
Revisiting Mulmuley: Simple Proof That Maxflow
Is Not in the Algebraic Version of NC

Ulysse Léchine
LIPN, Paris, France
IRIF, Paris, France

Abstract
We give an alternate and simpler proof of the fact that PRAM without bit operations (shortened to
iPRAM for integer PRAM) as considered in paper [2] cannot solve the maxflow problem. To do so
we consider the model of PRAM working over real number (rPRAM) which is at least as expressive
as the iPRAM models when considering integer inputs. We then show that the rPRAM model is as
expressive as the algebraic version of NC : algebraic circuits of fan-in 2 and of polylog depth noted
NCalg. We go on to show limitations of the NCalg model using basic facts from real analysis : those
circuits compute low degree piece wise polynomials. Then, using known results we show that the
maxflow function is not a low-degree piece-wise polynomial. Finally we argue that NCalg is actually
a really limited class which limits our hope of extending our results to the boolean version of NC.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic complexity, P vs NC, algebraic NC, GCT program

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.33

1 Introduction

1.1 Previous work
An important question in complexity theory is determining if P = NC, where P is the set
of languages solvable by a polynomial time Turing machine and NC the set of languages
solvable by uniform family of poly-logarithmic depth, polynomial size circuit. It is thought
that P ̸= NC but no one has come close to proving it. The maxflow problem is a problem
in P where the inputs are directed graphs whose edges are labelled with integers called
capacities, a specified node s called the source, a specified node t called the sink, and an
integer threshold k, the input is in the language if a flow greater than k units may flow from
s to t. The maxflow problem is known to be P complete with regards to NC reductions,
meaning that membership of the maxflow problem to NC is equivalent to P = NC. In his
celebrated result [2], Mulmuley defines a computation model called integer PRAMs (iPRAM)
without bit operation which is akin to the PRAM model (communicating processors working
in parallel, see [2] for a formal definition) except that inputs are integers (instead of bits)
and the usual bit operations are replaced by multiplication, addition and comparison (all
of those take Ω(1) time regardless of the size of the integers). He then proves that the
maxflow problem cannot be computed by iPRAM with polynomially many processors running
in polylogarithmic time. The model of iPRAM with polynomially many processors running
in polylogarithmic time is basically an algebraic version of NC, which we denote by NCalg,
where the inputs are now integers and the gates multiplication, addition and comparison,
and the fan-in of each gate is at most 2.1 Moreover it was also known that the maxflow
problem does have algebraic algorithm (working only using multiplication and addition)

1 making the fan-in to be arbitrary wouldn’t change the model, we can replace a large fan-in gate with a
low height tree of gates

© Ulysse Léchine;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 33; pp. 33:1–33:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6384-0459
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Revisiting Mulmuley

running in polynomial time, so in short Mulmuley proved that the maxflow problem is not
in the algebraic version of NC yet it is in the algebraic version of P . So in the algebraic
world NC ̸= P .

Size of inputs

For now we have very loosely spoken of “polynomial time”, “poly-logarithmic depth”... it is to
be understood that we mean “polynomial time in the size of the input”, but what is the size
of an input? It may seem trivial, but we insist upon it to clarify any future misconceptions.
In the bit world (where languages are subsets of {0, 1}∗, and inputs bitstrings), the size of
the input is its number of bits. In the algebraic world (where languages can be thought of as
subsets of N∗ and inputs strings of numbers) the size of an input is its number of numbers.
For instance let us consider a specific instance of a maxflow problem, say a weighted directed
graph G with 10 nodes given via its matrix representation, two integers to specify which node
is the source and which is the sink, and a integer threshold k. In the algebraic world the size
of this instance is 102 + 2 + 1 = 103. In the bit world we do not have enough information to
conclude because we do not know the bitlength of the capactities. This is just to shed light
on the difference between the two models, in the algebraic one only the number of integers
count, no matter their bitlength. Now when showing impossibility results, for instance that
maxflow is not in the algebraic version of NC, we will on top of it prove that the impossibility
still stand even if we restricts integers to be of bitlength polynomial in the size of the input
(i.e. polynomial in the number of numbers). This is interesting because it “levels the playing
field” between the algebraic world and the bit world, if the algebraic world comes short of
solving the maxflow problem it will not be because of inputs of very large bitlengths2.

1.2 Our result
In this paper we show that maxflow is not in the algebraic version of NC NCalg (subsequently
also not in iPRAM). We detail things as follows: our technique for showing the result.
Contributions and differences between our paper and Mulmuley’s. Discussion on the meaning
of this result.

1.2.1 Technique
1.2.1.1 The different PRAM models and algebraic circuits are equivalent

Firstly we consider (in order to use real analysis) real PRAM noted rPRAM (introduced in [3]).
rPRAM are akin to iPRAM except inputs are real numbers instead of integers, on which we
can perform addition, multiplication, division and comparison3. We argue efficiently that
rPRAM are at least as potent as iPRAM when we restrict the inputs to integers (iPRAM
are not defined otherwise). Then we consider the non-uniform4 family of algebraic circuits

2 This is how size was handled in [2] hence our choice. Another way of defining the size of inputs in the
algebraic world, perhaps more intuitive or familiar to some readers, is to include the bitlength of the
inputs in the size. As a side note changing size like this would strengthen the class NCalg and our proofs
would still work.

3 the division is probably superfluous when considering the decision version of a problem (we might be
able to simulate it using multiplication and addition) but it makes our model more potent in the general
case. In any case if the goal is only to prove the original result of Mulmuley, one may (on second
reading) disregard the division operation in the rest of the paper, it would make proofs even simpler

4 uniformity never plays a role so we may as well not restrict our circuits

U. Léchine 33:3

whose inputs are (multiple) real numbers, whose gates are multiplication, addition, division,
comparison (all of fan-in 2), whose depth is poly-logarithmic in the size of the input and
whose largeness is polynomial in the size of the input. We call this class NCalg, it is to
be thought of as the algebraic equivalent of NC. We then give an argument to show that
under a reasonable time slowdown and largeness blow up, NCalg can simulate rPRAM with
polynomially many processors running in poly-logarithmic time. Now we can focus our
attention on proving lowerbounds for NCalg which is much simpler than with rPRAM or
iPRAM (but any lower bounds for NCalg entail ones for rPRAM and iPRAM). Considering
NCalg instead of iPRAM is one of the key ingredient to the simplicity of our proof, the other
one being restricting our attention to algebraic circuit over one variable.

1.2.1.2 NCalg are really limited

First we prove by induction that a family of algebraic circuits whose input is only one number
are really simple functions: they are piece-wise polynomials 5 and each of those polynomials
is of small degree (we bound the degree and the number of different polynomials by the
depth of the circuit, see 2). So for instance any function f : R 7→ R with too many slope
changes cannot be computed by an algebraic circuit of small depth.

1.2.1.3 Problem

Then we explain how one can use this result over one input algebraic circuits to limit the
complexity of algebraic circuits over multiple inputs: let us say we want to prove that a
family of functions gn : Rn 7→ R is not computable in NCalg (i.e. with depth polylog(n)) then
one just needs to find a family of functions fn : R 7→ Rn computable with a circuit of depth
polylog(n) such that gn ◦fn (which is now a function from R to R so we can use our theorem)
is complex enough not to be computed by algebraic circuits of depth polylog(n). Since fn is
computable by such circuits then it must be gn which is not. Now for the maxflow problem
specifically: call gn : Rn2 7→ R the function which takes a weighted directed graph given as
its matrix representation and returns its maximum flow (the source is node 1 and the sink
node n). One simply needs to find a simple function fn : R 7→ Rn such that gn ◦ fn is too
complex to be computed by circuits of depth polylog(n). Such a family of functions fn has
been know for a long time ([1], Mulmuley even gives his own in [2]), and they are actually
very simple since they are affine functions, so definitely computable by algebraic circuits
even of depth 1. Then we simply conclude that gn in not computable by circuits of NCalg.

1.2.2 Contributions and differences
The contributions of this paper are twofold. Firstly the simplicity of the proof when compared
with Mulmuley’s. We use very basic (univariate) polynomial analysis to limit the complexity
of algebraic circuits, and then we use a known result about the parametric complexity of the
maxflow problem to immediately conclude. Thanks to our proof this quite famous result
may be proven to researchers or student in an hour or so. Secondly, because of the simplicity
of the proof we feel it is much easier to understand the true limitations of NCalg (therefore
iPRAM) and reveal that they are basically humongous and why even basic functions cannot
be computed in this model of computation. Mulmuley knew about these limitations but we
are more pessimistic than him. Additionally our technique exposes the fundamental and

5 actually polynomial fractions but this is an unimportant detail

FSTTCS 2023

33:4 Revisiting Mulmuley

non-trivial link between computing on inputs of large bitlength and computing functions
on many inputs of smaller bitlengths : we show that functions over one input cannot be
computed even if we restrict the inputs to x ∈ [0, 2nd] (where d is an integer) and we use it to
conclude that some function g over e ∈ N inputs cannot be computed even if we restrict its
domain to [0, 2n]e. The technique that Mulmuley uses is based on much more complicated
mathematics and with a model (iPRAM) on which proofs are clumsier that on circuits. He
basically uses the same plan and gives the same argument for the non-membership of maxflow
to iPRAM: iPRAM may only compute “simple” multivariate-polynomial-like functions but
using parametrization we can show that maxflow is not a simple function. To be clear,
most of our mathematical arguments may be - from a logically formal standpoint - already
contained in Mulmuley’s but we do not think it makes this paper redundant at all. Those
arguments were not readily apparent in Mulmuley. It is only after careful examination that
one realizes that our mathematical arguments are embedded in the ones of Mulmuley’s.
Our proof, because we limit the expressiveness of univariate circuits to polynomial of low
degree, very clearly exposes the shotcomings of the expressivity of the algebraic model. Those
shortcomings were was not as apparent in Mulmuley’s paper, because he deals with harder
concepts (more or less multivariate polynomials): limitations on such objects do not seem as
restrictive, and it still seems that we can compute “interesting” functions in iPRAM, so it
gives a false sense of how expressive the class iPRAM is. On the other hand the approach
used by Mulmuley, although it lacks in simplicity, may allow one to add operations on top
of addition and multiplication, for instance he claims his results are still valid if one allows
computing the parity of an integer. It is not immediately clear that our proof techniques can
be salvaged if we add such an operation (adding the parity function allows us to create a
polynomial with exponentially many pieces). Also Mulmuley shows that randomness still
does not allow us to compute the maxflow problem. We do not consider randomness in this
paper, our educated guess is that our technique can be fitted to include randomness. One
last hiccup is that for what seems could be purely technical reasons we were not able to
show that the decision version of the maxflow problem cannot be computed in NCalg. We
only show that the search version (taking a graph and outputting its maximal flow) is not in
NCalg. At the end of the paper we give promising leads to solve this slight issue.

1.2.3 Discussion
As explained before we believe our results shed light on the lack of potency of the models
considered by Mulmuley and consequently ours. We are still far from proving that NC ̸= P .
To cement that idea we show that trivial problem for bit complexity class, like checking the
parity of a bitstring (its last bit is 0) is obviously in NC (its even in AC0), but it is not
in NCalg. This was known of Mulmuley but he somewhat disregards it, we argue later in
the paper that it should not be disregarded. We, very humbly, think it somewhat dampens
the hope of using such techniques to prove P ̸= NC, or at the very least that closing the
gap using such techniques will be quite involved. Secondly we warn the reader: although
the maxflow is special in the bit complexity class P , as it is complete, it is as far as we can
tell not special in the algebraic world: we could not find general reductions from problems
in algebraic-P to the algebraic maxflow problem. The maxflow problem is only special in
the sense as it has an intuitive translation from the bit world to the algebraic world: every
capacity gets mapped to one number. If we had taken another problem like primality testing
for instance, the translation would not make much sense. Indeed in primality testing we have
a number x and must determine if it is prime, its intuitive translation in the algebraic world
would be similar: we have an integer x and must determine if it is prime. The issue is that
in the algebraic world our input size would now be 1 (we have 1 number) and so circuits
should now be of constant size.

U. Léchine 33:5

All of that being said it is still interesting in its own right to know that the maxflow
problem cannot be solved in poly-logarithmic time by polynomially many processors. Indeed
algorithms used to solve the maxflow problem are, to our knowledge, all algebraic, they do
not use the bitwise representation of numbers, only their absolute value. So it gives credible
reason to believe P ̸= NC

2 Equivalence between PRAMS and algebraic circuits

We will start with definitions of classes iPRAM, rPRAM and NCalg. Our definition of iPRAM
is taken almost verbatim from Mulmuley’s paper [2]. Our definition of rPRAM is taken
from [3]

▶ Definition 1 (iPRAM). It is like the usual PRAM model, the main difference being that its
input are integers (instead of bits) and it does not provide instructions for any bit operations
such as ∧, ∨, or extract-bit. The model provides usual arithmetic (+, −, ×), comparison
(=, ≤, <), store, indirect reference, and branch operations. Each memory location can
hold an integer; a rational number is represented by a pair of integers – its numerator and
denominator – both of which can be accessed by the processors separately. The processors
communicate as in the usual PRAM model. The model does not provide instructions for
truncation or integer division with rounding. The lower bounds are proved in the conservative
unit-cost model in which each operation is assigned unit cost regardless of the bitlengths of
the operands.

In Mulmuley’s setting indirect addressing is not allowed to depend in the input, for
instance we may not use a capacity as an address. There need not be such restrictions in our
model.

▶ Definition 2 (rPRAM). It is like the iPRAM model except the inputs are real numbers and
we have an additional / (divide) gate. Furthermore each value is now stored in a memory
location represented by a real number, i.e. we have an instruction store value x in cell y

where both x and y are real numbers. We may also retrieve the content of a memory cell
indexed by y a real number.

Notice that even though our memory cells are labelled by real numbers, at most polynomially
many labels can be instantiated over the course of a computation using polynomially many
processors and running in poly-logarithmic time.

In order to meaningfully compare the two models (iPRAM and rPRAM) we may restrict
our view to integer inputs, in this setting it is clear enough that any computation made by
an iPRAM can be made by an rPRAM.

▶ Definition 3 (Algebraic circuit). An algebraic circuit is a circuit with gates +, ×, −, /, =, <, ≤
of fan-in 2, and constant gates n for all n ∈ N. Its inputs are real numbers. The comparison
gates =, <, ≤ return 1 when true, 0 otherwise. All the other gates are interpreted in the
obvious way.

▶ Definition 4 (log-depth algebraic circuits). Cn is a sequence of NCalg (polylog-depth algebraic
circuits) if each Cn is an algebraic circuit working over n inputs, the size of each circuits
grows polynomial in n and the depth polylogarithmically in n.

We restrict the largeness of log-depth algebraic circuits to polynomials. If unrestricted
they could be bigger, indeed even if we work with fan in 2 a circuit of depth logd(n) could
be of largeness as big as 2logd(n) which is bigger than any polynomial for d > 1. Mulmuley

FSTTCS 2023

33:6 Revisiting Mulmuley

considers such circuits in his paper, for simplicity we do not although our results would still
stand. We now sketch a proof that NCalg (circuits) and rPRAM (prams) with polynomially
many processors and of running time polylogarithmic define the same class of functions.

▶ Theorem 1. NCalg (circuits) and rPRAM (prams) with polynomially many processors
and of running time polylogarithmic define the same class of functions.

Proof. It is not hard to see that one can simulate a circuit using a real PRAM. Just have
one processor per gate.

The other direction is not so trivial, here is a sketch of the proof. To handle instructions
not related to memory manipulation we may use techniques used in the traditional Turing-
machine-to-circuit conversions, the tricky part is taking care of the memory addressing using
real numbers. Proof of this fact when considering NC and PRAMs (in the boolean setting)
can be found in introductory computer science books. Let us consider p processors in parallel
running for k steps. Our circuit will consist of k layers (li)k

i=1, each layers contains pk gates
representing the memory state of each processor (each processor modifies at most k internal
addresses over the whole run), plus an additional number of gates representing the state of
the shared memory. In order to deal with the processor accessing and modifying the shared
memory we need to be careful, indeed the index of the cell accessed by a processor is unknown
across a range of infinitely many indices, to deal with this issue we use a trick known as
dynamic addressing, each memory cell will be represented by a pair of gates one containing
the actual content and one containing the index of the cell. Only kp memory cells can be
used at most by the processors so we add to each layer a 2kp gates representing the state of
the share memory (index and content). Moreover all operations on the memory (like checking
if a certain memory cell given by its address is empty) can be simulated using a overhead of
O(log(kp)). In total our circuit is of size polynomial in pk and of depth O(k log(pk))2 (the
square comes from the Turing machine to circuit conversion). ◀

3 Limitations of log-depth algebraic circuits

In this section we give a direct proof that log-depth algebraic circuits over one variable
compute piece-wise polynomial fractions of low degree and few pieces (namely less than 2n if
the depth is polylog(n)). This is detailed in main theorem 2.

▶ Definition 5 (Interval). A set I over R is an interval if there exists a, b ∈ (R∪{−∞; +∞})2

two real numbers such that I = [a, b] or I =]a, b] or I = [a, b[or I =]a, b[.6

▶ Definition 6 (Comparison of intervals). Let I and J be two non-empty, non-intersecting
intervals over R. We write I < J if ∀x ∈ I, ∀y ∈ J, x < y. Let us have a collection of r

intervals (Ii)r
i=0, we write I1 < I2 < . . . < Ir to indicate that they are given in order and

they are all non-empty and non-intersecting.

▶ Definition 7 (Interval cut and pieces). Given a family (Ii)1≤i≤r of r intervals, I1 < I2 <

. . . < Ir we say it is an interval cut of size r if I1, I2, . . . , Ir partitions R. Each Ii is called a
piece.

In the following we may use as a shorthand the notation I for a family of r intervals
(Ii)1≤i≤r.

6 since some reader may no be familiar with these notations:]a, b] is equal to [a, b] ∖ a

U. Léchine 33:7

▶ Definition 8 (Intertwining interval cuts). Given an interval cut of size n I1 < I2 < . . . < In

and an interval cut of size m J1 < J2 < . . . < Jm. There is at least one interval cut of
k-pieces K1, . . . , Kk such that ∀h ∈ [k], ∃i, j, Kh ⊂ Ii ∧ Kh ⊂ Jj , if k is minimal then we call
K1, . . . , Kk an intertwining of I and J .

Note in the previous definition that when k is minimal it is smaller than n + m (this
is not hard to see). As an example of what is an intertwining consider the family I =
(] − ∞; 0],]0; +∞[) and J = (] − ∞; 1],]1; +∞[), then one possible value of an intertwining is
(] − ∞; 0],]0; 1],]1; +∞[).

▶ Definition 9 (Piece-wise polynomial fraction). A function f over D ⊂ R is said to be a piece-
wise polynomial fraction if there exists n ∈ N \ {0} and an interval cut I1 < I2 < . . . < In

and n polynomial fractions f1, f2, . . . , fn such that ∀i ∈ J1; nK, ∀x ∈ Ii ∩ D, f(x) = fi(x). 7

Given such an interval cut I1 < I2 < . . . < In we may say f is a piece-wise polynomial
fraction over I. The number of pieces of a piece-wise polynomial fraction is the smallest
number n such that there exist I1 < I2 < . . . < In as described above. Let us write c the
function which takes a piece-wise polynomial fraction f and return its number of pieces (we
extend c to also take circuits as inputs when they compute piece-wise polynomial fractions).

For clarification the poles of a polynomial fraction do not add new pieces, for instance
the function f(x) = 1

x2−1 defined for all x ∈ R \ {−1; 1} is a one piece polynomial fraction.
If one wanted to have functions defined over the whole of R it would be no issue as whenever
performing a division we could add a comparison gate in the circuit to verify that we are not
dividing by 0, and if so return an arbitrary value.

▶ Definition 10 (Augmented degree of a polynomial fraction). Let F = P
Q be a polynomial

fraction over R, meaning that P and Q are coprime polynomials over R, then we define its
augmented degree noted d(F) as d(F) = d(P) + d(Q) + 1 (where d(P) and d(Q) denote the
usual degree of polynomials)

▶ Definition 11 (Augmented degree of a piece-wise polynomial fraction). Let f be a piece-wise
polynomial fraction over R with a minimal interval cut I1 < . . . < In and f1, . . . , fn the
associated polynomial fractions then we define d(f) = max0≤i≤nd(fi).
It is routine to check that this definition does not depend on the chosen interval cut.

This is the main theorem of the paper on which we derive all impossibility results of
section 4.

▶ Theorem 2. A circuit P of depth k taking only one input, computes a function which
is a piece-wise polynomial fraction. Let us call with c(P) its number of pieces and d(P) its
augmented degree, then d(P) ≤ 2k and c(P) ≤ 2 k2+3k

2

Proof. We prove the result for each gate by induction on the depth of the gate, both that
we do indeed compute a piece-wise polynomial fraction and that the bounds are correct. Let
us denote ck the maximal number of pieces of a function computed by a gate at depth k.
Let us denote dk the maximal augmented degree of a function computed by a gate at depth
k. We are going to prove that dk ≤ 2k and ck ≤ 2 k2+3k

2 by induction.
For depth k = 1 the function computed is either f = (x 7→ x) or g = (x 7→ 1). Notice

that d(f) = 2, c(f) = 1, d(g) = 1 and c(g) = 1. Therefore d1 ≤ 21 and c1 ≤ 22.

7 J1; nK denotes the integers in the interval [1; n]

FSTTCS 2023

33:8 Revisiting Mulmuley

Going from k to k + 1: Let us consider a gate called p at depth k + 1. Our induction
hypothesis is that dk ≤ 2k and ck ≤ 2

k(k+1)
2 .

Multiplication gate: p = p1 ∗p2. Let r = c(p1) and m = c(p2) we consider the interval cuts
of p1 and p2 which we denote I1 < . . . < Ir and J1, < . . . < Jm, let us consider K1, . . . , Kk

an intertwining of I and J such that k < r + m, note that p is a piece-wise polynomial
fractions over K. Therefore c(p) ≤ c(p1) + c(p2) ≤ 2 ∗ ck ⇒ c(p) ≤ 2 ∗ ck ≤ 2

(k+1)(k+2)
2 . By

reasoning over each piece of the interval cut K we have that d(p) ≤ d(p1) + d(p2) ≤ 2dk.
Addition and division gate work in a similar fashion.
Comparison gate: p = (p1 ≤ p2). Let us define n = c(p1) and m = c(p2) and let

A0 ≤ A1 ≤ . . . ≤ An be the pieces of p1, B0 ≤ B1 ≤ . . . ≤ Bm the pieces of p2. Let
I0 ≤ I1 ≤ . . . ≤ Ir be an intertwining of A and B. For all i, p1 and p2 are both polynomial
fraction over Ii and we can canonically write pi,1 = qi,1

ti,1
and pi,2 = qi,2

ti,2
. We want to count

the number of pieces of p, to that end we focus on each Ii one by one. Notice that over Ii

any new piece of p contained in Ii may only occur on places where pi,1 − pi,2 changes sign,
moreover pi,1 = pi,2 ⇔ qi,1 ∗ ti,2 − ti,1 ∗ qi,1 = 0. But the polynomial qi,1 ∗ ti,2 − ti,1 ∗ qi,1
has at most d(p1) + d(p2) − 1 roots, therefore over Ii we “add” at most d(p1) + d(p2) pieces.
Since we have at most r ≤ n + m = c(p1) + c(p2) pieces Ii, we have that cp is at most
(d(p1) + d(p2)) ∗ (c(p1) + c(p2)) ≤ 2dk ∗ 2ck ≤ 2 ∗ 2k ∗ 2 ∗ 2 k2+3k

2 ≤ 2
(k+1)2+3(k+1)

2 . And d(p) is
equal to 1 ≤ 2k+1.

So no matter the last computation gate the induction hypothesis still holds at depth k + 1
therefore dk ≤ 2k+1 and ck ≤ 2

(k+1)2+3(k+1)
2 . This concludes the proof. ◀

4 Problems not in NCalg

In this section using theorem 2 we will present different problems not in NCalg, including the
maxflow problem. As a warm up we will begin by showing that the the mod 2 function (or
bit extraction as Mulmuley calls it in his paper) cannot be computed by algebraic circuits of
small depth. But first let us properly define what we mean by computing a function.

In the beginning of this paper we have proved that NCalg is at least as expressive as
iPRAM when only considering integer inputs. Therefore given a family of functions fn and a
family of intervals Dn such that fn : Dn 7→ R there are two ways to meaningfully analyze
its computability in NCalg. The first one is the obvious one: is there a sequence of circuits
Cn ∈ NCalg such that ∀λ ∈ Dn, Cn(λ) = fn(λ). The second one focuses only on integers
inputs: is there a sequence of circuits Cn ∈ NCalg such that ∀k ∈ N

⋂
Dn, Cn(k) = fn(k).

If a sequence of function cannot be computed on the integers by circuits of NCalg then it
cannot be computed by iPRAM and it surely cannot be computed on the whole of Dn. When
tackling problems we will often consider both version of computability.

Here is the general scheme for proving that a decision problem (the function returns
either 0 or 1 depending on membership in a specified language) is not computed by an
algebraic circuit of low depth. Take a subset L of Rn which will be the decision problem
and restrict your view to [0, 2m]n, n is to be thought as the number of inputs and m as the
bitlength of the integers we work with. Often in problems we only consider n and take m

to be polynomial in n, it makes sense as in the bit world we may in polynomial time, only
work with at most polynomial bit length integers. If L is complex enough the hope is that
there will a a lot of alternations inside the hypercube [0, 2m]n between areas belonging to
L and areas not belonging to L. For instance if n = 1 (which is the only case studied by
theorem 2), L is complex if [0, 2m]

⋂
L is equal to the union of exponentially many disjoint

U. Léchine 33:9

intervals (exponential in m)8. Indeed in that case L cannot be recognized (meaning returning
1 when the output is in L, 0 otherwise) by an algebraic circuit of depth polylogarithmic in
m because those cannot compute piece-wise polynomial fraction with exponentially many
pieces. When n is not equal to 1 we need not worry, one must simply find an integer c

and a one dimensional curve f : [0; 2mc] 7→ [0; 2m]n called parametrization, such that as λ

ranges across [0; 2mc], f goes through many alternations of L and LC (the complementary
of L), and such that f is expressible using a circuit of NCalg. Then no circuit of NCalg may
recognize L, otherwise a circuit for L composed with a circuit for f would yield a piece-wise
polynomial function with exponentially many pieces. In our proof for maxflow we use a
linear parametrization, but in general it does not need be linear. This parametrization trick
may not work in some instances, meaning there probably exists problems over Rn not in
NCalg but such that no parametrization goes through exponentially many alternation of L

and LC . For instance, in the decision version of the maxflow problem we fail to come up
with a proper parametrization to show that it does not belong to NCalg. Is it because such
parametrization does not exist or because we could not find it ? We do not know. Our guess
is that proving that the decision version of maxflow is not in NCalg, is most likely provable, if
not using parametrization, using tech.

4.1 Bit extraction
We start with proving that the mod 2 function cannot be computed by a circuit of small
depth. Although the mod 2 function can be defined on R we only look at the mod 2 function
on J0; 2mK(= [0; 2m] ∩ N) and we prove that on integer inputs no circuit of depth polylog(m)
may always agree with the mod 2 function.

The next lemma states that no piece-wise polynomial fraction with few pieces or low
augmented degree can agree with the mod 2 function on many consecutive integers.

▶ Lemma 1. Let f be a piece-wise polynomial fraction over R, if ∀k ∈ J0; NK, f(k) = k%2
then d(f) ∗ c(f) ≥ N

10

Proof. Let f be a piece-wise polynomial fraction as described in the theorem and call c its
number of pieces, I1, . . . , Ic its pieces. Assume c is less than N/10 (otherwise the theorem is
proved), there must be a piece Ij containing at least N/c integers of J0; NK. We remind that
over Ij f is a polynomial fraction which we note P

Q , since k 7→ k%2 has N/2c zeroes over Ij ,
so must P , P also cannot be the zero function because k 7→ k%2 is equal to 1 for some integers
in Ij , therefore P is of degree at least N/2c. Therefore d(f) ∗ c ≥ (N/2c) ∗ c ≥ N/10. ◀

The next theorem states that no circuit of polylog(n) depth may compute the mod 2
function (we only consider the first 2n integer inputs).

▶ Theorem 3. Let c and d be two positive real numbers, for any function family fn com-
puted by a circuit family of depth c logd(n), there exists N ∈ N such that ∀n > N, ∃k ∈
J0; 2nK, fn(k) ̸= k%2.

Proof. Let (Cn)n be a sequence of circuits of depth kn = O(c logd(n)). Since n 7→ n%2 is a
function with one input, we may consider (Cn)n to be a sequence of circuits with one input.
For any n, the function computed by Cn is a piece-wise polynomial fraction f . By theorem 2
we have that c(f) ≤ 2

k2
n+3kn

2 and d(f) ≤ 2kn therefore c(f)d(f) = o(2n). Therefore for large
enough n, using Lemma 1, f cannot coincide with n 7→ n%2 for all integers in J0; 2nK. ◀

8 actually any interval is the union of exponentially many disjoint ones, so more precisely we should
require that L is not equal to the union of less than exponentially many intervals

FSTTCS 2023

33:10 Revisiting Mulmuley

It was already known to Mulmuley that the problem of computing the last bit was a
hard problem for NCalg, from our understanding and if we recap his views informally : he
dismisses it because there is no polynomial-depth circuit for this problem either9, so it is
not so interesting. Indeed he considers that the size of this problem is 1 : we are given 1
number and are asked to return its last bit. Ìn theorem 4 prove that a very similar set has
no circuits in NCalg yet it has polynomial-depth circuits.

▶ Theorem 4. The set

{(x1, . . . , xn) ∈ Nn; xn%2 = 0 ∧ xn < 2n} .

has polynomially bounded arithmetic circuits which agree with it over [[0; 2n]], but none in
NCalg.

Proof. Let us call A the set of the theorem. One can check that xn is less than 2n and if so
retrieve with a circuit of size linear in n the last bit of xn (using standard dichotomic search).
So set A has polynomially bounded circuits.

On the other hand setting all xi but xn to 0 we already know that the set

{(0, . . . , 0, xn) ∈ Nn; xn%2 = 0 ∧ xn < 2n} .

is not in NCalg by a proof similar to the one of theorem 3. Therefore the set A is not in NCalg

either. ◀

Now we would like to take a moment to ponder over what the last theorem means with
regards to the algebraic approach. When presented with Mulmuley’s original result we were
told this three-part story: One wants to prove that P ≠ NC. Maxflow is P -complete, so we
just need to prove that Maxflow is not in NC. It is too hard, but fortunately we can prove
that the algebraic version of Maxflow is not in the algebraic version of NC. Surely this has
drawn us closer to proving P ≠ NC? Well it seems to us that the last theorem dampens
that assumption, we have an example of a trivial problem for bit complexity classes which is
not in NCalg (yet has polynomial size circuits !). So then arises the question why bother with
maxflow when trivial problems already are not in NCalg ? In our opinion, this remark is valid
in the context of assessing the computational power of NCalg and thus the extent to which
impossibility results are meaningful. However there are still good reasons to care about the
maxflow problem : first of all, even though maxflow is a P-complete problem in the bit world,
there is no obvious guarantee (at least to us) that maxflow is complete in the algebraic world,
so a proof that a trivial problem is not in NCalg could not entail anything regarding maxflow,
secondly it is interesting in its own right to know if maxflow can be solved fast in parallel
using only algebraic operations.

4.2 Bijections from N to N2

Before going on to the maxflow problem we focus on the problem of computing a bijection
between N and N2. If our model could do this we could reduce problems over n inputs to
problems over 1 input by repeatedly applying the bijection (the same way in the bit world
problems over N2 might as well be problems over N by associating a number to each pair of
number). We do not directly prove that no bijection exists however we prove that we cannot
inverse the usual Cantor pairing function. Using similar arguments one may be able to prove
that no bijection between N and N2 may be computed by a circuit of low depth.

9 we note : unless the bitlength is part of the size

U. Léchine 33:11

▶ Theorem 5. Let f : N × N 7→ N be the usual Cantor pairing function f(n, m) = 1
2 (m +

n)(m + n + 1) + m. This function is bijective and its reciprocal f−1 cannot be computed over
J0; 2nK by an algebraic circuit of depth polylogarithmic in n .

Proof. Consider the function g(x, y) = (x < y). (it returns either 0 or 1) The function
g(f−1) has 2 n

2 alternations between 0 and 1 over J0; 2nK therefore it cannot be computed by
a circuit of NCalg (by arguments used to prove theorem 1 and 3) . But g can be computed by
a circuit of NCalg (< is a gate of NCalg) therefore it must be f−1 which cannot be computed
by a circuit of NCalg. ◀

4.3 Maxflow
Now we focus our attention to the maxflow problem. In the maxflow problem we are given a
network (an directed graph) of edges with specified capacities, a threshold k, a two specified
nodes s and t, the question then asked is can a flow of size k flow from s to t.

▶ Definition 12 (Maxflow problem). An instance of an algebraic maxflow problem of
size n2 is a directed graph with n nodes with each edge (as much as n2) labelled with a real
number called capacity. It is represented by its adjacency matrix representation. We say that
a circuit A solves the algebraic maxflow problem on size n2 if on any instance of size
n2 it returns the maximal flow from node 1 to node n. We say that a circuit A solves the
integer maxflow problem on size n2 if on any instance containing only integers it returns
the maximal flow from node 1 to node n

▶ Definition 13 (Decision maxflow problem). An instance of a decision maxflow problem
of size n2 is an undirected graph with n nodes with each edge (as much as n2) labelled with
a real number called capacity and a threshold k. The graph is represented by its adjacency
matrix representation. We say that a circuit A solves the decision maxlow problem on
size n2 if on any instance of size n2 it returns 1 if the maximal flow from node 1 to node
n is greater than k, 0 otherwise. We say that a circuit A solves the integer decision
maxflow problem on size n2 if on any instance containing only integers it returns whether
the maximal flow from node 1 to node n is greater than k.

This gives us 4 variants of the maxflow problem. We can of course further limit the
complexity of these problem by only requiring algorithms solving them to work on an interval
Dn instead of the whole of R. In his paper [2] Mulmuley proves that all 4 cannot be
solved by circuits of iPRAM even if we only consider polynomial size bit lengths integer, i.e
Dn = [0, 2nc]. We will now give a simple proof that the algebraic maxflow problem cannot be
solved by circuits of NCalg. We introduce for that the linear parametrization version of the
maxflow problem. For a given size n2, each capacity c is now an affine function of parameter
λ where the coefficients a and b are integers of bitlength polynomial in n (c = a + b ∗ λ).
Given p, q ∈ Z2 this defines for all λ ∈ [p, q] an instance G(λ) of the maxflow problem.
Let I be the function such that I(G(λ)) returns the maximal flow from node 1 to node
n. It has been proven in [1] and [2] that there is a family Gn(λ) of linearly parametrized
graph with polynomial-bit-length parameters and O(n2) edges, such that I(Gn(λ)) has O(2n)
breakpoints (slopes changes) over [0, T] with T = 2n+1.

▶ Theorem 6. The algebraic maxflow problem cannot be computed by circuits of NCalg

Proof. Let us suppose there is a family of circuits Cn ∈ NCalg such that Cn computes the
algebraic maxflow problem for size n2 graphs. Then Cn must return the correct value on
Gn(λ) for all λ. Consider Bn a circuit of depth 1 and O(n2) largeness taking λ as input

FSTTCS 2023

33:12 Revisiting Mulmuley

and outputting Gn(λ) (represented via its adjacency matrix). Then the circuit Cn(Bn(λ))
is a circuit of NCalg with one input computing I(Gn(λ)) which is a linear function with 2n

breakpoints, but such a function cannot be computed by a circuit of NCalg by theorem 2,
contradiction. ◀

▶ Theorem 7. The integer algebraic maxflow problem cannot be computed by circuits of
NCalg

Proof. We sketch an idea of proof only. Consider the construction of Mulmuley, notice
that the breakpoints of I(Gn(λ)) are more than distance 2 away from each other, scale
everything up by a factor of 2n (one may create the integer 2n in log(n) depth circuits using
repeated squaring) so that now the breakpoints are 2n away from each other, this gives you
a function I ′(λ) which is piece wise linear with each piece containing 2n integers, argue that
any piece-wise polynomial fraction which agrees with I ′ must have a large number of pieces
or a large augmented degree (like in Lemma 1), then conclude. ◀

The last remaining piece remaining is the decision version, but we come across a slight hiccup:
solvability of the decision version of a problem means being able to compute its epigraph,
indeed the decision version asks us to compute (x, y) 7→ (y < f(x)). Intuitively speaking it
would be very strange if we could in our algebraic setting compute the epigraph of function
but not its graph. The solvability of the decision version should entail the solvability of the
search version (up to a given precision) by way of dichotomic search: if we can compute
(x, y) 7→ (y < f(x)) then we can approximatively compute x 7→ f(x) in a similar time (for
instance the time is multiplied by log(f(x)) if we want to be precise up to the closest integer).
Unfortunately in NCalg for functions outputting values exponential in n, we cannot reduce
the complexity of the decision version to that of the search version via dichotomic search
(we would need a depth log(2n) = n but we only have polylog(n) depth). Looking closer at
the construction of Mulmuley in [2], the function I(Gn(λ)) does output for most λ ∈ [0, 2n]
values bigger than O(2n).

We now give leads to tackle what looks to us to be only a technical issue. The most
promising idea would be to find a family of function fn computable with low depth circuits
and close enough to I(Gn(λ)), i.e. such that the difference fn(λ) − I(Gn(λ)) = O(nd) for
many inputs, we could then use dichotomic search to find the value of I(Gn(λ)). This might
actually be possible because looking closer at Mulmuley’s construction I(Gn(λ)) vaguely
grows in λlog(n) which is a polynomial in λ (we can hardcode log(n) for every n), so an
algebraic circuit of low depth may compute it. The technical part is properly analyzing the
growth rate of the function I(Gn(λ)).

In case this fails another idea would be to fiddle around a bit with Mulmuley’s construction
to directly deal with the decision version. Yet another approach would be to analyse circuits
of NCalg with 2 inputs but it would certainly complicate the mathematics. Finally there is
hope that for non pathological functions f we may prove in general that uncomputability of
f entails the uncomputability of (y, x) 7→ y < f(x).

References
1 Patricia June Carstensen. The Complexity of Some Problems in Parametric Linear and

Combinatorial Programming. PhD thesis, University of Michigan, USA, 1983. AAI8314249.
2 Ketan Mulmuley. Lower bounds in a parallel model without bit operations. SIAM Journal on

Computing, 28(4):1460–1509, 1999. doi:10.1137/S0097539794282930.
3 Thomas Seiller, Luc Pellissier, and Ulysse Léchine. Unifying lower bounds for algeb-

raic machines, semantically. quoicoubeh, November 2022. URL: https://hal.science/
hal-01921942.

https://doi.org/10.1137/S0097539794282930
https://hal.science/hal-01921942
https://hal.science/hal-01921942

	1 Introduction
	1.1 Previous work
	1.2 Our result
	1.2.1 Technique
	1.2.2 Contributions and differences
	1.2.3 Discussion

	2 Equivalence between PRAMS and algebraic circuits
	3 Limitations of log-depth algebraic circuits
	4 Problems not in NC^{alg}
	4.1 Bit extraction
	4.2 Bijections from N to N ^2
	4.3 Maxflow

