
Acyclic Petri and Workflow Nets with Resets
Dmitry Chistikov #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Wojciech Czerwiński #

University of Warsaw, Poland

Piotr Hofman #

University of Warsaw, Poland

Filip Mazowiecki #

University of Warsaw, Poland

Henry Sinclair-Banks #Ñ

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Abstract
In this paper we propose two new subclasses of Petri nets with resets, for which the reachability
and coverability problems become tractable. Namely, we add an acyclicity condition that only
applies to the consumptions and productions, not the resets. The first class is acyclic Petri nets
with resets, and we show that coverability is PSPACE-complete for them. This contrasts the known
Ackermann-hardness for coverability in (not necessarily acyclic) Petri nets with resets. We prove that
the reachability problem remains undecidable for acyclic Petri nets with resets. The second class
concerns workflow nets, a practically motivated and natural subclass of Petri nets. Here, we show
that both coverability and reachability in acyclic workflow nets with resets are PSPACE-complete.
Without the acyclicity condition, reachability and coverability in workflow nets with resets are
known to be equally hard as for Petri nets with resets, that being Ackermann-hard and undecidable,
respectively.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Petri nets, Workflow Nets, Resets, Acyclic, Reachability, Coverability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.16

Related Version Full Version: https://arxiv.org/abs/2310.01992

Funding Dmitry Chistikov: Supported in part by the Engineering and Physical Sciences Research
Council [EP/X03027X/1].
Wojciech Czerwiński: Supported by the ERC grant INFSYS, agreement no. 950398.
Piotr Hofman: Supported by the ERC grant INFSYS, agreement no. 950398.
Filip Mazowiecki: Supported by the ERC grant INFSYS, agreement no. 950398.
Henry Sinclair-Banks: Supported by EPSRC Standard Research Studentship (DTP), grant number
EP/T5179X/1.

Acknowledgements We would like to thank Alain Finkel for pointing out an error in the introduction.
We would also like to thank our anonymous reviewers for their detailed comments.

1 Introduction

Petri nets [22] are among the most fundamental formalisms for modelling processes. They
are defined by a finite set of places and a finite set of transitions. A configuration of a
Petri net, known as a marking, is a vector of dimension equal to the number of places, with
entries equal to the number of tokens in particular places. Transitions change markings by
consuming and producing tokens in places. For an example, see Figure 1.

© Dmitry Chistikov, Wojciech Czerwiński, Piotr Hofman, Filip Mazowiecki, and Henry Sinclair-Banks;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0002-6169-868X
mailto:piotr.hofman@uw.edu.pl
https://orcid.org/0000-0001-9866-3723
mailto:f.mazowiecki@mimuw.edu.pl
mailto:h.sinclair-banks@warwick.ac.uk
http://henry.sinclair-banks.com
https://orcid.org/0000-0003-1653-4069
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.16
https://arxiv.org/abs/2310.01992
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Acyclic Petri and Workflow Nets with Resets

i

p1

p2

ft1 t2

t3 t4

2

2

Figure 1 An example Petri net with four places i, p1, p2, f and four transitions t1, t2, t3, t4.
Arcs pointing to transitions consume tokens from the respective places, and arcs pointing away
from transitions produce tokens in the respective places. Arcs without labels denote single token
consumption or production. Other labels, such as “2” in this example, are explicit. Initially, the
marking can be represented by the vector (2, 0, 0, 0) where there are two tokens in i, and no tokens
in the other three places. At this marking, the transition t2 cannot be fired as it needs to consume 2
tokens from each of p1 and p2. One can see that by firing a sequence of transitions (t1, t1, t2) we
reach the marking (0, 0, 0, 1). The transitions t3 and t4 are highlighted (in blue) because t3 does not
consume any tokens and t4 does not produce any tokens.

The central decision problem for Petri nets is the reachability problem. Given a Petri net,
an initial marking, and a target marking, reachability asks whether there is a run between
the two markings. Reachability in Petri nets is a decision problem with non-primitive
recursive complexity [17, 18], recently it has been shown to be Ackermann-complete [7, 8].
The coverability problem, a relaxation of the reachability problem, asks whether there is a
run that reaches a marking at least as great as the target marking. Coverability is provably
simpler than reachability and it is known to be EXPSPACE-complete [20, 23, 16]. In the
example (Figure 1), from the initial marking (2, 0, 0, 0), one can reach (0, 0, 0, 1), but one
cannot reach (0, 0, 1, 0). However, (0, 0, 1, 0) can be covered since (1, 1, 1, 0) can be reached.

In this paper, we consider Petri nets that are equipped with resets but are restricted
to be acyclic. Resets are an extra feature of transitions that allow transitions to empty
a subset of places. In modelling processes, resets offer the ability to express cancellation,
which is important in many applications [29, Table 1]. Unfortunately, in general without
any acyclicity restriction, for Petri nets with resets, reachability is undecidable [1, 9] and
coverability is Ackermann-complete [24, 11]. Therefore, in order to observe the decidability of
the reachability problem one needs to focus on a subclass of Petri nets with resets. A natural
restriction is acyclicity that applies to the graph representation of the Petri net. For example,
observe that the Petri net in Figure 1 is acyclic since the arcs do not induce any cycles
between the places and transitions. Both reachability and coverability in acyclic Petri nets
are NP-complete [19]. The NP upper bound is straightforward: it suffices to guess how many
times each transition is fired in the run. It is always possible to transform this guess into an
actual run by sorting the transitions in a topological order induced by the acyclic structure.
As far as we know, acyclic Petri nets with resets have not been studied previously; they are a
natural candidate for an expressive yet tractable class of Petri nets. We remark that the NP
upper bound argument for reachability does not translate to the model with resets; changing
the order of the resets does not preserve the reached marking.

We study Petri nets and their popular subclass workflow nets [28]. Workflow nets are
Petri nets that have two special places, an input place i and an output place f. The places
and transitions are also restricted so that no tokens can be produced in i, no tokens can

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:3

Coverability Reachability
Acyclic workflow
nets with resets

PSPACE-complete
(Section 4.1)

PSPACE-complete
(Section 3.1)

Acyclic Petri nets
with resets

PSPACE-complete
(Section 3.2)

Undecidable
(Section 4.2)

Figure 2 A summary of our results. Section 4.1 contains the PSPACE lower bound and Section 3.1
and Section 3.2 contain the PSPACE upper bounds.

be consumed from f, and all places and transitions lie on paths from i to f. The Petri net
in Figure 1 without the (blue) highlighted transitions, t3 and t4, is a workflow net. Many
practical instances of Petri nets are workflow nets [10], which forbid unnatural behaviour.
Workflow nets are well studied [30], also with resets [29]. The complexities of the reachability
and coverability problems for workflow nets are the same as for Petri nets. Indeed, the
special places i and f produce and consume the initial and target markings, respectively. By
introducing additional “artificial” places, it is not challenging to ensure that all places and
transitions are on some path from i to f. However, the last construction does not preserve
acyclicity. It turns out that acyclic Petri nets are more involved than acyclic workflow nets.
For example, while the set of markings reachable from the initial marking is always finite
for acyclic workflow nets [25], this is not true for acyclic Petri nets. In Figure 1, place p1
can contain arbitrarily many tokens by firing t3. In contrast, the workflow net obtained by
removing transitions t3 and t4 will never contain more than 2 tokens in any place.

Our results. We determine the complexity of reachability and coverability in both acyclic
Petri nets with resets and acyclic workflow nets with resets. We prove that coverability in
acyclic Petri nets with resets is PSPACE-complete. Further, we show that both reachability
and coverability in acyclic workflow nets with resets are also PSPACE-complete. On the
other hand, we prove that, rather surprisingly, reachability in acyclic Petri nets with resets
is undecidable. A summary of our results is in Figure 2.

For reachability in acyclic workflow nets with resets, we argue that a place cannot contain
more than an exponential number of tokens with respect to the size of the reachability
instance. The proof is comparable to the proof of the NP upper bound for acyclic Petri nets:
one can reorder the firing sequence of transitions according to a topological order induced by
acyclicity.

▶ Theorem 3.1. Reachability in acyclic workflow nets with resets is in PSPACE.

For coverability in acyclic Petri nets with resets, we show that there are two cases for the
number of tokens that a place may contain. A place may either take at most an exponential
number M of tokens, or it can take an arbitrarily large number of tokens, represented by ω.
By abstracting the space of markings to a subset of {0, 1, . . . , M − 1, M, ω}n, we can search
for a coverability run in polynomial space.

▶ Theorem 3.2. Coverability in acyclic Petri nets with resets is in PSPACE.

We complement these upper bounds with matching lower bounds. We show that coverab-
ility in acyclic workflow nets with resets requires polynomial space via a polynomial time
reduction from QSAT. In the reduction, we construct an acyclic workflow net with resets
that simulates assignments to the quantified variables (using places whose non-emptiness
corresponds to the satisfaction of a literal) and checks that the formula evaluates to true
for each assignment (using places whose non-emptiness corresponds to the satisfaction of a
clause).

FSTTCS 2023

16:4 Acyclic Petri and Workflow Nets with Resets

▶ Theorem 4.2. Coverability in acyclic workflow nets with resets is PSPACE-hard.

These three results allow us to conclude that coverability in acyclic Petri nets with resets
and both coverability and reachability in acyclic workflow nets with resets are PSPACE-
complete problems. We contrast this with the undecidability of reachability in acyclic Petri
net with resets. Our proof is a reduction from reachability in general Petri nets with resets,
which is known to be undecidable [1]. The core of our proof is the ability to simulate
transitions whose arcs are not acyclic.

▶ Theorem 4.13. Reachability in acyclic Petri nets with resets is undecidable.

Related work. For workflow nets, a central decision problem is the soundness problem. An
instance of soundness usually fixes the initial and target markings to only have one token in
i and f, respectively. The soundness problem asks whether every marking reachable from the
initial marking can then go on to reach the target marking. For workflow nets, it is known
that soundness reduces to reachability [28], and an optimal algorithm for soundness (which
does not rely on reachability) was only recently presented [3]. Variants of reachability and
coverability have also been used as relaxations to implement soundness [26, 4]. Thus, we
expect this work to provide a good background to study soundness on acyclic workflow nets
with resets in the future.

In order to obtain decidability for the reachability problem on Petri nets with resets we
both restrict the class to workflow nets and enforce acyclicity. However, instead of relaxing
the class of Petri nets, one could allow the places to contain a negative number of tokens.
Reachability in this relaxed model is called integer reachability and is known to be in NP for
Petri nets1, even with resets [6].

There are many extensions of Petri nets other than adding resets. We would like to
highlight one extension in particular: Petri nets with transfers. Similar to resets, transfers
move all the tokens from one place to another (instead of just removing them) [1]. Transfers
allow the modelling of some properties of C programs [15]. For Petri nets with transfers,
reachability in undecidable [1], but, coverability is decidable [9]. More generally, Petri nets
with transfers and Petri nets with resets are examples of affine Petri nets [27, 12]. The
previously mentioned integer reachability problem has been studied for this broad class
of Petri nets [2, 5]. Consequently, integer reachability in Petri nets with transfers is in
PSPACE [2]. As far as we know, reachability and coverability have not been considered for
acyclic Petri nets with transfers or acyclic affine Petri nets, which we leave as possible future
work.

2 Preliminaries

Let Z be the set of integers and N the set of natural numbers (nonnegative integers). Let ω

stand for the first infinite cardinal, i.e. ω = |N|. Symbols Zω and Nω denote the set of natural
numbers and the set of integer numbers, each extended with ω, respectively. As usual, |S|
denotes the number of elements of a set S. We denote intervals by [x, y] = {z ∈ Z | x ≤ z ≤ y}.

We use boldface to denote vectors, and we specify a vector by listing its coordinates,
which are indexed using square brackets, in a tuple, so v = (v[1], . . . , v[k]). For two vectors
v and w of equal dimension, we write v ≥ w if for every coordinate s we have v[s] ≥ w[s]. If
v ≥ w and v ̸= w, then v > w; this partial order is called the pointwise order of vectors.

1 Integer reachability is NP-complete for vector addition systems with states [13].

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:5

A vector v is non-negative if v ≥ (0, 0, . . . , 0). The norm ∥·∥ of a k-dimensional vector v is
the sum of absolute values of its coordinates that are not equal to ω: ∥v∥ =

∑
v[i]∈N|v[i]|.

We overload notation by saying that the norm ∥·∥ of a collection of vectors V is the sum of
the norms of vectors in V , ∥V ∥ =

∑
v∈V ∥v∥.

Petri nets. A Petri net is a tuple (P, T, F) consisting of a finite set of places P , a finite set
of transitions T (disjoint from P), and a function defining the arcs F : (P ×T)∪ (T ×P) → N.
There is an arc from x to y for (x, y) ∈ (P ×T)∪(T ×P) if and only if F (x, y) > 0. In diagrams,
this arc is labelled with the value of F (x, y). One can view Petri nets as labelled graphs where
P ∪T is the set of nodes, and arcs are edges, labelled according to F . For example, in Figure 1
for transition t1 we have F (i, t1) = F (t1, p1) = F (t1, p2) = 1 and all other values involving t1
are 0. We can define a path in a Petri net as a sequence of places and transitions connected
by arcs. A Petri net is acyclic if the graph of places and transitions with arcs is acyclic. The
norm of a Petri net N = (P, T, F) is ∥N ∥ = |P | · |T | +

∑
p∈P,t∈T (F (t, p) + F (p, t)).

▶ Definition 2.1. A Petri net with resets is a tuple (P, T, F, R), where (P, T, F) is a Petri net
and R : T → 2P is a function defining reset edges. There is reset edge between a transition
t ∈ T and a place p ∈ P if and only if p ∈ R(t). A Petri net with resets (P, T, F, R) is an
acyclic Petri net with resets if (P, T, F) is acyclic according to the definition above.

Importantly, reset edges are not subject to the acyclicity restriction. We discuss this in
more detail below, after the formal definition of the semantics.

The norm of a Petri net with resets is ∥(P, T, F, R)∥ = ∥(P, T, F)∥ +
∑

t∈T |R(t)|.
For a Petri net with resets (P, T, F, R), the pre-vector of a transition t is •t : P → N,

where •t[p] = F (p, t), and its post-vector is t• : P → N, where t•[q] = F (t, q). We use similar
notation for the reset-operator t◦ ⊆ P , namely t◦ = R(t).

Let us define the semantics of Petri nets (with resets). The collection of markings of a
Petri net with resets (P, T, F, R) is the set of all vectors in NP . Places are said to contain
tokens, a finite resource that can be consumed, produced, and reset by transitions. For a
given marking m, a place p contains tokens if m[p] > 0, otherwise it is empty. A transition t

can be fired at a marking m if and only if m ≥ •t. The firing proceeds through the following
phases (see Figure 3 for an example):

first, tokens are consumed, which results in m′ = m − •t;
then, places are reset, which results in m′′ where m′′[p] = 0 for all p ∈ t◦ and m′′[p] = m′[p]
for all p ̸∈ t◦;
finally, tokens are produced, which results in the new marking n = m′′ + t•.

We write m t→ n.

▶ Note. In the semantics of Petri nets with resets, whether or not a place under reset contains
tokens does not affect whether the transition can be fired. This makes the effect of resets
distinct from the usual consumption of tokens by a transition. Resets do not produce any
tokens either. Thus, resets are considered “undirected”, and we refer to reset edges (rather
than arcs). For the sake of clarity, in all drawings of Petri nets with resets, the reset edges
are undirected and will be coloured red to distinguish them further.

A firing sequence σ = (t1, t2, . . . , tn) is a sequence of transitions. It forms a run from
a marking m0 to a marking mn if m0

t1→ m1
t2→ m2

t3→ · · · tn→ mn for some intermediate
markings m1, . . . , mn−1. The run is denoted m0

σ→ mn. We also write m ∗→ n if there exists
a run from m to n; in this case we say that n is reachable from m. Further, we say that a
run m ∗→ n′ covers n if n′ ≥ n. If such a σ exists. we say that n can be covered from m.

FSTTCS 2023

16:6 Acyclic Petri and Workflow Nets with Resets

a

b

t c

3

2

r

4

r

a

b

t c

3

2

r

4

r

Figure 3 Two markings of an acyclic Petri net with resets with three places a, b, and c. Left:
upon firing t from marking (6, 2, 1) shown, 3 tokens are consumed from a and 2 tokens are consumed
from b. Then, b and c are reset to 0 tokens, from 0 tokens and 1 token, respectively. Finally, 4
tokens are produced in c; this is the only number of tokens c can contain after t is fired. Right:
marking (3, 0, 4) is reached as the result of firing t.

▶ Note. Every Petri net can be seen as a Petri net with resets whose reset function is null,
R(t) = ∅ for all t. So all definitions for Petri nets with resets naturally extend to Petri nets.

Workflow nets. A workflow net is a triple (P, i, f) where P is a Petri net (P, T, F), i ∈ P

is the initial place, f ∈ P is the final place, and all places and transitions lie on paths from
i to f. A workflow net with resets is a triple (R, i, f) where R = (P, T, F, R) is a Petri net
with resets, and ((P, T, F), i, f) is a workflow net. We say that a workflow net (with resets)
(N , i, f) is acyclic if the Petri net (with resets) N is acyclic. In Figure 1 the Petri net without
transitions t3 and t4 is also a workflow net.

Decision problems. The following problems can be posed with any combination of added
resets, acyclicity, and the workflow restriction.

Reachability in Petri nets
INPUT: A Petri net N , an initial marking m, and a target marking n.
QUESTION: Does there exist a firing sequence σ such that m σ→ n?

Coverability in Petri nets
INPUT: A Petri net N , an initial marking m, and a target marking n.
QUESTION: Does there exist a firing sequence σ such that m σ→ n′, where n′ ≥ n?

To give instances of these problems, we use tuples (N , m, n). The norm of an instance
∥(N , m, n)∥ = ∥N ∥ + ∥m∥ + ∥n∥. Depending on whether the arc weights are written in
unary or binary, the bit size of the input is polynomial in the norm or logarithmic in the
norm, respectively. Unary encoding suffices for our PSPACE lower bound (Theorem 4.2);
see Lemma 4.1. Both of our PSPACE upper bounds (Theorem 3.1 and Theorem 3.2) hold
even when the arc weights are binary-encoded. The undecidability result (Theorem 4.13) is
independent of the encoding.

3 Upper Bounds

3.1 Reachability in Acyclic Workflow Nets with Resets
▶ Theorem 3.1. Reachability in acyclic workflow nets with resets is in PSPACE.

Proof. We rely on the simple property that reachable markings in acyclic workflow nets with
resets are exponentially bounded. Let R = (P, T, F, R) be a given acyclic workflow net with
resets and fix an initial marking m. Consider the workflow net W = (P, T, F) that is just

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:7

R with the resets removed. Suppose from a marking p in R, firing a transition t leads to
marking q. Clearly with the resets removed, firing t from p in W leads to a marking q′ and
q′ ≥ q. Notice also that the removal of resets does not alter whether or not a transition can
be fired, if a transition can be fired from p then it can be fired from any p′ ≥ p. It follows
that if m π→ n in R, then m π→ n′ in W for some n′ ≥ n. With this in mind, it suffices to
argue that any reachable marking in W can be stored in polynomial space, relative to the
norms of m and W.

Let m = ∥R∥ + ∥m∥. We prove that if m π→ n′ in W , then ∥n′∥ ≤ mn+1, where n is the
number of distinct transitions occurring in the firing sequence π. Since W is acyclic, there is
a topological order on (the sources of) the transitions, and π can be permuted to respect
this order (cf. [14]). Every transition in a workflow net must consume at least one token, so
it follows that the i-th distinct transition can be fired at most mi many times, resulting in
a marking of norm at most mi+1. Therefore, the norm of the largest possible marking is
mn+1 and since n ≤ |T |, all markings observed in the (permuted) run can be written down
using polynomially many bits. Hence, reachability in acyclic workflow nets with resets can
be decided using polynomial space. ◀

3.2 Coverability in Acyclic Petri Nets with Resets
▶ Theorem 3.2. Coverability in acyclic Petri nets with resets is in PSPACE.

We fix our attention on an instance (P, m, n) of coverability in acyclic Petri nets with
resets. Our approach can be summarised in two parts. First, we construct another infinite-
state system N by modifying P, that is much like a Petri net. The difference is that the
places of N may contain an “infinite” number of tokens, denoted ω. Importantly, we will
argue that n is coverable from m in P if and only if n is coverable from m in N . Second, we
show that the set of markings reachable from m in N has cardinality exponential in ∥N ∥ and
∥m∥. Together, this allows us to decide, in polynomial space, this instance of coverability in
acyclic Petri nets with resets.

We say that a transition t is generating from a marking r if it only consumes tokens
from places which contain ω tokens, more precisely, for each place p such that •t[p] > 0,
we have r[p] = ω. In other words, a generating transition can only decrease the number of
tokens in some place by resetting it; notice that consuming a finite number of tokens from a
place that contains ω tokens leaves ω tokens is that place. Suppose that p t→ q t→ r, where
t is a generating transition in p, then r ≥ q. Indeed, if some place is reset by t then by
immediately firing t again, the number of tokens in such a place does not decrease below
zero. By definition, the number of tokens in places that t only consumes from is ω, both
before and after firing a generating transition t. Finally, the number of tokens in all other
places can only increase after firing t again. By firing t an arbitrary number of times, the
places where t only produces tokens to will then contain ω many tokens.

Formally, N is the same object as P: it consists of the same sets of places, transitions,
and resets, but its semantics differs. A marking m of N is allowed to have ω tokens in its
places, so m ∈ Nn

ω, where n is the number of places. Recall that ω denotes the first infinite
cardinal, so ω + z = ω for all z ∈ Z. To define the semantics of N , we need to specify the
behaviour of its transitions. Fix a marking m. As is the case in P, a transition t can be
fired in N if, for every place p, m[p] ≥ •t[p]. The marking reached depends on whether t is
generating from m. If t is not generating from m, then its behaviour is defined as it was in
P; first subtract •t, then perform the resets, and lastly add t•. Otherwise, if t is generating
from m, then m t→ n is defined so that

FSTTCS 2023

16:8 Acyclic Petri and Workflow Nets with Resets

n[p] =

ω if p /∈ t◦, and either t•[p] ≥ 1 or m[p] = ω;
t•[p] if p ∈ t◦;
m[p] otherwise.

Intuitively, the transition is applied arbitrarily many times producing ω tokens to some
places, whenever it is possible. Claim 3.3 allows us to instead decide the coverability instance
in N with the abstracted space of configurations.

▷ Claim 3.3. Let m, n ∈ Nn. Then n is coverable from m in P if and only if n is coverable
from m in N .

Recall the norm of a marking ∥v∥ =
∑

v[p]∈N|v[p]|. Claim 3.4, shows that because N is
acyclic, only markings with an exponential norm can be reached. Note, critically, that places
containing ω tokens do not contribute to the norm.

▷ Claim 3.4. Let k be the greatest number of tokens produced by a transition in P and let
C = ∥m∥. If m ∗→ v in N , then ∥v∥ ≤ C · kn.

Proof of Theorem 3.2. By Claim 3.3, it suffices to show that coverability in the modified
acyclic Petri net with resets N can be decided in polynomial space. We can do this by non-
deterministically exploring the markings that are reachable from m in N . Given Claim 3.4,
if v is reachable from m in N , then ∥v∥ ≤ C · kn. These reachable markings can be written
down using polynomially many bits since n is the number of places, k is the greatest number
of tokens produced by a place, and C is the norm of m. Thus, coverability in acyclic Petri
nets with resets is in PSPACE. ◀

4 Lower Bounds

4.1 Coverability in Acyclic Workflow Nets with Resets
With the coverability objective, binary-encoded transitions can be weakly simulated by
unary-encoded transitions. We do this for convenience, since the later reductions can be
more succinctly presented with binary-encoded transitions.

▶ Lemma 4.1. Given be an instance of coverability in acyclic workflow nets with resets
with binary-encoded transitions I = (B, m, n), one can construct, in polynomial time, an
instance of coverability in acyclic workflow nets with resets I ′ = (U , x, y) with unary-encoded
transitions such that I is positive if and only if I ′ is positive.

In this section we prove the following theorem. The proofs of all auxiliary claims and
lemmata can be found in the full version of the paper.

▶ Theorem 4.2. Coverability in acyclic workflow nets with resets is PSPACE-hard.

Proof Approach

We will reduce from the QSAT problem.

QSAT
INPUT: A QBF φ in CNF over variables y1, x1, . . . , yk, xk.
QUESTION: Does ∀y1 ∃x1 . . . ∀yk ∃xk : φ(y1, x1, . . . , yk, xk) evaluate to true?

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:9

Given a Quantified Boolean Formula (QBF) φ in Conjunctive Normal Form (CNF), we
will construct an acyclic workflow net with resets W that mimics the exhaustive approach to
verifying φ. There will be a collection of places that represent an assignment to the variables
y1, x1, . . . , yk, xk. There will be transitions that consume tokens from these places and
produce tokens into a component of W that is used to test whether the current assignment
is satisfying. If the current assignment is satisfying, then one token can be produced to
some final place which counts the number of satisfying assigments observed. The places
representing an assignment are controlled by a series of gadgets that exhaustively iterate
through each possible assignment to the universal variables and allow for nondeterministic
assignment to the existential variables. A marking in which the final place contains 2k

tokens can only be reached if and only if every considered assignment has been checked
to be satisfying. A detailed description of the coverability instance follows. The proof of
correctness consists of two parts.

First, we will verify that the QBF evaluates to true given that coverability holds. We
achieve this via an inductive argument that tracks the simulated assignments to variables
over parts of the run witnessing coverability.

In the second part, we would like to recover a firing sequence for coverability if the QBF
evaluates to true. We achieve this by using (partial) assignments to variables in the QBF to
inform which transitions need be fired to make progress towards the final marking.

Construction of the Acyclic Workflow Net with Resets

For this section, we focus our attention on a QBF

∀y1 ∃x1 ∀y2 ∃x2 . . . ∀yk ∃xk : φ(y1, x1, y2, x2, . . . , yk, xk).

We remark that we can add “dummy” clauses (yi ∨ yi) and (xi ∨ xi) for each i ∈ [1, k] to φ

without changing any valuation.
For the proof of Theorem 4.2, we construct an acyclic workflow net with resets W =

(P, T, F, R) from the QBF; we first list the places and transitions including resets of W.
See Figure 4 for an example.

The places. There is a place for each literal: for every i ∈ [1, k], there is bi for yi, bi for yi,
ai for xi, and ai for xi. Let L denote the set of the literal places. The non-emptiness of the
place bi, for example, will represent assigning false to the variable yi.

There is a place for each clause: for every j ∈ [1, m], there is cj for the j-th clause.
Furthermore, for every i ∈ [1, k], there is dyi for the dummy clause (yi ∨ yi) and there is
dxi

for the dummy clause (xi ∨ xi). All clause places c1, . . . , cm, dx1 , dy1 , . . . , dxk
, dyk

are
distinct; the set comprising them is denoted C. The non-emptiness of a clause place c ∈ C

will represent whether the corresponding clause has been satisfied.
For each i ∈ [1, k], there is a holding place hi and a waiting place wi for each universally

quantified variable, as well as a decision place vi for each existentially quantified variable.
If the holding place hi contains a token, one should think that the universally quantified
variable yi and all subsequent variables xi, yi+1, xi+1, . . . , yk, xk have not yet been assigned.
The waiting place wi will contain a token if the universally quantified variable yi is currently
assigned false. The decision place vi contains a token after the truth assignment of the prior
universally quantified variable yi has completed, but the existentially quantified variable
xi has not yet received a value. The literal places, holding places, waiting places, decision
places, and dummy clause places are grouped into gadgets. There are k universal gadgets
Ui = {hi, wi, bi, bi, dyi

} and k existential gadgets Ei = {vi, ai, ai, dxi
}.

FSTTCS 2023

16:10 Acyclic Petri and Workflow Nets with Resets

Clause places C

Universal
gadget U1

Existential
gadget E1

Universal
gadget U2

Existential
gadget E2

Universal
gadget U3

Existential
gadget E3

h1 h2 h3

w1 w2 w3

v1 v2 v3u⊥
1 u⊥

2 u⊥
3

u⊤
1 u⊤

2 u⊤
3e⊥

1 e⊤
1 e⊥

2 e⊤
2 e⊥

3 e⊤
3

b1 b1 a1 a1 b2 b2 a2 a2 b3 b3 a3 a3

22 21 20

22 21 2022 22 21 21 20 20

ℓy1 ℓy1 ℓx1 ℓx1 ℓy2 ℓy2 ℓx2 ℓx2 ℓy3 ℓy3 ℓx3 ℓx3

dy1 dx1 dy2 dx2 dy3 dx3

c1 c2 c3 c4

s

f

Figure 4 The acyclic workflow net with resets W, drawn without resets for sake of clarity, for the
QBF ∀y1∃x1∀y2∃x2∀y3∃x3 : φ(y1, x1, y2, x2, y3, x3) where φ(y1, x1, y2, x2, y3, x3) = (y1 ∨ x1 ∨ y2) ∧
(x1∨y2∨x2)∧(y2∨x2∨y3)∧(x2∨y3∨x3)∧(y1∨y1)∧(x1∨x1)∧(y2∨y2)∧(x2∨x2)∧(y3∨y3)∧(x3∨x3).
All universal and existential control transitions reset all later occurring places in the universal and
existential gadgets and in all clause places. The loading transitions reset all later occurring dummy
clause places. The satisfaction transition resets all clause places.

Finally, there is a place f which counts the number of assignments that have been verified
to satisfy the QBF.

The initial place i of the workflow is h1 and the final place f of the workflow is f .

The transitions. Here, binary-encoded transitions are used, see Lemma 4.1. The resets will
be specified later.

Inside the universal gadget Ui, there are two universal control transitions u⊥
i and u⊤

i .
Firing u⊥

i corresponds to setting yi to false, and firing u⊤
i corresponds to setting yi to true.

The transition u⊥
i consumes one token from hi, produces one token to wi, produces one

token to vi, and produces 2k−i tokens to bi; the transition u⊤
i consumes one token from wi,

produces one token to vi, and produces 2k−i tokens to bi.

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:11

Inside the existential gadget Ei, there are two existential control transitions e⊥
i and e⊤

i .
Firing e⊥

i corresponds to setting xi to false, and firing e⊤
i corresponds to setting xi to true.

The transition e⊥
i consumes one token from vi, produces 2k−i tokens to ai, and produces

one token to hi+1; similarly, the transition e⊤
i consumes one token from vi, produces 2k−i

tokens to ai, and produces one token to hi+1.
Informally, the i-th universal or existential controlling transitions produce 2k−i tokens to

places bi, bi, ai, and ai so that their values are “remembered” whilst the inner quantified
variables have their assignments exhausted.

Connecting the universal and existential gadgets to the clause places are a series of
loading transitions. There is a loading transition for each literal; for each i ∈ [1, k], there
are transitions ℓyi

, ℓyi
, ℓxi

, and ℓxi
. The loading transition ℓyi

, for example, consumes a
token from the place bi and produces a token to each clause place corresponding to a clause
containing the literal yi, including the dummy clause place dyi

.
There is a satisfaction transition s that consumes a token from each of the clause places

and produces a token into a final place f . Intuitively, s can only be fired when all of the
clauses have been satisfied (and f is used to count the number of satisfying assignments).

Ordering places and transitions. The following linear ordering earlier than (denoted ≺) on
P ∪ T shows that W is acyclic:

h1, u⊥
1 , w1, u⊤

1 , b1, b1, v1, e⊥
1 , e⊤

1 , a1, a1, . . . , hk, u⊥
k , wk, u⊤

k , bk, bk, vk, e⊥
k , e⊤

k , ak, ak,

ℓy1 , ℓy1 , ℓx1 , ℓx1 , . . . , ℓyk
, ℓyk

, ℓxk
, ℓxk

, dy1 , dx1 , . . . , dyk
, dxk

, c1, . . . , cm, s, f.

The resets. The universal and existential control transitions reset all later occurring places
in the universal gadgets and existential gadgets and all dummy clause places. This also
includes the places corresponding to the literals; for example, u⊥

i and u⊤
i reset both bi and

bi, so it is always true that either bi and bi is empty.
This effectively forces the universal and existential control transitions to be fired in

sequence: u⊥
1 or u⊤

1 , then e⊥
1 or e⊤

1 , then u⊥
2 or u⊤

2 , etc., until e⊥
k or e⊤

k is fired.
The loading transitions reset all later occurring dummy clause places. For example, ℓyi

resets dxi
, dyi+1 , dxi+1 , . . . , dyk

, dxk
. Similarly, this forces the loading transitions to also be

fired in sequence: ℓy1 or ℓy1 , then ℓx1 or ℓx1 , then ℓy2 or ℓy2 , until ℓxk
or ℓxk

is fired. This is
due to the fact that all dummy places must be non-empty to fire the satisfaction transition.

Finally, the satisfaction transition resets all clause places. It could be the case that a
clause contains two true literals under an assignment, so the clause place contains two tokens.
It is necessary to clear such a place. Note that the final place f cannot be reset.

Coverability instance (W, m, n). We have just defined the acyclic workflow net with resets
W. The initial marking m only has one token in the initial place; m[h1] = 1 and, for all
p ∈ P \ {h1}, m[p] = 0. The target marking n only has 2k tokens in the final place; n[f] = 2k

and, for all p ∈ P \ {f}, n[p] = 0.

Part One: Coverability implies QBF is true

We would like to prove an inductive statement of the following, informally described, kind.
Consider any run from the initial marking that covers the target marking. Let σ be an infix
of this run from p to q, and let i be a number in [0, k] such that 2i divides p[f] and that
q[f] = p[f] + 2i. This means that σ fires the satisfaction transition, s, 2i many times. Then
the following (partial) QBF is true:

FSTTCS 2023

16:12 Acyclic Petri and Workflow Nets with Resets

∀yk−i+1 ∃xk−i+1 . . . ∀yk ∃xk : φ(β1, α1, . . . , βk−i, αk−i, yk−i+1, xk−i+1, . . . , yk, xk).

Here (β1, α1, . . . , βk−i, αk−i) ∈ {0, 1}2(k−i) are determined by p.
To realise this plan, we need several ingredients. For the base case of the induction, i = 0:

σ only fires s once. We will determine (β1, α1, β2, α2, . . . , βk, αk) ∈ {0, 1}2k based on p, in
particular on which of the places bi and bi, as well as ai and ai, are non-empty in p. Note
that it might not be sufficient to consider only the marking p since this could be, for instance,
the initial marking m, which has all places empty, bar h1. So the “existential decisions” that
determine α1, α2, . . . , αk need to be found from a prefix of σ.

For the inductive step, i > 0: the infix σ fires the satisfaction transition 2i times. We
will split σ in two: σ0 and σ1. We will use the inductive hypothesis on both subruns. For
this to work, we will show that the partial assignments

(β1, α1, . . . , βk−i+1, αk−i+1) ∈ {0, 1}2(k−i+1) and

(β′
1, α′

1, . . . , β′
k−i+1, α′

k−i+1) ∈ {0, 1}2(k−i+1),

which are determined based on each half of the run, satisfy the constraints

β1 = β′
1, α1 = α′

1, . . . , βk−i = β′
k−i, αk−i = α′

k−i, βk−i+1 = 0, and β′
k−i+1 = 1.

Informally speaking, these partial assignments are complementary with respect to the i-th
innermost universally quantified variable. Note that the index variable i is reused in a variety
of contexts throughout the following claims.

Properties of markings.

▷ Claim 4.3. If v is reachable from m, then for every i ∈ [1, k], v[bi] = 0 or v[bi] = 0, and
v[ai] = 0 or v[ai] = 0.

▷ Claim 4.4. If p t→ q, then q[f] − p[f] ∈ {0, 1}.

Let us define, for each i ∈ [1, k], two functions gi, g′
i : NP → N that map a marking to a

natural number. We will use these functions to define a collection of good markings.

gi(v) := v[f] + v[bi] + v[bi] + v[dyi
] +

i∑
j=1

2k−j · (2v[hj] + v[wj] + v[vj]) − 2k−i · v[vi]

g′
i(v) := v[f] + v[ai] + v[ai] + v[dxi] +

i∑
j=1

2k−j · (2v[hj] + v[wj] + v[vj])

▶ Definition 4.5 (Good marking). A marking v is good if for each i ∈ [1, k], gi(v) = 2k and
g′

i(v) = 2k. A marking is bad if it is not good.

Roughly speaking, a marking is good if no tokens in the universal gadgets Ui and no
tokens in the existential gadgets Ei have been lost due to a reset. We discuss good markings
in more detail in the full version of the paper.

▷ Claim 4.6. Suppose p t→ q, then gi(p) ≥ gi(q) and g′
i(p) ≥ g′

i(q) for each i ∈ [1, k].

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:13

▷ Claim 4.7. Suppose p t→ q, where p is reachable from m. If q is good, then p is good.

Given Claim 4.7 and since the target marking n is good, only good markings can be
observed on a covering run from the initial marking m. From this, we know that if a bad
marking is ever reached, the target marking cannot be covered.

▷ Claim 4.8. If m π→ n′ where n′ ≥ n, then n′ = n.

The following claim shows that resetting any non-empty place in any of the universal or
existential gadgets results in a bad marking. Recall ≺, the previously defined earlier than
ordering of places and transitions.

▷ Claim 4.9. Suppose p t→ q where p is reachable and t ∈ {u⊥
i , u⊤

i , e⊥
i , e⊤

i : i ∈ [1, k]}. If
there exists p ∈ U1 ∪ E1 ∪ · · · ∪ Uk ∪ Ek such that t ≺ p and p[p] ≥ 1, then q is bad.

Extracting Assignments from Markings

We will now explain the relationship between markings and partial assignments. For a good
marking v, let val(v) be the vector (β1, α1, β2, α2, . . . , βk, αk) ∈ {0, 1, ?}2k such that

βi :=

0 v[bi] ≥ 1
1 v[bi] ≥ 1
? otherwise,

and αi :=

0 v[ai] ≥ 1
1 v[ai] ≥ 1
? otherwise.

The intention is that, for every i ∈ [1, k], βi and αi correspond to the values of the Boolean
variables yi and xi, respectively. Note that Claim 4.3 ensures that βi and αi are well-defined,
since, for example, bi and bi cannot both be non-empty in a reachable marking. Notice that
not all good markings correspond to fully defined variable assignments, but only those in
which all hi and vi are empty. We will see that p[hi] = p[vi] = 0 implies that either bi or bi

and either ai or ai are non-empty, except for right at the end, for example when the target
marking n is reached. To take an example, if hi contains a token, then neither bi nor bi will
contain a token. Informally, this can be interpreted as thinking that the Boolean variable yi

has not yet been assigned its value; only after firing u⊥
i does it first get assigned false (before

later being assigned true when u⊤
i is eventually fired).

Recall that C ⊆ P is the collection of clause places. We say that a marking v is clause-free
if v[c] = 0 for all c ∈ C.

▶ Lemma 4.10. Fix i ∈ [0, k] and suppose p σ→ q and the following properties hold:
(1) p is a clause-free marking that is reachable from m,
(2) n is coverable from q,
(3) 2i divides p[f] and q[f] = p[f] + 2i,
(4) the last transition of σ is s,
(5) for all j ∈ [1, k − i], p[bi] + p[bi] ≥ 2i and p[ai] + p[ai] ≥ 2i,
(6) if i > 0, then p[hk−i+1] = 1, and
(7) if i > 0, then, for all p ∈ Uk−i+1 ∪ Ek−i+1 ∪ · · · ∪ Uk ∪ Ek except hk−i+1, p[p] = 0.
Let val(p) = (β1, α1, . . . , βk, αk). Then the following QBF evaluates to true:

∀yk−i+1 ∃xk−i+1 . . . ∀yk ∃xk : φ(β1, α1, . . . , βk−i, αk−i, yk−i+1, xk−i+1, . . . , yk, xk).

Moreover, σ does not fire transitions u⊥
1 , u⊤

1 , e⊥
1 , e⊤

1 , . . . , u⊥
k−i, u⊤

k−i, e⊥
k−i, e⊤

k−i.

FSTTCS 2023

16:14 Acyclic Petri and Workflow Nets with Resets

Part Two: QBF is true implies Coverability

Here we would like to recover a firing sequence for coverability if the QBF evaluates to true.
Depending on the current assignment of the universally quantified variables, y1, . . . yi, and
the already selected assignments of the existentially quantified variables x1, . . . , xi−1, one
can use the truth of the QBF to determine whether xi is assigned true or false, this informs
which of the next existentially quantified transitions to fire.

▶ Lemma 4.11. Fix i ∈ [0, k] and suppose that for some β1, α1, . . . , βk−i, αk−i ∈ {0, 1}, the
following QBF evaluates to true.

∀yk−i+1 ∃xk−i+1 . . . ∀yk ∃xk : φ(β1, α1, . . . , βk−i, αk−i, yk−i+1, xk−i+1, . . . , yk, xk)

Let p be a marking such that, if i > 0 then p[hk−i+1] = 1, and for every j ∈ [1, k − i],
(1) p[bj] ≥ 2i if βj = 0, otherwise p[bj] ≥ 2i if βj = 1,
(2) p[aj] ≥ 2i if αj = 0, otherwise p[aj] ≥ 2i if αj = 1.
Then there exists a firing sequence σ such that p σ→ q where q is a marking such that
q[f] = p[f] + 2i and for every j ∈ [1, k − i],
(a) q[bj] + q[bj] = q[bj] + q[bj] − 2i,
(b) q[aj] + q[aj] = q[aj] + q[aj] − 2i, and
(c) q[hj] = p[hj], q[wj] = p[wj], and q[vj] = p[vj].

Completing the proof

Proof of Theorem 4.2. The reduction from QSAT is already outlined above. Given an
instance of QSAT that consists of a QBF φ over y1, x1, . . . , yk, xk, there exists an instance of
coverability in acyclic workflow nets with resets (W, m, n) such that ∀y1 ∃x1 . . . ∀yk ∃xk :
φ(y1, x1, . . . , yk, xk) evaluates to true if and only if m ∗→ n′ in W where n′ ≥ n. The
backwards implication is given by Lemma 4.10 with i = k, p = m, and q = n′. The forwards
implication is given by Lemma 4.11 with i = k. ◀

▶ Corollary 4.12. Reachability in acyclic workflow nets with resets and coverability in both
acyclic Petri nets with resets and acyclic workflow net with resets are all PSPACE-complete.

4.2 Reachability in Acyclic Petri Nets with Resets
In this section, we will prove that reachability in acyclic Petri nets with resets is undecidable.
We reduce from reachability in Petri nets with zero tests, a problem that is well-known to be
undecidable [1], following from the undecidability of reachability in counter machines [21]. A
Petri net with zero tests is a tuple (P, T, F, Z), where (P, T, F) is a Petri net and Z : T → 2P

is a function defining the zero-test edges. A transition t ∈ T zero-tests a place p ∈ P if
p ∈ Z(t). Then t can be fired only if p is empty. As is the case for resets, an acyclic Petri
net with zero tests does not subject zero-test edges to the acyclicity restriction.

▶ Theorem 4.13. Reachability in acyclic Petri nets with resets is undecidable.

The reduction is split into two parts. Lemma 4.14 shows how acyclic Petri nets with zero
tests can simulate (not necessarily acyclic) Petri nets with zero tests. This requires using
zero tests and transitions that do not consume tokens and transitions that do not produce
tokens. Then, in Lemma 4.15, we show how acyclic Petri nets with resets can simulate acyclic
Petri nets with zero tests. This requires some additional places and relies on the reachability
objective to ensure that zero tests are simulated faithfully. The proof is very similar to the
proof that reachability in Petri nets with resets is undecidable. We follow through with the
construction to make it clear that acyclicity is preserved.

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:15

G

cs ps

ssim
?= 0

ct pt

tsim
?= 0

cu pu

usim
?= 0

tcon tpro

a

b?= 0 2

?=0

a

t

b

2 ?= 0

s u

Figure 5 Suppose there is a Petri net with zero tests with transitions s, t, and u. Left: part of
the Petri net with zero tests concerning the transition t. The consumptions and productions of s

and u are not shown for simplicity. This Petri net is not acyclic since t both consumes 1 token from
and produces 1 token to a. Right: part of the equivalent acyclic Petri net with zero tests. Places
in G are shown, as well as transitions ssim, tsim, and usim for choosing the next transition to be
fired. Since the consumptions and productions of s and u are not shown for simplicity, we also omit
the corresponding scon, spro, ucon, and upro. Importantly, zero-test edges between tcon and b, and
between tpro and ct are not subject to the acyclicity restriction. Zero-test edges incident to ssim,
tsim, and usim indicate that all places in G are zero-tested.

▶ Lemma 4.14. The reachability problem in Petri nets with zero tests is reducible in
logarithmic space to the reachability problem in acyclic Petri nets with zero tests.

Proof. Let P = (P, T, F, Z) be a Petri net with zero tests. We will construct an acyclic
Petri net with zero tests Z = (P ′, T ′, F ′, Z ′). For every transition t ∈ T , we will add two
additional places ct and pt to the set of places. Formally, we define G = {ct, pt | t ∈ T}
and P ′ = P ∪ G. For every transition t ∈ T , we create three transitions tsim, tcon, and tpro,
so T ′ = {tsim, tcon, tpro | t ∈ T}. The intention is that firing t ∈ T will be simulated by
firing tsim, tcon, and tpro successively. Figure 5 illustrates the construction. To define the
transitions in detail, fix t ∈ T .

The transition tsim simulates choosing t to be the next transition. Formally, t•
sim[ct] =

t•
sim[pt] = 1, and Z ′(tsim) = G. Note that to fire tsim all places in G must be empty, and

upon firing tsim, a token is placed in ct and pt. Thus no other transition ssim, tsim, or
usim can be fired until the tokens in ct and pt are consumed.
The transition tcon performs the token consumption and zero tests of t. Formally,
•tcon[ct] = 1, Z ′(tcon) = Z(t), and •tcon[p] = •t[p] for every p ∈ P . The consumption of
the token from ct indicates that the consumptions and zero tests of t have been actioned.
The transition tpro performs the token productions of t. Formally, •tpro[pt] = 1,
Z ′(tcon) = {ct}, and t•

pro[p] = t•[p], for each p ∈ P . The consumption of the token from
pt indicates that the productions of t have been actioned. The zero test on ct forces a
firing order that mimics the semantics of firing t.

Indeed, after firing tsim the only transition that can be fired is tcon since all other
transitions require ct to be empty or require a place in G \ {ct} to be non-empty. Then, after
firing tcon the only transition that can be fired is tpro since all other transitions either require
pt to be empty, or require a place in G \ {pt} to be non-empty.

Given a marking v over P , define v′ over P ′ such that v′[p] = v[p] for all p ∈ P and
v′[q] = 0 for all q ∈ G. It follows that m ∗→ n in P if and only if m′ ∗→ n′ in Z. Indeed, runs
in P have equivalent runs in Z, where each firing of a transition t is replaced with the firing
of transitions tsim, then tcon, then tpro. Conversely, as previously detailed, runs in Z must
fire tsim, tcon, and tpro successively for some transition t ∈ T .

FSTTCS 2023

16:16 Acyclic Petri and Workflow Nets with Resets

It remains to observe that Z is acyclic. Consider the following ordering: places in G

occur before production transitions (such as tpro), which occur before places in P , which
occur before consumption transitions (such as tcon). ◀

▶ Lemma 4.15. The reachability problem for acyclic Petri nets with zero tests is reducible
in logarithmic space to the reachability problem for acyclic Petri nets with resets.

Proof of Lemma 4.15. Via leveraging the reachability objective, the idea is to add a copy
of each place that will make sure zero tests are simulated faithfully.

Let Z = (P, T, F, Z) be an acyclic Petri net with zero tests. We will construct an acyclic
Petri net with resets R = (P ′, T ′, F ′, R). For each place p ∈ P we will add a copy place
cp, so P ′ = {p, cp : p ∈ P}. For each transition t ∈ T , there will be a corresponding
transition t′ ∈ T ′ with the following behaviour. Firstly, t′ will mimic the token consumption
and token production between the original places and their copies, so for every place p,
•t′[p] = •t′[cp] = •t[p] and t′•[p] = t′•[cp] = t•[p]. Secondly, suppose a place p ∈ P is
zero-tested by t ∈ T , i.e. p ∈ Z(t). Then t′ ∈ T ′ will reset p ∈ P ′ but not the copy cp ∈ P ′.
Note that none of the copy places are ever reset.

Given the initial marking m and target marking n over P , we define m′ and n′ over
P ′ so that m[p] = m′[p] = m′[cp] and n[p] = n′[p] = n′[cp]. In other words, the markings
over P ′ allocate the same number of tokens to the copy places as their original counterparts.
Suppose m′ ∗→ n′ in R. Then the invariant m′[cp] − m′[p] ≤ n′[cp] − n′[p] holds for all p ∈ P .
This inequality is strict only if at some point during the run, a transition is fired that resets
a non-empty place. Therefore, m ∗→ n in Z if and only if m′ ∗→ n′ in R. Indeed, a zero
test on p succeeds in Z if and only if its corresponding reset has no effect, this occurs when
p and cp are empty. To conclude, it is clear that this is a logarithmic-space reduction and
that the acyclicity of the consumption and production arcs between places and transitions is
preserved in R. ◀

▶ Remark. Lemma 4.14 does not hold with the workflow properties but Lemma 4.15 does;
neither holds for the coverability objective.

Proof of Theorem 4.13. Combine Lemma 4.14, Lemma 4.15, and the fact that reachability
in Petri nets with zero tests is undecidable. ◀

References
1 Toshiro Araki and Tadao Kasami. Some decision problems related to the reachability problem

for Petri nets. Theor. Comput. Sci., 3(1):85–104, 1976. doi:10.1016/0304-3975(76)90067-0.
2 Michael Blondin, Christoph Haase, Filip Mazowiecki, and Mikhail A. Raskin. Affine extensions

of integer vector addition systems with states. Log. Methods Comput. Sci., 17(3), 2021.
doi:10.46298/lmcs-17(3:1)2021.

3 Michael Blondin, Filip Mazowiecki, and Philip Offtermatt. The complexity of soundness in
workflow nets. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, pages 20:1–20:13.
ACM, 2022. doi:10.1145/3531130.3533341.

4 Michael Blondin, Filip Mazowiecki, and Philip Offtermatt. Verifying generalised and structural
soundness of workflow nets via relaxations. In Sharon Shoham and Yakir Vizel, editors,
Computer Aided Verification – 34th International Conference, CAV 2022, Haifa, Israel, August
7-10, 2022, Proceedings, Part II, volume 13372 of Lecture Notes in Computer Science, pages
468–489. Springer, 2022. doi:10.1007/978-3-031-13188-2_23.

https://doi.org/10.1016/0304-3975(76)90067-0
https://doi.org/10.46298/lmcs-17(3:1)2021
https://doi.org/10.1145/3531130.3533341
https://doi.org/10.1007/978-3-031-13188-2_23

D. Chistikov, W. Czerwiński, P. Hofman, F. Mazowiecki, and H. Sinclair-Banks 16:17

5 Michael Blondin and Mikhail A. Raskin. The complexity of reachability in affine vector addition
systems with states. Log. Methods Comput. Sci., 17(3), 2021. doi:10.46298/lmcs-17(3:
3)2021.

6 Dmitry Chistikov, Christoph Haase, and Simon Halfon. Context-free commutative grammars
with integer counters and resets. Theor. Comput. Sci., 735:147–161, 2018. Special issue for
RP 2014. doi:10.1016/j.tcs.2016.06.017.

7 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. J. ACM, 68(1):7:1–7:28, 2021.
doi:10.1145/3422822.

8 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

9 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability
and undecidability. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors,
Automata, Languages and Programming, 25th International Colloquium, ICALP’98, Aalborg,
Denmark, July 13-17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer Science,
pages 103–115. Springer, 1998. doi:10.1007/BFb0055044.

10 Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann, Hagen Völzer,
and Karsten Wolf. Instantaneous soundness checking of industrial business process models. In
Umeshwar Dayal, Johann Eder, Jana Koehler, and Hajo A. Reijers, editors, Business Process
Management, 7th International Conference, BPM 2009, Ulm, Germany, September 8-10, 2009.
Proceedings, volume 5701 of Lecture Notes in Computer Science, pages 278–293. Springer,
2009. doi:10.1007/978-3-642-03848-8_19.

11 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with Dickson’s lemma. In Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada, pages 269–278. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.39.

12 Alain Finkel, Pierre McKenzie, and Claudine Picaronny. A well-structured framework for
analysing Petri net extensions. Inf. Comput., 195(1-2):1–29, 2004. doi:10.1016/j.ic.2004.
01.005.

13 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 – Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

14 Kunihiko Hiraishi and Atsunobu Ichikawa. A class of Petri nets that a necessary and sufficient
condition for reachability is obtainable. Transactions of the Society of Instrument and Control
Engineers, 24(6):635–640, 1988. doi:10.9746/sicetr1965.24.635.

15 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multithreaded
program verification. ACM Trans. Program. Lang. Syst., 36(4):14:1–14:29, 2014. doi:10.
1145/2629608.

16 Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wę-
grzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Op-
timality. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Col-
loquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 131:1–131:20, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2023.131.

17 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

FSTTCS 2023

https://doi.org/10.46298/lmcs-17(3:3)2021
https://doi.org/10.46298/lmcs-17(3:3)2021
https://doi.org/10.1016/j.tcs.2016.06.017
https://doi.org/10.1145/3422822
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/978-3-642-03848-8_19
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1016/j.ic.2004.01.005
https://doi.org/10.1016/j.ic.2004.01.005
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.9746/sicetr1965.24.635
https://doi.org/10.1145/2629608
https://doi.org/10.1145/2629608
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://doi.org/10.1109/FOCS52979.2021.00121

16:18 Acyclic Petri and Workflow Nets with Resets

18 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

19 Duan Li, Xiaoling Sun, Jianjun Gao, Shenshen Gu, and Xiaojin Zheng. Reachability determ-
ination in acyclic Petri nets by cell enumeration approach. Autom., 47(9):2094–2098, 2011.
doi:10.1016/j.automatica.2011.06.017.

20 R. J. Lipton. The reachability problem requires exponential space. Research Report. Department
of Computer Science, Yale University, 1976. URL: http://www.cs.yale.edu/publications/
techreports/tr63.pdf.

21 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
22 C. A. Petri. Introduction to general net theory. In Wilfried Brauer, editor, Net Theory and

Applications, Proceedings of the Advanced Course on General Net Theory of Processes and
Systems, Hamburg, Germany, October 8-19, 1979, volume 84 of Lecture Notes in Computer
Science, pages 1–19. Springer, 1979. doi:10.1007/3-540-10001-6_21.

23 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

24 Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset
Petri nets. In Petr Hlinený and Antonín Kucera, editors, Mathematical Foundations of
Computer Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings, volume 6281 of Lecture Notes in Computer Science, pages
616–628. Springer, 2010. doi:10.1007/978-3-642-15155-2_54.

25 Ferucio Laurentiu Tiplea, Corina Bocaneala, and Raluca Chirosca. On the complexity of
deciding soundness of acyclic workflow nets. IEEE Trans. Syst. Man Cybern. Syst., 45(9):1292–
1298, 2015. doi:10.1109/TSMC.2015.2394735.

26 Ferucio Laurentiu Tiplea and Dan C. Marinescu. Structural soundness of workflow nets is
decidable. Inf. Process. Lett., 96(2):54–58, 2005. doi:10.1016/j.ipl.2005.06.002.

27 Rüdiger Valk. Self-modifying nets, a natural extension of Petri nets. In Giorgio Ausiello and
Corrado Böhm, editors, Automata, Languages and Programming, Fifth Colloquium, Udine,
Italy, July 17-21, 1978, Proceedings, volume 62 of Lecture Notes in Computer Science, pages
464–476. Springer, 1978. doi:10.1007/3-540-08860-1_35.

28 Wil M. P. van der Aalst. The application of Petri nets to workflow management. J. Circuits
Syst. Comput., 8(1):21–66, 1998. doi:10.1142/S0218126698000043.

29 Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede, Natalia Sidorova,
H. M. W. Verbeek, Marc Voorhoeve, and Moe Thandar Wynn. Soundness of workflow nets
with reset arcs. Trans. Petri Nets Other Model. Concurr., 3:50–70, 2009. doi:10.1007/
978-3-642-04856-2_3.

30 Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede, Natalia Sidorova,
H. M. W. Verbeek, Marc Voorhoeve, and Moe Thandar Wynn. Soundness of workflow
nets: classification, decidability, and analysis. Formal Aspects Comput., 23(3):333–363, 2011.
doi:10.1007/s00165-010-0161-4.

https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/j.automatica.2011.06.017
http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://www.cs.yale.edu/publications/techreports/tr63.pdf
https://doi.org/10.1007/3-540-10001-6_21
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/978-3-642-15155-2_54
https://doi.org/10.1109/TSMC.2015.2394735
https://doi.org/10.1016/j.ipl.2005.06.002
https://doi.org/10.1007/3-540-08860-1_35
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/978-3-642-04856-2_3
https://doi.org/10.1007/978-3-642-04856-2_3
https://doi.org/10.1007/s00165-010-0161-4

	1 Introduction
	2 Preliminaries
	3 Upper Bounds
	3.1 Reachability in Acyclic Workflow Nets with Resets
	3.2 Coverability in Acyclic Petri Nets with Resets

	4 Lower Bounds
	4.1 Coverability in Acyclic Workflow Nets with Resets
	4.2 Reachability in Acyclic Petri Nets with Resets

