
Towards a Practical, Budget-Oblivious Algorithm
for the Adwords Problem Under Small Bids
Vijay V. Vazirani #

University of California, Irvine, CA, USA

Abstract
Motivated by recent insights into the online bipartite matching problem (OBM), our goal was to
extend the optimal algorithm for it, namely Ranking, all the way to the special case of adwords
problem, called Small, in which bids are small compared to budgets; the latter has been of
considerable practical significance in ad auctions [20]. The attractive feature of our approach was
that it would yield a budget-oblivious algorithm, i.e., the algorithm would not need to know budgets
of advertisers and therefore could be used in autobidding platforms.

We were successful in obtaining an optimal, budget-oblivious algorithm for Single-Valued,
under which each advertiser can make bids of one value only. However, our next extension, to Small,
failed because of a fundamental reason, namely failure of the No-Surpassing Property. Since the
probabilistic ideas underlying our algorithm are quite substantial, we have stated them formally, after
assuming the No-Surpassing Property, and we leave the open problem of removing this assumption.

With the help of two undergrads, we conducted extensive experiments on our algorithm on
randomly generated instances. Our findings are that the No-Surpassing Property fails less than 2% of
the time and that the performance of our algorithms for Single-Valued and Small are comparable
to that of [20]. If further experiments confirm this, our algorithm may be useful as such in practice,
especially because of its budget-obliviousness.

2012 ACM Subject Classification Theory of computation → Algorithmic mechanism design

Keywords and phrases Adwords problem, ad auctions, online bipartite matching, competitive
analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.21

Related Version Full Version: https://arxiv.org/pdf/2107.10777.pdf

Funding Vijay V. Vazirani: Supported in part by NSF grant CCF-2230414.

1 Introduction

The adwords problem, called Adwords1 in this paper, involves matching keyword queries,
as they arrive online, to advertisers; the latter have daily budget limits and they make bids
for the queries. Its special case when bids are small compared to budgets, called Small in
this paper, captures a key computational issue that arises in the context of ad auctions, for
instance in Google’s AdWords marketplace. An optimal algorithm for Small, achieving
a competitive ratio of

(
1− 1

e

)
, was first given in [20]; for the impact of this result in the

marketplace, see Section 1.2. In this paper, we give a new budget-oblivious online algorithm
for Small.

A budget-oblivious online algorithm does not know the daily budgets of advertisers;
however, in a run, it knows when the budget of an advertiser is exhausted. Yet its revenue is
compared to the optimal revenue generated by an offline algorithm with full knowledge of
the budget. The importance of a budget-oblivious algorithm lies in its use in autobidding

1 For formal statements of problems studied in this paper, see Section 2

© Vijay V. Vazirani;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vazirani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.21
https://arxiv.org/pdf/2107.10777.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Towards a Practical, Budget-Oblivious Algorithm for Adwords

platforms [1, 6], which manage the ad campaigns of large advertisers; they dynamically adjust
bids and budgets over multiple search engines to improve performance. In Open Problem
Number 20, Mehta [19] asks for such an algorithm for Small.

Recent insights on the online bipartite matching problem (OBM) encouraged us to seek
such an algorithm. A simple optimal algorithm, called Ranking, achieving a competitive
ratio of

(
1− 1

e

)
, was given in [17] for OBM. However, the analysis of Ranking given in [17]

was difficult to comprehend. A sequence of papers has finally led to a simple and elegant
analysis, see Section 1.1. The simplicity of Ranking is particularly attractive; moreover, it
has become the paradigm-setting algorithmic idea in the area of online and matching-based
market design [8].

Ideas underlying the new proof of OBM enabled us to generalize Ranking all the way to
an algorithm for Small, while retaining the simplicity of the Ranking. As a result of this
simplicity, our algorithm has better properties than [20]; in particular, it is budget-oblivious.
A detailed discussion of its running time is given below. A budget-oblivious algorithm for
Small, having a competitive ratio of 0.5222 was recently obtained by Udwani [21], using the
idea of an LP-free analysis, which involves writing appropriate linear inequalities to compare
the online algorithm with the offline optimal algorithm.

At the outset of this work, extending Ranking directly to Small seemed an uphill task.
Therefore we attempted an intermediate problem first, namely Single-Valued, in which
each advertiser can make bids of one value only, although the value may be different for
different advertisers. We note that [2] had already obtained an optimal online algorithm
for Single-Valued by reducing it to the vertex weighted online matching problem, see
Section 1.1 for details. As explained in Section 1.3, in order to develop tools for attacking
Small, we needed to solve Single-Valued directly, and not resort to this reduction.

Our algorithm for Single-Valued is optimal, and it is also budget-oblivious. Furthermore,
our algorithm uses fewer random bits than the approach of [2]; see Section 1.1 for a detailed
comparison. We note that in contemporary3 and independent work, Albers and Schubert [3]
obtained an identical result for Single-Valued; their technique is different and involves
formulating a configuration LP and conducting a primal-dual analysis. Our technical ideas
are described in Section 1.3.

Our analysis of Single-Valued involved new ideas from two domains, namely probability
theory and combinatorics, with the former playing a dominant role and the latter yielding
a proof of a condition called the No-Surpassing Property, see Property 11. Equipped with
these ideas, we next attempted an extension from Ranking to Small. Although we met
with success in extending the more difficult, probabilistic part, of the argument, we found a
counter-example to the combinatorial part, showing that the No-Surpassing Property does
not hold for Small.

In order to make the no-surpassing property fail, we had to intricately “doctored up” the
instance of Small. This raised the question of experimentally determining how often this
property fails in typical instances and how it affects the performance of our algorithm; for
the latter, we compared it to [20]. As can be seen in the four Tables in the full paper [24],
the property fails rarely, for less than 2% of the edges (i, j), and the performance of our
algorithms for Single-Valued and Small are comparable with that of the MSVV Algorithm.
For this reason, and because of its budget-obliviousness, the algorithm may be useful as such
in practice. Clearly, it will be good to obtain further experimental confirm on varied types of
instances.

2 Note that the greedy algorithm, which is clearly budget-oblivious, achieves a competitive ratio of 0.5.
3 Our paper was first posted on arXiv on July 22, 2021 [22].

V. V. Vazirani 21:3

Since the ideas underlying our algorithm for Small, and the probabilistic part of its
proof, are quite substantial, we have stated them formally, after assuming the No-Surpassing
Property, see the full paper [24]. Under this assumption, we prove a competitive ratio of(
1− 1

e

)
for our algorithm. The problem of obtaining a tight unconditional competitive ratio

of our algorithm is an important one and has received much attention over the last two years,
ever since the appearance of this paper on arXiv. Critical insights into this open problem
are provided by the following results: first, Udwani [21] gave an example to show that the
unconditional competitive ratio of our algorithm is strictly less than (1− 1/e). Next, Liang
et al. [18] showed that the unconditional competitive ratio is less than 0.624; in contrast,
(1− 1/e) ≈ 0.632.

▶ Remark 1. The objective of all problems studied in this paper is to maximize the total
revenue accrued by the online algorithm. In economics, such a solution is referred to as
efficient, since the amount bid by an advertiser is indicative of how useful the query is to it,
and hence to the economy.

1.1 Related Works
OBM occupies a central place not only in online algorithms but also in matching-based market
design, see details in Section 1.2. The analysis of Ranking given in [17] was considered
“difficult” and it also had an error. Over the years, several researchers contributed valuable
ideas to simplifying its proof. The first simplifications, in [11, 4], got the ball rolling, setting
the stage for the substantial simplification given in [7], using a randomized primal-dual
approach. [7] introduced the idea of splitting the contribution of each matched edge into
primal and dual contributions and lower-bounding each part separately. Their method for
defining prices pj of goods, using randomization, was used by subsequent papers, including
this one4.

Interestingly enough, the next simplification involved removing the scaffolding of LP-
duality and casting the proof in purely probabilistic terms5, using notions from economics
to split the contribution of each matched edge into the contributions of the buyer and the
seller. This elegant analysis was given by [9]. We note that when we move to generalizations
of OBM, even this economic interpretation needs to be dropped, see Remark 4. Building
on these works, and incorporating a further simplification relating to the No-Surpassing
Property for OBM, a “textbook quality” proof was recently given in [23].

An important generalization of OBM is online b-matching. This problem is a special
case of Adwords in which the budget of each advertiser is $b and the bids are 0/1. [16]
gave a simple optimal online algorithm, called BALANCE, for this problem. BALANCE
awards the next query to the interested bidder who has been matched least number of times
so far. [16] showed that as b tends to infinity, the competitive ratio of BALANCE tends to(
1− 1

e

)
.

Observe that b-matching is a special case of Small, if b is large. Indeed, MSVV Algorithm
was obtained by extending BALANCE6 as follows: [20] first gave a simpler proof of the
competitive ratio of BALANCE using the notion of a factor-revealing LP [15]. Then they

4 For a succinct proof of optimality of the underlying function, ex−1, see Section 2.1.1 in [12].
5 Even though there is no overt use of LP-duality in the proof of [9], it is unclear if this proof could have

been obtained directly, without going the LP-duality-route.
6 It is worth recalling that [20] had first attempted extending OBM to Small; however, in the absence of

new insights into OBM, this did not go very far.

FSTTCS 2023

21:4 Towards a Practical, Budget-Oblivious Algorithm for Adwords

gave the notion of a tradeoff-revealing LP, which yielded an algorithm achieving a competitive
ratio of

(
1− 1

e

)
. [20] also proved that this is optimal for b-matching, and hence Small,

by proving that no randomized algorithm can achieve a better ratio for online b-matching;
previously, [16] had shown a similar result for deterministic algorithms.

The MSVV Algorithm is simple and operates as follows. The effective bid of each bidder
j for a query is its bid multiplied by (1 − eLj/Bj), where Bj and Lj are the total budget
and the leftover budget of bidder j, respectively; the query is matched to the bidder whose
effective bid is highest. As a result, the MSVV Algorithm needs to know the total budget of
each bidder. Following [20], a second optimal online algorithm for Small was given in [5],
using a primal-dual approach.

Another relevant generalization of OBM is online vertex weighted matching, in which
the offline vertices have weights and the objective is to maximize the weight of the matched
vertices. [2] extended Ranking to obtain an optimal online algorithm for this problem.
Clearly, Single-Valued is intermediate between Adwords and online vertex weighted
matching. [2] gave an optimal online algorithm for Single-Valued by reducing it to online
vertex weighted matching. This involved creating kj copies of each advertiser j. As a result,
their algorithm needs to use

∑
j∈A kj random numbers, where A is the set of advertisers.

On the other hand, our algorithm, and that of [3], needs to use only |A| numbers.
Adwords is a notoriously difficult problem, partly due to its inherent structural difficulties,

which are described in the full paper [24]. For Adwords, the greedy algorithm, which matches
each query to the highest bidder, achieves a competitive ratio of 1/2. Until recently, that
was the best possible. In [13] a marginally improved algorithm, with a ratio of 0.5016, was
given. It is important to point out that this 60-page paper was a tour-de-force, drawing on a
diverse collection of ideas – a testament to the difficulty of this problem.

In the decade following the conference version (FOCS 2005) of [20], search engine
companies generously invested in research on models derived from OBM and adwords. The
reason was two-fold: the substantial impact of [20] and the emergence of a rich collection of
digital ad tools. It will be impossible to do justice to this substantial body of work, involving
both algorithmic and game-theoretic ideas; for a start, see the surveys [19, 12].

1.2 Significance and Practical Impact
Google’s AdWords marketplace generates multi-billion dollar revenues annually and the
current annual worldwide spending on digital advertising is almost half a trillion dollars.
These revenues of Google and other Internet services companies enable them to offer crucial
services, such as search, email, videos, news, apps, maps etc. for free – services that have
virtually transformed our lives.

We note that Small is the most relevant case of adwords for the search ads marketplace
e.g., see [6]. A remarkable feature of Google, and other search engines, is the speed with
which they are able to show search results, often in milliseconds. In order to show ads at the
same speed, together with search results, the solution for Small needed to be minimalistic
in its use of computing power, memory and communication.

The MSVV Algorithm satisfied these criteria and therefore had substantial impact in this
marketplace. Furthermore, the idea underlying their algorithm was extracted into a simple
heuristic, called bid scaling, which uses even less computation and is widely used by search
engine companies today. As mentioned above, our Conditional Algorithm for Small is even
more elementary and is budget-oblivious.

It will be useful to view the AdWords marketplace in the context of a bigger revolution,
namely the advent of the Internet and mobile computing, and the consequent resurgence of
the area of matching-based market design. The birth of this area goes back to the seminal

V. V. Vazirani 21:5

1962 paper of Gale and Shapley on stable matching [10]. Over the decades, this area became
known for its highly successful applications, having economic as well as sociological impact.
These included matching medical interns to hospitals, students to schools in large cities, and
kidney exchange.

The resurgence led to a host of highly innovative and impactful applications. Besides the
AdWords marketplace, which matches queries to advertisers, these include Uber, matching
drivers to riders; Upwork, matching employers to workers; and Tinder, matching people to
each other, see [14, 8] for more details.

A successful launch of such markets calls for economic and game-theoretic insights,
together with algorithmic ideas. The Gale-Shapley Deferred Acceptance Algorithm and its
follow-up works provided the algorithmic backbone for the “first life” of matching-based
market design. The algorithm Ranking has become the paradigm-setting algorithmic idea
in the “second life” of this area [8]. Interestingly enough, this result was obtained in the
pre-Internet days, over thirty years ago.

1.3 Technical Ideas
Our extension from Ranking to Small needs to go via Adwords. It turns out that
Adwords suffers from an inherent structural difficulty, see the full paper [24]. We temporarily
finesse this difficulty by using the idea of “fake” money. The expected revenue of our online
algorithm for Adwords is at least (1− 1/e) fraction of the optimal offline revenue; however,
this total revenue consists of real as well as fake money. We provide an upper-bound on the
fake money in the worst case, and this suffices to show that, asymptotically, the fake money
used by Small, is negligible. Determining the true competitive ratio of our algorithm for
Adwords is left as an interesting and important open problem.

As described in Section 1.1, Single-Valued can be reduced to online vertex weighted
matching, by making kj copies of each advertiser j; however, this reduction does not work for
Adwords. The reason is that the manner in which budget Bj of bidder j gets partitioned
into bids is not predictable in the latter problem; it depends on the queries, their order of
arrival and the randomization executed in a run of the algorithm. Therefore, in order to
build techniques to attack Adwords, we will first need to solve Single-Valued without
reducing it to online vertex weighted matching.

This is done in Algorithm 1. Almost all of our new ideas, on the probabilistic front, needed
to attack Small were obtained in the process analyzing this algorithm. First, since vertex j

is not split into kj copies, we cannot talk about the contribution of edges anymore. Even
worse, we don’t have individual vertices for keeping track of the revenue accrued from each
match, as per the scheme of [9]. Our algorithm gets around this difficulty by accumulating
revenue in the same “account” each time bidder j gets matched. The corresponding random
variable, rj , is called the total revenue of bidder j, for want of a better name, see Remark 4.
Lower bounding E[rj] is much more tricky than lower bounding the revenue of a good in
OBM, since it involves “teasing apart” the kj accumulations made into this account; this is
done in Lemma 14.

The key fact needed in the analysis of Ranking is that for each edge e = (i, j) in the
underlying graph, its expected contribution to the matching produced is at least (1− 1/e).
For this purpose, the random variable, ue, called threshold, is defined in [23].

For analyzing Single-Valued, a replacement is needed for this lemma. For this purpose,
we give the notion of a j-star, denoted Xj , which consists of bidder j together with edges
to kj of its neighbors in G, see Definition 10. The contribution of j-star Xj , is denoted by
E[Xj], which is also defined in Definition 10. Finally, using the lower bound on E[rj], Lemma
14 gives a lower E[Xj] for every j-star, Xj . This lemma crucially uses a new random variable,
called truncated threshold, see Definition 9.

FSTTCS 2023

21:6 Towards a Practical, Budget-Oblivious Algorithm for Adwords

Next, we explain the reason for truncation in the definition of this random variable.
Consider bidder j and a query il that is desired by j. Observe that in run Rj

7, query il

can get a bid as large as B · (1− 1
e), where B = maxk∈A{bk}, whereas the largest bid that

j can make to il is bj · (1− 1
e); in general, bj may be smaller than B. Now, il contributes

revenue to rj only if il is matched to j in run R, an event which will definitely not happen
if uel

> bj · (1− 1
e). Therefore, whenever uel

∈ [bj · (1− 1
e), B · (1− 1

e)], the contribution
to rj is zero. By truncating uel

to bj · (1− 1
e), we have effectively changed the probability

density function of uel
so that the probability of the event uel

∈ [bj · (1− 1
e), B · (1− 1

e)] is
now concentrated at the event uel

= bj · (1− 1
e). From the viewpoint of lower bounding the

revenue accrued in rj , the two probability density functions are equivalent since the revenue
accrued is zero under both these events. On the other hand, the truncated random variable
enables us to apply the law of total expectation, in the proof of Lemma 14, in the same way
as it was done in [23], without introducing more difficulties.

Finally, in order to establish the no-surpassing property for Single-Valued, we give
the necessary combinatorial facts in Lemma 7 and Corollary 8. These facts are enhanced
versions of the facts needed to prove the no-surpassing property for Ranking in [23].

2 Preliminaries

Online Bipartite Matching (OBM). Let B be a set of n buyers and S a set of n goods. A
bipartite graph G = (B, S, E) is specified on vertex sets B and S, and edge set E, where for
i ∈ B, j ∈ S, (i, j) ∈ E if and only if buyer i likes good j. G is assumed to have a perfect
matching and therefore each buyer can be given a unique good she likes. Graph G is revealed
in the following manner. The n goods are known up-front. On the other hand, the buyers
arrive one at a time, and when buyer i arrives, the edges incident at i are revealed.

We are required to design an online algorithm A in the following sense. At the moment a
buyer i arrives, the algorithm needs to match i to one of its unmatched neighbors, if any; if
all of i’s neighbors are matched, i remains unmatched. The difficulty is that the algorithm
does not “know” the edges incident at buyers which will arrive in the future and yet the size
of the matching produced by the algorithm will be compared to the best off-line matching;
the latter of course is a perfect matching. The formal measure for the algorithm is defined in
Section 2.1.

Adwords Problem (ADWORDS). Let A be a set of m advertisers, also called bidders, and
Q be a set of n queries. A bipartite graph G = (Q, A, E) is specified on vertex sets Q and A,
and edge set E, where for i ∈ Q and j ∈ A, (i, j) ∈ E if and only if bidder j is interested
in query i. Each query i needs to be matched8 to at most one bidder who is interested in
it. For each edge (i, j), bidder j knows his bid for i, denoted by bid(i, j) ∈ Z+. Each bidder
also has a budget Bj ∈ Z+ which satisfies Bj ≥ bid(i, j), for each edge (i, j) incident at j.

Graph G is revealed in the following manner. The m bidders are known up-front and
the queries arrive one at a time. When query i arrives, the edges incident at i are revealed,
together with the bids associated with these edges. If i gets matched to j, then the matched
edge (i, j) is assigned a weight of bid(i, j). The constraint on j is that the total weight of
matched edges incident at it be at most Bj . The objective is to maximize the total weight of
all matched edges at all bidders.

7 Run Rj is defined in Definition 6.
8 Clearly, this is not a matching in the usual sense, since a bidder may be matched to several queries.

V. V. Vazirani 21:7

Adwords under Single-Valued Bidders (SINGLE-VALUED). Single-Valued is a special
case of Adwords in which each bidder j will make bids of a single value, bj ∈ Z+, for the
queries he is interested in. If i accepts j’s bid, then i will be matched to j and the weight of
this matched edge will be bj . Corresponding to each bidder j, we are also given kj ∈ Z+, the
maximum number of times j can be matched to queries. The objective is to maximize the
total weight of matched edges. Observe that the matching M found in G is a b-matching
with the b-value of each query i being 1 and of advertiser j being kj .

Adwords under Small Bids (SMALL). Small is a special case of Adwords in which for
each bidder j, each bid of j is small compared to its budget. Formally, we will capture this
condition by imposing the following constraint. For a valid instance I of Small, define

µ(I) = max
j∈A

{max(i,j)∈E {bid(i, j)− 1}
Bj

}
.

Then we require that

lim
n(I)→∞

µ(I) = 0,

where n(I) denotes the number of queries in instance I.

2.1 The competitive ratio of online algorithms
We will define the notion of competitive ratio of a randomized online algorithm in the context
of OBM.

▶ Definition 2. Let G = (B, S, E) be a bipartite graph as specified above. The competitive
ratio of a randomized algorithm A for OBM is defined to be:

c(A) = min
G=(B,S,E)

min
ρ(B)

E[A(G, ρ(B))]
n

,

where E[A(G, ρ(B))] is the expected size of matching produced by A; the expectation is over
the random bits used by A. We may assume that the worst case graph and the order of
arrival of buyers, given by ρ(B), are chosen by an adversary who knows the algorithm. It is
important to note that the algorithm is provided random bits after the adversary makes its
choices.

▶ Remark 3. For each problem studied in this paper, we will assume that the offline matching
is complete. It is easy to extend the arguments, without changing the competitive ratio, in
case the offline matching is not complete.

3 Algorithm for Single-Valued

Algorithm 1, which will be denoted by A1, is an online algorithm for Single-Valued.
Before execution of Step (1) of A1, the order of arrival of queries, say ρ(B), is fixed by the
adversary. We will define several random variables whose purpose will be quite similar to
that in Ranking and they will be given similar names as well; however, their function is
not as closely tied to these economics-motivated names as in Ranking, see also Remark 4.
Three of these random variables are the price pj and total revenue rj of each bidder j ∈ A,
and the utility ui of each query i ∈ Q.

FSTTCS 2023

21:8 Towards a Practical, Budget-Oblivious Algorithm for Adwords

We now describe how values are assigned to these random variables in a run of Algorithm 1.
In Step (1), for each bidder j, A1 picks a price pj ∈ [1

e , 1] via the specified randomized
process. Furthermore, the revenue rj and degree dj of bidder j are both initialized to zero,
the latter represents the number of times j has been matched. During the run of A1, j will
get matched to at most kj queries; each match will add bj to the total revenue generated by
the algorithm. bj is broken into a revenue and a utility component, with the former being
added to rj and the latter forming ui. At the end of A1, rj will contain all the revenue
accrued by j.

In Step (2), on the arrival of query i, we will say that bidder j is available if (i, j) ∈ E

and dj < kj . At this point, for each available bidder j, the effective bid of j for i is defined
to be ebid(j) = bj · (1− pj); clearly, ebid(j) ∈ [0, bj ·

(
1− 1

e

)
]. Query i accepts the bidder

whose effective bid is the largest. If there are no bids, matching M remains unchanged. If i

accepts j’s bid, then edge (i, j) is added to matching M and the weight of this edge is set
to bj . Furthermore, the utility of i, ui, is defined to be ebid(j) and the revenue rj of j is
incremented by bj · pj . Once all queries are processed, matching M and its weight W are
output.

▶ Remark 4. [9] had given the economics-based names of random variables for their proof of
Ranking. Although we have used the same names for similar random variables in Section 3
for Single-Valued, the reader should not attribute an economic interpretation to these the
names9.

3.1 Analysis of Algorithm 1
For the analysis of Algorithm A1, we will use the random variables W , pj , rj and ui defined
above; their values are fixed during the execution of A2. In addition, corresponding to each
edge e = (i, j) ∈ E, in Definition 9, we will introduce a new random variable, ue, which will
play a central role.

▶ Lemma 5.

E[W] =
n∑
i

E [ui] +
m∑
j

E[rj].

Proof. For each edge (i, j) ∈ M , its contribution to W is bj . Furthermore, the sum of ui

and the contribution of (i, j) to rj is also bj . This gives the first equality below. The second
equality follows from linearity of expectation.

E[W] = E

 n∑
i=1

ui +
m∑

j=1
rj

 =
n∑
i

E [ui] +
m∑
j

E[rj], ◀

▶ Definition 6. We will define several runs of Algorithm 1. In these runs, we will assume
Step (1) is executed once. We next define several ways of executing Step (2). Let R denote
the run of Step (2) on the entire graph G. Corresponding to each bidder j ∈ A, let Gj denote
graph G with bidder j removed. Define Rj to be the run of Step (2) on graph Gj.

9 We failed to come up with more meaningful names for these random variables and therefore have stuck
to the old names.

V. V. Vazirani 21:9

Algorithm 1 A1: Algorithm for Single-Valued.

1. Initialization: M ← ∅.
∀j ∈ A, do:
a. Pick wj uniformly from [0, 1] and set price pj ← ewj−1.
b. rj ← 0.
c. dj ← 0.

2. Query arrival: When query i arrives, do:
a. ∀j ∈ A s.t. (i, j) ∈ E and dj < kj do:

i. ebid(j)← bj · (1− pj).
ii. Offer effective bid of ebid(j) to i.

b. Query i accepts the bidder whose effective bid is the largest.
(If there are no bids, matching M remains unchanged.)
If i accepts j’s bid, then do:
i. Set utility: ui ← bj · (1− pj).
ii. Update revenue: rj ← rj + bj · pj .
iii. Update degree: dj ← dj + 1.
iv. Update matching: M ←M ∪ (i, j). Define the weight of (i, j) to be bj .

c. Output: Output matching M and its total weight W .

Lemma 7 and Corollary 8 given below establish a relationship between the available
bidders for a query i in the two runs R and Rj . Note that bidders are available in multiplicity
and therefore we will have to use the notion of a multiset rather than a set, as was done
in [23].

A multiset contains elements with multiplicity. Let A and B be two multisets over n

elements {1, 2, . . . n}, and let ai ≥ 0 and bi ≥ 0 denote the multiplicities of element i in
A and B, respectively. We will say that A ⊆ B if for each i, ai ≤ bi, and A = B if for
each i, ai = bi. We will say that i ∈ A if ai ≥ 1. We will define A ∩ B to be the multiset
containing each element i exactly min{ai, bi} times, and A−B to be the multiset containing
each element i exactly max{ai − bi, 0} times.

As before, let us renumber the queries so their order of arrival under ρ(B) is 1, 2, . . . n.
Let T (i) and Tj(i) denote the multisets of available bidders at the time of arrival of query
i (i.e., just before the query i gets matched) in runs R and Rj , respectively. In particular,
T (1) will contain kl copies of l for each bidder l and Tj(1) will contain kl copies of l for each
bidder l, other than j. Similarly, let S(i) and Sj(i) denote the projections of T (i) and Tj(i)
on the neighbors of i in G and Gj , respectively.

We have assumed that Step (1) of Algorithm 1 has already been executed and a price pk

has been assigned to each bidder k. The effective bid of bidder k is ebid(k) = bk · (1− pk).
With probability 1, the effective bids of all bidders are distinct. Let F1 be the multiset
containing kl copies of l for each l ∈ A such that bl · (1− pl) > bj · (1− pj). Similarly, let F2
be the multiset containing kl copies of l for each l ∈ A such that and bl · (1−pl) < bj · (1−pj).
Observe that j is not contained in either multiset.

▶ Lemma 7. For each i, 1 ≤ i ≤ n, the following hold:
1. (Tj(i) ∩ F1) = (T (i) ∩ F1).
2. (Tj(i) ∩ F2) ⊆ (T (i) ∩ F2).

FSTTCS 2023

21:10 Towards a Practical, Budget-Oblivious Algorithm for Adwords

Proof.
1. Clearly, in both runs, R and Rj , any query having an available bidder in F1 will match to

the most profitable one of these, without even considering the rest of the bidders. Since
j /∈ F1, the two runs behave in an identical manner on the set F1, thereby proving the
first statement.

2. The proof is by induction on i. The base case is trivially true because (Tj(1) ∩ F2) =
(T (1) ∩ F2), since j /∈ F2. Assume that the statement is true for i = k and let us prove it
for i = k + 1. By the first statement, we need to consider only the case that there are
no available bidders for the kth query in F1 in the runs R and Rj . Assume that in run
Rj , this query gets matched to bidder l; if it remains unmatched, we will take l to be
null. Clearly, l is the most profitable bidder it is incident to in Tj(k). Therefore, the most
profitable bidder it is incident to in run R is the best of l, the most profitable bidder
in T (k)− Tj(k), and j, in case it is available. In each of these cases, the induction step
holds. ◀

In the corollary below, the first two statements follow from Lemma 7 and the third
statement follows from the first two statements.

▶ Corollary 8. For each i, 1 ≤ i ≤ n, the following hold:
1. (Sj(i) ∩ F1) = (S(i) ∩ F1).
2. (Sj(i) ∩ F2) ⊆ (S(i) ∩ F2).
3. Sj(i) ⊆ S(i).

Next we define a new random variable, ue, for each edge e = (i, j) ∈ E. This is called the
truncated threshold for edge e and is given in Definition 9. It is critically used in the proofs
of Lemmas 13 and 14.

▶ Definition 9. Let e = (i, j) ∈ E be an arbitrary edge in G. Define random variable, ue,
called the truncated threshold for edge e, to be ue = min{uti, bj ·

(
1− 1

e

)
}, where uti is the

utility of query i in run Rj.

▶ Definition 10. Let j ∈ A. Henceforth, we will denote kj by k in order to avoid triple
subscripts. Let i1, . . . , ik be queries such that for 1 ≤ l ≤ k, (il, j) ∈ E. Then (j; i1, . . . , ik)
is called a j-star. Let Xj denote this j-star. The contribution of Xj to E[W] is E[rj] +∑k

l=1 E[uil
], and it will be denote by E[Xj].

Corresponding to j-star Xj = (j; i1, . . . , ik), denote by el the edge (il, j) ∈ E, for
1 ≤ l ≤ k. Furthermore, let uel

denote the truncated threshold random variable corresponding
to el.

▶ Property 11 (No-Surpassing for Single-Valued). Assume that Step 1 of Algorithm 1 has
been executed and a price pk has been assigned to each advertiser k. Suppose that the effective
bid which query i gets in run Rj is less than bj · (1− pj); the latter is clearly the effective bid
which j makes to i in run R. Then, in run R, no bid to i will surpass ebid(j) = bj · (1− pj).

▶ Lemma 12. The No-Surpassing Property holds for Single-Valued.

Proof. Suppose the bid of j, namely bj · (1− pj), is better than the best bid that buyer i

gets in run Rj . If so, i gets no bid from F1 in Rj ; observe that they are all higher than
bj · (1− pj). Now, by the first part of Corollary 8, i gets no bid from F1 in run R as well,
i.e., in run R, no bid to i will surpass bj · (1− pj). ◀

V. V. Vazirani 21:11

▶ Lemma 13. Corresponding to j-star Xj = (j; i1, . . . , ik), the following hold.
For 1 ≤ l ≤ k, uil

≥ uel
.

Proof. By the third statement of Corollary 8, il has more options in run R as compared to
run Rj . Furthermore, the truncation of the random variable only aids the inequality needed
and therefore uil

≥ uel
. ◀

Our next goal is to lower bound the contribution of an arbitrary j-star, E[Xj], which in
turn involves lower bounding E[rj]. The latter crucially uses the fact that pj is independent
of uel

. This follows from the fact that uel
is determined by run Rj on graph Gj , which does

not contain vertex j.

▶ Lemma 14. Let j ∈ A and let Xj = (j; i1, . . . , ik) be a j-star. Then

E[Xj] ≥ k · bj ·
(

1− 1
e

)
.

Proof. We will first lower bound E[rj]. Let fU (bj ·z1, . . . bj ·zk) be the joint probability density
function of (ue1 , . . . uek

); clearly, fU (bj · z1, . . . bj · zk) can be non-zero only if zl ∈ [0, 1− 1
e],

for 1 ≤ l ≤ k. By the law of total expectation,

E[rj] =
∫

(z1,...,zk)
E[rj | ue1 = bj · z1, . . . , uek

= bj · zk] · fU (bj · z1, . . . bj · zk) dz1 . . . dzk,

where the integral is over zl ∈ [0,
(
1− 1

e

)
], for 1 ≤ l ≤ k.

For lower-bounding the conditional expectation in this integral, let wl ∈ [0, 1] be s.t.
ewl−1 = 1− zl, for 1 ≤ l ≤ k. For x ∈ [0, 1], define the set S(x) = {l | 1 ≤ l ≤ k and x < wl}.

▷ Claim 15. Conditioned on (ue1 = bj · z1, . . . , uek
= bj · zk), if pj = ex−1, then the degree

of j at the end of Algorithm A2 is at least |S(x)|, i.e., the contribution to rj in this run was
≥ bj · pj · |S(x)|.

Proof. Suppose l ∈ S(x), then x < wl. In run Rj , the maximum effective bid that il received
has value bj · zl. In run R, if at the arrival of query il, j is already fully matched, the
contribution to rj in this run was k · bj · pj and the claim is obviously true. If not, then since
x < wl, bj · (1− pj) > bj · zl. The crux of the matter is that by Lemma 12, the No-Surpassing
Property holds. Therefore, query il will receive its largest effective bid from j, il will get
matched to it, and rj will be incremented by bj · pj . The claim follows. ◁

For 1 ≤ l ≤ k, define indicator functions Il : [0, 1]→ {0, 1} as follows.

Il(x) =
{

1 if x < wl,

0 otherwise.

Clearly, |S(x)| =
∑k

l=1 Ij(x). By Claim 15,

E[rj | ue1 = bj · z1, . . . , uek
= bj · zk] ≥ bj ·

∫ 1

0
|S(x)| · ex−1 dx

= bj ·
∫ 1

0

k∑
l=1

Il(x) · ex−1 dx = bj ·
k∑

l=1

∫ 1

0
Il(x) · ex−1 dx = bj ·

k∑
l=1

∫ wl

0
ex−1 dx

= bj ·
k∑

l=1

(
ewl−1 − 1

e

)
= bj ·

k∑
l=1

(
1− 1

e
− zl

)
.

FSTTCS 2023

21:12 Towards a Practical, Budget-Oblivious Algorithm for Adwords

Since Il(x) = 0 for x ∈ [wl, 1], we get that
∫ 1

0 Il(x) · ex−1 dx =
∫ wl

0 ex−1 dx; this fact
has been used above. Therefore,

E[rj] =
∫

(z1,...,zk)
E[rj | ue1 = bj · z1, . . . , uek

= bj · zk] · fU (bj · z1, . . . bj · zk) dz1 . . . dzk

≥ bj ·
∫

(z1,...,zk)

k∑
l=1

(
1− 1

e
− zl

)
· fU (bj · z1, . . . bj · zk) dz1 . . . dzk

= k · bj ·
(

1− 1
e

)
−

k∑
l=1

E[uel
],

where both integrals are over zl ∈ [0,
(
1− 1

e

)
], for 1 ≤ l ≤ k.

By Lemma 13, E[uil
] ≥ E[uel

], for 1 ≤ l ≤ k. Hence we get

E[Xj] = E[rj] +
k∑

l=1
E[uil

] ≥ k · bj ·
(

1− 1
e

)
, ◀

▶ Lemma 16.

E[W] =
n∑
i

E [ui] +
m∑
j

E[rj].

Proof. By definition of the random variables,

E[W] = E

 n∑
i=1

ui +
m∑

j=1
rj

 =
n∑
i

E [ui] +
m∑
j

E[rj],

where the first equality follows from the fact that if (i, j) ∈M then W is incremented by bj

and ui + rj = bj . The second equality follows from linearity of expectation. ◀

▶ Theorem 17. The competitive ratio of Algorithm A2 is at least 1− 1
e . Furthermore, it is

budget-oblivious.

Proof. Let P denote a maximum weight b-matching in G, computed in an offline manner.
By the assumption made in Remark 3, its weight is

w(P) =
m∑

j=1
kj · bj .

Let Tj denote the j-star, under P , corresponding to each j ∈ A. The expected weight of
matching produced by A2 is

E [W] =
n∑

i=1
E [ui] +

m∑
j=1

E[rj] =
m∑

j=1
E[Tj] ≥

m∑
j=1

bj · kj

(
1− 1

e

)
=

(
1− 1

e

)
·w(P),

where the first equality uses Lemma 16, the second follows from linearity of expectation and
the inequality follows from Lemma 14.

Finally, Algorithm A2 is budget-oblivious because it does not need to know kj for bidders
j; it only needs to know during a run whether the kj bids available to bidder j have been
exhausted. The theorem follows. ◀

V. V. Vazirani 21:13

References
1 Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. Autobidding with

constraints. In International Conference on Web and Internet Economics, pages 17–30.
Springer, 2019.

2 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted
bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264, 2011.

3 Susanne Albers and Sebastian Schubert. Optimal algorithms for online b-matching with
variable vertex capacities. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2021). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

4 Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. ACM
Sigact News, 39(1):80–87, 2008.

5 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–264, 2007.

6 Nikhil Devanur and Aranyak Mehta. Online matching in advertisement auctions. In Federico
Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors, Online and Matching-Based
Market Design. Cambridge University Press, 2022. [To appear] https://www.ics.uci.edu/
~vazirani/AdAuctions.pdf.

7 Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis of
ranking for online bipartite matching. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 101–107. SIAM, 2013.

8 Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors. Online and Matching-
Based Market Design. Cambridge University Press, 2023.

9 Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economic-based analysis of
ranking for online bipartite matching. In SIAM Symposium on Simplicity in Algorithms, 2021.

10 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

11 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA, volume 8, pages 982–991, 2008.

12 Zhiyi Huang and Thorben Trobst. Online matching. In Federico Echenique, Nicole Immor-
lica, and Vijay V. Vazirani, editors, Online and Matching-Based Market Design. Cambridge
University Press, 2022. [To appear] https://www.ics.uci.edu/~vazirani/Ch4.pdf.

13 Zhiyi Huang, Qiankun Zhang, and Yuhao Zhang. Adwords in a panorama. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 1416–1426. IEEE,
2020.

14 Simons Institute. Online and matching-based market design, 2019. URL: https://simons.
berkeley.edu/programs/market2019.

15 Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal
of the ACM (JACM), 50(6):795–824, 2003.

16 Bala Kalyanasundaram and Kirk R Pruhs. An optimal deterministic algorithm for online
b-matching. Theoretical Computer Science, 233(1-2):319–325, 2000.

17 Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 352–358, 1990.

18 Jingxun Liang, Zhihao Gavin Tang, Yixuan Xu, Yuhao Zhang, and Renfei Zhou. On the
perturbation function of ranking and balance for weighted online bipartite matching. arXiv
preprint, 2022. arXiv:2210.10370.

19 Aranyak Mehta. Online matching and ad allocation, volume 8(4). Now Publishers, Inc., 2013.
20 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized

online matching. Journal of the ACM (JACM), 54(5), 2007.

FSTTCS 2023

https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/AdAuctions.pdf
https://www.ics.uci.edu/~vazirani/Ch4.pdf
https://simons.berkeley.edu/programs/market2019
https://simons.berkeley.edu/programs/market2019
https://arxiv.org/abs/2210.10370

21:14 Towards a Practical, Budget-Oblivious Algorithm for Adwords

21 Rajan Udwani. Adwords with unknown budgets and beyond. arXiv preprint, 2021. arXiv:
2110.00504.

22 Vijay V Vazirani. Online bipartite matching and adwords. arXiv preprint, 2021. arXiv:
2107.10777.

23 Vijay V Vazirani. Online bipartite matching and adwords. In 47th International Symposium
on Mathematical Foundations of Computer Science, 2022.

24 Vijay V Vazirani. Towards a practical, budget-oblivious algorithm for the adwords problem
under small bids. arXiv preprint, 2023. arXiv:2107.10777.

https://arxiv.org/abs/2110.00504
https://arxiv.org/abs/2110.00504
https://arxiv.org/abs/2107.10777
https://arxiv.org/abs/2107.10777
https://arxiv.org/abs/2107.10777

	1 Introduction
	1.1 Related Works
	1.2 Significance and Practical Impact
	1.3 Technical Ideas

	2 Preliminaries
	2.1 The competitive ratio of online algorithms

	3 Algorithm for Single-Valued
	3.1 Analysis of Algorithm 1

