
Listing 4-Cycles
Amir Abboud # Ñ

Weizmann Institute of Science, Rehovot, Israel

Seri Khoury #

UC Berkeley, CA, USA

Oree Leibowitz #

Weizmann Institute of Science, Rehovot, Israel

Ron Safier #

Weizmann Institute of Science, Rehovot, Israel

Abstract
We study the fine-grained complexity of listing all 4-cycles in a graph on n nodes, m edges, and
t such 4-cycles. The main result is an Õ(min(n2, m4/3) + t) upper bound, which is best-possible
up to log factors unless the long-standing O(min(n2, m4/3)) upper bound for detecting a 4-cycle
can be broken. Moreover, it almost-matches recent 3-SUM-based lower bounds for the problem by
Abboud, Bringmann, and Fischer (STOC 2023) and independently by Jin and Xu (STOC 2023).
Notably, our result separates 4-cycle listing from the closely related triangle listing for which higher
conditional lower bounds exist, and rule out such a “detection plus t” bound. We also show by
simple arguments that our bound cannot be extended to mild generalizations of the problem such as
reporting all pairs of nodes that participate in a 4-cycle.

Independent work: Jin and Xu [26] also present an algorithm with the same time bound.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Graph algorithms, cycles listing, subgraph detection, fine-grained complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.25

Funding Amir Abboud: This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon Europe research and innovation programme (grant
agreement No 101078482). Additionally, Amir Abboud is supported by an Alon scholarship and a
research grant from the Center for New Scientists at the Weizmann Institute of Science.

1 Introduction

Finding small patterns in large graphs is a classical task. In the detection formulation we
only want to decide if a small pattern H exists in a large graph G (as a not-necessarily
induced subgraph); this is known as the Subgraph Isomorphism problem and is one of
the most extensively studied problems in graph algorithms. Its time complexity has been
investigated from various angles, including classical algorithms (e.g. [34, 22, 4, 28, 39]),
parameterized complexity (e.g. [19, 32]), streaming algorithms (e.g. [24, 23]), distributed
computing (e.g. [14, 13]), quantum algorithms (e.g. [31, 30]) and so on.1

In the listing formulation we are asked to return all occurrences of the pattern in the graph
as efficiently as possible. This problem has received much attention both from the classic graph
algorithms literature (e.g. [27, 8, 15, 9]) and also from the large literature on enumerating
answers to queries in databases (where they focus on the closely related problem of listing
all patterns with small delay between consecutive outputs), see [18, 37, 20, 10, 11, 12].

1 An extensive list of citations for each of these topics is infeasible.

© Amir Abboud, Seri Khoury, Oree Leibowitz, and Ron Safier;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 25; pp. 25:1–25:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir.abboud@weizmann.ac.il
https://www.weizmann.ac.il/math/AmirAbboud/
mailto:seri_khoury@berkeley.edu
mailto:oree.leibowitz@weizmann.ac.il
mailto:ron.safier@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Listing 4-Cycles

Our interest is in the fine-grained complexity of such problems and we therefore focus on
the simplest patterns without near-linear time algorithms: triangles and 4-cycles. Besides
the theoretical interest, the enumeration of short cycles has received much attention due to
applications, see e.g. [6, 7, 21, 38].

Throughout the paper, we assume that graphs are unweighted, undirected, and have
n nodes and m edges unless stated otherwise. The classical Johnson’s Algorithm [27] lists
all cycles in a graph in time that is polynomial in n and in their number t. Four decades
later, its time complexity was improved significantly so that it runs in the optimal O(m + t)
time [8]. One may hope that such an efficient algorithm can list all k-cycles for a fixed k

such as k = 3 or k = 4 in time O(m + t) (here t is the number of k-cycles). Unfortunately,
this is not known and is impossible under popular conjectures as we discuss below.

A simple observation (discussed in Section 3.1) shows that we cannot hope for an
O(T (n, m) + t) upper bound for listing unless we can solve the detection problem in time
O(T (n, m)). Moreover, note that the +t term is necessary because typically the number
of occurrences of a pattern could be much larger than T (n, m). Thus, our starting point
is the state-of-the-art for detecting triangles and 4-cycles. The best known algorithms for
detecting if a graph has at least one pattern take O(min(nω, m2ω/(ω+1))) for triangle [4],
where ω < 2.37188 is the fast matrix multiplication exponent [3, 17], and O(min(n2, m4/3))
for 4-cycle [4]. Note that if ω = 2 then the two bounds are the same. Thus, the main
question is whether we can solve the listing problem with a time complexity that matches
these bounds, plus t. In particular, can we list all 4-cycles in O(min(n2, m4/3) + t) time?

Such a result is unlikely for triangle listing. A reduction by Kopelowitz, Pettie, and
Porat [29] that optimizes a construction by Pătraşcu [35] shows that an O(nω + t) bound or
any O(min(n3−ε, m3/2−ε) + t) algorithm for any ε > 0 would refute the 3-SUM Conjecture2.

The actual state-of-the-art for triangle listing is more complicated. An exhaustive search
lists all triangles in O(n3) time. An algorithm of time O(m 3

2) can be achieved by a simple
application of low-degree/high-degree separation technique (see for example [4]). A work
by Chiba and Nishizeki [15] shows how to list all triangles (and all 4-cycles) in O(ma(G))
time where a(G) is the arboricity3 of the graph G. This running time is essentially the
same as O(m 3

2) because a(G) ≤ m1/2, but it shows an improvement for graphs with low
arboricity (such as planar graphs). These algorithms are essentially optimal because a graph
may contain Θ(min(n3, m

3
2)) triangles, but better results can be achieved if we also take the

number of triangles into account. Then, denoting the number of triangles in the graph by t, a
more clever algorithm by Björklund, Pagh, Vassilevska William, and Zwick [9] solves triangle
listing in time Õ(nω + n

3(ω−1)
5−ω t

2(3−ω)
5−ω) and Õ(m

2ω
ω+1 + m

3(ω−1)
ω+1 t

3−ω
ω+1). Assuming ω = 2 the

running times simplify to Õ(n2 + nt2/3) and Õ(m4/3 + mt1/3). A matching tight (assuming
ω = 2) lower-bound under the 3-SUM Conjecture exists [35, 29] and also, more recently,
under the APSP Conjecture4 [41].

The hardness of achieving “detection plus t” time for triangle listing may suggest that we
cannot achieve the desired O(min(n2, m4/3) + t) time for 4-cycle listing. Indeed, in Section 3
we present some simple observations showing that such a bound is conditionally impossible

2 The 3-SUM problem is as follows: Given a set A ⊆ {−n3, . . . , n3} of n elements, decide if there are
three distinct elements a, b, c ∈ A such that a + b + c = 0. The 3-SUM Conjecture is the conjecture that
solving the 3-SUM problem requires n2−o(1) time.

3 The arboricity of a graph is the minimum number of edge-disjoint spanning forests into which the graph
can be decomposed.

4 All-Pairs Shortest Paths (APSP): Given an n-node edge-weighted directed graph with positive weights in
{1, . . . , no(1)}, compute for all pairs of nodes the shortest distance between them. The APSP Conjecture
is the conjecture that solving All-Pairs Shortest Paths requires n3−o(1) time.

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:3

for mild generalizations of the problem such as in directed graphs, or if the task is to count
the number of 4-cycles rather than list them (without a +t term), or if our task is to report
which pairs of nodes participate in 4-cycles. Fortunately, none of these reductions give a
lower bound in the basic setting of the problem.

Our main result is a positive resolution to the above question, achieving the best-possible
“detection plus t” bound for 4-cycle listing. Before our work, only the trivial O(n3 + t) bound
was known.

▶ Theorem 1. 4-cycle listing can be solved in O(min(n2 + t, (m4/3 + t) · log2 n)) time.

Notably, this running time is faster than the aforementioned lower bound for triangle
listing stating that there is no O(min(n3−ε, m3/2−ε) + t) algorithm for triangle listing for
any ε > 0 (assuming 3-SUM) and therefore separates the two problems.

Any improvement on our upper bound would break the longstanding upper bound for
4-cycle detection, as discussed in Section 3.1. Moreover, a recent “short cycle removal”
technique in fine-grained complexity introduced by Abboud, Bringmann, Khoury, and Zamir
[2], can prove conditional lower bounds for 4-cycle listing that holds even if 4-cycle detection
turns out to be easier. In particular, two independent papers [1, 26] use this technique to
prove a (min(n2, m4/3) + t)1−o(1) lower bound under the 3-SUM Conjecture, showing that
our algorithm is tight.5 One interesting aspect of our result (mentioned in [1]) is that it
proves, in some sense, the optimality of the lower-bound machinery in these recent works.

The main technical ingredient underlying our results, which distinguish 4-cycle from
triangle and from the variants discussed in Section 3 is a (well-known) supersaturation result
stating that if the number of edges in a graph is larger than a certain threshold, then the
graph must have a large number of 4-cycles.

Independent work: Jin and Xu [26] independently obtained an algorithm for 4-cycle listing
of the same running time (they have fewer log factors) by a similar approach, but some
lemmas are proved differently.6

1.1 Outline of the Paper
We organize this paper as follows. In Section 2 we present and analyze an efficient algorithm
for 4-cycle listing. In Section 3 we discuss some hardness results for mild generalizations
of the problem. Lastly, in Section 4 we discuss two related open problems which we find
interesting. The first open problem is regarding the generalization of our results for longer
even cycles. The second open problem is determining which detection problem is harder:
triangle or 4-cycle detection.

2 Upper Bounds for 4-Cycle Listing

In Section 2.1, we start with a simple extension of the folklore O(n2)-time algorithm for
4-cycle detection [36] to an O(n2 + t)-time algorithm for 4-cycles listing, where t is their
number.

5 These lower bounds are for enumeration with constant delay; our upper bounds also apply in that
formulation of the listing problem by standard techniques. We choose to present our results for listing
rather than enumeration (which would have made the theorems slightly stronger) because it makes our
analysis more intuitive.

6 The two papers appeared simultaneously on ArXiv, but their results were included in a paper with
more results that were published in STOC 2023; their main results were lower bounds.

FSTTCS 2023

25:4 Listing 4-Cycles

Then, in Section 2.2, we present our main result, which is an Õ(m4/3 + t)-time algorithm
for 4-cycles listing.

2.1 Warm-up: An O(n2 + t)-time Algorithm
The simple O(n2)-time detection algorithm can be described as follows. We enumerate
all 2-paths (u, x, v) in the graph until we notice that some pair (u, v) has appeared as the
endpoints of more than a single 2-path; when that happens, we stop and report the existence
of a 4-cycle (since two 2-paths sharing the same endpoints form a 4-cycle). While enumerating
the 2-paths, the algorithm marks in an n × n table all the pairs (u, v) that have already
been seen as endpoints of 2-paths, and therefore it knows when to stop. Importantly, the
algorithm never enumerates more than n2 + 1 2-paths before stopping, giving the desired
upper bound on the running time.

Another important point implicit in the above description is that all 2-paths can be
enumerated efficiently, in linear time in m and the number of 2-paths listed so far: For each
node a, for each neighbor b ∈ N(a), for each neighbor c ∈ N(b) enumerate the 2-path (a, b, c).

The O(n2 + t) listing algorithm does exactly the same thing, except it does not stop after
finding the first 4-cycle but continues enumerating all the 2-paths of the graph. (Additionally,
it records all 2-paths in the entry of the table corresponding to a pair of nodes (u, v) so that
all 4-cycles involving (u, v) can be listed.) The following observations analyze the running
time.

We start with a worst-case bound on the number of 2-paths in a graph, as a function of
the number of 4-cycles.

▶ Observation 2. Given a graph G, the number of 2-paths in G is at most n2 + 4t where t

is the number of 4-cycles in G.

Proof. Let p be the total number of 2-paths in the graph and, for a pair of nodes u, v, let
pu,v be the number of 2-paths between u and v and notice that

4t = 2
∑

u,v∈V

(
pu,v

2

)
≥

∑
u,v∈V
pu,v>1

pu,v = p −
∑

u,v∈V
pu,v=1

pu,v ≥ p −
(

n

2

)
≥ p − n2. ◀

This leads to the O(n2 + t) bound on the simple algorithm above that lists all 2-paths in
the graph, as formalized in the following observation.

▶ Observation 3. Given a graph G, there is an O(n2 + t)-time algorithm that lists all the
4-cycles, where t is their number.

Proof. Recall the algorithm above that lists all 2-paths (u, x, v) and indexes them by their
endpoints (u, v), and then lists all 4-cycles formed by two 2-paths sharing the same pair (u, v)
as endpoints. First, note that the algorithm lists each 4-cycle (u, x, v, y) exactly twice (once
for the pair (u, v) and once for the pair (x, y)). The time complexity is thus upper bounded
by a constant factor times the number of 2-paths, plus the number of 4-cycles t, plus the
number of pairs n2. By the upper bound on the number of 2-paths from Observation 2, we
get the O(n2 + t) bound. ◀

2.2 An Õ(m4/3 + t)-time Algorithm
In order to improve the O(n2 + t)-time algorithm, we can’t afford listing all 2-paths. For
instance, in a star graph, there are O(n2) 2-paths, but no 4-cycles. Hence, intuitively
speaking, we need to narrow our attention to a certain type of 2-paths that are useful for

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:5

listing 4-cycles efficiently. Indeed, to overcome the star example, it suffices to note that there
is no point in listing 2-paths with endpoints of degree one (leaves), as these 2-paths can’t be
extended to 4-cycles.

To extend this intuition, perhaps one could try to split the nodes into low-degree and
high-degree groups, denoted by L and H, respectively, and consider different types of 2-paths
with respect to this partitioning. The advantage of such partitioning is that we can narrow
our attention to specific types of 2-paths that are more challenging for listing (i.e., types
of 2-paths that could be too expensive to list). For instance, one can immediately spot
two types of 2-paths that can be listed efficiently: 2-paths with a low-degree node at the
center, and 2-paths that use only high-degree nodes. Indeed, to list all the 2-paths with a
low-degree node at the center, we can go over all the edges e incident to a low-degree node,
and list the corresponding 2-paths with a low-degree node at the center that e is part of.
This takes O(m∆) time, where ∆ is the degree threshold. To list all the 2-paths that use
only high-degree nodes H, we can use the O(|H|2 + t) = O((m/∆)2 + t)-time algorithm from
Observation 3. By picking ∆ = m1/3, listing these two types of 2-paths takes O(m4/3 + t)
time (as shown in Lemma 8). Furthermore, listing these two types of 2-paths suffices for
listing all types of 4-cycles, except the 4-cycles that use two overlapping 2-paths of the form
LHH (2-paths with a high degree node at the center, one low degree endpoint, and one high
degree endpoint). That is, these 4-cycles are of the form LHHL. To list these 4-cycles, we
need to find a way to list 2-paths of the form LHH.

Unfortunately, we can’t afford listing all 2-paths of the form LHH. For instance, take
a graph where there is a node u that is connected to Θ(n) leaves (low degree nodes) and
to Θ(n2/3−ε) high-degree nodes, where each of these high-degree nodes is connected to
Θ(n1/3+ε) leaves. In this example, we have m = O(n) edges, m5/3−ε ≫ m4/3 2-paths of the
form LHH (the ones that go through u), but no 4-cycles.

To overcome such examples, recall that the only remaining type of 4-cycles that we need
to list are the ones of the form LHHL. Since we know how to list 2-paths of the form HLL

(2-paths with a low-degree node at the center) efficiently, it suffices to list only one of the
two LHH 2-paths that such a 4-cycle consists of. Hence, for the 4-cycles of the form LHHL,
one could wonder: is there a property that one of the two overlapping LHH paths (that the
4-cycle consists of) must have, that would make it easier to list such 4-cycles?

Indeed, given a 4-cycle of the form LHHL, consider the two middle high-degree nodes.
One of them must have a degree greater or equal to the other. Therefore, it suffices to list
2-paths of the form LHH, where the degree of the middle node is at most the degree of
the third node (the high-degree endpoint). We refer to such 2-paths as L → H → H (the
orientation from a node u to a node v here means that u’s degree is at most v’s). The question
that remains is: can we afford to list all 2-paths of the form L → H → H? Interestingly,
we answer this question affirmatively. Roughly speaking, we show that there can’t be too
many L → H → H paths compared to 4-cycles, unless the number of such 2-paths was small
enough for our purposes. Hence, we use a charging argument that allows us to list all such
2-paths.

For instance, going back to the graph construction we discussed with m5/3−ε LHH

2-paths and no 4-cycles, it contains only O(m) L → H → H 2-paths.

A road-map for the technical parts. First, in Section 2.3, we prove a helpful theorem
that shows that there can’t be too many 2-paths of the form L → H → H compared to
4-cycles. We refer to this theorem as the L → H → H theorem. Then, in Section 2.4, we put
everything together and prove our main result - an Õ(m4/3 + t)-time algorithm for 4-cycle
listing.

FSTTCS 2023

25:6 Listing 4-Cycles

2.3 The L → H → H Theorem
In this section, we prove the following theorem that connects the number of 4-cycles in a
graph to the number of 2-paths of a certain type. The degree of a node v is denoted by
deg(v).

▶ Theorem 4. Given an undirected graph G = (V, E) with m edges, let H be the set of
nodes with degree larger than m1/3, and L = V \ H. Orient all the edges {u, v} ∈ E from
u to v if deg(u) ≤ deg(v) (break ties arbitrarily). Let P be the number of directed 2-paths
of the form L → H → H in G. It holds that if P > 100m4/3 log2 m, then there are at least
P/(100 log2 m) 4-cycles in G.

In order to prove Theorem 4, we use two helper lemmas. In Lemma 5, we show that the
number of 4-cycles is Ω(d4 − n2), where d is the average degree. In Lemma 6, we provide a
view of the graph that has some nice properties. In particular, this view is a partitioning of
the graph that has a useful regularity property, while the number of L → H → H 2-paths is
preserved. The proof of Theorem 4 is provided after the proof of Lemma 6.

▶ Lemma 5. Any graph with n nodes and average degree d has Ω(d4 − n2) 4-cycles.

Proof. Let G = (V, E) be a graph with n nodes and average degree d. Let A be the adjacency
matrix of G. Denote by λ1 ≥ λ2 ≥ · · · ≥ λn the n eigenvalues of A. The top eigenvalue λ1
of A is at least d. This is because:

λ1 = max
vT v=1

vT Av

Now, consider u = (1/
√

n, . . . , 1/
√

n). Clearly, it holds that uT u = 1. On the other hand,
we have that:

uT Au =
∑
w∈V

1
n

deg(w) = 2|E(G)|/n = d

The number of closed 4-walks in G is at least d4. This is because this number is exactly
the trace of A4 and

tr(A4) =
n∑

i=1
λ4

i ≥ λ4
1 ≥ d4

Let T be the number of 4-cycles. To finish the proof, we show that the number of closed
4-walks is at most

3T + 2n2 (1)

This would imply that T ≥ (d4 − 2n2)/3 which would imply that T = Ω(d4 − n2). To
prove Equation 1, notice that the distinct types of closed 4-walks are exactly 4-cycles, 2-paths
and edges. There are T 4-cycles and at most n2 edges. By Observation 2, the number of
2-paths is bounded by n2 + 2T . ◀

▶ Lemma 6. Given a graph G = (V, E) with m edges, let H be the set of nodes with degree
larger than m1/3, and L = V \ H. Orient all the edges {u, v} from u to v if deg(u) ≤ deg(v)
(break ties arbitrarily). Let P be the number of directed 2-paths of the form L → H → H.
There is a partition of a subset of H into two parts H1 and H2 (i.e. H1 ∩ H2 = ∅ and
H1 ∪ H2 ⊆ H), such that:

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:7

1. The number of directed 2-paths of the form L → H1 → H2 is at least P/(4 log2 n).
2. Each node in H1 has the same number of incoming edges from L up to a multiplicative

2-factor.
3. Each node in H1 has the same number of outgoing edges to H2 up to a multiplicative

2-factor.
4. Each node in H2 has at least one incoming edge from H1.

Proof. We start by describing a simpler partitioning. This simpler partitioning splits the set
of high-degree nodes H into two sets H ′

1 and H ′
2 such that the number of 2-paths of the form

L → H ′
1 → H ′

2 is at least P/4. Such a partitioning exists by the probabilistic method: Each
node in H joins H ′

1 with probability 1/2 independently and otherwise it joins H ′
2. Thus, the

probability that a 2-path u → v → w of the form L → H → H survives in L → H ′
1 → H ′

2 is
Pr(u ∈ H ′

1 ∧ v ∈ H ′
2) = 1/4. Hence, in expectation, we get P/4 such paths in L → H ′

1 → H ′
2.

Next, for any node u ∈ H ′
1, let degleft(u) be the number of incoming edges from L.

Similarly, let degright(u) be the number of outgoing edges to H ′
2. Let Bij = {u ∈ H ′

1 :
degleft(u) ∈ [2i, 2i+1] ∧ degright(u) ∈ [2j , 2j+1]}. It holds that the number of 2-paths of the
form L → H ′

1 → H ′
2 is

P/4 =
∑

u∈H′
1

degleft(u) · degright(u) =
∑

i,j∈[log n]

∑
u∈Bij

degleft(u) · degright(u)

Hence, there are i′, j′ ∈ [log n] such that∑
u∈Bi′j′

degleft(u) · degright(u) ≥ P/(4 log2 n),

which implies that there are at least P/(4 log2 n) L → H ′
1 → H ′

2 2-paths that go through
Bi′j′ . Let H1 := Bi′j′ and define H2 to be all the vertices in H ′

2 with at least one incoming
edge from H1. The sets L, H1, and H2 satisfy the desired properties. ◀

Now we are ready to prove Theorem 4.

Proof of Theorem 4. First, take the partitioning from Lemma 6. We know that the number
of 2-paths of the form L → H1 → H2 is P ′ ≥ P/(4 log2 m) ≥ 25m4/3. Recall that each node
in H1 has the same in-degree from L up to a multiplicative 2-factor. Denote by dleft the
minimum over these degrees. Similarly, each node in H1 has the same out-degree to H2 (up
to a multiplicative 2-factor). Denote the minimum over these degrees by dright. Furthermore,
each node in H2 has at least one incoming neighbor from H1.

We show that the number of 4-cycles is Ω(P ′). For this, let d0 be the average degree of
the subgraph of G induced by the nodes in H1 ∪ H2. Since we have at most 2m2/3 nodes in
H1 ∪ H2, it suffices to show, by Lemma 5, that d4

0 = Ω(P ′).
For this, we split the proof into two cases:

Case 1: |H1| > |H2|. Observe that in this case, d0 > dright/2. Hence, it suffices to show
that d4

right = Ω(P ′). For this, recall that P ′ ≤ 4|H1| · dleft · dright (where the 4 factor is
coming from the two 2 factors for dleft and dright), and assume towards a contradiction
that (dright)4 < P ′, which implies (by substituting dright with P ′/(4|H1| · dleft)) that
(P ′)3 < (4|H1| · dleft)4. Therefore, we get that P ′ < 16m4/3 (as |H1| · dleft ≤ m), which
is a contradiction.

FSTTCS 2023

25:8 Listing 4-Cycles

Case 2: |H1| ≤ |H2|. In this case, we have that d0 > dright · |H1|/(2|H2|). Hence, it
suffices to show that (dright|H1|/2|H2|)4 > P ′. Assume towards a contradiction that
(dright|H1|/2|H2|)4 ≤ P ′. By substituting dright with P ′/(4dleft · |H1|), this implies that
(P ′)3 < (8dleft · |H2|)4. Now we want to argue that dleft · |H2| is at most m to get a
contradiction to P ′ ≥ 25m4/3. For this, recall that each node in H2 has at least one
incoming edge from H1, which implies that the degree (in G) of each node in H2 is at
least dleft. Hence, we have that m ≥

∑
u∈H2

deg(u) ≥
∑

u∈H2
dleft = |H2| · dleft, as

desired. ◀

2.4 Listing 4-Cycles
In this section, we prove the following theorem.

▶ Theorem 7. Listing all the 4-cycles in an undirected graph G = (V, E) can be done in
O(m4/3 log2 m + t log2 m) time, where m is the number of edges and t is the number of
4-cycles.

The proof of Theorem 7 is based on listing several types of 2-paths efficiently. Lemma 8
shows that we can list each of these types of 2-paths efficiently.

▶ Lemma 8. Given a graph G = (V, E) with m edges and t 4-cycles. Let H be the set of
nodes with degrees larger than m1/3 and L = V \ H.
1. Listing all the 2-paths with nodes only from H can be done in O(m4/3 + t) time.
2. Listing all the 2-paths with a node from L at the center can be done in O(m4/3) time.
3. Orient all the edges {u, v} from u to v if deg(u) ≤ deg(v) (break ties arbitrarily). Listing

all the directed 2-paths of the form L → H → H can be done in O(m4/3 log2 m + t log2 m)
time.

Proof.
1. Let G′ be the subgraph of G induced by H. Denote by n′ the number of nodes in G′ and

by t′ the number of 4-cycles in G′. Observe that n′ ≤ 2m2/3 and t′ ≤ t. By using an
argument similar to the one used in Observation 3, we can list all the 2-paths in G′ in
time O(n′2 + t′) = O(m 4

3 + t).
2. Scan all the edges in G and for those with at least one endpoint in L scan all the neighbors

of the endpoints in L. This procedure finds all the 2-paths with a node from L in the
middle. Each node in L has at most m1/3 neighbors. Therefore, the running time of this
procedure is O(m 4

3).
3. We can list all the L → H → H 2-paths in time that is linear in their number and the

number of edges. This can be done by going over all the nodes u ∈ L, and then going
over the neighbors v ∈ H of u, and then going over all neighbors of v with higher degree
than v. This can be done in time that is linear in the number of edges and the number of
L → H → H 2-paths. This is because we can prepare a set of higher degree nodes in H

for all the nodes u ∈ V , via a simple O(m)-time preprocessing step, where we go over
all the edges (with at least one endpoint in H), detect for each edge the higher degree
endpoint, and store it. Therefore, the running time of the algorithm is O(m + P) where
P is the number of directed L → H → H 2-paths. Since by Theorem 4 we have that
P = O(m4/3 log2 n + t log2 n), the claim follows. ◀

Proof of Theorem 7. We consider all the different types of 4-cycles (in terms of low-high
degree nodes) and show that we can list all of them in the desired running time.

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:9

Type 1: 4-cycles that use only high-degree nodes. This class of 4-cycles can be decom-
posed into two 2-paths of all high-degree nodes. These 2-paths can be listed in O(m4/3 +t)
time as shown in Lemma 8.

Type 2: 4-cycles with two non-adjacent low-degree nodes. This class of 4-cycles can be
decomposed into two 2-paths with a low-degree node at the center. Theses 2-paths can
be listed in O(m4/3) time as shown in Lemma 8.

Type 3: 4-cycles with three high-degree nodes and one low-degree node. This class can
be decomposed into a 2-path of all high-degree nodes and a 2-path with a low-degree
node at the center. Using Lemma 8 these 2-paths can be listed in O(m4/3 + t) time.

Type 4: 4-cycles with two adjacent low-degree nodes and two adjacent high-degree nodes.
These 4-cycles can be decomposed into a directed L → H → H 2-path and an LLH

2-path. Using Lemma 8 we can list all these 2-paths in O(m4/3 log2 n + t · log2 n) time.
To sum up, we showed how to list all the different types of 4-cycles in O(m4/3 log2 n+t · log2 n)
time, as desired. ◀

Figure 1 The types of 4-cycles. A 4-cycle of the fourth type always consists of an L → H → H

directed 2-path and a 2-path with a low-degree node at the center.

3 Hardness Results

In this section, we give a set of hardness results that more or less follow from folklore
reductions (e.g. similar to the hardness reductions for general cyclic queries in databases [5]).

3.1 Lower Bound for 4-Cycle Listing from 4-Cycle Detection
In this section we give a general argument showing that listing cannot be solved faster than
the “detection plus t” bound. We will prove it specifically for 4-cycle but the proof is more
general.

▶ Observation 9. If 4-cycle listing can be solved in time O(T (n, m)+ t) when t is the number
of 4-cycles in the graph, then 4-cycle detection can be solved in time O(T (n, m)).

Proof. We will show a fine-grained reduction from 4-cycle detection to 4-cycle listing. Given
a graph G, run the 4-cycle listing algorithm on G. If the algorithm terminates in O(T)
time then if the algorithm outputs at least one 4-cycle then we also detected a 4-cycle and
otherwise, there isn’t a 4-cycle in G. If the algorithm takes more than cT time for large
enough constant c, then we know that there are at least T 4-cycles in G. Therefore we
detected a 4-cycle. In conclusion, we have an O(T) time algorithm for 4-cycle detection as
we wanted. ◀

Note that even an o(min(n2, m4/3)) time algorithm for 4-cycle is not known [42, 16], so
our listing upper bound is tight up to the polylog factor.

FSTTCS 2023

25:10 Listing 4-Cycles

3.2 Hardness of All-Pairs 4-Cycle
In this section, we define a new natural problem which we call all-pairs 4-cycle. We show an
algorithm for this problem and a conditional lower-bound from triangle-finding.

▶ Definition 10 (all-pairs 4-cycle). Given an undirected graph G, all-pairs 4-cycle is the
problem of deciding for each pair of distinct vertices u, v ∈ V (G) whether there is a 4-cycle
(u, x, v, y) in G (for x, y ∈ V (G)).

Note that if 4-cycle listing is in time O(T) then all-pairs 4-cycle is also in time O(T), as
there is a trivial reduction from all-pairs 4-cycle to 4-cycle listing. But, we will see that this
problem cannot be solved in nω−ε time as long as triangle detection cannot be solved in
nω−ε time.

▷ Claim 11. There is an algorithm for all-pairs 4-cycle in O(nω)-time. In addition, if there
is an O(n2+ε) time algorithm for all-pairs 4-cycle then there is an O(n2+ε) time algorithm
for triangle detection.

Proof. The all-pairs 4-cycle problem can be solved in O(nω) time by simply computing A2

where A is the adjacency matrix of G and checking for any pair u, v whether A2[u, v] ≥ 2.
Assume there is an O(n2+δ) time algorithm (for δ ≥ 0) for all-pairs 4-cycle. We will show

that we can solve triangle detection in O(n2+δ) time. Let G be an n-node graph. We define
G∗ as an extension of G by adding a new vertex x and connecting it to all the vertices in G.
If there is a 4-cycle (u, t, v, w) in G∗, and uv ∈ E(G) then u, v participate in a triangle in G

(because at most one of the vertices t, w can be x). For the other direction, if u, v participate
in a triangle (u, t, v) then after adding x they must participate in a 4-cycle (u, t, v, x) and
uv ∈ E(G). Therefore, we can solve triangle detection by running all-pairs 4-cycle on G∗,
and check if there is a pair of distinct vertices u, v ∈ V (G) such that all-pairs 4-cycle returned
“yes” on them and u, v ∈ E(G). The time required is O(n2+δ + n2) = O(n2+δ). ◁

3.3 4-Cycle Counting is Triangle Counting Hard
We now present a folklore reduction from triangle counting to 4-cycle counting.

▶ Observation 12. There is a fine-grained reduction from triangle counting to 4-cycle
counting. The reduction time is quadratic in n and linear in n + m.

Proof. We will show a reduction from triangle counting to 4-cycle counting. Let G = (V, E)
be a graph and our goal is to count the triangles in G. We construct a new graph G′ by
duplicating the vertices of G three times into three parts, and connecting by an edge a pair of
vertices from distinct parts if they are a duplication of adjacent vertices in G. More formally,
G′ = (VA ∪ VB ∪ VC , E′) where VA = {vA : v ∈ V }, VB = {vB : v ∈ V }, VC = {vC : v ∈ V }
and E′ = {uAvB : uv ∈ E} ∪ {uBvC : uv ∈ E} ∪ {uCvA : uv ∈ E}. Clearly, every triangle
(u, v, w) in G has exactly six matching triangles in G′.

Let G′′ be the graph formed from G′ by duplicating VA and put edges between a vertex in
VA to its duplication. That is, G′′ = (VA∪VA′ ∪VB ∪VC , E′′) such that VA′ = {vA′ : vA ∈ VA}
is a duplication of vA, and the set of edges E′′ is defined as follows: E′′ = {vAvA′ : vA ∈
A} ∪ (E′ ∩ VA × VC) ∪ (E′ ∩ VB × VC) ∪ {uA′vB : uAvB ∈ E′}. Notice that any triangle in
G′ becomes a 4-cycle in G′′. But, there may be 4-cycles in G′′ that are not corresponding
to triangles in G′. However, these 4-cycles can’t include edges in {vAvA′ : vA ∈ A}. Let G∗

be G′′ after removing the edges in {vAvA′ : vA ∈ A}. The 4-cycles in G∗ are exactly the

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:11

4-cycles in G′′ that are not corresponding to triangles in G′. So, by counting the number
of 4-cycles in G′′ and subtracting the number of 4-cycles in G∗ we get the exact number
of triangles in G′. Since there are six triangles in G′ for each triangle in G, we can get the
number of triangles in G.

The running time of the reduction is O(n + m) = O(n2) for constructing the graphs G′,
G′′ and G∗. ◀

▶ Corollary 13. An O(min(nω−ε, m
2ω

ω+1 −ε))-time algorithm for 4-cycle counting (for some
ε > 0) would imply an O(min(nω−ε, m

2ω
ω+1 −ε))-time algorithm for triangle counting.

3.4 Hardness of Directed 4-Cycle Listing from Triangle Listing

With a similar reduction to the previous one, we can show the hardness of 4-cycle listing in
directed graphs via a reduction from triangle listing.

▶ Definition 14 (directed 4-cycle listing). Given a directed graph G, directed 4-cycle listing is
the problem of listing all the directed 4-cycles in G.

▷ Claim 15. If directed 4-cycle listing is in time O(T (n, m) + t) then triangle listing is also
in time O(T (n, m) + t).

Proof. Given a triangle listing instance G we create a graph G′′ as in the previous proof.
Now, we create a directed graph G′′′ from G′′ by directing all the edges as follows: VA →
VA′ → VB → VC → VA. Thus, any directed 4-cycle in this new graph corresponds to a
triangle in G′, and recall that any triangle in G becomes six triangles in G′. Therefore, the
number of 4-cycles in G′′′ and the number of triangles in G have a one-to-six correspondence,
and so any directed 4-cycle listing algorithm can be used to list triangles with an additional
factor six overhead in t. ◁

Figure 2 Overview of the reductions in Section 3.

FSTTCS 2023

25:12 Listing 4-Cycles

4 Open Problems

We conclude with two open problems that we find interesting.

4.1 Generalization for Larger Even Cycles
A natural follow-up question for our work is, how hard is it to list all the cycles of length 2k

for constant k > 2?
Yuster and Zwick developed an algorithm for 2k-cycle detection in time O(n2) [42]. Later

on, Dahlgaard et al. showed an algorithm in time O(m
2k

k+1) [16]. It is natural to ask whether
can we generalize our 4-cycle listing algorithm to an algorithm for 2k-cycle listing for any
k ≥ 2 in the same time as 2k-cycle detection plus the number of cycles.

▶ Open Question 16. Can 2k-cycle listing be solved in time O(n2 + t) where n is the number
of vertices and t is the number of 2k-cycles in G?

▶ Open Question 17. Can 2k-cycle listing be solved in time O(m
2k

k+1 + t) where m is the
number of edges and t is the number of 2k-cycles in G?

The O(n2 + t)-algorithm for 4-cycle listing is pretty simple: just list all the 2-paths and
construct 4-cycles from the 2-paths. The key observation of the analysis is that any new
2-path we found after n2 2-paths were already found must form at least one more 4-cycle.

A naive candidate for an algorithm for 2k-cycle listing in O(n2 + t) is to list all the
k-paths and construct all the 2k-cycles from them by looking for pairs of k-paths between a
certain pair of vertices. But notice that there is a problem. In the 4-cycle case, any pair of
2-paths between a certain pair of vertices form a 4-cycle. However, this is not the case in the
general 2k-cycle case. For example, a pair of 3-paths between a certain pair of vertices may
collide in the middle and thus form a 4-cycle with an additional edge instead of a 6-cycle.
Therefore, there can be too many 3-paths but not enough 6-cycles.

For regular graphs, this simple algorithm achieves O(n2 + t) time. The analysis is simple:
The number of k-paths is at most ndk. If d = O(n1/k) this number is at most O(n2).
Otherwise, the graph is “supersaturated” and the number of 2k-cycles is t = Ω(d2k) [25, 33]
and t > ndk (otherwise d = O(n1/k)). Therefore, in this case, the number of k-paths is at
most O(t). Hence, we can always bound the number of k-paths by O(n2 + t) and bound the
running time of the algorithm by O(n2 + t).

To show that this simple algorithm doesn’t work for general graphs we show the following
example. Consider the following 4-layered graph G = (A ∪ B ∪ {u} ∪ D, E), such that
A = B = D = Θ(n), which is defined as follows. A ∪ B is a bipartite regular graph with
degree n1/3−ε and n2−6ε 6-cycles. This graph exists by a probabilistic argument. Consider a
random bipartite graph such that each edge exists with probability n−2/3−ε. In expectation,
each vertex has a degree of n1/3−ε and the number of 6-cycles is n2−6ε. Every vertex in B is
connected to u and every vertex in D is connected to u (i.e. B ∪ {u} and {u} ∪ D are full
bipartite graphs). The example is illustrated in Figure 3.

The number of 3-paths in this graph is at least n2+1/3−ε while the number of 6-cycles is
at most n2−6ε + n · n4·(1

3 −ε) = O(n2+1/3−4ε). This is because there are n2−6ε 6-cycles in the
bipartite graph A ∪ B, and every 4-path in A ∪ B that starts in B generates a 6-cycle with u

and there are at most n · n4·(1
3 −ε) such 4-paths. Notice that there are no other 6-cycles. To

conclude, the number of 3-paths is at least n2+1/3−ε and it is asymptotically bigger than
n2 + t where the number of 6-cycles is t = O(n2+1/3−4ε). Therefore the running time of the
algorithm we suggested is lower bounded by n2+1/3−o(1) + Ω(t).

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:13

Figure 3 An example of a graph with O(n2+1/3−ε) 3-paths but O(n2+1/3−4ε) 6-cycles. The
example shows that 6-cycle listing by listing 3-paths must take n2+1/3−o(1) + Ω(t) time.

4.2 4-Cycles vs. Triangles: Which is Harder?
As we already mentioned, triangles and 4-cycles are the smallest patterns that are not trivial
to find. As such, it is natural to ask which of these patterns are harder to detect. 4-cycle
detection can be solved in O(min(n2, m

4
3)) time while triangle detection can be solved in

O(min(nω, m
2ω

ω+1)) time, which is higher as long as ω > 2. This supports the intuition that
triangle detection is harder, but this is not formally known. In order to show hardness
formally, we have to show a reduction.

▶ Open Question 18. Is there a (fine-grained) reduction from 4-cycle to triangle? Concretely,
would an O(m4/3−ε) algorithm for triangle detection (for some ε > 0) imply an O(m4/3−δ)
algorithm for 4-cycle detection (for some δ = δ(ε) > 0)?

Even a weak reduction is not known: Suppose that triangle detection is in O(m) time.
Does it imply an o(m4/3) algorithm for 4-cycle detection?

In an attempt to develop such a reduction we encountered the following barrier: If such
a reduction would preserve the number of occurrences (i.e. the number of triangles in the
input graph is the same as the number of 4-cycles in the graph generated by the reduction),
then this reduction works also for other variations of problems such as listing and counting.

In this paper, we showed that 4-cycle listing is indeed easier than triangle listing (assuming
3-SUM conjecture). But there is still a gap in the counting problems. The state of the art
running time for triangle counting is O(min(nω, m

2ω
ω+1)) [4] while the best known running

time for 4-cycle counting is O(min(nω, m
4ω−1
2ω+1)) [43, 40]. Under the assumption ω = 2 the

running times in the sparse cases are O(m4/3) and O(m7/5) correspondingly. This means
that at least in sparse graphs, 4-cycle counting actually seems harder than triangle counting.

▶ Open Question 19. Is there an algorithm for 4-cycle counting in time O(m
2ω

ω+1)? Or
alternatively, can we show a hardness result for 4-cycle counting?

References
1 Amir Abboud, Karl Bringmann, and Nick Fischer. Stronger 3-sum lower bounds for

approximate distance oracles via additive combinatorics. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 391–404. ACM, 2023.
doi:10.1145/3564246.3585240.

FSTTCS 2023

https://doi.org/10.1145/3564246.3585240

25:14 Listing 4-Cycles

2 Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation
in p via short cycle removal: cycle detection, distance oracles, and beyond. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1487–1500. ACM, 2022.
doi:10.1145/3519935.3520066.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

5 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In International Workshop on Computer Science Logic, pages
208–222. Springer, 2007.

6 R. Bar-Yehuda and S. Even. On approximating a vertex cover for planar graphs. In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82, pages 303–309,
New York, NY, USA, 1982. Association for Computing Machinery. doi:10.1145/800070.
802205.

7 Jonathan Berry, Bruce Hendrickson, Randall LaViolette, and Cynthia Phillips. Tolerating
the community detection resolution limit with edge weighting. Physical review. E, Statistical,
nonlinear, and soft matter physics, 83:056119, May 2011. doi:10.1103/PhysRevE.83.056119.

8 Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti, Romeo Rizzi,
and Gustavo Sacomoto. Optimal listing of cycles and st-paths in undirected graphs. In
Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages
1884–1896. SIAM, 2013.

9 Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
triangles. In International Colloquium on Automata, Languages, and Programming, pages
223–234. Springer, 2014.

10 Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions of conjunctive
queries. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 134–148, 2019.

11 Nofar Carmeli and Markus Kröll. Enumeration complexity of conjunctive queries with
functional dependencies. Theory of Computing Systems, 64(5):828–860, 2020.

12 Nofar Carmeli and Luc Segoufin. Conjunctive queries with self-joins, towards a fine-grained
enumeration complexity analysis. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 277–289, 2023.

13 Keren Censor-Hillel. Distributed subgraph finding: progress and challenges. arXiv preprint,
2022. arXiv:2203.06597.

14 Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. Distributed triangle detection via expander
decomposition. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 821–840. SIAM, 2019.

15 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing, 14(1):210–223, 1985. doi:10.1137/0214017.

16 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Finding even cycles faster
via capped k-walks. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 112–120, 2017.

17 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing, 2022. doi:10.48550/arXiv.2210.10173.

18 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Transactions on Computational Logic (TOCL),
8(4):21–es, 2007.

19 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theoretical Computer Science, 326(1-3):57–67, 2004.

https://doi.org/10.1145/3519935.3520066
https://doi.org/10.1145/800070.802205
https://doi.org/10.1145/800070.802205
https://doi.org/10.1103/PhysRevE.83.056119
https://arxiv.org/abs/2203.06597
https://doi.org/10.1137/0214017
https://doi.org/10.48550/arXiv.2210.10173

A. Abboud, S. Khoury, O. Leibowitz, and R. Safier 25:15

20 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Constant delay algorithms for regular document spanners. In Proceedings of the 37th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 165–177,
2018.

21 Brooke Foucault Welles, Anne Van Devender, and Noshir Contractor. Is a friend a friend?
investigating the structure of friendship networks in virtual worlds. In CHI ’10 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’10, pages 4027–4032, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1753846.1754097.

22 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 1–10, 1977.

23 Rajesh Jayaram and John Kallaugher. An optimal algorithm for triangle counting in the
stream. arXiv preprint, 2021. arXiv:2105.01785.

24 Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle
counting using the birthday paradox. In Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani,
Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy
Uthurusamy, editors, The 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 589–597.
ACM, 2013. doi:10.1145/2487575.2487678.

25 Tao Jiang and Liana Yepremyan. Supersaturation of even linear cycles in linear hyper-
graphs. Combinatorics, Probability and Computing, 29(5):698–721, 2020. doi:10.1017/
S0963548320000206.

26 Ce Jin and Yinzhan Xu. Removing additive structure in 3sum-based reductions. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 405–418.
ACM, 2023. doi:10.1145/3564246.3585157.

27 Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on
Computing, 4(1):77–84, 1975.

28 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Information Processing Letters, 74(3-4):115–121, 2000.

29 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In SODA, 2016.

30 François Le Gall. Improved quantum algorithm for triangle finding via combinatorial arguments.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 216–225.
IEEE, 2014.

31 Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the triangle
problem. SIAM Journal on Computing, 37(2):413–424, 2007.

32 Dániel Marx and Michał Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). arXiv preprint,
2013. arXiv:1307.2187.

33 Robert Morris and David Saxton. The number of c2ℓ-free graphs. Advances in Mathematics,
298:534–580, 2016. doi:10.1016/j.aim.2016.05.001.

34 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

35 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of
the forty-second ACM symposium on Theory of computing, pages 603–610, 2010.

36 Dana Richards and Arthur L. Liestman. Finding cycles of a given length. In B.R. Alspach
and C.D. Godsil, editors, Annals of Discrete Mathematics (27): Cycles in Graphs, volume 115
of North-Holland Mathematics Studies, pages 249–255. North-Holland, 1985. doi:10.1016/
S0304-0208(08)73019-6.

37 Luc Segoufin. Constant delay enumeration for conjunctive queries. ACM SIGMOD Record,
44(1):10–17, 2015.

FSTTCS 2023

https://doi.org/10.1145/1753846.1754097
https://arxiv.org/abs/2105.01785
https://doi.org/10.1145/2487575.2487678
https://doi.org/10.1017/S0963548320000206
https://doi.org/10.1017/S0963548320000206
https://doi.org/10.1145/3564246.3585157
https://arxiv.org/abs/1307.2187
https://doi.org/10.1016/j.aim.2016.05.001
https://doi.org/10.1016/S0304-0208(08)73019-6
https://doi.org/10.1016/S0304-0208(08)73019-6

25:16 Listing 4-Cycles

38 Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for
generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505–517,
1977. doi:10.1137/0206036.

39 Virginia Vassilevska Williams, Joshua R Wang, Ryan Williams, and Huacheng Yu. Finding
four-node subgraphs in triangle time. In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on discrete algorithms, pages 1671–1680. SIAM, 2014.

40 Virginia Vassilevska Williams, Joshua R. Wang, Ryan Williams, and Huacheng Yu. Finding
four-node subgraphs in triangle time. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’15, pages 1671–1680, USA, 2015. Society for
Industrial and Applied Mathematics.

41 Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle listing
and apsp. 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 786–797, 2020.

42 Raphael Yuster and Uri Zwick. Finding even cycles even faster. SIAM Journal on Discrete
Mathematics, 10(2):209–222, 1997.

43 Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming. In SODA, volume 4, pages 254–260, 2004.

https://doi.org/10.1137/0206036

	1 Introduction
	1.1 Outline of the Paper

	2 Upper Bounds for 4-Cycle Listing
	2.1 Warm-up: An O(n2+t)-time Algorithm
	2.2 An O (m4/3+t)-time Algorithm
	2.3 The L->H->H Theorem
	2.4 Listing 4-Cycles

	3 Hardness Results
	3.1 Lower Bound for 4-Cycle Listing from 4-Cycle Detection
	3.2 Hardness of All-Pairs 4-Cycle
	3.3 4-Cycle Counting is Triangle Counting Hard
	3.4 Hardness of Directed 4-Cycle Listing from Triangle Listing

	4 Open Problems
	4.1 Generalization for Larger Even Cycles
	4.2 4-Cycles vs. Triangles: Which is Harder?

