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Abstract
We study the Interval Selection problem in data streams: Given a stream of n intervals on the line,
the objective is to compute a largest possible subset of non-overlapping intervals using O(|OP T |)
space, where |OP T | is the size of an optimal solution. Previous work gave a 3/2-approximation for
unit-length and a 2-approximation for arbitrary-length intervals [Emek et al., ICALP’12]. We extend
this line of work to weighted intervals as well as to insertion-deletion streams. Our results include:
1. When considering weighted intervals, a (3/2+ϵ)-approximation can be achieved for unit intervals,

but any constant factor approximation for arbitrary-length intervals requires space Ω(n).
2. In the insertion-deletion setting where intervals can both be added and deleted, we prove that,

even without weights, computing a constant factor approximation for arbitrary-length intervals
requires space Ω(n), whereas in the weighted unit-length intervals case a (2 + ϵ)-approximation
can be obtained.

Our lower bound results are obtained via reductions to the recently introduced Chained-Index
communication problem, further demonstrating the strength of this problem in the context of
streaming geometric independent set problems.
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1 Introduction

In this work, we study streaming algorithms for the Interval Selection problem. Streaming
algorithms are characterized by processing the input data sequentially in a single pass while
maintaining only a small sketch of the input data in memory. The objective is to design
algorithms that use much less space than the size of the input stream. Due to the low
memory requirements, streaming algorithms are well-suited for processing large data sets
and constitute a well-established class of resource-constraint algorithms within algorithms
research today.

Given a set S of n intervals on the line, the Interval Selection problem consists of finding
a largest subset T ⊆ S of pairwise non-overlapping intervals and can be regarded as the
Maximum Independent Set problem on interval graphs, i.e., the intersection graphs of intervals
on the line. In the streaming model, we assume that the intervals S arrive in arbitrary
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24:2 Interval Selection in Data Streams

order (for example, in the form of tuples indicating their left and right boundaries). We
distinguish between unit-length/arbitrary-length intervals and weighted/unweighted intervals.
We will also consider both insertion-only and insertion-deletion streams, where, in the latter,
previously inserted intervals may eventually be deleted.

Emek et al. [7] initiated the study of the Interval Selection problem in data streams.
They gave a 3

2 -approximation algorithm for unit-length intervals and a 2-approximation
algorithm for arbitrary-length intervals, with both algorithms using space O(|OPT |), where
OPT denotes an optimal solution (see also [3] for significantly simpler algorithms with
the same quality guarantees). As proved by Emek et al., both results are optimal in that
computing slightly better approximations requires space Ω(n). Bakshi et al. [1] were the
first to consider weighted intervals and insertion-deletion streams, albeit through a slightly
different lens: Their objective was to approximate the total weight of a heaviest independent
set of intervals rather than outputting the intervals themselves. They prove that the weight
of a heaviest independent set of weighted unit-length intervals in insertion-deletion streams
can be approximated within a factor 2 + ϵ with only poly( log n

ϵ ) space. Curiously, neither
weighted intervals nor insertion-deletion streams have previously been considered in the
setting where intervals need to be reported.

1.1 Our Results
In this work, we address this shortcoming and consider both weighted intervals and insertion-
deletion streams. Without loss of generality, if weights are present then we assume that the
maximum weight is W and the minimum weight is 1. Similarly, in the arbitrary-length case,
we assume that the longest interval is of length ∆ and the shortest interval is of length 1.
Other settings can be obtained by scaling. We also mention at this stage that we assume
that any interval (weighted or unweighted) can be stored in space O(1) in order to avoid the
complexities arising from how interval boundaries and weights are encoded. If instead space
t is accounted for storing an interval then the space complexities of our algorithms need to
be multiplied by t.

We observe that either a particular setting can be solved well in that a constant factor
approximation can be achieved with space linear in |OPT |, or, a lower bound can be
established, demonstrating that space Ω(n) is necessary for a constant factor approximation
in the worst case, i.e., if W or ∆ is large enough.

Insertion-only Streams. As our point of departure, we recall that, in insertion-only streams,
O(1)-approximations for unweighted intervals can be achieved for both unit-length and
arbitrary-length intervals with space O(|OPT |) [7]. As our first set of results, we show that,
when adding weights to these settings, then the unit-length interval case can still be solved
well, however, in the arbitrary-length case, space Ω(n) is needed in the worst case:

▶ Theorem 1. For every ϵ > 0, there is a deterministic one-pass insertion-only ( 3
2 + ϵ)-

approximation streaming algorithm for Interval Selection with space O( log(1/ϵ)
ϵ |OPT |) on

weighted unit-length intervals.

▶ Theorem 2. Any one-pass constant error randomized streaming algorithm with approxim-
ation factor α for Interval Selection on weighted arbitrary-length intervals in insertion-only
streams must use Ω

(
1

α2 min{∆ 1
2α , n

22α }
)

bits of space.

We observe that if ∆ = poly(n) then the previous lower bound shows that space Ω(n) is
needed to achieve a constant factor approximation.
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Insertion-deletion Streams. We first observe that, in insertion-deletion streams, space as a
function of |OPT | cannot be achieved. To this end, consider an input stream consisting of
Θ(n) disjoint intervals that are subsequently either deleted or not, each with probability 1

2 .
On such an input distribution, any competitive algorithm must store most of these intervals
since the algorithm cannot know whether the intervals will subsequently be deleted. Observe
that, if the intervals are indeed deleted, then we have |OPT | = 0, while every constant factor
approximation algorithm still requires space Ω(n). To circumvent this issue, we express the
space complexities of our insertion-deletion algorithms in terms of |OPT ∗|, where OPT ∗ is
defined as the largest independent set of intervals on any prefix of the input stream. Note
that, even in the weighted case, OPT ∗ is defined as the largest independent set on any prefix.
While it appears natural to consider the heaviest independent set on any prefix instead, this
quantity is not useful since, for example, one could prefix any input stream with the insertion
and subsequent deletion of an arbitrarily heavy interval. In this case, the size of a heaviest
independent set on any prefix of the stream would always be one.

As our second set of results, we show that unit-length intervals (both unweighted and
weighted) can be solved well in insertion-deletion streams, but, unlike in the insertion-only
model, constant factor approximations in the unweighted arbitrary-length case require space
Ω(n) in the worst case.

▶ Theorem 3. There is a randomized one-pass insertion-deletion 2-approximation streaming
algorithm for Interval Selection on unweighted unit-length intervals with space O(|OPT ∗| ·
log3 n) that succeeds with high probability. In the weighted case, a (2 + ϵ)-approximation can
be achieved with space O(|OPT ∗| · log3(n) · log(W )/ϵ).

A lower bound by Bakshi et al. [1] shows that the result in the previous theorem is best
possible in that, even in the unweighted case, every (2 − ϵ)-approximation, for any ϵ > 0,
requires Ω(n) space.

▶ Theorem 4. Any one-pass constant error randomized streaming algorithm with approxima-
tion factor α for Interval Selection on unweighted arbitrary-length intervals in insertion-deletion
streams must use Ω

(
1

α2 min{∆
1

α2 , n
α}

)
bits of space.

1.2 Techniques
We will first discuss the ideas behind our algorithms and then address our lower bounds.

Algorithms. To obtain our algorithms, we use an idea that goes back to Hochbaum and
Mass [12] as it is applied to the Interval Selection problem by Cabello and Pérez-Lantero [3].
Cabello and Pérez-Lantero observed that, if an optimal algorithm for Interval Selection
with space O(1) on unit-length intervals that are all contained in the domain [0, 3) can be
obtained, then a 3

2 -approximation algorithm with space O(|OPT |) can be achieved without
any restrictions on where the intervals are located. We generalize this idea and show that if an
α-approximation streaming algorithm with space s for unit length intervals that are located
within the domain [0, γ) exists, for some integer γ, then a (α · γ/(γ − 1))-approximation
streaming algorithm with space O(s·γ ·|OPT |) without any restrictions on where the intervals
are located can be obtained in insertion-only streams, and with space O((s+log n)·γ ·|OPT ∗|)
in insertion-deletion streams. Our generalization works for both the unweighted and weighted
cases.

We thus focus on designing streaming algorithms that perform well when all intervals in
the input stream are contained in a small window [0, γ), for some constant integer γ. In the
insertion-only model, we give a (1 + ϵ)-approximation algorithm with space O( log(1/ϵ)

ϵ ) for
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24:4 Interval Selection in Data Streams

the domain [0, 3) for weighted unit-length intervals that makes use of weight classes, which,
using the idea mentioned above, translates to a ( 3

2 + ϵ)-approximation algorithms with space
O( log(1/ϵ)

ϵ · |OPT |) for intervals without restrictions on the domain. In the insertion-deletion
setting, we give a (1 + ϵ)-approximation streaming algorithm with space O( log W

ϵ · log3 n) for
weighted unit-length intervals contained in the domain [0, 2) that relies on ℓ0-sampling and
the use of weight classes, which translates to a (2 + ϵ)-approximation for arbitrary input
instances with space O( log W

ϵ · log3 n · |OPT ∗|).

Lower Bounds. Our lower bounds are reductions to the recently introduced one-way p-party
communication problem CHAINp(k) [5] and to an extension that we introduce here that we
denote by AUG-CHAINp(k).

In the one-way p-party communication model (see [14] for an introduction to the topic),
p parties, who each hold a portion of the input, communicate in a one-way fashion, i.e., the
first party sends a message to the second, who, upon receipt, sends a message to the third
party. This continues until party p has received a message from party p − 1 and outputs
the result of the computation. The objective is to design communication protocols such
that the size of the largest message is as small as possible. The parties have access to both
private and public randomness, and they are allowed to err with small constant probability.
Streaming algorithms give rise to one-way communication protocols, and a lower bound on
the size of a largest message in every one-way communication protocol for a problem P then
implies a lower bound on the space required by streaming algorithms for problem P.

The problem CHAINp(k) can be regarded as chaining together p − 1 instances of the
well-known INDEXk problem. INDEXk is a two-party communication game where the first
party holds a bit string X = X[0], . . . , X[k − 1] ∈ {0, 1}k and the second party holds an
index σ ∈ [k − 1] := {0, . . . , k − 1}. The first party sends a single message to the second who
is tasked with outputting the bit X[σ]. It is known that randomized constant-error protocols
that solve INDEXk must send a message of size Ω(k). In CHAINp(k), each pair of subsequent
parties i, i + 1, for 1 ≤ i < p, holds a separate INDEXk instance (Xi, σi). The overall p− 1
instances are correlated in that

X1[σ1] = X2[σ2] = · · · = Xp−1[σp−1] = z ∈ {0, 1} ,

and the objective for party p is to determine the value of z. It is known that a protocol that
solves CHAINp(k) needs to send at least one message of size Ω( k

p2 ) [8].
The key idea of our lower bound construction for weighted arbitrary-length intervals in

the insertion-only model is to encode each INDEXk input (Xi, σi) in CHAINp(k) into one or
multiple clique gadgets, i.e., a set of k slightly shifted but overlapping potential intervals
where the jth interval is contained in the gadget if and only ifXi[j] = 1. We call the σith
potential interval special. The strength of the correlation of the outputs of all the INDEXk

instances in CHAINp(k) is that either all or none of the special intervals are contained in
the constructed clique gadgets. Our construction is such that, if the special intervals are
contained in the instance, then a heavy independent set containing the special intervals exists,
and otherwise, no heavy independent set exists. We argue that any streaming algorithm
that computes a good enough approximation to Interval Selection can be used as a one-way
communication protocol that solves CHAINp(k), which establishes our lower bound.

Our lower bound for the insertion-deletion setting makes use of the AUG-CHAINp(k)
problem that we introduce in this work. AUG-CHAINp(k) differs from CHAINp(k) in that,
instead of chaining INDEXk instances together, we chain AUGMENTED-INDEXk instances
together. The AUGMENTED-INDEXk problem is a slight modification of INDEXk where,
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besides the index σ, Bob also holds the prefix X[0], . . . , X[σ − 1] of X. The lower bound
established by Feldman et al. for CHAINp(k) carries over to AUG-CHAINp(k) essentially
without modifications.

The AUGMENTED-INDEXk problem (and thus also the AUG-CHAINp(k) problem) is
well-suited for proving lower bounds in insertion-deletion streams. Since Bob knows the
prefix X[0], . . . , X[σ − 1], Bob can delete the intervals of the clique gadget introduced by
Alice that correspond to the prefix X[0], . . . , X[σ− 1]. This provides an additional advantage
over INDEXk that allows us to obtain a lower bound for unweighted arbitrary-length intervals
that could not be obtained without deletions. For details, please see Section 4.2.

1.3 Further Related Work
As previously mentioned, the Interval Selection problem is a special case of the Maximum
Independent Set (MIS) problem, which has received significant attention in the streaming
model. Despite the fact that MIS is NP-hard and hard to approximate within a factor of n1−ϵ,
for any ϵ > 0 [11], in the streaming setting, a one-pass α-approximation can be obtained
by storing O( n2

α2 ) edges, by sampling a random vertex-induced subgraph on Θ( n
α ) vertices

and computing a maximum independent set in this subgraph in exponential time [10] in the
post-processing step. In the vertex-arrival order setting, where vertices arrive one-by-one
together with their incident edges that connect to previously arrived vertices, Cormode et al.
proved that space Ω(n2/α6) is necessary for an α-approximation [5]. Furthermore, efficient
streaming algorithms exist for computing independent sets that achieve the Caro-Wei bound,
see [9] and [4].

The CHAINp(k) problem was introduced by Cormode et al. [5] in order to establish
the lower bound mentioned above for vertex-arrival MIS. They also used CHAIN3(k) to
show that obtaining a better than 2.5-approximation streaming algorithm to the problem of
computing a largest subset of a stream of non-overlapping axis-aligned unit squares requires
space Ω(n). Bhore et al. [2] then also used CHAINp(k) to prove that any constant factor
approximation algorithm to solve the interval selection problem on split intervals requires
space Ω(n). Feldman et al. [8] used CHAINp(k) for proving lower bounds in the context of
one-way communication protocols for sublinear maximization and gave the strongest known
lower bound of Ω(n/p2) on the size of at least one message in a protocol that solves the
problem.

1.4 Outline
In Section 2, we discuss tools and known results that we make use of in the work. Then, in
Section 3, we give our results that apply to the insertion-only setting, i.e., our algorithm for
weighted unit-length intervals and our lower bound for weighted arbitrary-length intervals.
Then, in Section 4, we give our results that address the insertion-deletion setting, namely, our
algorithm for weighted unit-length intervals and our lower bound for unweighted arbitrary-
length intervals. Finally, we conclude with open problems in Section 5.

2 Preliminaries

For an integer k, we define [k] := {0, 1, . . . , k}.

Interval Selection. In the Interval Selection problem, we are given a set S of n (potentially
weighted) intervals on the line. If weights are present then, for an interval I ∈ S, we
write w(I) to denote its weight. In the presence of weights, the objective is to identify a

FSTTCS 2023
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subset of pairwise non-overlapping intervals of maximum weight. We denote the maximum
interval weight in an instance by W and assume that the smallest weight is 1. If no weights
are present then the objective is to find a largest cardinality subset of non-overlapping
intervals. We distinguish between unit-length intervals, where all intervals are of length 1,
and arbitrary-length intervals. In the arbitrary-length case, we denote by ∆ the length of
the longest interval and assume that the shortest interval is of length 1.

Let OPT denote an independent set of intervals of maximum cardinality (in the unweighted
case) or of maximum weight (in the weighted case) at the end of the stream. For insertion-
deletion streams, we will also use OPT ∗, which denotes an independent set of intervals
of largest cardinality across all prefixes of the stream. Then, we denote the cardinality of
these solutions by |OPT | (|OPT ∗|, respectively), and the weight by w(OPT ) (w(OPT ∗),
respectively).

Streaming Models. In the insertion-only model, a streaming algorithm sees the n intervals
in arbitrary order. In the insertion-deletion model, the input stream consists of a sequence
of interval insertions and deletion such that, overall, at most n different intervals have been
inserted. We assume that only intervals that have previously been inserted can be deleted.

We assume that storing an interval together with its left and right boundaries as well as
its weight requires space O(1). This assumption is for simplicity since the focus of our work
is not on how to best encode intervals. We remark, however, that if space t is accounted for
storing an interval then the space complexities of our algorithms increase by a factor of t.

An important technique for designing insertion-deletion streaming algorithms is ℓ0-
sampling (see, for example, [6]) that we will also use in this work.

ℓ0-Sampling. Let a ∈ Nn
0 be a non-zero vector. The objective in ℓ0-sampling is to sample a

uniform random non-zero coordinate from a. An insertion-deletion stream can be described
as a sequence of increases/decreases of the coordinates of an underlying n-dimensional vector.
Applied to the Interval Selection problem, each coordinate corresponds to an interval in the
input stream.

In this work we use the ℓ0-sampler by Jowhari et al. [13].

▶ Theorem 5 ([13]). There exists an insertion-deletion streaming algorithm that performs
ℓ0-sampling which uses space O(log2 n log(1/δ)) and succeeds with probability at least 1− δ.

Communication Problems. In this paper, we work with the CHAINp(k) problem introduced
by Cormode et al. [5].

▶ Definition 6. CHAINp(k) is a one-way p-party communication problem where the players
hold parts of the input as follows:

The first player p1 holds a vector X1 ∈ {0, 1}k.
For each 2 ≤ i ≤ (p−1), player pi holds a vector Xi ∈ {0, 1}k and an index σi−1 ∈ [k−1].
The last player pp holds an index σp−1 ∈ [k − 1].

We are guaranteed that there exists an answer bit z ∈ {0, 1} such that Xi[σi] = z for
all 1 ≤ i ≤ p − 1. It will be convenient to denote a specific instance of CHAINp(k) by
(X1, σ1, . . . , Xp−1, σp−1).

The game proceeds with the players sequentially taking turns to send a single message to
the next player i.e. p1 sends a message m1 to p2 followed by p2 sending m2 to p3 and so on.
The objective of the game is for pp to output z.
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CHAINp(k) can be trivially solved with O(k) bits of total communication: Any of the
parties pi sends Xi to party pi+1. Feldman et al. [8] proved the following lower bound:

▶ Theorem 7 ([8]). For any positive integers k and p ≥ 2, any (potentially randomized)
protocol for CHAINp(k) with success probability at least 2/3 must send a message of size
Ω(k/p2).

We now define the related multi-party one-way communication problem AUG-CHAINp(k).

▶ Definition 8. AUG-CHAINp(k) is a p-party one-way communication problem where:
The first player holds a vector X1 ∈ {0, 1}k.
For each 2 ≤ i ≤ (p− 1), pi holds a vector Xi ∈ {0, 1}k, an index σi−1 ∈ [k − 1], and the
prefix Xi−1

+ = (Xi−1[0], . . . , Xi−1[σi−1 − 1]).
The last player pp holds an index σp−1 ∈ [k − 1] and the prefix Xp−1

+ =
(Xp−1[0], . . . , Xp−1[σp−1 − 1]).

Again we are guaranteed that there exists an answer bit z ∈ {0, 1} such that Xi[σi] = z for
all 1 ≤ i ≤ p− 1, and we denote a specific instance by (X1, σ1, . . . , Xp−1, σp−1). The game
then proceeds the same as for CHAINp(k).

It is not hard to see that the analysis by Feldman et al. for CHAINp(k) also holds for
AUG-CHAINp(k) with essentially no modification. We thus have:

▶ Theorem 9. For any positive integers k and p ≥ 2, any (potentially randomized) protocol
for AUG-CHAINp(k) with success probability at least 2/3 must send a message of size at least
Ω(k/p2).

3 Insertion-only Streams

In this section, we give our ( 3
2 + ϵ)-approximation streaming algorithm for weighted unit-

length intervals. To this end, we first show in Subsection 3.1 that if an algorithm can be
designed for unit intervals that arrive in the restricted domain [0, γ), for some integer γ, then
an algorithm with slightly increased approximation guarantee can be obtained without any
restrictions on the domain of the intervals. Then, we present our algorithm in Subsection 3.2.

3.1 From Small Domains to Unrestricted Domains
We begin with notation for partitioning the real line into windows of integral length γ. We
define a single window of length γ located at i ∈ R as W γ

i = [i, i + γ). We then define a
partition of the real line as Wγ

i =
{

W γ
i+j·γ : j ∈ Z

}
.

▶ Lemma 10. Let A be a one-pass insertion-only (insertion-deletion) streaming algorithm
with approximation factor α and space O(s) on unit-length weighted intervals such that all
intervals are fully contained within the restricted domain W γ

0 = [0, γ), for some integer
γ ≥ 2. Then there exists a one-pass insertion-only (respectively insertion-deletion) streaming
algorithm A′ with approximation factor α · γ/(γ − 1) and space O(s · γ · |OPT |) (respectively
O((s + log n) · γ · |OPT ∗|)) for unit interval streams with unrestricted interval domains.

Proof. To extend A to A′ we make use of γ partitions of the real line Wγ
0 , . . . ,Wγ

γ−1. Let
I be an interval which arrives in the stream and let W be the set of windows across all
partitions which fully contain I. Then, for each w ∈ W, if w does not fully contain any
existing intervals at that point in the stream then A′ creates a new instance of A in w. Then,
for each w ∈ W, I is passed as an input to the instance of A associated with w, translated
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so that it appears to be contained in W γ
0 from the perspective of the instance of A. We

denote a window as active if it contains at least one interval and therefore has a running
instance of A. In the insertion-deletion setting, each active window also maintains a counter
of the number of intervals that it currently contains, and if this counter drops to 0 then A′

clears the corresponding instance of A and marks the window as inactive. Since the windows
within a partition Wγ

a are pairwise disjoint, taking the union of independent sets of intervals
across the windows in a partition will also yield an independent set, which we denote as
ALGa. At the end of the stream, A′ outputs the largest ALGa across a ∈ {0, . . . , γ − 1}.

Approximation Factor. We begin with the approximation factor of A′. Let OPT be a
heaviest independent set, and for each 0 ≤ a ≤ γ − 1, let OPTa be the set of intervals in
OPT which are fully contained in the windows of Wγ

a.
First, observe that every interval is contained in precisely γ − 1 windows. Thus, applying

this observation to OPT , we obtain

γ−1∑
a=0

w(OPTa) = (γ − 1)w(OPT ) .

Let j be such that w(OPTj) = max{w(OPTa) : a ∈ {0, . . . , γ−1}}. Then, from the previous
equation, we obtain

w(OPT ) ≤ γ

γ − 1 · w(OPTj).

Next, since A returns an α-approximation on each active window and they are disjoint within
a given partition Wγ

j , we get that w(OPTj) ≤ α · w(ALGj), and so

w(OPT ) ≤ γ

γ − 1w(OPTj) ≤ γ

γ − 1 · α · w(ALGj) ,

which establishes the approximation factor of A′.

Space Requirements. We first argue the space bound in the insertion-only setting. As
previously mentioned, every interval is contained in exactly γ − 1 windows across all the
window partitions. Hence, the intervals of OPT are contained in at most (γ − 1) · |OPT |
different windows. Denote this set of windows by WOP T . Then, based on WOP T , we define
the set of windows W ′ ⊃ WOP T as follows: For each window [a, a + γ) ∈ WOP T , add the two
windows [a− 1, a− 1 + γ) and [a + 1, a + 1 + γ) to W ′. Then, observe that |W ′| ≤ 3 · |W|.

We will now argue that, for every interval I in the input stream, the γ − 1 windows
that I is contained in are also in W ′. Indeed, observe that, since OPT is also a maximal
independent set, I intersects with an interval J ∈ OPT , and assume that I intersects J on
J ’s left boundary (the case where I intersects on the right boundary is similar and omitted).
Consider now all the γ − 1 windows that contain J . Then, for each of these windows, either
I is also contained in it or it is contained in the window shifted by 1 to the left. Since we
added these shifted windows to W ′, it follows that all of the γ− 1 windows that contain I are
thus also contained in W ′. Hence, A′ executes at most |W ′| ≤ 3 · (γ − 1) · |OPT | instances of
A, and since each instance requires space s, we conclude that A uses space O(s · γ · |OPT |),
which establishes the space bound of the algorithm in the insertion-only setting.

Consider now the insertion-deletion setting. Consider any moment during the processing
of the stream, and let OPT ′ be an independent set of maximum cardinality at this moment.
For the exact same reasoning as above, there are O(γ · |OPT ′|) instances of A simultaneously
running at this moment. Observe that, in addition to the memory state of A, for each
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simultaneous run, the algorithm A′ also maintains a counter of the number of intervals that
currently exist in the respective window. The space complexity in the insertion-deletion
setting is thus O(γ · |OPT ′| ·(s+log n)). The result follows since |OPT ′| ≤ |OPT ∗| holds. ◀

3.2 Algorithm for Weighted Unit-length Intervals
Equipped with Lemma 10, we are now ready to prove the following result:

▶ Theorem 1. For every ϵ > 0, there is a deterministic one-pass insertion-only ( 3
2 + ϵ)-

approximation streaming algorithm for Interval Selection with space O( log(1/ϵ)
ϵ |OPT |) on

weighted unit-length intervals.

Theorem 1 is an immediate consequence of Lemma 10 and Algorithm 1, which is analyzed
in Lemma 11.

Algorithm 1 is a (1 + ϵ)-approximation algorithm for the weighted unit-length case when
all intervals are included in the domain [0, 3). The algorithm maintains the heaviest interval
Imax observed so far and would only retain further intervals of weight at least ϵ · w(Imax).
The algorithm uses exponentially increasing weight classes [(1 + ϵ)i, (1 + ϵ)i+1), and for each
weight class, stores the leftmost and rightmost intervals that fall within the respective weight
class, where leftmost and rightmost are defined in the obvious way. We prove in Lemma 11
that the heaviest independent set that can be formed from the intervals stored constitutes a
(1 + ϵ)-approximation.

Algorithm 1 (1 + ϵ)-approximate one-pass streaming algorithm for weighted unit-length intervals
on the restricted domain [0, 3).
Require: An insertion-only stream of weighted intervals contained within the window [0, 3)

1: Imax ← ⊥ (we assume that w(⊥) = −∞){Maintain the heaviest interval}
2: for each interval I in the input stream do
3: if w(I) > w(Imax) then
4: Imax ← I

5: remove all intervals stored with weight less than ϵ · w(Imax)
6: else if w(I) < ϵ · w(Imax) then
7: continue with next interval in stream
8: end if
9: Let j be the weight class of I, i.e., let j be such that (1 + ϵ)j−1 ≤ w(I) < (1 + ϵ)j

10: Let Sj be the set of (at most two) intervals stored from weight class j

11: Sj ← left-most and right-most intervals among Sj ∪ {I}
12: end for
13: return Heaviest independent set among all intervals stored

▶ Lemma 11. Algorithm 1 is a deterministic one-pass (1 + ϵ)-approximation streaming
algorithm for Interval Selection with space O( log(1/ϵ)

ϵ ) on weighted unit-length intervals that
are restricted to the domain [0, 3).

Proof. We first establish the space required by the algorithm. Consider any moment during
the processing of the stream and let Imax be the heaviest interval. Let j∗ denote the weight
class that contains Imax, i.e., j∗ is such that (1+ϵ)j∗−1 ≤ w(Imax) < (1+ϵ)j∗ . The algorithm
only stores intervals of weight at least ϵ ·w(Imax), and at most two intervals per weight class.
Recall that the maximum weight in weight class j is (1 + ϵ)j . Then, if (1 + ϵ)j < ϵ(1 + ϵ)j∗−1

then intervals in weight class j are not stored. This implies that, if intervals in a weight class
j are stored, then
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(1 + ϵ)j ≥ ϵ(1 + ϵ)j∗−1 , which implies

j∗ − j = O

(
log(1/ϵ)

ϵ

)
.

Hence, there are only O
(

log(1/ϵ)
ϵ

)
weight classes where intervals are stored. This establishes

the space complexity of the algorithm.
Regarding the approximation factor, let OPT denote an optimal solution. If |OPT | = 1

then our algorithm finds an optimal solution since the algorithm stores the heaviest interval.
Hence, assume that |OPT | = 2. Suppose first that at least one of the two intervals is of weight
at most ϵ · w(Imax). Then, the interval Imax yields a (1 + ϵ)-approximation. We can thus
assume that both intervals in OPT are of weight at least ϵ · w(Imax). Let OPT = {IL, IR},
and assume that IL is located to the left of IR. Furthermore, let jL denote the weight class
of IL and jR denote the weight class of IR. Then, let I ′

L be the left-most interval stored by
the algorithm in weight class jL, and let I ′

R be the right-most interval stored in weight class
jR. Observe that these intervals exist since IL and IR also arrived in the stream, and the
algorithm either stores these intervals or different intervals of these weight classes that are
located further to the left of IL or to the right of IR. Since IL and I ′

L are in the same weight
class, and since IR and I ′

R are in the same weight class, we obtain:

w(OPT ) = w(IL) + w(IR) ≤ (1 + ϵ)(w(I ′
L) + w(I ′

R)) .

This completes the proof. ◀

We remark that the space required by our algorithm is independent of W , the maximum
weight of an interval.

Our main theorem of this section then follows from plugging in the algorithm from
Lemma 11 into Lemma 10.

3.3 Lower Bound for Weighted Arbitrary-length Intervals
In this section, we will prove our lower bound for weighted arbitrary-length intervals in
insertion-only streams.

▶ Theorem 2. Any one-pass constant error randomized streaming algorithm with approxim-
ation factor α for Interval Selection on weighted arbitrary-length intervals in insertion-only
streams must use Ω

(
1

α2 min{∆ 1
2α , n

22α }
)

bits of space.

Our construction relies on clique gadgets that we will define in Subsection 3.3.1. Then, we
show that a protocol for CHAINp(k) can be obtained from an algorithm for Interval Selection
in Subsection 3.3.2. Finally, we give the analysis in Subsection 3.3.3.

3.3.1 Clique Gadgets
We now give our definition of clique gadgets and provide an illustration in Figure 1.

▶ Definition 12 (Clique Gadget). Let X ∈ {0, 1}k be a binary vector, let [a, b] ⊂ R be an
interval with a < b, and define the offset sa,b = b−a

2(k+1) . Then, we define an unweighted clique
gadget with k intervals as

K(X, k, [a, b]) = {Ii : 0 ≤ i < k, X[i] = 1} , where

Ii =
[
a + (i + 2) · sa,b,

a + b

2 + i · sa,b

]
.
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a = 0 a+b
2 = 5 b = 10

B2
L B2

R

Figure 1 Example clique gadget K(X, k, [a, b]) for X = (1, 0, 1, 1, 0), k = 5, [a, b] = [0, 10], with
interval 2 shown in red. The corresponding left and right border regions B2

L and B2
R are also

highlighted noting |B2
L| = |B2

R| = sa,b/2 = 5/12.

We refer to the intervals Ii as potential intervals, and a potential interval Ii is also an actual
interval if X[i] = 1. For each 0 ≤ i < k, we define the left and right border regions of Ii by

Bi
L =

[
a +

(
i + 5

4

)
· sa,b, a +

(
i + 7

4

)
· sa,b

]
,

Bi
R =

[
a + b

2 +
(

i + 1
4

)
· sa,b,

a + b

2 +
(

i + 3
4

)
· sa,b

]
,

Last, we define a weighted clique gadget K(X, k, [a, b], w) as the unweighted clique gadget
K(X, k, [a, b]) where each interval has weight w ∈ R.

Clique gadgets have the following properties:

▶ Observation 13. The clique gadget K(X, k, [a, b]) has the following properties:

1. All intervals and border regions are fully contained within the set (a, b).

2. All intervals contain the midpoint m = b+a
2 and thus form a clique.

3. For every i, the border regions have width |Bi
L| = |Bi

R| = sa,b/2 > 0.

4. For every i, every point in Bi
L intersects with every potential interval Ij where j < i.

5. For every i, every point in Bi
R intersects with every potential interval Ij where i < j.

6. For every i, (Bi
L ∪ Bi

R) ∩ Ii = ∅.

3.3.2 Reduction

We prove our lower bound via a reduction to the CHAINp(k) problem. To this end, we will
show that a one-pass streaming algorithm A for Interval Selection for weighted arbitrary-length
intervals can be used to obtain a protocol πChain that solves CHAINp(k).

The reduction is described in Figure 2.
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Construction of πChain:
For parameters p and k, let (X1, σ1, . . . , Xp−1, σp−1) be a CHAINp(k) instance.
The parties base their construction on positive reals a, b, w with a < b whose values
we determine later. The parties proceed as follows:

Party 1: Based on input X1, party 1 constructs the clique gadget
K(X1, k, [a, b], w), runs A on the created intervals, and send the memory state of
A to party 2.
Party 1 < i ≤ p: Denote by K1, . . . ,K2i−2 the 2i−2 clique gadgets introduced
by party i− 1, and let BL,j and BR,j denote the left and right border regions of
the σi−1th potential interval in Kj . For each j ∈ {1, . . . , 2i−2}, if i < p then party
i introduces the clique gadgets K(Xi, k, BL,j , w

2i−1 ) and K(Xi, k, BR,j , w
2i−1 ), and

if i = p then party i = p introduces two arbitrary intervals of weight w
2p−1 that are

fully contained in BL,j and BR,j , recalling there is no vector Xp in a CHAINp(k)
instance.
Party i receives the memory state of an execution of A from party i− 1, and then
continues the execution of A on the intervals created, and if i < p, forwards the
memory state to the next party. If i = p, then, as we will detail further below,
party p is able to solve CHAINp(k) based on the output of A.

Figure 2 Construction of πChain for solving CHAINp(k) given an algorithm A for Interval Selection
on weighted unit-length intervals.

We observe that the clique gadgets created by the p parties can be represented as a rooted
binary tree T , where the first party’s gadget constitutes the root node. For party 1 < i < p,
let K be a gadget inserted by party i− 1, KL and KR the two gadgets inserted by party i

into the left and right border regions of the special interval in K. Then KL and KR are the
two children of K in T . The last party’s intervals constitute the leaves of the tree. We will
use T to determine the sizes of maximum independent sets when the underlying CHAINp(k)
instance evaluates to either 1 or 0.

In this reduction, party i introduces 2i−1 clique gadgets and therefore at most k · 2i−1

intervals. The total number of intervals n is thus bounded by n ≤
∑p

i=1 k · 2i−1 < k · 2p.

3.3.3 Analysis of the Reduction
We will argue in Lemma 14 that, depending on whether the answer bit in the CHAINp(k)
instance is 1 or 0, the weight of a heaviest independent set is very different. Then, we
conclude the section with the proof of our main result, Theorem 2.

▶ Lemma 14. If the answer bit in the CHAINp(k) instance is 1 then the Interval Selection
instance constructed in the reduction has an independent set of weight w · p. If the answer
bit is 0 then every independent set has weight at most 2 · w.

Proof. The properties we use here to determine the independence of intervals from different
gadgets follow from Observation 13.

Suppose first that the answer bit is 1. Then, for each party 1 ≤ i < p and for each clique
gadget constructed by party i, we pick the σith interval of the gadget and add it to an
independent set. We also pick all intervals created by party p. Observe that the resulting
independent set corresponds to picking one interval from each node in T . Overall, this
creates an independent set of weight
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p∑
i=1

2i−1 · w
2i−1 = w · p ,

since party i holds 2i−1 clique gadgets where each interval has weight w
2i−1 .

Suppose now that the answer bit is 0. We argue via the tree structure T that every
independent set is of weight at most 2 · w. To this end, we observe that, by construction
of the instance, if an interval I from a clique gadget K is selected then I overlaps with all
intervals in either the left or the right subtree of K. Hence, since I is selected, none of the
intervals in either the left or the right subtree of K can also be selected.

Consider now any independent set of intervals I, and let I ′ be the independent set
consisting only of party p’s intervals. We will now argue that

w(I) ≤ 2 · w(I ′) , (1)

and, since w(I ′) = w, the result then follows.
To see why Inequality 1 holds, we conduct local transformations to turn I into I ′. To

this end, repeat the following process: for each interval I ∈ I that is contained in a clique
gadget K held by party i < p, we remove I from I. Let K′ be the child of K that does
not contribute any intervals to I. As previously argued, K′ must exist. Then, we add back
all of party p’s intervals that are contained in K′. When this process terminates then we
have transformed I into I ′. Observe that, when removing I, we subtracted a weight of
w(I) = w

2i−1 from I and subsequently added 2p−i−1 intervals, each of weight w
2p−1 , back into

I, which corresponds to a total weight of 2p−i−1 · w
2p−1 = w

2i = w(I)/2. Hence, overall, at
most half of the initial weight of I is lost in this transformation, which proves Inequality 1
and completes the proof. ◀

Proof of Theorem 2. From Lemma 14, we obtain that if the answer bit in the CHAINp(k)
instance is 1 then the instance has an independent set of weight w · p, and if the answer
bit is 0 then every independent set in the instance is of weight at most 2 · w. Hence, in
our reduction, by the output of A, party p can distinguish the two cases as long as the
approximation factor α of A is such that α < p

2 . Theorem 7 thus yields that algorithm A
must use space Ω( k

p2 ). It remains to pick suitable values for k and p. We pick p = 2α + 1.
We observe that the ratio between the longest and shortest intervals in our construction is
∆ = (4(k + 1))p−1 = (4(k + 1))2α, which implies that k = 1

4 ∆ 1
2α − 1. Our lower bound thus

becomes Ω(∆ 1
2α /α2). Since our construction uses n ≤ k ·2p = ( 1

4 ∆ 1
2α −1) ·22α+1 ≤ ∆ 1

2α ·22α

intervals, our lower bound can never exceed the bound O( n
22α·α2 ).

Last, the construction departs with arbitrary reals a, b, w that determine the domain of
the construction and the heaviest weight. We pick any a and select b large enough such that
the shortest interval is of length 1, and we pick w large enough such that the lightest interval
is of weight 1. This completes the proof. ◀

4 Insertion-deletion Streams

4.1 Algorithm for Unit-length Intervals
In this section, we give our insertion-deletion streaming algorithms for Interval Selection for
both weighted and unweighted unit-length intervals. We prove the following theorem:
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▶ Theorem 3. There is a randomized one-pass insertion-deletion 2-approximation streaming
algorithm for Interval Selection on unweighted unit-length intervals with space O(|OPT ∗| ·
log3 n) that succeeds with high probability. In the weighted case, a (2 + ϵ)-approximation can
be achieved with space O(|OPT ∗| · log3(n) · log(W )/ϵ).

As in the insertion-only case, we argue in Lemma 15 that suitable algorithms for restricted
domains exist and then apply Lemma 10 to obtain algorithms for unrestricted domains.

▶ Lemma 15. There is a randomized one-pass insertion-deletion streaming algorithm with
space O(log3 n) for Interval Selection that produces an optimal solution for unweighted unit-
length intervals that are restricted to the domain [0, 2). For weighted intervals, the approxim-
ation factor becomes 1 + ϵ and the space is O( log W

ϵ log3 n).

Proof. We first consider the unweighted unit-length case. Since every pair of intervals that
are contained in [0, 2) intersect, the task reduces to outputting any interval if there is one.
To achieve this task, we can run an ℓ0-sampler that succeeds with high probability. To this
end, we use the ℓ0-sampler of Jowhari et al. (see Theorem 5) that uses space O(log3 n) and
errs with probability 1

n10 .
Regarding weighted intervals, the task is to report an interval of weight at least 1

1+ϵ

times the weight of a heaviest interval. To this end, we run an ℓ0-sampler for intervals
in every weight class [(1 + ϵ)j−1, (1 + ϵ)j), for every j ∈ {1, . . . , log1+ϵ W}. Observe that
log1+ϵ W = O( log W

ϵ ) for small values of ϵ. The space complexity follows since each ℓo-sampler
uses space O(log3 n). By a union bound, the error probability of the resulting algorithm is
at most 1

n10 times the number of weight classes that contain at least one interval, and since
there are at most n such weight classes, the result follows. ◀

Proof of Theorem 3. The proof follows immediately from Lemma 15 and Lemma 10. ◀

4.2 Lower Bound for Unweighted Arbitrary-length Intervals

We will now prove our lower bound that applies to the unweighted, arbitrary-length setting
in insertion-deletion streams:

▶ Theorem 4. Any one-pass constant error randomized streaming algorithm with approxima-
tion factor α for Interval Selection on unweighted arbitrary-length intervals in insertion-deletion
streams must use Ω

(
1

α2 min{∆
1

α2 , n
α}

)
bits of space.

Similar to the lower bound of Section 3.3, we will give a reduction, however, instead of
reducing to CHAINp(k), we reduce to AUG-CHAINp(k). Our construction will make use of the
clique gadgets defined in Section 3.3. We will give our reduction in Section 4.2.1, however,
due to space restrictions, the analysis is postponed to Appendix A.

4.2.1 Reduction

We will now show that a one-pass insertion-deletion streaming algorithm A for Interval
Selection for unweighted arbitrary-length intervals can be used to obtain a protocol πAug-Chain
that solves AUG-CHAINp(k). The reduction is described in Figure 3.
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Construction of πAug-Chain: For parameters p and k, let (X1, σ1, . . . , Xp−1, σp−1)
be a AUG-CHAINp(k) instance. The parties base their construction on positive reals
a, b with a < b whose values we determine later. The parties proceed as follows:

Party 1: Based on input X1, party 1 constructs the unweighted clique gadget
K(X1, k, [a, b]), runs A on the created intervals, and send the memory state of A
to party 2.
Party 1 < i ≤ p: Denote by K the clique gadget constructed by party i− 1, and
let BR denote the right border region of the σi−1th potential interval in K. Party
i deletes all actual intervals of K with index below σi−1, which is possible since
party i knows the prefix Xi−1

+ = {Xi−1[0], . . . , Xi−1[σi−1 − 1]}. Then, if i < p,
party i introduces the clique gadget K(Xi, k, BR), and if i = p then party i = p

introduces one arbitrary interval that is fully contained in BR.
Party i receives the memory state of an execution of A from party i− 1, and then
continues the execution of A on the intervals created, and if i < p, forwards the
memory state to the next party. If i = p, then, as we will detail further below,
party p is able to solve Aug-CHAINp(k) based on the output of A.

Figure 3 Construction of πAug-Chain for solving AUG-CHAINp(k) given an insertion-deletion
streaming algorithm A for Interval Selection on unweighted unit-length intervals.

We observe that the number of intervals n in this construction is bounded by n ≤ k · p.
For the analysis of this reduction, we refer the reader to Appendix A.

5 Conclusion

In this paper, we gave streaming algorithms for Interval Selection on weighted unit-length
intervals in the insertion-only and the insertion-deletion settings. We also gave space lower
bounds, one for the case of weighted arbitrary-length intervals in the insertion-only setting,
and one for the case of unweighted arbitrary-length intervals in the insertion-deletion setting.

Our results demonstrate a jump in complexity when going from the insertion-only to
the insertion-deletion setting: While a constant factor approximation for arbitrary-length
intervals can be achieved in the insertion-only setting with space O(|OPT |), space Ω(n)
is required in the insertion-deletion setting. We also showed that only when combining
arbitrary-length intervals with weights then a lower bound of Ω(n) can be obtained for
constant factor approximations in the insertion-only setting.

We conclude with two open problems.
1. Our ( 3

2 + ϵ)-approximation insertion-only streaming algorithm and our (2 + ϵ)-
approximation insertion-deletion streaming algorithm for weighted unit-length intervals
have space complexities that depend on 1

ϵ . Can we prove any lower bounds that capture
these dependencies on 1

ϵ ?
2. Interval Selection is relatively well understood by now. Can we obtain optimal algorithm

for other geometric objects, such as axis-aligned unit squares or unit circles? For example,
as previously mentioned, regarding axis-aligned unit squares, it is known that a 3-
approximation can be obtained with space O(|OPT |), while a lower bound shows that
space Ω(n) is needed for approximation factors below 2.5 [5]. Can we close this gap?
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A Analysis of the Lower Bound Reduction From Section 4.2.1

As in the insertion-only case, we will first argue that the size of a largest independent set is
very different depending on whether the answer bit in AUG-CHAINp(k) is 1 or 0.

▶ Lemma 16. If the answer bit in the AUG-CHAINp(k) instance is 1 then the Interval Selection
instance constructed in the reduction has an independent set of size p. If the answer bit is 0
then every independent set is of size at most 1.

Proof. The properties we use here to determine the independence of intervals from different
gadgets follow from Observation 13.

Let Ki denote the clique gadget introduced by party i after the deletions introduced by
party i + 1 have been applied.

Suppose first that the answer bit is 1. Then, the set of intervals {I1, . . . , Ip}, where Ii is
the σith interval of Ki, is an independent set of size p.

Suppose now that the answer bit is 0. Then, it can be seen that all intervals in the
instance intersect with the mid-point of the interval added by party p. The intervals thus
form a clique, and, thus, every independent set is of size at most 1. ◀

Proof of Theorem 4. From Lemma 16, we see that if the algorithm A has an approximation
factor α ≤ p− 1 then party p can distinguish between the 0 and 1 case in AUG-CHAINp(k).
Hence, we will set p = α + 1.

By Theorem 9, algorithm A must use space Ω( k
p2 ) = Ω( k

α2 ). Similar to the construction in
Section 3.3, we have ∆ = (4(k+1))p−1 = (4(k+1))α, which implies k = 1

4 ∆
1

p−1 −1 and gives a
lower bound of Ω(∆

1
p−1 /α2). Since the construction uses at most n ≤ k·p = ( 1

4 ∆
1

p−1−1)(α+1)
intervals, the lower bound cannot exceed O( n

α3 ).
Last, the construction is based on reals a, b. We pick any a and select b large enough

such that the shortest interval is of length 1. This concludes the proof. ◀
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