
Weighted One-Deterministic-Counter Automata
Prince Mathew #Ñ

Indian Institute of Technology Goa, India

Vincent Penelle #Ñ

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

Prakash Saivasan #Ñ

The Institute of Mathematical Sciences, HBNI, India
CNRS UMI ReLaX, India

A.V. Sreejith #Ñ

Indian Institute of Technology Goa, India

Abstract
We introduce weighted one-deterministic-counter automata (odca). These are weighted one-counter
automata (oca) with the property of counter-determinacy, meaning that all paths labelled by a
given word starting from the initial configuration have the same counter-effect. Weighted odcas
are a strict extension of weighted visibly ocas, which are weighted ocas where the input alphabet
determines the actions on the counter.

We present a novel problem called the co-VS (complement to a vector space) reachability
problem for weighted odcas over fields, which seeks to determine if there exists a run from a given
configuration of a weighted odca to another configuration whose weight vector lies outside a given
vector space. We establish two significant properties of witnesses for co-VS reachability: they satisfy
a pseudo-pumping lemma, and the lexicographically minimal witness has a special form. It follows
that the co-VS reachability problem is in P.

These reachability problems help us to show that the equivalence problem of weighted odcas
over fields is in P by adapting the equivalence proof of deterministic real-time ocas [3] by Böhm et
al. This is a step towards resolving the open question of the equivalence problem of weighted ocas.
Finally, we demonstrate that the regularity problem, the problem of checking whether an input
weighted odca over a field is equivalent to some weighted automaton, is in P. We also consider
boolean odcas and show that the equivalence problem for (non-deterministic) boolean odcas is in
PSPACE, whereas it is undecidable for (non-deterministic) boolean ocas.

2012 ACM Subject Classification Theory of computation → Automata extensions

Keywords and phrases One-counter automata, Equivalence, Weighted automata, Reachability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.39

Related Version Full Version: https://arxiv.org/abs/2301.13456

Funding A.V. Sreejith: supported by SERB for the project “Probabilistic Pushdown Automata”
[MTR/2021/000788].

Acknowledgements The authors would like to thank Rahul C S for his intuitive suggestions that
helped in proving Lemma 14.

1 Introduction

This paper investigates a restriction on weighted one-counter automata (oca). Like weighted
finite automata, weighted ocas recognise functions - every word over a finite alphabet is
mapped to a weight. We say that a weighted oca has counter-determinacy (see Definition 6)
if “all paths labelled by a given word, starting from the initial configuration, have the same
counter-effect”. Weighted one-deterministic-counter automata (odca) is a syntactic model
equivalent to weighted oca with counter-determinacy (see Definition 7). It consists of,

© Prince Mathew, Vincent Penelle, Prakash Saivasan, and A.V. Sreejith;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 39; pp. 39:1–39:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prince@iitgoa.ac.in
https://prince-iitgoa.github.io/
https://orcid.org/0000-0001-6410-1474
mailto:vincent.penelle@u-bordeaux.fr
https://www.labri.fr/perso/vpenelle/
mailto:prakashs@imsc.res.in
https://www.imsc.res.in/prakash_saivasan
mailto:sreejithav@iitgoa.ac.in
https://www.iitgoa.ac.in/~sreejithav/
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.39
https://arxiv.org/abs/2301.13456
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Weighted One-Deterministic-Counter Automata

1. Counter: A counter that stays non-negative and allows zero tests.
2. Counter structure: A finite state deterministic machine where the transitions depend

only on its current state, the input letter, and whether the counter is zero. The counter
structure can increment/decrement the counter by one, or leave it unchanged.

3. Finite state machine: A finite state weighted automaton whose transitions depend on
its current state, the input letter, and whether the counter value is zero. This machine
cannot modify the counter.

One way read-only input tape

Finite stateCounter Counter
zero test

{+1, −1, 0}

zero test

structure machine

Figure 1 One-deterministic-counter automata.

The counter structure and the finite state machine run synchronously on any word. The
finite state machine computes the weight associated with the word. Our first observation is:

▶ Theorem 1. There is a polynomial time translation from a weighted oca with counter-
determinacy to a weighted odca and vice versa.

In the following example, the functions prefixAwareDecimal and equalPrefixPower
are recognised by weighted oca with counter-determinacy.

▶ Example 2. The functions are defined over the alphabet Σ = {a, b}. The transition weights
of the odcas are from the field of rational numbers Q.
(a) The function prefixAwareDecimal : Σ∗ → N is defined as follows:

prefixAwareDecimal(w) = decimal(w2) if w = w1w2, w1 ∈ {anban | n > 0}, and the
number of a’s ≥ number of b’s for any prefix of w2, and 0 otherwise. Here, decimal(w2)
represents the decimal equivalent of w2 when interpreted as a binary number, where “a”
is treated as a one and “b” as a zero.

(b) The function equalPrefixPower : Σ∗ → N is defined as follows: for all w ∈ Σ∗,
equalPrefixPower(w) = 2k where k is the number of proper prefixes of w with equal
number of a’s and b’s.

The weighted odcas recognising these functions are given in Figure 2. In the figure, if a
transition from pi to pj of the counter structure is labelled (A, R, D) and (a, r, d) ∈ A×R×D,
then there is a transition from pi to pj on reading the symbol a with counter action d. If a
transition from qi to qj of the finite state machine is labelled (A, R, s) and (a, r, s) ∈ A×R×Q,
then there is a transition from qi to qj on reading the symbol a with weight s. In both cases,
r denotes the sign of the counter value. i.e., the current counter value should be 0 if r = 0
and greater than 0 if r = 1. For the finite state machine, the initial (resp. output) weight
is marked using an inward (resp. outward) arrow. The weight of a path is the product of
transition weights along that path. The accepting weight of a word is the sum of weights of
all the paths from an initial state to an output state labelled by that word.

1.1 Comparisons with other models
Visibly pushdown automata (vpda) were introduced by Alur and Madhusudan in 2004 [2].
They have received much attention as they are a strict subclass of pushdown automata suitable
for program analysis. vpdas enjoy tractable decidable properties, which are undecidable

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:3

q0 q1

q2 q3

({a}, {0, 1}, 1)

({b}, {1}, 1)

({a}, {1}, 1)

({a}, {0}, 1)

({a}, {0, 1}, 1)

({b}, {1}, 1)

({a}, {0, 1}, 1)

({a}, {0, 1}, 2)

({b}, {1}, 2)

Fi
ni

te
st

at
e

m
ac

hi
ne

C
ou

nt
er

st
ru

ct
ur

e

1

p0 p1

p2

({a}, {0, 1}, +1)

({b}, {1}, −1)

({a}, {1}, −1)

({a}, {0}, 0)

({a}, {0, 1}, +1)

({b}, {1}, −1)

1

(a) prefixAwareDecimal(w1w2) = decimal
value of w2’s binary interpretation, if w1 ∈
{anban | n > 0} and #a’s ≥ #b’s for any prefix
of w2; 0 otherwise.

q0

q1

q2

({a}, {0}, 1)

({b}, {0}, 1)

({a}, {0}, 2)

({a, b}, {1}, 1)

({b}, {0}, 2)

({b}, {0}, 2)

({a, b}, {1}, 1)

({a}, {0}, 2)

Fi
ni

te
st

at
e

m
ac

hi
ne

C
ou

nt
er

st
ru

ct
ur

e

1

1

p0 p1

({a}, {0, 1}, +1)

({b}, {1}, −1)

({b}, {0}, +1) ({b}, {0, 1}, +1)

({a}, {1}, −1)({a}, {0}, +1)

1

(b) equalPrefixPower(w) = 2k where k is the
number of proper prefixes of w with equal num-
ber of a’s and b’s.

Figure 2 The figure shows weighted odcas recognising the functions given in Example 2.

in the general case. The visibly restriction, in essence, is that the stack operations are
input-driven, i.e., only depends on the letter read. Weighted vpda is a natural extension
to the weighted setting. Counter-determinacy can be seen as a relaxation in the visibly
constraint on ocas, as the counter actions are no longer input-driven but are deterministic.
The fact that weighted odcas are strictly more expressive than weighted visibly oca can be
noted from the fact that the functions in Example 2 are not recognised by a weighted visibly
oca.

Nowotka et al. [17] introduced height-deterministic pushdown automata, where the
input string determines the stack height. Weighted odcas can be seen as weighted height-
deterministic pushdown automata over a single stack alphabet and a bottom-of-stack symbol.

The reader might feel that a weighted odca is equivalent to a cartesian product of
a deterministic oca and a weighted finite automaton. However, one can note that the
functions prefixAwareDecimal and equalPrefixPower in Example 2 are not definable by
the cartesian product of deterministic oca and a weighted automaton. The reason is that
the weighted automaton cannot “see” the counter values, so its power is restricted.

1.2 Motivation

Probabilistic pushdown automata (ppda) have been studied for the analysis of stochastic
programs with recursion [14, 19]. They are equivalent to recursive Markov chains [8, 15].
ppdas are also a generalisation of stochastic context-free grammars [1] used in natural
language processing and many variants of one-dimensional random walks [7].

The decidability of equivalence of probabilistic pushdown automata is a long-standing
open problem [10]. The problem is inter-reducible to multiplicity equivalence of context-free
grammars. In fact, the decidability is only known for some special subclasses of ppda. It is
known that the equivalence problem for ppda is in PSPACE if the alphabet contains only
one letter and is at least as hard as polynomial identity testing [10]. There is a randomised
polynomial time algorithm that determines the non-equivalence of two visibly ppda over the

FSTTCS 2023

39:4 Weighted One-Deterministic-Counter Automata

alphabet triple (Σcall, Σret, Σint) where both machines perform push, pop, and no-action on
the stack over the symbols in Σcall, Σret, and Σint respectively [12]. There is a polynomial-
time reduction from polynomial identity testing to this problem. Hence it is highly unlikely
that the problem is in P.

Since the equivalence problem for ppda is unknown, the natural question to ask is the
equivalence problem for probabilistic one-counter automata. However, this problem is also
unresolved. In this paper, we identify a subclass of probabilistic ocas (probabilistic odcas
are also a superclass of visibly probabilistic ocas) for which the equivalence problem is
decidable. In particular, we show that the problem is in P. Note that our results are slightly
more general since we consider weighted odcas where weights are from a field.

1.3 Our contributions on weighted ODCA (weights from a field)
The paper’s primary focus is on the equivalence problem for weighted odcas where the
weights are from a field (possibly infinite).

We first introduce a novel reachability problem on weighted odca, called the complement
to a vector space (co-VS) reachability problem. The co-VS reachability problem (see Section 3)
takes a weighted odca, an initial configuration, a vector space, a final counter state, and a
final counter value as input. It asks, starting from the initial configuration, whether it is
possible to reach a configuration with the final counter state, final counter value, and weight
distribution over the states that is not in the vector space.

Let us call a word a witness if the run of the word “reaches” a configuration desired by
the reachability problem. We identify two interesting properties of witnesses.
1. pseudo-pumping lemma (Lemma 10): If the run of a witness encounters a “large” counter

value, then it can be pumped-down (resp. pumped-up) to get a run where the maximum
counter value encountered is smaller (resp. larger). However, the lemma is distinct from a
traditional pumping lemma, where the same subword can be pumped-down (or pumped-
up) multiple times while maintaining reachability. In the case of a weighted odca, we
only claim that a subword can be pumped, but the same subword may not be repeatedly
pumped. It follows from the pseudo-pumping lemma that the co-VS reachability problem
is in P (Theorem 13).

2. special-word lemma (Lemma 15): The lexicographically smallest witness is of the form
uyr1

1 vyr2
2 w where u, v, w, y1 and y2 are “small” words and r1, r2 ∈ N. The length of the

word uy1vy2w is bounded by a polynomial in the number of states of the odca, whereas
r1 and r2 also depend on the counter values of the initial and final configurations.

Comparing the above properties with that of deterministic one-counter automata will
be interesting. In a deterministic oca, the reachability problem is equivalent to asking
whether there is a path to a final state (rather than a weight distribution over states) and a
counter value from an initial state and counter value. Let z be an arbitrary “long” witness.
Consider the run on z of the deterministic oca. By the Pigeonhole principle (see Valiant and
Paterson [24]), there will be words u, y1, v, y2, and w such that z = uy1vy2w, and y1 (and
similarly y2) starts and ends in the same state and the effect of y1 on the counter is minus of
the effect of y2 on the counter. In short, y1 and y2 form loops with inverse counter-effects and
can be pumped simultaneously. Therefore, for all r ∈ N, the word uyr

1vyr
2w is a witness. One

can view this as a pumping lemma for oca (see Ogden’s lemma [18] for pushdown automata).
Such a property does not hold in the case of weighted odca. The presence of weights at each
state makes the problem inherently complex, necessitating a more sophisticated approach.

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:5

The proofs of Lemma 10 and Lemma 15 use linear algebra and combinatorics on words
and are distinct from those employed for deterministic oca. We also introduce a similar
problem called co-VS coverability (see Section 3). The two properties of the witness and
co-VS coverability are crucial along with the ideas developed by Böhm et al. [3, 4, 6] and
Valiant and Paterson [24] in solving the equivalence problem. The proof is rather technical,
Section 4 provides a high-level idea of the proof.

▶ Theorem 3. There is a polynomial time algorithm that decides if two weighted odcas
(weights from a field) are equivalent and outputs a word that distinguishes them otherwise.

Finally, we consider the regularity problem - the problem of deciding whether a weighted
odca is equivalent to some weighted automaton. The proof technique is adapted from the
ideas developed by Böhm et al. [6] in the context of real-time oca. The crucial idea in
proving regularity is to check for the existence of infinitely many equivalence classes. The
pseudo-pumping lemma (particularly pumping-up) is used in proving this. A detailed proof
can be found in Appendix B.

▶ Theorem 4. The regularity problem of weighted odca (weights from a field) is in P.

1.4 Related work

Extensive studies have been conducted on weighted automata with weights from semirings.
Tzeng [23] (also see Schützenberger [20]) gave a polynomial time algorithm to decide the
equivalence of two probabilistic automata. The result has been extended to weighted automata
with weights over a field. On the other hand, the problem is undecidable if the weights are
over the semiring (N, min, +) [13]. Unlike the extensive literature on weighted automata, the
study on weighted versions of pushdown or one-counter machines is limited [9, 11, 14]. The
undecidability of several interesting problems creates a major bottleneck.

Moving on to the non-weighted models, the equivalence problem for non-deterministic
pushdown automata is known to be undecidable. On the other hand, from the seminal result by
Sénizergues [21], we know that the equivalence problem for deterministic pushdown automata
is decidable. It was later proved to be primitive recursive [22]. The language equivalence of
synchronised real-time height-deterministic pushdown automata is in EXPTIME [17]. The
equivalence problem for deterministic one-counter automata (with and without ϵ transitions),
similar to that of deterministic finite automata, is NL-complete [5].

2 Preliminaries

2.1 Basic notations

In this paper, we fix an alphabet Σ. Given a word w ∈ Σ∗, we use |w| to denote the length
of the word w. For any set S, we use |S| to denote the number of elements in S. We use
the notation [i, j] to denote the interval {i, i + 1, . . . , j}. We say that a word u = a1 · · · ak

is a subword of a word w, if w = u0a1u1a2 · · · akuk, where ai ∈ Σ, uj ∈ Σ∗ for all i ∈ [1, k]
and j ∈ [0, k]. We call u a proper subword of w if u ̸= w. We say that a word u is a prefix
of a word w if there exists v ∈ Σ∗ such that w = uv. Given a word w = a0 · · · an, we write
w[i · · · j] to denote the factor ai · · · aj . For a d ∈ N, the sign of d (denoted by sign(d)) is
defined as sign(d) = 0 if d = 0 and is 1 otherwise. For all l ∈ N, we use Σ≤l (resp. Σl) to
denote the set of words over Σ having length less than or equal to l (resp. exactly equal to l).

FSTTCS 2023

39:6 Weighted One-Deterministic-Counter Automata

2.2 Weighted one-deterministic-counter automata
In this section, we define weighted odca, where the weights are from a semiring. However,
our results require that the weights come from some field F (not necessarily finite) except
for Section 5, where the weights are from the boolean semiring. First, we define weighted
one-counter automata.

▶ Definition 5. A weighted one-counter automaton A = (Q, λ, δ0, δ1, η), is defined over an
alphabet Σ where, Q is a non-empty finite set of states, λ ∈ F |Q| is the initial distribution
where the ith component of λ indicates the initial weight on state qi ∈ Q, δ0 : Q × Σ ×
Q × {0, +1} → F and δ1 : Q × Σ × Q × {−1, 0, +1} → F are the transition functions, and
η ∈ F |Q| is the final distribution, where the ith component of η indicates the output weight
on state qi ∈ Q.

Note that the counter values do not go below zero. Let p, q ∈ Q, a ∈ Σ, n ∈ N, e ∈ {−1, 0, +1},
and s ∈ F . We say (q, n) ↪→a|s (p, n + e) if δsign(n)(q, a, p, e) = s. Let w = a1a2 · · · at ∈ Σ∗

for some t ∈ N. For a q0 ∈ Q and n0 ∈ N, we say (q0, n0) ↪→w|s (qt, nt) if for all i ∈ [1, t],
there are qi ∈ Q, ni ∈ N, si ∈ F such that (qi−1, ni−1) ↪→ai|si (qi, ni) and s =

∏t
i=1 si.

▶ Definition 6. A weighted oca with counter-determinacy is a weighted one-counter auto-
maton A = (Q, λ, δ0, δ1, η) with the following restriction: if λ[i] and λ[j] are non-zero for
some i, j ∈ [1, |Q|], then for all w ∈ Σ∗, if (qi, 0) ↪→w|s1 (p1, n1) and (qj , 0) ↪→w|s2 (p2, n2)
for some p1, p2 ∈ Q, n1, n2 ∈ N and s1, s2 ∈ F , then n1 = n2.

We present a definition for weighted odca, which is an equivalent syntactic model.

▶ Definition 7. A weighted odca, A = ((C, δ0, δ1, p0), (Q, λ, ∆, η)) is defined over an
alphabet Σ where,

C is a non-empty finite set of counter states.
δ0 : C × Σ → C × {0, +1}, δ1 : C × Σ → C × {−1, 0, +1} are counter transitions.
p0 ∈ C is the start state for the counter structure.
Q is a non-empty finite set of states of the finite state machine.
λ ∈ F |Q| is the initial distribution where the ith component of λ indicates the initial
weight on state qi ∈ Q.
∆ : Σ × {0, 1} → F |Q|×|Q| gives the transition matrix. For all a ∈ Σ and d ∈ {0, 1}, the
component in the ith row and jth column of ∆(a, d) denotes the weight on the transition
from state qi ∈ Q to state qj ∈ Q on reading symbol a from counter value n with
sign(n) = d.
η ∈ F |Q| is the final distribution, where the ith component of η indicates the output
weight on state qi ∈ Q.

Here, (C, δ0, δ1, p0) represents the counter structure and (Q, λ, ∆, η) represents the finite state
machine. Note that δ0 and δ1 are deterministic transition functions. The counter structure
and the finite state machine run synchronously on any given word. A configuration c of an
odca is of the form (xc, pc, nc) ∈ F |Q| × C × N. We use the notation weight-vector(c)
to denote xc, counter-state(c) to denote pc, and counter-value(c) to denote nc. The
initial configuration is (λ, p0, 0). A transition is a tuple τ = (ι, d, a, ce,A, θ) where ι, θ ∈ C

are counter states, d ∈ {0, 1} denotes the sign of the counter value, a ∈ Σ, ce ∈ {−1, 0, 1}
is the counter-effect, A ∈ F |Q|×|Q| such that ∆(a, d) = A, and δd(ι, a) = (θ, ce). Given a
transition τ = (ι, d, a, ce,A, θ) and a configuration c = (x, n, p), we denote the application of
τ to c as τ(c) = (xA, θ, n + ce) if p = ι and d = sign(n); τ(c) is undefined otherwise. Note
that the counter values are always non-negative.

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:7

Consider a sequence of transitions T = τ0 · · · τℓ where τi = (ιi, di, ai, cei,Ai, θi) for all
i ∈ [0, ℓ]. We denote by word(T) = a0 · · · aℓ the word labelling it, we(T) = A0 · · ·Aℓ its
weight-effect matrix, and ce(T) = ce0 + · · · + ceℓ its counter-effect. For all 0 ≤ i < j ≤ ℓ,
we use Ti···j to denote the sequence of transitions τi · · · τj and |T | to denote its length ℓ + 1.
We call T floating if for all i ∈ [0, ℓ − 1], di = 1 and non-floating otherwise.

A run π is an alternating sequence of configurations and transitions denoted as π =
c0τ0c1 · · · τℓ−1cℓ such that for every i, ci+1 = τi(ci). The word labelling, length, weight-effect,
and counter-effect of the run are those of its underlying sequence of transitions. Given a
sequence of transitions T = τ0 · · · τℓ−1 and a configuration c, we denote by T (c) the run (if
it is defined) c0τ0c1 · · · τℓ−1cℓ where c0 = c.

For any word w, there is at most one run labelled by w starting from a given configuration
c0. We denote this run π(w, c0). A run π(w, c0) = c0τ0c1 · · · τℓ−1cℓ is also represented as
c0

w−→ cℓ. We say c0 →∗ cℓ if there is some word w such that c0
w−→ cℓ. For a weighted

odca A, the accepting weight of w is denoted by fA(w, c) = λwe(π(w, c))η⊤, where c is the
initial configuration of A. Two weighted odcas A and B are equivalent if for all w ∈ Σ∗,
fA(w, c) = fB(w, d) where c and d are the initial configurations of A and B respectively. Let
c and d be configurations of odcas A and B respectively. We say that c ≡l d if and only
if for all w ∈ Σ≤l, fA(w, c) = fB(w, d) otherwise c ̸≡l d. An uninitialised weighted odca
A is a weighted odca without an initial counter state and initial distribution. Weighted
automata (wa) is a restricted form of weighted odca where the counter value is fixed at
zero. The above notions of transitions, runs, acceptance, etc. are used for wa also. Given
a weighted odca A and M ∈ N, we define the M -unfolding weighted automata AM as a
finite state weighted automaton, where the accepting weight of any word whose run does
not encounter counter values greater than M in A is equal in both A and AM . There is a
polynomial time procedure to construct AM .

Consider the weighted odca C recognising the function prefixAwareDecimal given in
Figure 2a. Here, λ = [1, 0, 0, 0] and η = [0, 0, 0, 1]. The configuration c0 = ([1, 0, 0, 0], p0, 0)
is the initial configuration of this machine. Let w = abaaab. The run of this machine on the
word w can be written as:

π(w, c0) = ([1, 0, 0, 0], p0, 0) a−→ ([1, 0, 0, 0], p0, 1) b−→ ([0, 1, 0, 0], p1, 0) a−→ ([0, 0, 1, 0], p2, 0)
a−→ ([0, 0, 1, 1], p2, 1) a−→ ([0, 0, 1, 2], p2, 2) b−→ ([0, 0, 1, 6], p2, 1).

The counter-effect of this run is ce(π(w, c0)) = 1 and the weight-effect matrix is given by

we(π(w, c0)) = ∆(a, 0) ∆(b, 1) ∆(a, 0) ∆(a, 1) ∆(a, 1) ∆(b, 1) =

0 0 1 6
0 0 1 14
0 0 1 46
0 0 0 64

 .

The accepting weight of the word w is fC(w, c0) = λwe(π(w, c0))η⊤ = 6.

3 Reachability problems of weighted ODCA

In this section, we introduce the co-VS reachability and co-VS coverability problems for
weighted odcas over a field F . We fix a weighted odca A = ((C, δ0, δ1, p0), (Q, λ, ∆, η)). We
use V ⊆ F |Q| to denote a vector space and V its complement. Let S ⊆ C be a subset of the set
of counter states, X ⊆ N a set of counter values, and w ∈ Σ∗. The notation c w−→ V × S × X

denotes the run c w−→ d where d ∈ V × S × X if it exists. We use c ∗−→ V × S × X to denote
that there exists a word u ∈ Σ∗ such that c u−→ V × S × X.

FSTTCS 2023

39:8 Weighted One-Deterministic-Counter Automata

co-VS reachability problem
Input: a weighted odca A, an initial configuration c, a vector space V, a set of counter
states S, and a counter value m.
Output: Yes, if there exists a run c ∗−→ V × S × {m} in A. No, otherwise.

co-VS coverability problem
Input: a weighted odca A, an initial configuration c, a vector space V, and a set of
counter states S.
Output: Yes, if there exists a run c ∗−→ V × S × N in A. No, otherwise.

Unlike the co-VS reachability problem, the final configuration’s counter value is not
considered part of the input for co-VS coverability problem. We assume that the vector
space V ⊆ F |Q| is provided by giving a basis. We call z ∈ Σ∗ a witness of (c, V, S, X) if
c z−→ V × S × X. Furthermore, z is called a minimal witness for (c, V, S, X) if for all u ∈ Σ∗

with c u−→ V × S × X, |u| ≥ |z|.
In the upcoming subsection, we give some interesting properties of minimal witnesses. In

Section 3.2, we provide a pseudo-pumping lemma which helps us show that co-VS reachability
and co-VS coverability are in P if the counter values are given in unary notation. Finally,
in Section 3.3, we demonstrate that the lexicographically minimal witness has a canonical
form. In the following subsections, V denotes a vector space, c a configuration, S a subset of
counter states, and X ⊆ N. We also denote by K = |Q| · |C|, where C is the set of counter
states, and Q is the set of states of the finite state machine.

3.1 Minimal witness and its properties
The following observation helps in breaking down the reachability problem into sub-problems.
If z ∈ Σ∗ is a minimal witness for (c, V, S, X), then for every z1, z2 such that z = z1z2,
there is a vector space U such that z1 is a minimal witness for (c, U , {p}, {n}) where p is the
counter state and n is the counter value reached after reading z1 from c.

▶ Observation 8. Consider arbitrary z, z1, z2 ∈ Σ∗ such that z = z1z2. Let d = (xd, pd, nd)
and e = (xe, pe, ne) be configurations such that c z1−→ d z2−→ e and A ∈ F |Q|×|Q| be such
that xdA = xe. If z is a minimal witness for (c, V, S, X), then z1 is a minimal witness for
(c, U , {pd}, {nd}), where U = {y ∈ F |Q| | yA ∈ V}.

We aim to show that the length of a minimal witness for (c, V, S, X) is polynomially bounded.
The following lemma shows that if the counter values are polynomially bounded during the
run of a minimal witness, then its length is also polynomially bounded.

▶ Lemma 9. Let z ∈ Σ∗ be a minimal witness for (c, V, S, X). If the number of distinct
counter values encountered during the run c z−→ V × S × X is t, then |z| ≤ t · K.

It now suffices to show that the counter values encountered during the run of a minimal
witness are polynomially bounded.

3.2 Pseudo-pumping lemma
The pseudo-pumping lemma is a valuable tool in our analysis, allowing us to pump up or
down a sufficiently long word while maintaining the reachability conditions.

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:9

▶ Lemma 10 (pseudo-pumping lemma). Let m, R ∈ N, be such that counter-value(c) = m

and z ∈ Σ∗ be such that c z−→ V × S × {m} is a floating run, and the maximum counter value
encountered during this run is m + R. If R > K2, then there exists zsub, zsup ∈ Σ∗ such that
the following hold:
1. there exist x, y, u, v, w ∈ Σ∗ such that z = xyuvw, zsub = xuw, c zsub−−−→ V × S × {m} is a

floating run, and the counter values encountered during this run are less than m + R, and
2. there exist x, y, u, v, w ∈ Σ∗ such that z = xyuvw, zsup = xy2uv2w, c

zsup−−−→ V × S × {m}
is a floating run, and the maximum counter value encountered in this run exceeds m + R.

Proof. Let z ∈ Σ∗ be a witness for (c, V, S, {m}) and e ∈ V × S × {m} be such that c z−→ e
is a floating run, and the maximum counter value encountered in this run be m + R where
R > K2. Let counter-value(c) = m. There exist z1, z2 ∈ Σ∗ and configuration f such
that z = z1z2 and c z1−→ f z2−→ e, where counter-value(f) = m + R (see Figure 3).

Let c1 = c and π = c1τ1c2 · · · τℓ−1cℓ denote the run on word z from the configuration
c1 and T = τ1τ2 · · · τℓ−1 the sequence of transitions of π. For any i ∈ [0, R], we denote by
li and di the indices such that a configuration with counter value m + i is encountered for
the last (resp. first) time before (resp. after) reaching counter value m + R in π. That is,
counter-value(cli

) = counter-value(cdi
) = m + i, and for any j where li < j < di,

counter-value(cj) > m + i. To simplify the notation, we denote by gi = cli and g′
i = cdi .

Consider the pairs of configurations (g1, g′
1), (g2, g′

2), . . . , (gR, g′
R). Since R > (|Q| ·

|C|)2, by the Pigeonhole principle, there exist two counter states p, q, and a set of indices
I ⊆ [0, R] where |I| = |Q|2 + 1 such that for all h ∈ I, counter-state(gh) = p and
counter-state(g′

h) = q. For all j ∈ I, let uj , vj , wj ∈ Σ∗ be such that c1
uj−→ gj

vj−→ g′
j

wj−−→
e. We use the following shorthand for any configuration g: xg = weight-vector(g). For
all j ∈ I, let matrix Aj and Bj be such that xg′

j
= xgj

Aj and xe = xg′
j
Bj . Since xe ∈ V, for

all j ∈ I, xgj
AjBj ∈ V. Let r = |Q|2 + 1, and i1 < i2 < · · · < ir be the indices in I. We

prove the two cases separately.
1. Consider the sequence of matrices Air

,Air−1 , . . . ,Ai1 . Since there can be at most
|Q|2 independent matrices, there exists k ∈ [1, r] such that Aik

is a linear combination
of Air

, . . . ,Aik+1 . Hence, there exists h ∈ {ir, . . . , ik+1} such that xgik
AhBik

∈ V. Let
zsub = uik

vhwik
. It is easy to observe that zsub is a subword of z as mentioned in the lemma.

To conclude the proof, it now suffices to show that zsub is a witness for (c, V, S, {m}) and
the counter values encountered during the run c zsub−−−→ h are less than m + R. Consider the
floating run gh

vh−→ g′
h. From the choice of gh and g′

h we know that counter-value(gh) =
counter-value(g′

h) = m + h and for all j where lh < j < dh, counter-value(cj) >

m + h. Since counter-state(gh) = counter-state(gik
), π(vh, gik

) is also a floating run
gik

vh−→ d such that counter-state(g′
h) = counter-state(d), counter-value(gik

) =
counter-value(d) = m + ik < m + h, and the minimum and maximum counter val-
ues encountered in the run is m + ik and m + R − (h − ik) respectively (see Figure 3).
Furthermore, xd = xgik

Ah. Since counter-state(g′
ik

) = counter-state(g′
h), we get

that counter-state(g′
ik

) = counter-state(d). Moreover, since counter-value(g′
ik

) =
counter-value(gik

), we have counter-value(g′
ik

) = counter-value(d). Therefore,
π(wik

, d) is the run d
wik−−→ h where xh = xdBik

and hence xh = xgik
AhBik

∈ V. This
concludes that zsub is a witness for (c, V, S, {m}) and satisfies the properties mentioned in
the lemma.
2. Consider the sequence of matrices: Ai1 ,Ai2 , . . . ,Air

. Note that the matrices are ordered
in reverse compared to the ordering in the previous case. By following a similar argument,
we get a word zsup satisfying the required properties. ◀

FSTTCS 2023

39:10 Weighted One-Deterministic-Counter Automata

vh

f

c e

gik

uik

g′
ik

wik

gh g′
h

m + R

m

m + ik

m + h

co
un

te
r

va
lu

e

Figure 3 The figure shows the floating run from
a configuration c with counter-value(c) = m

to a configuration e = (x, p, m) such that x ∈
U . Configurations gik

and gh (resp. g′
ik

and
g′

h) are where the counter values m + ik and
m + h are encountered for the last (resp. first)
time before (resp. after) reaching m + R. Also,
counter-state(gik

) = counter-state(gh) and
counter-state(g′

h) = counter-state(g′
ik

). The
dashed line denotes the part of the run that can be
removed to get a shorter witness for (c, U , {p}, {n}).

z[li, ri − 1]

c

g

ei

fi

n

m

n − i + d

n − i

co
un

te
r

va
lu

e

Figure 4 The figure shows the float-
ing run from a configuration c with
counter-value(c) = n to a configuration
g = (x, p, m) such that x ∈ V. The points
ei and fi denotes the configurations where
the counter values n − i and n − i + d are
encountered for the first (resp. last) time
during this run. The dashed line represents
the part of the run due to factor z[li, ri − 1]
and has a counter effect d.

It is important to note that we do not end up in the same configuration while pumping
up/down, but we ensure that we reach a configuration with the same counter state, counter
value, and whose weight vector is in the complement of the given vector space.

Now, we prove that for any run (it need not necessarily be a floating run) of a minimal
reachability witness z for (c, V, S, {m}), the maximum counter value encountered during the
run c z−→ V ×S ×{m} is bounded by a polynomial in the number of states of the machine, and
the initial and final counter values. This can be achieved by iteratively applying Lemma 10
on the run of the minimal witness (refer Figure 6) and using Observation 8 and Lemma 9.

▶ Corollary 11. If z ∈ Σ∗ is a minimal witness for (c, V, S, {m}), then
1. the maximum counter value encountered during the run c z−→ V × S × {m} is less than

max(counter-value(c), m) + K2, and
2. |z| ≤ K3 + max(counter-value(c), m) · K.

The following lemma (depicted in Figure 5) helps us show that the length of a minimal
witness for co-VS coverability is polynomially bounded in the number of states.

▶ Lemma 12 (cut lemma). Let z ∈ Σ∗ be a witness for (c, V, S,N), where c is a configuration
with counter-value(c) = n for some n ∈ N, and c z−→ V × S × {m} is a floating run for
some m ∈ N. If m − n > K, then there exists zsub ∈ Σ∗ such that zsub is a subword of z,
c zsub−−−→ V × S × {m′} is a floating run and m′ − n < m − n.

Now, we prove that the co-VS reachability and co-VS coverability problems of weighted
odca are in P by demonstrating a small model property. We have already established using
Lemma 10, Corollary 11, and Lemma 12 that the maximum and minimum counter values
encountered during the run of the minimal witness do not exceed some polynomial bound.
This, in turn, implies a polynomial bound on the length of the witness by Lemma 9. As a
result, we get the following theorem.

▶ Theorem 13. The co-VS reachability and co-VS coverability problems for weighted odca
can be decided in polynomial time when the counter values are given in unary notation.

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:11

word length

co
un

te
r

va
lu

e

c1

ci0

ci1

cil

cik

ci|Q|

cℓAk

Figure 5 The figure shows a run from configur-
ation c1 to cℓ = (xcℓ , pcℓ , ncℓ) such that xcℓ ∈ V.
The configurations cil and cik are where the counter
values ncil

and ncik
are encountered for the last time.

Also the configurations cil and cik have the same
counter state. The dashed line is the part that can be
removed to get a shorter witness for (c, V, {pcℓ },N).

e1 e2 e3

c

e4

d

word length

co
un

te
r

va
lu

e

Figure 6 The figure shows a run from
configuration c to d = (xd, pd, nd) such that
xd ∈ V. Configurations e1, e2, e3, e4 are
where the counter value zero is encountered
during the run. The dashed lines denote
the parts that can be removed to obtain a
shorter witness for (c, V, {pd}, {nd}).

3.3 Lexicographically minimal witness
This section will show that the lexicographically minimal witness has a distinct structure.

We assume a total order on the symbols in Σ. Given two words u, v ∈ Σ∗, we say that
u precedes v in the (length) lexicographical ordering if |u| < |v| or if |u| = |v| and there
exists an i ∈ [0, |u| − 1] such that u[0, i − 1] = v[0, i − 1] and u[i] precedes v[i] in the total
ordering assumed on Σ. A word z ∈ Σ∗ is called the lexicographically minimal witness for
(c, V, S, {m}), if c z−→ V ×S ×{m} and for all u ∈ Σ∗ \{z} with c u−→ V ×S ×{m}, z precedes
u in the lexicographical ordering. We show that the lexicographically minimal witness z for
(c, V, S, {m}) has a canonical form. First, we prove this for floating runs.

▶ Lemma 14. There exist polynomials p1 : N → N, and p2 : N2 → N such that, if z ∈ Σ∗ is
the lexicographically minimal witness for (c, V, S, {m}) and c z−→ V × S × {m} is a floating
run, then there exist u, y, w ∈ Σ∗ and r ∈ N such that z = uyrw and the following are true:
1. |uyw| ≤ p1(K), and
2. r ≤ p2(K, |counter-value(c) − m|).

Proof. Let z be the lexicographically minimal witness for (c, V, S, {m}), and g ∈ V ×S ×{m}
such that c z−→ g is a floating run. Let n be such that counter-value(c) = n. We consider
the case n > m. The case where m ≥ n is analogous. Let t = n − m.

▷ Claim 1. |z| ≤ 2K3 + t · K.

Proof. From Point 1 of Lemma 10, it follows that the maximum counter value during the run
c z−→ g is less than n + K2. By a symmetric argument, it follows that the minimum counter
value during the run is greater than m − K2. Hence, there are at most t + 2K2 distinct
counter values during the run. From Lemma 9 it follows that |z| ≤ 2K3 + t · K. ◁

If t ≤ K2, then from Claim 1, we get that |z| ≤ 3K3, and the lemma is trivially true.
Let us assume t > K2 and let d = K2 − t. Note that d is a negative number. Let c1 = c
and π(z, c1) = c1τ1c2 · · · τℓ−1cℓ denote the run on word z from c. For any i ∈ [0, K2], we
denote by li the index such that the counter value n − i is encountered for the first time,
and ri the index such that the counter value n − i + d is encountered for the last time in

FSTTCS 2023

39:12 Weighted One-Deterministic-Counter Automata

π(z, c1) (see Figure 4). Let I = {(li, ri)}i∈[0,K2] be the set of these pairs of indices, and let
W = {z[l, r − 1] | (l, r) ∈ I} be the set of corresponding factors. Note that |I| > K2. We
argue that these factors z[li, ri − 1] for i ∈ [0, K2] need not all be distinct.

▷ Claim 2. |W | ≤ K2.

Proof. Assume for contradiction that |W | > (|Q| · |C|)2. Since the number of counter states
is |C|, by Pigeonhole principle there exists Y ⊆ I with |Y | = |Q|2 + 1 such that for all
(l, r), (l′, r′) ∈ Y , configurations cl and cl′ have the same counter state, configurations cr

and cr′ have the same counter state, and z[l, r − 1] ̸= z[l′, r′ − 1]. We say (l, r) < (l′, r′) if
z[l, r − 1] precedes z[l′, r′ − 1] in the lexicographical order. Therefore, the elements in Y

have an ordering as follows: (l0, r0) < (l1, r1) < · · · < (l|Q|2 , r|Q|2). For any configuration h,
let xh = weight-vector(h). For all i ∈ [0, |Q|2], let ui = z[1, li − 1], xi = z[li, ri − 1], wi =
z[ri, ℓ − 1], configurations ei, fi be such that c ui−→ ei

xi−→ fi
wi−→ g and matrices Ai,Mi,Bi be

such that xei
= xcAi , xfi

= xei
Mi , xg = xfi

Bi.
We know that for all k ∈ [0, |Q|2], xcAkMkBk ∈ V. Consider the sequence of matrices

M0,M1, · · · ,M|Q|2 . Since there can be at most |Q|2 independent matrices, we get that there
exists i ∈ [0, |Q|2] such that Mi is a linear combination of M0, . . . ,Mi−1. Hence, we get
that there exists a j where j < i such that xcAiMjBi ∈ V. Since xj = z[lj , rj − 1] precedes
xi = z[li, ri − 1], the word uixjwi precedes z in the lexicographical ordering. Therefore the
run π(uixjwi, c) contradicts the lexicographical minimality of z. ◁

Since |W | ≤ K2 and |I| > K2, there exists i, j ∈ [0, K2], with i < j and x ∈ Σ∗ such that
(li, ri) ∈ I, (lj , rj) ∈ I and x = z[li, ri−1] = z[lj , rj −1] (see Figure 7). Let u1, w1, u2, w2 ∈ Σ∗

such that z = u1xw1 = u2xw2. Since u1 ̸= u2, either u1 is a prefix of u2 or u2 a prefix of u1.
Without loss of generality, let us assume u1 is a prefix of u2. Therefore, there exists v ∈ Σ∗

such that u2 = u1v. Let e be a configuration such that c u1−→ e.

▷ Claim 3. |u1|, |v|, |w1| ≤ 3K3.

Proof. Consider the set I. For any i, j ∈ [0, K2], the difference between the counter values of
configurations cli

and clj
and the difference between the counter values of the configurations

crj
and cri

is at most K2 + 1. Therefore the counter-effect of u2, w2, and v can be at
most K2. Since π(v, e) is a floating run from Claim 1, we get that |v| ≤ 3K3. By similar
arguments, the counter-effect of u1 and w1 can be at most K2, and again by Claim 1, we get
that their lengths are at most 3K3. ◁

▷ Claim 4. There exist v′ ∈ Σ∗ and r ∈ [0, K3 + t · K] such that x = vrv′ with |v′| ≤ |v|.

Proof. Let r ∈ N be the largest number such that x is of the form vrv′ for some v′ ∈ Σ∗ (see
Figure 7). We know that z = u2xw2 and u2 = u1v. Therefore, z = u1vxw2 = u1vvrv′w2 =
u1vrvv′w2. Furthermore, z = u1xw1 = u1vrv′w1. Now since u1vrvv′w2 = u1vrv′w1, we get
that vv′w2 = v′w1. Hence, if |v′| ≥ |v|, then v is a prefix of v′. This is a contradiction since
r was chosen to be the largest number such that x is of the form vrv′.

To show the bound on the value r, we observe the following. We know that the counter
effect of the run π(x, e) is d. Therefore from Claim 1, we get that |x| ≤ 2K3 + |d| · K. Hence,
r ≤ 2K3 + |d| · K. ◁

From Claim 4 and Claim 3, we get that |u1vv′w1| ≤ 12K3 and z = u1vrv′w1 for some
r ∈ [0, 2K3 + |d| · K)]. ◀

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:13

u1 x w1

u2 x w2

z[l0, r0 − 1]l0
r0

z[lK2 , rK2 − 1]lK2
rK2

v v v v v vli

ri

v′

lj
v v v v v v

rj

v′

Figure 7 The figure shows the factorisation of a word z = u1xw1 = u2xw2, where x =
z[li, ri − 1] = z[lj , rj − 1], and u1 ̸= u2. The factor v is a prefix of x such that u2 = u1v. The
word z can be written as u1viv′w2 for some i ∈ N and v′ prefix of v. For k ∈ [0, K2], lk is the
index such that the counter value n − k is encountered for the first time and rk the index such
that the counter value n − k + d is encountered for the last time during the run c z−→ g.

We now establish that the lexicographically minimal witness z (whose run need not be
floating) for a co-VS reachability problem has the form uyr1

1 vyr2
2 w. Here, lengths of the

words u, y1, y2, v, and w are polynomially bounded in the number of states, and r1 and r2
are polynomial values dependent on the number of states and the input counter values.

▶ Lemma 15 (special-word lemma). If z ∈ Σ∗ is the lexicographically minimal witness
for (c, V, S, {m}), then there exists u, y1, v1, v2, v3, y2, w ∈ Σ∗ and r1, r2 ∈ N such that
z = uyr1

1 vyr2
2 w and the following are true:

1. |uy1vy2w| is polynomially bounded in the number of states of the machine.
2. r1 and r2 are polynomially bounded in the number of states of the machine, m, and

counter-value(c).

4 Equivalence of weighted ODCA

In this section, we present a polynomial time algorithm to decide the equivalence of two
weighted odcas whose weights come from a fixed field. The techniques developed in the
previous section in conjunction with those presented in Valiant and Paterson [24], and Böhm
et al. [3] for deterministic real-time oca give us the algorithm. Here, we give a proof sketch
of Theorem 3.

In the remainder of this section, we fix two non-equivalent weighted odcas A1 and A2 over
an alphabet Σ and a field F . We fix a minimal word z (also called witness) that distinguishes
them. We denote a configuration pair as hi = ⟨ci, di⟩ where ci is a configuration of A1 and
di is a configuration of A2. We denote by Π = h0τ0h1 · · · τℓ−1h|z| the synchronisation of runs
over z in A1 and A2 from their initial configurations, where hi are pairs of configurations
and τi are pairs of transitions. The main idea to prove Theorem 3 is to show that the length
of z is polynomially bounded in the size of the two weighted odcas.

▶ Lemma 16. There is a polynomial poly0 : N → N such that if two weighted odcas A1 and
A2 are not equivalent, then there exists a witness z such that the counter values encountered
during Π are less than poly0(max(|A1|, |A2|)).

Lemma 16 allows to show that the length of the witness z is bounded by a polynomial
poly1(max(|A1|, |A2|)). Thus we can reduce the equivalence problem of weighted odca over
fields to that of weighted automata over fields (which is in P [23]) by “simulating” the runs of
weighted odcas A1 and A2 up to length poly1(max(|A1|, |A2|)) using two weighted automata
that are unfolding of the weighted odcas upto counter value poly1(max(|A1|, |A2|)).

FSTTCS 2023

39:14 Weighted One-Deterministic-Counter Automata

The rest of this section is dedicated to proving Lemma 16. Following Böhm et al. [3], we
define a partition of the set of configuration pairs to facilitate this. We partition the set of
configuration pairs into three: initial space, belt space, and background space (see Figure 8).
Given a configuration c, we use nc to denote counter-value(c).

initial space: All configuration pairs ⟨c, d⟩ such that nc, nd < poly2(max(|A1|, |A2|)).

belt space: Let α, β be co-prime numbers whose values are bounded by a polynomial
in |A1| and |A2|. A belt of slope α

β consists of those configuration pairs ⟨c, d⟩ outside
the initial space that satisfies |α.nc − β.nd| ≤ poly3(max(|A1|, |A2|)). The belt space
contains all configuration pairs ⟨c, d⟩ that are inside belts with slope α

β .

background space: All remaining configuration pairs.
These partitions are indexed on two carefully chosen polynomials poly2 and poly3, so that
all belts are disjoint outside the initial space.

N

N

initial space

background space

be
lt

spa
ce

belt space

be
lt

sp
ac

e

poly2(max(|A1|, |A2|))

poly
3
(m

ax(|A
1
|, |

A2
|))

Figure 8 Projection of configuration space.

To prove Lemma 16, there are two cases to consider: either there is no background space
point in Π, or there is a background space point in Π.

Case 1: When there is no background space point in Π

Since there is no background space point in Π, all the points in Π are either in the initial or
belt space. By definition, the counter values of configuration pairs inside the initial space are
bounded by poly2(max(|A1|, |A2|)). Now, we look at the sub-run of Π inside the belt space.
If a sub-run of Π enters and exits a belt from the initial space or if Π ends inside a belt,
then we show that the counter values encountered during that belt visit are polynomially
bounded. For this proof, it is crucial that the belts are disjoint.

Consider a pair of sub-run inside a belt. The counter values of A1 and A2 are related by
a linear expression. In particular, given the counter value of A1, the counter value of A2
can only have polynomial many choices. Hence an odca A3 can simulate this run of the
pair inside a belt by tracking the counter value of A1 in its counter and the other counter
value using finitely many states. We use co-Vs reachability/coverability to show that if a
sub-run of this odca A3 reaches counter values higher than some polynomial in |A1| and
|A2|, then there exists a shorter witness (contradicting minimality). We achieve this by
applying pseudo-pumping lemma (Lemma 10) and cut lemma (Lemma 12) on this sub-run.
Hence, we get that the pair of runs of the minimal witness cannot reach counter values higher
than some polynomial bound if it does not enter the background space.

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:15

Case 2: When there is a background space point in Π

We now consider the case where the witness ultimately enters the background space. Using
co-VS reachability, we prove that the counter values encountered during Π till the first
background space point are polynomially bounded. We also show that the length of the
remaining run is polynomially bounded in the number of states of the machines.

To that end, we need the notion of underlying uninitialised weighted automaton. Roughly
speaking, an underlying uninitialised weighted automaton of an odca A is the uninitialised
weighted automaton U(A) that is syntactically equivalent to A without zero tests. In other
words, the transition function of U(A) will be determined by the transition functions of A for
positive counter values. Floating runs of A are isomorphic to runs of this weighted automaton
U(A). Given k ∈ N, a configuration c of a weighted odca A is said to be k-equivalent to
a configuration c̄ of an uninitialised weighted automaton B, if for all w ∈ Σ≤k, fA(w, c) =
fB(w, c̄). We say that c is not k-equivalent to c̄ otherwise.

We consider the uninitialised weighted automaton B, which is a disjoint union of U(A1)
and U(A2). This gives us a single automaton with which we can compare the configurations
of A1 and A2. For i ∈ {1, 2}, let Ci be the set of counter states of Ai. For all p ∈ Ci

and m < |B|, we define the sets Wp,m
i . The set Wp,m

i contains vectors x such that the
configuration (x, p, m) of Ai is |B|-equivalent to some configuration of B. The set Wp,m

i

is the complement of Wp,m
i . For any i ∈ {1, 2}, p ∈ Ci and m < |B|, the set Wp,m

i is a
vector space. The distance of a configuration c of Ai (denoted as distAi(c)) is the length
of a minimal word that takes you from c to a configuration (x, p, m) for some m < |B| and
p ∈ Ci such that x ∈ Wp,m

i . Given two configurations c, d of A1 and A2 respectively, if
distA1(c) ̸= distA2(d), then c ̸≡ d.

By special word lemma (Lemma 14), the lexicographically minimal reachability witness
has a special form. This is used to show that if a configuration c of an odca A has finite
distance, then distA(c) = a

b counter-value(c) + t, where a, b, t ∈ N and are polynomially
bounded in |A|. This helps us in proving that configuration pairs outside the initial space
having equal distance lie inside a belt. Therefore, the background space points either have
unequal or infinite distances. Similar to that in [3], we can show that the length of the run
Π in the background space is polynomially bounded in |A1|, |A2|, and the counter values of
the first background point in Π. The following lemma bounds the counter values of the first
configuration pair in the background space, if it exists, during the run Π.

▶ Lemma 17. If hj = ⟨cj , dj⟩ is the first background point in Π then, counter-value(cj)
and counter-value(dj) are polynomially bounded in |A1| and |A2|.

Proof sketch. Since hj = ⟨cj , dj⟩ is a background point in Π, either distA1(cj) ̸= distA2(dj)
or distA1(cj) = distA2(dj) = ∞. Assume for contradiction that the counter values of hj are
not polynomially bounded.

Consider the case where distA1(cj) ̸= distA2(dj). Without loss of generality, we assume
distA1(cj) < distA2(dj). Therefore there exists a configuration pair ⟨(x, p, m), (y, q, n)⟩ in Π
such that m < |B| and x ∈ Wp,m

1 . Using an argument similar to the one used to prove the
pseudo-pumping lemma (Lemma 10), we show that we can pump out some portion from the
sub-run inside the belt to reach a configuration pair in the background space with unequal
distance and smaller counter values.

In the case where distA1(cj) = distA2(dj) = ∞, we can show that cj ̸≡|B| dj . We can
then apply Lemma 12 to show the existence of a shorter run, which enters the background
space at a point hj′ = ⟨cj′ , dj′⟩ with smaller counter values such that cj′ ̸≡|B| dj′ . ◀

FSTTCS 2023

39:16 Weighted One-Deterministic-Counter Automata

Proof of Lemma 16. Consider the run Π. We have shown that the counter values of
configuration pairs inside the belt space during this run and that of the first background
point, if it exists, are polynomially bounded in |A1| and |A2|. We also proved that the length
of Π after the first background point is polynomially bounded. Since the counter values of
configuration pairs inside the initial space are also polynomially bounded, we get that the
maximum counter value in Π is polynomially bounded in |A1| and |A2|. ◀

5 Non-deterministic ODCA

In this section, we consider the counter-determinacy restriction over weightless ocas (equi-
valently, with weights from the boolean semiring). These results do not follow from previous
sections, as booleans are not a field.

▶ Example 18. The following languages are defined over the alphabet Σ = {a, b} and are
recognised by non-deterministic oca with counter-determinacy.
(a) The language L1 = {anban | n > 0}.
(b) The language L2 = {(a + b)∗ | number of a’s is greater than number of b’s}.
(c) The language L3 = {an(b + c)mb(b + c)k | m, n ∈ N and m > n}.
Note that none of the above languages are definable by visibly pushdown automata.

We observe that the relationship between non-deterministic and deterministic odcas is
similar to that between non-deterministic and deterministic finite automata. By definition,
deterministic odcas have at most one unique path for any fixed word. Therefore, they are
deterministic ocas with counter-determinacy. It is also easy to observe that deterministic
ocas are deterministic odcas. It follows that deterministic odcas and deterministic ocas
are expressively equivalent. Similar to non-deterministic finite automata, we observe that
non-deterministic odcas can be determinised by a subset construction of the states of the
finite state machine. However, this results in an exponential blow-up. In Example 18, the
deterministic odca that recognises the language L3 has to check whether every b encountered
after reading the word an(b + c)n+1 is at the kth position from the end. This will require at
least O(2k) states. On the other hand, there is a non-deterministic odca with O(k) states
recognising the same language. Similar to finite automata, non-deterministic odcas are a
“succinct” way to represent deterministic ocas.

▶ Theorem 19 (Determinisation). Given a non-deterministic odca, a polynomial space
machine can output an equivalent deterministic odca of exponential size.

The idea in proving the above theorem is a simple subset construction. The above result
and the fact that equivalence of deterministic odca is in NL gives us the upper bound in
the following theorem. The lower bound follows from that of NFAs [16].

▶ Theorem 20. The equivalence problem for non-deterministic odca is PSPACE-complete.

The equivalence of non-deterministic oca is undecidable [24]. Our theorem shows that
undecidability is due to non-determinism in the component that modifies the counter.

6 Conclusion

We introduced a new model called one-deterministic-counter automata. The model “separates”
the machine into two components, (1) counter structure - that can modify the counter, and
(2) finite state machine - that can access the counter. This separation of the “writing” and
“reading” part gives some natural advantages to the model. We show that the equivalence

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:17

problem for weighted odca is in P if the weights are from a field while that of non-deterministic
odca is in PSPACE. Note that the equivalence problems on weighted automata (where weights
are from a field) and non-deterministic finite automata are in P and PSPACE respectively. On
the other hand, the equivalence problem for non-deterministic oca is undecidable and that
of weighted oca (weights from a field) is not-known. It will be interesting to look at other
models where we can separate the “writing” and the “reading” parts. For example, a natural
extension is to consider stack-deterministic pushdown automata - where a deterministic
machine updates the stack. We also leave open the question of learning of weighted odcas.

References
1 Steven P. Abney, David A. McAllester, and Fernando Pereira. Relating probabilistic grammars

and automata. In Robert Dale and Kenneth Ward Church, editors, 27th Annual Meeting of the
Association for Computational Linguistics, University of Maryland, College Park, Maryland,
USA, 20-26 June 1999, pages 542–549. ACL, 1999. doi:10.3115/1034678.1034759.

2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004. doi:10.1145/1007352.1007390.

3 Stanislav Böhm and Stefan Göller. Language equivalence of deterministic real-time one-counter
automata is NL-Complete. In Filip Murlak and Piotr Sankowski, editors, MFCS, volume 6907
of Lecture Notes in Computer Science, pages 194–205. Springer, 2011.

4 Stanislav Böhm, Stefan Göller, and Petr Jancar. Bisimilarity of one-counter processes is
PSPACE-Complete. In Paul Gastin and François Laroussinie, editors, CONCUR, volume 6269
of Lecture Notes in Computer Science, pages 177–191. Springer, 2010.

5 Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-counter
automata is NL-Complete. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 131–140. ACM, 2013. doi:10.1145/2488608.2488626.

6 Stanislav Böhm, Stefan Göller, and Petr Jancar. Bisimulation equivalence and regularity for
real-time one-counter automata. J. Comput. Syst. Sci, 80(4):720–743, 2014.

7 Tomás Brázdil, Javier Esparza, Stefan Kiefer, and Antonín Kucera. Analyzing probabilistic
pushdown automata. Formal Methods Syst. Des, 43(2):124–163, 2013.

8 Tomáš Brázdil, Antonín Kučera, and Oldřich Stražovský. On the decidability of temporal
properties of probabilistic pushdown automata. In Volker Diekert and Bruno Durand, editors,
STACS 2005, pages 145–157, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

9 Vojtech Forejt, Petr Jancar, Stefan Kiefer, and James Worrell. Bisimilarity of probabilistic
pushdown automata. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan,
editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, volume 18
of LIPIcs, pages 448–460. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.FSTTCS.2012.448.

10 Vojtech Forejt, Petr Jancar, Stefan Kiefer, and James Worrell. Language equivalence of
probabilistic pushdown automata. Inf. Comput, 237:1–11, 2014.

11 Juraj Hromkovič and Georg Schnitger. On probabilistic pushdown automata. Information
and Computation, 208(8):982–995, 2010. doi:10.1016/j.ic.2009.11.001.

12 Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and James Worrell. On the
complexity of equivalence and minimisation for q-weighted automata. Log. Methods Comput.
Sci., 9(1), 2013. doi:10.2168/LMCS-9(1:8)2013.

13 Daniel Krob. The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. In Proceedings of the 19th International Colloquium on Automata, Languages
and Programming, ICALP ’92, pages 101–112, Berlin, Heidelberg, 1992. Springer-Verlag.

FSTTCS 2023

https://doi.org/10.3115/1034678.1034759
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/2488608.2488626
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.448
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.448
https://doi.org/10.1016/j.ic.2009.11.001
https://doi.org/10.2168/LMCS-9(1:8)2013

39:18 Weighted One-Deterministic-Counter Automata

14 Antonín Kucera, Javier Esparza, and Richard Mayr. Model checking probabilistic pushdown
automata. Log. Methods Comput. Sci., 2(1), 2006. doi:10.2168/LMCS-2(1:2)2006.

15 Antonín Kučera. Methods for quantitative analysis of probabilistic pushdown automata.
Electronic Notes in Theoretical Computer Science, 149(1):3–15, 2006. Proceedings of the
7th International Workshop on Verification of Infinite-State Systems (INFINITY 2005). doi:
10.1016/j.entcs.2005.11.013.

16 Meyer and Stockmeyer. Word problems requiring exponential time. In STOC: ACM Symposium
on Theory of Computing (STOC), 1973.

17 Dirk Nowotka and Jirí Srba. Height-deterministic pushdown automata. In Ludek Kucera and
Antonín Kucera, editors, MFCS, volume 4708 of Lecture Notes in Computer Science, pages
125–134. Springer, 2007.

18 William Ogden. A helpful result for proving inherent ambiguity. Mathematical Systems Theory,
2(3):191–194, 1968.

19 Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Math-
eja. Reasoning about recursive probabilistic programs. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 672–681, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2933575.2935317.

20 M. P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2–3):245–270, September 1961.

21 Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is
decidable. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors,
Automata, Languages and Programming, pages 671–681, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

22 Stirling. Deciding DPDA equivalence is primitive recursive. In ICALP: Annual International
Colloquium on Automata, Languages and Programming, 2002.

23 Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM J. Comput, 21(2):216–227, 1992.

24 Valiant and Paterson. Deterministic one-counter automata. JCSS: Journal of Computer and
System Sciences, 10, 1975.

A Section 3. Reachability problems of weighted ODCA

Given a weighted automaton B over a field F , with k states, an initial configuration c̄, a
vector space U ⊆ Fk and a set of counter states S, the co-VS reachability problem asks
whether there exists a run c̄ ∗−→ U × S.

▶ Theorem 21. There is a polynomial time algorithm that decides the co-VS reachability
problem for weighted automata and outputs a minimal reachability witness if it exists.

Proof. The idea of equivalence checking of weighted automata goes back to the seminal
paper by Schützenberger [20]. Tzeng [23] provided a polynomial time algorithm for the
equivalence of two probabilistic automata by reducing the problem to the co-VS reachability
problem where V = {0}. The same algorithm can be modified to solve the general co-VS
reachability problem of weighted automata. ◀

▶ Lemma 9. Let z ∈ Σ∗ be a minimal witness for (c, V, S, X). If the number of distinct
counter values encountered during the run c z−→ V × S × X is t, then |z| ≤ t · K.

Proof. Let c = c1 and T (c1) = c1τ1c2 · · · τh−1ch be the run on word z from c1 and T

the corresponding sequence of transitions. Let t be the number of distinct counter values
encountered during this run. Now assume for contradiction that h > |Q| · |C| · t, then
by Pigeonhole principle, there are |Q| + 1 many configurations ci0 , ci1 , . . . , ci|Q| with the

https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.1016/j.entcs.2005.11.013
https://doi.org/10.1016/j.entcs.2005.11.013
https://doi.org/10.1145/2933575.2935317

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:19

same counter state and counter value during this run. Given a configuration c, let xc

denote weight-vector(c). Let Aj denote the matrix such that xcij
Aj = xch

for all
j ∈ [0, |Q|]. Using linear algebra, we get that there exists r ≤ |Q|, and t ∈ [0, r − 1] such that
xcit

Ar ∈ V. Consider the sequence of transitions T ′ = τ1···itτr···ℓ−1 and v = word(T ′). The
run π(v, c1) = T ′(c1) is a run since configurations ct and cr have the same counter state and
counter value. This is a shorter run than π(z, c1) and c1

v−→ V × S × X. This contradicts the
minimality of z. ◀

▶ Corollary 11. If z ∈ Σ∗ is a minimal witness for (c, V, S, {m}), then
1. the maximum counter value encountered during the run c z−→ V × S × {m} is less than

max(counter-value(c), m) + K2, and
2. |z| ≤ K3 + max(counter-value(c), m) · K.

Proof. Let z ∈ Σ∗ be a minimal reachability witness for (c, V, S, {m}), where c is a config-
uration with counter value n.
1. Consider the run of word z from c. Let d ∈ V × S × {m} such that c z−→ d. Assume
for contradiction that the maximum counter value encountered during the run c z−→ d is
greater than max(n, m) + (|Q| · |C|)2. Let e1, e2, · · · , et be all the configurations in this run
such that their counter values are zero. There exists words u1, u2, · · · , ut+1 ∈ Σ∗ such that
z = u1u2 · · · ut+1 and c u1−→ e1

u2−→ e2
u3−→ · · · ut−→ et

ut+1−−−→ d. Note that c u1−→ e1, et
ut+1−−−→ d

and ei
ui+1−−−→ ei+1 for all i ∈ [1, t − 1] are floating runs (refer Figure 6).

We show that the counter values are bounded during these floating runs. First, we consider
the floating run c u1−→ e1. Given a configuration c, we use xc to denote weight-vector(c).
Let A ∈ F |Q|×|Q| be such that xd = xe1A. The set U = {y ∈ F |Q| | yA ∈ V} is a vector space
and hence the vector xe1 ∈ U . From Observation 8, we know that u1 is a minimal reachability
witness for (c, U , {pe1}, {0}) and therefore by Lemma 10 we know that the maximum counter
value encountered during the run π(u1, c) is less than n + (|Q| · |C|)2.

Similarly for the floating run et
ut+1−−−→ d, the maximum counter value is bounded by

m + (|Q| · |C|)2. Now consider the floating runs ei
ui+1−−−→ ei+1 for all i ∈ [1, t − 1]. Again

by applying Lemma 10 we get that the maximum counter value encountered during these
sub-runs is less than (|Q| · |C|)2. Therefore, the maximum counter value encountered during
the run c z−→ V × S × {m} is less than max(n, m) + (|Q| · |C|)2.
2. From the previous point, we know that the maximum counter value encountered during
the run c z−→ V × S × {m} is less than max(n, m) + (|Q| · |C|)2. Therefore, there are at most
max(n, m) + (|Q| · |C|)2 many distinct counter values encountered during this run. Now from
Lemma 9 we get that |z| ≤ (|Q| · |C|) · (max(n, m) + (|Q| · |C|)2). ◀

▶ Lemma 12 (cut lemma). Let z ∈ Σ∗ be a witness for (c, V, S,N), where c is a configuration
with counter-value(c) = n for some n ∈ N, and c z−→ V × S × {m} is a floating run for
some m ∈ N. If m − n > K, then there exists zsub ∈ Σ∗ such that zsub is a subword of z,
c zsub−−−→ V × S × {m′} is a floating run and m′ − n < m − n.

Proof. Let z ∈ Σ∗ be a witness for (c, V, S,N) and c z−→ V × S × {m} is a floating run.
Let n be the counter value of configuration c and m > n + |Q| · |C|. Let c1 = c and
π(z, c1) = c1τ1c2 · · · τℓ−1cℓ be such that configuration cℓ has counter value m. Consider the
sequence of transitions T = τ0τ1 · · · τℓ−1 in π(z, c1).

Since there are only |C| counter states, by the Pigeonhole principle, there exists a strictly
increasing sequence I = 0 < i0 < i1 < · · · < i|Q| ≤ ℓ such that for all j, j′ ∈ I (Condition
1) counter-state(cj) = counter-state(cj′) and (Condition 2) if j < j′ then for all
d ∈ [j + 1, j′ − 1], counter-value(cj) < counter-value(cd) < counter-value(cj′)

FSTTCS 2023

39:20 Weighted One-Deterministic-Counter Automata

and counter-value(cj) < counter-value(cj′). Given a configuration c, let xc denote
weight-vector(c). Consider the set of configurations ci0 , ci1 , . . . , ci|Q| . For any j ∈ [0, |Q|],
let Aj denote the matrix such that xcij

Aj = xcℓ
. Since xcid

Ad ∈ V for all d ∈ [0, |Q|], using
linear algebra, we get that there exists l, k ∈ [0, |Q|] with l < k such that xcil

Ak ∈ V.
Consider a configuration e = (x, p, n). If π(u, e) is a floating run with mince(π(u, e)) > 0,
then for all m ∈ N and y ∈ F |Q|, π(u, (y, p, m)) is a run. Consider the sequence of transitions
T ′ = τik···ℓ−1 and let u = word(T ′). Because of Condition 2, mince(π(u, cik

)) > 0. Therefore
the run T ′′(c1) where T ′′ = τ1···il−1τik···ℓ−1 is a run shorter than π(z, c1) with smaller counter
effect. ◀

Now we show that for any run (need not be floating) of a minimal coverability witness z

for (c, V, S,N), the maximum counter value encountered during the run c z−→ V × S × N is
polynomially bounded in the number of states of the machine and the initial counter value.

▶ Corollary 22. If z ∈ Σ∗ is a minimal witness for (c, V, S,N), where c is a configuration with
counter value n, then the maximum counter value encountered during the run c z−→ V × S ×N
is less than max(n, |Q| · |C|) + (|Q| · |C|)2.

Proof. Let z ∈ Σ∗ be a minimal witness for (c, V, S,N), where c is a configuration with
counter value n. Consider the run of word z from c. Let d ∈ V × S × N such that c z−→ d. If
c z−→ d is a floating run, then by Lemma 12 the maximum counter value encountered during
this run will be less than n + |Q| · |C|. Now if c z−→ d is not a floating run, then there exists
u1, u2 ∈ Σ∗ such that z = u1u2 and c u1−→ e u2−→ d where, counter value of configuration e is
zero and e u2−→ d is a floating run.

Given a configuration c, let xc denote weight-vector(c). Let A ∈ F |Q|×|Q| be such
that xd = xeA. The set U = {y ∈ F |Q| | yA ∈ V} is a vector space and hence the vector
xe ∈ U . Note that for all y ∈ U , the vector yA ∈ V. From Observation 8, we know that
u1 is a minimal reachability witness for (c, U , {pe}, {0}), where pe is the counter state of
configuration e, and therefore by Corollary 11, we know that the maximum counter value
encountered during the run π(u1, c) is less than n + (|Q| · |C|)2. Now since e u2−→ d is a
floating run and u2 is the minimal such word, from Lemma 12, we get that the counter
value of configuration d is less than or equal to |Q| · |C|, and by Lemma 10, we know that
the maximum counter value encountered during this run is less than |Q| · |C| + (|Q| · |C|)2.
Therefore, we get that the maximum counter value encountered during the run c z−→ d is less
than max(n, |Q| · |C|) + (|Q| · |C|)2. ◀

Our next objective is to show that the counter values are polynomially bounded during
the run of a minimal coverability witness.

▶ Corollary 23. Let c be a configuration with counter value n. If z is a minimal witness for
(c, V, S,N) then |z| ≤ (|Q| · |C|) · (max(n, (|Q| · |C|)) + (|Q| · |C|)2).

Proof. Let z ∈ Σ∗ be a minimal reachability witness for (c, V, S,N). From Corollary 22, we
know that the maximum counter value encountered during the run c z−→ V ×S ×N is less than
max(n, (|Q| · |C|)) + (|Q| · |C|)2. Therefore, there are at most max(n, (|Q| · |C|)) + (|Q| · |C|)2

many distinct counter values encountered during this run. Now from Lemma 9 we get that
|z| ≤ (|Q| · |C|) · (max(n, (|Q| · |C|)) + (|Q| · |C|)2). ◀

▶ Theorem 13. The co-VS reachability and co-VS coverability problems for weighted odca
can be decided in polynomial time when the counter values are given in unary notation.

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:21

Proof. Assume we are given a weighted odca A = ((C, δ0, δ1, p0), (Q, λ, ∆, η)), initial
configuration c = (x, p, n), vector space V, set of counter states S and counter value m as
inputs for the co-VS reachability problem. For solving this reachability problem, we first
consider the max(n, m) + (|Q| · |C|)2-unfolding weighted automaton Amax(n,m)+(|Q|·|C|)2 =
(C ′, δ′, p′

0; Q′, λ′, ∆′, η′
F) of A. From Corollary 11, we know that the maximum counter

value encountered during the run of the minimal reachability witness z for (c, V, S, {m}) is
less than max(n, m) + (|Q| · |C|)2. We define a vector space U ⊆ F |Q′| as follows: A vector
z ∈ F |Q′| is in U if there exists y ∈ V such that for all i ∈ [0, |Q| − 1], z[|Q| · m + i] = y[i]
and for all m′ ̸= m and i ∈ [0, |Q| − 1], z[|Q| · m′ + i] = 0.

Given a configuration c = (x, p, n) of a weighted odca, we define the vector zc ∈ F |Q′|.

zc[i] =
{

x[i mod |Q|], if i
|Q| = n

0, otherwise

Now, consider the configuration c̄ = (zc, (p, n)) of Amax(n,m)+(|Q|·|C|)2 and check whether
c̄ ∗−→ U × S × {0}. This is a co-VS reachability problem of weighted automata. Using
Theorem 21, this can be solved in polynomial time.

For solving co-VS coverability problem when a weighted odca A with an initial con-
figuration c = (z, p, n), a vector space V and a set of counter states S are given as
inputs, we consider the max(n, (|Q| · |C|)) + (|Q| · |C|)2-unfolding weighted automaton
Amax(n,(|Q|·|C|))+(|Q|·|C|)2 = (C ′, δ′, p′

0; Q′, λ′, ∆′, η′
F) of A. From Corollary 22, we know

that the maximum counter value encountered during the run of a minimal reachability
witness z for (c, V, S,N) is less than max(n, (|Q| · |C|)) + (|Q| · |C|)2. We define a vector
space U ⊆ F |Q′| as follows: A vector x ∈ F |Q′| is in U if there exists y ∈ V and m ∈ N
such that for all i ∈ [0, |Q| − 1], x[|Q| · m + i] = y[i] and for all m′ ̸= m and i ∈ [0, |Q| − 1],
x[|Q| · m′ + i] = 0. Given a configuration c = (x, p, n) of a weighted odca, we define the
vector zc ∈ F |Q′|.

zc[i] =
{

x[i mod |Q|], if i
|Q| = n

0, otherwise

Now, consider the configuration c̄ = (zc, (p, n)) of Amax(n,(|Q|·|C|))+(|Q|·|C|)2 and check
whether c̄ ∗−→ U × S × {0}. This is a co-VS reachability problem of a weighted automaton.
From Theorem 21, we know that this can be solved in polynomial time. ◀

▶ Lemma 15 (special-word lemma). If z ∈ Σ∗ is the lexicographically minimal witness
for (c, V, S, {m}), then there exists u, y1, v1, v2, v3, y2, w ∈ Σ∗ and r1, r2 ∈ N such that
z = uyr1

1 vyr2
2 w and the following are true:

1. |uy1vy2w| is polynomially bounded in the number of states of the machine.
2. r1 and r2 are polynomially bounded in the number of states of the machine, m, and

counter-value(c).

Proof. Let z ∈ Σ∗ be the lexicographically minimal reachability witness for (c, V, S, {m}),
where c is a configuration with counter value n. Consider the run of word z from c. Let
d ∈ V × S × {m} such that c z−→ d. Let c = c1 and T (c1) = c1τ1c2 · · · τℓ−1cℓ denote the run
on word z from the configuration c1 and T the corresponding sequence of transitions. Let
e1 be the first configuration with counter value zero and e2 be the last configuration with
counter value zero during this run. Let z1, z2, z3 ∈ Σ∗ be such that c z1−→ e1

z2−→ e2
z3−→ cℓ

and z = z1z2z3. Observe that c z1−→ e1 and e2
z3−→ cℓ are floating runs.

FSTTCS 2023

39:22 Weighted One-Deterministic-Counter Automata

From Lemma 14, we know that there exists u1, u3, v1, v3, y1, y3 ∈ Σ∗ and r1, r3 ∈ N such
that z1 = u1yr1

1 v1, z3 = u3yr3
3 v3, |u1y1v1u3y3v2| ≤ 2 · p1(|Q| · |C|), r1 ≤ p2(|Q| · |C|, n), and

r3 ≤ p2(|Q| · |C|, m). Also, from Corollary 11 we get that |z2| ≤ (|Q| · |C|)3. ◀

B Regularity of ODCA is in P

We say that a weighted odca A is regular if there is a weighted automaton B that is
equivalent to it. We look at the regularity problem - the problem of deciding whether a
weighted odca is regular. We fix a weighted odca A = ((C, δ0, δ1, p0), (Q, λ, ∆, η)) and use
N to denote |C| · |Q|. The proof technique is adapted from the ideas developed by Böhm et
al. [6] in the context of real-time oca. The crucial idea in proving regularity is to check for
the existence of infinitely many equivalence classes. The proof relies on the notion of distance
of configurations. Distance of a configuration is the length of a minimal word to be read to
reach a configuration that does not have an N equivalent configuration in the underlying
weighted automaton. The challenge is to find infinitely many configurations reachable from
the initial configuration, so that no two of them have same distance.

▶ Theorem 4. The regularity problem of weighted odca (weights from a field) is in P.

Proof. Let A be a weighted odca and c0 be its initial configuration. Lemma 24 shows
that if A is not regular, then there are words u, v ∈ Σ∗ and configurations d, e such that
there is a run of the form c0

u−→ d v−→ e such that N2 + N ≤ counter-value(d) ≤ 2N2 + N,
weight-vector(e) ∈ Wcounter-state(e),counter-value(e) with counter-value(e) < N. The
existence of such words u and v can be decided in polynomial time since the minimal length
of such a path if it exists, is polynomially bounded in the number of states of the weighted
odca by Corollary 11. This concludes the proof. ◀

We use c to denote some configuration of A and c̄ to denote some configuration of U(A).
For a p ∈ C and m ∈ N, we define Wp,m = {x ∈ F |Q| | ∃c̄ ∈ FN, c = (x, p, m) ∼N c̄}. The
set Wp,m is F |Q| \ Wp,m. The distance of a configuration c (denoted by dist(c)) is

dist(c) = min{|w| | c w−→ (x, p, m) ∃p ∈ C, m < N, and x ∈ Wp,m} .

The following lemma shows when A is not regular. Given any configuration c, we
use xc to denote weight-vector(c), pc to denote counter-state(c) and nc to denote
counter-value(c).

▶ Lemma 24. Let c be the initial configuration of an odca A. The following are equivalent.
1. A is not regular.
2. for all t ∈ N, there exists configurations d, e s.t. ne < N,c ∗−→ d ∗−→ e, xe ∈ Wpe,ne and

t < dist(d) < ∞.
3. there exists configurations d, e and a run c ∗−→ d ∗−→ e s.t. N2 + N ≤ nd ≤ 2N2 + N,

xe ∈ Wpe,ne with ne < N.

Proof. 3 → 2: Consider an arbitrary q ∈ C, m < N and vector space V = Wq,m. Let us
assume for contradiction the complement of Point 2. That is, there exists a t ∈ N such that
for all configurations d′ where c ∗−→ d′ ∗−→ V × {q} × {m}, dist(d′) ≤ t. Note that for all d′

where nd′ > N, dist(d′) ≥ nd′ − N. Hence there exists an M ∈ N such that for all d′ where
c ∗−→ d′ ∗−→ V × {q} × {m}, nd′ ≤ M .

P. Mathew, V. Penelle, P. Saivasan, and A. V. Sreejith 39:23

Consider a configuration d where nd > N2 +N and a run c ∗−→ d ∗−→ V ×{q}×{m}. Point 3
shows the existence of such a run. For contradiction, it suffices to show there exists a d′ such
that c ∗−→ d′ ∗−→ V × {q} × {m} and nd′ > nd. We get this from Lemma 10 Point 2, since
nc = 0 and nd > N2 + N.

2 → 1: Assume for contradiction that for all t ∈ N, there exists configurations d, e such
that c ∗−→ d ∗−→ e, xe ∈ Wpe,ne

, ne < N and t < dist(d) < ∞ but A is regular. Let B be the
weighted automaton equivalent to A. We use |B| to represent the number of states of B.

Let t1, t2, . . . t|B|+1 ∈ N such that for i ∈ [1, |B|], ti < ti+1, and dti be such that
c ∗−→ dti

∗−→ (xi, pe, ne), xi ∈ Wpe,ne and ti < dist(dti) < ti+1 < ∞. Clearly dti ̸≡ dtj for
i ̸= j and corresponds to two different states of B. Since we can find more than |B| pairwise
non-equivalent configurations, it contradicts the assumption that B is equivalent to A.

1 → 3: We prove the contrapositive of the statement. Let us assume that there is no
configurations d, e and a run c ∗−→ d ∗−→ e such that N2 + N ≤ nd ≤ 2N2 + N, xe ∈ Wpe,ne

with ne < N. This implies that there does not exists a configuration d′ such that nd′ > 2N2,
c ∗−→ d′ ∗−→ (y, pe, ne) for some y ∈ Wpe,ne . Assume for contradiction that there is such
a run, then there exists a portion in this run that can be “pumped down” to get a run
c ∗−→ d′′ ∗−→ (y′, pe, ne) for some configuration d′′ such that N2 + N ≤ nd′′ ≤ 2N2 + N and
y′ ∈ Wpe,ne . This is a contradiction. Therefore all runs starting from configuration with
counter value greater than or equal to N2 + N “looks” similar to a run on a weighted
automaton. This allows us to simulate the runs of A using a weighted automaton. ◀

FSTTCS 2023

	1 Introduction
	1.1 Comparisons with other models
	1.2 Motivation
	1.3 Our contributions on weighted ODCA (weights from a field)
	1.4 Related work

	2 Preliminaries
	2.1 Basic notations
	2.2 Weighted one-deterministic-counter automata

	3 Reachability problems of weighted ODCA
	3.1 Minimal witness and its properties
	3.2 Pseudo-pumping lemma
	3.3 Lexicographically minimal witness

	4 Equivalence of weighted ODCA
	5 Non-deterministic ODCA
	6 Conclusion
	Bibliography
	A Section 3. Reachability problems of weighted ODCA
	B Regularity of ODCA is in P

