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Abstract
Rational relations on words form a well-studied and often applied notion. While the definition in
trace monoids is immediate, they have not been studied in this more general context. A possible
reason is that they do not share the main useful properties of rational relations on words. To
overcome this unfortunate limitation, this paper proposes a restricted class of rational relations,
investigates its properties, and applies the findings to systems equipped with a pushdown that does
not hold a word but a trace.
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1 Introduction

Rational relations form a classical and well-studied concept (cf. [15, 14, 4, 17]) that embraces
homomorphisms, inverse homomorphisms as well as substitutions. Rational relations appear
in the study of automatic structures [1, 18, 32], rational Kripke frames [3], graph databases [2],
the representation of infinite graphs and automata [19, 27, 35, 28, 8, 7], and natural language
processing [20]. One particular application of rational relations can be found in the theory
of pushdown systems: the reachability relation is prefix recognizable [10, 16] and therefore
a rational relation which implies that forwards and backwards reachability preserve the
regularity of a set of configurations ([6] provides an alternative proof for the backwards
reachability).

Also the second theme of this paper has a long and diverse research history starting
with Cartier and Foata’s work in combinatorics [9] and Mazurkiewicz’s ideas about the
semantics of concurrent systems [26] that he modelled as equivalence classes of words, called
traces today. Much of the work in computer science has concentrated on recognizable sets
of traces, on model checking and synthesis problems, and on combinatorics, see [11] for a
comprehensive presentation of the theory of traces; many of these results have been extended
to more general concurrent systems like concurrent automata (cf., e.g. [13]), message passing
automata [25], and other abstract models of distributed automata (e.g. [12, 5]).

Recently, Köcher and the current author considered a generalization of pushdown systems
where the stack’s contents is not a word, but a trace [23]; these systems were called cooperating
multi-pushdown systems or cPDS. Our main results state that the forwards reachability
relation preserves the rationality and the backwards reachability the recognizability of sets
of configurations; these proofs are fundamentally different since the former analyses and
simplifies runs of the cPDS while the latter generalises the construction by Bouajjani et
al. [6]. While the reachability relation of a classical pushdown system is prefix recognizable,
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20:2 A Class of Rational Trace Relations Closed Under Composition

we also observed that this is not the case for cPDS. In addition, Köcher [22] inferred from
the main result that the reachability relation is a rational trace relation, but it was not clear
whether this rationality could be used to prove the preservation results as in the word case.

In this paper, we first observe that rational trace relations do not compose which leads
to the definition of left-closed rational (called lc-rational from now on) trace relations. The
main body of this paper studies their properties, in particular Section 4 shows that the
class of lc-rational trace relations is closed under composition, preserves rationality under
right- and recognizability under left-application, and is closed under certain concatenations.
In Section 5, these properties are used to show that the reachability relation of a cPDS is
lc-rational. This allows a uniform proof of the preservation results from [23]. Section 6 returns
to the theory of lc-rational relations and characterises them in the spirit of Nivat’s theorem
for rational word relations; this section also demonstrates that the lc-rationality of a rational
relation is not even semi-decidable. In the final Section 7, we return to the consideration of
rational trace relations: we characterise them as compositions of the inverse of an lc-rational
relation with an lc-rational relation, we show that their left- and right-application transforms
recognizable sets into rational ones, and finally provide the class of closed-rational trace
relations that enjoys all nice properties of rational word relations: closure under composition,
preservation of rationality and recognizability under left- and right-application, invertability,
and a Nivat-style characterisation.

2 Preliminaries

A dependence alphabet is a pair (Σ, D) where Σ is some finite alphabet and D ⊆ Σ × Σ is a
symmetric and irreflexive relation on Σ, called the dependence relation. We fix a dependence
alphabet (Σ, D) throughout this paper. The independence relation I is the irreflexive part of
its complement, i.e., I = {(a, b) ∈ Σ2 | (a, b) /∈ D, a ̸= b}. For two words u, v ∈ Σ∗, we write
(u, v) ∈ I or u I v if, (a, b) ∈ I for any two letters a and b occurring in u and v, resp..

Let ∼ ⊆ Σ∗ × Σ∗ denote the least congruence on the free monoid Σ∗ satisfying ab ∼ ba

for all (a, b) ∈ I. We therefore have u ∼ v iff u can be transformed into v by exchanging the
order of consecutive independent letters. Then the quotient M(Σ, D) = Σ∗/∼ is a monoid
with multiplication [u] · [v] = [uv] where [u] denotes the equivalence class of the word u with
respect to the congruence ∼. Usually, we denote the trace monoid M(Σ, D) by M. The
mapping η : Σ∗ → M : u 7→ [u] is a monoid homomorphism (thus, [u] and η(u) are synonyms).

Let M be a monoid. A set L ⊆ M is rational if it can be constructed from finite subsets
of M using the operations union, multiplication, and Kleene star (i.e., generated submonoid).
Rational subsets of a finitely generated free monoid are called regular languages; by Kleene’s
theorem, they coincide with the languages accepted by deterministic finite automata [21].

Note that also M ×M is a monoid (with componentwise multiplication). Rational subsets
of this monoid are called rational relations on M . For M = Σ∗, we will speak of rational
word relations, for M = M, of rational trace relations.

Let φ : M → N be a monoid homomorphism into the monoid N . Then we have the
following (cf. [31, Prop. 6.2] and [34, Prop. II.1.17]):

(i) If K ⊆ M is rational, then φ(K) ⊆ N is rational.
(ii) If L ⊆ N is rational and φ is surjective, then there exists a rational set K ⊆ M with

φ(K) = L.
In particular, assuming φ to be surjective, we have that L ⊆ N is rational if, and only if, it
is the φ-image of some rational subset of M . In this paper, we will need the following two
special cases of this characterisation of rational subsets of N .
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(i) The homomorphism η : Σ∗ → M is surjective. Hence a set L ⊆ M of traces is rational
if, and only if, there exists a regular language L ⊆ Σ∗ with η(L) = L.

(ii) The mapping η2 : Σ∗ × Σ∗ → M × M : (u, v) 7→ ([u], [v]) is a surjective homomorphism.
Hence a trace relation R ⊆ M × M is rational if, and only if, there exists a rational
word relation R ⊆ Σ∗ × Σ∗ with η2(R) = R.
From now on, we will abuse notation and write η(R) for η2(R).

Let, again, M be a monoid. A set L ⊆ M is recognizable if there exists a homomorphism
ψ : M → S into some finite monoid S such that L = ψ−1ψ(L).1 If M is a finitely generated
free monoid, then L is recognizable iff L is regular (cf. [34, Thm. II.2.1]).

Let φ : M → N be a surjective homomorphism into a monoid N , and L ⊆ N . Then
L is recognizable if, and only if, φ−1(L) ⊆ M is recognizable (cf. [31, Prop. 6.3] for the
implication “⇒” and [34, Cor. II.2.2 and II.2.12] for the equivalence). In this paper, we will
need the following special case. The homomorphism η : Σ∗ → M is surjective. Therefore, a
set L ⊆ M of traces is recognizable if, and only if, the language η−1(L) ⊆ Σ∗ is regular.

Let M be a monoid, L ⊆ M a subset of M , and R ⊆ M × M a binary relation on M .
Then we set

LR = {y ∈ M | ∃x ∈ L : (x, y) ∈ R} and RL = {x ∈ M | ∃y ∈ L : (x, y) ∈ R} .

If R is (the graph of) a function f : M → M , then LR is the image of L under f , i.e.,
LR = {f(x) | x ∈ L}, and RL is the preimage of L under f , i.e., RL = {x ∈ M | f(x) ∈ L}.
Often, authors write LR for LR and RL for RL; I prefer this notation as it stresses the
different roles played by the set L and the relation R.

The mapping 2M → 2M : L 7→ LR is the right-application of R while the mapping
2M → 2M : L 7→ RL is the left-application of R. Note that for R−1 = {(y, x) | (x, y) ∈ R},
we have RL = LR−1 and, since (R−1)−1 = R, also R−1

L = LR.
For two sets K,L ⊆ M , let K ≤rat L if there exists a rational relation R ⊆ M ×M such

that K = LR. Since the relation IdΣ∗ = {(u, u) | u ∈ Σ∗} is rational, the relation ≤rat is
reflexive.

In this paper, we will regularly consider subsets of and binary relations on Σ∗ and M,
resp. I hope to simplify understanding by using the following conventions:

Subsets of Σ∗ are denoted by plain capital letters K and L; binary relations on Σ∗ are
similarly denoted R, R1, and R2.
Subsets of M are denoted by curly capital letters K and L; binary relations on M are
similarly denoted R, R1, and R2.

3 Rational and left-closed word relations

We first recall four properties of rational word relations. These properties form the basis of
many applications in proofs that use rational relations.

▶ Theorem 3.1. Let R,R1, R2 ⊆ Σ∗ × Σ∗ be rational. Then
(R1) Left- and right-application of rational relations preserve regularity: if L ⊆ Σ∗ is regular,

then LR and RL are regular [4, Cor. III.4.2].

1 In [34], Sakarovitch gives another definition of “recognizability”, but he also shows that his definition is
equivalent to the one used in this paper [34, Prop. II.2.1].
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(R2) The composition of rational relations

R1 ◦R2 := {(u,w) ∈ Σ∗ × Σ∗ | ∃v ∈ Σ∗ : u R1 v R2 w}

is rational [4, Thm. III.4.4]. It follows that the relation ≤rat is transitive.
(R3) The inverse of a rational relation R−1 := {(v, u) | (u, v) ∈ R} is rational.
(R4) A relation R′ ⊆ Σ∗ × Σ∗ is rational if, and only if, there exists an alphabet Γ, a regular

language K ⊆ Γ∗, and homomorphisms f, g : Γ∗ → Σ∗ such that R′ = {(f(x), g(x)) |
x ∈ K} [30], [4, Thm. III.3.2] (“Nivat’s theorem”).

By the very definition, property (R3) holds for rational trace relations R ⊆ M2. Also
property (R4) holds for any monoid M in place of Σ∗ and therefore in particular for relations
on the trace monoid M [4, Prop. III.3.4].

The following example shows that (R2) fails for rational trace relations.

▶ Example 3.2. Suppose there are a, b, c, d ∈ Σ with (a, b) ∈ D and (c, d) ∈ I. Consider
the rational word relations R1 = {(ambn, cmdn) | m,n ≥ 1} = {(a, c)}+ · {(b, d)}+ and
R2 = {(dncm, bnam) | m,n ≥ 1}. Since (c, d) ∈ I, we get dncm ∼ cmdn for any m,n ≥ 0 and
therefore

R1 := η(R1) = {([ambn], [cmdn]) | m,n ≥ 1} and
R2 := η(R2) = {([dncm], [bnam]) | m,n ≥ 1}

= {([cmdn], [bnam]) | m,n ≥ 1} .

Hence R := R1 ◦R2 = {([ambn], [bnam]) | m,n ≥ 1}. Suppose the trace relation R is rational.
Then there exists a rational word relation R with η(R) = R. Since (a, b) ∈ D, ambn is the
only word w with η(w) = [ambn] (similarly, [bnam] = {bnam}). Hence η(R) = R implies
R = {(ambn, bnam) | m,n ≥ 1}. But this relation is not rational which can easily be shown
using Theorem 3.1 and pumping in the language K provided there. Hence the composition R
of the two rational trace relations R1 and R2 is not rational.

▶ Remark. In a finitely generated free monoid Σ∗, a set is rational if, and only if, it
is recognizable. In the trace monoid, any recognizable set is rational, but the converse
implication does not hold, i.e., rationality and recognizability do not coincide (e.g., L = {[ab]}∗

with (a, b) ∈ I is rational, but not recognizable since η−1(L) = {u ∈ {a, b}∗ : |u|a = |u|b}).
Hence, there are two possible versions of (R1) for the trace monoid; later, we will see that
none of them holds (Lemma 4.9).

We aim at a class CM of rational trace relations that is closed under composition. Recall
that a trace relation R is rational if and only if there exists a rational word relation R with
R = η(R). We will therefore first define a class CΣ∗ of rational word relations R that is
closed under composition and satisfies

η(R1 ◦R2) = η(R1) ◦ η(R2) (1)

for any relations R1 and R2 in CΣ∗ (setting CM = {η(R) | R ∈ CΣ∗} will then ensure that
CM is closed under composition, cf. Definition 4.1).

Note that Eq. (1) fails in Example 3.2 since there, R1 ◦ R2 = ∅ and R1 ◦ R2 ̸= ∅. The
reason is that there are words t, u, u′, v′ ∈ Σ∗ such that (t, u) ∈ R1, (u′, v′) ∈ R2, and
u ∼ u′ distinct such that ([t], [v′]) ∈ R1 ◦ R2, but (t, v′) /∈ R1 ◦R2. The following definition
circumvents this problem.
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▶ Definition 3.3. A relation R ⊆ Σ∗ × Σ∗ is left-closed if ∼ ◦R ⊆ R ◦ ∼, i.e.,(
∃u′ ∈ Σ∗ : u ∼ u′ R v′) =⇒

(
∃v ∈ Σ∗ : u R v ∼ v′)

holds for all u, v ∈ Σ∗. The relation R is lc-rational if it is left-closed and rational.

A very simple example is the identity relation IdΣ∗ = {(u, u) | u ∈ Σ∗}: if u ∼ u′ IdΣ∗ v′,
then u′ = v′. Setting v = u, we obtain u IdΣ∗ v = u ∼ u′ = v′. Since this relation is clearly
rational, it is indeed lc-rational. Other examples are Σ∗ × {ε} and {ε} × Σ∗.

▶ Example 3.4. Another, more demanding example, is the superword-relation: u ∈ Σ∗ is a
superword of v ∈ Σ∗ if u = u1v1u2v2 · · ·unvnun+1 and v = v1v2 · · · vn for some n ∈ N and
u1, u2, . . . , un+1, v1, v2, . . . , vn ∈ Σ∗. In this case, we write u ⪰ v. The superword-relation is
rational since ⪰ = {(a, a), (a, ε) | a ∈ Σ}∗.

Now suppose u = x ab y with (a, b) ∈ I and x ba y = u′ ⪰ v′. If v′ = ε, we get u ⪰ ε ∼ v′.
So suppose v′ ̸= ε. Then there are n ∈ N, u1 ∈ Σ∗, u2, . . . , un, v1, v2, . . . , vn ∈ Σ+, and
un+1 ∈ Σ∗ such that v1v2 · · · vn = v′ and u1v1u2v2 · · ·unvnun+1 = u′ = x ab y. This gives
two decompositions of the word u′ into the blocks ui and vi on the one hand, and into the
factors x, ba, and y on the other hand. The factor ba from the second factorization can be
covered by some factor ui, by some factor vi, or it belongs to some consecutive factors ui

and vi or vi and ui+1 of the former factorisation – in any of these cases, we construct a word
v with u ⪰ v ∼ v′ (see appendix). Since ∼ is the least equivalence relation identifying xaby
with xbay for (a, b) ∈ I, this proves that the superword-relation ⪰ is left-closed.

The subword-relation ⪯ is the inverse of the superword-relation. Suppose (a, c) ∈ I and
(a, b), (b, c) ∈ D. Then ca ∼ ac ⪯ abc, but there is no superword of ca that is equivalent
to abc. Hence the subword-relation is not left-closed.

We next show that the class of lc-rational word relations has the properties desired: it is
closed under composition and the homomorphism η commutes with composition.

▶ Proposition 3.5. Let R1, R2 ⊆ Σ∗ × Σ∗.
(i) If R2 is left-closed, then Eq. (1) holds, i.e., η(R1 ◦R2) = η(R1) ◦ η(R2).
(ii) If R1 and R2 are lc-rational, then also R1 ◦R2 is lc-rational.

Proof. To demonstrate the first claim, let R2 be lc-rational. For the inclusion η(R1 ◦R2) ⊆
η(R1) ◦η(R2), let (u,w) ∈ R1 ◦R2. Then there exists v ∈ Σ∗ with u R1 v R2 w and therefore
[u] η(R1) [v] η(R2) [w] implying ([u], [w]) ∈ η(R1) ◦ η(R2).

For the converse inclusion, let (x, z) ∈ η(R1) ◦ η(R2). There is some trace y with
x η(R1) y η(R2) z. Hence there are words u, v, v′, w with

x = [u], y = [v], and (u, v) ∈ R1 and
y = [v′], z = [w], and (v′, w) ∈ R2.

Hence we have u R1 v ∼ v′ R2 w. Since R2 is left-closed, there exists a word w′ ∈ Σ∗ such
that u R1 v R2 w

′ ∼ w. Hence we have (x, z) = ([u], [w]) = ([u], [w′]) ∈ η(R1 ◦ R2). This
finishes the verification of the first claim.

Now, assume both relations R1 and R2 to be left-closed such that ∼ ◦Ri ⊆ Ri ◦ ∼ holds
for all i ∈ [2]. Consequently, we get ∼ ◦R1 ◦R2 ⊆ R1 ◦ ∼ ◦R2 ⊆ R1 ◦R2 ◦ ∼. Hence, indeed,
R1 ◦R2 is left-closed such that the second claim follows using Theorem 3.1(R2). ◀

The following proposition characterises the lc-rational word relations of the form K × L

for languages K,L ⊆ Σ∗. This characterisation should also explain the name “left-closed”.

FSTTCS 2023
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▶ Proposition 3.6. Let K,L ⊆ Σ∗ be non-empty.
(i) K × L is rational iff K and L both are regular.
(ii) K × L is left-closed iff K is closed, i.e., u ∼ u′ ∈ K ensures u ∈ K.

Consequently, K × L is lc-rational if, and only if, K and L are regular and K is closed.

Proof. The first claim is well-known, we present a proof in the appendix.
Suppose K × L to be left-closed and let u ∼ u′ ∈ K. Since L is non-empty, there exists

v′ ∈ L implying u ∼ u′ (K × L) v′. Since K × L is assumed to be left-closed, there exists
v ∈ Σ∗ with u (K × L) v ∼ v′. This implies in particular u ∈ K. Hence, K is closed.

Conversely, suppose K to be closed and let u ∼ u′ (K × L) v′. Then u ∼ u′ ∈ K implying
u ∈ K such that (with v = v′) we get u (K × L) v ∼ v′, i.e., K × L is left-closed. ◀

4 The theory of lc-rational trace relations I

4.1 Definition, examples, composition
Recall that a trace relation R ⊆ M × M is rational iff there exists a rational word relation
R ⊆ Σ∗ × Σ∗ with η(R) = R. Similarly, we now lift the concept of lc-rational relations from
words to traces.

▶ Definition 4.1. A relation R ⊆ M × M is lc-rational if there exists some lc-rational word
relation R ⊆ Σ∗ × Σ∗ with R = η(R).

Simple examples are M× {[ε]} and {[ε]} ×M since Σ∗ × {ε} and {ε} × Σ∗ are lc-rational
word relations.

▶ Example 4.2. Another, more involved example, is the supertrace-relation [24]: x ∈ M
is a supertrace of y ∈ M if x = x1y1 · · ·xnynxn+1 and y = y1y2 · · · yn for some n ∈ N and
x1, x2, . . . , xn+1, y1, y2, . . . , yn ∈ M. In this case, we write x ⊒ y. It is easily checked that
x ⊒ y if, and only if, there are words u and v such that x = [u], y = [v], and u ⪰ v, i.e.,
⊒ = η(⪰). Since the superword-relation ⪰ is lc-rational by Example 3.4, we obtain that the
supertrace-relation ⊒ is lc-rational.

Also the identity relation IdM = {(x, x) | x ∈ M} is lc-rational since IdΣ∗ is an lc-rational
word relation. Note that IdM can be seen as a homomorphism from M to M. We now
generalize this example and show that every homomorphism is an lc-rational relation.

▶ Lemma 4.3. Let φ : M → M be a homomorphism. Then R = {(x, φ(x)) | x ∈ M} is
lc-rational.

Proof. Choose, for each a ∈ Σ, a word wa ∈ Σ∗ with φ([a]) = [wa]. Let h : Σ∗ → Σ∗ be the
homomorphism with h(a) = wa for all a ∈ Σ∗. Then φ([v]) = [h(v)] for all words v ∈ Σ∗.

Now consider h as a relation, i.e., set R = {(u, h(u)) | u ∈ Σ∗}. Then η(R) = R and
R = {(a,wa) | a ∈ Σ}∗ implying that the relation R is rational.

We next verify that R is left-closed. So let u, u′, v′ ∈ Σ∗ with u ∼ u′ R v′. From u′ R v′,
we obtain v′ = h(u′). With v := h(u), we obtain

[v′] = φ([u′]) = φ([u]) = [h(u)] = [v]

implying v′ ∼ v. Hence we have u R v ∼ v′ implying that R is left-closed. ◀

Later, we will characterize the lc-rational relations among the direct products K × L of
sets of traces K and L (we have done so for word relations in Proposition 3.6). But first, we
do this for the special case that one of the sets K and L equals {[ε]}.
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▶ Lemma 4.4. Let K ⊆ M be a set of trace.
(i) K × {[ε]} is lc-rational if, and only if, K is recognizable.
(ii) {[ε]} × K is lc-rational if, and only if, K is rational

Proof. First, suppose K × {[ε]} is lc-rational. Then there exists an lc-rational word relation
R ⊆ Σ∗ × Σ∗ with η(R) = K × {[ε]}. Since ε is the only word w with η(w) = [ε], there
exists a language K ⊆ Σ∗ with R = K × {ε}. Now Proposition 3.6 implies that K is closed
and regular. From η(K × {ε}) = η(R) = K × {[ε]}, we obtain η(K) = K and therefore
K ⊆ η−1(K). For the converse inclusion, let u ∈ η−1(K) implying [u] ∈ K. From η(K) = K,
we obtain some word u′ ∈ K with [u′] = [u] and therefore u ∼ u′ ∈ K. Since K is closed,
this implies u ∈ K. Hence, we showed K = η−1(K). Since K is regular, the set K is indeed
recognizable.

Next, suppose K is recognizable. Then K := η−1(K) is regular. It is easily seen that K
is closed such that, again by Proposition 3.6, the relation R := K × {ε} is lc-rational. But
η(R) = K × {[ε]}, hence this direct product is lc-rational as well. This completes the proof
of the first claim.

The second claim is shown similarly, one need not show K = η−1(K), but only η(K) = K
as we have done above. ◀

By Example 3.2, the composition of rational trace relations is, in general, not rational.
The following lemma demonstrates that the composition is rational provided the second
relation is lc-rational. If both relations are lc-rational, then the composition is so as well.

▶ Proposition 4.5. Let R1,R2 ⊆ M2 be rational trace relations.
(i) If R2 is lc-rational, then R1 ◦ R2 is rational.
(ii) If R1 and R2 both are lc-rational, then R1 ◦ R2 is even lc-rational.

Proof. There exists a rational word relation R1 ⊆ Σ∗ × Σ∗ with η(R1) = R1, and there
exists an lc-rational word relation R2 ⊆ Σ∗ × Σ∗ with η(R2) = R2. By Theorem 3.1, the
composition R1 ◦R2 is rational and satisfies η(R1 ◦R2) = η(R1) ◦η(R2) by Proposition 3.5(i).
Hence R1 ◦ R2 is the η-image of the rational word relation R1 ◦R2 and therefore rational.

If, in addition, R1 is also lc-rational, then the relation R1 can be assumed to be lc-rational.
Hence, by Proposition 3.5(ii), the composition R1 ◦R2 is even lc-rational. Hence R1 ◦ R2 is
the η-image of lc-rational word relation R1 ◦R2 and therefore lc-rational. ◀

Proposition 3.6 characterises the lc-rational word relations of the form K × L. We can
now lift this result to the trace setting.

▶ Proposition 4.6. Let K,L ⊆ M be non-empty.
(i) K × L is rational iff K and L both are rational.
(ii) K × L is lc-rational iff K is recognizable and L is rational.

Proof. The first claim can be shown as the first claim of Proposition 3.6 (see appendix).
Next, let K be recognizable and L rational. Then the trace relations K × {[ε]} and

{[ε]} × L are lc-rational by Lemma 4.4. Note that

K × L = (K × {[ε]}) ◦ ({[ε]} × L) .

Hence the relation K×L is the composition of two lc-rational relations. Now Proposition 4.5(ii)
implies that K × L is lc-rational as well.

FSTTCS 2023



20:8 A Class of Rational Trace Relations Closed Under Composition

Conversely, suppose K×L to be lc-rational. Since M is recognizable, the relation M×{[ε]}
is lc-rational by Lemma 4.4. Since

(K × L) ◦ (M × {[ε]}) = K × {[ε]}) ,

the relation K×{[ε]} is lc-rational by Proposition 4.5. Now K is recognizable by Lemma 4.4(i).
For the rationality of L, we can argue similarly (using that M is rational this time). ◀

4.2 Preservation of language properties
Recall that rational word relations preserve the regularity of languages under left- and
right-application. Since rationality and recognizability are different notions in the trace
monoid, this leads to two possible generalisations; later, Lemma 4.9 below will show that
none of them holds for rational trace relations.

Now restrict attention to lc-rational trace relations R. Since R−1 need not be lc-rational,
we now get four possible preservation results: we could consider rationality or recognizability
as well as left- or right-application. The following lemma shows that two of them hold,
Lemma 4.9 proves that the other two fail.

▶ Theorem 4.7. Let R ⊆ M2 be an lc-rational trace relation.
(i) If L ⊆ M is recognizable, then also RL is recognizable.
(ii) If L ⊆ M is rational, then also LR is rational.

Proof. Let L1 be recognizable and L2 rational. Then L1 ×{[ε]} and {[ε]}×L2 are lc-rational
by Lemma 4.4 and we have

RL1 × {[ε]} = R ◦ (L1 × {[ε]}) and {[ε]} × LR
2 = ({[ε]} × L2) ◦ R .

Hence RL1×{[ε]} and {[ε]}×LR
2 are lc-rational relations by Proposition 4.5. Using Lemma 4.4

again, we obtain that RL1 is recognizable and LR
2 is rational. ◀

Define the relation ≤lc−rat in the same way as the relation ≤rat, but with the restriction
to lc-rational relations: K ≤lc−rat L if there exists an lc-rational relation R such that K = LR.
Then Proposition 4.5 trivially implies the following.

▶ Corollary 4.8. The relation ≤lc−rat is transitive.

We now come to the announced non-preservation results; they hold for lc-rational trace
relations and therefore, in particular, for the larger class of rational trace relations.

▶ Lemma 4.9. Suppose there are a, b, c, d ∈ Σ with (a, b) ∈ D and (c, d) ∈ I.
There exists an lc-rational relation R ⊆ M2, a recognizable set K ⊆ M, and a rational set

L ⊆ M such that RK is not rational and LR is not recognizable.

Proof. Let R = {(a, c), (b, d)}∗. Then R is rational and, since (a, b) ∈ D, even lc-rational.
We consider the lc-rational trace relation R = η(R). Since (c, d) ∈ I, we obtain ([u], [v]) ∈ R
if, and only if, u ∈ {a, b}∗, v ∈ {c, d}∗, |u|a = |v|c, and |u|b = |v|d.

Consider the regular language K = {cd}∗ and let K denote the rational set η(K). Since
(c, d) ∈ I, we get [v] ∈ K iff v ∈ {c, d}∗ and |v|c = |v|d. It follows that [u] ∈ RK iff u ∈ {a, b}∗

and |u|a = |u|b. Let H ⊆ Σ∗ denote the set of words u ∈ {a, b}∗ with |u|a = |u|b. Since
(a, b) ∈ D, this language H is the only language with η(H) = RK. Since H is not regular, it
follows that RK is not rational which proves the first claim.

Next, let L = {[ab]}∗. Then [u] ∈ L iff u ∈ {ab}∗ since (a, b) ∈ D. Hence η−1(L) is the
regular language L = {ab}∗, i.e., L is recognizable. Note that LR is the set of traces [v]
with v ∈ {c, d}∗ and |v|c = |v|d (i.e., it equals K). Hence the preimage of LR under η is not
regular, i.e., LR is not recognizable. ◀
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4.3 Products of lc-rational relations
By the very definition, the (componentwise) product of two rational relations is rational
again: if R1,R2 ⊆ M2 are rational, then so is the relation

R1 · R2 = {(xx′, yy′) | (x, y) ∈ R1, (x′, y′) ∈ R2} .

Lemma A.1 in the appendix demonstrates that this does not hold for lc-rational relations.
We now come to two special cases of relations R1 that ensure the lc-rationality of R1 · R2:

▶ Lemma 4.10. Let K ⊆ M be recognizable. Then the relation R = (K × {[ε]}) · IdM =
{(xy, y) | x ∈ K, y ∈ M} is lc-rational.

Proof. The language K := η−1(K) is regular. Let R denote the set of pairs of words

(u1v1u2v2 · · ·unvn, v1v2 · · · vn)

with n ∈ N and u1, u2, . . . , un, v1, . . . , vn ∈ Σ∗ such that
(i) u1u2 · · ·un ∈ K,
(ii) v1 · · · vn ∈ Σ∗, and
(iii) (v1v2 · · · vi, ui+1) ∈ I for all i ∈ [n− 1].

We will show that R is rational, that η(R) = R, and that R is left-closed.
To verify that R is a rational relation, we present a rational transducer T which is a

non-deterministic finite automaton with edges labeled by elements from Σ∗ × Σ∗ (cf. [4,
p. 77]). Since K is regular, there is a non-deterministic finite automaton A = (Q,Σ, Q0, T, F )
(where Q0 and F are the initial and accepting states and T ⊆ Q × Σ × Q) accepting K.
States of the transducer T are pairs (q, A) of a state q ∈ Q and a set of letters A ⊆ Σ. A
state (q,A) is initial if q ∈ Q0 and A = ∅ and it is accepting if q ∈ F . The transducer has
two types of transitions (with a ∈ Σ):

There is a transition from (p,A) to (q,B) labeled (a, a) iff p = q and B = A ∪ {a}.
There is a transition from (p,A) to (q,B) labeled (a, ε) iff (p, a, q) ∈ T is a transition of
the automaton A, {a} ×A ⊆ I, and A = B.

Let p ∈ Q0, q ∈ Q, A ⊆ Σ, and v, w ∈ Σ∗. Then the transducer T has a path labeled (w, v)
from (p, ∅) to (q, A) iff the following hold:

A is the set of letters of v.
w results from v by injecting some letters (using transitions labeled (a, ε)) that are
independent from all letters of v read so far.
The sequence u of injected letters leads from p to q in the automaton A.

Consequently, (w, v) labels a path from some initial to some accepting state iff (w, v) ∈ R.
Hence, indeed, R is rational [4, Thm. III.6.1].

Next, we verify η(R) = R. First, suppose (w, v) = (u1v1 · · ·unvn, v1 · · · vn) ∈ R with
the properties from above. From (iii), we obtain u1v1 · · ·unvn ∼ u1u2 · · ·un v1v2 · · · vn and
therefore ([w], [v]) = ([u1 · · ·un][v], [v]) which belongs to R since u1 · · ·un ∈ K by (i). Thus,
η(R) ⊆ R. Conversely, let ([uv], [v]) ∈ R, i.e., u ∈ K and v ∈ Σ∗. With n = 1, u1 = u, and
v1 = v, we get (uv, v) = (u1v1, v1) ∈ R and therefore R ⊆ η(R). Thus, indeed, η(R) = R.

It remains to be shown that R is left-closed. So let n ∈ N and u1, . . . , un, v1, . . . , vn ∈ Σ∗

satisfying (i-iii) from above and let w ∈ Σ∗ such that

w ∼ u1v1u2v2 · · ·unvn R v1 · · · vn .
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With u = u1 · · ·un and v = v1 · · · vn, (iii) implies

w ∼ u1v1u2v2 · · ·unvn ∼ u1 · · ·un v1 · · · vn = uv .

Applying Levi’s Lemma for traces [11, p. 74] to the equivalence w ∼ uv yields m ∈ N and
words u′

1, . . . , u
′
m and v′

1, . . . , v
′
m such that

(i) w = u′
1v

′
1 u

′
2v

′
2 · · ·u′

mv
′
m,

(ii) u ∼ u′
1u

′
2 · · ·u′

m =: u′,
(iii) v ∼ v′

1v
′
2 · · · v′

m =: v′, and
(iv) (v′

1v
′
2 · · · v′

i, u
′
i+1) ∈ I for all i ∈ [m− 1].

Note that u′ ∼ u ∈ K = η−1(K) implies u′ ∈ K. Hence we get w R v′ ∼ v. Thus, indeed,
the relation R is left-closed. ◀

▶ Lemma 4.11. Let L ⊆ M be rational. Then R = ({[ε]}×L)·IdM = {(y, xy) | x ∈ L, y ∈ M}
is lc-rational.

Proof. There exists a regular language L ⊆ Σ∗ with η(L) = L. Furthermore, R := {(v, uv) |
u ∈ L, v ∈ Σ∗} is the product of L× {ε} and IdΣ∗ and therefore rational.

We first show that R is even lc-rational. So let u ∈ L and v ∼ v′ be arbitrary words such
that v ∼ v′ R uv′. Then we have v R uv ∼ uv′. Hence, indeed, R is left-closed.

Next we show R = η(R). For the inclusion “⊇”, let (v, uv) ∈ R, i.e., u ∈ L and v ∈ Σ∗.
From η(L) = L, we obtain [u] ∈ L and therefore (η(v), η(uv)) = (η(v), η(u) η(v)) ∈ R. Thus,
R ⊇ η(R). Conversely, let (y, xy) ∈ R, i.e., x ∈ L and y ∈ M. From x ∈ L = η(L), we obtain
a word u ∈ L with η(u) = x. Further, there is a word v ∈ Σ∗ with η(v) = y. It follows that
(v, uv) ∈ R and therefore (y, xy) = (η(v), η(uv)) ∈ η(R). ◀

Now the following sufficient condition for the lc-rationality of R1 · R2 follows:

▶ Theorem 4.12. Let K ⊆ M be recognizable, L ⊆ M rational, and R ⊆ M2 lc-rational.
Then (K × L) · R is lc-rational.

Proof. The relations R1 = (K × {[ε]}) · IdM and R2 = ({[ε] × L}) · IdM are lc-rational by
Lemmas 4.10 and 4.11, respectively. Hence, by Proposition 4.5(ii), the relation R1 ◦ R ◦ R2
is lc-rational as well. But this composition equals (K × L) · R. ◀

5 An application of lc-rational relations

Inspired by asynchronous automata [36] for recognizable trace languages, we introduced
“cooperating multi-pushdown systems” or cPDS, i.e., distributed pushdown systems whose
pushdown stores a trace as opposed to a word as in classical pushdown systems [23]. Hence,
sets of configurations are trace languages. As main result, we proved that backwards
reachability in these cPDS preserves the recognizability and forwards reachability preserves
the rationality of sets of configurations; these two proofs use very different proof techniques.
It is the aim of this section to show that the reachability relation of a cPDS is an lc-rational
trace relation which, by Theorem 4.7, gives the two main results from [23] in a uniform
manner.

Before we can define cPDS, we need the following notation. Since Σ is finite, there exists
a finite set J and a mapping λ : Σ → 2J \ {∅} such that (a, b) ∈ D iff λ(a) ∩ λ(b) ̸= ∅.

A cPDS is a tuple P = (
∏

i∈J Qi,∆) for some finite sets Qi of local states and a finite set
∆ ⊆

∏
i∈J Qi × Σ × Σ∗ ×

∏
i∈J Qi of transition rules such that the following hold (where p

denotes a tuple (pi)i∈JQi):
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(i) If (p, a, w, q) ∈ ∆, then pi = qi for all i ∈ J \ λ(a).
(ii) If (p, a, w, q) ∈ ∆ and r ∈

∏
i∈J Qi with pi = ri for all i ∈ λ(a), then(

r, a, w,
(
(qi)i∈λ(a), (ri)i/∈λ(a)

))
∈ ∆ .

(iii) If (p, a, ubv, q) ∈ ∆, then λ(a) ⊇ λ(b).
A configuration of P is a pair (p, x) with p ∈

∏
i∈J Qi a global state and x ∈ M a trace. For

two configurations c1 = (p, x) and c2 = (q, z), there is a transition from c1 to c2 (written
c1 ⊢ c2) iff there exists a transition rule (p, a, w, q) ∈ ∆ and a trace y ∈ M such that x = [a] ·y
and z = [w] · y. Combining results from [23] and from the present paper, we can derive the
following claim.

▶ Lemma 5.1. Let P = (
∏

i∈J Qi,∆) be a cPDS and p, q ∈
∏

i∈J Qi global states. The trace
relation Rp,q = {(x, y) ∈ M × M | (p, x) ⊢∗ (q, y)} is lc-rational.

Proof. A cPDS is saturated if (p, a, ubv, q), (q, b, ε, r) ∈ ∆ with (u, b) ∈ I implies (p, a, uv, r) ∈
∆. In [23, Section 5.3], we show how to transform a cPDS P into a saturated P′ that has the
same reachability relation ⊢∗. Hence, we can assume P to be saturated.

From [23, Lemma 5.4], one obtains that the relation Rp,q is a finite union of compositions
of relations of the form (K × L) · IdM with K ⊆ M recognizable and L ⊆ M rational. Now
Theorem 4.12 and Proposition 4.5 imply that the reachability relation Rp,q is lc-rational. ◀

Using the above lemma and Theorem 4.7, we obtain the following results from [23] in a
uniform manner.

▶ Theorem 5.2 (Köcher and Kuske [23]). Let P = (
∏

i∈J Qi,∆) be a cPDS, p, q ∈
∏

i∈J Qi,
and L ⊆ M.

(i) If L is recognizable, then Lb := {x ∈ M | ∃y ∈ L : (p, x) ⊢∗ (q, y)} is recognizable, i.e.,
backwards reachability in cPDS preserves recognizability [23, Thm. 4.1].

(ii) If L is rational, then Lf := {y ∈ M | ∃x ∈ L : (p, x) ⊢∗ (q, y)} is rational, i.e., forwards
reachability in cPDS preserves rationality [23, Thm. 5.1].

Proof. The claims follow from the observations Lb = Rp,q L and Lf = LRp,q . ◀

6 The theory of lc-rational trace relations II

6.1 A Nivat-type characterisation of lc-rational relations
There are three very basic types of rational word relations R ⊆ Σ∗ × Σ∗: (graphs of)
homomorphisms Σ∗ → Σ∗, their inverses, and restrictions to regular languages K, i.e.,
relations of the form RK = {(u, u) | u ∈ K}. Nivat’s theorem [30] (cf. [4, Thm. III.3.2])
shows that every rational relation R can be composed of these three basic types. More
precisely, he showed that any rational relation R can be written as f−1 ◦RK ◦ g for a regular
language K and homomorphisms f and g. This result does not only hold for rational relations
on words, but for arbitrary monoids, in particular for rational relations R ⊆ M × M [4,
Prop. III.3.4]. Our next result builds on this characterisation of all rational relations R
and provides a similar characterisation of all lc-rational relations R in the spirit of Nivat’s
theorem.

▶ Theorem 6.1. Let R ⊆ M × M. Then R is lc-rational if, and only if, there exists an
alphabet Γ, a regular language K ⊆ Γ∗, and homomorphisms f , g : Γ∗ → M such that
(a) R = {(f(x), g(x)) | x ∈ K} and
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(b) for all y ∈ K, n ∈ N, and t1, . . . , tn ∈ M with t1 · t2 · · · tn = f(y), there exist
y1, y2, . . . , yn ∈ Γ∗ such that
(b1) y1y2 · · · yn ∈ K,
(b2) f(yi) = ti for all i ∈ [n], and
(b3) g(y) = g(y1 · · · yn).

As explained above, the relation R is rational if, and only if, there are Γ, K, and f , g

satisfying property (a). The left-closedness therefore corresponds to property (b).

Proof. The detailed proof can be found in the appendix.
First, suppose R is lc-rational, i.e., the η-image of some lc-rational word relation R.

Let Γ, K, f , and g be the alphabet, regular language, and homomorphisms that exist by
Theorem 3.1(R4). Then f = η ◦ f and g = η ◦ g are homomorphisms from Γ∗ to M with the
claimed properties.

Conversely, let Γ, K, f , and g be the alphabet, regular language, and homomorphisms
from the theorem. Then there are homomorphisms f, g : Γ∗ → Σ∗ with f = η ◦ f and
g = η ◦ g. Together with K, they define a rational word relation R. One then shows that R
is left-closed and satisfies R = η(R). ◀

6.2 Undecidability
So far, we proved that lc-rational trace relations share some of the nice properties of rational
word relations. Unfortunately, it is undecidable (not even semi-decidable) whether a given
rational relation is left-closed.

▶ Proposition 6.2. Suppose D is transitive and I is not transitive such that there are
a, b, c ∈ Σ with (a, b), (b, c) ∈ I and (a, c) ∈ D. It is not semi-decidable whether a given
rational trace relation R ⊆ M2 is lc-rational.

Proof. Let P be an instance of Post’s correspondence problem. From P , Muscholl and
Petersen [29, proof of Thm. 2] construct (following a similar construction in [33]) a star-free
language L ⊆ Σ∗ such that L = η−1η(L) is star-free iff P has no solution (this construction
uses that I is not transitive). Since D is transitive, L is either star-free or not regular [29,
Thm. 1]. Hence, L is regular if, and only if, P has no solution.

Recall that any star-free language L is regular such that L := η(L) is rational. Hence

L × {[ε]} is lc-rational ⇐⇒ L is recognizable by Proposition 4.6
⇐⇒ η−1(L) is regular
⇐⇒ L is regular since η−1(L) = L

⇐⇒ P has no solution .

Thus, one can construct a rational relation L × {[ε]} from P that is lc-rational if, and
only if, P has no solution. Since the existence of no solution is not semi-decidable, the claim
follows. ◀

7 Rational trace relations

We saw that the composition of a rational and an lc-rational trace relation is rational, again.
This holds in particular if the first relation is the inverse of an lc-rational relation. We now
demonstrate that all rational trace relations arise in this way.
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▶ Theorem 7.1. Suppose there are a, b ∈ Σ with (a, b) ∈ D. Let R ⊆ M2 be a binary relation.
Then the following are equivalent:

(i) R is rational.
(ii) There exist lc-rational relations R1 and R2 such that R = R−1

1 ◦ R2.

Proof. The implication “(ii)⇒(i)” is immediate by Proposition 4.5(i) since R−1
1 is rational

for any rational relation R1.
For the converse implication, suppose R is rational. Then there exists a rational relation

R ⊆ Σ∗ × Σ∗ with R = η(R). By Nivat’s theorem, i.e., Theorem 3.1(R4), there exist an
alphabet Γ, homomorphisms f and g from Γ∗ to Σ∗, and a regular language K ⊆ Γ∗ such
that

R = {(f(u), g(u)) | u ∈ K} .

Suppose Γ = {c1, c2, . . . , cn}. Let h : Γ∗ → Σ∗ be the homomorphisms defined by h(ci) = aib.
Now consider the relations

R1 = {(h(u), f(u)) | u ∈ K} and R2 = {(h(u), g(u)) | u ∈ K} .

We first show that these relations are lc-rational (by symmetry, we only consider the
relation R1). From Nivat’s theorem, we obtain that R1 is rational. To show that it is
left-closed, let v, v′, w′ ∈ Σ∗ with v ∼ v′ R1 w

′.
Since R1 ⊆ {a, b}∗ × Σ∗, we obtain v′ ∈ {a, b}∗. Since (a, b) ∈ D, this implies v = v′.

Hence, setting w := w′, we obtain v R1 w ∼ w′. Hence, indeed, the relations R1 and R2 are
lc-rational.

Next, we show R = R−1
1 ◦R2. For the inclusion “⊆”, let (v, w) ∈ R. Then there exists

u ∈ K with v = f(u) and w = g(u). Hence we obtain

v = f(u) R−1
1 h(u) R2 g(u) = w

and therefore (v, w) ∈ R−1
1 ◦R2. For the converse inclusion, suppose (v, w) ∈ R−1

1 ◦R2. Then
there exists some word x with v R−1

1 x R2 w. By the definition of the relations R1 and R2,
there are words u1, u2 ∈ K ⊆ Γ∗ such that

v = f(u1) , x = h(u1) and x = h(u2) , w = g(u2) .

Since the homomorphism h is injective, we get u1 = u2 and therefore

(v, w) = (f(u1), g(u2)) = (f(u1), g(u1)) ∈ R .

Thus, indeed, R = R−1
1 ◦R2.

Finally, let R1 = η(R1) and R2 = η(R2). Note that R−1
1 is rational and satisfies

η(R−1
1 ) = R−1

1 . From Proposition 3.5(i), we obtain that

η(R−1
1 ◦R2) = η(R−1

1 ) ◦ η(R2) = η(R−1
1 ) ◦ R2

since R2 is lc-rational. Hence, we obtain

R = η(R) = η(R−1
1 ◦R2) = η(R−1

1 ) ◦ R2 = R−1
1 ◦ R2 . ◀

Recall that the right-application of rational trace relations does neither preserve the
rationality nor the recognizability of a set of traces. The above factorisation result allows to
prove that the right-application transforms recognizable sets into rational ones.
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▶ Theorem 7.2. Let R ⊆ M × M be rational and L ⊆ M recognizable. Then LR is rational.

Proof. By Theorem 7.1, there are lc-rational relations R1 and R2 such that R = R−1
1 ◦ R2.

Hence LR = LR−1
1 ◦R2 = (LR−1

1 )R2 = (R1L)R2 . From Theorem 4.7, we know that K := R1L
is recognizable and therefore in particular rational. Hence, again using Theorem 4.7, KR2 is
rational. ◀

Note that the above lemma cannot be improved: by Lemma 4.9, there exist an lc-rational
relation R and a recognizable set L such that LR is not recognizable. Furthermore, there is
also a rational set L such that RL is not rational. Note that RL = LR−1 and that R−1 is
rational. Hence, indeed, the above lemma is optimal.

▶ Proposition 7.3. The relation ≤rat is not transitive.

Proof. Consider the lc-rational relation R and the languages K and L from the proof of
Lemma 4.9. In that proof, we showed in particular that L is recognizable, LR = K, and RK
is not rational. Hence, by Theorem 7.2, there is no rational trace relation S with LS = RK,
i.e., RK ̸≤rat L. On the other hand, we have RK = KR−1 ≤rat K since also R−1 is a rational
relation as well as K = LR ≤ L. ◀

From this proposition, we get immediately that rational trace relations do not compose
for otherwise ≤rat would be transitive (Example 3.2 provides concrete rational trace relations
whose composition is not rational).

Thus, rational trace relations enjoy properties (R3) and (R4) from Theorem 3.1, but not
the properties (R1) and (R2). On the other hand, lc-rational relations

satisfy some versions of (R1) (cf. Theorem 4.7), but not all natural versions (cf. Lemma 4.9),
satisfy (R2) (cf. Proposition 4.5),
violate (R3), and
have a characterisation in the spirit of (R4) (cf. Theorem 6.1).

We next restrict the class of lc-rational trace relations further to obtain a class that satisfies
all versions of (R1), (R2), (R3), and has a characterisation in the spirit of (R4).

First, a word relation R ⊆ Σ∗ × Σ∗ is right-closed if ∼ ◦R ⊇ R ◦ ∼, i.e., for all u, v′ ∈ Σ∗,
we have(

∃u′ ∈ Σ∗ : u ∼ u′ R v′) ⇐=
(
∃v ∈ Σ∗ : u R v ∼ v′) .

Compared with the definition of left-closedness, we only inverted the inclusion and implication,
resp. The relation R is rc-rational if it is right-closed and rational. A trace relation R ⊆ M×M
is rc-rational, if there exists some rc-rational relation R ⊆ Σ∗ × Σ∗ with R = η(R).

Let R ⊆ M × M. We call R closed-rational if it is both, lc-rational and rc-rational.
To prove closed-rationality of a relation R, one has to produce two relations R1 and R2
with R = η(R1) = η(R2) that are lc-rational and rc-rational, resp. In particular, these two
relations can be distinct.

▶ Example 7.4. With the notions from Lemma 4.10, the relation R = {(xy, y) | x ∈ L, y ∈
M} is lc-rational. Since any recognizable trace language L is also rational, the relation
R−1 = {(y, xy) | x ∈ L, y ∈ M} is lc-rational by Lemma 4.11 implying that R is rc-rational.
Hence R is even closed-rational.

Looking at the proofs of Lemmas 4.11 and 4.10, we see that the relations R ⊆ Σ∗ × Σ∗

used there are indeed very different.

The following lemma shows that we can certify closed-rationality by providing a single
word relation R that is both, lc- and rc-rational.
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▶ Lemma 7.5. A relation R ⊆ M2 is closed-rational iff there exists a single relation
R ⊆ Σ∗ × Σ∗ with η(R) = R that is both, lc-rational and rc-rational.

Proof. The implication “⇐” is immediate.
So let R be closed-rational. Then there are relations R1 and R2 with R = η(R1) = η(R2)

that are lc-rational and rc-rational, resp. One then shows that R = R1 ∪ R2 is left- and
right-closed (see appendix) which implies the claim since η(R) = R and R is rational. ◀

Based on this characterisation, the proof of Theorem 6.1 can be extended easily showing
the following Nivat-type characterisation of all closed-rational relations:

▶ Theorem 7.6. Let R ⊆ M × M. Then R is closed-rational if, and only if, there exists an
alphabet Γ, a regular language K ⊆ Γ∗, and homomorphisms f , g : Γ∗ → M such that
(a) R = {(f(x), g(x)) | x ∈ K},
(b) for all y ∈ K, n ∈ N, and t1, . . . , tn ∈ M with t1 · t2 · · · tn = f(y), there exist

y1, y2, . . . , yn ∈ Γ∗ such that
(b1) y1y2 · · · yn ∈ K,
(b2) f(yi) = ti for all i ∈ [n], and
(b3) g(y) = g(y1 · · · yn), and

(c) for all y ∈ K, n ∈ N, and t1, . . . , tn ∈ M with t1 · t2 · · · tn = g(y), there exist
y1, y2, . . . , yn ∈ Γ∗ such that
(c1) y1y2 · · · yn ∈ K,
(c2) g(yi) = ti for all i ∈ [n], and
(c3) f(y) = f(y1 · · · yn).

Finally, the results of this paper show that the class of closed-rational relations has all of
the properties from Theorem 3.1 that make rational relations on Σ∗ interesting:

▶ Theorem 7.7. The class of closed-rational relations on M is closed under inversion, under
composition, and any closed-rational relation preserves both, rationality and recognizability
under both, left- and right-application.

8 Conclusion

We restricted the class of rational trace relation in order to get a notion that has properties
similar to those of rational word relations. Our findings were applied in order to improve the
central result on systems with a trace pushdown from [23].

For the definition of lc- and closed-rational relations, it was crucial that the trace monoid
M was finitely generated by the alphabet Σ. Left-closedness can similarly be defined for any
monoid M generated by some set Σ as follows. Let η : Σ∗ → M be the natural epimorphism.
A relation R ⊆ Σ∗ × Σ∗ is left-closed if, for any u, v′ ∈ Σ∗, we have

(∃u′ ∈ Σ∗ : η(u) = η(u′) and (u′, v′) ∈ R) =⇒ (∃v ∈ Σ∗ : (u, v) ∈ R and η(v) = η(v′)) .

Further, a relation R ⊆ M ×M is lc-rational if there exists a left-closed and rational relation
R ⊆ Σ∗ × Σ∗ with R = η(R). It is, at least mathematically, interesting which of our results
on lc-rational relations transfer to this more general setting (actually, many proofs should go
through without much alteration, but, e.g., the proof of Lemma 4.10 makes explicite use of
Levi’s lemma).
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A Appendix

Case distinction from Example 3.4.
Suppose x = u1v1 · · ·ui−1vi−1x

′, ui = x′bay′, and y = y′viui+1vi+1 · · ·un+1. Then

u = u1v1u2 · · ·ui−1vi−1 x
′aby′ viui+1vi+1 · un+1

⪰ v1v2 · · · vn = v′ .

Thus, setting v := v′ yields u ⪰ v ∼ v′.
Suppose x = u1v1 · · ·ui−1vi−1uix

′, vi = x′bay′, and y = y′ui+1vi+1 · · ·un+1. Then

u = u1v1 · · ·ui−1vi−1ui x
′aby′ ui+1vi+1 · · · vnun+1

⪰ v1 · · · vi−1 x
′aby′ vi+1 · · · vn

∼ v1 · · · vi−1 vi vi+1 · · · vn = v′ .

Thus, setting v := v1 · · · vi−1 x
′aby′ vi+1 · · · vn yields u ⪰ v ∼ v′.

Suppose x = u1v1 · · ·ui−1vi−1x
′, ui = x′b, vi = ay′, and y = y′ui+1vi+1 · · ·un+1. Then

u = u1v1 · · ·ui−1vi−1 x
′b ay′ ui+1vi+1 · · ·un+1

⪰ v1 · · · vi−1 ay
′ vi+1 · · · vn = v′ .

Thus, setting v := v′ yields u ⪰ v ∼ v′.
Finally, suppose x = u1v1 · · ·uix

′, vi = x′b, ui+1 = ay′, and y = y′vi+1ui+2vi+2 · · ·un+1.
Then

u = u1v1 · · ·ui x
′b ay′ vi+1ui+2vi+2 · · ·un+1

⪰ v1 · · · vi−1x
′bvi+1 · · · vn+1 = v .

Thus, setting v := v′ yields u ⪰ v ∼ v′. ◀
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Proof of first claim of Prop. 3.6. Let K×L be rational. Then the mapping π1 : Σ∗ ×Σ∗ →
Σ∗ : (u, v) 7→ u is a homomorphism and maps the rational set K ×L onto the set K which is
therefore rational, i.e., regular since it is a subset of Σ∗. The analogous argument leads to
the regularity of L.

Conversely, suppose K and L both to be regular. Then K × {ε} is the image of the
rational set K ⊆ Σ∗ under the homomorphism f : Σ∗ → Σ∗ × Σ∗ : u 7→ (u, ε) and therefore a
rational relation. The same applies to {ε} × L. Since

K × L = (K × {ε}) · ({ε} × L) ,

the relation K × L is the product of two rational relations and therefore rational. ◀

So first the counter-example.

▶ Lemma A.1. There exist lc-rational relations R and R′ such that R · R′ is not lc-rational.

Proof. Consider the rational trace relations R1 and R2 from Example 3.2. Note that
R2 is the product of the lc-rational trace relations R = {([dn], [bn]) | n ≥ 1} and R′ =
{([cm], [am]) | m ≥ 1} and recall that R1 ◦ R2 is not rational. Hence, by Proposition 4.5(i),
R2 cannot be lc-rational. ◀

Proof of R1 ◦ R ◦ R2 = (K×L) · R in proof of Theorem 4.12. Note that (x, z) ∈ R1 ◦
R ◦ R2 iff there are y1, y2 ∈ M with (x, y1) ∈ R1, (y1, y2) ∈ R, and (y2, z) ∈ R2. But
(x, y1) ∈ R1 is equivalent to the existence of k ∈ K with x = k · y1. Similarly, (y2, z) ∈ R2 iff
there is ℓ ∈ L with z = ℓ · y2. In summary, we have (x, z) ∈ R1 ◦ R ◦ R2 iff there exist k ∈ K,
(y1, y2) ∈ R, and ℓ ∈ L with (x, z) = (k y1, ℓ y2). But this holds iff (x, z) ∈ (K × L) · R. ◀

Proof of Theorem 6.1. First, suppose R is lc-rational. Then there exists an lc-rational
relation R ⊆ Σ∗ × Σ∗ with R = η(R). Hence, by Nivat’s theorem [30] (cf. [4, Thm. III.3.2]),
there exists an alphabet Γ, a regular language K ⊆ Γ∗, and homomorphisms f, g : Γ∗ → Σ∗

such that

R = {(f(x), g(x)) | x ∈ K} .

Because of the equivalence of (i) and (iii) in [4, Thm. III.3.2], we can even assume that the
homomorphisms f and g are alphabetic, i.e., |f(a)| ≤ 1 and |g(a)| ≤ 1 for all a ∈ Γ. Let
f = η ◦ f : Γ∗ → M and g = η ◦ g. From R = η(R), we immediately get property (a). To
also show (b), let y ∈ K, n ∈ N, and t1, . . . , tn ∈ M with t1t2 · · · tn = f(y). Then there are
words u1, . . . , un ∈ Σ∗ with η(ui) = ti for all i ∈ [n]. Note that

u1u2 · · ·un ∼ f(y) R g(y)

since η(u1u2 · · ·un) = f(y) = η(f(y)). Since the relation R is left-closed, there exists a word
v ∈ Σ∗ such that

u1 · · ·un R v ∼ g(y) .

It follows that there is y′ ∈ K with

u1u2 · · ·un = f(y′) R g(y′) = v ∼ g(y) .

Since the homomorphism f is alphabetic, we can split the word y′ into

y′ = y1y2 · · · yn with ui = f(yi) for all i ∈ [n] .

We can now verify conditions (b1–3):
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(b1) y1 · · · yn = y′ ∈ K,
(b2) f(yi) = η(f(yi)) = η(ui) = ti for all i ∈ [n], and

(b3) g(y) = η(g(y)) v∼g(y)= η(v) = η(g(y′)) = g(y′) = g(y1 · · · yn)
Thus, we have indeed an alphabet Γ, a regular language K, and homomorphisms f and g

such that (a) and (b) hold.
Conversely, suppose Γ is an alphabet, K ⊆ Γ∗ a regular language, and f , g : Γ∗ → M

homomorphisms such that (a) and (b) hold.
Choose, for every letter x ∈ Γ, words vx, wx ∈ Σ∗ with f(x) = η(vx) and g(x) = η(wx).

Let f, g : Γ∗ → Σ∗ be the homomorphisms with f(x) = vx and g(x) = wx for all x ∈ Γ. Then
we obtain f = η ◦ f and g = η ◦ g. Let

R = {(f(x), g(x)) | x ∈ L} ⊆ Σ∗ × Σ∗ .

From Nivat’s theorem, we obtain that R is a rational relation. By its very definition and
property (a), we also get R = η(R).

It remains to be shown that the word relation R is left-closed. So let u, u′, v′ ∈ Σ∗ with

u ∼ u′ R v′ .

With n = |u|, there are letters ai ∈ Σ for all i ∈ [n] with u = a1a2 · · · an. For i ∈ [n], we set
ti = η(ai). From (u′, v′) ∈ R, we obtain some word y ∈ K with u′ = f(y) and v′ = g(y).
Note that

f(y) = η(u′) = η(a1 · · · an) = t1 · t2 · · · tn .

From (b), we obtain words y1, . . . , yn ∈ Γ∗ such that
(b1) y1 · · · yn ∈ K,
(b2) f(yi) = ti for all i ∈ [n], and
(b3) g(y) = g(y1 · · · yn).
Since ai is the only word with ti = η(ai), property (b2) implies f(yi) = ai for all i ∈ [n]. We
therefore get

u = a1 · · · an = f(y1 · · · yn)Rg(y1 · · · yn) by property (b1)
∼ g(y) by property (b3)
= v′ .

With v = g(y1 · · · yn), we therefore get

uR v ∼ v′ .

Hence R is left-closed which completes the proof of the lc-rationality of R. ◀

Proof of Lemma 7.5. The implication “⇐” is immediate.
So let R be closed-rational. Then there are relations R1 and R2 with R = η(R1) = η(R2)

that are lc-rational and rc-rational, resp. Set R = R1 ∪ R2. Clearly, this relation is
rational. We show that it is left-closed (the proof of its right-closedness is symmetric). So let
u, u′, v′ ∈ Σ∗ with

u ∼ u′ (R1 ∪R2) v′ .
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If (u′, v′) ∈ R1, the left-closedness of R1 yields some word v with u R1 v ∼ v′ and therefore
u R v ∼ v′. So suppose (u′, v′) ∈ R2. Since η(R2) = R = η(R1), there exists (u′′, v′′) ∈ R1
with u′ ∼ u′′ and v′ ∼ v′′. Hence we get

u ∼ u′ ∼ u′′ R1 v
′′ ∼ v′ .

Now the left-closedness of R1 yields a word v with u R1 v ∼ v′′ ∼ v′ and therefore
u R v ∼ v′. ◀
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