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Abstract
We consider the following question of bounded simultaneous messages (BSM) protocols: Can
computationally unbounded Alice and Bob evaluate a function f(x, y) of their inputs by sending
polynomial-size messages to a computationally bounded Carol? The special case where f is the
mod-2 inner-product function and Carol is bounded to AC0 has been studied in previous works.
The general question can be broadly motivated by applications in which distributed computation is
more costly than local computation.

In this work, we initiate a more systematic study of the BSM model, with different functions f

and computational bounds on Carol. In particular, we give evidence against the existence of BSM
protocols with polynomial-size Carol for naturally distributed variants of NP-complete languages.
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1 Introduction

The simultaneous messages model is a model for evaluating a function f(x, y) of two inputs:
Alice, who holds x and Bob, who holds y, simultaneously send messages to a referee Carol,
who outputs the value f(x, y). This model was introduced by Yao [42] and further studied
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23:2 Bounded Simultaneous Messages

by Babai et al. [4] in the context of communication complexity, where the interest is to
determine the minimum length of Alice’s and Bob’s messages required to specify f .1

We are primarily interested in Carol’s computational complexity, assuming Alice and Bob
are unbounded. Specifically, our objective is to understand which functions require large
bounded simultaneous messages (BSM) protocols. As the BSM complexity of any function
can only be smaller than its standalone computational complexity, explicit constructions of
provably hard functions for this model are subject to the usual barriers [35, 1]. Nevertheless,
owing to its connections to other complexity notions [33, 24, 28],2 explicit almost-cubic lower
bounds have been obtained for depth-3 AND-OR formulas [27], and almost-quadratic lower
bounds for arbitrary AND-OR formulas [40], both witnessed by the “inner product modulo
two” (IP) function. It remains a challenge to prove BSM lower bounds for other models in
which circuit lower bounds are known such as depth-3 AND-OR circuits [32] and parities of
DNF [12].

Motivated by cryptographic applications, Rothblum [36] conjectures that IP has
exponential-size bounded-depth unbounded-fan-in BSM complexity. In particular, IP does
not admit a BSM protocol with Carol in AC0. Filmus et al. [16] confirmed the conjecture
assuming Alice’s message is not much longer than her input.

BSM and secure two-party computation

A primary motivation for revisiting the BSM model stems from its relevance to cryptograph-
ically secure two-party computation. In this model, the BSM model is the “ideal model” in
which evaluation is carried out by a trusted intermediary Carol. A crowning achievement
of modern cryptography is the development of secure two-party protocols that dispense off
the need for a trusted Carol [43, 19, 7, 10]. However, the complexity of the ideal model is of
interest for the following reasons.

First, despite tremendous progress in the design of two-party protocols for secure function
evaluation, the overhead remains substantial. Moreover, certain features of trusted evaluation,
such as fairness, are inherently lost by any two-party implementation. In practice, a trusted
Carol is often preferred over a two-party protocol, and Carol’s computational cost needs to
be compensated. BSM complexity captures Carol’s minimal computational cost incurred
under the best-possible preprocessing of Alice’s and Bob’s inputs.

Second, in the design of two-party protocols, it can be desirable to preprocess the inputs
so as to minimize the complexity of the interactive phase. The complexity measure to be
optimized depends on the type of protocol. For instance, in protocols based on oblivious
transfer [19, 25, 23], the communication complexity and round complexity of the protocol
are proportional to the circuit size and circuit depth of f , respectively. In protocols that rely
on fully homomorphic encryption [18, 9] and avoid an expensive “bootstrapping” technique,
the computational cost is governed by the degree of f as a polynomial over some underlying
finite field. The degree also determines the fraction of corrupted servers that can be tolerated
in non-interactive secure computation protocols that employ a set of untrusted servers. In
this context, BSM complexity captures the best-possible savings that can be obtained by
endowing Alice and Bob with unbounded computational power in the preprocessing phase.
Conversely, a lower bound in the BSM model indicates limits of preprocessing in a two-party
protocol design.

1 Babai et al. and others [4, 30, 34] more generally study a multi-party variant of this model.
2 In this literature f is the adjacency function of a bipartite graph and BSM complexity is called bipartite

graph complexity.
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With these motivations in mind, we study the BSM complexity of natural classes of
functions that may arise in two-party computation, including Boolean circuits, arithmetic
circuits, low-degree polynomials, and time-unbounded halting Turing machines. As some
of these classes do not admit explicit lower bounds, any evidence of their hardness must
be conditional. One of our contributions is the development of hardness reductions and
completeness results for BSM complexity.

Generic constructions and non-explicit bounds

Our primary focus is on Carol’s computational complexity, with Alice’s and Bob’s message
size (i.e., communication complexity) as a secondary parameter. Clearly every function
f : {0, 1}n × {0, 1}n → {0, 1} has a regular circuit size of at most 22n and therefore BSM
circuit size at most 22n with message size n. We are interested in the regime where Alice’s
and Bob’s messages have a length of at least n.

It is also known that every function has a BSM circuit (parity of ANDs) of size O(2n)
with message size 2n. This is close to optimal as most functions require BSM circuits of
size Ω(2n). In contrast, most functions’ circuit size is Ω(22n/n). Although BSM complexity
can be much smaller than circuit complexity, every BSM of circuit size s and total message
length ℓ can be simulated by a circuit of size ℓ · 2n + s.

1.1 Our Results
Conditional impossibility of efficient BSM for NP

As our first result, we study a distributed variant of SAT, which we refer to as split SAT :

SSAT := {(α, β) : α, β are CNFs and α ∧ β is satisfiable} .

In Section 2.1 we show that if SSAT has BSM circuit complexity poly(|α| + |β|) then every
language in NP can be decided by circuit families of size O(poly(n) · 2n/2). In contrapositive
form, no efficient BSM for SSAT exists unless NP has circuits of size O(poly(n) · 2n/2).

We conjecture that the following two NP-languages meet this stringent lower bound:
1. Turing Machine Acceptance: The language ATMc consists of all pairs (M, x) where M is

a nondeterministic Turing Machine that accepts x in |x|c steps. Here c is a fixed constant;
the conjecture is plausible for any c > 1. This language is complete in the sense that if
NTIME(nc) requires circuit size s(n) then ATMc requires circuit size s(n − O(1)).

2. Succinct Subset Sum: The input is an element x of the finite field F3m . The yes-instances
are those x for which there exist coefficients a0, a1, · · · , an ∈ {0, 1} ⊆ F3m such that
a0 + a1x + · · · + anxn = 0 and not all ai are 0, where n = ⌊m log2 3⌋.
While the brute-force 2n time complexity of worst-case subset-sum can be improved to
2n/2 in the RAM-model [22, 37, 29], it is unclear if these algorithms yield any savings
in circuit size. In contrast, one advantage of the circuit model is that it can decide
any language L in size O(min(|{0, 1}n ∩ L| , |{0, 1}n \ L|)) by memorizing all yes or no
instances of a given length (whichever is smaller). We conjecture that the fraction of yes
and no Succinct Subset Sum instances is at least 2−n/100 thereby rendering this attack
ineffective.

As a consequence, in Corollary 5 we show BSM hardness for NP follows from the existence
of very strong worst-case one-way functions. The required inversion complexity is as large as
poly(n) · 2n/2 under a plausible hardness assumption and poly(n) · 22n/3 unconditionally (for
length-preserving functions). The best-known algorithms for generic function inversion have

FSTTCS 2023



23:4 Bounded Simultaneous Messages

conjectured worst-case complexity poly(n) · 22n/3 in the RAM model with preprocessing [21].
The best unconditional upper bound is poly(n) · 23n/4 [15]. We do not know any non-trivial
circuits for generic inversion.

BSM and Instance Hiding

We consider the notion of instance hiding introduced by Beaver and Feigenbaum [5]. An
instance hiding (IH) scheme consists of a primary actor, called Henry, with query access to
independent oracles. To compute a function on a given input, Henry may query the oracles,
but in such a way that each oracle learns nothing about the input, meaning that the query
distribution each oracle sees depends only on the input length. Beaver and Feigenbaum allow
interactive oracle queries to multiple oracles; we specialize to non-interactive queries and two
oracles.

Fortnow and Szegedy [17] asked whether languages in NP can have an instance hiding
scheme where Henry is a polynomial-sized circuit. They showed that SAT cannot have
poly(n)-sized IH scheme where the two oracles return 1-bit answers under a standard
complexity-theoretic assumption. However, a similar statement with oracles returning 2
or more bits is unknown. The hardness assumption about IH which we make here is that
languages in NP do not have a poly(n)-sized instance hiding scheme.

In Proposition 10 we show that if BSM for SSAT has circuit complexity poly(|α| + |β|)
then every language in NP has a polynomial-size instance hiding scheme. We interpret this
as additional evidence against the existence of efficient BSM for NP. The same holds for the
split variants of 3-coloring (Proposition 11) and partition (Proposition 12):

SCOL := {(A, B) : A, B are graphs on the same vertex set, A ∪ B is 3-colorable} ,

SPRT :=
{

(A, B) : A, B are sets of non-negative integers,
A ∪ B can be partitioned into two sets of equal sum

}
.

We achieve this via a notion of a reduction that we call split-hide reduction (Definition 7).
For a language A, we define a language B which is a “split variant” of A, such that if A

split-hide reduces to B and B has a BSM protocol with polynomial sized Carol, then A has
IH schemes where Henry is polynomial sized (Lemma 8). In addition, if A is NP-complete,
then every language in NP has polynomial sized IH schemes (Corollary 9)

Having established this relation between instance hiding and BSM (in Section 2.3), we
also obtain a connection between instance hiding and Private Information Retrieval [11] and
use this connection (in the form of reduction between the models) to obtain universal lower
bounds on IH schemes (Appendix A.1 [8]). This, in turn, gives a two-way reduction chain
between BSM and locally decodable codes (Appendix A.2 [8]). Both of these connections
could be of independent interest.

BSM and algebraic polynomials

We now move on to the setting where Carol is an algebraic polynomial over some ring.
As explained before in the introduction, this setting is motivated by the design of secure
two-party protocols that rely on fully homomorphic encryption [18, 9] and avoids expensive
bootstrapping (where the computational cost is dependent on the degree of Carol). Every
function f : {0, 1}n × {0, 1}n → {0, 1} can be represented by a polynomial of degree at most
2n, and this is also tight. We ask whether this bound can be reduced if we allow preprocessing.
To this end, we define df (n, m) to be the minimal degree of a polynomial over F2 such that
there exists a BSM protocol for f with preprocessing length of m bits and Carol computing
the polynomial, and we define
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d(n, m) := max {df (n, m) : f : {0, 1}n × {0, 1}n → {0, 1}} .

We prove a tight bound of Θ(n/ log n) for the case m = poly(n). The upper bound was ob-
tained by Beaver et al. [6]. We show a lower bound for the equality function (Proposition 15).

Going ahead, we ask if there are any savings (in terms of degree) in computing the equality
function if we allow Carol to be a polynomial over Zk where k is composite, followed by a
Boolean decision predicate P : Zk → {0, 1}. We show that this is indeed the case for k = 6
(Proposition B.27 [8]) using known constructions of matching vectors [20]. In particular, we
give a constant degree Carol, but with superpolynomial (exp(Õ(

√
n))) message length over

Z6 which should be contrasted with the BSM protocol over F2 (Proposition 14) of polynomial
message length but with near linear degree.

BSM, Matrix multiplication and RE languages

We now turn to the setting where Carol is an arithmetic circuit as well as a Turing machine.
We start with the setting of an arithmetic circuit. The problem of interest is the matrix
multiplication over reals. A remarkable result of Strassen [39] showed a non-trivial algorithm
for matrix multiplication of two n × n matrices over reals in O(nlog2 7) time. Since then,
there has been a flurry of improvements (notably [13, 14, 2]) where the best value of the
exponent in the runtime is denoted by ω. These results also imply an arithmetic circuit
performing O(nω) additions and multiplications over reals computing the matrix product. A
natural question is: can there be a BSM protocol where Carol is an arithmetic circuit of size
o(nω) such that the preprocessing can have a non-trivial saving in size of Carol? We answer
this question in negative in Theorem 13.

Finally, we turn to the setting where Carol is a Turing machine. In Proposition 17, we
show that any recursively enumerable f ∈ RE (viewed as a language) has a BSM protocol
where Carol computes a decidable language (in R).

Summary of results

The results are summarized in Table 1 according to Carol’s computational power.
BSM(m, s) is the class of all functions f : {0, 1}n × {0, 1}n → {0, 1} that have a two-
party SM protocol of size s (namely, Carol is implemented by a circuit of size s) and
preprocessing of length m (namely, Alice and Bob send messages of length m; we place a
“·” symbol in cases where the result is independent of the corresponding parameter).
IH(a, s) is the class of all functions f : {0, 1}n → {0, 1} that have a two-oracle Instance
Hiding scheme in which Henry’s circuit size is s and each oracle answer is of length a.

We use RE and R to denote the recursively enumerable and recursive languages respectively.

1.2 BSM protocols implicit in literature
In Appendix B.1 [8] we discuss BSM protocols for a subclass of Boolean functions that can
be obtained readily from known results in the literature. In particular, we consider the
bitwise-combined functions which are functions of the form f(x, y) = g(x ∗ y) where g is a
Boolean function on n bits and ∗ : {0, 1}n × {0, 1}n → {0, 1}n is a combiner function that
takes in two n bit strings and output an n bit string. Babai et.al [4] considers SM protocols,
where ∗ is the bitwise XOR combiner function, with a preprocessing length of O(20.92n).
Ambainis and Lokam [3] improved this to obtain SM protocols for bitwise XOR combined

FSTTCS 2023
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Table 1 Summary of Results.

Bound Result Reference

Size SSAT ∈ BSM(·, poly(n)) =⇒ NP ⊆ SIZE(poly(n) · 2n/2) Thm. 1

=⇒ No Õ(22n/3)-secure length preserving OWF Cor. 5

SSAT/SCOL/SPRT ∈ BSM(·, poly(n)) =⇒ NP ⊆ IH(·, poly(n)) Thm. 6

g(x ⊕ y) ∈ BSM(·, s) =⇒ g ∈ SIZE((s/n) · 2n/2) Prop. B.2 [8]

g(x ∨ y), g(x ∧ y) ∈ BSM(20.729n, ·) for all functions g : {0, 1}n → {0, 1} Thm. B.25 [8]

Arithmetic Matrix multiplication with preprocessing requires Ω(nω) operations Thm. 13

Degree d(n, m) = O(n/ log(m/n)) for n < m Prop. 14

dEQ(n, m) = Ω(n/ log m) for n ≤ m Prop. 15

d(n, nC+1) = Θ(n/ log n) (C > 0 constant) Cor. 16

dEQ(n, m) = 2 for m = 2Θ̃(
√

n) (over Z6) Prop. B.27 [8]

Recursive RE ⊆ BSM(2n + 1, R) Prop. 17

functions where the preprocessing length is bounded by O(20.729n). A standard counting
argument shows that most XOR combined functions require a preprocessing length of Ω(20.5n).
(Proposition B.8 [8]). The XOR combined functions are interesting since an efficient BSM
protocol computing f would give an efficient IH scheme for g (Proposition B.1 [8]). Using
this connection (in Appendix B.1.2 [8]), we could rule out bitwise-XOR combined version of
NP-hard languages from having poly(n) sized BSM protocols with message complexity of n+1
unless the polynomial hierarchy collapse and bitwise-XOR combined version PSPACE-hard
languages having poly(n) sized BSM protocols with a message complexity of n + O(log n)
unless PSPACE ⊆ PPNP/poly. These conclusions rely on structural complexity results about
instance hiding due to Fortnow and Szegedy [17] and Tripathi [41].

We continue the study where the bitwise combiner function is a bitwise OR as well as
bitwise AND function and obtain SM protocols with a preprocessing length of O(20.729n)
matching the result of Ambainis and Lokam (Theorem B.25 [8]) for XOR combined func-
tions [3].

1.3 Paper organization

The overview for the rest of the paper is as follows. We study the BSM model under
computational restrictions on Carol. In Section 2, we restrict the Carol to be a polynomial-
sized circuit, and show that the Split-SAT problem (SSAT) is unlikely to have polynomial
sized BSM protocols and we extend the same to two other distributed variants of NP-complete
problems. In Section 3, we restrict Carol to be an arithmetic circuit and in Section 4, we
restrict Carol to be an algebraic polynomial over F2. In Section 5, we discuss the setting
where Carol is a Turing machine and show that it is possible to decide any RE language
(including the Halting problem) with preprocessing.

The full version [8] of the paper includes appendices omitted in this version due to space
constraints. In Appendix A [8], we provide connections of BSM to related models. In
particular, we exploit this connection to argue that most Boolean functions do not have
efficient instance hiding schemes. In Appendix B [8], we discuss a few BSM protocols that
are implicit in the existing literature.
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2 Bounded Simultaneous Messages for NP problems

In this section we show that the existence of BSM for split variants of certain NP complete
problems yields unlikely consequences, including better than brute-force circuits for all NP
languages (Section 2.1), one-way functions (Section 2.2), and instance hiding schemes for all
of NP (Section 2.3).

2.1 Split SAT and NP languages

▶ Theorem 1. If SSAT has a 2-party BSM protocol of size s(n) and message length ℓ(n)
then every L in NP has circuit size O(ℓ(p(n)) · 2n/2) + s(p(n)) for some polynomial p.

Proof. We will assume without loss of generality that L rejects all inputs of odd length. This
can be enforced using the encoding

L = {0x : x is a yes instance of odd length} ∪ {11x : x is a yes instance of even length}.

Consider the following algorithm for L:

Preprocessing. Given an even input length n:
1. Construct the Cook-Levin CNF ϕ which accepts (x, y, z) for some z if and only if xy ∈ L

with |x| = |y| = n/2.
2. For every x with |x| = n/2, construct the CNF

αx(u, v, z) = “(x = u) ∧ ϕ(x, v, z)”, where |u| = |v| = n/2,

then determine and store the message ax that Alice sends in the BSM SSAT protocol
when her input is αx.

3. For every y with |y| = n/2, construct the CNF

βy(u, v, z) = “(y = v) ∧ ϕ(u, y, z)”, where |u| = |v| = n/2,

then determine and store the message by that Bob sends in the BSM SSAT protocol when
his input is βy.

Execution. On input xy with |x| = |y| = n/2, simulate Carol on messages ax and by and
output her answer.

Under the assumptions of the theorem this algorithm decides L because αx ∧ βy is satisfiable
if and only if ϕ(x, y, ·) is. If ϕ(x, y, z) accepts then so does αx(x, y, z) ∧ βy(x, y, z), while
if αx(u, v, z) ∧ βy(u, v, z) accepts it must be that x = u and y = v so ϕ(x, y, z) must also
accept.

The circuit representation of this algorithm consists of two tables of size ℓ(p(n)) · 2n/2, a
proportional amount of hardware to select the messages ax and by, and a copy of Carol’s
circuit, giving the bound on circuit size. ◀

▶ Corollary 2. If there exists a language in NP that is not computable by any circuit family
of size Õ(2n/2), then SSAT doesn’t have a 2-party, poly(n)-size BSM protocol.

FSTTCS 2023
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2.2 BSM hardness from worst-case one-way functions
We derive consequences of Corollary 2 to the worst-case insecurity of one-way functions.

A function f : {0, 1}∗ → {0, 1}∗ is length-preserving if |f(x)| = |x| for all sufficiently long
x. It is non-poly-shrinking if |f(x)| ≥ |x|ϵ for all sufficiently long x and some constant ϵ.

▶ Proposition 3. If every NP problem has circuit size poly(n) · 2n/2 then every efficient
length-preserving function can be inverted on every output in size poly(n) · 22n/3.

Proof. Let L be the language

L = {(y, a) : there exists x such that f(x) = y and a is a prefix of x}.

By the assumption L has circuits C of size poly(|y| + |a|) · 2(|y|+|a|)/2, which is at most
poly(n) · 22n/3 assuming |y| = n and |a| ≤ n/3.

Given y in the image of f , the circuit C can be applied iteratively to find the first n/3 bits
of a preimage x. Once those are found, the other 2n/3 bits can be computed by brute-force
search. The resulting preimage finder has circuit size poly(n) · 22n/3. ◀

▶ Proposition 4. If every NP problem has circuit size poly(n)·2n/2 but ENP
∥ requires exponential

size nonadaptive SAT-oracle circuits then every efficient non-poly-shrinking function can be
inverted on every output of length n in size poly(n) · 2n/2.

Proof. Klivans and van Melkebeek [26] (see also the discussion in [38]) show that under the
second assumption there is an efficient deterministic algorithm that on input y of length n

produces a list of circuits V1, · · · , Vpoly(n) such that at least one of the circuits Vi accepts a
unique x for which f(x) = y, assuming y is in the image of the function f . Let

L = {(y, i, j) : there exists x for which Vi(x) accepts and xj = 1}.

As L is an NP language, by the first assumption, it has circuits C of size poly(|y| + |i| + |j|) ·
2(|y|+|i|+|j|)/2 = poly(n) · 2n/2. Using C, a preimage of y can be found among the rows of the
table xij = C(y, i, j). ◀

▶ Corollary 5. If SSAT has a 2-party, poly(n)-size BSM protocol then every efficiently
computable function can be inverted on length-n outputs in (1) size poly(n) · 22n/3 assuming it
is length-preserving; (2) size poly(n) · 2n/2 assuming it is non-poly-shrinking and ENP

∥ requires
exponential size nonadaptive SAT-oracle circuits.

2.3 Instance hiding and NP languages
A two-query instance hiding (IH) scheme [5] consists of size circuit (Henry) that receives an
input and its output using queries to two oracles (Alice and Bob) such that the distribution
of each query depends only on Henry’s input length.

The instance hiding scheme is efficient if the size of Henry is polynomial in its input
length. Our main result in this section is the following:

▶ Theorem 6. If there is an efficient BSM protocol to one of the languages SSAT, SCOL,
SPRT, then every language in NP has an efficient IH scheme.

The connection between IH an BSM will be established using the following notion of
reduction.



A. Bogdanov, K. Dinesh, Y. Filmus, Y. Ishai, A. Kaplan, and S. Sekar 23:9

▶ Definition 7. Let L1, L2 be a languages. A split-hide reduction from L1 to L2 is a pair of
polynomial-time computable randomized mappings a, b : {0, 1}n → {0, 1}poly(n) satisfying
Correctness: x ∈ L1 ⇐⇒ a(x)b(x) ∈ L2.
Privacy: The marginal distributions of a(x) and b(x) depend only on the length of x.

If such a reduction exists, we say that L1 split-hide reduces to L2, and denote L1 ≤sh
p L2.

▶ Lemma 8. Let L1, L2 be two languages. If L1 ≤sh
p L2 and L2 has an efficient BSM protocol,

then L1 has an efficient IH scheme with a single nonadaptive pair of queries.

Proof. Suppose that L2 has a 2-party efficient BSM protocol implemented by Alice, Bob,
and Carol, and that L1 ≤sh

p L2 using mappings a and b. In the IH for L1, on input x, Henry
submits queries a(x) and b(x) to Alice and Bob, respectively, forwards their answers to Carol,
and produces her output. ◀

▶ Corollary 9. Let L1, L2 be a languages, and suppose that L1 is NP-hard. If L1 ≤sh
p L2 and

L2 has an efficient BSM protocol, then every language in NP has an efficient IH scheme with
a single nonadaptive pair of queries.

Here, NP-hardness is assumed to hold under reductions that map all instances of a given
length n into instances of the same length m(n).

Proof. In the IH scheme for L1, Henry implements the reduction from L1 to L2 and then
runs the IH for L2 from Lemma 8. ◀

Theorem 6 follows from Corollary 9 and the propositions below which show that SAT,
3COL, and PARTITION each split-hide reduce to their split variant.

▶ Proposition 10. SAT ≤sh
p SSAT.

Proof. By the standard reduction from SAT to 3SAT we can represent the input instance by
a 3CNF φ(x1, . . . , xn), where n is chosen large enough to embed all SAT instances of a given
size. We describe the randomized mappings a and b that yield CNFs α and β, respectively,
in variables x1, . . . , xn and additional auxiliary variables y1, . . . , y2N , where N = 8

(
n
3
)
. Let

C1, . . . , CN be a list of all possible clauses of width at most 3 over the n variables x1, . . . , xn.
Let π be a random permutation of [2N ]. We define

α =
∧

i∈[N ]

(Ci ∨ yπ(i)).

Let I = {i : Ci ∈ φ} and J = {N + i : Ci /∈ φ}. We define

β =
∧

i∈I∪J

¬yπ(i).

Correctness: We argue that φ is satisfiable if and only if α ∧ β is satisfiable.
Suppose that φ is satisfiable. Then, we can satisfy α by taking the satisfying assignment
of φ to satisfy each clause (Ci ∨ yπ(i)) for i ∈ I, and assign a true value to yπ(i) for every
i ∈ [N ] \ I. To satisfy β, assign a false value to yπ(i) for every i ∈ I, which will not affect
α’s satisfiability, and assign a false value to yπ(i) for every i ∈ J .
Suppose that α ∧ β is satisfiable. Since β is satisfiable, it follows that the satisfying
assignment assigns false to yπ(i) for every i ∈ I, which implies that α can be satisfied by
the same assignment only if Ci is satisfied for every i ∈ I, namely φ itself is satisfied.

Privacy: The y-variables in both α and β are random length N subsequences of (y1, . . . , y2N ).
◀
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▶ Proposition 11. 3COL ≤sh
p SCOL.

Proof. Given a graph G = (V, E) with vertices V = {1, . . . , n} the reduction produces the
following two graphs A and B on the same vertex set Ṽ . Let N =

(
n
2
)

and π be a random
permutation of [2N ]. We identify [N ] with ordered pairs of vertices in V .

Vertices Ṽ : For each v ∈ V there is a vertex v in Ṽ , and for each j ∈ [2N ] there are
vertices aj , bj , cj , a′

j , b′
j , c′

j .
Edges in A: For each pair (v < v′) ∈ V , let j = π(v, v′). We connect v to aj , bj , v′ to
a′

j , b′
j , and add triangles (aj , bj , cj) and (a′

j , b′
j , c′

j).
The edges in B are {(cπ(e), c′

π(e)) : e ∈ E} ∪ {(cπ(N+e), c′
π(N+e)) : e /∈ E}.

Correctness: If G is 3-colorable, the 3-coloring can be extended to a valid coloring of A ∪ B

by coloring cj and c′
j for j = π(v, v′) with the colors of v and v′, respectively, and coloring

aj , bj , a′
j , b′

j with the remaining colors. The vertices indexed by j that are not in the image
of π([N ]) are assigned fixed consistent colors, e.g., (aj , bj , cj , a′

j , b′
j , c′

j) → (R, B, G, B, G, R).
Conversely, if A ∪ B is 3-colorable, v and cj must have the same color and so must v′ and
cj′ ; by the definition of B the coloring on V is valid for G.

Privacy: The graph A consists of N pairs of “diamonds” v, aj , bj , cj and v′, a′
j , b′

j , c′
j , one for

each vertex-pair v < v′, where j is randomly assigned one of N distinct values in [2N ]. The
graph B is a matching chosen at random among those that match N out of the 2N pairs
(c1, c′

1), . . . , (c2N , c′
2N ). Both distributions depend on G only through n. ◀

▶ Proposition 12. PARTITION ≤sh
p SPRT.

Proof. The input to PARTITION problem consists of a multi-set S = {x1, . . . , xn} of n

non-negative integers (not necessarily distinct) of n-bits forming a multi-set S.
Reduction: Set p = n2n + 1. For each i ∈ {0, 1, . . . , n − 1}, pick a yi uniformly at random

from {0, 1, . . . , p − 1} and let zi be the unique residue (xi − yi) mod p. Define

Yi = yi · 8n + 1 · 8i

Zi = zi · 8n + 2 · 8i

Wi = 3 · 8i

Alice’s and Bob’s inputs are the sets

A = {Y0, . . . , Yn−1}
B = {Z0, . . . , Zn−1} ∪ {W0, . . . , Wn−1} ∪ E, E = {2j · p8n | 0 ≤ j ≤ log n}.

Correctness: We show that U = A ∪ B has a partition
∑

C =
∑

D if and only if S has
a partition

∑
P =

∑
Q, where

∑
X is the sum of all elements in a multi-set X. Let

U ′ = {Yi, Zi, Wi | 0 ≤ i ≤ n − 1} so that U ′ ∪ E = U = A ∪ B. We show the following three
statements are equivalent. Correctness follows from the equivalence of 1 and 3.
1. S has a partition

∑
P =

∑
Q

2. U ′ has a partition
∑

C ′ ≡
∑

D′ mod p8n

3. U has a partition
∑

C =
∑

D.
1 → 2: Assuming

∑
P =

∑
Q, For each xi ∈ P , place Yi, Zi in C ′ and Wi in D′. For each

xi ∈ Q, place Wi in C ′ and Yi, Zi in D′. This ensures that
∑

C ′−
∑

D′ is a multiple of 8n and
moreover

∑
C ′ −

∑
D′ = (

∑
P −

∑
Q)/8n. With P and Q of equal sums,

∑
C ′ −

∑
D′ ≡ 0

mod p8n, we can conclude that C ′, D′ is the desired partition of U ′.

2 → 1: Assume
∑

C ′ ≡
∑

D′ mod p8n. Then for every i (1) Yi, Zi ∈ C ′ and Wi ∈ D′, or
(2) Yi, Zi ∈ D′ and Wi ∈ C ′, or (3) Yi, Zi, Wi do not appear in C ′ and D′. In all other cases
the i-th least significant entry in the base-8 representation of

∑
C ′ and

∑
D′ cannot match.
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Assign every number yi, zi, wi to P or Q depending on whether Yi, Zi, Wi is in C ′ or D′.
Then

∑
C ′ ≡ 8n

∑
P +

∑
3 · 8i and

∑
D′ ≡ 8n

∑
Q +

∑
3 · 8i modulo p8n, where the second

summation is over those indices i that satisfy (1) or (2). Therefore
∑

P ≡
∑

Q modulo p.
By our choice of p,

∑
P =

∑
Q.

2 → 3: If
∑

C ′ ≡
∑

D′ mod p8n, then
∑

C ′ −
∑

D′ = kp8n for some −n ≤ k ≤ n. Let
Ek be the (unique) subset of E that sums to |k| p8n. If k > 0 set C = C ′, D = D′ ∪ Ek.
Otherwise, set C = C ′ ∪ Ek, D = D′. In either case

∑
C =

∑
D.

3 → 2: C ′ and D′ are obtained from C and D by dropping the elements in E.

Privacy: The marginal distributions of yi as well as zi are independent of the input instance
S and depends only on n. The set A consists of Yi and B consists of Zi, Wi and some fixed
additional elements none of which depend on the set S. Hence, the marginal distributions A

and B are also independent of S and depends only on n. ◀

3 Arithmetic circuits for Matrix Multiplication

An arithmetic BSM protocol for a polynomial p(X, Y ) is a decomposition of the form
p(X, Y ) = Carol(Alice(X), Bob(Y )). The complexity of the protocol is the smallest possible
arithmetic circuit complexity of Carol.

We show that BSM protocols do not help for circuit multiplication. Recall that the
tensor rank R(n) of n × n matrix multiplication is the smallest possible number of terms in
a decomposition of XY as a sum of products of linear functions in X and Y , respectively.
Asymptotically, logn R(n) converges to the matrix multiplication exponent ω.

▶ Theorem 13. In any arithmetic BSM protocol for multiplying n × n matrices Carol must
use at least R(n)/2 multiplication gates.

As matrix multiplication can be realized in complexity O(R(n)) without preprocessing,
BSM does not offer any savings in this setting.

Proof. We prove the contrapositive: A BSM protocol in which Carol uses t multiplication
gates yields a representation of XY of tensor rank at most 2t.

For a polynomial P in the entries of both X and Y , let c(P ) be the constant part, a(P )
be the linear part involving entries from X, b(P ) be the linear part involving entries from Y ,
and ab(P ) be the bilinear part, where each monomial is a product of an entry of X and an
entry of Y .

We construct a circuit that computes the low-degree part ℓ(C) = (c(C), a(C), b(C), ab(C))
using at most 2t multiplication gates inductively over the size of Carol’s circuit C. For the
base case, Carol has size zero its output must come either from Alice of from Bob, so ab

must be zero and q(C) is a linear function of X or Y requiring no multiplications. For the
inductive step, the following rules show that computing ℓ(P + Q) from ℓ(P ) and ℓ(Q) takes
no extra multiplications, while computing ℓ(PQ) takes at most two extra multiplications
(underlined):

c(P + Q) = c(P ) + c(Q) c(P Q) = c(P )c(Q)

a(P + Q) = a(P ) + a(Q) a(P Q) = c(P )a(Q) + a(P )c(Q)

b(P + Q) = b(P ) + b(Q) b(P Q) = c(P )b(Q) + b(P )c(Q)

ab(P + Q) = ab(P ) + ab(Q) ab(P Q) = c(P )ab(Q) + ab(P )c(Q) + a(P ) · b(Q) + b(P ) · a(Q)

As Carol’s output is some linear combination of its multiplication gates, ℓ(XY ) can be
computed using at most twice the number of multiplications used by Carol as desired. ◀
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4 Polynomials of bounded degree

Every Boolean function f : {0, 1}N → {0, 1} can be represented by a multilinear polynomial
of degree at most N over the reals. In this section we ask whether we can reduce the degree
by means of preprocessing. Given a function f : {0, 1}2n → {0, 1}, let df (n, m) be the least
degree of a polynomial Carol for which f(x, y) = Carol(Alice(x), Bob(y)) and Alice, Bob
output at most m bits each.

This type of representation provides dramatic savings for AND(x, y) = x1·· · ··xn·y1·· · ··yn,
which has degree n, yet dAND(n, 1) ≤ 2. This separation is best possible because the only
functions with df (n, m) = 1 are direct sums.

Let d(n, m) := max
{

df (n, m) : f : {0, 1}2n → {0, 1}
}

. Beaver at al. [6] showed (in a
different context) that for any constant C > 0,

d(n, nC+1) ≤ 2n

C log n
.

We extend their argument to obtain the following bound.

▶ Proposition 14. For n < m < 2n, it holds that d(n, m) = O(n/ log(m/n)).

Proof. Let f : {0, 1}2n → {0, 1}, and let p be a multilinear polynomial of degree 2n that
computes f :

p(z1, . . . , z2n) =
∑

S⊆[2n]

cS · zS .

Consider now the following strategy to reduce the degree of p: split the input z into n/t

disjoints set of coordinates, each of size t, for some chosen t ≤ n. For each coordinate subset
T ⊆ [2n] of size T , we define 2t − 1 variable as follows: for each ∅ ≠ J ⊆ T :

ZJ =
∏
i∈J

zi.

It follows that we can express p as a polynomial of degree ⌈2n/t⌉ by taking each monomial
zS and replacing it with a product of ZJ ’s for proper choices of J ’s.

We can now establish a BSM protocol for f with Carol computing a degree-(2n/t)
polynomial by letting Alice and Bob compute the ZJ ’s and send the results to Carol. This
requires preprocessing output length of at most ⌈n/t⌉ · (2t − 1). Choosing

t = ⌈log(m/(4n))⌉ ≤ log(m/(4n)) + 1 = log(m/n) − 1 ≤ log(2n/n) < n

implies preprocessing of length at most

⌈n/t⌉ · (2t − 1) ≤ (n/t + 1) · 2t ≤
t≤n

(2n/t) · 2t = (2n/t) · 2⌈log(m/(4n))⌉ ≤ m/t ≤
t≥1

m.

Thus,

d(n, m) = ⌈2n/t⌉ ≤ 2n/t + 1 = 2n

⌈log(m/(4n))⌉ + 1 ≤ 2n

log(m/(4n)) + 1 = O(n/ log(m/n)). ◀

The following proposition about the equality function shows that this bound is almost
tight.

▶ Proposition 15. For n ≤ m, dEQ(n, m) = Ω(n/ log m).
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Proof. Let us start by considering the case in which the F2-polynomial has individual degree 1,
where individual degree-1 means that each variable taken from either Alice’s message or
Bob’s message occurs at most once in any monomial computed by Carol. This means that it
is of the form

P (z, w) =
∑

ij

cijziwj +
∑

i

dizi +
∑

j

ejwj + r.

Now consider the n-bit equality function EQ. Suppose that it can be calculated using
preprocessing of length m. That is, there exist functions A, B : {0, 1}n → {0, 1}m and a
polynomial P as above such that for all x, y ∈ {0, 1}n:

EQ(x, y) = P (A(x), B(y)).

For each x ∈ {0, 1}n, Qx(y) = P (A(x), B(y)) is an affine form on m variables. Any m + 2
such forms must be linearly dependent. Hence if m + 2 ≤ 2n, we can find x0, . . . , xm such
that

Qx0(y) = Qx1(y) + · · · + Qxm(y).

Substituting y = x0, we obtain a contradiction, since the left-hand side should be 1, while the
right-hand side is a sum of zeroes. We conclude that m ≥ 2n − 1. (This should be compared
to the obvious upper bound in which m = 2n.)

Now suppose that EQ(x, y) = P (A(x), B(y)), where P is an arbitrary polynomial of
degree d, and |A(x)| = |B(x)| = m. Let A′(x) consist of all ANDs of up to d elements from
A(x), and define B′(x) similarly. Thus, |A′(x)| = |B′(x)| =

(
m
≤d

)
. We can find a polynomial

P ′ of individual degree 1 such that P ′(A′(x), B′(y)) = P (A(x), B(y)). Therefore,

2n − 1 ≤
(

m

≤ d

)
< (m + 1)d =⇒ d ≥ n

log(m + 1) . ◀

Combining the last two propositions, we have a tight bound when m is polynomial in n:

▶ Corollary 16. For every constant C > 1, d(n, nC) = Θ(n/ log n).

5 Computability with preprocessing

Language L ⊆ {0, 1}∗ × {0, 1}∗ is BSM-computable with message size m(n) if there is a BSM
protocol for L in which
1. Carol is a Turing Machine that receives m(|x|) and m(|y|)-bit messages from Alice and

Bob on input (x, y)
2. Carol halts on all inputs of the form Alice(x), Bob(y).
In this setting Alice and Bob do not know each other’s input length.

▶ Proposition 17. Every recursively enumerable language is BSM-computable with message
size 2n + 1.

As BSM-computability is closed under complement, the proposition extends to co-
recursively enumerable languages.

Proof. Let M be a Turing Machine that recognizes L, i.e., it halts on yes-instances only.
The following BSM protocol computes L:

On input x, Alice sends Carol x and the number of pairs (x, y′) with |y′| ≤ |x| such that
xy′ ∈ L. On input y, Bob sends Carol y and the number of pairs (x′, y) with |x′| ≤ |y|
such that x′y ∈ L.
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If |x| ≤ |y|, Carol runs M on all inputs xy′ for |y′| ≤ |x| in parallel and halts whenever
the number of accepted instances reaches the value sent by Alice. Carol accepts iff (x, y)
is among them. If |x| < |y|, Alice’s and Bob’s roles are reversed. ◀

If condition 2 in the definition of BSM-computability were replaced with the stronger
requirement that Carol halts on all inputs, Proposition 17 would no longer be true: It is
possible to construct a recursively enumerable language that is not BSM-computable in this
stronger sense whenever m(n) = o(2n/2) by diagonalizing against every possible Carol [31].

6 Conclusion and Open Problems

In this work, we initiate a systematic study of the BSM complexity of several natural classes of
functions with different assumptions on Carol: size-bounded, degree-bounded, and arithmetic
(summarized in Table 1). Our work suggests several natural open problems.

Size-bounded Carol. Can preprocessing help improve the matrix multiplication time when
Carol is a Boolean circuit? Our negative result only considered an arithmetic Carol over
the reals (Theorem 13). To argue against the possibility of BSM with polynomial-size
Carol for arbitrary NP languages, we suggested two explicit candidates for NP languages
with the highest possible circuit complexity: Turing Machine Acceptance and Succinct
Subset Sum (see Section 1.1 for the exact conjectures). Studying these conjectures
and proposing other natural candidates for maximally hard NP languages may be of
independent interest. A final open question is proving an analog of Theorem 1 for
SCOL, SPRT or split-versions of some other NP complete languages, where the natural
Cook-Levin approach does not seem to apply.
Depth-bounded Carol. We do not have any results pertaining to a depth-bounded Carol.
However, the prior result of [16] which shows a negative result for a BSM protocol for
the mod-2 inner product function by AC0 circuits, leaves a non-trivial open question to
solve. Can we prove even a weak unconditional lower bound for the mod-3 inner product
by AC0 circuits with mod-2 gates?
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