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Abstract
We investigate the randomized and quantum communication complexities of the well-studied Equality
function with small error probability ε, getting the optimal constant factors in the leading terms in
various different models.

The following are our results in the randomized model:
We give a general technique to convert public-coin protocols to private-coin protocols by incurring
a small multiplicative error at a small additive cost. This is an improvement over Newman’s
theorem [Inf. Proc. Let.’91] in the dependence on the error parameter.
As a consequence we obtain a (log(n/ε2) + 4)-cost private-coin communication protocol that
computes the n-bit Equality function, to error ε. This improves upon the log(n/ε3) + O(1) upper
bound implied by Newman’s theorem, and matches the best known lower bound, which follows
from Alon [Comb. Prob. Comput.’09], up to an additive log log(1/ε) + O(1).

The following are our results in various quantum models:
We exhibit a one-way protocol with log(n/ε) + 4 qubits of communication for the n-bit Equality
function, to error ε, that uses only pure states. This bound was implicitly already shown by
Nayak [PhD thesis’99].
We give a near-matching lower bound: any ε-error one-way protocol for n-bit Equality that uses
only pure states communicates at least log(n/ε) − log log(1/ε) − O(1) qubits.
We exhibit a one-way protocol with log(

√
n/ε) + 3 qubits of communication that uses mixed

states. This is tight up to additive log log(1/ε) + O(1), which follows from Alon’s result.
We exhibit a one-way entanglement-assisted protocol achieving error probability ε with
⌈log(1/ε)⌉ + 1 classical bits of communication and ⌈log(

√
n/ε)⌉ + 4 shared EPR-pairs between

Alice and Bob. This matches the communication cost of the classical public coin protocol
achieving the same error probability while improving upon the amount of prior entanglement
that is needed for this protocol, which is ⌈log(n/ε)⌉ + O(1) shared EPR-pairs.

Our upper bounds also yield upper bounds on the approximate rank, approximate nonnegative-rank,
and approximate psd-rank of the Identity matrix. As a consequence we also obtain improved upper
bounds on these measures for a function that was recently used to refute the randomized and
quantum versions of the log-rank conjecture (Chattopadhyay, Mande and Sherif [J. ACM’20], Sinha
and de Wolf [FOCS’19], Anshu, Boddu and Touchette [FOCS’19]).
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1 Introduction

Yao [24] introduced the classical model of communication complexity, and also subsequently
introduced its quantum analogue [25]. Communication complexity has important applications
in several disciplines, such as lower bounds on circuits, data structures, streaming algorithms,
and many other areas (see, for example, [11, 20] and the references therein). The basic model
of communication complexity involves two parties, usually called Alice and Bob, who wish to
jointly compute F (x, y) for a known function F : {0, 1}n ×{0, 1}n → {0, 1}, where Alice holds
x ∈ {0, 1}n and Bob holds y ∈ {0, 1}n. The parties use a communication protocol agreed
upon in advance to compute F (x, y). They are individually computationally unbounded and
the cost is the amount of communication between the parties on the worst-case input.

Consider the n-bit Equality function, denoted EQn : {0, 1}n × {0, 1}n → {0, 1} (or simply
EQ when n is clear from context), and defined as EQn(x, y) = 1 iff x = y. This is arguably
the simplest and most basic problem in communication complexity. It is well known that
its deterministic communication complexity equals n, which is maximal. However, Yao [24]
already showed that if we allow some small constant error probability, then the communication
complexity becomes much smaller. In this paper we pin down the small-error communication
complexity of Equality in various communication models. Our bounds are essentially optimal
both in terms of n and in terms of the error. While our optimal upper bounds only give
small improvements over known bounds, Equality is such a fundamental communication
problem that we feel it is worthwhile to pin down its complexity as precisely as possible and
to find protocols that are as efficient as possible.

1.1 Prior work
Given a function F : {0, 1}n × {0, 1}n → {0, 1}, define the 2n × 2n communication matrix
of F , denoted MF , by MF (x, y) = F (x, y). Define the ε-approximate rank of a matrix M ,
denoted rkε(M), to be the minimum number of rank-1 matrices needed such that their sum
is ε-close to M entrywise (equivalently, rkε(M) is the minimum rank among all matrices
that are ε-close to M entrywise). If the rank-1 matrices are additionally constrained to be
entrywise nonnegative, then the resulting measure is called the ε-approximate nonnegative-
rank of M , denoted rk+

ε (M). By definition, rk+
ε (MF ) ≥ rkε(MF ). Denote ε-error randomized

communication complexity by Rpri
ε (·) when the players have access to private randomness,

and Rpub
ε (F ) when the players have access to public randomness (i.e., shared coin flips). Let

Qpri
ε (·) denote ε-error quantum communication complexity, assuming private randomness. In

all quantum communication models under consideration in this paper, except for the last
one, Alice and Bob do not have access to pre-shared entanglement.

https://arxiv.org/abs/2107.11806
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Krause [9] showed the following lower bound on the randomized communication complexity
of a Boolean function in terms of the approximate nonnegative-rank of its communication
matrix.

▶ Theorem 1 ([9]). Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function and ε > 0.
Then,

Rpri
ε (F ) ≥ log rk+

ε (MF ).

Analogous to this, the following lower bound is known on the quantum communication
complexity of a Boolean function, due to Nielsen [18] and Buhrman and de Wolf [5].

▶ Theorem 2 ([18, 5]). Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function and let
ε > 0. Then,

Qpri
ε (F ) ≥ 1

2 log rkε(MF ).

A similar proof as that of [5] can be used to show that the quantum communication
complexity of a Boolean function is bounded below by the logarithm of its approximate
psd-rank, which we define below. Let M be a matrix with nonnegative real entries. A
rank-d psd-factorization of M consists of a set of d × d complex2 psd matrices Ai (one
for each row of M) and Bj (one for each column of M), such that for all i, j we have
Mij = tr(AiBj). The psd-rank of M , denoted rkpsd(M), is the minimal d for which M has
such a psd factorization. This notion has gained a lot of interest in areas such as semidefinite
optimization, communication complexity, and others. See Fawzi et al. [7] for an excellent
survey. The ε-approximate psd-rank of M , which we denote by rkpsd

ε (M), is the minimum
psd-rank among all matrices that are ε-close to M entrywise.

▶ Theorem 3. Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function and let ε > 0. Then,

Qpri
ε (F ) ≥ log rkpsd

ε (MF ) + 1.

For completeness, we prove this in Appendix A. It is easy to show that rkpsd
ε (MF ) ≤ rk+

ε (MF ).
Alon [1] showed the following bounds on the approximate rank of the Identity matrix.

▶ Theorem 4 ([1]). There exists a positive constant c such that the following holds for all
integers n > 0 and 1/2n/2 ≤ ε ≤ 1/4. Let I denote the 2n × 2n Identity matrix. Then,

rkε(I) ≥ cn

ε2 log
( 1

ε

) .
Note that the 2n × 2n Identity matrix is the communication matrix of the n-bit Equality

function. Theorems 1 and 4 thus imply that for 1/2n/2 ≤ ε ≤ 1/4,

Rpri
ε (EQn) ≥ log

( n
ε2

)
− log log

(
1
ε

)
−O(1). (1)

Newman [16] proved the following theorem that shows that public-coin protocols can be
converted to private-coin protocols with an additive error, with a small additive cost in the
communication. For the following form, see for example, [11, Claim 3.14].

2 Often this definition is restricted to real matrices. This can change the psd-rank by a constant factor,
but no more than that [12, Section 3.3].

FSTTCS 2023
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▶ Theorem 5 (cf. [11, Claim 3.14]). Let F : {0, 1}n × {0, 1}n be a Boolean function. For
every δ > 0 and every ε > 0,

Rpri
ε+δ(F ) ≤ Rpub

ε (F ) + log
( n
δ2

)
+O(1).

Relabeling variables, Theorem 5 is equivalent to

Rpri
ε(1+δ)(F ) ≤ Rpub

ε (F ) + log
( n

ε2δ2

)
+O(1).

1.2 Our results
In this section we list our results, first those for randomized communication complexity, and
then those for quantum communication complexity.

1.2.1 Randomized communication complexity
We give an improved version of Newman’s theorem (Theorem 5), which allows us to convert
a public-coin protocol to a private-coin one with an optimal dependence on the error. Our
proof follows along similar lines as that of Newman’s. Our key deviation is that we use a
multiplicative form of the Chernoff bound, where previously an additive version was used.

▶ Theorem 6. Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. For all ε ∈ [0, 1/2)
and all δ ∈ (0, 1],

Rpri
ε(1+δ)(F ) ≤ Rpub

ε (F ) + log
(n
ε

)
+ log

(
6
δ2

)
.

To compare Theorem 5 and Theorem 6, consider the (1/n)-error private-coin randomized
communication complexity of EQn. The ε-error public-coin communication complexity of
EQn is at most log(1/ε) (and this can be shown to be tight up to an additive constant).
Thus, Theorem 5 can at best give an upper bound of

Rpri
1/n(EQn) ≤ logn+ log(n3) +O(1) = 4 logn+O(1).

Equation (1) implies a non-matching lower bound Rpri
1/n(EQn) ≥ 3 logn− log logn−O(1). On

the other hand, Theorem 6 implies a tight upper bound (up to the additive log logn+O(1)
term) of 3 logn+O(1) on the (1/n)-error private-coin communication complexity of EQn, by
converting the log(1/ε)-cost public-coin protocol for EQn to a private-coin protocol.

▶ Theorem 7. For all positive integers n > 0 and for all ε ∈ [0, 1/2),

Rpri
ε (EQ) ≤ log

( n
ε2

)
+ 4.

This shows that Alon’s theorem (Theorem 4) is tight up to the O(log(1/ε)) factor, not only
for approximate rank, but also for communication complexity. Theorem 7 and Theorem 1 also
imply that the approximate-rank lower bound in Theorem 4 is nearly tight even restricting
to nonnegative approximations to the Identity matrix.

▶ Corollary 8. Let n > 0 be an integer, and let I denote the 2n × 2n Identity matrix. Then
for all ε ∈ [0, 1/2),

rk+
ε (I) ≤ 16n

ε2 .
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To compare the performance of Theorem 5 with that of Theorem 6 in a more general
setting, we consider the natural problem of converting a public-coin protocol to a private-coin
protocol while allowing the error to double. Setting δ = ε in Theorem 5 and relabeling
parameters, we obtain

Rpri
ε (F ) ≤ Rpub

ε/2(F ) + log
( n
ε2

)
+O(1).

However, Theorem 6 yields the following improved dependence on ε by setting δ = 1 and
relabeling parameters.

Rpri
ε (F ) ≤ Rpub

ε/2(F ) + log
(n
ε

)
+ 4.

1.2.2 Quantum communication complexity
Prior to this work, the best known lower bound on the ε-error quantum communication
complexity of Equality was Ω(log(n/ε)) [5, Proposition 3], with a constant hidden in the Ω(·)
that is less than 1/2. Theorem 2 and Theorem 4 imply that

Qpri
ε (EQn) ≥ log

(√
n

ε

)
− log log

(
1
ε

)
−O(1). (2)

In terms of upper bounds, we exhibit a one-way quantum communication upper bound with
an optimal dependence on ε, that uses only pure-state messages (and hence does not use
even private randomness). In particular, by choosing ε to be an arbitrary small polynomial
in the input size, this implies that the factor of 1/2 in Theorem 2 cannot be improved when
F = EQn. Let Qpure,→

ε (F ) be the ε-error quantum communication complexity of F , where
the protocols are one-way and Alice is only allowed to send a pure state to Bob. We show
the following.

▶ Theorem 9. For all positive integers n > 0 and for all ε ∈ [0, 1/2),

Qpure,→
ε (EQn) ≤ log

(n
ε

)
+ 4.

The proof uses the probabilistic method to analyze random linear codes. Nayak [15]
already used the same upper bound technique to show an upper bound on the bounded-error
one-way quantum communication complexity of EQn. They did not explicitly derive this
error-dependence, but it follows immediately from their construction by plugging in codes
with length O(n/ε) and relative distance 1/2 −

√
ε in [15, pp.16–17]. We also show that this

is nearly tight:

▶ Theorem 10. There exists an absolute constant c such that the following holds. For all
positive integers n > 0 and for all ε ∈ [1/2n, 1/4],

Qpure,→
ε (EQn) ≥ log

(n
ε

)
− log log

(
1
ε

)
− c.

While the pure-state protocol of Theorem 9 has optimal dependence on ε (up to the
additive log log(1/ε) term), it does not match the n-dependence of the lower bound of
Equation (2); in fact, one-way pure-state protocols cannot match this (Theorem 10). However,
if we allow one-way mixed-state messages, then we can give a better upper bound and close
the gap:

FSTTCS 2023
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▶ Theorem 11. For all positive integers n > 0 and for all ε ∈ [0, 1/2),

Qpri
ε (EQn) ≤ log

(√
n

ε

)
+ 3.

An upper bound of log
√
n + O(1) was already proved by Winter [22] for the case of

constant ε, and here we obtain the correct dependence also for subconstant ε. Our proof is
again probabilistic, using known concentration properties of overlaps of random projectors to
allow us to show the existence of appropriate mixed-state messages for Alice and appropriate
measurements for Bob. Theorems 3 and 11 also imply upper bounds on the ε-approximate
psd-rank of the Identity matrix.

▶ Corollary 12. Let n > 0 be an integer, and let I denote the 2n × 2n Identity matrix. Then
for all ε ∈ [0, 1/2),

rkpsd
ε (I) ≤ 4

√
n

ε
.

As noted by Lee, Wei and de Wolf [12, Theorem 17], Alon’s approximate rank lower

bound (Theorem 4) almost immediately gives a lower bound of rkpsd
ε (I) = Ω

( √
n

ε
√

log(1/ε)

)
.

This shows that our upper bound in Corollary 12 is tight up to a multiplicative O(
√

log(1/ε))
factor.

We may also consider the amount of entanglement needed to compute EQn in the
entanglement-assisted setting, where Alice and Bob send classical bits but share an arbitrary
input-independent state |ψ⟩ at the start of the protocol, for instance many EPR-pairs.
Since entanglement may be used to generate shared randomness by measuring, the classical
public-coin protocol yields an entanglement-assisted protocol using ⌈log 1/ε⌉ + 1 bits of
communication and ⌈logn/ε⌉+O(1) shared EPR-pairs. We improve on the amount of shared
entanglement that’s needed by showing:

▶ Theorem 13. For all positive integers n > 0 and for all ε ∈ (0, 1/2), there exists a one-way
protocol for EQn with error probability at most ε using ⌈log 1/ε⌉ + 1 bits of communication
and ⌈log

√
n/ε⌉ + 4 shared EPR-pairs.

We do not know if the amount of classical communication used by our protocol to achieve
error probability ε is essentially optimal. Nor do we know if the number of EPR-pairs can
be reduced further given this amount of communication.

2 Preliminaries

All logarithms in this paper are taken to base 2. We use exp(x) to denote ex, where e
denotes Euler’s number. For strings x, y ∈ {0, 1}n, define their Hamming distance by
d(x, y) := | {i ∈ [n] : xi ̸= yi} |. For an event X, let I(X) ∈ {0, 1} denote the indicator of X,
which is 1 iff X occurs.

▶ Definition 14 (Linear code). For integers N ≥ n, a linear code is a linear function
C : {0, 1}n → {0, 1}N .

One may view a linear code as an N × n matrix M over F2; an input x ∈ {0, 1}n is mapped
to N -bit codeword Mx (where the matrix product is taken over F2). Choosing a random
linear code corresponds to choosing an M with uniformly random binary entries.

We use the following well-known multiplicative form of the Chernoff bound [14, The-
orem 4.4].
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▶ Lemma 15. Let Z1, . . . , Zn be independent random variables taking values in {0, 1}. Let
Z =

∑n
i=1 Zi, and let µ = E[Z]. Then for all δ ∈ [0, 1],

Pr[Z ≥ (1 + δ)µ] ≤ exp(−δ2µ/3),
Pr[Z ≤ (1 − δ)µ] ≤ exp(−δ2µ/2).

We refer the reader to [11, 20] for the basics of classical communication complexity, to [19] for
quantum computing, and to [23] for an introduction to quantum communication complexity.

3 An improved form of Newman’s theorem

Proof of Theorem 6. Let Π be a public-coin protocol that computes F with error ε. Assume
without loss of generality that all the random coins are tossed at the beginning of the protocol.
That is, for every x, y ∈ {0, 1}n,

Pr
r

[Π(x, y, r) ̸= F (x, y)] ≤ ε. (3)

Set

B = 6n
δ2ε

(4)

and independently choose random strings r1, . . . , rB according to the same distribution as
used by Π. For two strings x, y ∈ {0, 1}n and an index j ∈ [B], let Ij,x,y denote the indicator
event of rj being a “bad random string” for x, y:

Ij,x,y :=
{

1 Π(x, y, rj) ̸= f(x, y)
0 otherwise.

(5)

Fix two arbitrary strings x, y ∈ {0, 1}n. Equation (3) implies Prr1,...,rB ,j∈[B][Ij,x,y = 1] ≤ ε.
By linearity of expectation and our choice of B in Equation (4),

Er1,...,rB

 ∑
j∈[B]

Ij,x,y

 ≤ Bε = 6n
δ2 .

We now give an upper bound on Prr1,...,rB

[∑
j∈[B] Ij,x,y ≥ Bε(1 + δ)

]
. Assume without loss

of generality that Prr1,...,rB ,j∈[B][Ij,x,y = 1] = ε, and hence Er1,...,rB

[∑
j∈[B] Ij,x,y

]
= Bε

(since the desired probability could only be smaller otherwise). By a Chernoff bound
(Lemma 15),

Pr
r1,...,rB

 ∑
j∈[B]

Ij,x,y ≥ Bε(1 + δ)

 ≤ exp
(

−δ2 · 6n
3δ2

)
= exp(−2n) < 2−2n.

By a union bound over all x, y ∈ {0, 1}n,

Pr
r1,...,rB

 ∑
j∈[B]

Ij,x,y ≥ Bε(1 + δ) for some x, y ∈ {0, 1}n


≤

∑
x,y∈{0,1}n

Pr
r1,...,rB

 ∑
j∈[B]

Ij,x,y ≥ Bε(1 + δ)


< 22n · 2−2n = 1.

FSTTCS 2023
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Hence there exists a choice of r1, . . . , rB such that the following holds for all x, y ∈ {0, 1}n:∑
j∈[B]

Ij,x,y < Bε(1 + δ). (6)

Fixing this choice of r1, . . . , rB , Protocol 1 gives a private-coin protocol for F .

Protocol 1 A private-coin protocol for F .

1. Alice samples j ∈ [B] uniformly at random, and sends it to Bob.
2. Alice and Bob perform the public-coin protocol Π assuming rj was the public

random string.

To show the correctness of this protocol, our choice of B (Equation (4)) and Equations (5)
and (6) imply that for all x, y ∈ {0, 1}n,

Pr
j∈[B]

[Π(x, y, rj) ̸= f(x, y)] < Bε(1 + δ)
B

= ε(1 + δ).

Hence the protocol has error probability less than ε(1 + δ). The cost of the first step of the
protocol is logB, and the cost of the second step is at most Rpub

ε (F ). Thus, we have,

Rpri
ε(1+δ)(F ) ≤ Rpub

ε (F ) + logB = Rpub
ε (F ) + log 6n

δ2ε
= Rpub

ε (F ) + log n
ε

+ log 6
δ2 .

Note that if Π was a one-way protocol, then Protocol 1 is a one-way private-coin protocol. ◀

4 Communication complexity upper bounds

In this section we show randomized and quantum communication upper bounds for Equality.

4.1 Randomized upper bound
As an application of Theorem 6, we recover an optimal small-error private-coin communication
complexity upper bound for EQn from a naive public-coin protocol of cost log(2/ε) and error
ε/2:

Rpri
ε (EQn) ≤ log

(
2
ε

)
+ log

(n
ε

)
+ 3 = log

( n
ε2

)
+ 4. (7)

This proves Theorem 7. In contrast, Newman’s theorem (Theorem 5) would only give an
upper bound of

Rpri
ε (EQn) ≤ log

(
2
ε

)
+ log

( n
ε2

)
+O(1) = log

( n
ε3

)
+O(1).

In particular, for ε = 1/n we improve the upper bound from 4 logn+O(1) to 3 logn+O(1),
which turns out to be essentially optimal.

4.2 Quantum upper bound with only pure states
We require the following property of random linear codes.
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▷ Claim 16. Let n be a positive integer and let δ > 0. Let x ̸= y ∈ {0, 1}n be two arbitrary
but fixed strings. Let N = 4n/δ2. Let C : {0, 1}n → {0, 1}N be a random linear code. Then

Pr
C

[
d(C(x), C(y))

N
/∈

[
1
2 − δ,

1
2 + δ

]]
< 2−2n.

Proof of Claim 16. For each i ∈ [N ], the random variable Zi := I[C(x)i = C(y)i] equals 1
with probability 1/2 and 0 with probability 1/2. Further, Zi and Zj are independent for all
i ̸= j ∈ [N ]. Define Z =

∑N
i=1 Zi = d(C(x), C(y)). We have E[Z] = N/2. By a Chernoff

bound (Lemma 15),

Pr
C

[∣∣∣∣d(C(x), C(y))
N

− 1
2

∣∣∣∣ ≥ δ

]
= Pr

C

[∣∣∣∣Z − N

2

∣∣∣∣ ≥ 2δ · N2

]
≤ 2 exp

(
−4δ2N/6

)
< 2−2n,

where the last inequality holds by our choice of N . ◁

By a union bound over all x, y ∈ {0, 1}n, Claim 16 implies the following corollary.

▶ Corollary 17. Let n be a positive integer, let δ > 0 and let N = 4n/δ2. Then there exists
a linear code C : {0, 1}n → {0, 1}N such that for all x ̸= y ∈ {0, 1}n,

d(C(x), C(y))
N

∈
[

1
2 − δ,

1
2 + δ

]
.

We now prove Theorem 9.

Proof of Theorem 9. Set δ =
√
ε/2. Let N = 4n/δ2 = 16n/ε and let C : {0, 1}n →

{0, 1}16n/ε be the code obtained from Corollary 17. The following is a protocol for EQn.
1. Alice, on input x ∈ {0, 1}n prepares state |ϕx⟩ := 1√

N

∑
i∈[N ](−1)C(x)i |i⟩, and sends Bob

|ϕx⟩.
2. Define |ϕy⟩ := 1√

N

∑
i∈[N ](−1)C(y)i |i⟩. Bob measures with respect to the projectors

|ϕy⟩⟨ϕy| and I − |ϕy⟩⟨ϕy|, and outputs 1 on observing the first measurement outcome,
and 0 otherwise.

This protocol succeeds with probability 1 when x = y. The only error arises when x ̸= y and
Bob observes the first measurement outcome. Thus, the error probability of this protocol
equals

max
x̸=y∈{0,1}n

|⟨ϕx|ϕy⟩|2 = max
x ̸=y∈{0,1}n

 1
N

∑
i∈[N ]

(−1)C(x)i+C(y)i

2

= max
x ̸=y∈{0,1}n

(
1 − 2d(C(x), C(y))

N

)2

≤ 4δ2 = ε,

where the last inequality follows from Corollary 17 and the last equality follows from our choice
of δ. The number of qubits sent from Alice to Bob is logN = log(16n/ε) = log(n/ε) + 4. ◀

We show in Section 5 that the protocol in the previous proof is nearly optimal if one restricts
to one-way communication with only pure states.

FSTTCS 2023
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4.3 Quantum upper bound with mixed states
In the last section we gave a log(n/ε) +O(1) quantum upper bound on the ε-error commu-
nication complexity of EQn, where Alice was only allowed to send a pure state to Bob. In
this section we show that allowing Alice to send a mixed state to Bob gives a communication
upper bound that is better by a factor of 2 (which is in fact optimal). An upper bound of
log

√
n + O(1) was already proved by Winter [22] for the case of constant ε, but here we

obtain the correct dependence also for subconstant ε. Our protocol is based on concentration
properties of overlaps of random projectors.

Consider two rank-r projectors P and Q acting on Cd. The largest possible inner
product tr(PQ) between them is r, which occurs iff P = Q. However, when one or both of
the projectors are Haar-random, then we expect their inner product to be much smaller,
namely only r2/d. This is because if we take the spectral decompositions P =

∑r
i=1 |ui⟩⟨ui|

and Q =
∑r

j=1 |vj⟩⟨vj |, then

tr(PQ) =
r∑

i,j=1
|⟨ui, vj⟩|2,

and the expected squared inner product between a random d-dimensional unit vector ui and
any fixed unit vector vj , is 1/d. Hayden, Leung and Winter [8, Lemma III.5] showed that
this inner product is very tightly concentrated around its expectation.

▷ Claim 18 ([8, Lemma III.5]). Let P and Q be rank-r projectors on Cd, where P is random3

and Q is fixed. Let δ ∈ [0, 1]. Then

Pr
[
tr(PQ) ≥ (1 + δ)r2

d

]
≤ exp

(
−r2δ2

5

)
< 2−r2δ2/5.

The following corollary then follows by setting parameters suitably.

▶ Corollary 19. For every integer n > 0 and all ε ∈ [0, 1/2), there exists a set
{Px : x ∈ {0, 1}n} of 2n rank-r projectors on Cd, with r =

√
10n and d = 2r/ε, such

that tr(PxPy) < εr for all x ̸= y ∈ {0, 1}n.

Proof. Fix δ = 1 and choose rank-r projectors {Px : x ∈ {0, 1}n} independently and uni-
formly at random. Claim 18 and our choice of parameters implies that for all x ̸= y ∈ {0, 1}n,

Pr
[
tr(PxPy) ≥ 2r2

d

]
= Pr [tr(PxPy) ≥ εr] < 2−r2δ2/5 = 2−2n.

The corollary now follows by applying a union bound over all distinct x, y ∈ {0, 1}n. ◀

We now prove Theorem 11.

Proof. Let {Px : x ∈ {0, 1}n} be projectors on Cd as guaranteed by Corollary 19, each of
rank r =

√
10n, with d = 2

√
10n/ε. Our protocol for EQn is Protocol 2 below.

To see the correctness of this protocol, first observe that if x = y, then the protocol
outputs the correct answer with probability 1 because tr(Pxρx) = tr(Px)/r = 1. If x ̸= y,
then the error probability is the probability of Bob observing the first measurement outcome,
which is

Pr[Π(x, y) ̸= EQn(x, y)] = tr(Pyρx) = tr(PyPx)/r < ε,

from Corollary 19. The cost is log d = log(2
√

10n/ε) ≤ log(
√
n/ε)+3 qubits of communication.

◀

3 More precisely, P is a projection onto a uniformly chosen r-dimensional subspace from all r-dimensional
subspaces of Cd. We do not elaborate more on this here since it is not relevant for us.
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Protocol 2 A mixed-state protocol Π for F .

1. Alice, on input x ∈ {0, 1}n, sends the log d-qubit mixed state ρx := Px/r to Bob.
2. Bob, on input y ∈ {0, 1}n, measures w.r.t. projectors Py, I − Py, and outputs 1 on

observing the first measurement outcome, and 0 otherwise.

4.4 Entanglement-assisted quantum upper bounds
We use the probabilistic method to argue the existence of a good entanglement-assisted
protocol. In the following, m ≤ d are natural numbers to be determined later. We take the
initial entangled state to be the maximally entangled state in D = 2d dimensions, i.e., d
EPR-pairs:

|ΨAB⟩ = 1√
D

∑
i∈{0,1}d

|i⟩A|i⟩B .

For every z ∈ {0, 1}n, pick independently a Haar-random element Uz = {|ψz,r⟩}r∈{0,1}d of
SU(D) (i.e., a random orthonormal basis is used for the 2d columns of Uz). The following is
our protocol for EQn:

Protocol 3 An entanglement-assisted protocol Π′ for F .

1. Alice, on input x ∈ {0, 1}n, measures her part of |Ψ⟩ in the basis Ux, obtaining
rA ∈ {0, 1}d. She then sends b ≡ rA

1 r
A
2 . . . r

A
m to Bob (i.e., the first m bits of rA).

2. Bob, on input y ∈ {0, 1}n, measures his part of |Ψ⟩ in the conjugate basis of Uy,
obtaining rB ∈ {0, 1}d. He outputs 1 if rB

i = bi for every 1 ≤ i ≤ m, and he
outputs 0 otherwise.

The one-way communication complexity of this protocol Π′ is m bits. We proceed with
its error analysis. After step 1, by properties of the maximally entangled state, the new joint
state will be

|Ψ′⟩ = |ψx,rA⟩A ⊗ |ψx,rA⟩
B

In particular, if x = y, then rA = rB and the protocol is guaranteed to succeed. Suppose
now that x ̸= y. For b ∈ {0, 1}m, using the shorthand

Rb ≡ {r ∈ {0, 1}d | ri = bi ∀i ∈ [m]},

we find that the probability that the protocol fails (i.e., outputs 1) is given by

1
D

∑
b∈{0,1}m

∑
rA,rB∈Rb

|⟨ψx,rA |ψy,rB ⟩|2.

Since Rb has cardinality 2d−m and the expectation over the choice of Uz’s of every term in
the sum is 2−d, we find that the expectation of the whole sum is 2−m. We now only require
the following concentration inequality, which is derived in [13, Chapter 3]:
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▶ Theorem 20. Let F : SU(n) → R be a function with Lipschitz constant K with respect to
the Frobenius norm,4 and let µ be the uniform distribution (Haar measure) on SU(n). Then,
for every δ > 0,

Pr
µ

[|F (U) − Eµ[F ]| > δ] < 2 exp
(

− δ2n

4K2

)
.

We show:

▶ Theorem 21. Let {ϕr}r∈{0,1}d be a fixed orthonormal basis of CD. Given U =
{ψr}r∈{0,1}d ∈ SU(D), define F : SU(D) → R by

F (U) =
∑

b∈{0,1}m

∑
r,r′∈Rb

|⟨ϕr|ψr′⟩|2.

Then F has Lipschitz constant
√
D.

Proof. Let U = {ψr}r∈{0,1}d and U ′ = {ψ′
r}r∈{0,1}d be two different elements of SU(D).

For b ∈ {0, 1}m, write

Pb =
∑

r∈Rb

|ϕr⟩⟨ϕr|, Qb =
∑

r∈Rb

|ψr⟩⟨ψr|, Q′
b =

∑
r∈Rb

|ψ′
r⟩⟨ψ′

r|.

We see that

F (U) =
∑

b∈{0,1}m

tr(PbQb) and F (U ′) =
∑

b∈{0,1}m

tr(PbQ
′
b).

Therefore

F (U) − F (U ′) =
∑

b∈{0,1}m

tr(Pb(Qb −Q′
b)) ≤

∑
b∈{0,1}m

Dtr(Qb, Q
′
b)

≤ D
∑

r∈{0,1}d

1
D

√
1 − |⟨ψr|ψ′

r⟩|2

≤

√√√√√D2 −

 ∑
r∈{0,1}d

|⟨ψr|ψ′
r⟩|

2

.

Here the first inequality follows from the variational characterization of trace distance
(Dtr(Q,Q′) = maxP :∥P ∥≤1 tr(P (Q−Q′))); the second inequality follows from the convexity
of trace distance, the fact that the Rb’s partition {0, 1}d, and a well-known expression for
the trace distance of two pure states; and the third inequality follows from the concavity of
the function

√
1 − z2.

On the other hand, we can upper bound the Frobenius distance between U and U ′ by

d(U,U ′) =
√ ∑

r∈{0,1}d

∥|ψr⟩ − |ψ′
r⟩∥2

=
√ ∑

r∈{0,1}d

2 − 2ℜ(⟨ψr|ψ′
r⟩) ≥

√
2D − 2

∑
r∈{0,1}d

|⟨ψr|ψ′
r⟩|,

4 This means |F (U) − F (U ′)| ≤ K · d(U, U ′) for all U, U ′ ∈ SU(n), where SU(n) is the group of n × n

unitary matrices with determinant 1, the Frobenius norm ∥A∥F of a matrix A is defined as
√∑

i,j
|Aij |2,

and the Frobenius distance is defined as d(U, U ′) =
∥∥U − U ′

∥∥
F

.
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where the inequality uses the fact that ℜ(z) ≤ |z| for any complex number z. We can now
upper bound the Lipschitz constant of F as follows;

|F (U) − F (U ′)|
d(U,U ′) ≤

√√√√√D2 −
(∑

r∈{0,1}d |⟨ψr|ψ′
r⟩|

)2

2D − 2
∑

r∈{0,1}d |⟨ψr|ψ′
r⟩|

=

√
D +

∑
r∈{0,1}d |⟨ψr|ψ′

r⟩|
2 ≤

√
D,

where the last inequality is because |⟨ψr|ψ′
r⟩| ≤ 1 for each of theD r’s, by Cauchy-Schwarz. ◀

For every pair of distinct inputs x, y ∈ {0, 1}n and for every δ > 0, it follows from the
previous two results that the probability that the protocol’s error probability on these inputs
exceeds 2−m + δ, is upper bounded by

2 exp
(

−δ2D2

4

)
Setting δ = 2−m, ε = 2−m+1 and d = ⌈ 1

2 log2 n+ log2
1
ε + 4⌉, by the union bound there is a

positive probability that the resulting protocol has error probability at most ε for all input
pairs. This implies the existence of the desired protocol, with m = ⌈log 1/δ⌉ = ⌈log 1/ε⌉ + 1
bits of communication.

5 Quantum one-way lower bound

In this section we prove lower bounds on the one-way quantum communication complexity
of any function whose communication matrix has a large number of distinct rows. As a
consequence we obtain our lower bound for EQn of Theorem 10.

Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. We consider the model where
communication is one-way, and Alice is only allowed to send a pure state to Bob. Suppose
there exists a protocol of cost log d that computes F to error ε. Any such protocol looks like
the following.

Alice, on input x ∈ {0, 1}n, sends a message |ϕx⟩ to Bob, where |ϕx⟩ is a unit vector in
Cd.
Bob, on input y, measures with respect to projectors Py, I − Py.

The acceptance probability of the protocol is ∥Py|ϕx⟩∥2. Thus, we have

∥Py|ϕx⟩∥2 ≥ 1 − ε, ∥(I − Py)|ϕx⟩∥2 ≤ ε for all x, y ∈ F−1(1), (8)

and

∥Py|ϕx⟩∥2 ≤ ε, ∥(I − Py)|ϕx⟩∥2 ≥ 1 − ε for all x, y ∈ F−1(0). (9)

▷ Claim 22. Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function with N distinct rows
in MF . Let X ⊆ {0, 1}n be an arbitrary subset of size N that indexes distinct rows in MF .
For a one-way quantum communication protocol as above that computes F to error ε ≤ 1/2,
we have

2 − 2
√
ε(1 − ε) ≤ ∥|ϕx1⟩ − |ϕx2⟩∥2 ≤ 2 + 4

√
ε

for all distinct x1, x2 ∈ X.
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Proof. Fix any two distinct x1, x2 ∈ X, and let |ϕx1⟩, |ϕx2⟩ ∈ Cd be the messages sent by
Alice on inputs x1, x2, respectively. Recall that ∥|ϕx1⟩∥ = ∥|ϕx2⟩∥ = 1. Because of the
assumption that the rows of MF indexed by X are all distinct, there is a y ∈ {0, 1}n such
that F (x1, y) ̸= F (x2, y). Without loss of generality assume F (x1, y) = 1 and F (x2, y) = 0.
Write

|ϕx1⟩ = Py|ϕx1⟩ + (I − Py)|ϕx1⟩,
|ϕx2⟩ = Py|ϕx2⟩ + (I − Py)|ϕx2⟩.

Thus,

∥|ϕx1⟩ − |ϕx2⟩∥2 = ∥Py(|ϕx1⟩ − |ϕx2⟩)∥2 + ∥(I − Py)(|ϕx1⟩ − |ϕx2⟩)∥2

since Py and I − Py are orthogonal projectors
≥ (∥Py|ϕx1⟩∥ − ∥Py|ϕx2⟩)∥)2 + (∥(I − Py)|ϕx1⟩∥ − ∥(I − Py)|ϕx2⟩∥)2

by the triangle inequality
≥ 2(

√
1 − ε−

√
ε)2

by Equations (8) and (9), and since F (x1, y) = 1 and F (x2, y) = 0

= 2 − 2
√
ε(1 − ε).

For the upper bound, first define p := ∥Py|ϕx1⟩∥2 ≥ 1−ε, and q := ∥(I−Py)|ϕx2⟩∥2 ≥ 1−ε.

∥|ϕx1⟩ − |ϕx2⟩∥2 = ∥Py(|ϕx1⟩ − |ϕx2⟩)∥2 + ∥(I − Py)(|ϕx1⟩ − |ϕx2⟩)∥2

≤ (∥Py|ϕx1⟩∥ + ∥Py|ϕx2⟩∥)2 + (∥(I − Py)|ϕx1⟩∥ + ∥(I − Py)|ϕx2⟩∥)2

by the triangle inequality

= (√p+
√

1 − q)2 + (
√

1 − p+ √
q)2

= 2 + 2
√
p(1 − q) + 2

√
(1 − p)q ≤ 2 + 4

√
ε. ◁

We now state our main result of this section.

▶ Theorem 23. There exists an absolute constant c such that the following holds. Let
F : {0, 1}n × {0, 1}n be a Boolean function with N distinct rows in MF . Then for all
ε ∈ [1/N, 1/4],

Qpure,→
ε (F ) ≥ log

(
logN
ε

)
− log log

(
1
ε

)
− c.

Proof. Let X ⊆ {0, 1}n be an arbitrary set of N elements that index distinct rows in MF .
Consider a protocol of cost log d, as described in the beginning of this section, that computes
F to error ε. Claim 22 implies existence of vectors |ϕx⟩ ∈ Cd for all x ∈ X, such that

2 − 2
√
ε(1 − ε) ≤ ∥|ϕx1⟩ − |ϕx2⟩∥2 ≤ 2 + 4

√
ε (10)

for all distinct x1, x2 ∈ X. For each x ∈ X, define a real vector |ϕR
x ⟩ ∈ R2d by

|ϕR
x ⟩ =

∑
j∈[d]

|j⟩ (R(|ϕx⟩j)|0⟩ + C(|ϕx⟩j)|1⟩) ,

where R(|ϕx⟩j) and C(|ϕx⟩j) denote the real and complex components of the j’th coordinate
of |ϕx⟩, respectively. Note that each |ϕR

x ⟩ is a unit vector, since the |ϕx⟩ are unit vectors.
For all distinct x1, x2 ∈ X, we have
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|ϕx1⟩ − |ϕx2⟩ =
∑
j∈[d]

|j⟩(R(|ϕx1⟩j − |ϕx2⟩j) + i · C(|ϕx1⟩j − |ϕx2⟩j)),

|ϕR
x1

⟩ − |ϕR
x2

⟩ =
∑
j∈[d]

|j⟩((R(|ϕx1⟩j − |ϕx2⟩j)|0⟩) + (C(|ϕx1⟩j − |ϕx2⟩j)|1⟩)).

Hence, Equation (10) implies

∥|ϕR
x1

⟩ − |ϕR
x2

⟩∥2 = ∥|ϕx1⟩ − |ϕx2⟩∥2 ∈ [2 − 2
√
ε(1 − ε), 2 + 4

√
ε] (11)

for all distinct x1, x2 ∈ X. Since ∥v − w∥2 = ∥v∥2 + ∥w∥2 − 2⟨v, w⟩ for real vectors v, w, we
obtain

|⟨ϕR
x1

|ϕR
x2

⟩| ≤ 2
√
ε

for all distinct x1, x2 ∈ X. Now consider the N ×N matrix M whose rows and columns are
indexed by strings in X, with entries defined by

Mx,y = ⟨ϕR
x |ϕR

y ⟩.

Since each ϕR
x ∈ R2d, this matrix has rank at most 2d. Since ⟨ϕR

x |ϕR
x ⟩ = 1 for all x ∈ {0, 1}n

and |⟨ϕR
x |ϕR

y ⟩| ≤ 2
√
ε for all x ̸= y ∈ X, this M is a 2

√
ε-approximation to the N × N

identity matrix I. Theorem 4 implies existence of an absolute constant c1 > 0 such that

2d ≥ rk(M) ≥ rk2
√

ε(I) ≥ c1 logN
ε log(1/

√
ε)
.

Hence,

log d ≥ log
(

logN
ε

)
− log log

(
1
ε

)
− log(1/c1),

concluding the proof. ◀

Theorem 10 immediately follows from Theorem 23 since all 2n rows in MEQn
are distinct.

6 Future work

We mention some possible directions for future work:
Those of our lower bounds that use Alon’s approximate-rank bound (Theorem 4) lose
an additive log log(1/ε). This term is necessary in some regimes, in particular when ε

is very small (∼ 2−n) and n/ε gets bigger than the trivial dimension upper bound 2n.
However, in some regimes it may be avoidable. Also Alon’s bound itself might be slightly
improvable.
We leave open the optimal quantum communication complexity of Equality with small
error in the simultaneous message passing (SMP) model, where Alice and Bob each
send a message to a “referee” who has to decide the output. With public randomness
log(1/ε) ± O(1) classical bits of communication are necessary and sufficient, but with
private randomness it is not clear. In the classical case, Θ(

√
n) bits of communication are

necessary [17] and sufficient [2] for constant error. In the quantum case, Θ(logn) qubits
are necessary and sufficient [4] for constant error. One can get an O(log(n) log(1/ε))
ε-error upper bound by repeating the quantum fingerprinting protocol of Buhrman et
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al. [4] O(log(1/ε)) times, but that is much worse than the log(
√
n/ε) and log(n/ε) upper

bounds that we have in the one-way mixed-state and pure-state scenarios (Theorems 11
and 9). In neither the randomized nor the quantum SMP settings do we have tight
bounds for small ε.
We also leave open the optimal communication complexity of equality with small error
in the entanglement-assisted setting. The classical public-coin protocol and the one we
exhibited both require ⌈log(1/ε)⌉+O(1) bits of communication to compute EQn to within
error ε, and it seems probable that this is essentially optimal.
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A Quantum communication complexity and psd-rank

In this section, we prove Theorem 3, restated below.

▶ Theorem 24 (Restatement of Theorem 3). Let F : {0, 1}n × {0, 1}n → {0, 1} be a Boolean
function and let ε > 0. Then,

Qpri
ε (F ) ≥ log rkpsd

ε (MF ) + 1.

Proof. Consider an ℓ-qubit protocol for F , without public randomness. Because private
randomness can be generated using Hadamard gates, we will assume the protocol is unitary,
with only a measurement of the output qubit at the end. Let the starting state of the
protocol be |x0s⟩A|y0s⟩B |0⟩C , where the first and second parts are Alice and Bob’s register,
respectively (containing their input and s workspace qubits each), and the third part is the
channel qubit. It is easy to prove by induction that after ℓ qubits of communication, the
final state of a protocol has the following form (first observed by Kremer [10] and Yao [25]):∑

i∈{0,1}ℓ

|ai(x)⟩|bi(y)⟩|iℓ⟩,

where |ai(x)⟩, |bi(y)⟩ are subnormalized quantum states. Let P denote the acceptance
probability matrix, i.e., P (x, y) is the probability that the protocol outputs 1 on input (x, y).
We assume without loss of generality that the output qubit is the last qubit put on the
channel. We have

P (x, y) =

∥∥∥∥∥∥
∑

i∈{0,1}ℓ:iℓ=1

|ai(x)⟩|bi(y)⟩|iℓ⟩

∥∥∥∥∥∥
2

=
∑

i,i′∈{0,1}ℓ:iℓ=i′
ℓ
=1

⟨ai(x)|ai′(x)⟩ · ⟨bi(y)|bi′(y)⟩.

For each x ∈ {0, 1}n define a 2ℓ−1 × 2ℓ−1 matrix Ax with rows and columns indexed by
strings i, i′ ∈ {0, 1}ℓ−1 × {1}:

Ax(i, i′) = ⟨ai(x)|ai′(x)⟩.
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Similarly, for each y ∈ {0, 1}n define a 2ℓ−1 × 2ℓ−1 matrix By by

By(j, j′) = ⟨bj(y)|bj′(y)⟩.

These Ax and By are Gram matrices and hence psd. Moreover it is easy to verify that
P (x, y) = tr(AxBy). Since the protocol makes error at most ε on each input, the matrix P
entrywise approximates MF up to ε. Hence rkpsd

ε (MF ) ≤ 2ℓ−1. Taking logarithms gives the
theorem. ◀

B Approximate-rank upper bounds for distributed SINK function

In this section we show improved upper bounds on the approximate nonnegative-rank and
approximate psd-rank of MSINK◦XOR, where SINK is defined as follows.

▶ Definition 25. Define the function SINKn : {0, 1}n → {0, 1} on n =
(

m
2
)

inputs as follows.
The inputs are viewed as orientations of edges on a complete graph with m vertices. The
function outputs 1 if there is a sink in the graph, and 0 otherwise.

Consider the function SINKn ◦ XOR : {0, 1}2n → {0, 1}. This function was recently
used to refute the randomized and quantum versions of the log-rank conjecture [6, 21, 3].
Chattopadhyay, Mande and Sherif [6, Theorem 1.10] showed that the 1/3-approximate rank
of MSINKn◦XOR is O(m4) and the 1/3-approximate nonnegative-rank of MSINKn◦XOR is O(m5).
As a consequence of our improved upper bounds for the ε-approximate nonnegative-rank of
the Identity matrix (Corollary 8), we are able to use the same proof idea as theirs to obtain
an O(m4) upper bound on the 1/3-approximate nonnegative-rank of MSINKn◦XOR, matching
the approximate rank upper bound. We also obtain approximate psd-rank upper bounds for
SINKn ◦ XOR.

▷ Claim 26. Let m be a positive integer, let n =
(

m
2
)
. Then,

rk+
1/3(MSINKn◦XOR) = O(m4)

rkpsd
1/3(MSINKn◦XOR) = O(m2.5).

Proof. Note that SINKn ◦ XOR can be expressed as a sum of m Equalities, each with 2(m− 1)
inputs, one corresponding to each vertex in the underlying graph for SINK. Recall that
the communication matrix of Equality is the Identity matrix. We require sub-additivity of
nonnegative-rank and psd-rank, which are both easy to verify.

Corollary 8 implies that each of these Equalities have (1/3m)-approximate nonnegative-
rank O(m3). Summing up these m matrices, we conclude that the (1/3)-approximate
nonnegative-rank of SINKn ◦ XOR equals O(m4).
Corollary 12 implies that each of these Equalities have (1/3m)-approximate psd-rank
O(m1.5). Summing up these m matrices, we conclude that the (1/3)-approximate psd-rank
of SINKn ◦ XOR equals O(m2.5). ◁
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