
Languages Given by Finite Automata over the
Unary Alphabet
Wojciech Czerwiński #

Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland

Maciej Dębski #

Warsaw, Poland

Tomasz Gogasz #

Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland

Gordon Hoi #

School of Informatics and IT, Temasek Polytechnic, Singapore, Singapore

Sanjay Jain #

School of Computing, National University of Singapore, Singapore

Michał Skrzypczak #

Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland

Frank Stephan #

Department of Mathematics and School of Computing,
National University of Singapore, Singapore

Christopher Tan #

Department of Mathematics, National University of Singapore, Singapore

Abstract
This paper studies the complexity of operations on finite automata and the complexity of their
decision problems when the alphabet is unary and n the number of states of the finite automata
considered. The following main results are obtained:
(1) Equality and inclusion of NFAs can be decided within time 2O((n log n)1/3); previous upper bound

2O((n log n)1/2) was by Chrobak (1986) via DFA conversion.
(2) The state complexity of operations of UFAs (unambiguous finite automata) increases for

complementation and union at most by quasipolynomial; however, for concatenation of two
n-state UFAs, the worst case is an UFA of at least 2Ω(n1/6) states. Previously the upper bounds
for complementation and union were exponential-type and this lower bound for concatenation is
new.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Nondeterministic Finite Automata, Unambiguous Finite Automata, Upper
Bounds on Runtime, Conditional Lower Bounds, Languages over the Unary Alphabet

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.22

Related Version Full Version: https://arxiv.org/abs/2302.06435

Funding Wojciech Czerwiński: supported by the ERC grant INFSYS, agreement no. 950398.
Sanjay Jain: supported by the Singapore Ministry of Education Academic Research Fund Tier 2
grant MOE2019-T2-2-121 / R146-000-304-112 as well as NUS Provost Chair grant E-252-00-0021-01.
Michał Skrzypczak: supported by the National Science Centre, Poland (grant number
2021/41/B/ST6/03914).
Frank Stephan: supported by the Singapore Ministry of Education Academic Research Fund Tier 2
grant MOE2019-T2-2-121 / R146-000-304-112.

© Wojciech Czerwiński, Maciej Dębski, Tomasz Gogasz, Gordon Hoi, Sanjay Jain, Michał Skrzypczak,
Frank Stephan, and Christopher Tan;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 22; pp. 22:1–22:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wczerwin@mimuw.edu.pl
mailto:mdempsej@gmail.com
mailto:t.gogacz@mimuw.edu.pl
mailto:hoickg@gmail.com
mailto:sanjay@comp.nus.edu.sg
mailto:mskrzypczak@mimuw.edu.pl
https://orcid.org/0000-0002-9647-4993
mailto:fstephan@comp.nus.edu.sg
https://orcid.org/0000-0001-9152-1706
mailto:e0774066@u.nus.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.22
https://arxiv.org/abs/2302.06435
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Languages and Automata for the Unary Alphabet

1 Introduction

This paper investigates the complexity and size-constraints related to languages over the
unary alphabet – this is assumed everywhere throughout the paper – when these languages
are given by a nondeterministic finite automaton (NFA) with a special emphasis on the case
where this NFA is unambiguous. Unambiguous nondeterministic finite automata (UFAs)
have many good algorithmic properties, even under regular operations with the languages,
as long as no concatenation is involved. The study of unary languages is a theoretically
important special case which allows for techniques and insights from number theory, as each
word corresponds to the natural number which is its length. This sometimes gives techniques
which can be extended to general case. Furthermore, the case is a bit special as the NFA-DFA
trade-off is only 2O((n log n)1/2) and not 2n as for other alphabets; Colcombet [3] published
several influential conjectures which found much attention: Göös, Kiefer and Yuan [6] refuted
his conjecture that any two n-state NFAs with disjoint languages can be separated by an
UFA of size polynomially in n; this paper confirms a weak version of another conjecture
by showing that unary UFAs have only a quasipolynomial blow-up for Boolean operations;
Raskin [18] had refuted the original version of the conjecture.

In the following, a bound of type 2Θ(n) is called exponential and a bound of type 2nΘ(1) is
called exponential-type. The quasipolynomial functions are those in O(nlogO(1)(n)) which are
not bounded by polynomials. In an expression of the form 2α(n), the function α(n) is called
the exponent of the function. Let f ∈ Ω′(g) mean that there is a constant c > 0 such that,
for infinitely many n, f(n) ≥ c · g(n). Note that, under the Exponential Time Hypothesis
(ETH), all NP-complete problems have, for infinitely many inputs, an exponential-type
complexity and solving kSAT with k ≥ 3 requires time 2Ω′(n). For this paper, for several
results, the exponential of an exponential-type function from the upper bound is matched,
assuming Exponential Time Hypothesis, by a lower bound whose logarithm differs from that
of the upper bound only by a logarithmic or sublogarithmic expression.

Assume two languages L, H are given by n-state NFAs and one wants to know whether
L ⊆ H. Chrobak [2] provided an algorithm by converting the NFAs into DFAs and then
comparing these which runs, for the unary alphabet, in time 2O((n log n)1/2). Fernau and
Krebs [5] proved, under the assumption of ETH, the conditional lower bound 2Ω′(n1/3) but
did not resolve the remaining gap. Tan provides in an undergraduate thesis (UROP) [21] an
alternative proof for the conditional lower bound by coding the variant of SAT where all
clauses have at most length 3 and all variables occur at most 3 times; this variant is called
3-occur-3SAT. The present work narrows the gap significantly by providing a comparison
algorithm which decides whether L ⊆ H in time 2O((n log n)1/3), see Theorem 2 below.

Recall that for an unambiguous nondeterministic finite automata (UFA), every word
outside the language has zero accepting runs and every word inside the language has exactly
one accepting run – see below for more explanations for these technical terms. Prior research
had established that the intersection of two n-state UFAs can be represented by an O(n2)-
state UFA and that, over the binary alphabet, the complexity of the Kleene star of an n-state
UFA can be recognised (synonymously accepted) by an O(n2)-state UFA [1, 3, 8, 14, 16, 17].
But the size-increase of the other regular operations (complement, union, concatenation)
remained open; it was however known that disjoint union has linear complexity.

Unambiguous finite automata found much attention in recent research with a lower
quasipolynomial lower bound for the blow-up of the size for complementation by Raskin [18]
of the form Ω′(n(log log log n)q) where q is some positive rational constant. Thus it is impossible
to achieve a polynomial sized complementation of UFAs for any alphabet. For comparison with

W. Czerwiński et al. 22:3

the binary case, it should be mentioned that Göös, Kiefer and Yuan [6] proved that for binary
languages of UFAs, the size of an NFA computing the complement is in nΩ′((log n)/polylog(log n)).
This lower bound also trivially applies to UFAs. However, this paper shows that, for unary
alphabet, one can do all regular operations on UFAs with at most quasipolynomial size-
increase except for concatenation where this paper achieves the lower bound of 2Ω(n1/6),
confirming a weak version of a conjecture of Colcombet [3] – who predicted originally a
polynomial size-increase for Boolean operations. For larger alphabets, there is a big gap
between the lower bound nlog n/polylog(log n) by Göös, Kiefer and Yuan [6] and the upper
bounds for complementing an n-state UFA of 20.79n+log n by Jirásek, Jr., Jirásková and
Šebej [13] and

√
n + 1 · 2n/2 by Indzhev and Kiefer [12].

For unary automata, Okhotin [15] determined the worst-case complexity on the determ-
inisation of UFAs with 2Θ((n log2(n))1/3) and this is directly also an upper bound on the
size-increase by complementation. In his master’s thesis, author Dębski [4] constructed an
algorithm to complement unambiguous automata over the unary alphabet while maintaining
the upper size-bound of nO(log n) for these automata. The present work tightens the analysis
of the construction and gets the bound nlog n+O(1).

Note that it is not efficient to compare UFAs with respect to inclusion of the generated
languages by constructing complementation of the second automaton and then taking
intersection and checking for emptiness. Instead, one employs direct comparison algorithms;
Stearns and Hunt [20] provided a polynomial time algorithm for this; this paper slightly
improves it by providing a LOGSPACE algorithm in the case that the UFAs are in Chrobak
Normal Form, and an NLOGSPACE algorithm without any assumption on a normal form.
Note that the transformation into this normal form is a polynomial time algorithm which
does not increase the number of states for UFAs; however, an NLOGSPACE algorithm
might cause a polynomial size increase.

Tables 1, 2 and 3 provide the best known results by either this paper or prior work.
Results of this paper refer to the corresponding theorem, proposition or remark while results
of prior work give the corresponding reference. In particular, the tables summarise the
results for UFAs. Previously published bounds are mentioned, where needed, near to the
corresponding result. Note that c(n) = nlog n+O(1). Lower bounds on size imply lower bounds
on computations; for concatenation a better lower bound is found (assuming ETH). In Table 1
the bounds on the size of UFAs are given. Table 2 (Table 3 respectively) give the bounds on
the computation time (computation space respectively), needed for finding automata with
the desired property or determining the truth of a formula are given. Note that in general for
computing the complement, union, intersection and for comparing NFAs, the computation
space O(f(n)) corresponds to the computation time 2O(f(n) in the worst case. Thus every
further improvement in the space usage will also have an improvement in the time usage.
UFA comparison is in NLOGSPACE, which is more or less optimal and this corresponds to
the polynomial time used for the comparison (though more concrete time bounds are given
in the corresponding theorems).

2 Details of Technical Concepts and Methods

Finite Automata

A finite state automaton, see for example [9], is a tuple (Q, Σ, Q0, δ, F), where Q is a finite
set of states, Σ is a finite alphabet (unary for this paper), Q0 ⊆ Q is a set of initial states,
δ is a transition function assigning to each pair in Q × Σ a subset of Q and F ⊆ Q is a

FSTTCS 2023

22:4 Languages and Automata for the Unary Alphabet

Table 1 State complexity of operations with UFAs. Here c(n) = nlog n+O(1).

Operation Lower Bound Source Upper Bound Source
Intersection n2 − n Holzer and n2 Holzer and

Kutrib [7] Kutrib [7]
Complement n(log log log n)Ω(1) Raskin [18] c(n) Theorem 3

Disjoint union 2n − 4 – 2n Jirásková and
Okhotin [14]

Union – – n + n · c(n) Remark 11
Symm. difference n(log log log n)Ω(1) Raskin [18] 2n · c(n) Theorem 3

Kleene Star (n − 1)2 + 1 Čevorová [1] (n − 1)2 + 1 Čevorová [1]
Concatenation 2Ω(n1/6) Theorem 9 2O((n log2 n)1/3) Okhotin [15]

Table 2 Time bounds, except for the last, all refer to UFAs. The lower bounds using Ω′ for
computing concatenation, evaluating formulas using UFAs as inputs and comparing NFAs assume
ETH and hold only infinitely often. The upper bound for universality in the first row assumes that
the UFA is given in Chrobak Normal Form.

Operation Lower Bound Source Upper Bound Source
UFA Universality – – O(n log2 n) Theorem 5
UFA Comparison – – Poly(n) Stearns and

Hunt III [20]
UFA Concatenation 2Ω′(n1/4) Theorem 13 2O((n log2 n)1/3) Okhotin [15]
UFA Complement n(log log log n)Ω(1) Raskin [18] nO(log n) Theorem 3

UFA Formulas 2Ω′((n log n)1/3) Theorem 12 2O((n log2 n)1/3) Okhotin [15]
NFA Comparison 2Ω′(n1/3) Fernau and 2O((n log n)1/3) Theorem 2

Krebs [5]

set of accepting states. A run of the automaton on input a1a2 . . . an is a sequence of states
q0, q1, . . . qn, such that q0 ∈ Q0 and for each i < n, qi+1 ∈ δ(qi, ai+1). The run is accepting
if qn ∈ F . The input a1a2 . . . an is accepted by the automaton if there is a run on it which
is accepting. The set of words accepted by the automaton is called the language of the
automaton. The terminologies word and string are used interchangeably.

Without further constraints, the automaton is called a nondeterministic finite automaton
(NFA). An NFA accepts a word iff it has an accepting run for this word, that is, a word is
accepted iff there is at least one run ending in an accepting state and a word is rejected iff
there is either no run for the word at all or all runs for the word end in a rejecting state.

An NFA which has, for each word in its language L, exactly one accepting run and for
each word outside L no accepting run is called an unambiguous finite automaton (UFA).
An NFA which has exactly one start state and for which δ(q, a) has cardinality exactly one,
for all q ∈ Q and a ∈ Σ, is called a deterministic finite automaton (DFA). Note that every
DFA has for each word exactly one run and this run is accepting iff the word is in the given
language L. A language L is called regular iff L is the language of some finite automaton.
The concept does not change if one requires this automaton to be a UFA or to be a DFA.

In the case of a unary alphabet one can bring an NFA or UFA into Chrobak Normal
Form [2]. For the unary alphabet, a Chrobak Normal Form of the NFA is defined as follows:
The NFA consists of states q1, q2, . . . , qs, pi

0, pi
2, . . . , pi

ni−1, for i with 1 ≤ i ≤ r, for some s, r

and ni, such that the following holds:

W. Czerwiński et al. 22:5

Table 3 Space Bounds; Result for Universality assumes input in Chrobak Normal Form and
lower bound for NFA comparison assumes ETH and holds only infinitely often.

Operation Lower Bound Source Upper Bound Source
UFA Universality – – O(log n) Theorem 5
NFA Comparison ETH ⇒ Ω′(n1/3) Fernau and O((n log n)1/3) Theorem 2

Krebs [5]

(a) If s > 0 then q1 is the starting state else {pi
0 : 1 ≤ i ≤ r} is the set of starting states.

(b) δ(qi, a) = {qi+1}, for i with 1 ≤ i < s and a ∈ Σ.
(c) If s > 0 and a ∈ Σ, δ(qs, a) = {pi

0 : 1 ≤ i ≤ r}.
(d) δ(pi

j , a) = {pi
j+1 mod ni

}, for a ∈ Σ, i ≤ r and j < ni.
The states q1, q2, . . . , qs and the transitions within them is called the stem of the NFA, with
qs the last state of the stem. For 1 ≤ i ≤ r, the states (pi

j)j<ni and the transitions among
them, are called the cycles of the NFA, where ni is the length of the cycle and pi

0 is the entry
state of the cycle. Which states of an NFA are accepting depends on its language.

The Exponential Time Hypothesis (ETH)

Impagliazzo, Paturi and Zane [10, 11] observed that for many concepts similar to 3SAT the
running time is exponential in the number n of variables. They investigated this topic and
formulated what is now known as the Exponential Time Hypothesis: There is a constant
c > 0 such that, every algorithm which solves 3SAT, has for infinitely many values of n the
worst case time complexity of at least 2cn. One defines f ∈ Ω′(g) iff there is a constant c > 0
such that for infinitely many n it holds that f(n) > c · g(n). Then one can obtain for many
problems a conditional lower bound, that is, a lower bound implied by the Exponential Time
Hypothesis where an absolute lower bound proof is unavailable. For example, for the unary
NFA universality problem one gets the conditional lower bound of 2Ω′(n1/3).

In the present work, several lower bounds for the runtime to solve problems related
to unary UFAs or NFAs are formulated under the assumption of the Exponential Time
Hypothesis using Ω′-expressions. Furthermore, for constructing lower bounds, the following
additional result of Impaglazzio, Paturi and Zane [10, 11] is important: Assuming the
Exponential Time Hypothesis, there are constants c, d > 1 such that, for every algorithm
solving 3SAT, there are infinitely many n such that for each of these n there is an instance
with n variables, each occurring in the instance at most d times, such that the run time of
the algorithm on this instance is at least cn. Furthermore, one can show that one can choose
d = 3 (at the expense of a perhaps smaller c, but still with c > 1).

The Prime Number Theorem

The prime number theorem says that ratio of the n-th prime number and n·log n·log 2.71828 . . .

converges to 1 where 2.71828 . . . is the Euler’s number. A direct consequence of the prime
number theorem is that there is a constant c such that, for each n ≥ 2, there are n/ log n

prime numbers between n and cn.
In this paper, variations of these consequences are used in constructions to code 3SAT

instances into NFAs and UFAs in order to show the hardness of decision problems. Often
in proofs, the constructed NFA is in Chrobak Normal Form and consists of a stem of s

states, where s = 0 is possible, and disjoint cycles C1, C2, . . . of lengths p1, p2, . . ., with
n = s + p1 + p2 + . . . being the overall number of states. In these cases, the states in cycle
Ci will be considered to be ordered as 0-th, 1-st, . . . states in the cycle, where the unary

FSTTCS 2023

22:6 Languages and Automata for the Unary Alphabet

alphabet takes the NFA from the current to the next state modulo pi in the cycle Ci. If
s > 0 the 0-th state in the cycle is the entry point into the cycle from the last state of the
stem else each cycle has a start state which is its 0-th state. Assume that the stem has s

states and an input of length t has been processed; if s > t then the NFA is in the t-th state
of the stem else the NFA is in the (t − s mod pi)-th state of the cycle Ci for some i.

Often (though not always) the pi above would be either distinct prime numbers or distinct
prime numbers times a common factor, the latter is in particular used for UFAs. This allows
us to use Chinese Remainder Theorem to get that some possible combination of states is
reachable in the different cycles for the same input word; in the case that all lengths are
pairwise coprime, every combination can be reached.

3 The Nondeterministic Finite Automata Comparison Algorithm

The upper bound of the next result matches the lower bound 2Ω′(n1/3) of the timebound from
the universality problem of unary NFAs [5] up to a factor O((log n)1/3) when comparing the
logarithms of the corresponding run time bounds. A sketch of Tan’s alternative proof [21] is
in the appendix, as later results build on this method.

▶ Proposition 1 (Fernau and Krebs [5]). Given an m-variable 3-occur 3SAT instance, one
can construct an n = Θ(m3) sized NFA such that this NFA accepts all words over the unary
alphabet iff the given instance is unsolvable. Thus unary NFA universality requires 2Ω′(n1/3)

computation time provided that the Exponential Time Hypothesis holds.

The upper bound 2((n log n)1/3) in the next result is only slightly larger than the lower
bound 2Ω′(log n)1/3). As the time used by an algorithm is at most 2O(space used), any further
improvement in the space bound would also result in improvement in the time bound.

▶ Theorem 2. Given two nondeterministic finite automata over the unary alphabet and
letting n denote the maximum number of their states, one can decide whether the first NFA
computes a subset of the second NFA in deterministic time O(c(n log n)1/3) for a suitable
constant c > 1. This timebound also applies directly to the comparison algorithm for equality
and the algorithm for checking universality (all strings in the language). Furthermore, the
algorithm can be adjusted such that the space used is O((n log n)1/3).

Proof. Let n denote the maximum number of states of the two automata. Without loss of
generality assume n is large enough so that the prime number theorem and other bounds
needed below apply. One can transform (within polynomial time in the number of states)
the nondeterministic finite automata into Chrobak Normal Form [2], where it consists of
a stem of up to n2 states, followed by parallel cycles which, together, use up to n states.
Note that one can assume that the two stems have the same length. To see this, note that
in Chrobak Normal Form, a stem can be made one longer by adding one state at the end
of the stem and shifting the entry point into each cycle by one state. The new state in
the stem would be accepting iff one of the prior entry points in the cycles was accepting.
This is done repeatedly (at most O(n2) times) until the stems have the same length. The
comparison of the behaviour on the stems of equal length before entering the cycles can be
done by just comparing if the corresponding states at the same distance from the start are
accepting/rejecting.

The comparison of the cycle part is therefore the difficult part. Thus, for the following,
one assumes without loss of generality that the input NFAs are in Chrobak Normal Form,
and do not have any stem. The NFAs thus consist only of disjoint cycles, each having one
start state and the only nondeterminism is the choice of the start state, that is, the cycle to
be used.

W. Czerwiński et al. 22:7

Note that a cycle C of length m in an NFA can be converted into a cycle C ′ of length w,
where m divides w, by having the s-th state of C ′ as accepting if (s mod m)-th state of C

is accepting. This way, for appropriate value of w, one can combine several cycles whose
lengths divide w into one cycle of length w. If one can get a set X of small number of w’s
(which pairwise have the same greatest common divisor (gcd) r), such that the lengths of all
the cycles of the two NFAs divide at least one w ∈ X, then converting the two NFAs to have
cycles only of lengths w ∈ X, allows for easier comparison of the two NFAs (these NFAs are
called comparison normal form NFAs below).

Intuitively, lengths of only few (at most (n/ log2 n)1/3) cycles of the NFAs can have two
large (at least (n log n)1/3) prime factors. The aim of P defined below is to collect all such
prime factors along with the small primes. Set Q defined below collects the large primes
which are not in P . Thus, P and Q together provide all the prime factors of the lengths of
the cycles of the two NFAs.

Let P = {prime number p : p < (n log n)1/3 or there exist a prime q ≥ (n log n)1/3 such
that one of the NFAs given in the input has a cycle with length divisible by p · q}.

Let Q = {prime p ≤ n : p ̸∈ P}.
Note that the number of primes smaller than (n log n)1/3 is at most O((n/ log2 n)1/3).

Furthermore, the number of primes p ≥ (n log n)1/3 such that the length of some cycle
in one of the input NFAs is divisible by p · q for some prime q ≥ (n log n)1/3 is at most
O((n/ log2 n)1/3), as the cycles within each NFA are disjoint. Thus, the cardinality of P is
at most O((n/ log2 n)1/3).

For each p ∈ P , let kp be maximum number such that pkp ≤ n. Note that pkp is the highest
power of p ∈ P which could divide the length of some cycle in the input NFAs. Similarly, q2

is the highest power of q ∈ Q which could divide length of any cycle in the input NFAs. Let
r be the product of all pkp , p ∈ P . Note that r is in O(nc′·(n/ log2 n)1/3) = O(2c′·(n log n)1/3),
for some constant c′. Thus, r ≤ c(n log n)1/3 for some constant c > 1.

Let X = {r · q2 : q ∈ Q}.
Note that lengths of all cycles in the two NFAs divide some w ∈ X. Moreover, the gcd of

any two numbers in X is r. Now, for ease of comparing the two NFAs, one transforms each
of these NFA into an equivalent “comparison normal form” NFA of size at most r · n3 as
follows. For each q ∈ Q, the comparison normal form NFA has a cycle of length r · q2 such
that the s-th state in this cycle is accepting iff there is a cycle of length p in the original
automaton, where p divides r · q2 and s mod p-th state in that cycle is accepting. Note
that the comparison normal form NFA accepts the same language as the original NFA. The
comparison normal form can be constructed in time r · Poly(n) by constructing each cycle
separately, and comparing it with all cycles of length p in the original automaton, where p

divides r · q2.
As the comparison normal form constructed is equivalent (for accepting language) to the

original NFAs, it suffices to compare the two input NFAs in the comparison normal form,
which is assumed below.

Now the first automaton recognises a subset of the set recognised by the second automaton
iff for all s < r one of the following two options holds:

(A) There is a q ∈ Q such that in the second automaton, for all t < q2, (s + t · r)-th state in
the cycle of length r · q2 are accepting;

(B) For every q ∈ Q and for all t < q2, if the (s + t · r)-th state, in the cycle of length r · q2

is accepting in the first automaton then it is also accepting in the corresponding cycle
of the second automaton.

FSTTCS 2023

22:8 Languages and Automata for the Unary Alphabet

This condition can be checked in time r · Poly(n): There are r possible values of s and
for each such s, one has to check only O(n3) states, namely for each q ∈ Q, the (s + t · r)-th
state, where t ∈ {0, 1, . . . , q2 − 1}; note that q2 ≤ n2.

For correctness, it is first shown that (A) and (B) are sufficient conditions. Let s < r

be given. If (A) is satisfied, then the second automaton, for all t, accepts strings of length
s + t · r, as for the given q, all these strings are accepted by the cycle of length r · q2.

If (B) is satisfied and the first NFA accepts a string of length s+ t ·r, then there is a q ∈ Q

such that, in the cycle of length r · q2, the (s + t · r) mod (r · q2)-th state is accepting. From
the condition it follows that in the second automaton, in the corresponding cycle, (s + t · r)
mod (r · q2)-th state is accepting, and therefore it also accepts the corresponding string.

For the converse, assume that the following condition (C) holds: For every q ∈ Q there
exists a tq such that the (s + tq · r)-th state is rejecting in the cycle of length r · q2 in the
second automaton and furthermore, for one q, the (s + tq · r)-th state is accepting in the
cycle of length r · q2 in the first automaton. So (C) is true iff both (A) and (B) are false.
Now there is an s′ such that, after processing a string of length s′, the first automaton can
be at (s + tq · r)-th state for the cycle of length r · q2, for each q ∈ Q. It follows that the first
automaton accepts a string of length s′ while the second automaton rejects it.

For the space-bounded variant of the algorithm, the algorithm cannot bring the automaton
into a normal form, as that cannot be stored within the space allowed. The comparison
algorithm therefore has the translation into the above used normal form more implicit. One
does the following:

First one computes r. Then one needs constantly many variables bounded by 2n4 · r,
these variables can be stored in O(log r) = O((n log n)1/3) space.

Second, for all cycles in the first automaton and all numbers s ≤ n4 · r such that a string
of length s is accepted by the current cycle of some length p in the first automaton, one does
the following: If p divides r then let q = 1 else let q be the unique prime such that p divides
rq2. Note that q ≤ n. Now one checks if there is a number q′ such that either q′ = 1 or q′ is
a prime ≤ n which does not divide r and for each ℓ = 0, 1, . . . , n2 there is a cycle of a length
dividing rq′2 in the second automaton which accepts the string of length s + ℓrq2.

The language recognised by the first automaton is now a subset of the language recognised
by the second automaton iff all the above tests in the algorithm have a positive answer. Note
that r is chosen such that log c(n log n)1/3 and log r have the same order of magnitude and
thus O(log c(n log n)1/3) = O(log(r · n4)). Therefore, a real improvement of the space usage
would also give an improvement of the computation time. ◀

4 Unambiguous Finite Automata and their Algorithmic Properties

Recall that an unambiguous automaton (UFA) satisfies that for every input word, there
is either exactly one accepting run or none. On one hand, these are more complicated
to handle than nondeterministic finite automata so that the union of n n-state automata
cannot be done with n2 states. On the other hand, they still, at least for unary alphabets,
have good algorithmic properties with respect to regular operations (union, intersection,
complementation, formation of Kleene star) and comparison (subset and equality).

▶ Theorem 3. A UFA with up to n states has a complement with nlog(n)+O(1) states which
can be computed in quasipolynomial time from the original automaton.

W. Czerwiński et al. 22:9

Proof. Assume without loss of generality that the automaton is in Chrobak Normal Form.
Furthermore, as inverting the states on the stem is trivial, it can be assumed without loss
of generality, for an easier notation, that the given UFA consists just of m disjoint cycles
C0, C1, . . . , Cm−1 for some m, each having exactly one start state (denoted to be the 0-th
state of the cycle).

Intuitively, the idea is to output a UFA using a recursive algorithm. At the start of the
recursion, the aim is to output a UFA (without any stem) which accepts exactly the strings
in the complement which have lengths k mod d, with k = 0, d = 1. At each step of the
recursion, with parameters k, d, either the algorithm

(a) returns a UFA (without any stem) which accepts exactly the strings in the complement
which have lengths k mod d or

(b) makes recursive calls to obtain UFAs (without any stem) for accepting exactly the
strings in the complement with lengths (k + d · s) mod (d · ℓ), for some value of ℓ and s being
0, 1, . . . , ℓ − 1. As the above UFAs would be without any stem accepting disjoint languages,
the union of these UFAs will give a UFA for accepting exactly the strings in the complement
which have lengths k mod d.

Though, the algorithm is presented as a recursive algorithm, one can also view the solution
as a tree, where the root of the tree has parameters (k = 0, d = 1). Any node of the tree is
either a leaf (i.e., it gives a UFA, without any stem, for accepting exactly the strings in the
complement which have lengths k mod d), or has ℓ children, for some ℓ, with parameters
(k + sd, d · ℓ), for s being 0, 1, . . . , ℓ − 1 respectively in the ℓ children. The UFA for the
complement thus will be the union of the UFAs at the leaves. Note that for any two leaves
with parameters k′, d′ and k′′, d′′ there is no length m with m being same as both k′ mod d′

and k′′ mod d′′. Thus, the above tree is also called a tree of different modulo residua.
Now the formal recursive algorithm is presented. Initially the algorithm is called with

parameters k = 0 and d = 1.

Function UFAcomplement(k, d)
1. If there is a cycle Ci in the input UFA such that all strings of length k + sd with s < |Ci|

are accepted by this cycle, then return to the calling instance of the recursion a UFA
for emptyset (as the input UFA accepts all strings of length k mod d, UFA for the
complement needs to reject all strings of length k mod d).

2. If there is no cycle Cj accepting any string of length k + sd with s < |Cj |, then return one
cycle of length d for which the k-th state is accepting and all other states are rejecting
(as the given input UFA rejects all strings of length k mod d, the UFA for complement
needs to accept all such strings).

3. Otherwise there is a cycle Ch which accepts some but not all strings of the length k

mod d. The algorithm computes now the least common multiple d′ = lcm(d, |Ch|) and
makes, for s = 0, 1, . . . , d′/d − 1 a recursive call with the parameters (k + ds, d′). Return
the union of the answers obtained from the recursive calls.

End of function UFAcomplement(k, d)

The algorithm clearly terminates, as when d is the multiple of all the cycle lengths and k

is a number between 0 and d − 1, then every cycle Ci has the property that it either accepts
all strings of length k + sd or rejects all strings of length k + sd. However, the following
claim shows that the value of d is much smaller at the termination step.

▷ Claim 4. Value of d at the termination step is at most n · (n/2) · (n/22) . . . ≤ n0.5 log n+c,
for some constant c.

FSTTCS 2023

22:10 Languages and Automata for the Unary Alphabet

To see the claim, consider any branch of the recursive descent, with the values of (k, d)
in the recursive calls being (k0, d0) (at the root), (k1, d1), . . ., where when the values were
(ki, di), then cycle Cei

is chosen in step 3 (except at the last level which terminates in step 1
or step 2). For i not being the last level of the recursive descent, following properties hold:

(i) di+1 = lcm(di, |Cei
|). In particular, di divides di+1.

(ii) ki+1 = ki + sidi, for some si.
(iii) Cei

accepts some but not all strings of length ki mod di.
(iv) |Cei | does not divide di but divides di+1.

Thus, for any levels g, h not being the last level of the recursive descent with g < h, using (i)
and (ii) repeatedly, kh = kg + sg+1dg+1 + . . . + sh−1dh−1 = kg + s′

hdg, for some s′
h, and dg

divides dh. Using (iii) both Ceg
and Ceh

accept some words of length kg mod dg. Thus, by
UFA property of the input NFA, there is a common factor b > 1 of |Ceg

| and |Ceh
| which

does not divide dg. Note that b divides dg+1 as |Ceg | divides dg+1 (by (iv)). Thus, there is
an extra common factor greater than 1 between dg+1 and |Ceh

| compared to dg and |Ceh
|,

for each g < h. Thus common factor between dg and |Ceh
| is at least 2g. It follows that

dh+1/dh is at most n/2h.
Thus, the number of levels is at most log n and the value of d is at most n·(n/2)·(n/22) . . . ≤

n0.5 log n+c, for some constant c, where one can safely assume c ≤ 5. This proves the claim.
Also, it is easy to see by induction that the automaton generated by the algorithm is a

UFA, as UFAcomplement(k, d) either returns a UFA in steps 1 or 2, or combines the UFAs
generated by recursive calls in step 3, sets accepted by which are disjoint as they only accept
strings of length k + ds mod d′, for different values of s.

The automaton is the union of cycles up to length nlog n/2+c and in some kind of post-
processing, one can unify distinct cycle of the same length d, with k1-th, . . . ks-th states as
accepting into a single cycle of length d which has the k1-th, . . ., ks-th states as accepting
states. After this post-processing, there are at most n(log n)/2+c cycles and thus the overall
size is at most nlog n+2c. ◀

▶ Theorem 5.
(a) One can decide in LOGSPACE whether an UFA in Chrobak Normal Form accepts all

words. Without the LOGSPACE constraint, the running time is quasilinear, that is, of
the form O(n log2(n)).

(b) Furthermore, one can decide in LOGSPACE whether an UFA U1 in Chrobak Normal
Form accepts a subset of the language accepted by another UFA U2 in Chrobak Normal
Form.

Proof.

(a) First check if the states of the stem are all accepting, which can clearly be done
in LOGSPACE by automata walk-through - pointers needed O(log n) memory to track
positions in the UFA. Then one walks through each cycle and counts the number ik of
accepting states and the length jk of the cycle. Now the UFA accepts all words, that is,
is universal iff

∑
k ik/jk = 1. The proof starts by initially showing how to do this without

being careful about space, but later it is shown how the computation can be modified to be
done in LOGSPACE.

As the computation with rational numbers might be prone to rounding, one first normalises
to one common denominator, namely p =

∏
k jk and furthermore computes s =

∑
k ik ·∏

h̸=k jk. Now the above equality
∑

k ik/jk = 1 holds iff s = p.
The values of s and p can be computed iteratively by the following algorithm, note that

there are at most n cycles and each time a cycle is processed, the corresponding values ik

and jk can be established by an automata walk-through. So the loop is as follows:

W. Czerwiński et al. 22:11

1. Initialise s = 0 and p = 1;
2. For each k do find ik and jk; update s = (s · jk) + ik · p; p = p · jk endfor;
3. if s = p then accept else reject.
In this algorithm, only the variables p and s need more space than O(log n); the other
variables are all pointers or numbers between 0 and n which can be stored in O(log n) space.

The values of s and p are at most n2(n1/2). To see this note that in Chrobak Normal Form,
the cycle lengths can be assumed to be different (as same length cycles can be combined).
Thus, there are at most 2n1/2 cycles, as the sum of their lengths is at most n implying
that at most n1/2 cycles have at least length n1/2 and, furthermore, there are at most n1/2

cycles shorter than n1/2 due to different cycles having different length. Thus, instead of
doing the above algorithm once with exact numbers, one computes in time O(n log n) the
first 5 · n1/2 + 2 primes out of which 80% are above n1/2 so that their product is above
the maximum values s and p can take. As their product is larger than the upper bound
n1+2(n1/2) of s and p, one then accepts iff all computations modulo each such prime q result
in s = p modulo q; this condition is, by the Chinese remainder theorem, equivalent to s = p

without taking any remainders. So the modified algorithm would be as follows.
1. Let q = 2; ℓ = 1;
2. Initialise s = 0 and p = 1 (both are kept modulo q)
3. For each k do find ik and jk by transversal of the corresponding cycle; update (both

computations modulo q) s = (s · jk) + (ik · p); p = p · jk endfor;
4. if s ̸= p (modulo q) then reject;
5. Let ℓ = ℓ + 1 and replace q by the next prime using a fast primality test and exhaustive

search;
6. If ℓ < 5n1/2 + 2 then goto step 2.
The automata transversal of each of these O(n1/2) loops needs at most time O(n log n) as
one transverses each of the cycles of the UFA to determine the corresponding ik and jk,
the cycles are disjoint and have together at most n states. So the overall running time is
O(n3/2 log n). If one would use more space, about O(n1/2 log n), then one can avoid the
repeated computation of ik, jk by automata walk-throughs and gets the upper bound on the
computation time of O(n log2(n)).

For the space usage, the computations modulo q need only O(log q) space which is then
O(log n) space, as the first 5n1/2 + 2 primes q and the storage of variables modulo q is all
of O(log n). Primality tests can be done in O(log n) space for the usual way of doing it –
checking all divisors up to the square root of the number.

(b) For this, note that basically the same idea as in (a) can be used to check if a UFA
accepts all unary strings in sets vw∗ for some v, w of length up to 2n with a slight modification
of the UFA walk-throughs.

One partitions the words accepted by U1 into two groups:
(i) A finite set X1 of strings of length at most n (where n is the size of the UFA) and
(ii) A set X2 consisting of subsets of the form vw∗, where v, w are unary strings with

n < |v| ≤ 2n and |w| ≤ n.
The strings in group (ii) above are from the cycles in U1, by considering each accepting state
in a cycle separately, and taking |v| as the length of the smallest string leading to the state
and |w| as the length of the corresponding cycle.

Strings in group (i) can easily be checked using a walk-through of U2, where if there is a
branching into the cycles, one can do a depth first search.

For strings in group (ii), each set of form vw∗, where n < |v| ≤ 2n and |w| ≤ n, is checked
separately. As |v| > the length of the stem part of U2, one can first modify the cycle part of
U2 to always start in a state which is reached after |v| steps, and ignore the stem part. This

FSTTCS 2023

22:12 Languages and Automata for the Unary Alphabet

would basically mean that one needs to check if w∗ is accepted in the modified U2 (denote
this modified U2 as U ′

2). For space constraints, note that one does not need to write down U ′
2,

but just need to know the length by which the starting state of each cycle is shifted (which is
the difference between |v| and the length of the stem part of U2). Now, for checking whether
w∗ is accepted by U ′

2, consider a further modified U ′′
2 formed as follows: for each cycle C

in U ′
2 with length r and states s0, s1, . . . , sr−1 (s0 being starting state, and transitions on

unary input being from si to si+1, where i + 1 is taken mod r) consider a cycle C ′ in U ′′
2

with states s′
0, s′

1, . . . , s′
r−1 (s′

0 being starting state, and transitions on unary input being
from s′

i to s′
i+1, where i + 1 is taken mod r) where s′

i is an accepting state iff s|v|+i·|w| mod r

was an accepting state in C. This new UFA U ′′
2 also has at most n states, the new length

of each cycle is still the same as the lengths of the old cycles and the number of cycles do
not increase. Now, similar to part (a), one just needs to check if U ′′

2 is accepting all unary
strings. Here again note that one doesn’t need to write down U ′′

2 fully, but just needs to
check, for each cycle, its length and the number of accepting states, which can be done in
LOGSPACE. ◀

Converting an UFA into Chrobak Normal Form is in P and LOGSPACE ⊆ P, thus the
following corollary holds.

▶ Corollary 6 (Stearns and Hunt [20]). One can decide the universality problem and the
inclusion problem for two n-state UFAs in polynomial time.

▶ Remark 7. One can improve Corollary 6 to computations in NLOGSPACE and, by
Savitch’s Theorem [19], in DSPACE((log n)2). Details are in the appendix.
▶ Remark 8. For an UFA (of size n) for a language L over the unary alphabet, the language
L∗ can be recognised even by a DFA of quadratic size in n [1].

Thus if one allows in regular languages Kleene star, Kleene plus and the Boolean set-
theoretic operations (but no concatenation), then the output of constant-size expressions,
with parameters being given by languages accepted by n-state UFAs, can be recognised by
UFAs of quasipolynomial size. Furthermore, Boolean-valued constant-sized quantifier-free
formula with same type of parameters and comparing such subexpressions by =, ⊆ and ̸=
can be evaluated in quasipolynomial time.

Furthermore, one can show, as NLOGSPACE ⊆ POLYLOGSPACE, that the above
mentioned operations can all be computed by POLYLOGSPACE algorithms. This is not
true for the concatenation, as the next Theorem 9 shows that there is an exponential-type
blow-up – therefore POLYLOGSPACE is not enough to count the number of output
symbols. Here some more details for the regular operations different from concatenation.

For the complementation, the handling of the stem is standard. The algorithm in
Theorem 3 above has mainly two running variables for the recursive descent: d and k. Both
take at most the value nlog n/2+c for some constant c and therefore can be written with
O(log2 n) bits. Furthermore, during recursion, one has to archive the old values before
branching off, thus the algorithm archives (dh′ , kh′ , eh′ , sh′) from the algorithm in Theorem 3
for each level h′ and this can be done with O(log3 n) space. Furthermore, note that the
transformation into Chrobak Normal Form also takes just O(log2 n) space due to Savitch’s
Theorem: O(log n) nondeterministic space is contained in O(log2 n) deterministic space.
In particular the algorithm is a POLYLOGSPACE algorithm. The above space bound
can be improved somewhat by noting the following: instead of archiving the full tuples
(dh′ , kh′ , eh′ , sh′), one could archive the index information eh′ , sh′ when going from level h′

to h′ + 1, along with the quotient dh′+1/dh′ . When returning one level down, one computes
dh−1 = dh/(dh/dh−1) where dh/dh−1 was archived for h − 1 and furthermore, one computes
kh−1 = kh − sh−1 · dh−1. With these modifications, the algorithm runs in O(log2 n) space.

W. Czerwiński et al. 22:13

The intersection of two automata can just be done by computing the product automaton.
This is known to be doable in LOGSPACE.

The union is the complement of the intersection of the complements and, by the above
algorithms, can be done in POLYLOGSPACE.

Yu, Zhuang and Salomaa [22] showed that the Kleene star of a unary language given by
an n-state NFA can be computed by a DFA of size (n − 1)2 + 1; thus one can search using an
NLOGSPACE algorithm for the first m ≥ 1 such that, for k = 0, 1, . . . , (n+1)4, every word
of length n2 + k are accepted iff the word of length n2 + m + k is accepted and this length is
then the period which starts latest at length n2. This allows to output a DFA of size O(n2)
which consists of a stem of length n2 and a period of length m, where the NLOGSPACE
algorithm allows for each of the states involved to check whether it is accepting.

▶ Theorem 9. There is an exponential-type blow-up for UFA sizes when recognising the
concatenation of unary languages; the concatenation of two languages given by n-state UFAs
requires, in the worst case, an UFA with 2Ω(n1/6) states.

Proof. Let m be a numeric parameter and let p0, . . . , pk−1 be the first k = m/ log m primes
of size at least m; note that m > k + 4 for all sufficiently large m. These primes are within
Θ(m) by the prime number theorem. Now the UFA U to be constructed contains k cycles
Cℓ of length pℓ · (k + 3) for ℓ = 0, 1, . . . , k − 1. The cycle Cℓ has, for h = 0, 1, . . . , pℓ − 2,
(ℓ + 2 + h · (k + 3))-th state as accepting. There is one further cycle C ′ of length k + 3
which has 0-th, 1-st and k + 2-th states as accepting. Let L denote the language recognised
by this UFA. The lengths of k consecutive unary strings not being accepted by the above
UFA are exactly at lengths r · (k + 3) + 2, . . . , r · (k + 3) + k + 1 where r is pℓ − 1 modulo
pℓ for ℓ = 0, 1, . . . , k − 1, and this does not happen at any other lengths. Let H be the
finite language which contains the words of length 0, 1, . . . , k − 1 and no other words. Now
L · H contains all words whose length does, for at least one ℓ, not have the remainder
k + 1 + (k + 3) · (pℓ − 1) modulo (k + 3) · pℓ. The complement of L · H is a periodic language
which contains exactly those words which have, for all ℓ, the remainder k +1+(k +3) · (pℓ −1)
modulo (k + 3) · pℓ. So every NFA or UFA recognising this language needs cycles of length
at least (k + 3) · p0 · p1 · . . . · pk−1. The length of this cycle is at least Θ(mk · (k + 3)) and any
UFA recognising it needs at least the same number of states. Furthermore, the UFA U has n

states with n ∈ Θ(m) · Θ(k2) = Θ(m3/ log2 m). It follows that n · Θ(log2(m)) = Θ(m3) and,
using Θ(log n) = Θ(log m) as n, m are polynomially related, that Θ(n · log2(n)) = Θ(m3). So
m ∈ Θ((n · log2 n)1/3). Now the concatenation of L ·H has an UFA of size o to be determined
and its complement, by the above, has an UFA of at least size (m)m/ log m. Using that the
complement of an UFA of size h can be done in size hlog h+O(1), one has that the logarithm
of the corresponding sizes satisfies this: log2 o ≥ Θ((log m + O(1)) · m/ log m) ≥ Θ(m) and
log o ≥ Θ(m1/2). Now the input UFA is of size n with m ∈ Θ((n log2 n)1/3) and thus one
has that log o ∈ Ω(n1/6). So concatenating two languages given by n-state UFAs can require
an UFA with 2Ω(n1/6) states. ◀

▶ Remark 10. The above result stands in contrast to the situation of NFAs. It is well-known
that the concatenation of two n-state NFAs needs only 2n states. However, the above
construction shows that forming the complement in the unary NFAs then blows up from 2n

states to 2Ω(n1/6) states, giving an exponential-type lower bound for this operation; a direct
construction leading to the bound 2Ω((n log n)1/2) is known [15]. Furthermore, Pighizzini [16, 17]
showed that the concatenation of two unary DFAs of size n can be realised by an DFA of
size O(n2); actually, he gives an explicit formula on the size of the stem and the cycle which
depends only on the size of the stems and the cycles in the two input automata. Pighizzini’s

FSTTCS 2023

22:14 Languages and Automata for the Unary Alphabet

result allows for an implementation of the following concatenation algorithm [16, 17]: Convert
the two UFAs into DFAs and then apply the algorithm to make the concatenation of DFAs;
this gives the upper bound of 2O((n log2 n)1/3) for the size of the concatenation UFA.
▶ Remark 11. The following facts are known about the complexity of operations with UFAs.

Holzer and Kutrib [7] showed that the intersection of two UFAs is just given by the n2

state sized product automaton of the two n-state UFAs which preserves the property of being
UFAs.

The bound 2n for the disjoint union by Jirásková and Okhotin [14] are obtained by the
simple union of the two UFAs (this might give multiple start states, which is allowed for
UFAs); note that as the languages are disjoint, on each word in the union, one can reach as
accepting state only in one of the UFAs and there, by assumption, the way into the accepting
state is unique. The lower bound 2n − 4 for the disjoint union can be obtained by two even
length cycles differing by length 2; one cycle has the accepting states at some of the odd
numbered states and the other one at some of the even numbered states.

For the general union of two languages L, H given by n-state UFAs, consider the formula
L ∪ (H − L) where H − L is equal to the intersection of H and the complement of L which
gives the upper bound n · c(n) + n with c(n) being the bound for complementation.

The symmetric difference of two languages L, H is the disjoint union of L − H and H − L,
thus an upper bound is 2n · c(n). For its lower bound, note that if L is given and H is the set
of all strings, then the symmetric difference (L − H) ∪ (H − L) is just the complement of L.

Finite formulas refers to a formula with several input automata combining the input
n-state UFAs with regular operations to a new UFA. Subsequent results provide the lower
bound of O(2Ω′(n1/3)) for the time complexity to evaluate formulas. This almost matches the
upper bound provided by transforming the UFAs into DFAs and exploiting the polynomial
bounds on size increase of DFAs over the unary alphabet for regular operations.

In summary: All standard regular operations except concatenation have polynomial or
quasipolynomial size-increase but concatenation has exponential-type size-increase.

Next one considers the evaluation of constant-sized formulas using UFAs as input. In the
following, H1, H2, L are sets of words given by n-state UFAs and K is a finite language.

▶ Theorem 12. Assuming the Exponential Time Hypothesis, it needs time 2Ω′((n log n)1/3) to
evaluate the truth of the formula (H1 ∩ H2) · K = L where H1, H2, K are given by at most
n-state UFAs and L is the set of all words.

Proof. Consider a 3SAT formula with clauses c′
1, c′

2, . . . , c′
m, where each variable appears

in at most 3 clauses. Divide the clauses into r = ⌈m/ log m⌉ disjoint groups of log m

clauses each (where the rounded down value of log m is used). Group Gi has the clauses
c′

(i−1)·(log m)+1, . . . , c′
i·(log m) (the last group Gr−1 may have lesser number of clauses due to

m not being divisible by log m).
If a variable, say x, appears in different groups of clauses, then one can rename x in

different groups to x′, x′′, . . . and add equality clauses (x′ = x′′), Thus, by adding some
additional equality clauses, it can be assumed that no variable appears in two different group
of clauses. Note that there can be at most O(m) equality clauses.

So, now the SAT formula has the clauses c1, c2, . . . , cm (which have at most 3 literals each)
and the equality clauses cm+1, cm+2, . . . , cm′ , where the clauses c1, c2, . . . , cm are divided into
groups G0, G1, . . . , Gr−1 containing at most log m clauses each, and any variable appears in
clauses from at most one group, and perhaps in equality clauses.

As each group contains at most log m clauses, and thus at most 3 log m variables, there
are at most 8m possible truth assignments to variables appearing in clauses of any group.
Below, k-th truth assignment (starting from k = 0) to variables assigned to pi assumes some

W. Czerwiński et al. 22:15

Table 4 Accepting and Rejecting States.

k · (2m′ + 2) + 2j-th k · (2m′ + 2) + 2j + 1-th
state in Ci / C ′

i state in Ci / C ′
i

j = 0, i = 0 accepting accepting
0 < j ≤ m and accepting iff accepting iff

all variables of cj cj not satisfied by the k-th cj not satisfied by the k-th
belong to Gi truth assignment to variables truth assignment to variables

assigned to pi assigned to pi

This row is applicable accepting iff truth value accepting iff truth value
only for Ci where assigned to x is true assigned to x is false
m < j ≤ m′ and in the k-th truth assignment in the k-th truth assignment
cj is (x = y) and to the variables assigned to pi to the variables assigned to pi

x is assigned to pi

This row is applicable accepting iff truth value accepting iff truth value
only for C ′

i where assigned to y is false assigned to y is true
m < j ≤ m′ and in the k-th truth assignment in the k-th truth assignment
cj is (x = y) and to the variables assigned to pi to the variables assigned to pi

y is assigned to pi

All other cases not accepting not accepting

ordering among the truth assignments where if the number of truth assignments is less than
k, then k-th truth assignment is assumed to be the 0-th truth assignment (the latter part is
just for ease of writing the proof).

Consider r distinct primes p0, p1, . . . pr−1, each greater than 8m but below some constant
c times m. Note that, for large enough constant c, there exist such distinct primes by the
prime number theorem.

Assign variables / clauses appearing in group Gi to prime pi. Now UFA for H1 consists of
the r cycles C0, C1, . . . , Cr−1 and UFA for H2 consists of the r cycles C ′

0, C ′
1, . . . , C ′

r−1. The
cycles Ci and C ′

i are of length 2(m′ + 1) · pi. For k < pi, and j < m′, the k · (2m′ + 2) + 2j-th
and k · (2m′ + 2) + 2j + 1-th states in cycle Ci and C ′

i are accepting or non-accepting as
given in Table 4. Intuitively, for cj assigned to pi, Ci and C ′

i will test for satisfaction (3rd
row in the table). If cj = (x = y), and x is assigned to pi and y to pi′ , then 4th and 5th rows
in the table for Ci and C ′

i′ respectively will check for consistency in the assignment to the
variables x and y. Note that in Table 4 for the entries of the cycles Ci and C ′

i, the value i

can be considered as constant and the value j is the running variable going over all clauses.
Note that the above automatons are unambiguous, as for j = 0, only cycle C0, C ′

0 could
accept; for 1 ≤ j ≤ m, only Ci, C ′

i such that cj is assigned to pi can accept; for m < j ≤ m′,
if cj is (x = y) with x and y assigned to pi and pi′ respectively, only Ci and C ′

i′ respectively
can accept. All strings with length being 0 or 1 modulo (2m′ + 2) are in H1 ∩ H2 as defined
in the table.

Now, if the 3SAT formula is satisfiable, then consider some satisfying truth assignment to
the variables, say it is the ki-th truth assignment to variables assigned to pi. Then, for any s

such that for i < r, ki = s mod pi, H1 ∩ H2 will not contain strings of length s(2m′ + 2) + 2j

and s(2m′ + 2) + 2j + 1 for 1 ≤ j ≤ m′: (a) if 1 ≤ j ≤ m, clause cj is satisfied and thus
these strings are not accepted by H1 and H2 (see 3rd row in the table for definition of Ci

and C ′
i, for cj being assigned to pi); (b) if m < j ≤ m′ and cj = (x = y), where x is assigned

FSTTCS 2023

22:16 Languages and Automata for the Unary Alphabet

to pi and y to pi′ , then as the variable assignments are consistent again these strings are
accepted by only one of H1 and H2 (see 4th and 5th rows in the table for definition of Ci

and C ′
i′ respectively). Thus H1 ∩ H2 misses 2m′ consecutive strings.

On the other hand if H1 ∩ H2 misses 2m′ consecutive strings, then it must be strings of
length s(2m′ + 2) + j for 2 ≤ j ≤ 2m′ + 1, for some value of s (as all strings with lengths
being 0 or 1 modulo 2m′ + 2 are in H1 ∩ H2). Then let ki = s mod pi. Then, for the ki-th
assignment of truth values to the variables assigned to pi, it must be the case that all the
clauses cj assigned to pi are satisfied (otherwise by 3rd row in the table for definition of Ci,
C ′

i, H1 and H2 will contain s(2m′ + 2) + 2j and s(2m′ + 2) + 2j + 1). Furthermore, the
equality clauses are satisfied, as if some equality clause cj = (x = y) is not satisfied then, if
x is assigned to pi and y is assigned to pi′ , then by the 4th and 5th rows in the table for
definitions of Ci and Ci′ respectively, one of s(2m′ + 2) + 2j and s(2m′ + 2) + 2j + 1 length
strings is in both H1 ∩ H2 depending on the truth assignment to x in the ki-th and y in the
ki′ -th truth assignments to the variables assigned to pi and pi′ respectively.

Thus, H1 ∩ H2 misses out on 2m′ consecutive strings iff the given 3SAT formula is not
satisfiable. Taking K to be set of strings of length 1, 2, . . . , 2m′ −1, gives us that (H1 ∩H2) ·K
is universal iff 3SAT formula is not satisfiable.

The size n of the UFAs for H1, H2, K is bounded by (2m′ + 2) · (
∑

i pi) = Θ(m3/ log m).
Thus, n log n = Θ(m3) or m = Θ((n log n)1/3). The theorem now holds assuming ETH. ◀

Note that Okhotin [15] provides an upper bound by converting the UFAs into DFAs and then
carrying out the operations with DFAs. These operations run in time polynomial in the size
of the DFAs constructed. While the size lower bound for concatenation of two n-state UFAs
is just 2Ω(n1/6), the following conditional bound on the computational complexity of finding
an UFA for the concatenation is 2Ω′(n1/4) when using the Exponential Time Hypothesis – for
details see the appendix.

▶ Theorem 13. Under the assumption of the Exponential Time Hypothesis, one needs at
least 2Ω′(n1/4) time to compute an UFA for the language of the concatenation of the languages
of two given n-state UFAs in worst case.

▶ Remark 14. The above result also proves that for deciding whether the concatenation of
two languages given by n-state UFAs is universal, the Exponential Time Hypothesis implies
a 2Ω′(n1/4) lower bound. The upper bound of this is slightly better than the DFA-conversion
bound 2O((n log2 n)1/3) of Okhotin [15]: Theorem 2 proves that the universality of an NFA
can be checked in time 2O((n log n)1/3) and as the concatenation of two n-state UFAs can be
written as an 2n-state NFA whose universality can be checked with the same upper bound.

5 Conclusion

The main results of the present work are the following ones: (1) There is an 2O((n log n)1/3) time
algorithm for comparing NFAs with respect to = and ⊆; (2) given n-state UFAs, the size of
UFAs for their union and complement is at most O(nlog n+O(1)) states; (3) the concatenation of
two n-state UFAs needs, in the worst case, at least 2Ω(n1/6) states. Furthermore, conditional
lower bounds and upper bounds for the time and space complexities of operations and
decision problems on UFAs are provided. The main question remaining unresolved is to close
the gap between the lower bound 2Ω(n1/6)) and Okhotin’s upper bound 2O((n log2 n)1/3) for
concatenating two n-state UFAs. Several related results can be found in the longer technical
report version of this paper on https://arxiv.org/abs/2302.06435.

https://arxiv.org/abs/2302.06435

W. Czerwiński et al. 22:17

References

1 Kristína Čevorová. Kleene star on unary regular languages. In Descriptional Complexity of
Formal Systems: 15th International Workshop, DCFS 2013, London, ON, Canada, July 22-25,
2013. Proceedings 15, volume 8031 of LNCS, pages 277–288. Springer, 2013.

2 Marek Chrobak. Finite automata and unary languages. Theoretical Computer Science,
47:149–158, 1986.

3 Thomas Colcombet. Unambiguity in automata theory. In Seventeenth International Workshop
on Descriptional Complexity of Formal Systems, volume 9118 of LNCS, pages 3–18. Springer,
2015.

4 Maciej Dębski. State complexity of complementing unambiguous automata, Master’s thesis,
University of Warsaw, 2017.

5 Henning Fernau and Andreas Krebs. Problems on finite automata and the exponential time
hypothesis. Algorithms, 10(1):24, 2017.

6 Mika Göös, Stefan Kiefer, and Weiqiang Yuan. Lower bounds for unambiguous automata via
communication complexity. In Forty Ninth International Colloquium on Automata, Languages
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
126:1–13, 2022. See also the technical report on arXiv:2109.09155.

7 Markus Holzer and Martin Kutrib. Unary language operations and their nondeterministic
state complexity. In International Conference on Developments in Language Theory, volume
2540 of LNCS, pages 162–172. Springer, 2002.

8 Markus Holzer and Martin Kutrib. Descriptional and computational complexity of finite
automata – A survey. Information and Computation, 209(3):456–470, 2011.

9 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 3rd edition, 2007.

10 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

11 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

12 Emil Indzhev and Stefan Kiefer. On complementing unambiguous automata and graphs with
many cliques and cocliques. Information Processing Letters, 177:106270:1–5, 2022.

13 Jozef Jirásek Jr, Galina Jirásková, and Juraj Šebej. Operations on unambiguous finite
automata. International Journal of Foundations of Computer Science, 29(05):861–876, 2018.

14 Galina Jirásková and Alexander Okhotin. State complexity of unambiguous operations
on deterministic finite automata. In Twentieth International Conference on Descriptional
Complexity of Formal Systems, volume 10952 of LNCS, pages 188–199. Springer, 2018.

15 Alexander Okhotin. Unambiguous finite automata over a unary alphabet. Information and
Computation, 212:15–36, 2012.

16 Giovanni Pighizzini. Unary language concatenation and its state complexity. In Implementation
and Application of Automata: 5th International Conference, CIAA 2000 London, Ontario,
Canada, July 24–25, 2000 Revised Papers 5, volume 2088 of LNCS, pages 252–262. Springer,
2001.

17 Giovanni Pighizzini and Jeffrey Shallit. Unary language operations, state complexity and
Jacobsthal’s function. International Journal of Foundations of Computer Science, 13(01):145–
159, 2002.

18 Michael Raskin. A superpolynomial lower bound for the size of non-deterministic complement
of an unambiguous automaton. In Fortyfifth International Colloquium on Automata, Languages
and Programming, ICALP 2018, volume 107 of LIPIcs, pages 138:1–11, 2018.

19 Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970.

20 Richard Edwin Stearns and Harry B Hunt III. On the equivalence and containment problems
for unambiguous regular expressions, regular grammars and finite automata. SIAM Journal
on Computing, 14(3):598–611, 1985.

FSTTCS 2023

http://www.arxiv.org/abs/2109.09155

22:18 Languages and Automata for the Unary Alphabet

21 Christopher Tan. Characteristics and computation of minimal automata, UROP, National
University of Singapore, 2022.

22 Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some basic operations
on regular languages. Theoretical Computer Science, 125(2):315–328, 1994.

A Appendix of Outcommented Proofs

▶ Proposition 1 (Fernau and Krebs [5], Tan [21]). Given an m-variable 3-occur 3SAT instance,
one can construct an n = Θ(m3) sized NFA such that this NFA accepts all words over the
unary alphabet iff the given instance is unsolvable. Thus unary NFA universality requires
2Ω′(n1/3) computation time provided that the Exponential Time Hypothesis holds.

Proof. Suppose an m-variable 3SAT instance with at most 3m clauses, where each variable
occurs at most three times, is given. Without loss of generality assume m ≥ 8 and log m is
a whole number. Let the clauses be u1, u2, . . . , um′ (where m′ ≤ 3m) and the variables be
x1, . . . , xm.

Let r = ⌊ log m
3 ⌋, and s = ⌈m′/r⌉. Consider the primes p0, p1, . . . , ps−1, where 8m ≤ pi ≤

c′m, for some constant c′. Note that by the prime number theorem there exists such a
constant c′.

Assign to each prime pi, the clauses u(i−1)·r+1, . . . , ui·r. Intuitively, for each i < s, there
will be a cycle of length pi which will explore all possible truth assignments to variables in
the clauses assigned to pi, and check whether they satisfy the corresponding clauses assigned.
Consistency of truth assignments to variables across clauses assigned to different primes pi

and pj will be checked using a cycle of size pi · pj . Further details can be found below.
Note that r clauses have at most 3r literals, and thus the number of possible truth

assignments to these literals is at most 23r with 23r ≤ m ≤ pi. Order these assignments in
some way so that one can say k-th truth assignment etc.
(1) For each i < s, form a cycle of length pi. The k-th state (for k < 23r) in this cycle

is rejecting iff the k-th truth assignment to the 3r literals in the clauses assigned to
pi satisfy all the clauses assigned to pi. Note that if k ≥ 23r, then the k-th state is
accepting.

(2) For each pair i, j such that clauses assigned to pi and pj have a common variable, form
a cycle of length pi · pj . The k-th state in this cycle is accepting iff the (k mod i)-th
truth assignment to the literals in the clauses assigned to pi and the (k mod j)-th truth
assignment to the literals in the clauses assigned to pj are inconsistent within or with
each other.

Now note that the above NFA rejects a unary string of length ℓ iff the following are
satisfied:
(A) for each i < s, (ℓ mod pi)-th truth assignment to the literals in clauses assigned to pi

satisfy the clauses assigned to pi.
(B) for each i, j < s, if clauses assigned to pi and pj have a common variable, then (ℓ

mod pi)-th and (ℓ mod pj)-th truth assignment to the literals in clauses assigned to pi

and pj respectively are consistent.

Thus, the language accepted by the above NFA is universal iff the 3SAT formula is not
satisfiable. The number of states in the above NFA is bounded by (3m/r) · c′m (for cycles in
(1)), plus (c′m)2 ·3m (for cycles in (2), as there are m variables each appearing at most thrice,
so one needs to check at most 3m pairs). So the number of states is proportional to m3. It
follows from the Exponential Time Hypothesis that the complexity of testing universality for
n-state NFA is at least 2Ω′(n1/3). ◀

W. Czerwiński et al. 22:19

▶ Remark 7. One can improve Corollary 6 to computations in NLOGSPACE and, by
Savitch’s Theorem [19], in DSPACE((log n)2). The reason is that NLOGSPACE is closed
under complementation, allows to store constantly many states (given by their address in
the input) and allows to check whether there is a path from one state to another in a given
number of steps (as long as that is bounded by a polynomial). For that reason, one can
also check whether, for a number m ≤ n, one can reach an accepting state in exactly m

steps from the start state. This allows to produce a stem of length n from the input where
acceptance / rejection is labelled correctly for all of these states; let q be the last state of
this stem. Then for each number m = n + 1, . . . , 2n, one does the following:

Check whether there exist numbers h, k such that

1. h < k and n + 1 ≤ m ≤ n + k − h and m modulo k − h = k modulo k − h;
2. There is an accepting state r reachable from start state in exactly h, k, m steps –

note that there is exactly one such accepting run for each of these numbers due
to the UFA property;

3. The run to the state r of length h has no repetition of states;
4. The run to the state r of length k has some state q′ repeated twice and all states

visited twice and all states visited before reaching q′ or from the second visit of
q′ onwards are also visited by the run accepting the word of length h;

5. No state of the run to state r of length k is visited three or more times;
6. The accepting runs for the words of length k and length m visit the same states.

If so, then retain h, k, m and continue else go to the next m.
In the case that h, k, m are found and retained, output a cycle connected by one edge
from state q of length k − h which has exactly one accepting state which is visited on
reading a word of length m.

This so output automaton is in Chrobak Normal Form and it is also unambiguous due to the
input automaton being unambiguous; furthermore, its size is at most quadratic in the size of
the input automaton and thus, the complexity class of this algorithm combined with that of
Theorem 5 is NLOGSPACE.

▶ Theorem 13. Under the assumption of the Exponential Time Hypothesis, one needs at
least 2Ω′(n1/4) time to compute an UFA for the language of the concatenation of the languages
of two given n-state UFAs in worst case.

Proof. Recall the proof of Theorem 12 and the values of m, m′ there. The cycles of H1 and
H2 in the proof of Theorem 12 have length 2(m′ + 1) · p for some number p of size O(m)
which is either a prime or the constant 1. Furthermore for each number ℓ = 0, 1, . . . , 2m′ + 1,
there is at most one cycle Aℓ in the UFA for H1 and at most one cycle Bℓ in the UFA for
H2 which accepts a string of length ℓ modulo 2(m′ + 1) (if any).

Thus one can construct a new intersection automaton of H1 and H2 such that it consists
of 2(m′ + 1) cycles Eℓ, where Eℓ has the length lcm(|Aℓ|, |Bℓ|) and the t-th state of Eℓ is
accepting iff t has the remainder ℓ when divided by 2(m′ + 1) and both cycles Aℓ and Bℓ,
after t steps from the start state of those cycles, are in an accepting state in the corresponding
automata H1 and H2 – here lcm(a, b) denotes least common multiple of a and b. Thus the so
constructed product automaton consists of all cycles Eℓ and accepts a word iff both H1 and
H2 accept this word. Furthermore, the automaton, for each ℓ = 0, 1, . . . , 2m′ + 1, for any h,
accepts a string of length ℓ + 2(m′ + 1)h, only in the cycle Eℓ, if at all. Thus the constructed
automaton is an UFA.

FSTTCS 2023

22:20 Languages and Automata for the Unary Alphabet

As the size of each cycle Eℓ is O(m3) and as there are 2(m′ +1) cycles and m′ ∈ Θ(m), the
overall size of this automaton is O(m4). Thus, when n is the size of the product automaton, as
the new automaton recognizes H1 ∩ H2, then using Theorem 12, the universality problem for
the concatenation of two n-state UFAs is in 2Ω′(n1/4) under the assumption of the Exponential
Time Hypothesis. ◀

	1 Introduction
	2 Details of Technical Concepts and Methods
	3 The Nondeterministic Finite Automata Comparison Algorithm
	4 Unambiguous Finite Automata and their Algorithmic Properties
	5 Conclusion
	A Appendix of Outcommented Proofs

