and L(Bn) has at least 2n states.

Proof. For n ∈ N consider the languages Kn = Kf,n and Ln = Lf,n with f : n → n, with
Kf,n, Lf,n as in Eq. (1). Both languages are regular and accepted by NFAs An and Bn with
O(n) many states. Since we have Kn = {a, b}∗ \ Ln, Kn is the only regular separator of Kn

and Ln. But it is well-known that any DFA for Kn has at least 2n states. ◀

This provides the lower bound for the two blue entries in Table 1. Let us now turn to
binary encodings. For NFA separators, all lower bounds are achieved using 1-VASS: Our
first proposition yields the lower bounds for the light and dark gray entries of Table 1.

▶ Proposition 6.3. For any n ∈ N, there are disjoint 1-VASS Vn and Wn, with binary
encoded numbers, of size polynomial in n such that any NFA (and thus any DFA) separating
L(Vn) and L(Wn) has at least 2n states.
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s t

a | 0, 0
b | 0, 0

a | 2n − 1, 1

a | −1, 1
b | −1, 1

ε | 0, −2n
s t

ε | 0, 0

ε | 2n, 0

a | 0, 0
b | 0, 0

b | 2n − 1, 1

a | −1, 1
b | −1, 1

ε | 0, −2n

a | −1, 0
b | −1, 0

ε | −1, 0

Figure 5 2-VASS Vn (left) and Wn (right) in the proof of Proposition 6.4.

Proof. Consider the languages Kn = {am | m < 2n} and Ln = {am | m ≥ 2n}. These two
languages are accepted by the 1-VASS Vn and Wn as depicted in Figure 4. The transitions
increasing resp. decreasing the counter by 2n can be encoded in binary using n bits, i.e., Vn

and Wn have size O(n).
Since Kn and Ln are regular and Kn = {a}∗ \ Ln holds, the only regular separator of

Kn and Ln is Kn itself. It is easy to see that any NFA (and thus any DFA) accepting Kn

requires at least 2n many states. ◀

It remains to show the lower bound for the yellow entry of Table 1:

▶ Proposition 6.4. For any n ∈ N, there are disjoint 2-VASS Vn and Wn, with binary
encoded numbers, of size polynomial in n such that any DFA separating L(Vn) and L(Wn)
has at least 22n states.

Proof. Consider the languages Kn = Kf,n and Ln = Lf,n with f : n 7→ 2n with Kf,n, Lf,n as
in Eq. (1). These two languages are accepted by the 2-VASS Vn and Wn, resp., as depicted
in Figure 5. It is clear that both VASS have size O(n). Similar to the proof of Proposition 6.2
we can see that any DFA accepting Kn has at least 22n many states. ◀

References
1 Pablo Barceló, Diego Figueira, and Rémi Morvan. Separating automatic relations. CoRR,

abs/2305.08727, 2023. doi:10.48550/arXiv.2305.08727.
2 Pascal Baumann, Roland Meyer, and Georg Zetzsche. Regular separability in Büchi VASS. In

Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors,
40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023,
March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.9.

3 Mikołaj Bojańczyk. It is undecidable if two regular tree languages can be separated by a
deterministic tree-walking automaton. Fundam. Informaticae, 154(1-4):37–46, 2017. doi:
10.3233/FI-2017-1551.

4 Laura Bozzelli and Pierre Ganty. Complexity Analysis of the Backward Coverability Algorithm
for VASS. In Giorgio Delzanno and Igor Potapov, editors, Reachability Problems, Lecture
Notes in Computer Science, pages 96–109, Berlin, Heidelberg, 2011. Springer. doi:10.1007/
978-3-642-24288-5_10.

5 Christian Choffrut and Serge Grigorieff. Separability of rational relations in A∗ × Nm by
recognizable relations is decidable. Inf. Process. Lett., 99(1):27–32, 2006. doi:10.1016/j.ipl.
2005.09.018.

6 Lorenzo Clemente, Wojciech Czerwiński, Slawomir Lasota, and Charles Paperman. Regular
Separability of Parikh Automata. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages
117:1–117:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ICALP.2017.117.

https://doi.org/10.48550/arXiv.2305.08727
https://doi.org/10.4230/LIPIcs.STACS.2023.9
https://doi.org/10.3233/FI-2017-1551
https://doi.org/10.3233/FI-2017-1551
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.1016/j.ipl.2005.09.018
https://doi.org/10.1016/j.ipl.2005.09.018
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117


C. Köcher and G. Zetzsche 15:17

7 Lorenzo Clemente, Wojciech Czerwiński, Slawomir Lasota, and Charles Paperman. Separability
of Reachability Sets of Vector Addition Systems. In Heribert Vollmer and Brigitte Vallée,
editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March
8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.24.

8 Lorenzo Clemente and Michał Skrzypczak. Deterministic and game separability for regular
languages of infinite trees. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors,
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 126:1–126:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.
126.

9 Wojciech Czerwiński and Slawomir Lasota. Regular separability of one counter automata. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005079.

10 Wojciech Czerwiński, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan
Kumar, and Prakash Saivasan. Regular Separability of Well-Structured Transition Systems.
In Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency
Theory (CONCUR 2018), volume 118 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 35:1–35:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2018.35.

11 Wojciech Czerwiński, Wim Martens, and Tomás Masopust. Efficient Separability of Regular
Languages by Subsequences and Suffixes. In Fedor V. Fomin, Rusins Freivalds, Marta Z.
Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming – 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part
II, volume 7966 of Lecture Notes in Computer Science, pages 150–161. Springer, 2013. doi:
10.1007/978-3-642-39212-2_16.

12 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.
A Characterization for Decidable Separability by Piecewise Testable Languages. Discrete
Mathematics and Theoretical Computer Science, 19(4), 2017. doi:10.23638/DMTCS-19-4-1.

13 Wojciech Czerwiński and Georg Zetzsche. An Approach to Regular Separability in Vector
Addition Systems. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 341–354, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3373718.3394776.

14 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

15 Jean Goubault-Larrecq and Sylvain Schmitz. Deciding Piecewise Testable Separability for
Regular Tree Languages. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 97:1–
97:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.
2016.97.

16 Sheila A. Greibach. Remarks on Blind and Partially Blind One-Way Multicounter Machines.
Theoretical Computer Science, 7(3):311–324, 1978. doi:10.1016/0304-3975(78)90020-8.

17 Christopher Hugenroth. Separating Regular Languages over Infinite Words with Respect to
the Wagner Hierarchy. In Mikołaj Bojańczyk and Chandra Chekuri, editors, 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021), volume 213 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 46:1–46:13, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSTTCS.2021.46.

18 Harry B. Hunt III. On the Decidability of Grammar Problems. Journal of the ACM, 29(2):429–
447, 1982. doi:10.1145/322307.322317.

FSTTCS 2023

https://doi.org/10.4230/LIPIcs.STACS.2017.24
https://doi.org/10.4230/LIPIcs.ICALP.2021.126
https://doi.org/10.4230/LIPIcs.ICALP.2021.126
https://doi.org/10.1109/LICS.2017.8005079
https://doi.org/10.1109/LICS.2017.8005079
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
https://doi.org/10.1007/978-3-642-39212-2_16
https://doi.org/10.1007/978-3-642-39212-2_16
https://doi.org/10.23638/DMTCS-19-4-1
https://doi.org/10.1145/3373718.3394776
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.4230/LIPIcs.ICALP.2016.97
https://doi.org/10.4230/LIPIcs.ICALP.2016.97
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.46
https://doi.org/10.1145/322307.322317


15:18 Regular Separators for VASS Coverability Languages

19 Matthias Jantzen. On the hierarchy of Petri net languages. RAIRO – Theoretical Informatics
and Applications, 13(1):19–30, 1979. doi:10.1051/ita/1979130100191.

20 Eren Keskin and Roland Meyer. Separability and non-determinizability of WSTS. CoRR,
abs/2305.02736, 2023. doi:10.48550/arXiv.2305.02736.

21 Eryk Kopczyński. Invisible Pushdown Languages. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 867–872. ACM,
2016. doi:10.1145/2933575.2933579.

22 Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wę-
grzycki. Coverability in VASS revisited: Improving rackoff’s bound to obtain conditional
optimality. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14,
2023, Paderborn, Germany, volume 261 of LIPIcs, pages 131:1–131:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.131.

23 Tomás Masopust. Separability by piecewise testable languages is PTime-complete. Theor.
Comput. Sci., 711:109–114, 2018. doi:10.1016/j.tcs.2017.11.004.

24 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating Regular Languages by Locally
Testable and Locally Threshold Testable Languages. In Anil Seth and Nisheeth K. Vishnoi,
editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, volume 24 of
LIPIcs, pages 363–375. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:
10.4230/LIPIcs.FSTTCS.2013.363.

25 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. In
Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July
14–18, 2014, pages 75:1–75:10. ACM, 2014. doi:10.1145/2603088.2603098.

26 Thomas Place and Marc Zeitoun. Separation and the Successor Relation. In Ernst W.
Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects
of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of
LIPIcs, pages 662–675. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.662.

27 Thomas Place and Marc Zeitoun. Separating Regular Languages with First-Order Logic. Log.
Methods Comput. Sci., 12(1), 2016. doi:10.2168/LMCS-12(1:5)2016.

28 Thomas Place and Marc Zeitoun. Separating Without Any Ambiguity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 137:1–137:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.137.

29 Thomas Place and Marc Zeitoun. Separation and covering for group based concatenation
hierarchies. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/
LICS.2019.8785655.

30 Thomas Place and Marc Zeitoun. Separation for dot-depth two. Log. Methods Comput. Sci.,
17(3), 2021. doi:10.46298/lmcs-17(3:24)2021.

31 Thomas Place and Marc Zeitoun. A generic polynomial time approach to separation by first-
order logic without quantifier alternation. In Anuj Dawar and Venkatesan Guruswami, editors,
42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India, volume
250 of LIPIcs, pages 43:1–43:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.FSTTCS.2022.43.

https://doi.org/10.1051/ita/1979130100191
https://doi.org/10.48550/arXiv.2305.02736
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://doi.org/10.1016/j.tcs.2017.11.004
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.363
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.363
https://doi.org/10.1145/2603088.2603098
https://doi.org/10.4230/LIPIcs.STACS.2015.662
https://doi.org/10.4230/LIPIcs.STACS.2015.662
https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.4230/LIPIcs.ICALP.2018.137
https://doi.org/10.1109/LICS.2019.8785655
https://doi.org/10.1109/LICS.2019.8785655
https://doi.org/10.46298/lmcs-17(3:24)2021
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.43


C. Köcher and G. Zetzsche 15:19

32 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor-
etical Computer Science, 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

33 Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up parsing
techniques. SIAM Journal on Computing, 5(2), 1976.

34 Ramanathan S. Thinniyam and Georg Zetzsche. Regular separability and intersection emptiness
are independent problems. In Arkadev Chattopadhyay and Paul Gastin, editors, 39th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2019, December 11-13, 2019, Bombay, India, volume 150 of LIPIcs, pages 51:1–51:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.
51.

35 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
929–938. ACM, 2018. doi:10.1145/3209108.3209201.

FSTTCS 2023

https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.51
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.51
https://doi.org/10.1145/3209108.3209201

	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Basic Separators
	5 Upper Bounds
	5.1 Upper Bound for Binary Encoded 1-VASS

	6 Lower Bounds

