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Abstract
In recent years the framework of learning from label proportions (LLP) has been gaining importance
in machine learning. In this setting, the training examples are aggregated into subsets or bags and
only the average label per bag is available for learning an example-level predictor. This generalizes
traditional PAC learning which is the special case of unit-sized bags. The computational learning
aspects of LLP were studied in recent works [21, 22] which showed algorithms and hardness for
learning halfspaces in the LLP setting. In this work we focus on the intractability of LLP learning
Boolean functions. Our first result shows that given a collection of bags of size at most 2 which
are consistent with an OR function, it is NP-hard to find a CNF of constantly many clauses which
satisfies any constant-fraction of the bags. This is in contrast with the work of [21] which gave a
(2/5)-approximation for learning ORs using a halfspace. Thus, our result provides a separation
between constant clause CNFs and halfspaces as hypotheses for LLP learning ORs.

Next, we prove the hardness of satisfying more than 1/2 + o(1) fraction of such bags using a
t-DNF (i.e. DNF where each term has ≤ t literals) for any constant t. In usual PAC learning
such a hardness was known [15] only for learning noisy ORs. We also study the learnability of
parities and show that it is NP-hard to satisfy more than (q/2q−1 + o(1))-fraction of q-sized bags
which are consistent with a parity using a parity, while a random parity based algorithm achieves a
(1/2q−2)-approximation.
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1 Introduction

In common machine learning applications, one is required to train a classifier using some
training set of (vectors, label)-pairs to predict the label of vectors sampled from the same
(or a similar) distribution as the training set. A typical approach is to optimize the classifier
to predict correctly on the training set to ensure that the classifier has good predictive
performance over the target distribution. This optimization view is captured by the probably
approximately correct (PAC) learning framework [23].

In setting of learning from label proportions (LLP), the training set consists of subsets
or bags of vectors along with the sum or average of the labels of vectors in each bag. The
goal is to train a model to predict the labels for vectors. As before, one would want the
model to firstly predict as correctly as possible on the training bags. One measure of such
performance is the fraction of satisfied bags i.e., those on which the predicted average label
matches the given average label i.e., the label proportion. Note that traditional PAC learning
is the special case of LLP with only unit-sized bags.
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37:2 Hardness of Learning Boolean Functions from Label Proportions

LLP is motivated by applications in which only the aggregated labels for bags of vectors
are available. This may be to preserve the privacy [20, 24, 16] of labels, due to lack of
instrumentation to obtain labels [9] or high labeling costs [8]. Other examples of LLP
applications have been in medical image classification [14, 5, 17] where small bag sizes – in
the range of 10 to 50 – are typically more relevant (see Sec 1.2 of [4]).

The work of [21] studied LLP from the computational learning perspective on bags of
size ≤ 2. The LLP learning goal is the following: given a collection of bags consistent with
some function from a target concept class, compute a hypothesis satisfying the most number
of bags. With this objective, [21] showed a (1/2 + o(1))-factor hardness for LLP learning a
halfspace using any function of constantly many halfspaces on bags of size at most 2. From
the algorithmic side on such bags [21] gave a (2/5)-factor approximation for LLP learning a
halfspace using halfspace, based on rounding a semi-definite programming (SDP) relaxation.
Subsequently, [22] proved a strengthened (4/9 + o(1))-factor hardness for LLP learning a
halfspace using any function of constantly many halfspaces on bags of size at most 2, a
corresponding (1/q + o(1))-factor hardness for bags of size at most any constant q ∈ Z+, and
extended the algorithmic result of [21] showing a (1/12)-approximation on bags of size at
most 3.

Since halfspaces capture OR formulas, the algorithmic results of [21, 22] apply to learning
OR formulas using halfspaces. Moreover, the (1/2 + o(1))-factor hardness of [21] on bags of
size ≤ 2 also holds for LLP learning an OR using any function of constantly many halfspaces.
Typically however, one would like to learn an OR using an OR or similar Boolean functions
such as ℓ-clause CNF formulas (OR is 1-clause CNF), rather than halfspaces. This raises the
following question
Can we achieve constant-factor algorithmic approximations for LLP learning OR using OR
or constant-clause CNF?
In our first result, we answer the above question in the negative.

▶ Theorem 1. For any constants δ > 0, ℓ ∈ Z+, given a collection of bags which are of size
at most 2, and whose label proportions are consistent with some OR, it is NP-hard to compute
an ℓ-clause CNF that satisfies δ-fraction of the bags.

The above theorem is proved in Sec. 3. We find the result interesting since it (along with
the algorithmic results of [21, 22]) proves a separation between constant clause CNFs – in
particular ORs – and halfspaces as hypotheses for learning ORs.

We also study the LLP learnability of OR using as hypothesis ℓ-DNF formulas i.e., DNF
where each term is a conjunction of at most ℓ literals. While OR is 1-DNF, for ℓ ≥ 2,
ℓ-DNFs are not contained in halfspaces, therefore have the possibility of yielding better
approximations. However, our second result below (proved in Sec. 4) essentially rules out
this possibility.

▶ Theorem 2. For any constants δ > 0, ℓ ∈ Z+, given a collection of bags which are of size
at most 2, and whose label proportions are consistent with some OR, it is NP-hard to compute
an ℓ-DNF that satisfies (1/2 + δ)-fraction of the bags.

Note that while the hardness factor achieved above is weaker than that of Theorem 1, no
inapproximability is known for the real analogue of Theorem 2 i.e., LLP learning halfspaces
using polynomial thresholds.

While the works of [21, 22] studied the LLP learnability of halfspaces, the corresponding
problem over finite fields has not been studied. In particular, the F2-version of this problem
is equivalent to the LLP learnability of parities using parities over the Boolean domain.
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Parities are a fundamental class of Boolean functions which makes this problem of significant
interest as well. Our next result however, shows that this is hard to approximate, with the
inapproximability growing exponentially as the bag size increases.

▶ Theorem 3. For any constants δ > 0, q ∈ Z+ (q ≥ 2), given a collection of bags which are
of size at most q, and whose label proportions are consistent with some parity, it is NP-hard
to compute a parity that satisfies (q/2q−1 + δ)-fraction of the bags.

The above is proved in Section 5. The hardness factor is asymptotically close (for large q) to
the (1/2q−2)-approximation for this problem using random parities described in Sec. 6.

1.1 Previous Related Work
The formalization of the LLP framework was first done in the work of [25] who proved
generalization error bounds for classifiers for any distribution over (bag, label-proportion)-
pairs, though their bag-level objective was a relaxed notion – useful for studying LLP with
large bag sizes – of the strict bag satisfaction used in [21, 22] and our work. Related recent
works [6, 7] have shown bag-to-instance classification generalization error bounds. The study
of LLP learnability of specific function classes has nevertheless been fairly sparse, apart from
the works of [21, 22] whose contributions have been described earlier in this section.

The learnability of small Boolean formulas has been extensively studied in traditional
PAC learning. It is well known that an OR can be efficiently learnt by an OR up to arbitrary
accuracy. On the other hand, [15] proved a (1/2+o(1))-factor hardness for learning a 2-clause
CNF using constant clause CNF, and the same hardness factor for learning a noisy OR using
ℓ-DNF for any constant ℓ. The work of [10] proved the same hardness for learning noisy OR
with a halfspace as hypothesis. These results were further generalized by [11] who proved
the same hardness factors for learning 2-clause CNF and noisy OR using any function of
constantly many halfspaces as hypothesis. Similar to OR, parities can also be efficiently learnt
by parities using Gaussian elimination over F2. On the other hand, the (1/2 + o(1))-factor
hardness for noisy Max-3-Lin by [13] implies the same hardness factor for learning a noisy
parity using a parity. Note that all the (1/2 + o(1))-factor hardness results are tight since one
of the constant 0 or 1 functions trivially obtain (1/2)-approximation for learning Boolean
valued functions. However, this trivial threshold does not hold in the LLP setting since the
constant functions are not guaranteed to satisfy even one bag.

The above hardness results carry over to the LLP setting for the special case when all
bags are unit-sized. However, we prove hardness of approximating the problems of LLP
learning OR and parity without any noise, which are tractable in the usual PAC case, thereby
showing a qualitative difference between the LLP and PAC settings.

1.2 Overview of Our Techniques
Proof of Theorem 1. Our reduction is from bipartite Label-Cover [1] with N and M as
the sizes of the smaller and larger label sets respectively, and is similar to that of [15] for the
hardness of learning noisy OR. The high-level approach is to have one coordinate for each
vertex-label pair on the larger (right) side of the Label-Cover instance, i.e. the variables
are xv,i for v ∈ V and i ∈ [M ]. Fix a random sample of 2t vertices {v̂1, . . . , v̂t, ṽ1, . . . , ṽt}
from a neighborhood of a left vertex u. For simplicity assume that the projection constraints
between u and each of the 2t vertices are the same i.e, for each label j ∈ [N ] for u there is a
subset Sj ⊆ [M ] such that assigning any of the 2t vertices with a label from Sj satisfies that
edge.

FSTTCS 2023



37:4 Hardness of Learning Boolean Functions from Label Proportions

A 2-sized bag with label proportion 1/2 is sampled by letting J ⊆ [N ] be a random
subset, and for the first point x setting only the coordinates {xv̂r,i | πv̂ru(i) ∈ J, r ∈ [t]} to
be 1, and for the second point z only the coordinates {zṽr,i | πṽru(i) ∈ J, r ∈ [t]} to be 1. It
is easy to see in the YES case that an OR of exactly the coordinates (v, ρ(v)) – where ρ is
the satisfying labeling – for each right vertex v, satisfies all such bags. For the NO case, we
illustrate the analysis of an OR formula C which satisfies some constant fraction of the bags.
From the o(1)-Hamming weight of the points, one can assume that C has no negated literals.
If C has no coordinates of the 2t vertices (empty case) then the bag is anyway not satisfied
as C evaluates to 0 on both points.

On the other hand, if a sufficiently large number of these vertices have a corresponding
variable in C (dense case), then elementary probabilistic arguments yield at least two vertices
among the 2t which have their pre-decided distinguished variables in C with the same
projection, leading to a good randomized labeling to the Label-Cover. A key idea for ensuring
that this analysis goes through is to sample t u.a.r. from {1, . . . , 2T } for some large T so that
for each u and most values of t, nearly all samples of the 2t vertices are either the empty
case or the dense case.

Proof of Theorem 2. The hardness reduction is similar to the above, except that we need
to ensure that a significant fraction of vertices have at least one term in which all the positive
literals correspond to its coordinates, while none of the negated literals do. Thereafter a
similar analysis as the previous case goes through. However, for ensuring this property we
introduce an additional distribution over bags of size 1 and label proportion 1, essentially
saying that for each vertex the point with all its coordinates to 1 and the rest to 0 should be
1-labeled. Due to this we obtain a (1/2 + o(1))-factor hardness in this case.

Proof of Theorem 3. While the reductions above create points in a bag whose active
coordinates span the edges of the label-cover, in the parity case we can add homogeneous
F2-linear folding constraints which ensure consistency of labels across edges via a reduction
from the non-bipartite Smooth Label-Cover [12]. It is sufficient to then describe a dictatorship
test (see Chap. 7 of [18]) on the M coordinates of a single vertex. Our dictatorship test
is a distribution over q-sized bags, i.e., q points in the hypercube FM2 , sampled as follows:
independently for each i ∈ M , set exactly one of the q points to 1 in the i’th coordinate
and the rest to 0. All these bags have target label proportion 1/q which is satisfied by
any dictator, i.e., parity given by a single coordinate. On the other hand, any parity over
a much larger number K of coordinates will induce a near-uniform distribution over the
q-sized vector of labeling to the points of a random bag. In fact, this is close to the uniform
distribution over the points of Fq2 with even or odd (depending only on q and K) number of
non-zero coordinates. It is then easy to see that such a distribution will satisfy the 1/q label
proportion of the bags with probability ≈ q/2q−1.

The algorithm for this problem first does Gaussian elimination for all the linear constraints
given by bags of label proportion {0, 1} and obeying the bag-level parity constraints for the
remaining bags. It then chooses a random parity from the remaining coordinates. We show
that this yields an 1/2q−2 approximation.

2 Preliminaries

2.1 Problem Definitions
Consider the space {0, 1}d for some d ∈ Z+ and some function f : {0, 1}d → {0, 1}. For
B ⊆ {0, 1}d, define σ(B, f) := |{x ∈ B | f(x) = 1}| /|B| to be the corresponding label
proportion.
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An instance I of LLP-OR[q] is given by a collection B := {(Bj , σj)}mj=1 of bags and their
label proportions where each bag is of size at most q. The goal is to find an OR function
h(x) which satisfies the most bags of B i.e., maximize |{j ∈ [m] | σj = σ(Bj , h)}|.

An instance I of LLP-PARITY[q] is similar to the above except that the goal accordingly
is to compute a parity maximizing the number of satisfied bags. Since the XOR is simply an
addition over F2 we shall think of the Boolean values as elements of F2 in this case.

2.2 Label Cover
▶ Definition 4. An instance of L of Label-Cover is given by (G(U, V,E ⊆ V ×U),M,N, {πvu :
[M ]→ [N ]}e=(v,u)∈E) where G(U, V,E) is a bi-regular bipartite graph. A labeling ρ assigning
labels from [N ] to U and [M ] to V satisfies an edge (u, v) iff πvu(ρ(v)) = ρ(u). The goal is
to find a labeling satisfying the most number of edges.

The following well-known inapproximability of Label-Cover follows from the the PCP
Theorem [3, 2] along with the Parallel Repetition Theorem [19].

▶ Theorem 5. For any constant ξ > 0 there exist M and N such that it is NP-hard, given an
Label-Cover instance L(U, V,E,M,N, {πvu}e=(v,u)∈E) to distinguish between: (i) YES case:
there is labeling that satisfies all edges in E, or (ii) NO case: Any labeling satisfies at most ξ
fraction of the edges of E.

2.3 Smooth Label Cover
Unlike the standard bipartite version in Definition 4 we also use a non-bipartite version with
useful structural properties defined below.

▶ Definition 6. An instance of Smooth-Label-Cover L(G(V,E), N,M, {πev | e ∈ E, v ∈ e})
consists of a regular connected (undirected) graph G(V,E) with vertex set V and edge
set E. Every edge e = (v1, v2) is associated with projection functions {πevi}2

i=1 where
πevi

: [M ] → [N ]. A vertex labeling is a mapping defined on ρ : V → [M ]. A labeling ρ
satisfies edge e = (v1, v2) if πev1(ρ(v1)) = πev2(ρ(v2)). The goal is to find a labeling which
satisfies the maximum number of edges.

The following theorem is proved in Appendix A of [12].

▶ Theorem 7. There exists a constant c0 > 0 such that for any constant integer parameters
Q,R ≥ 1, it is NP-hard to distinguish between the following two cases for a Smooth Label
Cover instance L(G(V,E), N,M, {πev | e ∈ E, v ∈ e}) with M = 7(Q+1)R and N = 2R7QR:

(YES Case) There is a labeling that satisfies every edge.
(NO Case) Every labeling satisfies less than a fraction 2−c0R of the edges.

In addition, the instance L satisfies the following properties:
(Smoothness) For any vertex w ∈ V , ∀i, j ∈ [M ], i ̸= j, Pre∼w [πew(i) = πew(j)] ≤ 1/Q,
where the probability is over a randomly chosen edge incident on w.
(Weak Expansion) For any δ > 0, let V ′ ⊆ V and |V ′| = δ · |V |, then the number of edges
among the vertices in |V ′| is at least δ2|E|.

3 Hardness of LLP Learning OR using ℓ-clause CNF

We prove the following hardness reduction which along with Theorem 5 implies Theorem 1.

FSTTCS 2023



37:6 Hardness of Learning Boolean Functions from Label Proportions

▶ Theorem 8. For any constants δ > 0 and ℓ ∈ Z+, there is a polynomial time reduction
from an instance L of Label-Cover to an LLP-OR[2] instance B s.t.
YES Case: If L is YES instance then there is an OR consistent with all the bags of B.
NO Case: If L is a NO instance then there is no ℓ-clause CNF formula satisfying at least
δ-fraction of the bags.

We begin with the following useful technique. Let T ≥ 10 be a large integer and consider
the set T = {2, 4, . . . , 2T }. For any s ∈ R+ define the subsets L(s), R(s) ⊆ T as

L(s) := {t ∈ T | t ≤ s/
√
T} and R(s) := {t ∈ T | t ≥ s ·

√
T}. (1)

We have the following simple lemma:

▶ Lemma 9. For any s ∈ R+, L(s) ∩R(s) = ∅ and |L(s)|+ |R(s)| ≥ |T | − 2 log T .

Proof. Since T > 1, L(s) ∩ R(s) = ∅ by definition. Let t′ ∈ T be the smallest element
which is larger than s/

√
T and t′′ ∈ T be the largest element smaller than s

√
T . By

definition, we have that T \ (L(s) ∪R(s)) = [t′, t′′] ∩ T . Note also that t′′/t′ ≤ T , and thus
|[t′, t′′] ∩ T | ≤ log T + 1 ≤ 2 log T since T ≥ 10, which completes the proof. ◀

3.1 Hardness Reduction
The hardness reduction is from a Label-Cover instance L(U, V,E ⊆ V × U,M,N, {πvu :
[M ]→ [N ]}e=(v,u)∈E). We shall use T as defined above for some large enough choice of T
depending on δ and ℓ. Note that T is a constant compared to |V | which is an increasing
value. The underlying space of the vectors is X = {0, 1}V×[M ] i.e., a vector x ∈ X is given
by x = (xv,i)v∈V,i∈[M ]. The reduction yields a distribution DB over 2-sized bags and all bags
B in its support have the label proportion σ = 1/2. A random bag from DB is given by the
following steps:
1. Sample t uniformly at random from T .
2. U.a.r. sample a vertex u ∈ U .
3. Independently and u.a.r. sample vertices V xu = {v̂1, . . . , v̂t} and V zu = {ṽ1, . . . , ṽt} from

the neighborhood N(u) of u in V .
4. Randomly sample J ⊆ [N ], and let J = [N ] \ J .
5. Define a point x ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

xv,i =
{

1 if v ∈ V xu and πvu(i) ∈ J
0 otherwise.

(2)

6. Define another point z ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

zv,i =
{

1 if v ∈ V zu and πvu(i) ∈ J
0 otherwise.

(3)

7. Output (B = {x, z}, σB = 1/2).
In particular, observe that the points x and z are zero outside of the coordinates corresponding
to the vertices in V xu ∪ V zu .

YES Case. Consider a labeling ρ to the vertices of L that satisfy all the edges. Define
the OR, h∗(x) =

∨
v∈V xv,ρ(v). Let u be the choice in Step 2 above, and assume that

ρ(u) ∈ J as chosen in Step 4. Then, we know that for all v ∈ V xu ∪ V zu (as chosen in Step 3),
πvu(ρ(v)) = ρ(u) ∈ J . By construction of x and z therefore, h∗(x) = 1 and h∗(z) = 0, and
thus B is satisfied by h∗. Similarly, when ρ(u) ∈ J , we obtain that h∗(x) = 0 and h∗(z) = 1.
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3.2 NO Case
Assume for a contradiction an ℓ-clause CNF formula h′ s.t. PrB←DB [h′ satisfies B] ≥ δ. From
the bi-regularity of L, if any clause of h′ contains a negated literal then with probability at
least 1− 2t/|V | the literal’s coordinate is not from those of the vertices in V xu ∪ V zu and the
clause evaluates to 1 on both points of a random bag B ← DB. Removing all such clauses
we obtain r-clause CNF h = C1 ∧ · · · ∧ Cr (r ≤ ℓ) that satisfies at least δ − 2tℓ/|V | ≥ δ/2
fraction of the bags (since we can take |V | ≫ 2T+2ℓ/δ as |V | is super-constant). We have
the following lemma.

▶ Lemma 10. For any constant ζ > 0, there is a choice of T = T (ζ) s.t. for any Ci (i ∈ [r]),
PrB=(x,z)←DB [Ci(x) ̸= Ci(z)] ≤ ζ.

Using the above lemma, the NO case proof can be completed by taking ζ = δ/(6ℓ). By a
union bound, the probability that any one of C1, . . . , Cr evaluates differently on x and y is at
most δ/6. This also upper bounds the probability of satisfying the bags of DB, contradicting
our assumption.

Proof of Lemma 10. Fix any clause C ∈ {C1, . . . , Cr}, and from our construction above C
has no negated literals. Call a vertex which has at least one variable from C as non-empty,
otherwise call it empty. For each non-empty vertex v arbitrarily choose iv such that the
(v, iv)-th variable is in C. For each u ∈ U let µ(u) denote the fraction of its neighbors which
are non-empty. In our analysis below we shall be collecting the error probabilities using

Pr [A] ≤ Pr [A ∩B] + Pr
[
B̄
]
, and Pr [A ∩B] ≤ min {Pr [A] ,Pr [A | B]} (4)

for any two events A and B, where B̄ denotes the complement of B.
We will first bound γ which we define to be the probability over the choice of t, u, V xu

and V zu that there is a pair of non-empty vertices v, v′ ∈ V xu ∪ V zu s.t. πvu(iv) = πv′u(iv′).
We call this event Ψ. In this case we can construct a randomized partial labeling ρ for the
vertices of L as follows: for each v ∈ V which is non-empty, assign it the label iv defined
above. For each u, select a random neighbor vu and assign u the label πvuu(ivu

) if vu is
non-empty. Since t ≤ 2T we obtain that this randomized labeling satisfies in expectation at
least maxt γ/(2t)2 = γ/

(
22(T+1)) fraction of the edges. Choosing the soundness of L to be

small enough one can ensure that γ ≤ ζ/100.
We consider two the cases for t and u below, and in each of them (setting B = Ψ in (4))

we can assume that Ψ does not occur, while incurring at most ζ/100 probability error.

Case I: t ∈ L(1/µ(u)). In this case the probability that there is non-empty vertex in
V xu ∪ V zu is at most 2tµ(u) ≤ 2

(
1/
√
T
)

(1/µ(u))µ(u) ≤ 2/
√
T . Therefore, except with

probability at most 2/
√
T , C evaluates to zero on x and z.

Case II: t ∈ R(1/µ(u)). We shall first show that w.h.p. V xu contains a significant
number of non-empty vertices, and given that happens, w.h.p. C evaluates to 1 on x.
The expected number of non-empty vertices in V xu is tµ(u) ≥

(√
T/µ(u)

)
µ(u) ≥

√
T .

Therefore, by the Chernoff bound (see Appendix A), except with probability exp
(
−
√
T/8

)
,

the number of non-empty vertices is at least
√
T/2. From the assumption that Ψ does

not occur, for all pairs of non-empty vertices v, v′ ∈ V xu , πvu(iv) ̸= πv′u(iv′). Thus, each
{xv,iv | v ∈ V xu , v is non-empty } is independently set to 1 with probability 1/2. In particular,
except with probability (1/2)

√
T/2, at least one of {xv,iv | v ∈ V xu , v is non-empty } is set to

1 and thus C evaluates to 1 on x. The same argument as above also works for V zu and z.

FSTTCS 2023



37:8 Hardness of Learning Boolean Functions from Label Proportions

From the analysis of the above two cases, using Lemma 9 and repeated applications of (4)
to add up the error probabilities above (for V zu and z as well in Case II) we obtain that:

Pr [C(x) ̸= C(z)] ≤ 2/
√
T + ζ/100 + 2

(
log T
T

+ exp
(
−
√
T/8

)
+ 2−

√
T/2
)

(5)

Choosing T to be 100/ζ2 we can ensure that the above probability is at most ζ. ◀

4 Hardness of LLP Learning OR using ℓ-DNF

This section proves the following hardness reduction which implies Theorem 2.

▶ Theorem 11. For any constants δ > 0 and ℓ ∈ Z+, there is a polynomial time reduction
from an instance L of Label-Cover to an LLP-OR[2] instance B s.t.
YES Case: If L is YES instance then there is an OR consistent with all the bags of B.
NO Case: If L is a NO instance then there is no ℓ-DNF formula satisfying at least (1/2 + δ)-
fraction of the bags.

4.1 Hardness Reduction
The setup is the same as in the previous section. The reduction outputs a distribution
DB over two types of bags with equal probability: (i) the first type has size 1 with label
proportion 1, (ii) the second type has size 2 and label proportion 1/2. With T being a large
enough constant to be chosen later, the following steps define a random bag of DB.
1. U.a.r. sample a vertex u ∈ U .
2. With probability 1/2 do the following:

a. U.a.r. sample vertex v ∈ N(u) and create the point x(v) as follows: set all coordinates
{x(v)

v,i }Mi=1 to 1, and set all the other coordinates to 0.
b. Output

(
B = {x(v)}, σB = 1

)
.

3. With the remaining probability 1/2 do the following:
a. Independently and u.a.r. sample vertices V xu = {v̂1, . . . , v̂T } and V zu = {ṽ1, . . . , ṽT }

from the neighborhood N(u) of u in V .
b. Randomly sample J ⊆ [N ], and let J = [N ] \ J .
c. Define a point x ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

xv,i =
{

1 if v ∈ V xu and πvu(i) ∈ J
0 otherwise.

(6)

d. Define another point z ∈ X as follows. For each i ∈ [M ] and v ∈ V set:

zv,i =
{

1 if v ∈ V zu and πvu(i) ∈ J
0 otherwise.

(7)

e. Output (B = {x, z}, σB = 1/2).

YES Case. This is easy to see using the same OR formula h∗ defined in the previous section.
Using the same arguments h∗ satisfies all the bags of size 2 from DB. Further, h∗ has exactly
one (positive) literal from the coordinates corresponding to each v ∈ V so that h∗(x(v)) = 1
where x(v) is as defined in Step 2a. of DB. Thus, h∗ satisfies all the bags of size 1 as well.
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4.2 NO Case
Let us assume that there is an ℓ-DNF h that satisfies 1/2 + δ fraction of the bags of DB. First,
observe that if h has a term consisting only of negated literals, then from the bi-regularity of
L and a union bound that term will not have any coordinate from among the vertices chosen
in Step 3a with probability at least 1 − 2Tℓ/|V |. Thus, h will have label proportion 1 on
at least 1− 2Tℓ/|V | fraction of the 2-sized bags i.e., h will not satisfy them, implying that
the maximum fraction of bags satisfied by h is 1/2 + Tℓ/|V |. This is a contradiction since
|V | = ω(Tℓ) and can be taken to be large enough. Thus, we may assume that h does not
have a term of only negated literals.

Before proceeding, let us call a v ∈ V as non-empty if h has a term in which all the
positive literals correspond to v and none of the negated literals correspond to v. Let Γ(v)
be an arbitrary map from each non-empty v to one such term corresponding to it. Note
that Γ(v) is injective. Further, define ∆(v) to be the set of all indices i ∈ [M ] such that the
positive literal corresponding to (v, i) occurs in Γ(v).

Define for each u ∈ U , κu to be the probability that the choice of V xu and V zu in
Step 3a satisfies that there exists a pair v, v′ ∈ V xu ∪ V zu of non-empty vertices such that
πvu (∆(v)) ∩ πv′u (∆(v′)) ≠ ∅ (call these intersecting non-empty pair of vertices). Using this,
let us define a randomized labeling ρ for the vertices in L as follows: for each non-empty
v ∈ V , ρ(v) is chosen u.a.r from ∆(v), and for each u ∈ U , vu is chosen u.a.r. from N(u)
and then if vu is non-empty ρ(u) set to i which is chosen u.a.r. from ∆(vu). By standard
arguments, this labeling satisfies in expectation at least κu/(4ℓ2T 2) fraction of the edges
incident on u, and thus overall in expectation Eu[κu]/(4ℓ2T 2) fraction of edges of L. Choosing
the soundness of L to be small enough (and since T is a constant), we can assume that
Eu[κu] ≤ δ2/200.

By averaging, for at least δ/2 fraction of u ∈ U (call them good) h satisfies at least
1/2 + δ/2 fraction of the bags from DB |u i.e., given the choice of u in Step 1. In particular
from the above,

Eu[κu|u good ] ≤ δ/100. (8)

For any such good u, h must satisfy at least δ fraction of the bags of size 1 and label
proportion 1 (as they constitute exactly half of the bags), implying that for at least δ-fraction
of v ∈ N(v), h

(
x(v)) = 1. Clearly, these vertices are non-empty for h to evaluate to 1 on

them, and thus any good u has at least δ-fraction non-empty v in N(u).
Let us fix on one such good u. First, from above we can assume by adding an error

probability of κu that in Step 3a, V xu ∪ V zu does not contain an intersecting non-empty pair.
Further, the probability that any term in {Γ(v) | v ∈ V xu ∪ V zu and non-empty} contains
a negated literal corresponding to vertices in V xu ∪ V zu is at most 2Tℓ/dU where dU is the
uniform degree on U . Since dU can be taken to be an arbitrarily large constant, possibly by
replicating V , we can assume by adding an error probability of δ/100 that this event does
not occur.

Given the above, we will show that w.h.p over the choice of a 2-sized bag, h evaluates
to 1 on both x and z. We shall prove this for x, the argument for z is analogous and
the conjunction is obtained by a union bound. Since u is good, the expected number of
non-empty vertices in V xu is at least δT . By Chernoff bound, by adding an error probability
of exp(−δT/8) we can assume there are at least δT/2 non-empty vertices in V xu . By our
assumptions above, each term in {Γ(v) | v ∈ V xu ∪ V zu and non-empty} independently
evaluates to 1 w.p. at least (1/2)ℓ over the choice of x. Thus, the probability that none of
them evaluate to 1 is at most (1− (1/2)ℓ)δT/2. This analysis can be repeated for V zu and z.
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Summing up the error probabilities (using repeated applications of (4)), we obtain that:

Pr [h(x) ̸= h(z)] ≤ κu + δ/100 + 2
(

exp(−δT/8) + (1− (1/2)ℓ)δT/2
)
≤ κu + δ/50 (9)

for a good u, using an appropriate choice of T = O
(
2ℓ log(1/δ)/δ

)
. By (8), the average

of the LHS of (9) over all good u is at most 3δ/100, which means that h satisfies on an
average at most 1/2 + 3δ/100 bags corresponding to a random choice of good u. This is a
contradiction to the definition of good u thus completes the NO case analysis.

5 Hardness of LLP Learning Parities

This section is devoted to proving the following hardness reduction which, along with the
inapproximability of Smooth-Label-Cover (Th. 7) proves Theorem 3.

▶ Theorem 12. For any constants δ > 0 and q ∈ Z+, q ≥ 2, there is a polynomial time
reduction from an instance L of Smooth-Label-Cover to an LLP-PARITY[q] instance B s.t.
YES Case: If L is YES instance then there is a parity consistent with all the bags of B.
NO Case: If L is a NO instance then there is no parity satisfying at least (q/2q−1 +δ)-fraction
of the bags.

We begin with the dictatorship test below using which the hardness reduction is described
and analyzed in Sec. 5.2.

5.1 Dictatorship Test
Consider a large M ∈ Z+, and the space of vectors FM2 . For some integer q > 1, let he
dictatorship test distribution Ddict

M,q on (B, σ) be as follows:

1. Choose B =
{

x(1), . . . ,x(q)} where for each i ∈ [M ],
(
x

(1)
i , . . . , x

(q)
i

)
is sampled u.a.r.

from
{

e(j)}q
j=1 where e(j) ∈ Fq2 is the jth coordinate vector.

2. Output (B, σ = 1/q).
We prove the following lemma summarizing the completeness and soundness of t Ddict

M,q.

▶ Lemma 13. The distribution Ddict
M,q satisfies the following properties:

Completeness: For any i ∈ [M ] the parity function hi(x) := xi has the property that
σ(B, hi) = 1/q for any B in the support of Ddict

M,q i.e., hi satisfies all bags of Ddict
M,q.

Soundness: Let h(x) := c0 ⊕
⊕M

i=1 cixi be such that |{i ∈ [M ] | ci = 1}| = K ≤M . Then, h
satisfies a random (B, σ) ∼ Ddict

M,q with probability at most q/2q−1 + exp (−2K/q + q/2).

Proof. The completeness follows from construction, since for any (B, σ) ∼ Ddict
M,q, where

B =
{

x(1), . . . ,x(q)},
(
hi

(
x

(j)
i

))q
j=1

=
(
x

(j)
i

)q
j=1
∈
{

e(j)}q
j=1 for all i ∈ [M ]. Therefore,

σ(B, hi) = 1/q = σ, and therefore hi satisfies all the bags, for all i ∈ [M ].
The proof of the soundness is given next in Sec. 5.1.1. ◀

5.1.1 Soundness of Ddict
M,q

Let Ih = {i ∈ [M ] | ci = 1} so that |Ih| = K. Letting B =
{

x(1), . . . ,x(q)} be a random bag
from Ddict

M,q, for convenience define the random variable Zj := h
(
x(j)) for j ∈ [q] and let DZ

be the distribution on (Z1, . . . , Zq). Since any (B, σ) in the support of Ddict
M,q has σ = 1/q,

using the construction of B =
{

x(1), . . . ,x(q)} we obtain
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q⊕
j=1

Zj =
q⊕
j=1

h
(

x(j)
)

=
q⊕
j=1

(
c0 ⊕

M⊕
i=1

cix
(j)
i

)
=

q⊕
j=1

c0 ⊕
⊕
i∈Ih

q⊕
j=1

x
(j)
i

=
q⊕
j=1

c0 ⊕
⊕
i∈Ih

1 =
q⊕
j=1

c0 ⊕
K⊕
i=1

1 = ψ∗ ∈ F2 (10)

Our goal is to show that DZ is close to Dq which we define to be the uniform distribution
over the elements of Fq2 with parity ψ∗. Towards this we prove the following lemma, which
shows that the distribution DZ has low-bias.

▶ Lemma 14. Consider any strict non-empty subset S ⊊ [q], s.t. 1 ≤ |S| = s ≤ q. Then,∣∣∣∣∣∣Pr

⊕
j∈S

Zj = 0

− 1
2

∣∣∣∣∣∣ ≤ 1
2 · exp (−2K/q) .

Proof. First, we may assume that s ≤ q/2, otherwise we can use [q] \ S along with (10) to
complete the argument. Analogous to (10) we have that

⊕
j∈S

Zj =
⊕
j∈S

h
(

x(j)
)

=
|S|⊕
j=1

c0 ⊕
⊕
i∈Ih

⊕
j∈S

x
(j)
i = ψS,c0 ⊕

⊕
i∈Ih

ri (11)

where ψS,c0 =
⊕|S|

j=1 c0 is a constant and ri :=
⊕

j∈S x
(j)
i . From the construction of

the random bag B, we have that {ri}i∈Ih
are iid F2-valued random variables such that

Pr[ri = 1] = s/q,∀i ∈ Ih. In other words, the RHS of (11) denotes the parity of K such iid
random variables. To analyze this, let us consider an alternate way of sampling {ri}Mi=1:
1. Sample T ⊆ Ih by including each i ∈ Ih into T independently with probability 2s/q ≤ 1.
2. For each i ∈ Ih \ T , set ri = 0. Independently for each i ∈ T , set ri = 1 w.p. 1/2 and to

0 otherwise.
It is easy to see that conditioned on T ̸= ∅, ⊕i∈Ih

ri is unbiased. This, along with (11) leads
us to,

Pr

⊕
j∈S

Zj = ψS,c0

 = 1
2 · (1− Pr[T = ∅]) + p ·Pr[T = ∅] = 1

2 + Pr[T = ∅]
(
p− 1

2

)
(12)

where p ∈ [0, 1] is some probability. Further,

Pr[T = ∅] =
(

1− 2s
q

)K
≤ exp(−2Ks/q)

Since s ≥ 1 and |p− 1/2| ≤ 1/2, the above along with (12) completes the proof. ◀

The rest of the argument is similar to the Vazirani XOR Lemma except we need to show
closeness to Dq rather than the uniform distribution. We now transition to Fourier analysis
of {0, 1}-valued functions over {−1, 1}q. For this purpose, we shall map F2 to {−1, 1} via
b 7→ (−1)b and think of DZ and Dq as distributions over {−1, 1}q. First, from the definitions
of DZ and Dq, χ[q](z) = (−1)ψ∗ for any z in the support of DZ or Dq. Thus,

Ez←Dq

[
χ[q](z)

]
= Ez←DZ

[
χ[q](z)

]
= (−1)ψ

∗
(13)
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and it is also easy to observe that for any S ⊊ [q],

Ez←Dq
[χS(z)] = 0 and |Ez←DZ

[χS(z)]| ≤ exp (−2K/q) , (14)

where the upper bound follows from Lemma 14. Consider any function f : {−1, 1}q → [0, 1]
having Fourier expansion

∑
S⊆[q] f̂SχS . Using (13), and (14) we obtain∣∣∣EDq

[f ]− EDZ
[f ]
∣∣∣ ≤ exp (−2K/q)

∑
S⊊[q]

∣∣∣f̂S∣∣∣
≤ 2q/2 · exp (−2K/q)

√∑
S⊊[q]

f̂2
S ≤ 2q/2 · exp (−2K/q) ,

where we use Cauchy-Schwarz and Parseval’s bound. We can take f to be indicator function
of the event that exactly one of the coordinates is −1. This function evaluates to 1 on Dq
with probability exactly q/2q−1. Using this along with the above bound completes the proof.

5.2 Hardness Reduction
Our hardness reduction is from an instance L of Smooth-Label-Cover given in Theorem 7.

Points, bags and label proportions. The initial set of points is defined in the space
FV×[M ]

2 . For a point x̂ ∈ FV×[M ]
2 let x̂[v] = (x̂v,1, . . . , x̂v,M ) be the vector of M coordinates

corresponding to v ∈ V . Let DB be the distribution on bags and label proportions given by
the following process.
1. Sample v ∈ V u.a.r.
2. Sample (B = {x(1), . . . ,x(q)}, 1/q)← Ddict

M,q.
3. For j ∈ [q]: define x̂(j) ∈ FV×[M ]

2 by letting x̂(j)[v] = x(j)[v] and for all v′ ≠ v, x̂(j)[v′] = 0.
4. Output (B̂ = {x̂(1), . . . , x̂(q)}, 1/q)

Folding and projected point-set. For each e = (v1, v2) ∈ E and j ∈ [N ] define the linear
constraint C[e, j] over point x̂ ∈ FV×[M ]

2 as

C[e, j]⇔
⊕

i∈π−1
ev1 (j)

x̂v1i =
⊕

i∈π−1
ev2 (j)

x̂v2i. (15)

Let H ⊂ FV×[M ]
2 be the subspace of all the points which satisfy the set of homogeneous linear

constraints C := {C[e, j] | e ∈ E, j ∈ [N ]}. We let H be the space in which our final instance
resides by linearly projecting all points x̂ created in the support of DB into points x ∈ H.
Since our final instance is represented in a coordinate system corresponding to a linear basis
for H, this also forces any solution h to be represented in a basis for H. In particular, h
represented in the original space by h(x̂) := c0 ⊕ ⟨c, x̂⟩ (where the inner product is over F2)
must obey c ∈ H. Let DB be the new distribution on the bags (B, 1/q) given by the linear
projection of all the points in the bags of DB on to H.

5.2.1 YES Case
In this case, there is a labeling ρ : V → [M ] which satisfies all the edges of L. Consider
over FV×[M ]

2 the parity h∗(x̂) =
⊕

v∈V x̂v,ρ(v) =: ⟨c∗, x̂⟩. Since, for any edge e = (v1, v2),
πev1(ρ(v1)) = πev2(ρ(v2)), c∗ ∈ H. Now fix a choice of v in Step 1 of the distribution DB.
Restricted to the coordinates corresponding to v (since the others are set to 0), h∗ is simply
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xv,ρ(v). We can now directly apply the completeness property of Ddict
M,q in Lemma 13 to

obtain that h∗ satisfies all the bags given the choice v. Since this holds for all choices of v,
h∗ satisfies all the bags of DB.

5.2.2 NO Case
Assume for a contradiction that there is a parity in the space H that satisfies (q/2q−1 + δ)-
fraction of the bags of DB. This parity can be written as

h(x̂) = c0 ⊕
⊕
v∈V

M⊕
i=1

cix̂i = c0 ⊕
⊕
v∈V
⟨c[v], x̂[v]⟩, (16)

where c satisfies the constraints C. By averaging there are δ/2 fraction of good v ∈ V such
that h satisfies (q/2q−1 + δ/2)-fraction of the bags of DB |v i.e., DB given v is chosen in Step
1. By the weak-expansion property of L in Theorem 7, the subset of edges E′ induced by the
good vertices satisfies |E′| ≥ (δ/2)2|E|. Let Sv := {i ∈ [M ] | cv,i = 1}. From the soundness
of Ddict

M,q (Lemma 13), we obtain that all good v satisfy

|Sv| ≤ ∆ := q(log(2/δ) + q/2)/2 . (17)

The smoothness of L implies that for any good v ∈ V , Pre∼v [πev (Sv) = |Sv|] ≥ 1 −
|Sv|2 /(2Q) ≥ 1 − ∆2/(2Q). Let E∗ = {e = (v1, v2) ∈ E′ | πevr

(Svr
) = |Svr

| , r = 1, 2}.
Then

|E∗|
|E|
≥ ζ := δ2

4 −
∆2

Q
. (18)

We have the following lemma.

▶ Lemma 15. For any e = (v1, v2) ∈ E∗, πev1 (Sv1) ∩ πev2 (Sv2) ̸= ∅.

Proof. Since h satisfies at least one bag of D |v1 , c[v] ̸= 0, and thus Sv1 ̸= ∅. Consider any
j ∈ πev1 (Sv1). From the definition of E∗,

∣∣π−1
ev1

(j) ∩ Sv1

∣∣ = 1. Thus,
⊕

i∈π−1
ev1 (j) x̂v1i = 1 and

from (15) and the fact that ĉ satisfies C[e, j] we obtain that π−1
ev2

(j) ∩ Sv2 ̸= ∅. ◀

Let ρ be the randomized labeling to the good vertices given by randomly assigning each good
v ∈ V a label chosen u.a.r. from Sv. From Lem. 15, (17) and (18) we obtain that ρ satisfies
in expectation at least, ν := ζ/∆2 fraction of the edges of L. By choosing the parameter Q
in Theorem 7 to be large enough we can take ζ ≥ δ2/8 and then taking taking the parameter
R to be be large enough we obtain a contradiction.

6 Approximately LLP Learning Parities

Here we may assume that q ≥ 2, otherwise all bags are of size 1 and one can use Gaussian
elimination to solve for the satisfying parity. Let B := {(Bk, σk)}mk=1 be an instance of
LLP-PARITY[q] over Fd2 such that there is an (unknown) parity that satisfies all the bags of
B. We therefore need to solve for the coefficients of the parity.

Let us first define the subsets of bags Ba := {(B, σ) ∈ B | σ = a} for a ∈ {0, 1}. We call
the bags in B0 ∪ B1 as monochromatic since we know that the vectors in any such bag are
either all labeled 0 or all labeled 1. Therefore, one can write a (possibly non-homogeneous)
F2-linear constraint (in the coefficients of the parity) for each vector in any monochromatic
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bag. Further, since the label proportion of each bag is given, the parity of labels in each bag
is also determined. Thus, we can add these F2-linear constraints capturing the parity of the
labels for each bag.

Since this system of linear equations is feasible (due to the existence of the satisfying
parity) one can do Gaussian elimination to obtain a reduced instance B′ of LLP-PARITY[q]
which satisfies the following properties:
1. B′ has no monochromatic bags.
2. A subset of the coefficients may be eliminated or assigned a fixed value ∈ F2, and the

rest are free.
3. For any bag (B, σ) ∈ B′, any assignment to the free coefficients yields a labeling which

satisfies the parity constraint of that bag. In particular, the set of such assignments yields
a (possibly affine) subspace of labelings of size at most 2t−1 where t = |B|. Let us call
this subspace of labelings as FB .

The algorithm outputs a random parity given by a random assignment to the free
coefficients. To analyze its performance, let us consider a bag (B, σ) ∈ B′ where |B| = t ≤ q
and tσ ∈ {1, . . . , t − 1} since B′ has no monochromatic bags. By feasibility there exists a
vector in FB which has Hamming weight tσ. The probability that the bag will be satisfied
by a random parity is precisely the probability that a random point in FB has Hamming
weight tσ. There are two cases:
1. FB contains all vectors of Hamming weight tσ. Since tσ ∈ {1, . . . , t− 1} the number of

such vectors is at least t. Since |F | ≤ 2t−1, the probability that the bag is satisfied is at
least t/2t−1 ≥ 1/2q−2 for any positive integers t ≤ q and q ≥ 2.

2. FB does not contains all vectors of Hamming weight tσ. In this case, FB is at most
(t− 2)-dimensional and thus |FB | ≤ 2t−2. Since FB does contain one vector of Hamming
weight tσ, the probability that the bag is satisfied is at least 1/2t−2 ≥ 1/2q−2.
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A Useful Bounds

We use the Chernoff bound stated as follow.

▶ Theorem 16 (Chernoff Bound). Suppose X1, . . . , Xn and independent {0, 1}-valued random
variables with S =

∑n
i=1 Xi and µ = E[S]. Then, Pr[S ≤ (1− δ)µ] ≤ exp(−δ2µ/2) for any

δ > 0.
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