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Abstract
We investigate the dimension-parametric complexity of the reachability problem in vector addition
systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to
now, the problem is known to be Fd-hard for VASS of dimension 3d + 2 (the complexity class
Fd corresponds to the kth level of the fast-growing hierarchy), and no essentially better bound
is known for pushdown VASS. We provide a new construction that improves the lower bound for
VASS: Fd-hardness in dimension 2d + 3. Furthermore, building on our new insights we show a new
lower bound for pushdown VASS: Fd-hardness in dimension d

2 + 6. This dimension-parametric lower
bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown)
complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is
Ackermann-complete).
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1 Introduction

Petri nets, equivalently presentable as vector addition systems with states (VASS), are an
established model of concurrency with widespread applications. The central algorithmic
problem for this model is the reachability problem which asks whether from a given initial
configuration there exists a sequence of valid execution steps reaching a given final config-
uration. For a long time the complexity of this problem remained one of the hardest open
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35:2 New Lower Bounds for Reachability in Vector Addition Systems

questions in verification of concurrent systems. In 2019 Leroux and Schmitz made a significant
breakthrough by providing an Ackermannian upper bound [14]. With respect to the hardness,
the exponential space lower bound, shown by Lipton already in 1976 [16], remained the only
known for over 40 years until a breakthrough non-elementary lower bound by Czerwiński,
Lasota, Lazic, Leroux and Mazowiecki in 2019 [3, 4]. Finally, a matching Ackermannian lower
bound announced in 2021 independently by two teams, namely Czerwiński and Orlikowski [5]
and Leroux [12], established the exact complexity of the problem.

However, despite the fact that the exact complexity of the reachability problem for VASS
is settled, there are still significant gaps in our understanding of the problem. One such gap
is the complexity of the reachability problem parametrised by the dimension, namely deciding
the reachability problem for d-dimensional VASS (d-VASS) for fixed d ∈ N. Currently, the
exact complexity bounds are only known for dimensions one and two. In these cases, the
complexity depends on the representations of numbers in the transitions, either unary or
binary. For binary VASS (where the numbers are represented in binary) the reachability
problem is known to be NP-complete for 1-VASS [9] and PSpace-complete for 2-VASS [2].
For unary VASS the problem is NL-complete for both 1-VASS (folklore) and 2-VASS [8].

Much less is known for higher dimensions, and it is striking that even in the case of
3-VASS we have a huge complexity gap. The best complexity upper bound comes from the
above mentioned work of Leroux and Schmitz [14], where it is proved that the reachability
problem for (d−4)-VASS is in Fd (here Fd denotes the dth level of the Grzegorczyk hierarchy
of complexity classes, which corresponds to the fast growing function hierarchy). In particular
this shows that the reachability problem for 3-VASS is in F7 (recall that F3 = Tower).

The recent Ackermann-hardness results provide lower bounds for the reachability problem
in fixed dimensions. The result of Czerwiński and Orlikowski [5] yields Fd-hardness for
6d-VASS, while the result of Leroux [12] establishes Fd-hardness for (4d + 5)-VASS. Lasota
improved upon these results and showed Fd-hardness of the problem for (3d + 2)-VASS [10].
In [6], additional results were obtained for specific dimensions: PSpace-hardness for unary
5-VASS, ExpSpace-hardness for binary 6-VASS and Tower-hardness for unary 8-VASS.

To summarise, despite significant research efforts there are still several natural problems
related to the VASS reachability problem that present significant complexity gaps:
Q1: What is the complexity of the reachability problem for VASS of dimension 3? It is

known to be PSpace-hard and in F7;
Q2: What is highest dimension for which the complexity of the reachability problem is

elementary? It is known to fall within the range of 2 to 8;
Q3: What is the smallest constant C such that the complexity of the reachability problem

for d-VASS is in FCd+o(d)? It is known to fall within the range of 1
3 to 1.

In this work, we focus on addressing Question Q3. We present new and improved lower
bounds, first in the standard setting of VASS, and then in the setting of pushdown VASS
(PVASS) which extend the VASS model by incorporating a pushdown stack.

VASS reachability. Our first main result is a new complexity lower bound for the reachability
problem which improves the gap:

▶ Theorem 1. The reachability problem for (2d + 3)-VASS is Fd-hard.

A preliminary version of this result was presented in [11]. In this revised version, we aim
to present the result in a conceptually simple framework by using the notion of triples, a
formalism that was originally developed in [3], and was heavily used in [5] and [10]. We view
this contribution as an important step towards understanding the complexity of the VASS
reachability problem parametrised by the dimension.
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PVASS reachability. The decidability of the reachability problem for PVASS has been an
important open problem for over a decade [1]. Despite efforts of the community, it remains
unknown even for PVASS of dimension 1 (1-PVASS), namely automata with one counter
and one pushdown stack.

▶ Conjecture 2. The reachability problem for PVASS is decidable.

It is important to acknowledge that the PVASS setting is complex, and few decidability
results are known. Some progress has been made in the study of the coverability problem, a
variant of the reachability problem which asks whether from a given initial configuration
there exists a sequence of valid execution steps that reaches a configuration greater than the
given final configuration. Notably, the coverability problem has been shown to be decidable
for 1-PVASS [15] (and mentioned to be in ExpSpace).

Interestingly, despite the slow progress on determining upper bounds for PVASS, there is
limited knownledge about lower bounds as well. To the best of our knowledge, the only lower
bound that is not directly implied by the results on VASS concerns (again) the coverability
problem for 1-PVASS, which has been established as PSpace-hard [7].

As for our contribution, our second main result is the first complexity lower bound for
the PVASS reachability problem that is not immediately inherited from VASS:

▶ Theorem 3. The reachability problem for (⌊ d
2 ⌋ + 6)-PVASS is Fd-hard.

Notably, Theorem 3 implies that for sufficiently large d the reachability problem for
d-PVASS is harder than the problem for (d + 1)-VASS (which is a subclass of d-PVASS as
the pushdown stack can keep track of one VASS counter). Indeed the problem for d-PVASS
is F2d−12-hard by Theorem 3, while the problem for (d + 1)-VASS is in Fd+5 by [14].

While our results indicate that the reachability problem for PVASS is harder than for
VASS, some known results about PVASS hint that even higher lower bounds might be proved:
In [13] it was shown that PVASS are able to weakly compute functions of hyper-Ackermannian
growth rate. Based on this observation we propose the following two conjectures:

▶ Conjecture 4. There exists a fixed dimension d ∈ N such that the reachability problem for
d-PVASS is Ackermann-hard.

▶ Conjecture 5. The reachability problem for PVASS is hyperAckermann-hard.

2 Preliminaries

Fast-growing hierarchy. Let N+ = N \ {0} be the set of positive integers. We define
the complexity classes Fi corresponding to the ith level in the Grzegorczyk Hierarchy [18,
Sect. 2.3, 4.1]. To this aim we choose to use the following family of functions Fi : N+ → N+,
indexed by i ∈ N:

F0(n) = n + 2, Fi+1 = F̃i where F̃ (n) = F n−1(1) = F ◦ F ◦ . . . ◦ F︸ ︷︷ ︸
n−1

(1). (1)

In particular, F1(n) = 2n − 1 and Fi(1) = 1 for all i ∈ N+. Using the functions Fi, we define
the complexity classes Fi, indexed by i ∈ N+, of problems solvable in deterministic time
Fi ◦ Fm

i−1(n) for some m ∈ N:

Fi =
⋃

m∈N
DTime(Fi ◦ Fm

i−1(n)).

FSTTCS 2023
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Intuitively speaking, the class Fi contains all problems solvable in time Fi(n), and is closed
under reductions computable in time of lower order Fm

i−1(n), for some fixed m ∈ N+. In
particular, F3 = Tower (problems solvable in a tower of exponentials of time or space
whose height is an elementary function of input size). The classes Fi are robust with respect
to the choice of fast-growing function hierarchy (see [18, Sect.4.1]). For i ≥ 3, instead of
deterministic time, one could equivalently take nondeterministic time, or space as all these
definitions collapse.

2.1 Counter programs
A counter program (or simply a program) is a sequence of (line-numbered) commands, each
of which is of one of the following types:

x += 1 (increment the counter x by one)
x −= 1 (decrement the counter x by one)
goto L or L′ (nondeterministically jump to either line L or line L′)
zero? x (zero test: continue if counter x equals 0)

Counter programs with a pushdown stack (or simply programs with stack) are enhanced
versions of plain counter programs that incorporate a stack containing a word over a fixed
stack alphabet S. The stack content is modified by using two additional types of commands:

push(s) (push the symbol s ∈ S at the top of the stack)
pop(s) (pop the symbol s ∈ S if it is at the top of the stack)

The command pop(s) fails if the stack is empty or if the top symbol is different from s. A
configuration of a counter program with pushdown stack consists, as expected, of a valuation
of its counters plus a stack content.

Counters are only allowed to have nonnegative values.

Conventions. We are particularly interested in counter programs without zero tests, i.e.,
ones that use no zero test command. In the sequel, unless specified explicitly, counter
programs are implicitly assumed to be without zero tests. Moreover, we use the syntactic
sugar loop, which iterates a sequence of command a nondeterministic number of times (see
Example 6). Finally, we write consecutive increments and decrements of different variables
on a single line and we use the following shorthands:

x += m (increment the counter x by m)
x −= m (decrement the counter x by m)
x −→ y (decrement the counter x by one and increment the counter y by one)
x m−→ y (decrement the counter x by m and increment the counter y by m)

▶ Example 6. As an illustration, consider three different presentations of the same the
program with three counters C = {x, y, z}:

1: goto 2 or 6
2: x −= 1
3: y += 1
4: z += 2
5: goto 1 or 1
6: z += 1

1: loop
2: x −= 1
3: y += 1
4: z += 2
5: z += 1

1: loop x −→ y z += 2
2: z += 1
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The program repeats the block of commands in lines 2–4 some number of times chosen
nondeterministically (possibly zero, although not infinite because x is decreasing, and hence
its initial value bounds the number of iterations) and then increments z.

We emphasise that counters are only permitted to have nonnegative values. In the
program above, that is why the decrement in line 2 works also as a non-zero test.

Runs. Consider a program with counters X. By NX we denote the set of all valuations of
counters. Given an initial valuation of counters, a run (or execution) of a counter program is
a finite sequence of executions of commands. A run which has successfully finished we call
complete; otherwise, the run is partial. Observe that, due to a decrement that would cause a
counter to become negative, a partial run may fail to continue because it is blocked from
further execution. Moreover, due to nondeterminism of goto, a program may have various
runs from the same initial valuation.

Two programs P, Q may be composed by concatenating them, written P Q. We silently
assume the appropriate re-numbering of lines referred to by goto command in Q.

Consider a distinguished set of counters Z ⊆ X. A run of P is Z-zeroing if it is complete
and all counters from Z are zero at the end. Given two counter valuations r, r′ ∈ NX we say
that the program Z-computes the valuation r from r′ if P has exactly one Z-zeroing run from
r′ and the end configuration is r. We also say that the program Z-computes nothing from r′ if
P has no Z-zeroing run from r′. For instance, in Example 6 the programs {x}-compute, from
any valuation satisfying x = n ∈ N and y = z = 0, the valuation satisfying x = 0 (trivially),
y = n and z = 2n + 1.

Maximal iteration. The proofs of this paper often focus on the number of iterations of
the loop construct. Consider a program P containing a flat loop, i.e., a loop whose body
consists of only increment or decrement commands, such that each counter appears in at
most one of these commands (like the programs in Example 6). We say that this loop is
maximally iterated in a given run of a P if some counter that is decremented in its body is
zero at the exit from the loop. In particular, a maximally iterated loop could not be iterated
any further without violation of the nonnegativity constraint on the decremented counter.
For instance, the loop in Example 6 is maximally iterated by the {x}-zeroing runs. Needless
to say, maximal iteration needs not happen in general, for instance the program in Example 6
has multiple complete runs that do not admit this property.

3 Main results and structure of the paper

Counter programs (without zero test) provide an equivalent presentation to the standard
models of Petri nets and VASS. The transformations between these different models are
straightforward and the blowups are polynomial. For instance, a program can be transformed
into a VASS by taking one state for each line of the program, and adding an appropriate
transition corresponding to each counter update instruction. Note that the dimension of the
VASS obtained is equal to the number of counters of the program. In this paper, we focus
solely on counter programs, and we prove that the following problem is Fd-hard for every
d ≥ 3:

▶ Problem 1.
Input: A program P using 2d + 3 counters.
Question: Is there a complete run of P that starts and ends with all counters equal to 0?

FSTTCS 2023



35:6 New Lower Bounds for Reachability in Vector Addition Systems

The equivalence between programs and VASS then directly leads to our first main result,
Theorem 1.

For programs with a pushdown stack, Fd-hardness can be achieved with less counters.
We show that the following problem is Fd-hard for every d ≥ 3:

▶ Problem 2.
Input: A program with stack Q using ⌊ d

2 ⌋ + 6 counters.
Question: Is there a complete run of Q that starts and ends with all counters equal to 0?
Again, the equivalence between programs and VASS yields our second main result, Theorem 3.

Let us now introduce the known Fd-hard problem that we will reduce to Problems 1 and 2.
Fortunately, we do not have to search too far for it: counter programs with two counters and
zero tests are Turing-complete [17]. This implies that the reachability problem is undecidable
in that setting. However, similarly to Turing machines, decidability is recovered by imposing
limitations on the executions, such as bounding their length, the maximal counter size, or the
number of zero tests. For our purposes the latter is the easiest to use, thus, we present the
problem that we will reduce from, a variation of the “Fk-bounded Minsky Machine Halting
Problem” proved to be Fd-complete in [18, Section 2.3.2]:

▶ Problem 3.
Input: A program P with two zero-tested counters, and a bound n ∈ N+.
Question: Is there a complete run of P that starts and ends with all counters equal to 0 and

does exactly Fd(n) zero tests?

The rest of this section is devoted to the presentation of the tools we use to reduce Problem 3
to Problems 1 and 2. Following the structure of similar reductions presented in [5] and [10],
our reduction is divided into two main steps.

In the first step, we show how a program without zero test can simulate a bounded number
of zero tests. To achieve this we rely on the concept of triples, which are specific counter
valuations that allow to eliminate the zero tests and instead verify whether a particular
invariant still holds at the term of the run. However, doing so requires an initial triple
directly proportional to the number of zero tests we aim to simulate. Since we intend to
simulate Fd(n) zero tests, which is a rather large number, directly applying this approach
would result in an excessively large program.

Thus, in the second step, we construct compact amplifiers. These amplifiers are small
programs that compute functions of substantial magnitude (such as Fd) while using a small
number of counters (namely 2d + 4, or ⌊ d

2 ⌋ + 4 counters along with a stack).
We now define formally the notions required for these two steps. This will allow us to

state the main lemmas proved in this paper, and use them to construct the reduction proving
our main result. The proofs of the lemmas can then be found in the following sections.

Triples. The concept of triples plays a central role in all the constructions presented within
this paper. Given a set of counters X, three distinguished counters a, b, c ∈ X and A, B ∈ N,
we denote by Triple(A, B, a, b, c, X) the counter valuation satisfying

a = A, b = B, c = A · (4B − 1), x = 0 for every x ∈ X \ {a, b, c}. (2)

Informally we sometimes call such valuation a B-triple, or simply a triple over the counters
a, b, c. The interest of triples lies in their ability to establish invariants that enable the
detection of unwanted behaviours in counter programs. For instance, in Section 4, we show
how to use triples to replace zero tests by proving the following lemma:
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▶ Lemma 7. Let P be a program of size m using two zero-tested counters. There exists a
program P ′ of size O(m) with six counters X such that for every B ∈ N+ the two following
conditions are equivalent:

There exists a complete run of P that starts and ends with all counters equal to 0 and
performs exactly B zero tests;
There exists a complete run of P ′ that starts in some configuration Triple(A, B, a, b, c, X)
with A ∈ N+ and ends in a configuration where all the counters except a are zero.

Amplifiers. The key contribution of this paper consists of the construction of two families
of programs that transform B-triples into Fd(B)-triples. We formalise this type of programs
through the notion of amplifiers. Let F : N+ → N+ be a monotone function satisfying
F (n) ≥ n for every n ∈ N+. Consider a program P using the set of counters X, out of which we
distinguish six counters a, b, c, b′, c′, t ∈ X, and a subset of counters Z ⊆ X \ {a, b, c, b′, t} that
contains c′. The tuple (P, (a, b, c), (a, b′, c′), t, Z) is called F -amplifier if for all A, B ∈ N+:

P Z-computes Triple(A · 4B−F (B), F (B), a, b, c, X) from Triple(A, B, a, b′, c′, X) if A is
divisible by 4(F (B)−B);
P Z-computes nothing from Triple(A, B, a, b′, c′, X) if A is not divisible by 4(F (B)−B).

An amplifier transforms B-triples on its input counters a, b′, c′ into F (B)-triples on its output
counters a, b, c. Remark that the counter a is involved in both input and output. The
counters in Z, called end counters, are intuitively speaking assumed to be 0-checked after the
completion of a run of P . The auxiliary counter t does not play a direct role apart from not
being an input counter, an output counter nor an end counter. This will prove useful in our
constructions. We note that no condition is imposed on the runs that start from a counter
valuation that is not a triple on the input counters, nor on the runs that are not Z-zeroing.

In Section 5 we construct of a family of Fd-amplifiers:
▶ Lemma 8. For every d ∈ N+ there exists an Fd-amplifier of size O(d) that uses 2d + 4
counters out of which d are end counters.

Furthermore, in Section 6 we extend the notion of amplifiers to programs with stack, and
show how a stack can replace three quarters of the counters used in the previous construction:
▶ Lemma 9. For every d ∈ N+ there exists an Fd-amplifier of size O(d) that uses a stack
and ⌊ d

2 ⌋ + 4 counters out of which ⌊ d
2 ⌋ are end counters.

Proof of the main theorems. While the proofs of our key lemmas are delegated to the
appropriate sections, we can already show how these lemmas yield a reduction from Problem 3
to Problems 1 and 2. Let us consider an instance of Problem 3, that is, a 2-counter program
with zero tests P and an integer n ∈ N+. We transform this instance into an instance P ′′ of
Problem 1 and an instance Q′′ of Problem 2. These two programs rely on the program P ′

given by Lemma 7, and the Fd-amplifiers Pd and Qd given by Lemmas 8 and 9.1

Program P ′′:
1: b′ += n

2: loop a += 1 c′ += 4n − 1
3: Pd

4: P ′

5: loop a −= 1

Program Q′′:
1: push((b′)n)
2: loop a += 1 c′ += 4n − 1
3: Qd

4: P ′

5: loop a −= 1

1 Note that, as explained in Section 6, when d is odd calling the program Qd requires non-deterministically
pushing the content of c′ onto the stack along with the content of b′, which we omit here.

FSTTCS 2023
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Due to size estimations of Lemmas 7, 8 and 9, the sizes of programs P ′′ and Q′′ are linear
in the size of P plus n + d. We now prove that this is a valid reduction from Problem 3
to Problem 1. The proof for Problem 2 is analogous since the programs Pd and Qd have
identical effect on triples.

We need to show that P ′′ has a complete run that starts and ends with all counters equal
to 0 if and only if P has a complete run that starts and ends with all counters equal to 0 and
that does exactly Fd(n) zero tests. In order to prove it, let us consider the structure of a
hypothetical run π of P ′′ that starts and ends with all counters having value zero. Starting
from the configuration where all the counters are zero, Lines 1–2 generate an arbitrary
n-triple: Progressing through line 1 and performing A ∈ N+ iterations of line 2 results in
the configuration Triple(A, n, a, b′, c′, X). Next, it is important to note that the subrun
of π involving Pd zeroes all the end counters, since these counters remain unchanged after
the invocation of Pd and they have value zero at the end of π. Consequently, according to
the definition of an amplifier, Pd transforms the n-triple Triple(A, n, a, b′, c′, X) into an
Fd(n)-triple Triple(A′, Fd(n), a, b, c, X). From there, the subrun involving P ′ must end in
a configuration where every counter except a has value zero since the final line of P ′′ can
only decrement a. Therefore, the run π exists if and only if there exists a run of P ′ that
bridges the gap, starting from an Fd(n)-triple Triple(A′, Fd(n), a, b, c, X) and ending in a
configuration where all the counters except a are 0. By Lemma 7 we know that such a run of
P ′ exists if and only if P has a complete run that starts and ends with all counters equal to
0 and does exactly Fd(n) zero tests, which shows that our reduction is valid.

To conclude, let us remark that, as defined here, the program P ′′ uses 2d + 7 counters:
the call to Pd requires 2d + 4 counters, and while P ′ shares the output counters a, b and c of
Pd, it uses three more counters. We now argue that four counters can be saved, so that our
program matches the definition of Problem 1.

The value of the input counter b′ is never incremented in the program Pd we construct.2
Therefore, since in P ′′ the call to Pd always starts with the value b′ = n, we can get rid
of the counter b′ by replacing the call to Pd with n consecutive copies of Pd in which
each instruction decrementing b′ is replaced with a jump to the next copy.
The second optimisation consists in reusing the counters of Pd. Since Pd is an amplifier,
at the term of the run it is sufficient to check that the end counters are 0 to ensure that
all the counters except the output counters a and c are 0. Therefore, while the call to P ′

in P ′′ needs to keep the d end counters of Pd untouched, there are still d freely reusable
counters (not counting a, b and c that are already reused), and we can pick any three of
these to use in P ′ instead of adding fresh ones.

For the program Q′′ it is not possible to save counters is that way, but one of the extra
counters of P ′ can be loaded on the stack, which results in a program with ⌊ d

2 ⌋ + 6 counters.

4 Triples as a replacement for zero tests

The goal of this section is to prove Lemma 7.

The six counters of program P ′ will consists in two counters x, y simulating the two counters
of P, three counters a, b, c containing the initial triple, and an auxiliary counter t. The idea
behind the construction is that we will replace the zero tests with the two gadgets Zero(x)
and Zero(y) defined as follows:

2 Remark that this is not stated explicitly by Lemma 8, but it is a trivial property of the corresponding
construction presented in Section 5.
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Program Zero(x):
1: loop a −→ t c −→ t
2: loop y −→ x c −→ t
3: loop t −→ a c −→ a
4: loop x −→ y c −→ a
5: b −= 1

Program Zero(y):
1: loop a −→ t c −→ t
2: loop x −→ y c −→ t
3: loop t −→ a c −→ a
4: loop y −→ x c −→ a
5: b −= 1

The functioning of these two programs revolves around the following invariant:

Invariant: (a + x + y + t) · 4b = a + x + y + t + c and t = 0;
Broken invariant: (a + x + y + t) · 4b < a + x + y + t + c.

Remark that the broken invariant is more specific than the negation of the invariant. We now
present a technical lemma showing that Zero(x) and Zero(y) accurately replace zero tests.

▶ Lemma 10. Let z ∈ {x, y}. From each configuration of Zero(z) where b > 0, z = 0 and
the invariant holds there is a unique complete run that maintains the invariant and preserves
the values of x and y. All other runs starting from this configuration, as well as all runs
starting with a broken invariant or a holding invariant with a value of z greater than 0, end
with a broken invariant.

Proof. We show the result for Zero(x): the proof can easily be transferred to Zero(y) by
exchanging the roles of x and y. Let us start by observing that Zero(x) globally decrements
the value of b by 1 and preserves the sum a + x + y + t + c since every line preserves it.
Therefore, in order to maintain a holding invariant, Zero(x) needs to quadruple the value of
the sum of counters a + x + y + t. Similarly, to repair a broken invariant Zero(x) needs to
increase the value of a + x + y + t by more than quadrupling it. We now study Zero(x) in
detail to show that the latter is impossible, and that the former only occurs under specific
conditions that imply the statement of the lemma. We split our analysis in two:
Lines 1–2: The loop on line 1, respectively 2, increases a+x+y+t by at most a, respectively y.

Therefore the value of a + x + y + t is at most doubled, which occurs only if initially
t = x = 0 and if then both loops are maximally iterated, resulting in a = y = 0.

Lines 3–4: The loop on line 3, respectively 4, increases a+x+y+t by at most t, respectively x.
Therefore the value of a + x + y + t is at most doubled, which happens only if a = y = 0
upon reaching line 3 and if then both loops are maximally iterated, resulting in t = x = 0.

Combining both parts, we get that the value of a + x + y + t is at most quadrupled through
a run of Zero(x), which only occurs if initially t = x = 0 and all the loops are maximally
iterated. This immediately implies that Zero(x) cannot repair a broken invariant. Moreover,
to maintain a holding invariant it is necessary to actually quadruple this value, therefore x
needs to be 0 at the start; the maximal iteration of the loops will cause t to be 0 at the end;
and the content of y will be completely moved to x by line 2 and then back to y by line 4,
remaining unchanged as required by the statement. ◀

We now use Zero(x) and Zero(y) to transform P into a program P ′ satisfying Lemma 7.
Formally, the program P ′ is obtained by applying the following modifications to P:

We add an increment (resp. decrement) of a to each line of P featuring a decrement (resp.
increment) of x or y so that every line preserves the value of a + x + y + t;
We replace each zero tests “zero? x” with a copy of the program Zero(x), and each zero
test “zero? y” with a copy of the program Zero(y);
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The first modification ensures that all the lines of P ′ except the calls to Zero(x) and Zero(y)
maintain the invariant. We observe that for every complete run π′ of P ′ that starts in a triple
Triple(A, B, a, b, c, X) and ends in a configuration where all counters except a are zero, the
invariant is satisfied both at the beginning (by the definition of a triple) and at the end.
Therefore, according to Lemma 10 the invariant is never broken throughout π′, indicating
that the calls to Zero(x) and Zero(y) accurately simulate zero tests. Consequently, π′ can
be transformed into a matching run π of P with same values of x and y. In particular, π

starts and ends with both counters equal to 0. Additionally, the value of b goes from B to 0
along π′. Since this value is decremented by one by each call to Zero(x) or Zero(y), π′ goes
through exactly B such calls, which translates into π performing exactly B zero tests.

To conclude the proof of Lemma 7, remark that we can also transform every run of P
that starts and ends with both counters equal to 0 and performs B zero tests into a matching
run of P ′ starting from some triple Triple(A, B, a, b, c, X) and ending in a configuration
where all counters except a are zero However, we must be cautious in choosing the initial
value A of a to be sufficiently high. This ensures that we can increment x and y as high as
required, despite the matching decrements of a added in P ′.

The size of P ′ is linear in the size of P, as required.

5 Amplifiers defined by counter programs

This section is devoted to an inductive proof of Lemma 8.

First we build an F1-amplifier P1 with 6 counters out of which one is an end counter
(Lemma 11). Next we show how to lift an arbitrary F -amplifier with d counters into an
F̃ -amplifier by adding two counters out of which one is an end counter (Lemma 14). Applying
d − 1 times our lifting process to the program P1 yields an Fd-amplifier using 2d + 4 counters,
proving Lemma 8.

Strong amplifiers. For the purpose of induction step, namely for lifting F -amplifiers to
F̃ -amplifiers, we need a slight strengthening of the notion of amplifier. An F -amplifier

(P, (a, b, b), (a, b′, c′), t, Z) is called strong if every run π of P satisfies the following conditions
(let ΣZ stand for the sum of all counters in Z):
1. The value of the sum a + c + t + ΣZ is the same at the start and at the end of π;
2. If (a + c + t + ΣZ − c′) · 4b′

< a + c + t + ΣZ holds at the start of π, it also holds at the end.

5.1 Construction of the F1-amplifier P1

Consider the following program with 6 counters X = {a, b, c, b′, c′, t}:
Program P1:

1: loop a −→ t
2: loop t −→ a c′ −= 3 c += 3
3: b′ −= 1 b += 1
4: loop
5: loop a −→ t c′ −= 1 t += 1
6: loop c −→ a c′ −= 1 a += 1
7: loop a −→ c c′ −= 1 c += 1
8: loop t 8−→ c c′ −= 8 a += 1 c += 7
9: b′ −= 1 b += 2
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The program consists of an initialisation step lines 1–3, and an iteration step lines 4–9.
The initialisation step and the iteration step both decrement b′ by one and preserve the
right-hand side a + c + t + c′ of the invariant as every line of P1 preserves this sum. Hence,
to maintain the invariant the sum a + c + t needs to be quadrupled, and to repair a broken
invariant the sum a + c + t needs to be increased by an even larger amount. We show that in
both steps the latter is impossible, and the former only happens if all loops are maximally
iterated, which implies the modification of the counter a required by the statements.

▶ Lemma 11. The program (P1, X, (a, b, c), (a, b′, c′), t, {c′}) is a strong F1-amplifier.

As an F1-amplifier, P1 is expected to map each input Triple(A, B, a, b′, c′, X) such that
4F1(B)−B divides A to the output Triple(A · 4B−F1(B), F1(B), a, b, c, X). Since F1(B) =
2B − 1, transforming the initial value b′ = B into the final value b = F1(B) is easy: P1 first
decrements b by 1 and increments b by 1 once (line 3), and then increments b by 2 whenever
it decrements b′ by 1 (line 9). It is more complicated to transform the initial value a = A

into the final value a = A · 4B−F1(B): we need to divide F1(B) − B = B − 1 times the content
of a by 4. We prove that P1 does so by studying the following invariant:

Invariant: (a + c + t) · 4b′
= a + c + t + c′ and t = 0;

Broken invariant: (a + c + t) · 4b′
< a + c + t + c′.

Notice that saying that the invariant is broken is more specific than saying that the invariant
does not hold. We now present two technical lemmas describing how the invariant evolves
along both steps of P1.

▶ Lemma 12. From each configuration where b′ > 0, c = 0 and the invariant holds, there is
a unique run through the initialisation step that maintains the invariant and preserves the
value of a. All the other runs starting from this configuration, as well as the runs starting
with a broken invariant, end with a broken invariant.

Proof. The value of a + c + t is at most increased by 3 · (a + t) along the initialisation part,
as line 1 preserves this sum and moves the content of a to t, then line 2 increases this sum
by at most 3 times the value of t. Therefore a + c + t is at most quadrupled, which implies
that the initialisation step cannot repair a broken invariant. Moreover, to maintain a holding
invariant the program P1 needs to quadruple this sum. This happens if and only if initially
b′ > 0, c = 0 and c′ ≥ 3 · (a + t) (this last condition is implied by the invariant); and if then
both loops are maximally iterated. Finally, remark that upon maximal iteration of the loops
a and t keep their initial values, as required. ◀

▶ Lemma 13. From each configuration where b′ > 0, a is divisible by 4 and the invariant
holds, there is a unique run through the iteration step that maintains the invariant and
divides the value of a by 4. All the other runs starting from this configuration, as well as
those starting with a broken invariant or a holding invariant with a value of a not divisible
by 4, end with a broken invariant.

Proof. We divide our analysis of the iteration step in two parts:
Lines 5–6. The loop on line 5, respectively line 6, increases a + c + t by at most the value of

a, respectively c. Therefore the value of a + c + t is at most doubled, which occurs only if
initially t = 0 and then both loops are maximally iterated, resulting in c = 0.

Lines 7–8. The loop on line 7, respectively 8, increases a + c + t by at most the value of a,
respectively t. Therefore the value of a + c + t is at most doubled, which occurs only if
c = 0 upon reaching line 7 and then both loops are maximally iterated, resulting in t = 0.
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Combining the two parts, we get that the value of a + c + t is at most quadrupled by the
iteration step. This directly implies that it is not possible to repair a broken invariant.
Moreover, to maintain a holding invariant this sum needs to be quadrupled. This happens if
and only if at the start of the iteration step b′ > 0, a is divisible by 4, t = 0 and c′ ≥ 3 · (a + c)
(note that the last two conditions are implied by the invariant); and if then the four loops
are maximally iterated.3 To conclude, remark that maximally iterating lines 5 and 8 results
in dividing the value of a by four: line 5 transfers twice the initial value of a to c, one eighth
of which is then transferred back to a by line 8. ◀

We proceed with the proof of Lemma 11. Let A, B ∈ N and let π be a {c′}-zeroing run
of the program P1 starting from Triple(A, B, a, b′, c′, X). Initially the counters satisfy:

a = A, b′ = B, c′ = A · (4B − 1), b = c = t = 0.

This directly implies that the invariant holds at the beginning of π. Let us analyse the
values of the counters at the end of π. We immediately get c′ = 0 since π is {c′}-zeroing.
Note that this implies that the invariant cannot be broken as the counters always hold
non-negative integer values. As a consequence, Lemmas 12 and 13 imply that the invariant
still holds at the end of π, and that π is the unique {c′}-zeroing run of of P1 starting from
Triple(A, B, a, b′, c′, X). To conclude the proof, we now show that at the end of π all the
counters match Triple(A · 4B−F1(B), F1(B), a, b, c, X):

a = A · 4B−F1(B), b = F1(B), c = A · (4B − 4B−F1(B)), b′ = c′ = t = 0.

First, the invariant directly yields t = 0, and also b′ = 0 by using the fact that c′ = 0. As b′

starts with value B and is decremented by one along the initialisation step and each iteration
step, we get that π visits the iteration step B − 1 times. In turn, this implies that the final
value of b is 2B − 1 = F1(B), and by Lemmas 12 and 13 we also get that the final value of a
is A

4B−1 = A · 4B−F1(B). Combining this with the fact that the initial value A · 4B of the sum
a + c + t + c′ is preserved along π finally yields the appropriate value for c.

Note that the run π exists if and only if 4F1(B)−B divides A. Otherwise Lemma 13 implies
that the invariant is broken before the end of the run. This proves that P1 is an F1-amplifier.
The fact that P1 is a strong F1-amplifier then directly follows from Lemmas 12 and 13.

5.2 Construction of the F̃ -amplifier P̃ from an F -amplifier P
Let (P, X, (a, b, c), (a, b′, c′), t, Z) be a strong F -amplifier for some function F : N+ → N+.
We construct a strong F̃ -amplifier P̃ out of P . The program P̃ uses the counters of P plus
two fresh input counters b′′ and c′′, and it shares the output counters of P:

Program P̃ :
1: loop a −→ t
2: loop t −→ a c′′ −= 3 c += 3
3: b′′ −= 1 b += 1
4: loop
5: loop a −→ t
6: loop t −→ a c′′ −= 3 a += 3
7: loop c −→ c′ c′′ −= 3 c′ += 3
8: loop b −→ b′

9: P
10: b′′ −= 1

3 The fact that a is divisible by four is what allows line 8 to be maximally iterated: if it is not the case,
the run would eventually get stuck with a content of t smaller than eight but greater than zero.
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Similarly to P1 the program P̃ consists of an initialisation step lines 1–3 (differing from P1
only by renaming counters), and an iteration step lines 4–10 (differing significantly from P1).

▶ Lemma 14. For every strong F -amplifier (P, X, (a, b, c), (a, b′, c′), t, Z), the program ( P̃ , X∪
{b′′, c′′}, (a, b, c), (a, b′′, c′′), Z ∪ {c′′}) is a strong F̃ -amplifier.

The proof of Lemma 14 can be found in Appendix A. Here, we provide an overview
of the main intuition behind it. As an F̃ -amplifier, P̃ is expected to map each in-
put Triple(A, B, a, b′′, c′′, X ∪ {b′′, c′′}) such that 4 F̃ (B)−F (B) divides A to the output
Triple(A ·4F (B)− F̃ (B), F̃ (B), a, b, c, X∪{b′′, c′′}). The intended behaviour of P̃ is straight-
forward: Since for all n ∈ N+ the value F̃ (n) is obtained by applying the function F to 1
for n − 1 consecutive times, we expect P̃ to apply the program P exactly B − 1 times to
transform a 1-triple into an F̃ (B)-triple. To show that P̃ behaves as expected, we study
the following invariant:

Invariant: (a + c + t) · 4b′′
= a + c + t + c′′ and t = 0;

Broken invariant: (a + c + t) · 4b′′
< a + c + t + c′′.

The starting configuration Triple(A, B, a, b′′, c′′, X ∪ {b′′, c′′}) satisfies the invariant. The
program P̃ is designed such that every run π starting from such a configuration then satisfies:

If along π all the loops are maximally iterated and all the calls to P are Z-zeroing, then
the invariant holds until the end of π. Moreover, π then matches the expected behaviour
of P̃ described above. In particular, π will correctly amplify B − 1 times via P a triple
Triple(A, 1, a, b, c, X), thus ending in Triple(A ·4F (B)− F̃ (B), F̃ (B), a, b, c, X∪{b′′, c′′}).
However, if π fails to maximally iterate one loop, or does a call to P that is not Z-zeroing,
then the invariant is irremediably broken, which implies that π is not (Z ∪ {c′′})-zeroing.

This proves that P̃ is a strong F̃ -amplifier.

6 Amplifiers defined by counter programs with a pushdown stack

The goal of this section is to prove Lemma 9.

Our construction is based on the amplifiers from Section 5. The main idea is to “delegate”
some counters to the stack. The stack alphabet consists exactly of those counters which
are delegated, and the value of each delegated counter x corresponds to the number of
occurrences of the symbol x on the stack. Therefore, “delegated counters” can be understood
as a synonym of “stack symbols” in the sequel. This idea motivates the following definition.
Let S and X be two disjoint sets of delegated, respectively non-delegated, counters. We define
the function

hX,S : NX × S∗ → NX∪S

that maps a configuration, i.e., a valuation v of the non-delegated counters of X together with
a stack content s ∈ S∗, to a valuation of all the counters from X∪S, as follows: hX,S(v, s) = v′,
where v′(x) = v(x) for x ∈ X, and v′(x) is the number of occurrences of x in s for x ∈ S.

Using this definition, we establish a notion of simulation between programs with or
without stack. Given an F -amplifier P with set of counters X ∪ S, we say that a counter
program with a stack Q simulates P if it satisfies the two following conditions:
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For every A, B ∈ N+ such that A is divisible by 4(F (B)−B) there exists a run of Q
between two configurations x and y satisfying hX,S(x) = Triple(A, B, a, b′, c′, X) and
hX,S(y) = Triple(A · 4(B−F (B)), F (B), a, b, c, X).
For every run of Q between two configurations x and y there exists a run of P between
hX,S(x) and hX,S(y);

We say that such a program with stack Q is an F -amplifier.
The rest of this section is devoted to the proof of Lemma 9. We rely on the constructions

of Section 5, and similarly proceed in two steps. First, we transform the F1-amplifier P1 into
a program with stack Q1 that simulates P1 with four counters, as it delegates the two other
counters to the stack (Lemma 15). Next, we adapt the constructions used to lift F -amplifiers
into F̃ -amplifier. This time, we will have two constructions that can be applied alternatively:
the first introduces one counter and one delegated counter, and the second introduces two
delegated counters (Lemma 16). Therefore, for every d ∈ N, starting with the program Q1
and applying alternatively our two lifting constructions yields a Fd-amplifier with ⌊ d

2 ⌋ + 4
counters (as the other counters are delegated to the stack), which proves Lemma 9.

6.1 Construction of the F1-amplifier Q1

Consider the following program with 4 counters X = {a, b, c, t} and the stack alphabet
S = {b′, c′}, which is obtained from the program P1 defined in Section 5 by replacing each
decrement on b′ and c′ by the corresponding pop operation:

Program Q1:
1: loop a −→ t
2: loop t −→ a pop(c′c′c′) c += 3
3: pop(b′) b += 1
4: loop
5: loop a −→ t pop(c′) t += 1
6: loop c −→ a pop(c′) a += 1
7: loop a −→ c pop(c′) c += 1
8: loop t 8−→ c pop(c′c′c′c′c′c′c′c′) a += 1 c += 7
9: pop(b′) b += 2

▶ Lemma 15. The program Q1 simulates the F1-amplifier (P1, X, (a, b, c), (a, b′, c′), t, {c′′}).

Proof. Let h denote the function h{a,b,c,t},{b′,c′} that transforms configurations of Q1 into
configurations of P1. The program Q1 is a constrained version of P1: every line is identical
with the added restriction that lines 2, 3, 6 and 9 can only be fired if the appropriate symbol
is at the top of the stack. Therefore, we immediately get the second condition required for
Q1 to simulate P1: for every run π of Q1 between two configurations x and y, the run π′ of
P that starts in h(x) and uses the same lines as π is a valid run of P that ends in h(y).

To conclude, we show that we can transform the {b′, c′}-zeroing runs of P1 (thus in
particular the runs that witness the F1-amplifier behaviour) into runs of Q1. To do so we rely
on the fact that the counters b′ and c′ are only decreasing along the runs of P1. Formally,
given a {b′, c′}-zeroing run π of P1 between two configurations x and y, let uπ ∈ {b′, c′}∗ be
the word listing, in order, the occurrences of the decrements of b′ and c′ along π. We define
a configuration x′ of Q1 as follows: the counters a, b, c, t match the content they have in the
starting configuration x of π, and the stack content is the reverse of the word uπ so that the
first letter of uπ is at the top of the stack. This definition guarantees that:
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We have h(x′) = x. Indeed, since π is {b′, c′}-zeroing, the value of the counters b′ and c′ in
the initial configuration x is equal to the number of times these counters are decremented;
There exists a run π′ of Q1 that starts from x′ and follows the same lines as π: whenever
a popping instruction appears the adequate symbol will be at the top of the stack. As the
lines of P1 and Q1 are analogous, the configuration y′ reached by π′ satisfies h(y′) = y. ◀

6.2 Construction of the F̃ -amplifiers Q̃ and Q from an F -amplifier Q
In Section 5, we showed how to lift an F -amplifier P into an F̃ -amplifier P̃ . We now show
two different manners of adapting the construction of P̃ in order to lift a program with
stack Q simulating P into a program with stack simulating P̃ .

▶ Lemma 16. Let Q be a program simulating a strong F -amplifier
(P, X, (a, b, c), (a, b′, c′), t, Z) without delegating the counters a, b, c and t.

If Q delegates b′ but not c′, then Q̃ simulates ( P̃ , X∪{b′′, c′′}, (a, b, c), (a, b′′, c′′), Z∪{c′′})
while delegating two input counters b′′ and c′′ in addition to the counters delegated by Q.
If Q delegates b′ and c′, then Q simulates ( P̃ , X ∪ {b′′, c′′}, (a, b, c), (a, b′′, c′′), Z ∪ {c′′})
while delegating only one input counter b′′ in addition to the counters delegated by Q.

Program Q̃ :
1: loop a −→ t
2: loop t −→ a pop(c′′c′′c′′) c += 3
3: pop(b′′) b += 1
4: loop
5: loop a −→ t
6: loop t −→ a pop(c′′c′′c′′) a += 3
7: loop c −→ c′ pop(c′′c′′c′′) c′ +=

3
8: loop b −= 1 push(b′)
9: Q

10: pop(b′′)

Program Q :
1: loop a −→ t
2: loop t −→ a c′′ −= 3 c += 3
3: pop(b′′) b += 1
4: loop
5: loop a −→ t
6: loop t −→ a c′′ −= 3 a += 3
7: loop
8: loop b −= 1 push(b′)
9: c −= 1 c′′ −= 3 push(c′)

10: loop b −= 1 push(b′)
11: push(c′)
12: loop b −= 1 push(b′)
13: push(c′)
14: loop b −= 1 push(b′)
15: push(c′)
16: loop b −= 1 push(b′)
17: Q
18: pop(b′′)

The proof of Lemma 16 can be found in Appendix B. To convey the intuition behind it we
analyse the differences between the two programs. The main difference concerns the counters
delegated to the stack: If Q delegates only b′, then the starting configurations for the calls
to Q are easy to setup as the stack simply contains a sequence of b′. Therefore Q can be
lifted via Q̃ which delegates both b′′ and c′′. However, if Q delegates both b′ and c′, then
the starting configurations required for the calls to Q are more complex: the stack needs to
contain the symbols b′ and c′ in a specific order. This prevents us from delegating both b′′

and c′′ to the stack, thus we need to lift Q via Q which delegates only b′′ and keeps c′′ as a
standard counter. A second difference between Q̃ and Q concerns the loops updating b′

and c′ in the iteration step. To understand what is happening here, let us have a look at
what happens when we replace the push and pop instructions by increments and decrements:
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1: loop c −→ c′ c′′ −= 3 c′ += 3
2: loop b −→ b′

1: loop
2: loop b −→ b′

3: c −= 1 c′ += 1 c′′ −= 3
4: loop b −→ b′

5: c′ += 1
6: loop b −→ b′

7: c′ += 1
8: loop b −→ b′

9: c′ += 1
10: loop b −→ b′

While these two sequences of instructions are different, we can remark that their global effect
is identical, in the sense that every counter update realisable by the left one is also realisable
by the right one, and reciprocally. However, if b′ and c′ are delegated to the stack then
the sequence of instruction on the right is more powerful, as it performs the same number
of increments of b′ and c′, but in any order, which allows to create many different stack
contents. This is required so that Q can construct the stack contents needed to call Q.
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A Proof of Lemma 8

▶ Lemma 14. For every strong F -amplifier (P, X, (a, b, c), (a, b′, c′), t, Z), the program ( P̃ , X∪
{b′′, c′′}, (a, b, c), (a, b′′, c′′), Z ∪ {c′′}) is a strong F̃ -amplifier.

The proof is structured as follows: We begin with a technical lemma implying that P̃
satisfies the two invariants required to be a strong amplifier (Claim 17). Then, to show that P̃
is an F̃ -amplifier, we formalise the expected behaviour of the runs of P̃ (Equations (3)–(7)),
we show that the runs that fit this expected behaviour (Z ∪{c′′})-compute F̃ (Claim 18), and
that the runs that do not fit this expected behaviour are not (Z ∪ {c′′})-zeroing (Claim 19).

Invariants of P̃ . Before delving into the intricate functioning of P̃ , we show two invariants
that hold for every run. On top of being prerequisites for P̃ to qualify as a strong amplifier,
these invariants offer valuable assistance in proving the next results of this section.

▷ Claim 17. The initialisation step and the iteration step of P̃ both preserve the value of
a + c + t + ΣZ + c′′ and either preserve or decrease the value of (a + c + t + ΣZ) · 4b′′ .

Proof. We start by observing that We start by observing that the sum a + c + t + ΣZ + c′′

stays constant along every run of P̃ : every command line preserves it, including line 9 since
P is a strong F -amplifier. We now study the effect of the initialisation and iteration steps
on the value of (a + c + t + ΣZ) · 4b′′ .

Initialisation: The sum a + c + t + ΣZ is preserved in lines 1 and 3 and is increased in line 2
by at most three times the value of t, thus it is at most quadrupled by the initialisation
step. Since b′′ is decremented by 1 during the initialisation step, this proves that the
value of (a + c + t + ΣZ) · 4b′′ is either preserved or decreased.

Iteration: The sum a + c + t + ΣZ is increased in lines 5–6 by at most three times the value of
a+ t; it is increased in line 7 by at most three times the value of c; and it is then preserved
in lines 8, 9 and 10 (since P is a strong amplifier). Hence the value of a + c + t + ΣZ is at
most quadrupled by each occurrence of the iteration step. Since b′′ is decremented by 1,
this shows that the value of (a + c + t + ΣZ) · 4b′′ is either preserved or decreased. ◁
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Expected behaviour of P̃ . The intended behaviour of P̃ is straightforward. We start
with a B-triple over the counters a, b′′, c′′. The initialisation step establishes a 1-triple over
a, b, c. Next, in the iteration step, this 1-triple is first moved to a, b′, c′, and then P is invoked
to transform it into a F (1)-triple over a, b, c. By repeating the iteration step B − 2 more
times, we obtain a F B−1(1) = F̃ (B)-triple over a, b, c, as expected from a F̃ -amplifier. We
now formalise this expected behaviour as a set of equations.

Let π be a run of P̃ that visits the iteration step n times. Let w0(π) denote the valuation
of the counter set X ∪{b′′, c′′} at the start of π, and xn(π) denote the valuation of the counter
set X at the end of π. Moreover, for every i = 0, 1 . . . , n − 1, we use xi(π) and yi(π) to denote
the valuation of X at the start of the (i + 1)th iteration step of π and at the start of the
(i + 1)th call to the program P , respectively. This notation allows us to formally express the
expected behaviour described earlier:

w0(π) = Triple(A, B, a, b′′, c′′, X ∪ {b′′, c′′}) (3)
x0(π) = Triple(A, 1, a, b, c, X) (4)

xi(π) = Triple(A · 4i+1−F i(1), F i(1), a, b, c, X) (5)

yi(π) = Triple(A · 4i+2−F i(1), F i(1), a, b′, c′, X) (6)

xB−1(π) = Triple(A · 4B− F̃ (B), F̃ (B), a, b, c, X) (7)

The individual counter values corresponding to these equations are listed in Figure 1.
We split the set of runs of P̃ in two parts: the good runs, for which we show that

Equations (3)–(7) hold, and the bad runs, that we prove to be non (Z ∪ {c′′})-zeroing.
Formally, we say that a run of P̃ is good if it goes through B − 1 iteration steps; if all
the loops visited along it are maximally iterated; and if all its calls to the program P are
Z-zeroing. By opposition, we describe as bad the runs that fail to satisfy at least one of these
conditions.

Good runs. We prove that the good runs of P̃ compute the function F̃ :

▷ Claim 18. Let A, B ∈ N+ be two positive integers. Every good run of P̃ starting in
Triple(A, B, a, b′′, c′′, X ∪ {b′′, c′′}) satisfies Equations (3)–(7), thus in particular it ends in
Triple(A · 4B− F̃ (B), F̃ (B), a, b, c, X ∪ {b′′, c′′}). Moreover, there exists such a run if and
only if 4 F̃ (B)−B divides A.

Proof. Let π be a good run of P̃ starting in Triple(A, B, a, b′′, c′′, X). We immediately get
that Equation (3) is satisfied. To show that π satisfies Equations (4)–(7), we prove via three
inductive steps that Figure 1 is an accurate depictions of the valuations xi(π) and yi(π) for
every i ∈ {0, 2, . . . , B − 1}:

a b b′ c c′

w0(π) : A 0 0 0 0
x0(π) : A 1 0 A · 2 − a 0
xi(π) : A ·4i+1−F i(1) F i(1) 0 A · 4i+1 − a 0
yi(π) : A ·4i+2−F i(1) 0 F i(1) 0 A · 4i+2 − a

xB−1(π) : A · 4B− F̃ (B) F̃ (B) 0 A · 4B − a 0

Figure 1 Individual counter values corresponding to the expressions in Equations (3)–(7).
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1. First, starting from a valuation satisfying c′′ ≥ a, the effect of the initialisation step with
maximal iteration of the flat loops is equivalent to the following sequence of assignments:

b′′ := b′′ − 1, b := b + 1, c′′ := c′′ − a, c := a.

This maps the first row of Figure 1 to its second row, thus Equation (4) holds.
2. Next, starting from a valuation satisfying c′′ ≥ a, the effect of lines 5–8 of P̃ with

maximal iteration of the flat loops is equivalent to the following sequence of assignments:

a := 2 · a, b′ := b, b := 0, c′′ := c′′ − (a + c), c′ := c′ + 2c, c := 0.

This maps the third row of Figure 1 to its fourth row, thus whenever Equation (5) holds
for some 0 ∈ {1, 2, . . . , B − 2}, so does Equation (6).

3. Finally, as the program P is a strong F -amplifier, for all i ∈ {0, 1, . . . , B−2} it Z-computes
Triple(A · 4i+2−F i+1(1), F i+1(1), a, b, c, X) from Triple(A · 4i+2−F i(1), F i(1), a, b′, c′, X).
Therefore, as every call to P along π is Z-zeroing since π a good run, we get that if
Equation (6) holds for some i ∈ {0, 1, . . . , B − 2} then Equation (5) holds for i + 1.

To show that the run π ends in Triple(A · 4B− F̃ (B), F̃ (B), a, b, c, X ∪ {b′′, c′′}), we still
need to address the values of counters b′′ and c′′ (as Equation 7 only specifies the value of the
counter set X). We directly get that the value of b′′ is 0 at the end of π: b′′ starts with value
B and is decremented once in the initialisation step and in each of the B − 1 occurrences of
the iteration step. Moreover, we also get that c′′ is 0 at the end of π since Claim 17 yields
that the value of a + c + t + ΣZ + c′′ is constantly equal to A · 4B along π.

Finally, concerning the existence of the run π, remark that, while the register updates
mentioned in Item 1 and 2 can be applied irrespective of the values of A and B, the Z-zeroing
calls to P described in Item 3 can be fulfilled if and only if A is divisible by a sufficiently
large power of 2. More specifically, the run π described in this proof exists if and only if
4 F̃ (B)−B divides A. ◁

Bad runs. We prove that the bad runs of P̃ do not (Z ∪ {c′′})-compute anything:

▷ Claim 19. Let A, B ∈ N+ be two positive integers. Every bad run of P̃ starting in
Triple(A, B, a, b′′, c′′, X ∪ {b′′, c′′}) is not (Z ∪ {c′′})-zeroing.

Proof. Let π be a run of P̃ starting in Triple(A, B, a, b′′, c′′, X). At the start of π we have:

a = A, b′′ = B, c′′ = a · (4b′′
− 1),

and all other counters are 0. In particular, this implies b = b′ = c = c′ = t = 0, thus

(a + c + t + ΣZ) · 4b′′
= a + c + t + ΣZ + c′′. (8)

We start by observing that Claim 17 implies that π is Z-zeroing if and only if Equation (8)
holds after every step of π and b′ = 0 at the end of π: The right-hand of Equation (8) side
is preserved, and the value of the left hand-side never increases, thus if it ever decreases it
remains smaller than the right-hand side until the term of π, which in particular implies that
the value of c′′ is not 0.

Therefore we can immediately deduce that if π visits the iteration step less than B − 1
times, then b′ > 0 at the end of π, thus π is not (Z ∪ {c′′})-zeroing by Equation (8). For the
rest of this proof, let us suppose that π visits the iteration step B − 1 times. Whenever π

goes through the initialisation step or the iteration step, it decrements b′ by 1, while gaining
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the opportunity to increment the sum a + c + t + ΣZ, that we denote ΣZ′ in order to maintain
Equation (8). As we showed when we studied the good runs, in an ideal scenario ΣZ′ is
quadrupled, which compensates the decrement of b′, and Equation (8) still holds. We now
show that the occurrence of a single mistake at any point results in ΣZ′ not being quadrupled
along a step: We suppose that the run π is bad, we list all the possible errors it can commit,
and show that each one breaks Equation (8):

If π fails to maximally iterate one of the flat loops at lines 1 or 2 then the sum ΣZ′ is
not quadrupled during the initialisation step: Maximally iterating both loops (that is,
iterating both of them a times) increments ΣZ′ by 3 · a, which exactly quadruples it since
initially the other variables occurring in S have value 0. However, since line 2 increases
ΣZ′, not maximally iterating it results in a smaller value. Moreover, while line 1 has no
direct effect on ΣZ′, not maximally iterating it reduces the number of times line 2 can be
iterated, which in turn reduces the value of ΣZ′.
If π fails to maximally iterate one of the flat loops at lines 5, 6 or 7 then the sum ΣZ′ is
not quadrupled during the corresponding iteration step: Maximally iterating the three
loops (that is, iterating lines 5 and 6 a times and line 7 c times) increments ΣZ′ by
3 · (a + c), which exactly quadruples it as long as the other variables occurring in ΣZ′ had
value 0 to start with. However, since lines 6 and 7 increase ΣZ′, not maximally iterating
them results in a smaller value. Moreover, while line 5 has no direct effect on ΣZ′, not
maximally iterating it reduces the number of times line 6 can be iterated.
If π does a non Z-zeroing call to the program P, we differentiate two cases. If this
happens in the last iteration step we get that π is not (Z ∪ {c′′})-zeroing as it is not
Z-zeroing. If this happens in one of the previous iteration steps then the sum ΣZ′ is not
quadrupled in the next iterations step: as we just saw the iteration step increases S by at
most 3 · (a + c), which fails to quadruple it if there are nonzero counters in Z.
Finally, let us consider the case where the first error committed by π is failing to maximally
iterate the flat loop at line 8. In this case, we show that the subsequent call to P is not
Z-zeroing, which, as we have just shown, implies that π is not (Z ∪ c′′)-zeroing. Since we
assume that this is the first error committed by π, up to this point, π has behaved as a
good run. To analyse this situation, let π′ be the run that behaves as π up to this point
but then maximally iterates the flat loop at line 8. By Lemma 18, we know that π′ enters
the call to P with a counter valuation matching Triple(A · 4i+2−F i(1), F i(1), a, b′, c′, X)
for some 0 ≤ i ≤ B − 1. In particular, the following equation holds for π′:

(a + c + t + ΣZ) · 4b′
= A · 4i+2 = a + c + t + ΣZ + c′

However, since π did not maximally iterate line 8, b′ will be smaller in π compared to π′

(and b will be larger - but this has no impact on the following argument since b /∈ Z).
Consequently, π will call the program P with a counter valuation satisfying:

(a + c + t + ΣZ) · 4b′
< a + c + t + ΣZ + c′.

Since P is a strong amplifier, this equation still holds at the exit of P . In particular, this
implies that c′ is not 0, thus the call to P is not Z-zeroing. ◁

B Proof of Lemma 16

Let X and S denote the set of counters of Q, respectively its stack alphabet. Let h̃ denote
the function hX,S∪{b′′,c′′} that transforms configurations of Q̃ into configurations of P̃ .
Similarly, let h denote the function hX∪{c′′},S∪{b′′} that transforms configurations of Q
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into configurations of P̃ . The proof is done in three steps. First, we show that we can
easily translate the runs of Q̃ and Q into runs of P̃ with matching source and target. The
harder part of the proof is to show the reciprocal statement: we consider the good runs of
P̃ described in Lemma 18 and we show how to translate them, first into runs of Q̃ , and
finally into runs of Q .

Transforming runs of Q̃ and Q into runs of P̃ . The program Q̃ is a constrained version
of P̃ : every line is identical except for the lines with a popping instruction instead of a
decrement, which are more restrictive since the correct symbol needs to be at the top of
the stack. As a consequence, for every run π̃ of Q̃ between two configurations x and y we
immediately get a run π of P̃ between h̃ (x) and h̃ (y) which uses the same lines as π̃ .

Now given a run of π of Q between two configurations x and y, translating π into a
run of P̃ is not as direct since the lines 7–16 of Q are not exactly analogous to the lines 7–8
of P̃ . However, as we explained in the paper, using some local reshuffling P̃ can reproduce
any counter update corresponding to the lines 7–16 of Q . This allows us to transform the
run π into a run of P̃ between h (x) and h (y).

Transforming runs of P̃ into runs of Q̃ . Let us suppose that Q delegates the counter b′

but not c′, and let π be a good run of P̃ as described in the proof of Lemma 18. We denote
by x and y the starting and ending configuration of π. In order to transfer π to Q̃ , we begin
by creating an appropriate initial configuration x′ as in the proof of Lemma 15. Formally,
let uπ ∈ {b′, c′}∗ be the word listing, in order, the occurrences of the decrements of b′′ and
c′′ along π. We define the configuration x′ of Q̃ by setting the values of the counters of X
to the values they have in the starting configuration x of π, and setting the stack content
to the reverse of the word uπ (so that the first letter of uπ is at the top of the stack). This
definition guarantees that h(x′) = x. To conclude, we need to argue that Q̃ can simulate
π starting from x′. First, remark that the initialisation step is easily simulated since the
definition of the initial stack content guarantees that the appropriate symbol is at the top of
the stack whenever needed. We now explain, step by step, how Q̃ simulates the iteration
steps of π. First, thanks to the definition of the initial stack content the loops on lines 5–7
can be iterated as in π. Then, we also iterate line 8 as in π. Remark that this disrupts the
stack by adding a sequence of b′ on top of it. Next comes the call to P , and since π is a good
run we know that this call is correct, in the sense that it starts in Triple(A, B, a, b′, c′, X)
(Equation (6)) and ends in Triple(A · 4B− F̃ (B), F̃ (B), a, b, c, X) (Equation (5)) for some
A, B ∈ N+. Therefore in Q̃ we can simulate this call to P by a call to Q, and since the
value of b′ is 0 in the ending configuration this implies that the call to Q will automatically
pop all of the b′ that were added on the stack. Therefore we are back with a stack content
that matches a prefix of our initial stack content, and we can conclude the simulation of the
iteration step by popping a single b′′ from the stack.

Transforming runs of P̃ into runs of Q . Let us suppose that Q delegates both b′ and c′,
and let π be a good run of P̃ , as described in the proof of Lemma 18. We denote by x and y

the starting and ending configuration of π. We show how to construct a run π of Q that
simulates π. First, remark that we have a single possibility for the starting configuration of π:
In the starting configuration of π only the values of a, b′′ and c′′ are nonzero (Equation (3)),
and Q only delegates b′′ among these three counters. Therefore the initial stack content will
just be a sequence of b′′ of the appropriate length. Then, simulating the initialisation step of
π is easy: one b′′ is popped from the stack and the other counters are updated as in π.
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To conclude, we show how to simulate the iteration steps visited by π. Let π1π2π3 be
a subrun of π corresponding to an iteration step of P̃ , where π2 stands for the call to the
program P . As we showed in the proof of Lemma 18, every call to P along π is correct, in the
sense that it starts in some configuration Triple(A, B, a, b′, c′, X) (Equation (6)) and ends in
Triple(A ·4B− F̃ (B), F̃ (B), a, b, c, X) for some A, B ∈ N+ (Equation (5)). As a consequence,
since Q simulates P, there exists a run π2 of Q that simulates π2, but this run requires a
starting stack content corresponding to some specific shuffle uπ2 of the word (b′)B(c′)A·(4B−1).
Fortunately, as we explained in the paper, the lines 7–16 of Q allow to push any shuffle of
b′ and c′ on the stack. In particular, there exists a subrun π1 of Q that simulates π1 and
pushes the word uπ2 on the stack. As a consequence, π1π2 simulates truthfully the subrun
π1π2 with no impact on the stack: π1 pushes uπ2 , which is then popped by π2. Therefore,
we can simulate the iteration step π1π2π3 by starting with π1π2, and then adding π3 which
pops a single b from the stack to simulate the decrement of b occurring in π3.
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