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Abstract
A tournament is a complete directed graph. It is well known that every tournament contains at least
one vertex v such that every other vertex is reachable from v by a path of length at most 2. All such
vertices v are called kings of the underlying tournament. Despite active recent research in the area,
the best-known upper and lower bounds on the deterministic query complexity (with query access
to directions of edges) of finding a king in a tournament on n vertices are from over 20 years ago,
and the bounds do not match: the best-known lower bound is Ω(n4/3) and the best-known upper
bound is O(n3/2) [Shen, Sheng, Wu, SICOMP’03]. Our contribution is to show tight bounds (up to
logarithmic factors) of Θ̃(n) and Θ̃(

√
n) in the randomized and quantum query models, respectively.

We also study the randomized and quantum query complexities of finding a maximum out-degree
vertex in a tournament.
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1 Introduction

A tournament is a complete directed graph. Many important properties of tournaments were
studied by Landau [18] in the context of modelling dominance relations among a flock of
chickens. Relevant to our paper is the notion of a king in a tournament. This notion was
defined by Maurer [19], also with the goal of identifying a reasonable measure of dominance
to identify a “most dominant” chicken in a flock. Soon after Maurer’s article, Reid [22]
showed existence of tournaments in which all vertices are kings. Tournaments also arise
naturally in social choice theory where directions of edges depict preferences. A large amount
of work has been devoted to defining a notion of a “winner” in a tournament, and determining
the complexity of finding such winners. For instance, Dey [11] studied the complexity of
certain tournament solutions with motivations from social choice theory. The monograph by
Moon [20] sparked a line of research on tournaments and their structural properties.

A natural computational model to study the complexity of computing specific properties
of a tournament, or more generally, a graph, is that of query complexity. In this setting an
algorithm may query presence/directions of edges in an unknown input graph. The goal is
to minimize the number of such queries made in the worst case. There is a rich literature on
query complexity of graph problems, starting over 50 years ago [24, 23, 28, 15, 9, 12, 10, 11].
The famous Aanderaa-Karp-Rosenberg conjecture [24] or evasiveness conjecture posits that
the query complexity of any non-trivial monotone graph property on n-vertex graphs has
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30:2 Randomized and Quantum Query Complexities of Finding a King in a Tournament

maximal deterministic query complexity, i.e.,
(

n
2
)
. While the deterministic and randomized

variants of this conjecture are wide open, the quantum version was recently resolved in the
positive [1] using Huang’s breakthrough resolution of the sensitivity conjecture [16].

Our work deals with the query complexity of certain graph problems. In the next section,
we describe the main graph problem of interest to us, and prior work on it.

1.1 Related work
It is well known that every tournament has at least one vertex v such that every other vertex
is reachable from v via a path of length at most 2 (see Lemma 4 for a proof). Such a vertex
v is called a king in the underlying tournament. Formally, one may define the following
relation that captures this definition.

▶ Definition 1 (Kings in a tournament). Let T be a complete directed graph on n vertices.
Identify the orientation of the tournament with a string T in {0, 1}(

n
2), one variable ({i, j}

with i ̸= j ∈ [n]) per edge (between vertex i and vertex j) defining its direction. Define the
relation KINGn ⊆ {0, 1}(

n
2) × [n] by

(T, v) ∈ KINGn if ∀u ∈ [n], either v → u or ∃w such that v → w → u.

Here the directions of the edges v → u and v → w → u are as in T .

A natural question arises: what is the query complexity of finding a king in an n-vertex
tournament? The study of this was initiated by Shen, Sheng and Wu [25]. They showed an
algorithm with query complexity O(n3/2) and also showed a non-matching lower bound of
Ω(n4/3). For the upper bound, they crucially used the fact that a king in an in-neighbourhood
of an arbitrary subset of vertices is also a king in the original tournament (see Lemma 5).
An outline of their upper bound is as follows: first arbitrarily choose a sub-tournament
of a fixed size and find the maximum-out-degree vertex in it by querying all edges in this
sub-tournament. Remove this vertex along with its out-neighbours, and proceed iteratively.
When the number of remaining vertices is small enough, find a king using brute force (query
all the edges in the remaining sub-tournament). Simple manipulation of parameters gives
an upper bound of O(n3/2). For the lower bound they design an adversary who answers
an algorithm’s queries using a fixed strategy, and show that every algorithm must make
Ω(n4/3) queries in the worst case. Ajtai et al. [3] independently showed the same bounds, in
a different context. Despite active recent research in the area (see the next paragraph), these
bounds from over 20 years ago remain state-of-the-art. It can be shown that a vertex with
maximum out-degree is a king (see Lemma 4 and its proof). However, finding a vertex with
maximum out-degree is known to be hard: it has deterministic query complexity Ω(n2) [4].

Biswas et al. [6] recently showed that the adversary used by [3, 25] to show an Ω(n4/3)
lower bound cannot be used to prove a stronger lower bound. They additionally showed a
query complexity upper bound of O(n4/3) on finding a vertex from which at least half of
all vertices are reachable by paths of length at most 2. They also considered variants of
kings, and the complexity of finding such vertices. In a more recent work, Lachish, Reidl and
Trehan [17] showed an O(n4/3)-query algorithm to find a vertex from which at least ( 1

2 + 2
17 )

of the vertices are reachable by paths of length at most 2.

1.2 Our contributions
While the question of pinning down the deterministic query complexity of finding a king has
been open and unimproved since the work of Shen, Sheng and Wu [25], the corresponding
question in the randomized and quantum query models does not seem to have been studied in
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the literature. Our contribution is to give tight bounds in these models. We refer the reader
to Section 2 for a formal description of these models. Let R(·) and Q(·) denote bounded-error
randomized and quantum query complexity, respectively. Our main theorems are as follows.

▶ Theorem 2. For all positive integers n,

R(KINGn) = O(n log logn), R(KINGn) = Ω(n),
Q(KINGn) = O(

√
n polylog(n)), Q(KINGn) = Ω(

√
n).

We mentioned earlier that a vertex of maximum out-degree in a tournament is a king, and
finding a vertex of maximum out-degree is known to have deterministic query complexity
Ω(n2). We show that even the randomized query complexity is Ω(n2), and we also show
bounds for the quantum query complexity of this task. Define the relation MODn ⊆
{0, 1}(

n
2) × [n] to consist of the elements (T, v) where v is a maximum out-degree vertex in

the n-vertex tournament described by T .

▶ Theorem 3. For all positive integers n,

R(MODn) = Θ(n2), Q(MODn) = O(n3/2), Q(MODn) = Ω(n).

We suspect that Q(MODn) = Θ(n3/2), but we leave open the problem of closing the gap
between the upper and lower bounds in the quantum setting.

Sketch of randomized upper bound for finding a king. As mentioned in Section 1.1,
the upper bound of Shen, Sheng and Wu crucially uses the fact that a king in the in-
neighbourhood of an arbitrary vertex is also a king in the original tournament (Lemma 5). A
simple counting argument shows that a uniformly random vertex in an n-vertex tournament
has out-degree Ω(n) with high probability. This suggests a natural randomized iterative
algorithm: in each step sample a few vertices and query all edges incident on them, until a
vertex with large out-degree in the current sub-tournament is seen. We then remove this
vertex along with all its out-neighbours from the tournament, and iterate. Since a random
vertex has out-degree that is linear in the number of vertices with high probability, this
process results in a small sub-tournament (with at most

√
n vertices) after O(logn) iterations.

At this point we can afford to query the entire remaining sub-tournament to find a king in
it, and it can be shown by applying Lemma 5 iteratively that this vertex is also a king the
original tournament.

Sketch of quantum upper bound for finding a king. Our quantum algorithm follows the
same structure as our randomized one, but we run into some issues during a naive simulation.
The following are the issues, along with how we handle them:

When trying to sample a vertex with high out-degree, we cannot afford to query all edges
incident on a vertex to compute its out-degree since our algorithm needs to have query
complexity essentially O(

√
n). To circumvent the need of querying all edges incident on

a vertex to compute its in-degree, we use the subroutine of approximate counting [8] that
returns an approximation of the in-degree but offers a quadratic speedup. It may seem
like one could use a classical algorithm for approximate counting here, but such a classical
sampling-based algorithm would require Ω̃(n) queries if the number of in-neighbours is
small, say polylog(n) (see the fourth bullet as to why such a case may arise).
A second issue that arises is when we need to sample a vertex from the current sub-
tournament. It is no longer clear how to do this in the quantum setting since we do not
explicitly know the vertices remaining. However, we keep track of the set of vertices W

FSTTCS 2023
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whose out-neighbours have effectively been removed in previous iterations. The number
of iterations of the algorithm, and hence the size of W , is bounded by O(logn). We
then use key properties of Grover’s search algorithm: first set up a uniform superposition
over all vertices. Next we “mark” the vertices in the current sub-tournament (call such
vertices “good”) using O(logn) queries: for a given vertex we only need to check if it is an
out-neighbour of any of the vertices in W . Making these queries in superposition allows
us to mark the good vertices in O(logn) queries. We then apply the Grover iterate a
suitable number (at most O(

√
n)) of times. At this point we make a measurement in the

computational basis: by the correctness of Grover’s algorithm, the probability of seeing
a good vertex (i.e., a vertex in the current sub-tournament) is large. The structure of
Grover’s algorithm implies that conditioned on not seeing a bad vertex, each good vertex
is seen with equal probability. This effectively simulates sampling a uniformly random
vertex from the current sub-tournament.
Having sampled a vertex v from the in-neigbourhood of W , the randomized algorithm
next computes the out-degree of v in the in-neighbourhood of W . We cannot afford to do
this exactly since we do not explicitly know the in-neighbourhood of W , and moreover
it may be very large. We are able to get around this using similar ideas to that in the
previous bullet.
Finally, it is no longer clear how to do the final brute-force step in the last remaining
sub-tournament since we do not explicitly know the remaining

√
n vertices. To handle

this, we first modify the randomized algorithm so as to only have O(polylog(n)) vertices
remaining in this “brute-force” step, while still having only O(logn) iterations overall.
Thus, the query complexity so far is still Õ(

√
n). We can then use Grover’s search

repeatedly (or an improvement thereof, Theorem 11) to find all the remaining vertices
with high probability in Õ(

√
n) queries. At this point we can find a king in the remaining

sub-tournament using O(polylog(n)) queries. By the same argument as in the randomized
case, this vertex is also a king in the original tournament.

Sketch of lower bounds for finding a king. To show our lower bounds, we restrict our
attention to a special class of tournaments, described below. Fix an arbitrary tournament
T on n vertices where vertex n is a source. This immediately implies that vertex n is the
unique king. For each i ∈ [n− 1], define the tournament Ti to be T with edges incident on
vertex i flipped so as to make vertex i the source. Note that these sets of edges are disjoint
for every i ̸= j. If we assign one variable to each such set and promise that at most one of
them has value 1 (i.e., has edges in the opposite direction from those in T ), an algorithm that
finds a king in these tournaments (which are unique by construction) also solves the Search
problem on n− 1 input variables. Our lower bounds of Ω(n) and Ω(

√
n) on the randomized

and quantum query complexities, respectively, then immediately follow from corresponding
well-known lower bounds on the complexity of the Search problem.

Sketch of bounds for finding a maximum out-degree vertex. In the randomized setting,
we use Yao’s minimax principle (Lemma 21). By this principle, it suffices to exhibit a hard
distribution on input tournaments such that any deterministic algorithm with small query
complexity must make large error when inputs are drawn from this distribution. We now
describe the distribution: fix an n-vertex regular tournament, say T with n odd and each
vertex having out-degree exactly (n−1)/2 (such a tournament is easy to construct iteratively,
for example) and flip a uniformly random edge of T . This causes a unique vertex of the
new tournament to be a maximum out-degree vertex. Intuitively, finding this vertex is as
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hard as finding the edge that has been flipped, and it is well known that searching for a
marked element among k elements has randomized query complexity Ω(k). We formalize
this argument in Theorem 20. Our quantum lower bound uses similar ideas, and involves a
reduction from the Search problem on an

(
n
2
)
-bit string, which has quantum query complexity

Ω(n) [7]. For the quantum upper bound, we use a maximum finding routine over the degrees
of the vertices. Each degree can be computed using n− 1 queries, and the maximum can be
found in O(

√
n) queries [13], giving us an O(n3/2) upper bound.

2 Preliminaries

All logarithms in this paper are base 2. We use the notation polylog(n) to denote a quantity
that is logc n for a constant c > 0 (independent of n). For a positive integer n, we use the
notation [n] to denote the set {1, 2, . . . , n}. For an event X, let I[X] denote the indicator of
X, i.e., I[X] = 1 if X occurs, and I[X] = 0 if X does not occur.

2.1 Tournaments
A tournament T on a vertex set V is a complete graph such that each edge is directed.
Throughout this paper, unless mentioned otherwise, we consider tournaments T on n vertices
and denote the vertex set by V = [n]. Such a tournament has

(
n
2
)

directed edges. We identify
an n-vertex tournament with a binary string in {0, 1}(

n
2): an element of [n] corresponds to the

label of a vertex, and there is one variable ({i, j} with i ̸= j ∈ [n]) per edge (between vertex
i and vertex j) that defines its direction. For a tournament T and vertex v ∈ V , let N−(v)
denote the set of in-neighbours of v, i.e., N−(v) = {u ∈ [n] \ {v} |u→ v is an edge in T}
and let N+(v) denote the set of out-neighbours of v (i.e., {u ∈ [n] \ {v} |v → u is an edge}).
Also, let d+(v) = |N+(v)| and d−(v) = |N−(v)| denote the out-degree and in-degree of v,
respectively. Since T is a tournament, d+(v) + d−(v) = (n − 1) for all v ∈ V . For S ⊆ V ,
let T [S] be the tournament induced on the vertices in S. For a subset W ⊆ V , define
W− = {v ∈ V | v → w is an edge for all w ∈W}. If W = ∅ then define W− = V . A vertex
v ∈ V is a king if every vertex in V \{v} is reachable from v by a path of length at most 2. This
is formally captured in Definition 1 and repeated below for convenience. Define the relation
KINGn ⊆ {0, 1}(

n
2)×[n] by (G, v) ∈ KINGn if ∀u ∈ [n]\{v} , either v → u or ∃w : v → w → u.

Here the directions of the edges v → u and v → w → u are as in the tournament G. A
well-known fact about tournaments is that every tournament has a king. We give a proof for
completeness.

▶ Lemma 4 (Folklore). Let T ∈ {0, 1}(
n
2) be a tournament. Then there exists a vertex v ∈ [n]

such that (T, v) ∈ KINGn.

Proof. Consider a vertex v of maximum out-degree. We show that such a vertex is a king.
Consider the partition of V into three disjoint sets: {v}, N+(v) and N−(v). Clearly, every
vertex in N+(v) is at a distance at 1 from v. Towards a contradiction, assume that there
is a vertex w in N−(v) such that there is no path of length 2 of the form v → u→ w, for
some u ∈ N+(v). Thus every vertex in N+(v) is an out-neighbour of w. Since v is also an
out-neighbour of w, the out-degree of w is greater than that of v, which is a contradiction. ◀

The above lemmas shows that any vertex with maximum out-degree in a tournament is a
king in that tournament. However, as discussed in Section 1.1, finding a vertex of maximum
out-degree is known to be hard. We need the following result due to [19].

FSTTCS 2023
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▶ Lemma 5 ([19]). Let T ∈ {0, 1}(
n
2) be a tournament and v ∈ [n]. If a vertex u in N−(v)

is a king in T [N−(v)], then u is a king in T .

The proof of the above lemma is easy: If u is a king of the tournament T [N−(v)], then
every vertex in N−(v) is at a distance at most 2 from u. Also, since u is an in-neighbour of v,
every vertex in N+(v) is at a distance 2 from u. We also need the following lemma from [19].

▶ Lemma 6 ([19]). Let T ∈ {0, 1}(
n
2) be a tournament.

∑n
i=1 d

+(i) =
∑n

i=1 d
−(i) =

(
n
2
)
.

We also need the following observation on the structure of a tournament (see e.g., [4]).

▶ Lemma 7. Let T ∈ {0, 1}(
n
2) be a tournament and k ≥ 0. Then, the number of vertices v

such that d+(v) ≤ k is at most 2k + 1.

2.2 Query complexity
A deterministic decision tree T on m variables is a binary tree where the internal nodes are
labeled by variables and leaves are labeled with elements of a set R. Each internal node has a
left child, corresponding to an edge labeled 0, and a right child corresponding to an edge labeled
1. On an input x ∈ {0, 1}m, T ’s computation traverses a path from root to leaf as follows. At
an internal node, the variable associated with that node is queried: if the value obtained is 0,
the computation moves to the left child, otherwise it moves to the right child. The output of
T on input x, denoted by T (x), is the label of leaf node reached. We say that a decision tree T
computes the relation f ⊆ {0, 1}m×R if (x, T (x)) ∈ R for all x ∈ {0, 1}m. The deterministic
query complexity of f , is D(f) := minT :T computes f depth(T ). A randomized decision treeA is
a distribution DA over deterministic decision trees. On input x ∈ {0, 1}m, the computation of
A proceeds by first sampling a deterministic decision tree T according to DA, and outputting
the label of the leaf reached by T on x. We say A computes f with bounded error if for every
input x, Pr[(x,A(x)) ∈ R] ≥ 2/3. The randomized query complexity of f ⊆ {0, 1}m ×R is
defined as follows. R(f) = min A computing f

with error ≤1/3
maxT :DA(T )>0 depth(T ).

2.3 Preliminaries for quantum query complexity
We refer the reader to [21, 26] for basics of quantum computing. A quantum query algorithm
A computing a relation f ⊆ {0, 1}m × R begins in an input-independent initial state
|ψ0⟩, applies a sequence of unitaries U0, Ox, U1, Ox, · · · , UT , and performs a measurement.
Here, the unitaries U0, U1, . . . , UT are independent of the input. The unitary operation Ox

represents the “query” operation, and maps |i⟩|b⟩ to |i⟩|b ⊕ xi⟩ for all i ∈ [m] and |0⟩ to
|0⟩. We say that A is a bounded-error algorithm computing f if for all x ∈ {0, 1}m, the
probability of outputting b ∈ R such that (x, b) ∈ f is at least 2/3. The bounded-error
quantum query complexity of f , denoted by Q(f), is the least number of queries required for
a quantum query algorithm to compute f with error at most 1/3.

We also need some basic notions from Grover’s search algorithm [14], a fundamental
quantum algorithm, referring the reader to [26, Chapter 7] for more details. In the search
problem, a quantum algorithm is given quantum query access to a string x ∈ {0, 1}n. It is
convenient to work with the “phase-query” unitary Ox,± which satisfies Ox,±|i⟩ = (−1)xi |i⟩.
The goal is to find an i ∈ [n] such that xi = 1 with probability at least 2/3 if such an i exists,
otherwise return that there is no such element. An i which satisfies xi = 1 is also called a
marked element and thus the goal is to find a marked element with high probability, if such
an element exists.
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Let t := |{i ∈ [n] : xi = 1}|. Grover’s algorithm starts with the uniform superposition
|U⟩ = 1√

n

∑n
i=1 |i⟩, and proceeds by applying Grover’s iterate (which is an application of

Ox,± followed by a reflection about |U⟩) several times. After k applications of Grover’s
iterate the resulting state is

sin((2k + 1)θ)
∑

i:xi=1
|i⟩+ cos((2k + 1)θ)

∑
i:xi=0

|i⟩, (1)

where θ = arcsin(
√
t/n). It is known that Grover’s algorithm finds a marked element in x

(if it exists) with O(
√
n) applications of the query oracle Ox,±, and probability at least 2/3.

Standard error reduction yields the following theorem.

▶ Theorem 8. Given query access to x ∈ {0, 1}n, there is a quantum algorithm that decides
whether the Hamming weight of x is 0 or returns an i ∈ [n] such that xi = 1, with error at
most δ. The query complexity of this algorithm is O(

√
n · log(1/δ)).

Grover’s algorithm is known to be asymptotically optimal.

▶ Theorem 9 ([7]). A quantum algorithm that solves the Search problem with error 2/5 on
n-bit inputs must have query complexity Ω(

√
n), even when the inputs are promised to have

Hamming weight either 0 or 1.

The following theorem, due to Dürr and Høyer [13], is a generalization of Grover’s search
algorithm, to find the maximum number in an input list.

▶ Theorem 10 ([13]). Let T be an unsorted table of n items. There exists a quantum query
algorithm of cost O(

√
n) that has query access to T and returns the maximum element of T

with probability at least 2/3.

We require the following theorem, essentially due to Boyer et al. [7].1

▶ Theorem 11 ([7]). Given query access to x ∈ {0, 1}n with |x| ≥ k, there is a quantum
algorithm that outputs, with query complexity O(

√
(n/k) log(1/δ)) and error probability at

most δ, an index i ∈ [n] with xi = 1.

We obtain the following immediate corollary by repeating the algorithm in Theorem 11 k
times and updating the “marked” elements after each application.

▶ Corollary 12. Given an input parameter k and query access to x ∈ {0, 1}n, there is a
quantum algorithm that does the following with query complexity O(

√
nk log log(n)) and error

probability at most 1/polylog(n):
If |x| ≥ k, it returns k distinct indices i1, . . . , ik ∈ [n] such that xij

= 1 for j ∈ [k].
If |x| < k, it outputs all indices i with xi = 1, along with the information that |x| < k.

Our quantum algorithm also uses quantum approximate counting as a sub-routine. Here,
an algorithm is given query access to a string x ∈ {0, 1}n. The indices i ∈ [n] such that
xi = 1 are again called “marked”. For an input parameter ε the goal of the algorithm is to
output a multiplicative (1 ± ε)-approximation of the number of marked indices of x. An
optimal quantum algorithm for approximate counting was first given by Brassard et al. [8].
We use a version due to Aaronson and Rall [2].

1 Their bound is for bounded-error algorithms and does not have polylogarithmic factors in the query
complexity. Standard error reduction gives us Theorem 11.
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▶ Theorem 13 ([2]). There exists a quantum algorithm that, given ε > 0 and query
access to a string x ∈ {0, 1}n, outputs an estimate K̃ of K = |{i : xi = 1}| such that
K(1 − ε) ≤ K̃ ≤ K(1 + ε) with probability at least (1 − δ). The query complexity of this
algorithm is O(

√
n/K · 1/ε · log(1/δ)).

3 Randomized algorithm

Throughout this section and the next, unless mentioned otherwise, a tournament T is assumed
to be in {0, 1}(

n
2), and its vertex set is denoted by V = [n]. Query algorithms are assumed

to have classical/quantum query access to the edge directions of T , that is, the individual
bits of the corresponding

(
n
2
)
-bit string.

In this section we give a randomized algorithm for finding a king in a tournament
T ∈ {0, 1}(

n
2) with query complexity O(n log logn) and success probability at least 2/3. First,

we make the following simple observation, which shows that a randomly chosen vertex from
V = [n] has a large number of out-neighbours with high probability.

▶ Lemma 14 (Out-degree of a random vertex is large). For all positive integers n, a tournament
T ∈ {0, 1}(

n
2) and a vertex v ∈ V chosen uniformly at random, d+(v) ≥ ⌊(n − 1)/5⌋ with

probability at least 3/5.

Proof. From Lemma 7, |{v ∈ V | d+(v) < ⌊(n−1)/5⌋}| ≤ 2((n−1)/5−1)+1 = (2n−7)/5 <
2n/5. Thus, the fraction of vertices with out-degree at least ⌊(n− 1)/5⌋ is at least 3/5. ◀

Lemma 14 suggests a natural randomized query algorithm, given in Algorithm 1. We
show in Theorem 15 that the algorithm makes O(n log logn) queries to T in the worst case,
and returns a king with probability at least 2/3.

Algorithm 1 Randomized Query Algorithm.

1: Input: Query access to edge directions of a tournament T ∈ {0, 1}(
n
2) where V = [n].

2: while |V | ≥
√
n do

3: t← |V |, k ← ⌈log logn⌉
4: v1, . . . , vk ←vertices chosen uniformly at random from V

5: w ← arg maxu∈{v1,...,vk} d
+(u) ▷ querying all edges incident on

{v1, . . . , vk} in T [V ] and breaking
ties arbitrarily

6: if d+(w) = t− 1 then
7: Return w

8: else if d+(w) < ⌊(t− 1)/5⌋ then
9: Return a random vertex v ∈ V

10: else ▷ ⌊(t− 1)/5⌋ ≤ d+(w) < t− 1 here
11: V ← N−(w) ▷ This is the in-neighbourhood of w

in the set V , and not in the whole
vertex set [n].

12: continue
13: end if
14: end while
15: w ← a king in T [V ] ▷ query all edges in the

sub-tournament T [V ]
16: Output w
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▶ Theorem 15. Let n > 0 be a positive integer. Then, R(KINGn) = O(n log logn).

Proof. Consider Algorithm 1. We first analyze the query cost of the algorithm. For the
correctness, we define “bad events”, argue correctness of the algorithm conditioned on no
bad event occurring, and then upper bound the probability of a bad event happening.

Query complexity. In order to upper bound the query complexity, first note that each
iteration of the while loop (Line 2) uses k · |V | ≤ |V | log logn queries in the worst case.
Furthermore, the while loop goes into the next iteration (Line 12) if and only if |V | >

√
n

(Line 2) and a vertex w of out-degree at least ⌊(t − 1)/5⌋ has been found in Line 5 (see
comment on Line 10). This means that the size of the vertex set reduces by a factor of
at least 4/5 in the next iteration of the while loop. In particular, this means in the i’th
iteration of the while loop, we have |V | ≤ (4/5)i · n, and thus there are O(logn) iterations
of the while loop in the worst case. Finally, Line 15 accounts for at most O(n) queries since
|V | <

√
n here. The worst-case query complexity is thus upper bounded by

n+
O(log n)∑

i=0

(
4
5

)i

· n ·O(log logn) = O(n log logn).

Bad event, and correctness assuming no bad event. The event of Line 9 occurring
during the run (i.e., Line 8 being triggered in any iteration) is defined to be the bad event.
Conditioned on the bad event not occurring, the algorithm either terminates on Line 7 or
Line 16. Clearly when the algorithm terminates on Line 7 or Line 16, the output vertex is
a king in the sub-tournament being considered at the moment. If the while loop has not
even completed once, the current sub-tournament is the same as the original tournament,
and we are done. If the while loop has completed at least once, the sub-tournament being
considered at the moment is the sub-tournament of a tournament T ′ (which itself may be
a sub-tournament of T ) induced by the in-neighbourhood of a specific vertex. Applying
Lemma 5, we conclude that the king in the current sub-tournament is also a king in T ′, and
also the whole tournament by applying Lemma 5 repeatedly now. Hence conditioned on the
bad event not occurring, the algorithm indeed outputs a correct answer.

Probability of bad event. From Lemma 14, the probability that Line 8 is run in an iteration
is at most (2/5)k ≤ 1/ loglog 2.5 |V | ≤ 1/ log1.3 n. By a union bound, the probability that
Line 8 gets executed in any of the O(logn) iterations is at most O(logn)/ log1.3(n) = o(1). ◀

4 Quantum algorithm

For W ⊆ [n] and v ∈ V , we can decide whether v is an out-neighbour of any w ∈ W by
making |W | queries, by checking xwv for all w ∈W . Similarly, |W | queries are sufficient to
decide whether v is an in-neighbour of some vertex w ∈W . This simple classical algorithm
can easily be simulated in the quantum setting, which gives us the following observation.

▶ Observation 16. For a tournament T ∈ {0, 1}(
n
2) and a known subset of the vertices

W ⊆ V , there exists a unitary transformation that maps the basis state |v⟩ to (−1)I[v∈W −]|v⟩
using |W | queries to T . In other words, there is a unitary transformation that has query cost
|W | and “marks” vertices in W−.

Before proving the main theorem of this section, we give two lemmas (proven in the
appendix). The algorithm in these lemmas will be used in the proof of the main theorem.
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▶ Lemma 17. Let T ∈ {0, 1}(
n
2) be a tournament, W ⊆ V and t = Θ(log logn) be an integer.

There exists a quantum algorithm In-Sample(T,W, t), Algorithm 2, that with error probability
at most 1/(polylog(n)), returns a set of uniformly distributed and independent samples from
W− of size t. The query complexity of this algorithm is O(|W | ·

√
n · polyloglog(n)).

Algorithm 2 The In-Sample(T, W, t) algorithm for sampling many uniformly independent samples
from a subset of vertices.

1: Input: Query access to the adjacency matrix of a tournament T ∈ {0, 1}(
n
2) where

V = [n], W ⊆ V such that |W−| ≥ log100 n, and t ∈ N such that t = Θ(log logn).
2: N ← 104n

3: |ϕ⟩ ←
∑N

i=1
1√
N
|i⟩ ▷ |ϕ⟩ is used as the starting state in

Line 8 and Line 14 with vertices in
W− ⊆ [n] marked (by first checking
if j ∈ [N ] satisfies j ≤ n, and
marking such a j using |W | queries).

4: if W = ∅ then
5: S ← t samples from uniform superposition over V
6: Return S

7: else
8: w̃ ← estimate of |W−| from Theorem 13 with ε = 1/100, δ = 1/polylog(N) =

1/polylog(n).
9: w′ ← ⌊w̃/2⌋

10: k̃ ←
⌊(

π

400 arcsin
√

w′/N
+ 1

2

)⌋
11: R← ∅
12: count← 0
13: while count < O(t polyloglog(n)) do
14: |ψi⟩ ← state obtained by applying Grover’s iterate k̃ times on |ϕ⟩, with vertices

in W− being the marked elements
15: vi ← measurement outcome of |ψi⟩ in computational basis
16: if vi ∈W− then ▷ query edges between vi and W

17: R← R ∪ {vi}
18: end if
19: count← count + 1
20: if |R| = t then ▷ If we have collected enough samples
21: Return R ▷ This is a set of uniformly

distributed and independent samples
from W− of size t (See Lemma 17)

22: end if
23: end while
24: end if
25: Return [t] ▷ The algo makes error in this case.

▶ Lemma 18. Let T ∈ {0, 1}(
n
2) be a tournament, W be a subset of V satisfying |W−| ≥

log100 n and u be a vertex in V . There exists a quantum algorithm Decide-High-Out-
Degree(T,W, u), Algorithm 3, that returns with error probability at most 1/(polylog(n)), True
if the out-degree of u in W− is at least |W−|/5 and False if the out-degree of u in W− is at
most |W−|/10. The query complexity of this algorithm is O(|W | ·

√
n polylog(n)).
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Algorithm 3 The Decide-High-Out-Degree(T, W, u) subroutine.

1: Input: Query access to the edge directions of a tournament T ∈ {0, 1}(
n
2) where V = [n],

W ⊆ V such that |W−| ≥ log100 n, and u ∈ V .
2: w̃1 ← estimate of |W−| using Theorem 13 with ε = 1/100, δ = 1/polylog(n).

▷ Since the algorithm is given W is
input, it can decide whether v ∈ W−

by making |W | queries.
3: w̃2 ← estimate of |N+(u) ∩W−| using Theorem 13 with ε = 1/100, δ = 1/polylog(n).

▷ Note that we do not have query
access to the presence/absence of
a vertex v in N+(u) ∩ W−. However
such a query can be implemented with
1 + |W | queries: check if v → u is
an edge, and check if v → w is an
edge for any w ∈W.

4: if w̃2/w̃1 ≥ 99/505 then
5: return True
6: else
7: return False
8: end if

We now show our main result of this section.

▶ Theorem 19. Let n > 0 be a positive integer. Then Q(KINGn) = O(
√
n polylog(n)).

Proof. Consider Algorithm 4. We first analyze the query cost of the algorithm. For the
correctness, we define “bad events”, argue correctness of the algorithm conditioned on no
bad event occurring, and then upper bound the probability of a bad event happening.

Query complexity. First we upper bound |W | at the end of the run of the algorithm. The
while loop in Line 3 runs for at most O(logn) iterations. The algorithm starts with W

initialized to ∅ and is updated only in Line 14 where one new element is added to W . Thus
we have |W | = O(logn).

Consider Line 5. Since |W | = O(logn) and k = log100 n, by Corollary 12 the number of
queries in this step is upper bounded by O(|W |

√
n polylog(n)) = O(

√
n polylog(n)), and

thus the overall cost of queries executed in this line over at most O(logn) iterations is also
O(
√
n polylog(n)).

In Line 9, the In-Sample algorithm (Algorithm 2) is called at most O(logn) times with
t = Θ(log logn) and |W | = O(logn). Thus by Lemma 17, the cost of this step is upper
bounded by O(|W |

√
n polylog(n)) = O(

√
n polylog(n)).

Now consider the for loop in Line 11. This loop is executed at mostO(logn) times and each
iteration of this loop invokes the algorithm Decide-High-Out-Degree, with |W | = O(logn), at
most |S| many times. Since |S| = O(polylog(n)) (see Lemma 17) the query cost in this loop
is upper bounded by O(|W | · |S| ·

√
n polylog(n)) = O(

√
n polylog(n)) in the worst case.

The only remaining step in Line 23. In this case, since |U | ≤ log100 n throughout the
algorithm, at most O(polylog(n)) queries are made.

Bad event, and correctness assuming no bad event. If any of the following events happen,
we say that a bad event has happened for Algorithm 4:
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(I) The algorithm in Corollary 12 which is used in Line 5 gives an incorrect answer.
(II) The algorithm In-Sample (Algorithm 2) in Line 9 fails to return a set of Ω(t) =

Ω(log logn) uniformly distributed and independent samples from W−.
(III) The set S obtained from In-Sample in Line 9 does not contain a vertex of out-degree

at least |W−|/5 in W−.
(IV) The algorithm Decide-High-Out-Degree (Algorithm 3) in Line 13 returns False.

We prove the correctness of the algorithm assuming that these bad events do not happen.
Consider the j’th iteration of the while loop in Line 3, for j ≥ 1, and let W (j) denote the
set W in this iteration. W (j) is updated only in Line 14 by a v which satisfies v ∈ (W (j))−.
This is because each vertex of the set S belongs to W− (see Line 16 of Algorithm 2). In
the next iteration of the while loop, (W (j+1))− is defined as (W (j))− ∩ N−(v). Thus by
applying Lemma 5 iteratively, (W (j+1))− contains a king in the tournament T [(W (j))−], and
hence a king in T .

Assuming that the bad events do not happen, we now argue that in O(logn) iterations
the size of W− becomes smaller than log100 n. In this case U = W− because of the property
of Corollary 12 used in Line 5, and the algorithm correctly returns the king in Line 23 by a
similar argument as in the previous paragraph by iteratively applying Lemma 5. The analysis
is similar to that of proof of Theorem 15. Since Decide-High-Out-Degree (Algorithm 3) in
Line 13 does not return False, the out-degree of v in (W (j))− must be at least |(W (j))−|/10.

Thus |(W (j+1))−| ≤ (9/10) · |(W (j))−|, and after O(logn) iterations the size of W− is
smaller than logn < log100 n.

Probability of bad event. The probability of events I, II, IV are each upper bounded by
O(1/polylog(n)) by Corollary 12, Lemma 17 and Lemma 18, respectively. The probability
of event III conditioned on II not happening is upper bounded by (2/5)Θ(log log(n)) =
O(1/polylog(n)), thus the probability of event III is upper bounded by O(1/polylog(n)). The
number of times that the events I, II, III can happen is at most O(logn), and IV can happen
is at most O(polylog(n)), a union bound implies the probability of a bad event happening is
upper bounded by O(1/polylog(n)). ◀

5 Lower bounds

We show our lower bounds in this section. We first show our lower bounds for the query
complexity of finding a vertex of maximum out-degree, and then our lower bounds for finding
a king in a tournament.

5.1 Maximum out-degree
We show in this subsection that the randomized query complexity of finding a vertex of
maximum out-degree in an n-vertex tournament is Ω(n2). This task is formally defined as
the relation MODn ⊆ {0, 1}(

n
2) × [n]: (G, v) ∈ MODn if d+(v) ≥ d+(w) ∀w ̸= v ∈ [n]. Here

the out-degrees of v, w are according to the tournament G.

▶ Theorem 20. For sufficiently large positive integers n, R(MODn) ≥ n2/100.

We use Yao’s minimax principle [27], stated below in a form convenient for us.

▶ Lemma 21 (Yao’s minimax principle). For a relation f ⊆ {0, 1}m×R, we have R(f) ≥ k if
and only if there exists a distribution µ : {0, 1}m → [0, 1] such that Dµ(f) ≥ k. Here, Dµ(f)
is the minimum depth of a deterministic decision tree that computes f to error at most 1/3
when inputs are drawn from the distribution µ.
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Algorithm 4 Quantum Algorithm.

1: Input: Query access to the edge directions of a tournament T ∈ {0, 1}(
n
2) with V = [n]

2: W ← ∅, t← Θ(log logn), and COUNT← O(logn)
▷ Recall that ∅− := V

3: while COUNT > 0 do
4: COUNT← COUNT− 1
5: U ← the output of the algorithm in Corollary 12 with the string in {0, 1}[n] as input

where indices corresponding to vertices in W− are equal to 1 (marked), and k = log100 n

▷ query access to this string can be
done using |W | edge queries to T

6: if |U | < log100 n then
7: break ▷ Go to Line 23
8: else
9: S ← In-Sample(T,W, t) ▷ We reach here if |W−| ≥ log100 n

(Line 7 gets executed otherwise)
10: S′ ← S

11: for v ∈ S do
12: S′ ← S′ \ {v}
13: if Decide-High-Out-Degree(T,W, v) == True then

▷ Decide-High-Out-Degree can be
applied since |W−| ≥ log100 n

14: W ←W ∪ {v}
15: break ▷ Go to Line 3
16: end if
17: if S′ == ∅ then
18: Return a random vertex v ∈ V
19: end if
20: end for
21: end if
22: end while
23: Return a king in U ▷ query all edges in T [U ]

Proof of Theorem 20. Assume without loss of generality that n is odd. We construct a hard
distribution µ on n-vertex tournaments. We show that any deterministic query algorithm
of cost less than n2/100 must make error at least 1/3 on inputs drawn from µ, and this
would prove the theorem by Yao’s principle (Lemma 21). Let G be a fixed n-vertex regular
tournament where every vertex has out-degree exactly (n− 1)/2 (such a tournament is easy
to construct, by induction, for example). The distribution µ is defined by taking G and
flipping the direction of a uniformly random edge. Note that all resultant tournaments have
a unique vertex with maximum out-degree.

Consider a deterministic query algorithm (decision tree) that queries less than n2/100
edges. Consider the leaf L of this tree for which answers of all queries on its path are
consistent with directions of edges in G. Say the label of this leaf is vertex i. Consider the
set S of all unqueried edges on the path to L that are not incident on vertex i. We have
|S| ≥

(
n
2
)
− n2

100 − (n− 1). For each e ∈ S, the graph Ge defined by flipping the direction of
e in G reaches the leaf L. Moreover, the unique maximum out-degree vertex of Ge is not
vertex i since e is not incident on i by the definition of S. This implies that the tree outputs
the wrong answer on Ge. By the definition of µ, we have µ(Ge) = 1/

(
n
2
)

for all e ∈ S. Thus,
the mass of inputs under µ on which the decision tree makes an error is at least
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∑
e∈S

µ(Ge) ≥
(

n
2
)
− n2

100 − n+ 1(
n
2
) >

97
100 >

1
3 ,

where the second-to-last inequality holds for sufficiently large n. Lemma 21 yields the
theorem. ◀

We now give our quantum bounds for MODn.

▶ Theorem 22. For all positive integers n, Q(MODn) = O(n3/2),Q(MODn) = Ω(n).

Proof. For the upper bound we apply the maximum finding subroutine in Theorem 10 to
the degree sequence of the input tournament. Finding the degree of a vertex (and hence a
query of the maximum-finding algorithm) can be done with n− 1 edge queries. Thus, this
algorithm has cost O(

√
n · (n− 1)) = O(n3/2).

For the lower bound, we give a reduction from the Search problem on an
(

n
2
)
-bit string.

As in the proof of the randomized lower bound, assume n is odd and let G be a fixed
n-vertex regular tournament where every vertex has out-degree exactly (n− 1)/2. Towards a
contradiction, suppose we have an algorithm A that finds a maximum out-degree vertex in
an n-vertex graph with query complexity o(n) and probability at least 2/3. We use A to
solve the Search problem on

(
n
2
)
-bit strings with the promise that the input has Hamming

weight at most 1. On input x ∈ {0, 1}(
n
2) with |x| ≤ 1, do the following:

1. Run the algorithm A on the tournament G⊕ x. Here G⊕ x denotes the bitwise XOR of
G and x. Suppose the output is v ∈ [n].

2. Run a (99/100)-error Search algorithm with query cost O(
√
n) on the n− 1 indices of x

that are indexed by pairs with one element as v (that is, indexed by the edges adjacent
to v in the corresponding tournament).

3. Output the index returned by the search algorithm.
The cost of this algorithm is clearly o(n) +O(

√
n). For the correctness, first note that when

|x| = 1 and G is such that all out-degrees are equal, the tournament G⊕ x has exactly one
maximum out-degree vertex. Thus, by the correctness of A, it outputs this vertex with
probability at least 2/3. Observe that the edge flipped in G⊕ x from G is adjacent to this
vertex. In the event that the first step outputs the correct vertex, the edge that has been
flipped in G⊕ x from G (i.e., the index {i, j} with x{i,j} = 1) is caught in the second step
with probability at least 99/100. Thus, this gives an algorithm solving the Search problem
on
(

n
2
)
-bit strings with the promise that the input has Hamming weight at most 1, with

success probability at least (2/3) · (99/100) > 3/5. The query cost of this algorithm is o(n)
from the first step, by our assumption, and O(

√
n) from the second step. Thus the total cost

is o(n), which is a contradiction in view of Theorem 9. ◀

We leave open the question of closing the gap in Theorem 22.

5.2 Finding a king
We show an Ω(n) lower bound for the randomized query complexity of finding a king in a
tournament, and an Ω(

√
n) quantum query lower bound. To show these lower bounds, we

restrict our attention on input tournaments of a particular structured form that have the
property that there is only one king (which is a source in the tournament). We then show a
lower bound on the randomized and quantum query complexities of finding a king in these
promised inputs, by a reduction from the Search problem on n− 1 variables with the promise
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that the input has Hamming weight either 0 or 1, for which we know an Ω(n) lower bound in
the randomized setting and an Ω(

√
n) lower bound in the quantum setting. Our reductions

use a simple modification of block sensitivity.
We require the following relation.

▶ Definition 23. Let n be a positive integer. Define the relation USEARCHn ⊆ {0, 1}n ×
{∅} ∪ [n] as (0n, ∅) ∈ USEARCHn and (x, i) ∈ USEARCHn when x = ei.

▷ Claim 24. Let n be a positive integer. Then,

R(KINGn) ≥ R(USEARCHn−1), Q(KINGn) ≥ Q(USEARCHn−1).

Proof. Consider an arbitrary input x ∈ {0, 1}(
n
2) such that the vertex n is the source. For

each j ∈ [n−1], let Vj ⊆
[(

n
2
)]

be the set of edges incident on vertex j that need to be flipped
in the input x to make vertex j the source. We first make the following two observations:

Vj ∩ Vk = ∅ ∀j ̸= k ∈ [n− 1],
n−1⋃
i=1

Vj =
[(
n

2

)]
. (2)

The first observation follows by considering an edge from vertex ℓ to vertex m. This edge only
appears in Vm. Clearly every edge belongs to exactly one Vj , proving the second observation.

Using these two observations, the input set {0, 1}(
n
2) can also be expressed as {0, 1}V1 ×

{0, 1}V2 × · · · × {0, 1}Vn−1 . For the remaining part of this proof we treat inputs to be of the
latter form. In fact, we only restrict our attention to the case where each coordinate in a
“block” has the same value.

For a string y ∈ {0, 1}n−1, define the tournament xy =
⊗n−1

i=1 y
Vi
i . Thus we have the

following tournaments when |y| ≤ 1:

xej
=
{

0V1 × · · · × 0Vj−1 × 1Vj × 0Vj+1 × · · · × 0Vn−1 y = ej−1

0V1 × · · · × 0Vn−1 y = 0n−1.

In other words, xej
equals the tournament x with variables in Vj flipped, and x0n−1 = x.

Note that vertex j is the source (and thus the unique king) in the tournament xej . Thus,
finding a king in the set of tournaments

{
xej

: j ∈ [n− 1]
}

is the same as finding a source
in these tournaments. Thus, a query algorithm finding a king in the restricted input set
xy : |y| ≤ 1 yields a query algorithm for USEARCHn−1 on input y, which proves the claim.

◁

From the well-known lower bounds of Q(USEARCHn−1) = Ω(
√
n) [5] and

R(USEARCHn−1) = Ω(n), we obtain our main theorem of this section.

▶ Theorem 25. Let n be a positive integer and KINGn ⊆ {0, 1}(
n
2) × [n]. Then,

R(KINGn) = Ω(n), Q(KINGn) = Ω(
√
n).
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A Proofs of Lemmas from Section 4

In this section we prove Lemma 17 and Lemma 18.

Proof of Lemma 17. Consider Algorithm 2. We first analyze the query cost of the algorithm.
For the correctness, we define “bad events”, argue correctness of the algorithm conditioned
on no bad event occurring, and then upper bound the probability of a bad event happening.

Query complexity. We upper bound the worst-case query complexity of the algorithm.
Line 8 of the algorithm case costs O(|W | ·

√
N · polylog(N)) from Theorem 13. The while

loop from Line 13 runs for O(t ·polyloglog(N)) = O(polyloglog(N)) times, and each Grover’s
iterate in each of these iterations makes O(|W | ·

√
N) queries in Line 14. Also, Line 16

uses |W | many queries. Thus, the overall query cost of the algorithm is upper bounded by
O(|W | ·

√
N · polyloglog(N)). Since N = 104n, we have an upper bound of O(|W | ·

√
n ·

polyloglog(n)).

Bad event, and correctness assuming no bad event. If the estimate in Line 8 is incorrect
or if the algorithm has reached Line 25 is not in W− then we say that a bad event has
occurred for Algorithm 2. We assume that these events have no happened. Thus the estimate
in Line 8 is correct then w̃ satisfies

|W−|(1− 1/100) ≤ w̃ ≤ |W−|(1 + 1/100).

Define w′ = ⌊w̃/2⌋, thus w′ satisfies the following equations.

|W−|/4 ≤ w′ ≤ |W−|,

1/2 ·
√
|W−|/N ≤

√
w′/N ≤

√
|W−|/N. (3)

Let x = |W−|/N . Since |W−| ≥ 0 and |W−| ≤ n, we have

0 ≤ x ≤ 1/104.

Let C = 1/104. For x ∈ [0,
√
C] and A ≥ 1 (whose value is to be fixed later), define

g(x) = A arcsin x/2− arcsin x.

The derivative of g is given by

g′(x) = A/2√
1− x2/4

− 1√
1− x2
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≥ A√
4− x2

− 1√
1− C

≥ A/2− 1√
1− C

.

Thus for A = 3
√

1− C the above derivative is positive for all x ∈ [0,
√
C]. Since g(0) = 0,

we have, for A arcsin x/2 ≥ arcsin x.
From monotonicity of arcsin in [0, 1] and Equation (3) we have

arcsin(1/2 ·
√
|W−|/N) ≤ arcsin(

√
w′/N) ≤ arcsin(

√
|W−|/N)

1/A · arcsin(
√
|W−|/N) ≤ arcsin(

√
w′/N) ≤ arcsin(

√
|W−|/N). (4)

In Line 10 we choose k̃ to be
⌊(

π

400 arcsin
√

w′/N
+ 1

2

)⌋
. From Equation (4) we have

(
π

400 arcsin
√
|W−|/N

+ 1
2

)
≤

(
π

400 arcsin
√
w′/N

+ 1
2

)

≤ (A+ 1) ·
(

π

400 arcsin
√
|W−|/N

+ 1
2

)
. (5)

which implies(
π

400 arcsin
√
|W−|/N

− 1
2

)
≤

⌊(
π

400 arcsin
√
w′/N

+ 1
2

)⌋

≤ (A+ 1) ·
(

π

400 arcsin
√
|W−|/N

+ 1
2

)
. (6)

From Equation (1), if we apply Grover’s iterate k times then the resulting state in Line 14 is
of the following form:

β
∑

v∈W −

|v⟩+
√

(1− β2)
∑

v∈W +

|v⟩, (7)

where β = sin((2k + 1) · arcsin
√
|W−|/N). From Equation (6) we have

π

200 ≤ (2k̃ + 1) · arcsin
√
|W−|/N ≤ (A+ 1) π

200 + (A+ 2) arcsin(
√
|W−|/N) < π/2,

where the last inequality follows due to the choice of A (A ≤ 3) and since
√
|W−|/N ≤ 1/100.

Thus after k̃ iterations, β2 = sin2((2k̃+ 1) · arcsin
√
|W−|/N) is a constant smaller than π/2.

Since we have assumed that the bad event in Line 25 has not occurred, this means that t
sample obtained is in W−. From Equation 7 each vertex in W− has an equal probability of
being sampled. Clearly, for different iterations of the while loop in Line 13 the samples are
independent. Also, in this case the algorithm returns in Line 21 after t iterations and hence
Ω(t) uniformly distributed and independent samples from W− are returned.

Probability of bad event. The probability of the bad event happening in Line 8 by
Theorem 13 is O(1/polylog(n)). To upper bound the probability of the algorithm reaching
Line 25, observe that with probability β2 = Ω(1) (see Equation (7)) a vertex sampled in
Line 15 is in the set W−. Thus the probability that after O(t polyloglog(n)), less than t

vertices are seen in W− is upper bounded by O(1/polylog(n)) by a Chernoff bound. ◀
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Proof of Lemma 18. Consider Algorithm 3. We first analyze the query cost of the algorithm.
For the correctness, we define a “bad event”, argue correctness of the algorithm conditioned
on the bad event not occurring, and then upper bound the probability of the bad event
happening.

Query complexity. The only queries used are in Line 2 and Line 3 of the algorithm. The
query cost of these steps are upper bounded by O(|W | ·

√
n · polylog(n)) by Theorem 13.

Bad event, and correctness assuming no bad event. The only bad event for Algorithm 3
are that either the estimates Line 2 or Line 3 is incorrect. Let us assume that the bad event
has not happened. Then

(1− 1/100)|W−| ≤ w̃1 ≤ (1 + 1/100)|W−|,

and

(1− 1/100)|N+(u) ∩W−| ≤ w̃2 ≤ (1 + 1/100)|N+(u) ∩W−|.

We have

99
101 ·

|N+(u) ∩W−|
|W−|

≤ w̃2

w̃1
≤ 101

99 ·
|N+(u) ∩W−|

|W−|
.

Thus if |N+(u)∩W−|/|W−| ≥ 1/5 then w̃2/w̃1 ≥ 99/505 and if |N+(u)∩W−|/|W−| ≤ 1/10
then w̃2/w̃1 ≤ 101/990.

Probability of bad event. By Theorem 13 and a union bound, the probability of the bad
event is upper bounded by O(1/polylog(n)). ◀
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