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Abstract
Constraint Linear Temporal Logic (CLTL) is an extension of LTL that is interpreted on sequences of
valuations of variables over an infinite domain. The atomic formulas are interpreted as constraints on
the valuations. The atomic formulas can constrain valuations at the current position and positions
that are a fixed distance apart (e.g., the previous position or the second previous position and so
on). The satisfiability problem for CLTL is known to be Pspace-complete. We generalize CLTL
to let atomic formulas access positions that are unboundedly far away in the past. We annotate
the sequence of valuations with letters from a finite alphabet and use regular expressions on the
finite alphabet to control how atomic formulas access past positions. We prove that the satisfiability
problem for this extension of the logic is decidable in cases where the domain is dense and open
with respect to a linear order (e.g., rational numbers with the usual linear order). We prove that it
is also decidable over integers with linear order and equality.
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1 Introduction

Propositional Linear Temporal Logic (LTL) and related automata-theoretic models have
been extended in various ways to make it more expressive. Constraint LTL (abbreviated
as CLTL in [12]), LTL with freeze operators [9], temporal logic of repeating values [7, 19],
finite memory automata [16], data automata [3] are all examples of this. These extensions
are concerned with using variables that range over infinite domains in place of Boolean
propositions used in propositional LTL. Variables ranging over infinite domains are a natural
choice for writing specifications for systems that deal with infinite domains. For example,
CLTL has been used for specifications of cloud-based elastic systems [1], where the domain
of natural numbers is used to reason about the number of resources that are being used by
cloud-based systems. In CLTL, atomic formulas can refer to valuations in previous/next
positions using operators like X−1, X−2, X,X2 etc.

We generalize CLTL by introducing operators of the form e −1, where e is a regular
expression over some finite alphabet. To illustrate the intended meaning of these operators,
suppose e = a∗b. The operator a∗b

−1 refers to a position in the past such that the sequence
of letters between the current and that past position is in the language of the expression a∗b.
The operator X−2 is same as Σ · Σ · Σ −1. We call this extension Constraint LTL with remote
access (RCLTL). CLTL is a fragment of this, where the expressions e are constrained to be of
the form Σn for some number n. Apart from being a natural extension of CLTL, RCLTL is
inspired by the usage of automata to model smart contracts [18], where components interact
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41:2 Constraint LTL with Remote Access

with each other by passing messages. For example, bidders in an online bidding forum may
pass messages to propose a bidding value, or to request the current highest bid. Suppose we
want to verify that any bid is always strictly greater than the previous bid. However, the
previous bid may not have been proposed in the previous step: several past steps may have
been requests for the current highest bid. If we represent bidding messages by the letter b
and request messages by the letter r, we can access the position where the last bid was made
using the operator r∗b

−1. This operator can refer to past positions that are unboundedly
far behind to access the last bid, which cannot be done in CLTL.

Contributions. The main contribution of this paper is to prove that RCLTL is decidable
over the domain of integers with equality and linear order. At a high level, the techniques we
use are similar to those used for proving decidability of satisfiability of CLTL [12], based on
patterns that repeat in ultimately periodic words. However, the fact that RCLTL operators
can access positions that are remotely in the past poses many challenges to be overcome.
E.g., suppose a variable x has value 1 in the previous position and value 2 in the current
position, so the constraint X−1x < x is satisfied. In CLTL, the values 1 and 2 are abstracted
away and only the constraint X−1x < x is retained. This constraint spans two consecutive
positions, referred to as a frame of length 2 in [12]. However in RCLTL, a constraint of the
form r∗b

−1
x < ϵ −1x can span unboundedly many positions, so the concept of frames of

fixed size cannot be used. We introduce memoirs to handle this. In turn, many properties of
frames are not true for memoirs, so new techniques have to be introduced to handle them.
Details of such differences with previous work will be highlighted at appropriate sections of
this paper.

Related works. The satisfiability of the description logic ALCFP(Zc) has been studied
in [17] and has been proven to be EXPTIME-complete. The logic ALCFP(Zc) subsumes
CLTL (Z, <,=). In [11], the authors prove that the satisfiability of CTL∗ with constraints
over (Z, <,=) is 2EXPTIME-complete. Again clearly, CTL∗ with constraints is an extension
for CLTL (Z, <,=). In both these papers, the tree automata technique used is based on
identifying repeating patterns over regular trees. The chapter “Functional Specification of
Hardware via Temporal Logic” in [13] introduces an extension of LTL with regular expressions
and a suffix implication operator.1 This results in a temporal logic that extends LTL and is
as expressive as ω-regular languages. Note however that, unlike in [13] where the authors
extend the set of temporal operators, in our paper we extend the atomic formulas with regular
expressions. Also note that the variables in our work range over infinite domains whereas
[13] only deals with Boolean propositions. Atomic formulas are extended also in LTL with
freeze operators [9] and temporal logic of repeating values [7, 19]. Like our extension, the
atomic formulas there can also compare current values with values in other positions that are
unboundedly far away. However, in our extension the other position is chosen by a pattern
of letters from a finite alphabet, whereas the atomic formulas in LTL with freeze operators
and temporal logic of repeating values can choose other positions based on the values from
the infinite domain. For example, in LTL with freeze operators, an atomic formula can check
that there is some position in the past where the value is equal to the value at the current
position. The negation of this formula checks the current value with all the previous values.
In the logic we propose here, only two positions can be compared. This feature of LTL with
freeze operators is quite powerful and satisfiability is undecidable in general, while the logic
we propose here is decidable.

1 We thank an anonymous reviewer for pointing this work to us.
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Temporal Stream Logic (TSL) [15, 14] extends LTL with updates and predicates over
arbitrary function terms. TSL is designed to track how variable values evolve over time. The
satisfiability problem for TSL is not decidable but approaches to be used in practice have been
proposed. Constraint LTL over clocks [2] is a variant of CLTL and many other time-domain
extensions of LTL (such as Metric Interval Temporal Logic and Quantified Temporal Logic)
can be translated to CLTL over clocks. The satisfiability problem for this logic has been
shown to be decidable, by reducing it to a decidable Satisfiability Modulo Theory problem.
Presburger LTL is an extension of LTL where atomic formulas are quantifier-free Presburger
formulas. The satisfiability problem for this logic is undecidable in general. Many decidable
fragments have been proposed [8, 6, 4]. The survey [10] mentions many other logics that are
extended at the atomic level to deal with concrete domains.

2 Preliminaries

Let Z be the set of integers and N be the set of non-negative integers. For integers n1, n2,
we denote by [n1, n2] the set {n ∈ Z | n1 ≤ n ≤ n2}. We recall the definitions of constraint
systems and Constraint Linear Temporal Logic (CLTL) from [12]. A constraint system D is
of the form (D,R1, . . . , Rn, I), where D is a non-empty set called the domain. Each Ri is a
predicate symbol of arity ai, with I(Ri) ⊆ Dai being its interpretation.

We introduce an extension of Constraint LTL (CLTL) to let atomic formulas access
positions in the past that are unboundedly far away. Let V be a finite set of variables, Σ be
a finite alphabet and let E be a finite set of regular expressions over Σ. A term t over V and
E is of the form e −1v, where v ∈ V , e ∈ E2. Let TV

E denote the set of all terms over V and
E. A constraint c is of the form R(t1, . . . , tn), where R is a predicate symbol of arity n and
t1, . . . , tn are terms. The syntax of Constraint LTL with Remote access (RCLTL) is given by
the following grammar, where c is a constraint as defined above.

ϕ ::= c | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

Let FD denote the set of all mappings of the form f : V → D. The semantics of RCLTL
is defined with respect to infinite sequences over Σ × FD (also called concrete models in the
following). Given a concrete model σ, a regular expression e ∈ E and positions j, i ∈ N,
we write σ[j, i] ∈ L(e)R to denote that the infix of σ between the positions j and i (both j

and i inclusive), projected to Σ is in the reverse of the language of e. We say that j is the
minimal match for e at i if σ[j, i] ∈ L(e)R and for every j < j′ ≤ i, σ[j′, i] /∈ L(e)R (the word
“minimal” refers to minimality with respect to the length of infixes ending at position i). In
other words, σ[j, i] belongs to L(e)R, but none of its suffixes belong to L(e)R. A regular
expression e ∈ E is said to be relevant at position i of a concrete model if there exists a
position j ≥ 0 that is the minimal match for e at i. A term t = e −1v is said to be relevant
at a position i if e is relevant at i. Given a position i and a term e −1v relevant at i, we
write d(i, e, v) (resp. mmp(i, e)) to denote the value fj(v) ∈ D (resp. j) such that j is the
minimal match for e at i. Intuitively, if we start at position i, go backwards and j is the first
position such that the infix σ[j, i] belongs to L(e)R, then d(i, e, v) is the value assigned to v
at that position j and mmp(i, e) = j, the minimal matching position.

2 This choice of notation is inspired by a convention of LTL syntax, where Oϕ is intended to mean next ϕ.
We write O−1 to mean past and insert e inside the O to indicate that we want the path between the
current and past positions to match e, similar to the syntax used in dynamic logics.
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41:4 Constraint LTL with Remote Access

Given v1, . . . , vn ∈ V and e1, . . . , en ∈ E, the ith position of a concrete model σ satis-
fies the constraint R( e1

−1v1, . . . , en
−1vn) (written as σ, i |= R( e1

−1v1, . . . , en
−1vn)) if

e1, . . . , en are all relevant at i and (d(i, e1, v1), . . . , d(i, en, vn)) ∈ I(R). Intuitively, the terms
e1

−1v1, . . . , en
−1vn refer to variables at previous positions and R( e1

−1v1, . . . , en
−1vn)

imposes a constraint on the values of those variables at those positions. Note that σ, i |=
e −1v = e −1v iff e is relevant at i. E.g., the expression b+a is relevant at position i if “b” is
the letter at i, j < i is the last position before i that has “a” and all positions between j and
i carry “b”; j is the minimal matching position.

The semantics is extended to rest of the RCLTL syntax similar to the usual propositional
LTL. We use the standard abbreviations Fϕ (resp. Gϕ) to mean that ϕ is true at some
position (resp. all positions) in the future. The formula XG( b∗a

−1
v < a∗b

−1
v) will be true

if in all positions other than the first, the value of v at the last position with an “a” is less
than the value at the last position with “b”. In the rest of this paper we will only consider
constraint systems of the form (D,<,=) where D is an infinite set, = is the equality relation
and < is a linear order. Some proofs and technical details in the subsequent sections are
moved to the appendix due to space constraints.

3 Symbolic Models

CLTL (introduced in [12]) can be considered as a restriction of RCLTL where the expressions
in E are restricted to be of the form Σn for some n ∈ N. The maximum such n used in a
given CLTL formula is called the X-length of the formula. The models of CLTL are infinite
sequences over an infinite alphabet. The notion of frames was introduced in [12] in order
to abstract the infinite alphabet to a finite one. A frame for a given CLTL formula, as
introduced in [12], is the set of all constraints satisfied by valuations along some infix of
some concrete model, the length of the infix being bound by the X-length of the formula.
The spans of these frames are equal to the X-length of the CLTL formula. In a fundamental
deviation from [12], we introduce here the notion of a memoir, which can span positions that
are unboundedly far away from one another.

▶ Definition 1 (Memoirs and symbolic models). Let ϕ be an RCLTL formula with set of
variables V and expressions E. A memoir is a total pre-order3 ≤ on a subset of terms over
V and E. A symbolic model ρ is an infinite sequence in (Σ × M )ω, where M is the set of
all memoirs.

Given a concrete model σ, we associate with it a symbolic model µ(σ) as follows: µ(σ) is an
infinite sequence such that for every i ≥ 0, e1, e2 ∈ E and v1, v2 ∈ V , the ith memoir has the
relation e1

−1v1 ≤i e2
−1v2 iff e1 and e2 are relevant at position i and d(i, e1, v1) ≤ d(i, e2, v2).

Intuitively, the memoir at position i of µ(σ) stores in its memory the relations between all
variables in those past positions which can be accessed from position i through one of the
given regular expressions.

For a symbolic model ρ, let ≤i be the memoir at position i. We denote by <i and ≡i

the strict order and equivalence relation induced by ≤i : t1 <i t2 iff t1 ≤i t2 and t2 ̸≤i t1,
and t1 ≡i t2 iff t1 ≤i t2 and t2 ≤i t1. We define symbolic semantics |=s, to interpret RCLTL
formulas on symbolic models. Minimal matches in symbolic models are just like those in
concrete models: we say that j is the minimal match for expression e at position i of a
symbolic model ρ if ρ[j, i] ∈ L(e)R and for every j < j′ ≤ i, ρ[j′, i] /∈ L(e)R. The definitions

3 a reflexive and transitive relation such that for all a, b, either a ≤ b or b ≤ a.
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of the relevance of regular expressions and terms are the same for both symbolic and concrete
models. The ith position of ρ symbolically satisfies the constraint t1 < t2 (where t1, t2 are
terms), if t1, t2 are relevant at i and t1 <i t2 holds. Formally, we write it as ρ, i |=s t1 < t2.
The case of the equality constraint is similar. The symbolic satisfaction relation |=s is
extended to all RCLTL formulas by induction on the structure of the formula as done for
propositional LTL. Following is the RCLTL counterpart of a similar result [12, Lemma 3.1]
for CLTL. The proof is by a routine induction on the structure of formulas.

▶ Lemma 2. Let ϕ be an RCLTL(D) formula. Let σ be a concrete model and ρ = µ(σ).
Then σ, 0 |= ϕ iff ρ, 0 |=s ϕ.

For every concrete model, there is an associated symbolic model. However, there may be
symbolic models that are not associated with any concrete models – symbolic models are
intended to be abstractions of concrete models, but some combination of abstract symbols
may not make sense. For example, the symbolic model ρ may have memoirs that are
irrelevant: the memoir at some position i may have the relation e1

−1v1 ≤i e2
−1v2, but

there may not be any position that is a match for e1 at i. We say that a symbolic model ρ
admits a concrete model if there exists a concrete model σ such that ρ = µ(σ).

▶ Definition 3. Satisfiability Problem for RCLTL: Given an RCLTL(D) formula ϕ, the
satisfiability problem is to check if there exists a concrete model that satisfies ϕ

From Lemma 2, we have the following corollary.

▶ Corollary 4 ([12, Corollary 4.1]). An RCLTL(D) formula ϕ is satisfiable iff there exists a
symbolic model ρ such that ρ, 0 |=s ϕ and ρ admits a concrete model.

To check whether ρ, i |=s t1 < t2 we only need to check ρ(i), the ith memoir in ρ, unlike
the RCLTL semantics, where we may need to check other positions also. In this sense, the
symbolic semantics lets us treat RCLTL formulas as if they are formulas in propositional LTL
and employ techniques that have been developed for propositional LTL. To get decidability
of RCLTL satisfiability, we additionally need to check if symbolic models admit concrete
ones. For this, as mentioned before, we first need to check that memoirs in symbolic models
are relevant.

Another reason why symbolic models may not admit concrete ones is that the symbolic
model may be inconsistent: one memoir may say that the value of variable x at position i

should be less than the value of y at position j, but another memoir may say the opposite
(i.e., value of x at i should be greater than the value of y at j). To explain how we tackle this,
we use a graph associated with symbolic models, as done in [12]. For a symbolic model ρ,
we define a corresponding {<,=}-labelled, directed graph Gρ over the set of vertices V × N.
There is a ∼-labelled edge (for ∼∈ {<,=}) from (x, i) to (y, j) (written as (x, i) ∼−→ (y, j))
if and only if there exists k ≥ i, j and there exist e1, e2 ∈ E such that i is the minimal match
for e1 at k, j is the minimal match for e2 at k and the constraint e1

−1x ∼k e2
−1y holds.

Intuitively, the total pre-order at position k imposes the constraint ∼ between the variable
x at position i and the variable y at position j. It follows that if there is an =-labelled
edge from (x, i) to (y, j) then there must also be an =-labelled edge from (y, j) to (x, i). We
define a strict edge to be an edge labelled with < and a directed path is said to be strict if it
contains at least one strict edge.

We say that Gρ has a strict cycle if it has a directed cycle containing at least one edge
labelled with <. Strict cycles indicate the presence of inconsistencies in symbolic models,
as explained before. If Gρ is the graph associated with a symbolic model ρ, then we need
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41:6 Constraint LTL with Remote Access

to check if between every pair of vertices in Gρ there is at most one directed edge labelled
with <, and that there are no strict cycles. Notice here that given a concrete model σ, Gµ(σ)
does not have any strict cycle. Depending on the letters from Σ present along the positions
of a symbolic model, the minimal match for some expression e at some position i can be
unboundedly far behind i. So the presence/absence of an edge between a pair of vertices
in Gρ can potentially depend on memoirs that are unboundedly far in the future. This is a
deviation from [12], whose frames can only span positions bounded by the X-length of the
given formula (so consistency checks only need to be performed at bounded lengths).

Given a symbolic model ρ, it is easy to see that ρ admits a concrete model over a domain
D iff there exists a labelling l : V × N → D of the vertices of Gρ such that the labelling
respects the edges in Gρ. In other words, for all x, y ∈ V , i, j ∈ N, l((x, i)) = l((y, j)) if
there exists a directed path from (x, i) to (y, j) consisting of only =-labelled edges and
l((x, i)) < l((y, j)) if there exists a strict directed path from (x, i) to (y, j). We call such a
labelling of vertices in Gρ, an edge-respecting labelling.

We say a domain D is dense (with respect to the ordering <) if for each d, d′ ∈ D with
d < d′, there exists d′′ ∈ D, such that d < d′′ < d′. We say D is open if for each d ∈ D, there
exist d′, d′′ ∈ D such that d′ < d < d′′. (R, <,=) and (Q, <,=) are examples of constraint
systems where the domains are dense and open. We say a symbolic model is consistent if
all its memoirs are relevant and Gρ does not have strict cycles. Using the proof ideas from
Lemma 5.3 and Lemma 6.1 of [12], we get the following lemma:

▶ Lemma 5 ([12, Lemma 5.3, Lemma 6.1]). Let D be a constraint system of the form (D,<,=)
where D is infinite, < is a linear order and D is dense and open with respect to <. Then all
consistent symbolic models admit concrete models over D.

In the next section we will give an MSO characterization of symbolic models with all memoirs
relevant and whose associated graphs Gρ have no strict cycles. This will help us in deciding
the satisfiability problem for RCLTL(D) over dense and open domains.

4 A general decidability result

In this section, we give a decision procedure for the satisfiability problem for RCLTL over
domains that are dense and open. Corollary 4 suggests a way to address the satisfiability
problem for RCLTL. Given an RCLTL formula ϕ, we know that we can construct a Büchi
automaton that recognizes the set of all symbolic models over Σ × M which symbolically
satisfy ϕ [21]. If we could build two Büchi automata, one that recognizes the set of symbolic
models with all memoirs relevant and with no strict cycle in the associated graph, and
one that recognizes symbolic models that admit a concrete model, then we can intersect
these three automata and check the resulting automaton for non-emptiness to decide the
satisfiability for ϕ.

There are constraint systems for which the set of symbolic models that admit concrete
models is not ω-regular. However, as we saw in Lemma 5, for constraint systems whose
domains are dense and open, every consistent symbolic model admits a concrete model, hence
constructing an automaton that accepts the set of consistent symbolic models suffices.

We now give a characterization of consistent symbolic models in the following lemma:

▶ Lemma 6. Let Lsymb denote the set of all consistent symbolic models ρ over (Σ × M )ω.
Then, Lsymb is ω-regular.
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Proof. We prove that Lsymb is ω-regular by constructing an MSO formula over the alphabet
Σ × M defining Lsymb. We shall define two MSO formulas: ψrel whose language is the set of
all symbolic models with all memoirs relevant and ψstrcycle whose language is the set of all
symbolic models ρ whose associated graphs Gρ have no strict cycles.

We first define the unary predicate symbols in the MSO vocabulary and their semantics.
Let the set of predicate symbols be P = {Pa | a ∈ Σ}∪{P e1

−1vj∼ e2
−1vk

| e1, e2 ∈ E, vj , vk ∈
V ,∼∈ {<,=}}. Given a symbolic model ρ and a position i, ρ, i |= i ∈ Pa iff ρ(i) is of the
form (a,≤i) where ≤i is any memoir in M . We use P e1

−1vj≤ e2
−1vk

as a shorthand for
P e1

−1vj< e2
−1vk

∨ P e1
−1vj= e2

−1vk
. We also say that an edge of Gρ is labelled with ≤ if it

is labelled either with < or =. We have ρ, i |= i ∈ P e1
−1vj∼ e2

−1vk
iff the memoir at ρ(i)

induces the relation e1
−1vj ∼ e2

−1vk.
We now define a few MSO formulas that will aid us in constructing the formula ψrel.
Let matchese(pos,match) be an MSO formula which evaluates to true iff the position

match is a match for e at pos, in other words, if ρ[pos,match]R ∈ L(e). Such a formula can
be easily constructed using standard techniques for translating automata to MSO formulas.

For a regular expression e ∈ E and two positions pos and match, the following formula
minmatche(pos,match) is true iff the position match is a minimal match for e at pos.

minmatche(pos,match) ≡matchese(pos,match) ∧
∀x((match < x ≤ pos) =⇒ ¬(matchese(pos, x)))

Given a regular expression e ∈ E, and given a position pos ∈ N, we have the following
formula rele(pos) that is true iff e is relevant at pos.

rele(pos) ≡ ∃ match(minmatche(pos,match))

We now define formula ψrel.

ψrel = ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5

where ψ1 denotes that every position contains exactly one letter.

ψ1 ≡ ∀x(
∨

a∈Σ
(x ∈ Pa) ∧

∧
ai,aj∈Σ,i̸=j

¬(x ∈ Pai
∧ x ∈ Paj

))

The formula ψ2 says that given a pair of terms t1, t2 at a position x, if the predicate Pt1=t2

holds at x, then the predicate Pt2=t1 must also hold at x.

ψ2 ≡ ∀x
∧

e1,e2∈E

∧
vi,vj∈V

((x ∈ P e1
−1vj= e2

−1vk
) ⇔ (x ∈ P e2

−1vk= e1
−1vj

))

The formula ψ3 says that given a pair of terms t1, t2 at a position x, at most one predicate
among Pt1<t2 , Pt1=t2 and Pt2<t1 comparing this pair of terms holds at x.

ψ3 ≡ ∀x
∧

e1,e2∈E

∧
vi,vj∈V

((¬(x ∈ P e1
−1vj< e2

−1vk
∧ x ∈ P e1

−1vj= e2
−1vk

))

∧ (¬(x ∈ P e2
−1vk< e1

−1vj
∧ x ∈ P e1

−1vj< e2
−1vk

)))

The formula ψ4 says that if e1 and e2 are relevant expressions at a position x, then the
memoir at x must compare every term e1

−1vi with every term e2
−1vj .

ψ4 ≡ ∀x(
∧

e1,e2∈E

( (rele1(x) ∧ rele2(x)) =⇒

∧
vi,vj∈V

((x ∈ P e1
−1vi≤ e2

−1vj
) ∨ (x ∈ P e2

−1vj≤ e1
−1vi

))))
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41:8 Constraint LTL with Remote Access

The formula ψ5 says that at every position x, the memoir at x compares only terms that
are relevant at x.

ψ5 ≡ ∀x(
∧

e1,e2∈E

(
∨

vi,vj∈V
((x ∈ P e1

−1vi≤ e2
−1vj

) ∨ (x ∈ P e2
−1vj≤ e1

−1vi
)) =⇒

(rele1(x) ∧ rele2(x))))

It is now easy to verify that the formula ψrel is satisfied by exactly those symbolic models,
all of whose memoirs are relevant.

We now define a few MSO formulas that will aid us in constructing the formula ψstrcycle.
Given ∼∈ {≤,=}, the formula ∼i,j (x, y) is true iff there is a ∼-labelled edge from (vi, x)

to (vj , y) in Gρ. It is defined as:

∼i,j(x, y) ≡ ∃z( (z ≥ x) ∧ (z ≥ y) ∧∨
e1,e2∈E

z ∈ P e1
−1vi∼ e2

−1vj
∧ minmatche1(z, x) ∧ minmatche2(z, y))

Let l = |V |. Given ∼∈ {≤,=}, we define the following formulas:

closed∼
k (y, Y1, . . . , Yl) ≡

∧
p,p′∈{1,...,l}

∀z∀z′((z ∈ Yp∧ ∼p,p′ (z, z′)) =⇒ z′ ∈ Yp′) ∧

∀z(
∧

k′∈{1,...,l}

(∼k,k′ (y, z) =⇒ z ∈ Yk′))

path∼
i,j(x, y) ≡ ∀Y1 . . . ∀Yl(closed∼

i (x, Y1, . . . , Yl) =⇒ y ∈ Yj)

The intention of the formula closed∼
k (y, Y1, . . . , Yl) is the following: if there is a path

starting from variable vk at position y to some variable vj at some position z, then z must
belong to Yj . This can be proved by an induction on the length of the path in addition to
Knaster-Tarski theorem over the lattice of l-tuples of subsets of N.

We claim that the formula path∼
i,j(x, y) holds iff there is a directed path of non-zero

length from (vi, x) to (vj , y) in Gρ, all of whose edges are labelled with ∼. The details of the
proof can be found in section B of the appendix.

We define a new formula path<
i,j(x, y) which holds iff there is a strict directed path from

(vi, x) to (vj , y).

path<
i,j(x, y) ≡ path≤

i,j(x, y) ∧ ¬path=
i,j(x, y)

We now define the MSO formula ψstrcycle.

ψstrcycle ≡ ¬(path<
i,i(x, x))

Thus, we have a formula ψsymb ≡ ψrel ∧ ψstrcycle whose language is the set of all consistent
symbolic models. Hence, Lsymb = L(ψsymb). Now, by Büchi’s theorem [5], we know that
we can construct a Büchi automaton Asymb recognizing Lsymb, or in other words, Lsymb is
ω-regular. ◀

▶ Lemma 7. Let D = (D,<,=) be a constraint system such that D is dense and open. Let
ϕ be an RCLTL(D) formula. Then, the language L = {µ(σ) | σ |= ϕ} is ω-regular.
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Proof. Lemma 5 and Corollary 4 imply that L = Lsymb ∩ Lϕ
sat where Lϕ

sat is equal to the
set of symbolic models that symbolically satisfy ϕ. A straightforward adaptation of standard
automata-theoretic construction for propositional LTL [21] proves that Lϕ

sat is ω-regular.
Also, we know that Lsymb is ω-regular, as shown before. Since ω-regular languages are closed
under intersection, L is also ω-regular. ◀

▶ Theorem 8. The satisfiability problem for RCLTL(D) where D = (D,<,=) and D is a
dense and open domain, is decidable

Proof. Solving the satisfiability problem for RCLTL(D) amounts to checking if, given an
RCLTL(D) formula ϕ, L = {µ(σ) | σ |= ϕ} ≠ ∅. By Lemma 7, we know L is ω-regular. Hence,
it is possible to construct a Büchi automaton accepting L and check for its non-emptiness. ◀

5 Satisfiability over (Z, <, =)

In this section we consider the constraint system Z = (Z, <,=). Since Z is not dense,
Lemma 5 does not apply here. We solve the satisfiability problem for RCLTL over (Z, <,=)
by using an automata-theoretic technique, similar to the one used in [12] to solve the
satisfiability problem for CLTL over (Z, <,=). The idea is to define a Büchi automaton
which accepts a superset of the set of all symbolic models which admit a concrete model
with the property that all ultimately periodic words recognized by this automaton admit
concrete models.

We begin with a characterization of symbolic models that admit a concrete model over
Z. Let ρ be a consistent symbolic model. For a directed path p in Gρ, let slen(p) denote
the strict length of p, i.e. the number of strict edges in p if this number is finite, and ω

otherwise. For any two vertices u, v ∈ Gρ, define slen(u, v) to be the supremum of slen(p)
over directed paths p from u to v, if it exists, and ω otherwise. If there is no direct path
from u to v, slen(u, v) is 0.

▶ Lemma 9 ([12, Lemma 6.1]). A consistent symbolic model ρ admits a concrete model over
Z iff for all u, v ∈ Gρ, slen(u, v) < ω.

Next we would like to design finite state automata to detect whether there are vertices u, v
with slen(u, v) = ω. Finite state automata cannot remember paths of unbounded lengths, so
we look for bounded paths which can be repeated arbitrarily many times to get unbounded
slen. The central idea in [12] is to show that such repeatable bounded paths are guaranteed
to exist in ultimately periodic sequences. We borrow that idea here; but to implement that
idea here requires much work. We now introduce some notation, conditions and results to
formalize this.

Given a symbolic model ρ, and given a vertex (x, i) of Gρ, we define the “level” of vertex
(x, i) to be i and the “var” of vertex (x, i) to be x. A forward u− v (resp. backward u− v)
witness in Gρ is a sequence ν : N → V × N such that ν(0) = u (resp. v), for all i ≥ 0 there is
a strict path from ν(i) to ν(i+ 1) (resp. from ν(i+ 1) to ν(i)), level(ν(i+ 1)) > level(ν(i))
and for infinitely many i, there is a directed path from ν(i) to v (resp. from u to ν(i)). We
now give a condition CZ (similar to condition CZ in [12]) on a symbolic model ρ.

(CZ): There do not exist vertices u, v ∈ Gρ with either a forward or backward u − v

witness.
If ρ does not satisfy CZ, there exist vertices u and v with either a forward or a backward

u − v witness implying that slen(u, v) = ω. Figure 1 illustrates a forward u − v witness.
Hence, lemma 9 implies that ρ does not admit a concrete model over Z. We shall now see
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u

v : strict path

Figure 1 A forward u − v witness.

that if ρ is an ultimately periodic word, then CZ is both necessary and sufficient. We say a
symbilic model is ultimately periodic if it is of the form τ · δω for some finite words τ and δ

over Σ × M .
We use the following terminologies with respect to an ultimately periodic consistent

symbolic model ρ = τ · δω. A vertex in Gρ is said to be a τ -vertex if its level is at most |τ |.
The suffixes ρ[i,∞) and ρ[i+m|δ|,∞) are equal for every m ∈ N and i > |τ |. Accordingly,
we say the pair of vertices (x, i) and (x, i+m|δ|) are isomorphic for all i > |τ | and all m ∈ N
and denote it by (x, i) ∼= (x, i+m|δ|). With slight abuse of notation, we also say that the
positions i and i+m|δ| are isomorphic. The set of isomorphism classes ∼=0,∼=1, · · · ,∼=|δ|−1 is
a partition of [|τ |+1,∞) such that for all m ∈ N and for all j ∈ [0, |δ|−1], any position of the
form |τ | +m|δ| + j is in the isomorphism class ∼=j . A non-τ -vertex v in Gρ is said to be in the
isomorphism class ∼=j if level(v) ∈ ∼=j . An edge from or to a τ -vertex is said to be a long jump.
An edge between non-τ -vertices is said to be a hop. It is a strict hop if it is labelled by <. A
path is said to be a hopping path if it does not contain any long jumps. A forward hopping
map of n traversals is a sequence µfh : [0, n] → V × N such that for every i ∈ [0, n − 1],
there is a hopping path from µfh(i) to µfh(i+ 1) and level(µfh(i+ 1)) > level(µfh(i)). The
rank of a forward hopping map µfh is the number of indices i such that there is a strict
path from µfh(i) to µfh(i+ 1). The existence of one strict path from µfh(i) to µfh(i+ 1)
ensures that all paths from µfh(i) to µfh(i+ 1) are strict – if there was a strict path and a
non-strict path from µfh(i) to µfh(i+ 1), combining them would result in a strict cycle from
µfh(i) to itself, contradicting the consistency of Gρ. From a forward hopping map µfh of n
traversals, we can obtain a path by concatenating a sequence of paths π1, . . . πn, where every
πi is a hopping path from µfh(i− 1) to µfh(i). We call paths constructed this way forward
hopping paths. The rank of a forward hopping path πfh is the maximum over the ranks of
all forward hopping maps from which πfh can be constructed. Similarly we have the notions
of backward hopping maps µbh and backward hopping paths πbh. Given two vertices u, v
in Gρ and a path p from u to v, we define the furthermost vertex fmv(p) to be the vertex
w along p such that for all vertices x in p, level(x) ≤ level(w) (if there are multiple such
occurrences of w, choose the last such occurrence along p). The portion of the path p from u

to fmv(p) is said to be the forward portion and the rest is said to be the backward portion.
Given any regular expression e ∈ E, let Ae denote the minimal DFA that recognizes L(e)

and let ne denote the number of states in Ae. Now, given a symbolic model ρ and a pair of
positions i, j with j ≤ i, checking if j is a minimal match for e at i is equivalent to checking if
the run of Ae on ρ[j, i]R is accepting and that Ae does not accept any strict prefix of ρ[j, i]R.

The following claim states that a hop cannot be too long. Intuitively, a hop is between
two non-τ vertices. The sequence between these two vertices consists of copies of δ and is a
minimal match for some regular expression. If there are too many copies of δ, some copies
can be removed to get a shorter match for the regular expression.

▷ Claim 10. Suppose ρ = τ · δω is an ultimately periodic consistent symbolic model and
e ∈ E is a regular expression. For all positions i > |τ |, if there exists a match j for e at i
such that j > |τ |, then i− mmp(i, e) ≤ 2ne|δ|.
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Non-strict directed cycles in a path do not contribute to its slen. So, henceforth when
we refer to a path, we mean path without non-strict cycles.

▷ Claim 11. Suppose ρ = τ · δω is an ultimately periodic consistent symbolic model and
there are vertices u, v with slen(u, v) = ω. For any n ∈ N, there is a path from u to v

containing either a forward hopping path in its forward portion starting at a vertex whose
level is greater than level(u) and level(v), or a backward hopping path in its backward portion
starting at a vertex whose level is greater than level(u) and level(v), with the rank of the
forward/backward hopping path being at least n.

Proof. The number of long jumps along any u− v path is ≤ 2|V ||τ |, because every τ -vertex
can be visited at most once along a path (since Gρ has no strict cycles). If the condition
in the claim is not satisfied, then there is a position beyond which strict paths cannot go,
contradicting the hypothesis that slen(u, v) = ω. ◁

▶ Definition 12. For an ultimately periodic consistent symbolic model ρ = τ · δω, let
arl (intended to be short for automata run repeat length) be the number n!|δ|, where n =
maxe∈E ne.

Claim 10 proves that hops are short. The next claim proves that long jumps to non-τ
vertices can be unboundedly long. Intuitively, such a long jump includes many copies of δ.
Some copy may be repeated many times to make the jump longer.

▷ Claim 13. Suppose ρ = τ · δω is an ultimately periodic consistent symbolic model and Gρ

has vertices w1, w2 such that w1 ∼= w2, level(w1) ≥ |τ | + arl and level(w2) − level(w1) is a
multiple of arl. If there is a long jump from w1 to a τ -vertex y, then there is also a long
jump from w2 to y. Similarly, if there is a long jump from some τ -vertex z to w2 then there
is also a long jump from z to w1.

Proof. We prove the first case; the proof of the second case is symmetric. Also, we prove for
the case where level(w2) − level(w1) = arl. If level(w2) − level(w1) is any multiple of arl, we
can choose intermediary vertices between w1 and w2 with the difference of levels between
every pair of consecutive vertices as arl and applying the result to every pair of intermediary
vertices gives us the required result for w1 and w2.

Since there is an edge from w1 to y, there is a position k1 > max(level(w1), level(y)) and
regular expressions e1, e2 ∈ E such that mmp(k1, e1) = level(w1) and mmp(k1, e2) = level(y).

Consider the position k2 = k1 + arl. Positions k1 and k2 are isomorphic. There-
fore, mmp(k2, e1) = level(w2). We know e1

−1var(w1) ∼k1 e2
−1var(y), where ∼∈ {=, <}.

Also var(w1) = var(w2) and ρ(k1) = ρ(k2). This gives us e1
−1var(w2) ∼k2 e2

−1var(y).
So, in order to prove that there is an edge from w2 to y, it is sufficient to prove that
mmp(k2, e2) = level(y).

Now consider a run of the DFA Ae2 on the word ρ[0, k2]R. There must exist a state s
which is visited at at least 2 isomorphic positions along the run. Consider the first such
state s visited along the run, let j1 and j2 be the first two isomorphic positions at which s is
visited. In between positions j1 and j2, every state of the automaton could have been visited
at most |δ| times. Therefore, j1 − j2 = m|δ| where m ≤ ne2 .

By Claim 10, either mmp(k2, e2) ≤ |τ | or mmp(k2, e2) ≥ k2 − arl. If mmp(k2, e2) ≥ k2 −
arl, then due to isomorphism, mmp(k1, e2) ≥ k1 − arl, which means that mmp(k1, e2) > |τ |.
But this contradicts our assumption that mmp(k1, e2) = level(y) as y is a τ -vertex. Therefore,
mmp(k2, e2) ≤ |τ |.
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Let j′
1 = j1 − arl. Consider the run of Ae2 on the word ρ[0, k1]R. This run visits state

s at position j′
1 (this is because, we start from the initial state at k1 and visit the same

sequence of states that the run of the word ρ[0, k2]R visited between k2 and j1).
Along the run of ρ[0, k2]R, the sequence of states visited between j1 and j2 keeps repeating

itself after position j2 (till the first non-τ -vertex) and thus must eventually visit the state s
at position j′

1. This is because, j1 − j′
1 = n!|δ| which is a multiple of j1 − j2 = m|δ| (since

m ≤ ne2 ≤ n, m divides n!).
We now claim that the first final state visited by the run of ρ[0, k2]R must be at level(y).

This is because the sequence of states visited beyond position j′
1 along the runs of the words

ρ[0, k1]R and ρ[0, k2]R is the same and therefore, we visit a final state at level(y) and a visit
to a final state before position level(y) would indicate a shorter minimal match for e2 at
position k1 contradicting our assumption. Therefore, there is a long jump from w2 to y. ◁

Next we prove that satisfying CZ is necessary and sufficient for ultimately periodic
consistent symbolic models to admit concrete models. Compared to [12, Lemma 6.2], this
proof is more involved due to the presence of long jumps, which are not there in [12].

▶ Lemma 14 ([12, Lemma 6.2]). Let ρ = τ · δω be an ultimately periodic consistent symbolic
model. Then ρ admits a concrete model over Z iff ρ satisfies the condition CZ.

Proof. (⇒) If ρ admits a concrete model over Z then for all u, v ∈ Gρ, slen(u, v) < ω.
Therefore, condition CZ is clearly satisfied.

(⇐) Let there exist vertices u, v ∈ Gρ such that slen(u, v) = ω. Let l = |V |. By Claim 11,
we can find a path p from u to v such that there is a forward hopping path πfh of rank at
least (2l2|δ|2 + 3) · arl starting at a vertex whose level is greater than level(u) and level(v) in
the forward portion of p, or a similar backward hopping path. We consider the first case
and prove that Condition CZ is violated, leading to a contradiction. The argument for the
second case is symmetric.

Let µfh be a forward hopping map of rank (2l2|δ|2 + 3) · arl from which πfh can be
constructed. Let strict vertices of µfh be those vertices µfh(i) such that the hopping path
from µfh(i) to µfh(i+ 1) (along πfh) is a strict hopping path. One level may contain at most
one strict vertex of µfh. So, µfh must contain strict vertices in at least (2l2|δ|2 + 3) · arl
distinct levels. Suppose imin and imax are the minimum and maximum among these levels.
Take the subgraph of Gρ induced by vertices in levels between imin and imax and divide
it into ⌊ imax−imin

arl ⌋ portions containing arl levels each and a last portion containing the
remaining levels (< arl). At least (2l2|δ|2 + 3) portions contain strict vertices of µfh.

We look at the forward hopping path after the first portion. Now we drop alternate
portions and from each of the remaining (l2|δ|2 + 1) portions, take one strict vertex so that
the difference in levels between picked vertices is at least arl. Among these vertices, we can
find a set of at least l|δ| + 1 vertices, all belonging to the same isomorphism class (since there
are l|δ| isomorphism classes). Let the vertices in this set be w1, w2, · · ·wl|δ|+1 (in increasing
order of their levels). Note that there is a strict path from wi to wi+1 for all i ∈ [1, l|δ|]. Let
us now look at the portion of the path from wl|δ|+1 to v. There can be two possible cases:
Case a. The portion of the path from wl|δ|+1 to the first vertex occurring after wl|δ|+1
along the path whose level is less than level(w1), is a hopping path.

We know by Claim 10 that the difference in levels between the end-points of a hop must
be less than arl. Hence, along this hopping path, a set of vertices w′

1, w
′
2 · · ·w′

l|δ|+1 must be
visited such that |level(wi) − level(w′

i)| < arl for all i ∈ [1, l|δ| + 1]. Among these l|δ| + 1
vertices, at least two must be isomorphic. Let us say (w′

i, w
′
j) is such a pair of isomorphic

vertices along this hopping path with i < j (see the picture on the left side of Fig. 2).
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w1 w2 wi wj wl|δ|+1

w′
1 w′

2 w′
i

w′
j w′

l

m|δ|

n|δ|

u wi wj wk

v

w′
i

w′
j w′

k

mn|δ|

mn|δ|

Figure 2 Illustration for case a of the proof of Lemma 14.

Now, let |level(wj)− level(wi)| = m|δ| and |level(w′
j)− level(w′

i)| = n|δ| for some m,n ∈ N.
Note that |level(wi)− level(w′

i)| and |level(wj)− level(w′
j)| need not be equal. But since

w′
i

∼= w′
j and wi

∼= wj , it is possible to pump the portion of the path from w′
i to w′

j m times
and the portion of the path from wi to wj n times, resulting in a forward path from u to
some vertex wk passing through wi and in a backward path from v to some vertex w′

k passing
through w′

i such that w′
i

∼= w′
k, wi

∼= wk and |level(wi)− level(w′
i)| = |level(wk)− level(w′

k)|.
This is illustrated in the picture on the right side of Fig. 2. Since there is a directed path
from wi to w′

i that does not visit any τ -vertex, there must also be a directed path from wk to
w′

k (a path isomorphic to that from wi to w′
i). Note that the portion of the path from wi to

wk along p is strict. It is therefore possible to pump the portion of the forward and backward
paths from wi to wk and respectively from w′

i to w′
k infinitely often, to obtain a forward

u− v witness. This results in a violation of condition CZ, giving rise to a contradiction.

Case b. In the portion of the path from wl|δ|+1 to v, before a vertex with level less than
level(w1) is visited, there is a long jump.

Let the first long jump along the portion of the path from wl|δ|+1 to v be from a
vertex z to a τ -vertex y. Figure 3 illustrates this. Consider a vertex wl|δ|+2 isomorphic to
wl|δ|+1 such that (level(wl|δ|+2)− level(wl|δ|+1)) = (level(wl|δ|+1)− level(wl|δ|)) · arl. Since
(level(wl|δ|+2)− level(wl|δ|+1)) is a multiple of (level(wl|δ|+1)− level(wl|δ|)) and since wl|δ|+1 ∼=
wl|δ|+2, there must be a strict path from wl|δ|+1 to wl|δ|+2 as well. We now “mimic” the

u w1 w2 wl|δ| wl|δ|+1 wl|δ|+2

v y z z′

arl times

hopping path
mimicked hopping path

Figure 3 Illustration for case b of the proof of Lemma 14.

path from wl|δ|+1 to z by taking an isomorphic copy of that path from wl|δ|+2. We have
(level(wl|δ|+2)− level(wl|δ|+1)) = (level(wl|δ|+1)− level(wl|δ|)) ·arl and the portion of the path
from wl|δ|+1 to z consists only of hops. So we basically construct a path of hops from wl|δ|+2
such that the level of every vertex along that path is exactly (level(wl|δ|+1)− level(wl|δ|)) · arl
more than the level of the corresponding vertex in the path from wl|δ|+1 to z. This means that
corresponding to position z is the position z′ in this new path such that (level(z′)− level(z)) =
(level(wl|δ|+1)− level(wl|δ|))·arl. By construction, we know that level(z) > |τ |+arl. Therefore
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by Claim 13, there exists a long jump from z′ to y, hence there exists a path from wl|δ|+2 to
v. We can now repeat this process by considering a vertex wl|δ|+3 which is isomorphic to
wl|δ|+2 and whose level is exactly (level(wl|δ|+1)− level(wl|δ|)) · arl more than that of wl|δ|+2.
Now, we mimic the path from wl|δ|+2 to z′ as before, to get a path from wl|δ|+3 to v. The
paths from wl|δ|+i to wl|δ|+i+1 is strict for all i ∈ N by construction. Thus, we repeat this
process infinitely many times to get a forward u− v witness with the sequence of vertices
wl|δ|+1, wl|δ|+2, wl|δ|+3 · · · being the infinitely many vertices along the witness such that there
is a directed path from each of them to v. This again leads to a violation of condition CZ,
contradicting our assumption.

In the case where there is a backward hopping path in the backward portion of p, a
symmetric argument gives us a backward u− v witness, violating condition CZ. ◀

We shall now define an MSO formula ψCZ whose language is the set of all symbolic models
that satisfy condition CZ. The formula succ(x, y, Z) holds iff the position y is a successor of
position x when restricted to the set Z.

succ(x, y, Z) ≡ ((x < y) ∧ (x ∈ Z) ∧ (y ∈ Z) ∧ ∀z((x < z < y) =⇒ ¬(z ∈ Z)))

The formula inf(Z) holds iff there are infinitely many positions in Z.

inf(Z) ≡ ∀y∃z((z > y) ∧ (z ∈ Z))

The formula sfp(Z,Z1, . . . , Zl) (strict forward path) holds iff Z =
⋃l

i=1 Zi and between
every pair of consecutive positions x, y in Z, if x ∈ Zp and y ∈ Zp′ , then there is a strict
directed path from the vertex (vp, x) to (vp′ , y) in Gρ. The formula sbp(Z,Z1, . . . , Zl) (strict
backward path) is symmetric.

sfp(Z, Z1, . . . , Zl) ≡∀z(
l∨

i=1

(z ∈ Zi) ⇔ z ∈ Z)∧

∀x∀y(
∧

p,p′∈[1,l]

((x ∈ Xp ∧ y ∈ Xp′ ∧ succ(x, y, Z)) =⇒ path<
p,p′ (x, y))

sbp(Z, Z1, . . . , Zl) ≡∀z(
l∨

i=1

(z ∈ Zi) ⇔ z ∈ Z)∧

∀x∀y(
∧

p,p′∈[1,l]

((x ∈ Xp ∧ y ∈ Xp′ ∧ succ(x, y, Z)) =⇒ path<
p′,p(y, x))

The formula ψa
CZ

(resp. ψb
CZ

) denotes that there do not exist vertices (vi, u) and (vj , v) in
Gρ such that there is a forward (resp. backward) (vi, u) − (vj , v) witness.

ψa
CZ

≡ ¬(∃u∃v
∨

i,j∈[1,l]

(∃X∃X1 . . . ∃Xl ∧ ((sfp(X,X1, . . . , Xl) ∧ inf(X) ∧ (u ∈ Xi)

∧ ∀y(
∧

k∈[1,l]

((y ∈ Xk) =⇒ path≤
k,j(y, v))))

ψb
CZ

≡ ¬(∃u∃v
∨

i,j∈[1,l]

(∃X∃X1 . . . ∃Xl((sbp(X,X1, . . . , Xl) ∧ inf(X) ∧ (v ∈ Xj)

∧ ∀y(
∧

k∈[1,l]

((y ∈ Xk) =⇒ path≤
i,k(u, y))))
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Now we define the formula ψCZ as ψCZ ≡ ψa
CZ

∨ ψb
CZ

. It is easy to verify that ψCZ is true
iff the word satisfies condition CZ.

As discussed earlier, the language Lsat
ϕ (described in Section 4) is ω-regular, hence by

Büchi’s theorem, we can define an MSO formula ψsat
ϕ whose language is Lsat

ϕ . ψsymb, which
we have defined in the previous section, is the MSO formula whose language is Lsymb. Now
let ϕ be the given RCLTL(Z) formula. We define the MSO formula ψZ

ϕ = ψsat
ϕ ∧ψsymb ∧ψCZ .

We now have the following lemma:

▶ Lemma 15. An RCLTL(Z) formula ϕ is satisfiable iff L(ψZ
ϕ ) is non-empty.

Proof. (⇒) Suppose ϕ is satisfiable. Let σ be a concrete model such that σ |= ϕ. Let
ρ = µ(σ). By Lemma 2, ρ ∈ L(ψsat

ϕ ). By definition, ρ is a consistent symbolic model, hence
ρ ∈ L(ψsymb). Also since ρ admits a concrete model over Z, by Lemma 9, ρ satisfies condition
CZ, hence ρ ∈ L(ψCZ). Thus ρ ∈ L(ψsat

ϕ ) ∩ L(ψsymb) ∩ L(ψCZ). Hence ρ ∈ L(ψZ
ϕ ).

(⇐) Suppose a word ρ satisfies the formula ψZ
ϕ . Then, there must exist an ultimately

periodic word ρ′ such that ρ′ satisfies ψZ
ϕ . Since ρ′ ∈ L(ψZ

ϕ ), ρ′ is a symbolic model
that symbolically satisfies ϕ and also satisfies condition CZ. By Lemma 14, ρ′ admits a
concrete model σ over Z. Also, since ρ′ |=s ϕ, by Lemma 2, σ |= ϕ. Thus, ϕ is RCLTL(Z)-
satisfiable. ◀

▶ Theorem 16. The satisfiability problem for RCLTL(Z) is decidable.

Proof. Given an RCLTL(Z) formula ϕ, we can effectively convert the MSO formula to
a Büchi automaton AZ

ϕ using the construction of Büchi’s theorem [5] and check it for
non-emptiness. ◀

6 Discussion and Future Work

In this paper, we consider an extension RCLTL of Constraint LTL to let atomic formulas
access positions that are unboundedly far away in the past. We prove that the satisfiability
problem for RCLTL is decidable over dense and open domains, and also over the integers
with linear order and equality. With some changes in the technical details of the proofs, we
think that the satisfiability problem can be proven to be decidable if we allow the atomic
formulas to access positions that are unboundedly far away in the future as well, and also
over the domain of natural numbers.

Based on the quantifier alternations in the MSO formulas that we have used, a rough
complexity upper bound of six exponentials may be worked out. Figuring out the exact
complexity of the satisfiability problem is left for future work.
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A Details of Section 3

Proof of Lemma 5. We shall prove the lemma by showing that the graph Gρ admits an
edge-respecting labelling l : V × N → D.

We assume an ordering ≺ on V and use it to define an ordering on the vertices of Gρ

given by (x, i) ≺ (y, j) iff i < j, or i = j and x ≺ y. We now give a procedure to label the
vertices.
1. Label the vertices in order of ≺. Begin by labelling the first, say (x, 0) by any element

d ∈ D.
2. In general, let X be the portion of the graph already labelled, and u be the next vertex

to be labelled. Let X=u denote the set of vertices in X to which there is an =-labelled
path from u; X<u denote the set of vertices in X from which there is a strict directed
path to u; and Xu< denote the set of vertices in X to which there is a strict directed
path from u. Let p = max{l(v) | v ∈ X<u} and q = min{l(w) | w ∈ Xu<} (we will use
the values of p and q only when the sets X<u and Xu< are, respectively, non-empty).
The values p and q are in D, which is dense and open. So there exist p′, q′, r ∈ D such
that p < p′, q′ < q and p < r < q. Now we can label u as follows:
(a) if X=u is non-empty, label u by l(v) for any v ∈ X=u

(b) if X<u is non-empty and both X=u and Xu< are empty, label u by p′.
(c) if Xu< is non-empty and both X=u and X<u are empty, label u by q′.
(d) if X<u and Xu< are non-empty and X=u is empty, label u by r.
(e) if X<u, Xu< and X=u, all three are empty, label u by any arbitrary element d of D.

We now aim to prove that the labelling l that we obtain for the vertices of the graph Gρ

is edge-respecting. In order to prove this, we state the following invariant and we shall prove
inductively that the invariant holds at the end of every iteration of the procedure.

Invariant: The labelling when restricted to the subgraph X is edge-respecting. Base
case: X is the graph with just one vertex (x, 0). In this case, any labelling for (x, 0) is
trivially edge-respecting.

Inductive Step: Let X be the portion of the graph labelled till now. By Induction
hypothesis, the labelling of all vertices in X is edge-respecting. Now, let u be the vertex
that is next labelled by the procedure. We wish to prove that the label l(u) is such that the
labelling l is an edge-respecting labelling of the graph X ∪ {u}.

To argue that l(u) is a valid edge-respecting label for u, suppose to the contrary, that
it was not. Then there must exist a vertex v in X ∪ {u} and a directed path from u to v
or from v to u which is inconsistent with the labels of u and v. First note that such a v
cannot be equal to u. This is because, we know that there is no strict cycle in the graph and
any path from u to itself must contain only =-labelled edges. The labelling of u is therefore,
trivially consistent with every path from u to itself. Thus, the vertex v must be from X.

Observe now that if u was labelled by clause 2b, 2c, 2d, or 2e, then l(u) must clearly be a
valid label. If, for instance, u was labelled by clause 2b, then it must be the case that there is
no directed path from u to any vertex in X. u could have been labelled inconsistently only if
there is a vertex v in X, such that there is a strict directed path from v to u but l(v) ≥ l(u).
But since u was labelled using clause 2b, l(u) = p′ > max{l(v) | v ∈ X<u}. Therefore l(u)
must be > l(v). Using a similar argument, it is possible to see that even if u was labelled by
clauses 2c, 2d, or 2e, l(u) must be a valid label.
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So it must be the case that u was labelled by clause 2a. u could have been labelled
inconsistently in the following three possible cases: there exists a strict directed path from u

to v but l(u) ≥ l(v) or there exists a strict directed path from v to u but l(u) ≤ l(v) or there
exists a directed path from u to v with all =-labelled edges but l(u) ̸= l(v). The first two
cases are symmetric (and hence arguing for the first and third cases would suffice).

The first case can arise only if there is another vertex w in X such that there is an
=-labelled path from w to u, and l(u) = l(w). This gives us a strict directed path from w to
v. This also means that l(w) ≥ l(v). But since l is an edge-respecting labelling for X, l(w)
must be < l(v) giving rise to a contradiction. Hence, this case is not possible.

The third case, again, could only have occurred if u was labelled by 2a. Thus, there is a
vertex w such that there is an =-labelled path from u to w and l(u) = l(w). This now means
that there is a directed path with all =-labelled edges from w to v (hence, also from v to
w) but with l(w) ̸= l(v). Again, since l is an edge-respecting labelling for X, l(w) must be
equal to l(v), giving rise to a contradiction.

This proves that the label l is an edge-respecting labelling for X ∪ {u}. Thus, the
invariant holds at the end of every iteration of the procedure. Hence the labelling l obtained
is indeed an edge-respecting labelling for the graph Gρ. Thus, every symbolic model ρ with
all memoirs relevant and whose associated graph Gρ has no strict cycle, admits a concrete
model over D. ◀

B Details of Section 4

▷ Claim 17. Consider the function f i
x : (2N)l → (2N)l given by: f i

x(X1, X2, . . . , Xl) =
(X ′

1, X
′
2, . . . , X

′
l) where X ′

k = {y |∼i,k (x, y)}∪{y | ∃k′,∃z ∈ Xk′ such that ∼k′,k (z, y)}∪Xk.
We claim that the function f i

x has a least fixed-point.

Proof. Consider the partial ordering ≤ on (2N)l, given by (X1, . . . , Xl) ≤ (Y1, . . . , Yl) if for
all i ∈ [1, l], Xi ⊆ Yi. Notice that all subsets of (2N)l have both a greatest lower bound
and a least upper bound and thus, ((2N)l

,≤) forms a complete lattice. Also note that
the function f i

x as defined above is non-decreasing, hence a monotonic function. Thus, by
Knaster-Tarski theorem [20], the set of fixed-points of (2N)l forms a complete lattice under
≤. This guarantees the existence of a least fixed-point of f i

x. ◁

▷ Claim 18. closed∼
i (x, Y1, . . . , Yl) holds iff (Y1, . . . , Yl) is a fixed-point of f i

x.

Proof. (Y1, . . . , Yl) is a fixed-point of f i
x

⇔ f i
x((Y1, . . . Yl)) = (Y1, . . . , Yl).

⇔ ∀k ∈ [1, l], Yk ∪ {y |∼i,k (x, y)} ∪ {y | ∃k′,∃z ∈ Xk′ such that ∼k′,k (z, y)} = Yk.
⇔ ∀k ∈ [1, l],∀z if ∃k′,∃x′ ∈ Yk′ such that if one of ∼k,k′ (x′, z) or ∼i,k

(x, z) holds, then, z ∈ Yk′ .
⇔ ∀x′∀z(x′ ∈ Yk′∧ ∼k′,k (x′, z) =⇒ z ∈ Yk) ∧ ∀z

∧
k∈[1,l](∼i,k (x, z) =⇒ z ∈ Yk)

⇔ closed∼
i (x, Y1, . . . , Yl) holds ◁

▷ Claim 19. If Xn
1 , . . . X

n
l is obtained upon n iterations of f i

x to (∅, . . . , ∅), and if z ∈ Xn
k ,

then there is a path of length ≤ n (but non-zero) from (vi, x) to (vk, z) in Gρ.

Proof. Let us prove this by induction on n. Take n = 1 as the base case. By definition,
f i

x((∅, . . . , ∅)) gives us the tuple (y1, . . . , yl) such that there is an edge from (vi, x) to (vj , yj)
for all j ∈ [1, l]. Clearly, the hypothesis holds in the base case.
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Inductive step: Suppose the inductive hypothesis is true for all m < n. Let Xn
1 , . . . X

n
l be

obtained upon n iterations of f i
x to (∅, . . . , ∅). Now by induction hypothesis, there is a path

of length ≤ (n− 1) from (vi, x) to (vk, z) for all k ∈ [1, l], for all z ∈ Xn−1
k . Now consider

z ∈ Xn
k \Xn−1

k . By definition, it must be the case that there exists k′ ∈ [1, l] and z′ ∈ Xn−1
k′

such that ∼k′,k (z′, z) holds. Now there is a path of length ≤ (n− 1) from (vi, x) to (vk′ , z′),
hence there is a path of length ≤ n from (vi, x) to (vk, z). ◁

▷ Claim 20. path∼
i,j(x, y) holds iff there is a path of non-zero length from (vi, x) to (vj , y).

Proof. (⇐) We prove this by an induction on the length of the path. For the base case,
assume there is a path of length 1, that is, ∼i,j (x, y) holds. Now by definition of the formula
closed∼

i (x, Y1, . . . , Yl), and since ∼i,j (x, y), for all Y1, . . . , Yl, if closed∼
i (x, Y1, . . . , Yl) holds

then y ∈ Yj must hold. Or in other words, the formula path∼
i,j(x, y) holds.

Inductive step: Let us assume that there is a path of length n from (vi, x) to (vj , y). This
means that there exists (vk, z) such that there is a path of length (n−1) from (vi, x) to (vk, z)
and such that ∼k,j (z, y) holds. By induction hypothesis, this means that, both, path∼

i,k(x, z)
and ∼k,j (z, y) hold. By the definitions of path∼

i,k(x, z) and closed∼
i (x, Y1, . . . , Yl), we get

that ∀Y1 . . . ∀Yl(closed∼
i (x, Y1, . . . , Yl) =⇒ y ∈ Yj) holds, or in other words, path∼

i,j(x, y)
holds.

(⇒) We assume that path∼
i,j(x, y) holds. This means, using Claim 18, that if (Y1, . . . , Yl)

is a fixed-point, then y ∈ Yj . In particular, if (Y1, . . . , Yl) is the least fixed-point, then
y ∈ Yj . We first prove that the least fixed-point of f i

x can be obtained by iterat-
ively applying f i

x on (∅, . . . , ∅) ≤ ω times. In order to prove this, it is sufficient to
prove that (f i

x)ω+1((∅, . . . , ∅)) = (f i
x)ω((∅, . . . , ∅)). By definition, (f i

x)ω+1((∅, . . . , ∅)) =
f i

x((f i
x)ω((∅, . . . , ∅))) and (f i

x)ω((∅, . . . , ∅)) =
⋃∞

n=0 (f i
x)n((∅, . . . , ∅)). Let us assume

(f i
x)ω((∅, . . . , ∅)) = (X1, . . . Xl) and let f i

x((X1, . . . Xl)) = (X ′
1, . . . X

′
l). Suppose for some

k ∈ [1, l], Xk ⊂ X ′
k. This means that there exists y ∈ X ′

k \Xk such that for some k′ ∈ [1, l]
and for some z ∈ Xk′ , ∼k′,k (z, y) holds. But since, Xk′ contains z, the position z must have
been added to the k′th component of the l-tuple, in some nth iteration of the function f i

x for
some n ∈ N. This means that y should have been added to the kth component of the l-tuple,
in the (n+ 1)th iteration of f i

x contradicting our assumption that y ∈ X ′
k \Xk. This means

that X ′
k = Xk for all k ∈ [1, l] implying that (f i

x)ω+1((∅, . . . , ∅)) = (f i
x)ω((∅, . . . , ∅)).

Now, if the least fixed-point of f i
x can be obtained by applying f i

x n times on (∅, . . . , ∅) for
some n ∈ N, then by Claim 19, there exists a path of length ≤ n from (vi, x) to (vj , y). Now,
if the least fixed-point of f i

x is obtained by applying f i
x ω times on (∅, . . . , ∅), we need to

perform a transfinite induction in order to prove that there is still a path from (vi, x) to (vj , y)
in this case. Let (f i

x)ω((∅, . . . , ∅)) = (Y1, . . . , Yl) be the least fixed-point. We know y ∈ Yj .
Now by definition of (f i

x)ω, the element y must have been added to the kth component of the
l-tuple in the nth iteration of f i

x for some n ∈ N. But then, this means that there is a path
of length ≤ n from (vi, x) to (vj , y). Thus, there is a path of non-zero length from (vi, x) to
(vj , y) even in this case, as required. ◁

C Details of Section 5

Proof of Lemma 9. (⇒) ρ admits some concrete model σ. Let l be the corresponding edge-
respecting labelling of the graph Gρ. Then, clearly, slen(u, v) ≤ |l(v) − l(u)|, for all vertices
u, v ∈ Gρ. Thus, there cannot exist vertices u and v with slen(u, v) = ω.

(⇐) Suppose Gρ satisfies the given condition. We outline a procedure that gives an
edge-respecting Z-labelling l : V × N → Z of Gρ.
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We assume an ordering ≺ on V and use it to define an ordering on the vertices of Gρ

given by (x, i) ≺ (y, j) iff i < j, or i = j and x ≺ y. We now give a procedure to label the
vertices.
1. Label the vertices in order of ≺. Begin by labelling the first, say (x, 0) by 0.
2. In general, let X be the portion of the graph already labelled, and u be the next vertex

to be labelled. Let X≤u denote the set of vertices in X from which there is a directed
path to u and Xu≤ denote the set of vertices in X to which there is a directed path from
u. Now we can label u as follows:
(a) if Xu≤ is non-empty then set l(u) = min{(l(v) − slen(u, v)) | v ∈ X,∃ a path from u

to v}, else,
(b) if X≤u is non-empty, set l(u) = max{(l(v) + slen(v, u)) | v ∈ X,∃ a path from v to

u}, else
(c) if both X≤u and Xu≤ are empty, label u by 0.

We now aim to prove that the labelling l that we obtain for the vertices of the graph Gρ

is edge-respecting. In order to prove this, we state the following invariant and we shall prove
inductively that the invariant holds at the end of every iteration of the procedure.

Invariant: The labelling when restricted to the subgraph X is edge-respecting. Base
case: X is the graph with just one vertex (x, 0). In this case, any labelling for (x, 0) is
trivially edge-respecting.

Inductive Step: Let X be the portion of the graph labelled till now. By Induction
hypothesis, the labelling of all vertices in X is edge-respecting. Now, let u be the vertex
that is next labelled by the procedure. We wish to prove that the label l(u) is such that the
labelling l is an edge-respecting labelling of the graph X ∪ {u}.

To argue that l(u) is an valid edge-respecting label for u, suppose to the contrary, that
it was not. Then there must exist a vertex v in X ∪ {u} and a directed path from u to v
or from v to u which is inconsistent with the labels of u and v. First note that such a v
cannot be equal to u. This is because, we know that there is no strict cycle in the graph and
any path from u to itself must contain only =-labelled edges. The labelling of u is therefore
trivially consistent with every path from u to itself. Thus the vertex v must be from X.

Therefore, u could have been labelled inconsistently in the following two possible cases:
there exists a directed path p from u to v but slen(p) > l(v) − l(u) or there exists a directed
path p from v to u but slen(p) > l(u) − l(v).

For the first case to arise it must be the case that u was labelled by clause 2a. But then
the label l(u) must be such that l(u) ≤ l(v) − slen(p). Thus, this case is not possible.

There are two possibilities for the second case. In the first possibility, u was labelled
by clause 2a. So there must have been a vertex w in X with a path q from u to w, and
l(u) = l(w) − slen(q). But since v and w were labelled without any discrepancy, it must be
the case that l(w) − l(v) ≥ slen(p) + slen(q). Thus, l(u) = l(w) − slen(q) ≥ l(v) + slen(p).
This contradicts our assumption that slen(p) > l(u) − l(v), and hence this possibility is ruled
out. The second possibility was that u was labelled by an application of clause 2b of the
procedure. But then it must be the case that l(u) ≥ l(v) + slen(p). Thus, this case is also
ruled out.

This proves that the label l is an edge-respecting labelling for X∪{u}. Thus, the invariant
holds at the end of every iteration of the procedure and hence, the labelling l obtained is
indeed an edge-respecting labelling for the graph Gρ. Hence, every consistent symbolic model
ρ satisfying slen(u, v) < ω for all u, v ∈ Gρ, admits a concrete model over Z. ◀
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Proof of Claim 10. There can be two cases.
Case 1: i− j ≤ ne(|δ| + 1).

In this case, (i−mmp(i, e)) ≤ (i− j) < 2ne|δ|.

Case 2: i− j > ne(|δ| + 1).

Consider a run of Ae on the word ρ[j, i]R. Now since, i− j > ne(|δ| + 1), at least one state
s of Ae must be visited at a pair of isomorphic positions along this run. Consider the first
state s along the run, that is visited at a pair of isomorphic positions. Let k1 and k2 be the
first pair of isomorphic positions at which s is visited. Consider the portion of the run from i

to k1. Each state of Ae can be visited at most |δ| times in this portion, hence i− k1 ≤ ne|δ|.
Now since k1 and k2 are isomorphic positions, k1 − k2 = m|δ| for some m ∈ N.

Also, since between positions k1 and k2, every state of Ae can be visited at most |δ| times,
m ≤ ne.

Now the sequence of states visited between positions k1 and k2 repeats itself along the
run until the last time the state s is visited at a position isomorphic to k1 along the run.
Let kl be the last position isomorphic to k1, at which s is visited. We know a final state F
is visited at position j. Now, since k1 and kl are isomorphic, the final state F must have
been visited at position k1 − (kl − j) = k1 − kl + j. This means that mmp(i, e) = k1 − kl + j.
Therefore, i− mmp(i, e) = (i− k1) + (kl − j) ≤ 2ne|δ|. Hence, proved. ◁
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