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Abstract
Many derandomization results for probabilistic decision processes have been ported to the setting of
Arthur-Merlin protocols. Whereas the ultimate goal in the first setting consists of efficient simulations
on deterministic machines (BPP vs. P problem), in the second setting it is efficient simulations on
nondeterministic machines (AM vs. NP problem). Two notable exceptions that have not yet been
ported from the first to the second setting are the equivalence between whitebox derandomization
and leakage resilience (Liu and Pass, 2023), and the equivalence between whitebox derandomization
and targeted pseudorandom generators (Goldreich, 2011). We develop both equivalences for mild
derandomizations of Arthur-Merlin protocols, i.e., simulations on Σ2-machines. Our techniques also
apply to natural simulation models that are intermediate between nondeterministic machines and
Σ2-machines.
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1 Introduction

Understanding whether bounded-error probabilistic algorithms can be simulated determinist-
ically with a polynomial overhead in time (the BPP versus P problem) is a central problem
in the theory of computing. An analogous question in relation to interactive protocols
is whether constant-round interactive protocols (commonly referred to as Arthur-Merlin
protocols), can be simulated nondeterministically with a polynomial overhead in time (the
AM versus NP problem). An influential line of research on hardness vs. randomness tradeoffs
concludes derandomization from lower bounds, and in some cases equivalences are known.
As the lower bounds are plausible, it is conjectured that BPP = P and AM = NP. Still, even
mild derandomizations that require more nondeterminism than what is conjectured (such
as BPP ⊆ NP and AM ⊆ Σ2P = NPNP) remain open. We first describe the situation for the
BPP setting and then move on to the AM setting, which is the focus of this work.

BPP setting. The first hardness vs. randomness tradeoffs for BPP were in the blackbox
setting, where a pseudorandom generator (PRG) obliviously constructs a small set of strings
that “fools” every efficient probabilistic algorithm in the sense that the algorithm behaves
approximately the same under the uniform distribution and the generator’s distribution. To
construct pseudorandom generators, early works relied on non-uniform hardness assumptions
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such as linear-exponential circuit lower-bounds for E = DTIME[2O(n)] (which suffices to
conclude BPP = P) [12]. The preceding parameter setting is known as the high end of the
derandomization spectrum. At the low end of the spectrum, subexponential-time blackbox
simulations for BPP follow from E ̸⊆ P/poly, i.e., polynomial-size circuit lower bounds for
linear-exponential time [3]. Pseudorandom generators are in fact equivalent to non-uniform
lower bounds, and the equivalence holds across the entire derandomization spectrum [22].

The discussion presents an equivalence between blackbox derandomization and non-uniform
lower bounds. It leaves the question of whether general (whitebox) derandomization implies
non-uniform lower bounds. Given the equivalence between such lower bounds and PRGs,
another way to phrase the question is whether PRGs are “complete” for derandomization: If
derandomization is possible, then is it possible through PRGs?

Goldreich [8, 9] showed that whitebox derandomization of prBPP (the promise-problem
version of BPP) is equivalent to the existence of targeted pseudorandom generators, which
are pseudorandom generators that receive as input a target composed of an algorithm A

and an input x, and are only required to “fool” A on input x. The equivalence establishes
a “normal form” for derandomizing prBPP. In principle, a deterministic simulation Adet
of a probabilistic algorithm A can access A in other ways than by running A on the given
input x and some random bit strings ρ. Goldreich’s result, however, establishes that if
derandomization is possible, i.e., prBPP ⊆ P, then we can always take Adet to be the
algorithm that, on input x, computes a targeted pseudorandom set SA,x and outputs the
majority answer obtained by simulating A on input x while replacing its random inputs by
each element in SA,x.

Recently, Chen and Tell [5] proposed a candidate hardness assumption that is equivalent
to whitebox derandomization of prBPP: uniform lower bounds for multi-bit functions f

(rather than usual decision problems) against probabilistic algorithms that hold on almost-all
inputs, i.e., any probabilistic algorithm limited to a certain running time can only compute
f correctly on a finite number of inputs. Chen and Tell show that if there exists a length-
preserving function f computable by logspace-uniform circuits of polynomial size and depth
nb for some constant b that is hard on almost-all inputs against prBPTIME[nb+O(1)], then
prBPP ⊆ P. They also observe that prBPP ⊆ P implies that for every constant c, there is
a length-preserving function f ∈ P that is hard on almost-all inputs against prBPTIME[nc].
Modulo the uniform depth requirement, their result establishes a near-equivalence between
hardness on almost-all inputs and derandomization. The approach scales fairly well to the
rest of the spectrum, but not perfectly. In particular, the low end remains open.

Under a different hardness assumption, Liu and Pass managed to obtain full equivalences
for derandomization of prBPP and hardness on almost-all inputs. The hardness assumption
that they employ is the existence of computational problems (relations R ⊆ {0, 1}∗ × {0, 1}∗)
that are hard even in the presence of efficiently-computable leakage [15]. We define a version
of the notion in the setting of hardness on almost-all inputs.

▶ Definition 1 (Leakage-resilient hardness). A relation R is (T, ℓ)-leakage-resilient hard on
almost-all inputs against a class of algorithms if for all pairs (Leak, A) of algorithms in the
class that run in time T and such that |Leak(x, y)| ≤ ℓ(|x|), the following holds for almost-all
inputs x and every y ∈ R(x) = {y | (x, y) ∈ R}: The probability that A(x, Leak(x, y)) = y is
at most 1/3.

In cryptographic terms, the algorithm A can be viewed as an attacker that attempts to
compute y ∈ R(x) by receiving a few bits of information about y from the leakage-providing
algorithm Leak. In some cases, such as when the relation R is computable in P, one may
take R to be a function.
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At the high end of the derandomization spectrum, the main result of Liu and Pass [15]
establishes an equivalence between the derandomization prBPP ⊆ P and the existence of a
length-preserving function f ∈ P that is leakage-resilient hard on almost all inputs against
probabilistic algorithms running in fixed-polynomial time and with sublinear leakage. The
equivalence works across the entire derandomization spectrum. For completeness we mention
that, in another work, Liu and Pass establish an equivalence between derandomization and
hardness related to approximating conditional Levin-Kolmogorov complexity (Kt) [14]. The
latter equivalence does not scale well toward the low end, though.

One can also ask about efficient simulations of prBPP on nondeterministic machines.
Such simulations are referred to as mild derandomizations. We remark that establishing
mild derandomization results for prBPP is a required step if we hope to show stronger
deterministic simulations for the class. At the low-end of the derandomization spectrum, an
equivalence is known between whitebox and blackbox mild derandomizations for prBPP that
work for infinitely-many input lengths [11]. The technique, however, does not scale and is
only known to work in the infinitely-often setting. The Liu-Pass result on the connection
between leakage-resilient hardness and derandomization extends to the mild setting. In
contrast to the low-end equivalence of [11], Theorem 2 extends to the entire derandomization
spectrum. We state the high-end version.

▶ Theorem 2 (Follows from [15, Theorem 1.6]). There exists a constant c such that for all
0 < ϵ < 1, the following are equivalent.

prBPP ⊆ NP.
There exists a total length-preserving relation R ∈ NP that is (nc, nϵ)-leakage-resilient
hard on almost-all inputs against prBPP.

AM setting. In the blackbox setting, an equivalence between derandomization and non-
uniform lower bounds is known throughout the entire spectrum [13, 16, 18]. The class E is
replaced by NE∩coNE, and the circuits are nondeterministic (or single-valued nondeterministic,
or deterministic with oracle access to an NP-complete problem like SAT). These assumptions
yield hitting-set generators (HSGs) for AM, the one-sided error counterparts of pseudorandom
generators. These objects suffice for derandomizing AM as every Arthur-Merlin protocol can
be efficiently transformed into an equivalent one with perfect completeness [7].

Until recently, not much was known in the whitebox setting for AM. Van Melkebeek and
Sdroievski have established a near-equivalence between (plain) almost-all inputs hardness and
derandomization [23]. In one direction, they show that the existence of a length-preserving
function computable in nondeterministic time nb that is hard on almost-all inputs against
prAM protocols that run in time nO((log b)2) implies that prAM ⊆ NP. They also establish
a converse, though the hard function they obtain requires a small amount of advice and
the hardness is only guaranteed against AM protocols instead of prAM protocols. The
hardness-to-derandomization direction of their result scales very well toward the low-end.

It remains open whether whitebox derandomization of prAM can always be obtained
through targeted hitting-set generators if it can be obtained at all, a question raised by
Goldreich [8]. As a byproduct of their main result, the authors of [23] obtain a first step toward
a positive resolution: They show that any low-end derandomization of prAM implies the
existence of a targeted hitting-set generator that achieves a slightly weaker derandomization.

Similar to the BPP setting, one may ask for derandomizations of AM that require more
resources than what is conjectured to suffice. While it is believed that prAM ⊆ NP and we
know that prAM ⊆ Π2P = coNPNP, it remains open whether prAM ⊆ PNP or even whether
prAM ⊆ Σ2P = NPNP, both of which are required steps toward showing that prAM ⊆ NP.

FSTTCS 2023
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We note that even a subexponential-time Σ2-simulation with subpolynomial advice for prAM
that works for infinitely many input lengths remains open.1 In this setting, an equivalence
between whitebox and blackbox derandomization is known: The simulation is equivalent
to polynomial size nondeterministic circuit lower bounds for the class Σ2E. In symbols,
prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ if and only if Σ2E ̸⊆ NP/poly [2]. The equivalence does
not scale well, and it is unknown whether it holds for other parameter settings such as the
high end.

Our results. Our main contribution is establishing full equivalences for mild derandomization
of prAM. Specifically, we obtain an equivalence between mild derandomization of prAM and
leakage-resilient hardness on almost-all inputs against prBPPSAT

|| , the class of polynomial-time
probabilistic algorithms with non-adaptive oracle access to SAT. The equivalence scales
smoothly across the entire derandomization spectrum, and applies to other classes between
NP and Σ2P in addition to Σ2P. We state the high-end version.

▶ Theorem 3. Let C ∈ {PNP, ZPPNP, Σ2P}. There exists a constant c such that for all
0 < ϵ < 1, the following are equivalent.

prAM ⊆ C.
There exists a total length-preserving relation R ∈ C that is (nc, nϵ)-leakage-resilient hard
on almost-all inputs against prBPPSAT

|| .

Theorem 3 can be viewed as a counterpart to Theorem 2 in the mild setting for prAM. In-
deed, when compared to the traditional setting, both require an extra level of nondeterminism
in the hardness assumption as well as in the simulation.

The class prBPPSAT
|| was used in the initial derandomization results for Arthur-Merlin

protocols [13] and is seemingly more powerful than prAM. However, derandomization
results for prAM typically translate into corresponding derandomization results for prBPPSAT

|| .
In particular, the derandomization prAM ⊆ Σ2P of Theorem 3 implies that prBPPSAT

|| ⊆
Σ2P. Also, lower bounds for linear-exponential time classes such as E and NE against
nondeterministic circuits (which suffice for derandomizing prAM) imply non-uniform lower
bounds for the same class against deterministic circuits with non-adaptive oracle access to
SAT (which suffice for derandomizing prBPPSAT

|| ) [19].
We show that a connection between prBPPSAT

|| and prAM holds in the leakage-resilient
hardness setting as well. Specifically, we show that the derandomization conclusion of
Theorem 3 holds under a weaker hardness assumption on learn-and-evaluate Arthur-Merlin
protocols. Learn-and-evaluate protocols are a two-phase type of Arthur-Merlin protocol that
arises naturally in hardness vs. randomness tradeoffs and fits nicely into the leakage-resilient
hardness paradigm. In the first phase, a probabilistic algorithm with oracle access to a
function f produces a short sketch π that consists of evaluations of f . In our case, f is
the function that maps an index i to the i-th bit of a string y such that (x, y) ∈ R, and
the first phase can be viewed as a small amount of leakage on y. In the second phase, an
Arthur-Merlin protocol computes f given π, which naturally translates into a protocol that
attempts to recover y from a “small” amount of leakage. The result, taken together with
the derandomization-to-hardness direction of Theorem 3, implies an equivalence between
leakage-resilient hardness on almost-all inputs against prBPPSAT

|| and learn-and-evaluate
protocols.

1 The best known unconditional results are worst-case simulations of AM in io-Σ2TIME[2nϵ

]/nc for all ϵ

and some fixed c [24] and average-case simulations of prAM in io-Σ2TIME[2nϵ

]/nϵ for all ϵ [23].
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▶ Theorem 4. Let C ∈ {PNP, ZPPNP, Σ2P}. There exists a constant c such that for all
0 < ϵ < 1, the following are equivalent.
1. There exists a total length-preserving relation R ∈ C that is (nc, nϵ)-leakage-resilient hard

on almost-all inputs against prBPPSAT
|| .

2. There exists a total length-preserving relation R ∈ C that is (nc, nϵ)-leakage-resilient hard
on almost-all inputs against learn-and-evaluate protocols.

Theorem 4 partially addresses an open problem posed by Shaltiel and Umans of obtaining
uniform equivalences between hardness against Arthur-Merlin protocols and algorithms
with non-adaptive oracle access to SAT [19]. They ask whether an implication such as
E ̸⊆ AM =⇒ E ̸⊆ PSAT

|| holds. Theorem 4 establishes an analogous result in the mild
leakage-resilient hardness setting.

We also address, in the mild setting, the open problem posed by Goldreich about prAM [8].
We show that mild derandomization of prAM is equivalent to the existence of targeted hitting-
set generators achieving the same derandomization. We state such a result at the high end
of the derandomization spectrum, but it extends to the entire range.

▶ Theorem 5. Let C ∈ {PNP, ZPPNP, Σ2P}. If prAM ⊆ C, then there exist targeted hitting-set
generators that achieve this mild derandomization result.

Finally, we connect leakage-resilient hardness to the known equivalence between whitebox
and blackbox mild derandomization of prAM at the low end. As mentioned before, the simu-
lation prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0 is equivalent to the non-uniform lower bound
Σ2E ̸⊆ NP/poly [2]. We show that those conditions are also equivalent to leakage-resilient
hardness where the algorithm A needs to produce each individual bit of a solution y ∈ R(x)
very efficiently. The equivalence of [2] holds in the infinitely-often setting. Correspondingly,
the equivalent leakage-resilient hardness condition holds for all inputs of infinitely-many
input lengths.

▶ Definition 6 (Local Leakage-resilient hardness). A relation R is t-local (T, ℓ)-leakage-resilient
hard on all inputs of infinitely-many input lengths against a class of algorithms if for all pairs
(Leak, A) of algorithms in the class such that Leak runs in time T , |Leak(x, f(x))| ≤ ℓ(|x|)
and A runs in time t, the following holds for infinitely many n ∈ N and every x ∈ {0, 1}n:
R(x) is non-empty and for every such y ∈ R(x) there exists i ∈ [|y|] such that the probability
that A(x, Leak(x, y), i) = yi is at most 1/3.

This definition allows for separate running times for the leakage-providing algorithm Leak
and A, and in particular allows A to run in time that is sublinear in the length of a solution
y ∈ R(x).

▶ Theorem 7. The following are equivalent:
1. prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0.
2. Σ2E ̸⊆ NP/poly.
3. For all ϵ > 0 there exists a relation R ∈ Σ2TIME[2nϵ ]/nϵ that is poly(n)-local (∞, poly(n))-

leakage-resilient hard on all inputs of infinitely-many input lengths against prBPPSAT
|| .

4. For all ϵ > 0 there exists a relation R ∈ Σ2TIME[2nϵ ]/nϵ that is poly(n)-local
(2nϵ

, poly(n))-leakage-resilient hard on all inputs of infinitely-many input lengths against
prBPPSAT

|| .
5. For all ϵ > 0 and c ≥ 1 there exists a length-preserving relation R ∈ Σ2TIME[2nϵ ]/nϵ that

is nc-local (nc, ℓ(n))-leakage resilient hard on all inputs of infinitely-many input lengths
against prBPPSAT

|| , where nΩ(1) ≤ ℓ(n) ≤ n − ω(1) is polynomial-time computable.

We only know Theorem 7 for the low-end of the derandomization spectrum due to the
use of [2].

FSTTCS 2023
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Techniques. We combine the approach of Liu and Pass in the leakage-resilient setting for
BPP (see Section 2 for an overview) with constructions that are suitable for the AM setting.

In the hardness-to-derandomization direction, given a hard relation R, we use the value
of y ∈ R(x) as a basis for instantiating the nondeterministic version of the Shaltiel-Umans
(SU) generator for prAM [18]. As the SU generator is originally meant for the the non-
uniform setting, the original reconstruction argument only guarantees the existence of a
small nondeterministic circuit that computes y in case the generator fails. Thus, in order
to use the construction we need to “uniformize” the reconstruction procedure and show
that such a circuit can be constructed by an efficient algorithm with non-adaptive oracle
access to SAT. To obtain the results under hardness against learn-and-evaluate protocols, we
employ the same approach but instead use a recursive version of the Miltersen-Vinodchandran
generator [16], which we refer to as RMV and is due to Shaltiel and Umans [20]. RMV does
not scale as well as SU but still suffices for obtaining Theorem 4. To employ the construction,
we need to cast the RMV reconstruction process as a learn-and-evaluate protocol.

For the derandomization-to-hardness direction, similar to [15], we frame the problem of
computing a leakage-resilient hard function as a BPPSAT

|| search problem, and then make use
of a search-to-decision reduction à la [8] together with the derandomization assumption. We
first show that for a fixed x, a random choice r of y ∈ R(x) suffices: With high probability,
the first few algorithms Leak and A according to some canonical enumeration fail to compute
r in the sense that A(x, Leak(x, r)) ̸= r. Then we show that checking whether a candidate r

for R(x) is hard (again w.r.t. the first few algorithms) can be done by a prBPPSAT
|| algorithm.

To conclude the argument for R ∈ Σ2P, we guess-and-verify a “good” value of y ∈ R(x) by
exploiting the connection between BPPSAT

|| and prAM [4] together with the derandomization
assumption on prAM.

We remark that both directions of the Liu-Pass result for prBPP relativize, which
immediately implies an equivalence between the derandomization prBPPSAT ⊆ PSAT and
the existence of leakage-resilient hard functions computable in PSAT that are hard on
almost-all inputs against probabilistic algorithms with SAT oracle. Since our objective is to
obtain equivalences with respect to derandomizing prAM, and it is unknown whether (mild)
derandomization of prAM implies derandomization of prBPPSAT, the relativization approach
is insufficient for our purposes.

Organization. In Section 2, we develop the ideas behind our results and relate them to
existing techniques. We start the formal treatment in Section 3 with definitions, notation,
and other preliminaries. In Section 4, we develop the equivalence between leakage-resilient
hardness on almost-all inputs and mild derandomization of prAM (Theorem 3), and the
equivalence between mild derandomization of prAM and the existence of targeted hitting-set
generators (Theorem 5). The development of the equivalence between leakage-resilient
hardness on almost-all inputs against prBPPSAT

|| and against learn-and-evaluate protocols
(Theorem 4) and the discussion of local leakage resilience (Theorem 7) are relegated to
the appendix. The details of the uniformization of SU and proofs of secondary results are
deferred to the full version.

2 Technical overview

In this section, we present an overview of the techniques underlying our results. In order
to describe the Liu-Pass approach and ours, we start with an overview of the learning
reconstructive paradigm used in prior hardness vs. randomness tradeoffs for BPP and AM.
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We then provide an overview of the hardness-to-derandomization direction of the Liu-Pass
result in a way that facilitates the transition to our results on the mild derandomization
setting for AM.

Learning reconstructive paradigm. Pseudorandom generator constructions G typically have
a hard function h as a basis (where how “hard” h is depends on the context) and produce
a pseudorandom distribution Gh that depends on h. The proof of correctness for such
generators is reconstructive: It presents an algorithm (the reconstructor) that, given access
to any process D that distinguishes the distribution Gh from a truly random distribution, as
well as to some additional information a, computes the hard function h. It is common for
the additional information a to be composed of evaluations of h at a small number of points,
in which case we also say that the reconstruction is learning. Thus, unless Gh “fools” an
efficient randomized process P on input x, the function h can be reconstructed efficiently
from the distinguisher D(r) .= P (x, r) and the evaluations.

Targeted setting. One way to obtain a targeted PRG is to use a hardness-based (oblivious)
pseudorandom generator construction and instantiate it with a function hx that depends
on the input x (which we view as a circuit capturing the behavior of the algorithm A on
the actual input as a function of the random bit string) [5, 15, 23]. In the leakage-resilient
setting and given a hard function f , we take hx to be the function whose truth-table is f(x).
The leakage-providing algorithm Leak uses access to f(x) to provide the answers to the
learning queries, which are then fed into the reconstructor to compute hx and thus f(x).

Liu and Pass [15] employ the Nisan-Wigderson (NW) pseudo-random generator construc-
tion [17] combined with the locally-list-decodable encoding of [21], and instantiate the PRG
with the function hx : {0, 1}log n → {0, 1} that computes the mapping i 7→ f(x)i. In the
reconstruction, the leakage-providing algorithm Leak uses access to hx to answer the learning
queries for the NW reconstruction algorithm as well to identify a “good” random string to be
used in the list-decoding step and the position of hx in the resulting list. This allows A to
compute the value of f(x) by running the NW reconstruction followed by the list-decoding
process with the “good” random string, outputting the element in the correct position of the
resulting list.

In porting the Liu-Pass approach to the mild derandomization setting for prAM, we follow
a similar idea but replace the NW construction by other hardness-based pseudorandom
generator (PRG) or hitting-set generator (HSG) constructions that exhibit the learning
property: In the case of failure of the PRG/HSG on an input x, the underlying hard function
h can be reconstructed efficiently from the values of h at a small number of points. In
particular, we make use of the following HSGs that have the learning property and are
tailored for Arthur-Merlin protocols:

The construction by Shaltiel and Umans [20], which we dub SU and use to derive our
main results under leakage-resilient hardness against prBPPSAT

|| . This construction scales
throughout the entire derandomization spectrum and, in particular, allows for obtaining
tighter connections with blackbox derandomization via our local-leakage-resilient hardness
results. To employ this generator, we present a uniform version for its reconstruction.
A recursive version of the construction by Miltersen and Vinodchandran [16] due to Shaltiel
and Umans [20], which we dub RMV and use to derive our results under hardness against
a specific type of Arthur-Merlin protocol that we call a learn-and-evaluate protocol. The
original construction, denoted MV, is geared toward the high end of the derandomization
spectrum, whereas the recursive variant works in a broader range.

FSTTCS 2023
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We remark that the SU construction scales better than RMV toward the low end, and
thus we choose to employ SU for our main results. The disadvantage is that SU requires
hardness against prBPPSAT

|| instead of against Arthur-Merlin protocols. However, as evidenced
in Theorem 3, such a hardness assumption is also required in the mild setting.

We now describe the two constructions in more detail and how we employ them to obtain
our results.

Shaltiel-Umans construction. The SU generator takes any low-degree polynomial ĝ : Fr →
F, which is usually obtained via a low-degree extension/Reed-Müller encoding (in our case,
of y ∈ R(x) of length n), and produces a set of strings of length m, where m is a parameter.
The reconstruction for the generator shows the existence of a small (of size poly(m, log n))
nondeterministic circuit computing ĝ in case the construction fails as a hitting-set generator.

The original reconstruction for the generator requires access to a few pieces of information
in relation to the field Fr and the polynomial ĝ: A generating matrix M for the set Fr \ {⃗0},
two “good” low-degree curves C1 and C2 over Fr and evaluations of ĝ over points that depend
on M , C1 and C2. For our purposes, the leakage-providing algorithm can compute the
matrix M efficiently enough via a brute-force search. As for the curves C1 and C2, Shaltiel
and Umans show that a random choice has the required properties with high probability,
which allows Leak to sample those at random. Finally, the evaluations of ĝ can be computed
efficiently given access to the value of y ∈ R(x) by having Leak compute the low-degree
extension ĝ of y.

In the nondeterministic setting, there is an extra complication: The reconstruction also
requires oracle access to a list of r predictors P1, . . . , Pr, all of which can be obtained from a
distinguisher D for the generator. As the predictors themselves are nondeterministic, it is
unclear how, for example, negative predictions can be computed nondeterministically. Shaltiel
and Umans use a strategy (originating in [6]) to approximately and nondeterministically
evaluate the predictors when given as non-uniform additional input approximations up to
O(log n) bits of precision for the probability that each predictor outputs 1 over a random
choice of inputs for the generator. The original reconstruction argument can handle a small
amount of error in these probabilities due to the use of error correction. This is where
the SAT oracle comes in: We can efficiently obtain the approximations required to run the
reconstruction in prBPPSAT

|| .
In the end, we obtain a probabilistic version of the reconstruction with non-adaptive

oracle access to SAT that, given oracle access to ĝ and to a distinguisher D, outputs with
high probability a small nondeterministic circuit C that computes ĝ. We then take Leak to
be the algorithm that computes C using the low-degree extension of y ∈ R(x) to answer
the learning queries. Recall that C has size poly(m, log n) and y has length n. By picking a
small value of m, the amount of leakage is indeed small. We take A to be a circuit-evaluation
algorithm that evaluates C to recover the value of y. Note that since C computes ĝ, in
particular it computes the mapping i 7→ yi very efficiently, and thus the reconstruction can
also be cast into the local leakage-resilience framework.

Recursive Miltersen-Vinodchandran construction. The RMV generator also takes any
low-degree polynomial ĝ : Fr → F and a parameter m and outputs a set of strings of length m.

The RMV reconstructor for ĝ forms a commit-and-evaluate protocol, a notion introduced
in [20] for this reason. It is an Arthur-Merlin protocol that consists of two phases. The first
phase is the commitment phase, where Arthur and Merlin interact to produce a commitment π.
The commitment is then given as input to the evaluation phase, in which Arthur and Merlin
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compute evaluations of a function gπ that is determined by π and supposedly equals ĝ. As
Merlin could cheat in the commitment phase, a key property of the protocol is its resilience:
Given a commitment π, the evaluation protocol can only produce evaluations of a fixed
function gπ, except with low probability. As gπ might differ from ĝ, one usually combines the
construction with a checker (as in [10]) or a PCP system (as in [23]) to verify that gπ = ĝ.

In the commitment phase, Arthur samples a small (of size poly(m, log n)) set of points in
Fr and Merlin provides evaluations of ĝ at those points as the commitment π. With high
probability over the set chosen by Arthur, given the correct commitment π as additional input
and access to a distinguisher D, the evaluation protocol computes ĝ with high confidence, no
matter what strategy Merlin uses.

By replacing the interaction in the commitment phase by a probabilistic algorithm with
oracle access to ĝ, the RMV reconstruction can be cast as a learn-and-evaluate protocol. A
learn-and-evaluate protocol is a reconstructor for a function h that consists of two phases,
where only the second phase requires access to the distinguisher D. The two phases are:
1. A learning phase, which is a randomized algorithm that can make queries to h and outputs

a string, which we refer to as a sketch.
2. An evaluation phase, which is a promise Arthur-Merlin protocol with access to D that

takes a sketch and an evaluation point z as input, and is supposed to output h(z).
With high probability, given the correct answers to the queries, the learning phase should
output a sketch such that the evaluator with access to a distinguisher D is complete and
sound.

The learn-and-evaluate version of the reconstructor naturally fits the leakage-resilient
hardness-to-derandomization framework, where the leakage-providing algorithm Leak is a
probabilistic algorithm with access to y ∈ R(x) that samples the set of points and produces
evaluations of the low-degree extension ĝ of y on those points and A is an Arthur-Merlin
protocol that takes those evaluations as additional input to compute y. The amount of
leakage is upper bounded by poly(m, log n), which can be made small in relation to |y| = n

by picking a sufficiently small m.

3 Preliminaries

In this section, we present preliminary definitions and results that are necessary for developing
our contributions. We start by defining targeted hitting-set generators, then move on to
low-degree extensions and finally present some results on the class BPPSAT

|| . We assume
familiarity with standard notions such as circuits and complexity classes such as NP, AM,
and prAM. We measure circuit size by the number of gates. Most of our results extend to
“robust” time bounds: We define a set of time bounds T as robust if for all polynomials p, q

it holds that if T ∈ T , then p(n) · T (q(n)) ∈ T .

Targeted hitting-set generators. Without loss of generality, Arthur-Merlin protocols have
perfect completeness [7]. In this case, targeted hitting-set generators, the one-sided error
variant of targeted PRGs, suffice for derandomization. We may naturally view an Arthur-
Merlin protocol as a nondeterministic computation that receives an input x and a random
sequence ρ, guesses a response from Merlin and accepts if and only if the final deterministic
verification of Arthur accepts. Since such a computation can only make a mistake on a
negative instance x, we wish for a generator that hits rejection, i.e., it produces a set S such
that there is ρ ∈ S that is rejected by the nondeterministic computation. As hitting-set
generators are usually considered for the accepting side of computations, we instead consider
generators for co-nondeterministic computations.
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A co-nondeterministic computation on the random bits ρ for a given input x can be
captured by a co-nondeterministic circuit. For this reason, in the context of derandom-
izing Arthur-Merlin protocols, we let targeted hitting-set generators take as input a co-
nondeterministic circuit D that accepts at least a fraction 1/2 of its inputs, and output a set
of strings that “hits” D. If the co-nondeterministic computation runs in time t(n) for inputs
x of length n, then the co-nondeterministic circuit has size at most t(n)2 for all but finitely
many n. To accommodate different computational models for generating the hitting sets
(including nondeterministic ones), we define targeted generators based on a relation between
a circuit D and a hitting-set S. In the following definition, we let C denote a machine model
and CTIME[T ] denote computational problems computable by machines in C that run in
time T .

▶ Definition 8. Let H be an algorithm that computes a relation R ∈ CTIME[T (m)] between
co-nondeterministic circuits of size m and sets of strings of length m. We say that H is a
targeted hitting-set generator for co-nondeterministic circuits computable in CTIME[T (m)] if
the following two conditions hold for all sufficiently large m ∈ N:

For all co-nondeterministic circuits D of size m, there exists a non-empty S such that
(D, S) ∈ R.
For all co-nondeterministic circuits D of size m that accept at least a 1/2 fraction of
their inputs, it holds that for every S ∈ R(D) there exists ρ ∈ S such that D(ρ) accepts.

For some classes of algorithms, such as nondeterministic algorithms, the notion of
computing a relation is intuitive: Upon receiving an input, the algorithm eventually halts
and produces an output in the relation on every accepting computation path. For other
classes of algorithms, such as Σ2P, the notion of computing a relation is perhaps less intuitive.
We say that a Σ2-algorithm N computes a relation R if for all x ∈ {0, 1}∗, any accepting
configuration of N(x) outputs a value y such that (x, y) ∈ R.

We remark that the existence of a targeted hitting-set generator for co-nondeterministic
circuits suffices for derandomizing all of prAM. For future reference, we include a statement
and proof in the Σ2 setting.

▶ Proposition 9. Assume that there exists a targeted hitting-set generator H for co-
nondeterministic circuits computable in Σ2TIME[T (m)]. Then prAM ⊆

⋃
k∈N Σ2TIME[T (nk)].

Proof. Let Π ∈ prAM, and let P be an Arthur-Merlin protocol (with perfect completeness)
that runs in time nk for some constant k and decides Π. It is standard that we can obtain
from P and a sufficiently large input x ∈ {0, 1}∗, in time O(|x|2k), a co-nondeterministic
circuit DP,x of size at most |x|2k such that:

x ∈ ΠY =⇒ Pr
r

[DP,x(r) = 1] = 0.

x ∈ ΠN =⇒ Pr
r

[DP,x(r) = 1] ≥ 1/2.

The Σ2-simulation for Π works as follows on input x: First, it computes DP,x, and guesses a
set S output by H(DP,x). Using another nondeterministic guess, the simulation verifies that
DP,x rejects every ρ ∈ S, rejecting otherwise. In parallel, the simulation verifies, using an
existential and a universal guess, that the guessed set S is an output of H for DP,x, rejecting
otherwise.

If x ∈ ΠY , then DP,x rejects every ρ ∈ S for any S output by H(DP,x), in which case
the overall simulation accepts. If x ∈ ΠN , then correctness of H implies that DP,x accepts
some ρ ∈ S for every S output by H(DP,x), in which case the overall simulation rejects. The
running time for the simulation is T (n2k), which completes the proof. ◀
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Low-degree extension. We also need standard low-degree extensions. Let g : {0, 1}ℓ →
{0, 1} be a function, F = Fp be the field with p elements (for prime p), h and r integers such
that hr ≥ 2ℓ, and [h]r the r-tuples of elements in {1, . . . , h}. The low-degree extension of g

with respect to p, h, r is the unique r-variate polynomial ĝ : Fr → F with degree h − 1 in each
variable, for which ĝ(v⃗) = g(y) for all v⃗ ∈ [h]r representing a y ∈ {0, 1}ℓ, and ĝ(v⃗) = 0 for
v⃗ ∈ [h]r that do not represent a string y. The total degree of ĝ is ∆ = hr and ĝ is computable
in time poly(hr, log p, r) given oracle access to g.

Non-adaptive oracle access to SAT. We first define the class prBPPSAT
|| : We say that a

promise problem Π = (ΠY , ΠN ) is in prBPPSAT
|| if there exists a probabilistic algorithm M

with non-adaptive oracle access to SAT such that for all x ∈ {0, 1}∗:

x ∈ ΠY =⇒ Pr[M(x) = 1] ≥ 2/3.

x ∈ ΠN =⇒ Pr[M(x) = 1] ≤ 1/3.

By non-adaptive oracle access, we mean that the queries made by M cannot depend on the
answers to previous queries, i.e., the queries must all be made in parallel.

Arthur-Merlin protocols can be simulated by probabilistic algorithms with oracle access
to SAT: To simulate the interaction, we sample a random sequence for Arthur and query
the SAT oracle on whether there exists a response of Merlin that would lead to acceptance.
In a similar fashion, PprAM

|| can be simulated in BPPSAT
|| , the class of problems decidable by

bounded-error probabilistic polynomial-time algorithms with non-adaptive oracle access to
SAT. In fact, a converse also holds and is crucial in allowing our results to work under the
assumption that prAM can be mildly derandomized.

▶ Lemma 10 ([4]). prBPPSAT
|| ⊆ PprAM

|| .

In Lemma 10, the deterministic machines with oracle access to prAM on the right-hand
side are guaranteed to work correctly irrespective of how the queries outside of the promise
are answered, even if those queries are answered inconsistently, i.e., different answers may be
given when the same query is made multiple times.

4 Equivalences for mild derandomization of prAM

In this section, we develop our main results, equivalences between mild derandomization of
prAM and the existence of leakage-resilient hard functions/relations. We first state a more
general version of Theorem 3 for classes C such that PC ⊆ C. For such classes, we obtain an
equivalence with respect to a hard function.

▶ Theorem 11. Let C be a complexity class such that PC ⊆ C. There exists a constant c

such that for all 0 < ϵ < 1, the following are equivalent.
prAM ⊆ C.
There exists a length-preserving function f ∈ C that is (nc, nϵ)-leakage-resilient hard on
almost-all inputs against prBPPSAT

|| .

Theorem 11 follows from Theorem 14 in Section 4.1 and Theorem 19 in Section 4.2.
Examples of classes for which Theorem 11 applies are PNP and ZPPNP and their time-2polylog(n)

and time-2no(1) variants.
In the case of Σ2P, we state a more general equivalence with respect to a hard relation.
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▶ Theorem 12. Let T be a robust set of time bounds. There exists a constant c such that
for all 0 < ϵ < 1, the following are equivalent.

prAM ⊆
⋃

T ∈T Σ2TIME[T (n)].
There exists T ′ ∈ T and a total length-preserving relation R ∈ Σ2TIME[T ′(n)] that is
(nc, nϵ)-leakage-resilient hard on almost-all inputs against prBPPSAT

|| .

Theorem 12 follows from Theorem 15 in Section 4.1 and Theorem 21 in Section 4.2.
Similar to Theorem 11, Theorem 12 applies to the time-poly(n), time-2polylog(n) and time-2no(1)

variants of Σ2P. Theorem 3 follows by instantiating Theorems 11 and 12 with polynomial
time bounds.

4.1 From leakage-resilient hardness to derandomization
Assuming the existence of a leakage-resilient hard function/relation against prBPPSAT

|| , we
show that we can obtain mild derandomization of prAM. Our approach is to instantiate
the Shaltiel-Umans generator with the value of f(x) (or some y ∈ R(x) in case of a hard
relation R). In case the generator fails, there exists a prBPPSAT

|| algorithm (the reconstructor)
that given f(x) as input outputs a small nondeterministic circuit computing the mapping
i 7→ f(x)i. We take the reconstructor as the leakage-providing algorithm Leak and define A

as a circuit-evaluation algorithm that evaluates the circuit output by Leak.
The next lemma presents a uniform version of the SU reconstruction that is particularly

suited to our objectives. See the full version for a proof.

▶ Lemma 13. There exists a deterministic algorithm Hdet and a probabilistic algorithm
Learn with non-adaptive oracle access to SAT such that at least one of the following holds
for every y ∈ {0, 1}n, m ∈ N and co-nondeterministic circuit D of size m that accepts at
least half of its inputs:
1. Hdet(1m, y) outputs a set that hits D.
2. With probability at least 2/3, Learn(1m, y, D) outputs a nondeterministic circuit C that

computes the mapping i 7→ yi.

Hdet and Learn run in time poly(m, n) and C has size poly(m, log n). Moreover, Learn
and C only need blackbox access to the deterministic predicate that underlies D.

We are now ready to prove the hardness-to-derandomization direction of Theorem 11.

▶ Theorem 14. Let C be a complexity class such that PC ⊆ C and NP ⊆ C. There exists a
constant c ≥ 1 such that the following holds. Assume that there exist a constant 0 < ϵ < 1 and
a length-preserving function f ∈ C that is (nc, nϵ)-leakage-resilient hard on almost-all inputs
against prBPPSAT

|| . Then there exists a targeted hitting-set generator H for co-nondeterministic
circuits computable in C, implying that prAM ⊆ C.

Proof. Fix a binary string representation for co-nondeterministic circuits that describes a
circuit of size m by a string of length m′ = Θ(m log m). The generator H, on input a string
x of length m′ describing a co-nondeterministic circuit Dx of size m, sets n = ma for a
sufficiently large constant a to be defined later and sets x′ = x0n−m′ . It then computes f(x′)
and instantiates the generator Hdet of Lemma 13, outputting the set Sx = Hdet(1m, f(x′)).
Computing f(x′) can be done in C by the assumption that PC ⊆ C and since |x′| = poly(m),
and computing Sx from f(x′) takes deterministic time poly(m, n) = poly(m), and therefore
the generator H is computable in C.
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Assume, with the intent of deriving a contradiction, that H fails as a targeted HSG for co-
nondeterministic circuits. This means that there exists an infinite set D of co-nondeterministic
circuits that accept at least a 1/2 fraction of their inputs such that H(D) fails to hit every
D ∈ D. We show that there exist probabilistic algorithms Leak and A with non-adaptive
oracle access to SAT running in time nc for a constant c to be defined later such that for
infinitely many x′, Leak(x′, f(x′)) produces |x′|ϵ bits of leakage and A(x′, Leak(x′, f(x′)))
computes f(x′) with high probability.

The algorithm Leak parses the input x′ ∈ {0, 1}n as x′ = x0n−m′ for m′ = Θ(m log m)
and m = n1/a. If x′ is not of the expected type, it outputs 0n. Then, it outputs
Learn(1m, f(x′), Dx), where Dx is the circuit described by x. The algorithm A is a cir-
cuit evaluation algorithm that, on input x′ of length n and a nondeterministic circuit C,
makes parallel queries to its SAT oracle about the output of C for each i ∈ [n], outputting
the concatenation of those (to hopefully obtain f(x′)).

Notice that we measure the running times of Leak and A in terms of n = ma. By
Lemma 13, Leak runs in time poly(m, n) = poly(n) ≤ nc for a sufficiently large constant
c. By the same lemma, nc serves as an upper bound for the running time of A, which
is n · poly(m, log n). Moreover, the amount of leakage is poly(m, log n) ≤ (m log n)k for a
sufficiently large constant k. By taking a = 2k/ϵ, this is at most nϵ.

As for correctness, Lemma 13 guarantees that for all x such that H(Dx) fails to hit Dx,
Learn(1m, x′, f(x′)) for x′ = x0n−m′ outputs with probability at least 2/3 a circuit C that
computes the mapping i 7→ f(x′)i. In that case, A with inputs x′ and C outputs f(x′).
The conclusion prAM ⊆ C follows as in Proposition 9: Given an Arthur-Merlin protocol
P witnessing Π ∈ prAM and an input x, we construct DP,x and compute a hitting set
S = H(DP,x). Finally, we use the fact that NP ⊆ C to verify in C that DP,x rejects all ρ ∈ S,
rejecting otherwise. ◀

Essentially the same argument establishes the result for a leakage-resilient hard relation
R ∈ Σ2TIME[T (n)].

▶ Theorem 15. There exists a constant c ≥ 1 such that the following holds. Assume that there
exist a constant 0 < ϵ < 1 and a length-preserving relation R ∈ Σ2TIME[T (n)] that is (nc, nϵ)-
leakage-resilient hard on almost-all inputs against prBPPSAT

|| . Then there exists targeted
hitting-set generator H for co-nondeterministic circuits computable in Σ2TIME[T (poly(m)) +
poly(m)], implying that prAM ⊆

⋃
k∈N Σ2TIME[T (nk)].

Proof (sketch). The proof follows the argument of Theorem 14 closely. Instead of computing
Hdet(1m, f(x′)), the generator H guesses and verifies y ∈ R(x′) and then outputs Hdet(1m, y),
which leads to a generator computable in time O(T (ma) + poly(m)). The reconstruction is
identical, and allows for computing y ∈ R(x′) given a small amount of leakage on y. ◀

We remark that the arguments for Theorems 14 and 15 show, in particular, that it
is possible to compute f(x′) (or y ∈ R(x′)) locally in time poly(m, log n) by letting A be
a regular circuit evaluation algorithm (instead of one that outputs the concatenation of
evaluating the input circuit on every i).

4.2 From derandomization to leakage-resilient hardness
We first establish the derandomization-to-hardness direction of Theorem 11. As mentioned in
Section 1, we frame the problem of computing a leakage-resilient hard function as a prBPPSAT

||
search problem and then make use of a search-to-decision reduction as in [8].

We start by defining a prBPPSAT
|| search problem.
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▶ Definition 16. Let RY and RN be two disjoint binary relations. We say that (RY , RN ) is
a prBPPSAT

|| search problem if the following two conditions hold.

1. The decisional promise problem represented by (RY , RN ) is in prBPPSAT
|| ; that is, there

exists a probabilistic polynomial-time algorithm V with non-adaptive oracle access to
SAT such that for every (x, y) ∈ RY it holds that Pr[V (x, y) = 1] ≥ 2/3 and for every
(x, y) ∈ RN it holds that Pr[V (x, y) = 1] ≤ 1/3.

2. There exists a probabilistic polynomial-time algorithm A with non-adaptive oracle access
to SAT such that, for every x for which RY (x) ̸= ∅, it holds that Pr[A(x) ∈ RY (x)] ≥ 2/3,
where RY (x) = {y | (x, y) ∈ RY }.

We observe that the search-to-decision strategy developed in [8] ports over to prBPPSAT
||

problems.

▶ Proposition 17. For every prBPPSAT
|| search problem (RY , RN ), there exists a binary

relation R such that RY ⊆ R ⊆ ({0, 1}∗ × {0, 1}∗) \ RN and solving the search problem of
R is (adaptively) deterministically polynomial-time reducible to some decisional problem in
prBPPSAT

|| .

The following standard result will be useful to compose computations that have non-
adaptive access to a SAT oracle.

▶ Proposition 18 (See e.g., [19, Lemma 7.2]). There exists a non-adaptive SAT-oracle
algorithm M with the following behavior. On input x ∈ {0, 1}n and the description of two
non-adaptive SAT-oracle algorithms M1 and M2 such that M1 runs in time time t1(n) and
produces outputs of length t1(n) and M2 takes inputs of length t1(n) and runs time t2(n), M

runs in time poly(n, t1(n), t2(n)) and outputs M2(M1(x)).

Now, we are ready to prove Theorem 19.

▶ Theorem 19. Let C be a complexity class such that PC ⊆ C. If prAM ⊆ C, then for all
constants c and 0 < ϵ < 1 there exists a length-preserving function f ∈ C that is (nc, n−ω(1))-
leakage-resilient hard on almost-all inputs against prBPPSAT

|| , where ω(1) is polynomial-time
computable.

Proof. Our approach is to cast computing a leakage-resilient hard function f as a prBPPSAT
||

search problem, which allows us to instantiate Proposition 17 and show that there is a
PprBPPSAT

|| ⊆ PPprAM
|| ⊆ PprAM algorithm that solves it. Finally, we use the derandomization

assumption together with the assumption on C to conclude that f is computable in C.
First, we argue that for any x, a random choice of f(x) is hard w.r.t. a fixed pair (Leak, A)

of probabilistic algorithms with non-adaptive oracle access to SAT. Fix a constant c, an
input x ∈ {0, 1}n and a polynomial-time computable function ν(n) = ω(1). Let ρLeak and
ρA denote the random bits input to Leak and A, respectively. Let

P (r, ρLeak, ρA) ≡ |Leak(x, r; ρLeak)| ≤ ℓ ∧ A(x, Leak(x, r; ρLeak); ρA) = r,

for ℓ = n − ν(n). We say that r fails if PrρLeak,ρA
[P (r, ρLeak, ρA)] ≥ 1/6.
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We have that

Pr
r

[r fails] = Pr
r

[ Pr
ρLeak,ρA

[P (r, ρLeak, ρA)] ≥ 1/6] [definition of failing r]

≤ 6 · Er[ Pr
ρLeak,ρA

[P (r, ρLeak, ρA)] [Markov’s inequality]

= 6 · Er,ρLeak,ρA
[P (r, ρLeak, ρA)] [expectation of indicator variable]

= 6 · EρLeak,ρA
[Er[P (r, ρLeak, ρA)]] [reordering random bits]

< 62ℓ+1

2n
[pigeonhole argument]

The pigeonhole argument is that, after fixing the random bits ρLeak and ρA, for each of
the at most 2ℓ+1 strings y of length at most ℓ, among all the strings r that Leak maps to y,
there is at most one that A maps back to r. Setting ℓ = n − ν(n) implies that the probability
that a string r is “bad” is at most 12/2ν(n).

We then define the search problem (RY , RN ) such that (x, r) ∈ RY if |x| = |r| = n and
for the first ν(n) pairs of probabilistic machines with non-adaptive oracle access to SAT
(Leak, A) clocked to run in time nc, it holds that

Pr
ρLeak,ρA

[|Leak(x, r; ρLeak)| ≤ ℓ ∧ A(x, Leak(x, r); ρA) = r] <
1
6 . (1)

As for “no” instances, (x, r) ∈ RN if for at least one pair out of the first ν(n) (Leak, A),
equation (1) with 1/6 replaced by 1/3 does not hold.

Now, we show that this problem is a prBPPSAT
|| search problem. On input x ∈ {0, 1}n,

the algorithm for finding a solution samples a random r ∈ {0, 1}n. By a union bound over
the ν(n) many algorithms Leak and A and the fact that r fails for a particular pair with
probability at most 12/2ν(n), it holds that the solution-finding algorithm succeeds with
probability at least 2/3 for sufficiently large n. On input (x, r), the verification algorithm
enumerates the first ν(n) probabilistic machines with non-adaptive oracle access to SAT,
Leak and A, all clocked to run in time nc. It then estimates the value

pLeak,A = Pr
ρLeak,ρA

[|Leak(x, r; ρLeak)| ≤ ℓ ∧ A(x, Leak(x, r); ρA) = r]

up to error 1/12 and with failure probability at most 1/n for each pair (Leak, A). By a
standard Chernoff bound, it suffices to perform the following steps a polynomial (in n)
number of times per pair: Let Leak′ be the algorithm that, on input x and a random
sequence ρLeak for Leak, computes an output y = Leak(x, r; ρLeak) and outputs (x, y). Let
A′ be an algorithm that, on input x, y and random sequence ρA, rejects if |y| > ℓ and outputs
A(x, y; ρA) otherwise, and let M be the algorithm of Proposition 18. Sample random strings
ρLeak and ρA for Leak and A, respectively, compute A′(x, Leak′(x, r; ρLeak); ρA) by feeding
M inputs x, r, ρLeak, ρA and the codes of Leak′ and A′ and compare the output with r. Each
such execution requires time poly(n) for a total running time of poly(n). Moreover, all oracle
queries made by M can be made in parallel.

After estimating the average acceptance probability for each pair (Leak, A), the verification
algorithm outputs 1 if the estimated values are less than 1/4 (the midpoint between 1/6 and
1/3) for all pairs of algorithms. By a union bound over the ν(n) pairs of algorithms, the
algorithm accepts (x, r) ∈ RY and rejects (x, r) ∈ RN with probability at least 2/3.

Finally, we use Proposition 17 together with the derandomization assumption and the
assumption on C to conclude that there is a function f ∈ C that solves (RY , RN ), i.e., f is a
leakage-resilient hard function. ◀
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The proof of Theorem 19 shows that, given x, verifying whether a candidate r for R(x) is
hard w.r.t. the first ν(n) algorithms Leak, A can be done in prBPPSAT

|| . The proof also shows
that a “good” r always exists for sufficiently large n. To extend Theorem 19 to obtain a hard
relation R ∈ Σ2, we first show that a Σ2-derandomization assumption on prAM implies the
same derandomization for prBPPSAT

|| . See the full version for a proof.

▶ Proposition 20. Let T be a robust set of time bounds. If prAM ⊆
⋃

T ∈T Σ2TIME[T (n)],
then prBPPSAT

|| ⊆
⋃

T ∈T Σ2TIME[T (n)].

Under a Σ2-derandomization assumption for prAM, Proposition 20 allows a Σ2 algorithm
to compute a leakage-resilient hard relation R by guessing a candidate y and verifying in Σ2
that it is a “good” solution. We therefore establish Theorem 21.

▶ Theorem 21. Let T be a robust set of time bounds. If prAM ⊆
⋃

T ∈T Σ2TIME[T (n)], then
for every constant c there exists a total length-preserving relation R ∈ Σ2TIME[T ′] for some
T ′ ∈ T that is (nc, n − ω(1))-leakage-resilient hard on almost-all inputs against prBPPSAT

|| ,
where ω(1) is polynomial-time computable.

4.3 Targeted hitting-set generators from derandomization
In this section, we show that mild derandomization of prAM implies the existence of targeted
hitting-set generators that suffice to obtain the original derandomization result. The results
follow as consequences of the equivalence between leakage-resilient hardness and derandomiz-
ation since we show the hardness-to-derandomization direction by constructing such targeted
generators.

▶ Corollary 22. Let C be a complexity class such that PC ⊆ C. If prAM ⊆ C, then there exists
a targeted hitting-set generator for co-nondeterministic circuits computable in C.

Proof. By Theorem 14, there is a constant c such that if there is a length-preserving function
f ∈ C that is (nc, n1/2)-leakage-resilient hard on almost-all inputs against prBPPSAT

|| , then
there is a targeted HSG as in the conclusion. By Theorem 19, the assumption prAM ⊆ C
implies the existence of f as required. ◀

Corollary 23 is established in the exact same way.

▶ Corollary 23. Let T be a robust set of time bounds. If prAM ⊆
⋃

T ∈T Σ2TIME[T (n)], then
there exists a targeted hitting-set generator for co-nondeterministic circuits computable in
Σ2TIME[T ′] for T ′ ∈ T .

Theorem 5 follows by combining Corollaries 22 and 23 with polynomial time bounds.
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Appendices

In Appendix A, we develop the equivalence between leakage-resilient hardness on almost-
all inputs against prBPPSAT

|| and against learn-and-evaluate protocols (Theorem 4). In
Appendix B, we present our results relating local leakage resilience to non-uniform lower
bounds (Theorem 7).

A Leakage-resilient hardness against learn-and-evaluate protocols

In this appendix, we prove that the hardness-to-derandomization direction of Theorems 11
and 12 holds under hardness against learn-and-evaluate protocols, a specific type of Arthur-
Merlin protocol. By combining such a result with the derandomization-to-hardness direction
of Theorems 11 and 12, we obtain an equivalence in the leakage-resilient hardness setting
between hardness against learn-and-evaluate protocols and hardness against prBPPSAT

|| .
We start with some definitions. A learn-and-evaluate protocol is composed of two phases:

A learning phase followed by an evaluation phase. In the learning phase, a probabilistic
algorithm makes queries to a function f and produces an output (which we call a sketch).
The evaluation phase then consists of an Arthur-Merlin protocol that computes f(x) correctly
on every input x when given the sketch as additional input. To define this notion, we first
define what it means for an Arthur-Merlin protocol to produce an output.

▶ Definition 24 (Arthur-Merlin protocol with output). Let P be an Arthur-Merlin protocol.
We say that on a given input x ∈ {0, 1}∗:

P outputs v with completeness c if there exists a Merlin strategy such that the probability
that P succeeds and outputs v is at least c. In symbols: (∃M) Pr[P (x, M) = v] ≥ c.
P outputs v with soundness s if, no matter what strategy Merlin uses, the probability that
P succeeds and outputs a value other than v is at most s. In symbols: (∀M) Pr[P (x, M) ̸∈
{v, ⊥}] ≤ s.

For a given function f : X → {0, 1}∗ where X ⊆ {0, 1}∗, we say that P computes f

with completeness c(n) and soundness s(n) if on every input x ∈ X, P outputs f(x) with
completeness c(|x|) and soundness s(|x|).

Now, we define learn-and-evaluate protocols.

▶ Definition 25 (Learn-and-evaluate protocol). A learn-and-evaluate protocol P consists of
a probabilistic algorithm Alearn and an Arthur-Merlin protocol Peval. Let g : X → {0, 1}∗

where X ⊆ {0, 1}∗. We say that P computes g with error e(n) for completeness c(n) and
soundness s(n) if on every input x ∈ X of length n the following hold: The probability over
the randomness of Alearn that Peval with input x and additional input π = Af

learn(1n) outputs
f(x) with completeness c(n) and soundness s(n) is at least 1 − e(n).

We define (T, ℓ)-leakage-resilient hardness on almost-all inputs against learn-and-evaluate
protocols in a completely analogous way to hardness against prBPPSAT

|| (Definition 1), where
a probabilistic algorithm Learn(x, y) (which we take to be Ay

learn) takes on the role of Leak,
running in time T and producing, on input x of length n, an output of length at most ℓ(n),
and Peval takes on the role of algorithm A, also running in time T .

We make use of the following lemma, which hinges on the RMV generator. See the full
version for a proof.
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▶ Lemma 26. There exists a deterministic algorithm Hdet, a probabilistic algorithm Learn
and an Arthur-Merlin protocol Peval such that at least one of the following holds for every
y ∈ {0, 1}n, m ∈ N and co-nondeterministic circuit D of size m that accepts at least half of
its inputs:
1. Hdet(1m, y) outputs a set that hits D.
2. With probability at least 2/3, Learn(1m, y) outputs a sketch π such that Peval(π, D, ·)

computes the mapping i 7→ yi with completeness 1 and soundness 1/n2.
Hdet and Alearn run in time poly(n, m), and Alearn produces a sketch π of length poly(m, log n).
Peval runs in time (m · log n)O(log2 r) for r = O(log n/ log m). Moreover, Peval only needs
blackbox access to the deterministic predicate that underlies D.

We remark that the RMV reconstruction does not scale as well as the SU reconstruction,
where the analogue of Peval runs in time poly(m, log n).

We now state the hardness-to-derandomization result that we obtain from Lemma 26.

▶ Theorem 27. Theorems 14 and 15 continue to hold when prBPPSAT
|| is replaced by learn-

and-evaluate protocols.

Proof. The proof follows closely that of Theorems 14 and 15 but uses the generator Hdet
of Lemma 26 instead of Lemma 13. For the reconstructor’s running time, since we pick
n = poly(m), we can upper bound the running time of Leak (which equals the algorithm
Learn of Lemma 26) and the leakage-receiving protocol (which invokes Peval n times) by nc

for some constant c. The bound on the leakage is calculated in the exact same way. ◀

As a consequence, we obtain equivalence between hardness on almost-all inputs against
polynomial-time learn-and-evaluate protocols and leakage-resilient hardness on almost-all
inputs against prBPPSAT

|| . For simplicity, we state the result for classes C such that PC ⊆ C,
but it holds for Σ2 as well.

▶ Corollary 28. Let C be a complexity class such that PC ⊆ C. There exists a constant c such
that the following are equivalent for all 0 < ϵ < 1:
1. There exists a length-preserving function f ∈ C that is (nc, nϵ)-leakage-resilient hard on

almost-all inputs against learn-and-evaluate protocols.
2. There exists a length-preserving function f ∈ C that is (nc, nϵ)-leakage-resilient hard on

almost-all inputs against prBPPSAT
|| .

Proof. We start with the 1 =⇒ 2 implication. If 1 holds, then by Theorem 27 it follows that
prAM ⊆ C. This in turn implies 2 by Theorem 11. As for the other direction, if a function f

is not (nc, nϵ)-leakage-resilient hard on almost-all inputs against learn-and-evaluate protocols,
then it is also not (nc, nϵ)-leakage-resilient hard against prBPPSAT

|| since a prBPPSAT
|| algorithm

can use the SAT oracle to determine the output of the evaluation protocol. ◀

B Connection to non-uniform lower bounds

In this appendix, we prove Theorem 7, which establishes further equivalences between
whitebox and blackbox mild derandomization of prAM. In particular, we show that uniform
leakage-resilient hardness assumptions imply the Σ2E ̸⊆ NP/poly separation.

We start by presenting the equivalence between lower bounds for Σ2E against nondetermin-
istic circuits and against deterministic circuits with non-adaptive oracle access to SAT. Since
we only need this equivalence in the case of polynomial-size circuit lower bounds, we state it
in this setting.

FSTTCS 2023
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▶ Lemma 29 (Instantiation of [19, Theorem 3.2]). Σ2E ⊆ NP/poly if and only if Σ2E ⊆
PSAT

|| /poly.

Proof. The direction Σ2E ⊆ NP/poly =⇒ Σ2E ⊆ PSAT
|| /poly is trivial, so we focus on the

converse implication. Theorem 3.2 in [19] shows that if a low-degree extension ĝ with specific
parameters of a function g has non-adaptive SAT-oracle circuits of size s, then g itself has
nondeterministic circuits of size poly(s). Assume that Σ2E ⊂ PSAT

|| /poly. By a standard
argument, Σ2E/n ⊆ PSAT

|| /poly and there exists a constant c such that every language in
Σ2E/n has non-adaptive SAT-oracle circuits of size nc.

Let L ∈ Σ2E. By having as advice n bits describing the number of strings of length n

in L, a Σ2-machine can compute the characteristic function gL : {0, 1}n → {0, 1} of L by
guessing which strings of length n are in L and verifying each one in Σ2E, outputting 1 if and
only if the input string is in the list of guessed-and-verified strings. We then set parameters
exactly as in [19], that is, for a parameter r′ = 2(n + log (32n5c)), we set h = (4r′)2(9nc)4,
r = n/ log h + 3 and p to the smallest prime greater than or equal to 9hdr′ to obtain the
low-degree extension ĝ of g. With these parameters, it follows that the function ĝbool that
maps the binary representation of a y⃗ ∈ Fr

p and an index i ∈ [log p] to the i-th bit of ĝ(y⃗) is in
Σ2E/n. Together with the assumption on Σ2E, we have that ĝ has non-adaptive SAT-oracle
circuits of size s(n) = O(nc+1), and thus Theorem 3.2 in [19] guarantees that g (and thus L)
has nondeterministic circuits of size poly(s(n)) = poly(n). ◀

Now, we provide some intuition for the proof of Theorem 7. The first step is to understand
how lower bounds such as Σ2E ̸⊆ NP/poly imply leakage-resilient hardness. First, by
Lemma 29, the assumption implies also that Σ2E ̸⊆ PSAT

|| /poly. Define a function f that
maps every input x of length ℓ to the truth-table of a hard language L ∈ Σ2E. With ℓ

bits of advice (indicating how many strings of length ℓ are in L), this function can be
computed in Σ2-time 2O(ℓ). Assume, with the intent of deriving a contradiction, that f is not
locally leakage-resilient hard on almost-all inputs against prBPPSAT

|| . For each input x where
hardness fails, there exists a small leakage string a such that A(x, a) locally computes f .
That is, L ∈ BPPSAT

|| /poly and thus also in PSAT
|| /poly by Adleman’s argument [1]. As for the

other direction, by using the techniques developed in Section 4, we show that leakage-resilient
hardness is sufficient for obtaining the mild derandomization of item 1, and thus equivalent
to non-uniform lower bounds in the low end by [2].

We now detail how we prove Theorem 7. It is already known that items 1 and 2 are
equivalent by the main result of [2]. We show that 2 =⇒ 3 in Lemma 30, that 4 =⇒ 1 in
Lemma 31 and that 1 ⇐⇒ 5 in Lemma 33. The 3 =⇒ 4 implication is trivial.

We start by obtaining leakage-resilient hardness from the assumption Σ2E ̸⊆ NP/poly.

▶ Lemma 30. Assume Σ2E ̸⊆ NP/poly. Then for all ϵ > 0 there exists a relation R ∈
Σ2TIME[2nϵ ]/nϵ that is poly(n)-local (∞, poly(n))-leakage-resilient hard on all inputs of
infinitely-many input lengths against prBPPSAT

|| .

Proof. Let L ∈ Σ2E and fix ϵ > 0. We construct a function f from L such that, if f is
not hard as in the theorem statement, then L ∈ NP/poly. The existence of a hard relation
then follows. Define f as the function that maps any input x ∈ {0, 1}n to the truth-table of
L at input length nϵ/2. By having as advice the number N of strings of length nϵ/2 in L,
it is possible to compute this function in Σ2-time 2O(nϵ/2) ≤ 2nϵ for sufficiently large n by
guessing which N of the 2nϵ/2 strings of length nϵ/2 are in L and verifying those using the
linear-exponential time Σ2-algorithm for L. Note that since f(x) is constant for all inputs of
a given length, the same advice string applies to all such inputs.
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Now, assume that f is not poly(n)-local (∞, poly(n))-leakage-resilient hard on all inputs
of infinitely-many input lengths against prBPPSAT

|| . This means there exist a constant c, a
(potentially uncomputable) function Leak and a probabilistic algorithm A with non-adaptive
oracle access to SAT such that for almost-all input lengths n there exists x ∈ {0, 1}n such
that |Leak(x, f(x))| ≤ nc and A(x, Leak(x, f(x))) computes f(x) locally in time nc. By
providing x and a “good” leakage string a as advice, algorithm A(x, a) computes f locally
in time nc, and thus computes L at input length nϵ/2 in time poly(n). This implies that
L ∈ BPPSAT

|| /poly and thus L ∈ PSAT
|| /poly [1]. By Lemma 29, L ∈ NP/poly. ◀

Now, we show that a weaker hardness assumption, where the leakage-providing function
is computable in subexponential time, suffices to derandomize prAM.

▶ Lemma 31. If for all ϵ > 0 there exists a relation R ∈ Σ2TIME[2nϵ ]/nϵ that is poly(n)-local
(2nϵ

, poly(n))-leakage-resilient hard on all inputs of infinitely-many input lengths against
prBPPSAT

|| , then prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0.

Proof. The proof is almost identical to that of Theorem 15. Fix some ϵ > 0, the idea to
construct a targeted hitting-set generator is to, on input x ∈ {0, 1}m′ representing a circuit
Dx of size m for m′ = Θ(m log m), guess-and-verify a value y ∈ R(x) and instantiate the
generator Hdet of Lemma 13 with y and m. The process takes time 2O(mϵ) and requires
O(mϵ) bits of advice (for computing y ∈ R(x)). As with Theorem 15, there exist probabilistic
algorithms Leak and A with non-adaptive oracle access to SAT such that for any x ∈ {0, 1}n

representing a circuit Dx not hit by the generator there exists y ∈ R(x) for which the following
holds. On input (x, y), Leak runs in time 2O(nϵ) and produces poly(n) bits of leakage that,
when given as input to A, allow it to locally compute y in time poly(n, log (2nϵ)) = poly(n).

As the hardness assumption holds for every input of infinitely-many input lengths (and
R is total on the same input lengths), the targeted generator also works for infinitely-many
circuit sizes m, and thus the derandomization in the conclusion of the theorem follows along
the lines of Proposition 9 together with padding. ◀

Finally, we show that the weak derandomization assumption of item 1 in Theorem 7 is
equivalent to local leakage-resilient hardness against almost-maximal leakage. Before doing
so, we present a variant of Proposition 20 for derandomizations with advice that only work
for infinitely-many input lengths.

▶ Proposition 32. Assume that prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0. Then prBPPSAT
|| ⊆

io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0.

Proof (sketch). In [23, Lemma 38], it is shown that the hardness assumption Σ2E ̸⊆ NP/poly
implies that prBPPSAT

|| ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0 by using traditional hardness vs.
randomness tradeoffs in the blackbox setting [22]. As the premise prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ

implies that Σ2E ̸⊆ NP/poly, we are done. ◀

▶ Lemma 33. The following are equivalent:
1. prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ > 0.
5. For all ϵ > 0 and c ≥ 1 there exists a length-preserving relation R ∈ Σ2TIME[2nϵ ]/nϵ that

is nc-local (nc, ℓ(n))-leakage resilient hard on all inputs of infinitely-many input lengths
against prBPPSAT

|| , where nΩ(1) ≤ ℓ(n) ≤ ω(1) is polynomial-time computable.

Proof. The proof follows closely the arguments of Theorems 21 (in the derandomization-to-
hardness direction) and 15 (in the hardness-to-derandomization direction).
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In the derandomization-to-hardness direction, recall that the proof of Theorem 21 shows
that for every constant c, checking whether a value y is (nc, n − ω(1)) leakage-resilient hard
for a string x (w.r.t. the first few algorithms) can be done in prBPPSAT

|| . Such a value y

must also be nc−2-local leakage-resilient hard. Otherwise, we could amplify the algorithm
A that locally computes y so that it outputs every bit of y correctly with high probability
and obtain an algorithm that computes y in its entirety in time nc. Fix some ϵ > 0. By the
derandomization assumption and Proposition 32, the check can be replaced by a Σ2TIME[2nϵ ]
algorithm with nϵ bits of advice that is guaranteed to work on infinitely-many input lengths.
By guessing a value of y and running the Σ2 verification, we obtain a relation R that is
defined and hard for all inputs of infinitely-many input lengths.

The hardness-to-derandomization direction follows Theorem 15 even more closely. The-
orem 15 establishes the hardness-to-targeted-derandomization connection on an instance-wise
basis, i.e., the targeted generator hits every co-nondeterministic circuit Dx described by a
padded string x′ for which the hardness assumption holds. Since hardness holds for all inputs
of infinitely-many input lengths, we obtain a targeted generator that works for infinitely
many circuit sizes, which as in Lemma 31 suffices to obtain the derandomization result. ◀

We remark that due to the gap between the length of a solution y ∈ R(x) and the
leakage-resilient hardness in items 3 and 4 together with the sub-optimal scaling of the RMV
reconstructor (Lemma 26) when compared to the SU reconstructor (Lemma 13), this result
does not extend to hardness against learn-and-evaluate protocols.
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