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Abstract
Bounding the number of reversals in a counter machine is one of the most prominent restrictions to
achieve decidability of the reachability problem. Given this success, we explore whether this notion
can be relaxed while retaining decidability.

To this end, we introduce the notion of an f -reversal-bounded counter machine for a monotone
function f : N → N. In such a machine, every run of length n makes at most f(n) reversals. Our
first main result is a dichotomy theorem: We show that for every monotone function f , one of
the following holds: Either (i) f grows so slowly that every f -reversal bounded counter machine is
already k-reversal bounded for some constant k or (ii) f belongs to Ω(log(n)) and reachability in
f -reversal bounded counter machines is undecidable. This shows that classical reversal bounding
already captures the decidable cases of f -reversal bounding for any monotone function f . The
key technical ingredient is an analysis of the growth of small solutions of iterated compositions
of Presburger-definable constraints. In our second contribution, we investigate whether imposing
f -reversal boundedness improves the complexity of the reachability problem in vector addition
systems with states (VASS). Here, we obtain an analogous dichotomy: We show that either (i) f

grows so slowly that every f -reversal-bounded VASS is already k-reversal-bounded for some constant
k or (ii) f belongs to Ω(n) and the reachability problem for f -reversal-bounded VASS remains
Ackermann-complete. This result is proven using run amalgamation in VASS.

Overall, our results imply that classical restriction of reversal boundedness is a robust one.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Counter machines, reversal-bounded, reachability, decidability, complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.42

Funding Alain Finkel was funded by the Institut Universitaire de France and the Agence Nationale
de la Recherche, grant BraVAS (ANR-17-CE40-0028). Khushraj Madnani and Rupak Majumdar
were supported in part by the Deutsche Forschungsgemeinschaft project 389792660 TRR 248–CPEC.

1 Introduction

The undecidability of the reachability problem in general multicounter machines is well-
known [37]. Given this, there has been a rich landscape of restricted counter models, which
have been studied with the aim of obtaining decidable reachability, while retaining as
much expressiveness as possible. One of the most prominent restrictions studied is that of
reversal-bounded counter machines [24]. As the name suggests, reversal-bounded counter
machines bound the number of times a counter can change from an incrementing phase to
a decrementing phase, or vice-versa, during a run. In an incrementing phase, the counter
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42:2 Counter Machines with Infrequent Reversals

is only incremented; likewise, in a decrementing phase, it is only decremented. As already
shown by Ibarra in 1978 [24], for a constant bound, reachability is decidable and, further,
reachability relations are semilinear. The latter observation allows decision procedures for
Presburger arithmetic to be used for the algorithmic analysis of reversal-bounded systems.

Partly motivated by these available tools, reversal-bounded counter machines have been
studied intensively. They have been studied in terms of deciding basic properties [19], model-
checking various logics [3,14], expressiveness [26,29], deciding language-theoretic properties [2],
regular abstractions [39], extensions that allow arbitrary reversals below a fixed counter
value [15] or a free counter [13] or a pushdown [21] (see also [25] for a survey). This research
has revealed a wide range of applications. For example, they have been used for model-
checking recursive programs with numeric data types [21]. As another example, an equivalent
variant of reversal-bounded counter machines is the model of Parikh automata [28], originally
introduced to decide monadic second order logic with certain cardinality constraints [28],
but subsequently studied as a computational model in itself [4–9,17,18].

Another decidable restriction of counter machines is that of vector addition systems with
states (VASS). These allow arbitrary reversals, but have no zero tests. VASS are a standard
model for analyzing concurrent systems. Unfortunately, the reachability problem in VASS is
Ackermann-complete [11, 32]. However, imposing reversal-boundedness on VASS reduces the
complexity down to NP: Reachability for reversal-bounded machines is NP-complete [19].
This has a number of implications. For example, one can efficiently analyze flat counter
systems [36] by turning them into reversal-bounded systems. Flat counter systems, in turn,
are the basis for flat acceleration techniques [1]. Furthermore, being (not flat but) flattable
is equivalent to having semilinear reachability sets in VASS [31].

Thus, reversal bounding has turned out to be a fruitful restriction that ensures decidability
in counter machines, and that reduces the computational complexity significantly in the case
of VASS.

Infrequent reversals. Given this success of reversal-bounding counter machines, it seems
natural to explore whether there are weaker conditions one can impose on reversals that still
retain some decidability, say for the reachability problem. In this work, we explore the idea
of requiring reversals to be infrequent, meaning the number of reversals is small in relation
to the length of the run, as opposed to being a fixed constant independent of the length of
the run. More specifically, for a monotone function f : N → N, we call a counter machine
f -reversal-bounded if in every run of length n, the machines makes at most f(n) reversals. In
other words, every run of length n decomposes into at most f(n) phases, where each phase
has a particular direction for each counter: Inside a phase, each counter can either (i) not
be decremented or (ii) not be incremented. Clearly, this generalizes the classical notion of
reversal-boundedness, which takes f to be a constant function. With this notion, we first
investigate the following question:

For which monotone functions f : N → N do f-reversal-bounded counter machines
have a decidable reachability problem?

Moreover, we study whether such a relaxed notion can serve to reduce the complexity of
reachability in VASS:

For which monotone functions f : N → N do f-reversal-bounded VASS have a low-
complexity reachability problem?
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Contribution. For both questions above, we provide complete, but negative answers.
First, we show that there are functions f that guarantee decidable reachability (e.g.,
n 7→ log(log(n))), but they must grow so slowly that for every counter machine that is
f -reversal-bounded, there exists a number k ∈ N such that the machine is already k-reversal-
bounded. The main technical contribution used in proving this was the analysis of growth
of minimal solution of k-fold composition of Presburger definable (i.e. semilinear) relations.
On the other hand, if the function f grow fast enough (e.g., n 7→ log(n)), the reachability
problem is undecidable.

An analogous situation holds for the complexity of VASS reachability: There are functions
f for which f -reversal-bounded VASS have lower complexity than Ackermann (e.g., n 7→
log(n)), but these grow so slowly that for every VASS that is f -reversal-bounded, there
exists some k ∈ N so that the VASS is k-reversal-bounded. On the other hand, if f grows
sufficiently fast, the reachability problem is again Ackermann-complete.

In short, we show that there is no monotone function that properly relaxes the reversal-
boundedness condition and still either (i) guarantees decidable reachability in counter
machines or (ii) lowers the complexity of reachability in VASS.

Our results. Let us make our results precise. For every monotone function f : N → N, we
consider two decision problems. First, Reach(f) is the following:

The problem Reach(f):
Given An f -reversal-bounded counter machine CM and a configuration c.
Question Can CM reach c from its initial configuration?

Second, the problem ReachVASS(f) restricts Reach(f) to f -reversal-bounded VASS:

The problem ReachVASS(f):
Given An f -reversal-bounded VASS V and a configuration c.
Question Can V reach c from its initial configuration?

Now our two questions above become:
1. For which monotone functions f : N → N is Reach(f) decidable?
2. For which monotone functions f : N → N does ReachVASS(f) have lower complexity?
We say that a monotone function f : N → N is essentially bounded (for counter machines) if
for every counter machine CM that is f -reversal-bounded, there exists a number k ∈ N such
that CM is k-reversal-bounded. Our first main result is a dichotomy for monotone functions:

▶ Theorem 1.1. Let f : N → N be a monotone function. Then exactly one of the following
holds: Either (i) f is essentially bounded or (ii) f belongs to Ω(log n), and Reach(f) is
undecidable.

To state our second main result, we say that f is essentially bounded for VASS if for every
VASS V that is f -reversal-bounded, there exists a number k ∈ N such that V is k-reversal
bounded. Our second main result is the following dichotomy:

▶ Theorem 1.2. Let f : N → N be a monotone function. Then exactly one of the following
holds: Either (i) f is essentially bounded for VASS or (ii) f belongs to Ω(n), and Reach(f)
is Ackermann-complete.

FSTTCS 2023



42:4 Counter Machines with Infrequent Reversals

In other words, by relaxing the definition of “bounded reversal” to “infrequent reversal”,
we either get counter machines (or VASS) with undecidable (or Ackermann-hard) reachability
problem or get a counter machines (or VASS) that are already reversal bounded. Hence, the
class of machines within the purview of the classical reversal bounded restriction is already
robust. That is, the notion of infrequent reversals does not give us any new decidable (resp.,
computationally easier) class of counter machines (resp., VASSes).

2 Preliminaries

Notations. We denote the set of all natural numbers (resp., integers) with N (resp., Z).
Given any set X, we write Xd to denote the set of all vectors of dimension d whose elements
are in X. We write 0d for the vector all of whose entries are 0. We omit the superscript d

from 0d, when the dimension is clear from the context. Given v1, v2 ∈ Zd, we define v1 ≤ v2
iff for all i ∈ {1, . . . , d}, v1[i] ≤ v2[i]. Moreover, v1 + v2 (resp., v1 − v2) is the vector v

such that for all i ∈ {1, . . . , d}, we have v[i] = v1[i] + v2[i] (resp., v[i] = v1[i] − v2[i]). For a
function g : N → N, we write Ω(g) for the class of functions f : N → N for which there exist
constants c, n0 such that for all n ≥ n0, we have f(n) ≥ c · g(n). As is customary, we write
Ω(n) (resp. Ω(log n)) for the class Ω(g) with g : n 7→ n (resp. g : n 7→ log(n)).

Counter Machines and Vector Addition Systems with States. A Counter Machine is a
4-tuple CM = (d, Q, ∆, q0) where d ∈ N is the dimension, Q is a finite set of control states,
and ∆ ⊆ Q×INST×Q is a finite set of transitions where INST = Zd ∪{Cj

?= 0 | j ∈ {1, . . . d}}
is the set of all instructions, and q0 ∈ Q is the initial state.

An instruction is either some vector z ∈ Zd, or a test of the form “Ck
?= 0” where

k ∈ {1, 2, . . . d}. Instructions of the form Ck
?= 0 are called zero tests.

A configuration of CM is a pair (q, v) where q ∈ Q and v ∈ Nd. The initial configuration is
(q0, 0). Any transition t = (q, inst, q′) induces a successor (partial) function Succt : Q×Nd →
Q × Nd defined as follows. If z ∈ Zd then Succt((q, v)) = (q′, v′) where v′ = v + z. If z is a
zero test instruction of the form “Ck

?= 0” then Succt((q, v)) = (q′, v) if v[k] = 0 and is not
defined otherwise. This successor function can be lifted to ∆ to get a step relation →CM,
such that, for any pair of configurations C, C′, we have C →CM C′ iff there exists a transition
t ∈ ∆ such that Succt(C) = C′. We sometimes use the term counters and coordinates
interchangeably in the context of vectors.

An (initialized) run of CM is a sequence of configurations (q0, v0)(q1, v1) . . . (qn, vn) such
that v0 = 0 and for every 0 < j ≤ n, (qj−1, vj−1) →CM (qj , vj) holds. If there exists such
a run we say that (qn, vn) is reachable from (q0, v0) and denote it as (q0, v0) ∗−→CM (qn, vn).
We drop the subscript from →CM and ∗−→CM when the counter machine is clear from context.

Vector Addition System with States (VASS) is a subclass of counter machines where the
transitions are restricted to not have zero tests.
The reachability problem for counter machines asks:
Given Given a configuration (q, w) of a counter machine CM.
Question Does (q0, 0) ∗−→CM (q, w) hold?

Reversal Boundedness. Informally, a counter is said to be in an increasing phase in a part
of a run, if the value of that counter does not decrease in any step of the given part. Likewise
the counter is in a decreasing phase in a part of a run, if its value does not increase in any
step of the given part. A reversal is a step in a given run, where one or more counters switch
from increasing to decreasing phase, or vice versa. Moreover, for r ∈ N, a counter machine
CM is r-reversal bounded if for any run of CM, all of its runs have at most r reversals.
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Let us make this more formal. Let CM = (d, Q, ∆) be any counter machine. A mode
vector is a vector m ∈ Zd where every entry is −1 or 1. A mode vector describes the direction
in which a counter can change: If m(i) = 1, then this means counter i cannot be decremented.
Similarly, m(i) = −1 means it cannot be incremented. A step (q, v) → (q′, w) that adheres
to this is called consistent with m. A run is consistent with m if all its steps in the run are
consistent with m.

To define phases, consider a run ρ = (q0, v0)(q1, v1) . . . (qn, vn) of CM. We say that a
segment ρ′=(qi, vi)(qi+1, vi+1) . . . (qj , vj) of ρ is a phase of ρ, iff, ρ′ is consistent with some
mode vector m. Intuitively, a phase is a part of the run where each counter 1 ≤ i ≤ d is either
increasing in all steps, or is decreasing in all steps. ρ′ is said to be the maximal phase of ρ iff
it no longer remains a phase on extending it. That is, for ρ′ = (qi, vi)(qi+1, vi+1) . . . (qj , vj)
and j < n, ρ′.(qj+1, vj+1) is no longer a phase; likewise, for ρ′ = (qi, vi)(qi+1, vi+1) . . . (qj , vj)
and i > 1, (qi−1, vi−1).ρ′ is also no more a phase of ρ.

A run ρ contains r reversals iff ρ can be decomposed into r maximal phases. That is,
ρ = ρ1.ρ2. . . . .ρr such that for each i ∈ {1, . . . r}, ρi is a maximal phase of ρ.

A counter machine CM is said to be r-reversal bounded iff all its runs contain at most r

reversals.

3 Counter machines: Decidable case

Our proof of Theorem 1.1 consists of showing two propositions:

▶ Proposition 3.1. If there exists an f -reversal-bounded counter machine that is not reversal-
bounded, then f belongs to Ω(log(n)).

▶ Proposition 3.2. If f belongs to Ω(log(n)), then Reach(f) is undecidable.

Together, these clearly imply Theorem 1.1: Proposition 3.2 implies that if f belongs to
Ω(log(n)), then Reach(f) is undecidable. Moreover, Proposition 3.1 tells us that if f does
not belong to Ω(log(n)), then any f -reversal-bounded counter machine must already be
reversal-bounded. In this section, we prove Proposition 3.1. In Section 4, we will then prove
Proposition 3.2.

We start with defining semilinear sets and Presburger arithmetic.

Semilinear Sets. A set S ⊆ Nd is called linear iff there exists finitely many vectors
v0, v1, . . . vk ∈ Nd such that

S = {v0 +
k∑

i=1
ci · vi|c1, c2, . . . cn ∈ N}

A semilinear set is a finite union of linear sets. Linear and semilinear relations are defined
similarly.

Presburger Arithmetic. Presburger Arithmetic is defined to be the first-order theory of
natural numbers endowed with the addition operation (+), comparison (<), and equality
(=) predicates. All the predicates have the usual meaning over the natural numbers. For the
sake of simplicity, we allow constants in N, as well as the multiplication of a constant by a
variable as terms. Note that these terms are expressible using basic Presburger formulae. The
following theorems connect Presburger constraints, semilinearity and reversal boundedness.

FSTTCS 2023



42:6 Counter Machines with Infrequent Reversals

▶ Theorem 3.3 (Ginsburg & Spanier [16]). A relation is definable in Presburger arithmetic if
and only if it is semilinear.

▶ Theorem 3.4 (Ibarra [24]). Given any k-reversal bounded counter machine CM (for some
k), its reachability relation is semilinear.

Iterations of semilinear sets. Proposition 3.1 says that if a counter machine can make an
unbounded number of reversals, but is f -reversal-bounded, then for every n, f must allow
for a run of length n with at least Ω(log(n)) reversals. To this end, we will show that for any
k, there exists a run with k reversals and of length at most ck, for some constant c.

Using standard techniques for reversal-bounded counter machines, it is not difficult to
show that there exists such a run of length 2kO(1) : It is easy to construct an existential
Presburger formula Φk of size O(k) such that Φk(n) represents a run of length n. Then it
follows (for example, from [20, Theorem 2]) that there exists a run of length at most 2kO(1) .
However, in order to prove our complete dichotomy, we need to refine these techniques to
prove an upper bound of ck for a constant c.

For a relation R ⊆ Nd × Nd, we define Rk to be the k-fold composition of R, meaning
R1 := R and Rk+1 := Rk ◦ R for k ≥ 1. For a vector z ∈ Zd, z = (z1, . . . , zd), we define its
norm as ∥z∥ = max{|zi| | i ∈ {1, . . . , d}. The key step in getting a ck upper bound is the
following lemma.

▶ Lemma 3.5. For any semilinear R ⊆ Zd × Zd and S ⊆ Zd × Zd, there is a constant c ∈ N
such that for every k ∈ N, if Rk ∩ S ̸= ∅, then there is a z ∈ Rk ∩ S with ∥z∥ ≤ ck.

In the proof of Lemma 3.5, we will rely on the following bound on solution sizes of systems
of linear inequalities due to [38, Corollary 1]. Here, for a matrix A ∈ Zm×n, with entries aij

(i ∈ {1, . . . , m}, j ∈ {1, . . . , n}), we follow [38] in defining the norm

∥A∥1,∞ = max
i


n∑

j=1
|aij |

 .

▶ Theorem 3.6 (Pottier 1991). Let A ∈ Zm×n and a ∈ Zm. If there exists an x with
Ax ≤ a, then there exists one with ∥x∥ ≤ (2 + ∥A∥1,∞ + ∥a∥)m.

Proof of Lemma 3.5. We begin by expressing R and S using a system of linear Diophantine
inequalities. Since they are semilinear, they can be expressed using existential Presburger
formulae ∃u : φR(x, u, y) and ∃u : φS(x, y, u), where x and y are vectors of d variables each,
and u is a vector of existentially quantified variables. Note that the quantified variables
u are in different positions in φR and φS ; this will be convenient later when constructing
matrices. Now φR and φS are Boolean combinations of linear Diophantine inequalities. By
bringing these into DNF, we can write

φR(x, u, y) ⇐⇒
r∨

i=1
Ai(x, u, y) ≤ ai

φS(x, y, u) ⇐⇒
s∨

i=1
Bi(x, y, u) ≤ bi

for some matrices Ai, Bi ∈ Zℓ×m and ai, bi ∈ Zℓ. Here m is the combined number of
variables across all of u, x, y and ℓ is the (maximal) number of inequalities needed for φR

and φS .
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 Ā1  Ā2

. . .

 Āk   C D



· w ≤



 ā1 ā2

...

 āk b


Figure 1 Inequality in proof of Lemma 3.5. All other elements not in matrices A1, . . . Ak, C, D

are 0.

Suppose there is a vector z ∈ Rk ∩ S. Then a system of linear inequalities of the form
sketched in Figure 1 has a solution. Here, for each i ∈ {1, . . . , k}, there is some j ∈ {1, . . . , r}
such that Āi = Aj and āi = aj . Moreover, the overlap between Āi and Āi+1 is exactly the
right-most d columns of Āi and the left-most d columns of Āi+1. Moreover, there is some
j ∈ {1, . . . , s} such that the matrix C consists of the first d columns of Bj and D consists of
the last m − d columns of Bj (and the overlap to Āk is exactly in the right-most d columns
of Āk).

Let A be the matrix in Figure 1 and a be the vector on the right-hand side of Figure 1.
Observe that A has (k+1)·ℓ rows. By its choice, the inequality Aw ≤ a has a solution. Thus,
by Theorem 3.6, we have a solution w′ with ∥w′∥ ≤ (2 + ∥A∥1,∞ + ∥a∥)(k+1)·ℓ. However,
since each row sum of A is a row sum of either (i) a matrix Aj for some j ∈ {1, . . . , r} or
(ii) a matrix Bj for some j ∈ {1, . . . , s}, we know that

∥A∥1,∞ ≤ max ({∥Aj∥1,∞ | j ∈ {1, . . . , r}} ∪ {∥Bj∥1,∞ | j ∈ {1, . . . , s}}) (1)

and moreover

∥a∥ ≤ max ({∥aj∥ | j ∈ {1, . . . , r}} ∪ {bj | j ∈ {1, . . . , s}}) . (2)

We pick M to be an upper bound of the right-hand sides of (1) and (2). Then we have

∥w′∥ ≤ (2 + ∥A∥1,∞ + ∥a∥)(k+1)ℓ ≤ (2 + 2M)(k+1)ℓ ≤ (2 + 2M)2kℓ.

Thus, setting c := (2 + 2M)2ℓ gives us the desired bound: By projecting w′ to appropriate
components, we obtain a vector z′ ∈ Rk ∩ S with ∥z′∥ ≤ ∥w′∥ ≤ ck. ◀

Reachability relations. Our next step is to apply the well-known fact that the reachability
relation of runs along a single phase of a counter machine is Presburger-definable. Recall that
a phase is a run in which no counter reverses. More precisely, our next lemma makes a slightly
different (but equally simple) claim: The reachability relation along runs that consist of a
single phase followed by a single transition (that leaves that phase) is Presburger-definable.

FSTTCS 2023



42:8 Counter Machines with Infrequent Reversals

Given a counter machine CM with d counters, we define the relation RCM ⊆ N1+2d ×N1+2d

as follows. We have (i, m, x, j, m′, y) ∈ RCM if and only if there exists a run ρ consisting of
transitions t1 . . . tn+1 such that there exists a x ∈ Nd and a state qk ∈ Q such that
1. the run t1 · · · tn is a run from (qi, x) to (qk, x′) that is consistent with m and
2. tn+1 is not consistent with m, but tn+1 is consistent with m′

3. tn+1 leads from (qk, x′) to (qj , y).
Thus, RCM is the reachability relation for a run consistent with m, plus one transition that
is consistent with m′, and such that the last step reverses some counter. Moreover, we also
encode the mode vector in the components of RCM. The following is entirely standard, but
we include a proof for completeness.

▶ Lemma 3.7. For every counter machine CM, the relation RCM is Presburger-definable.

Proof. It suffices to prove that for any mode vectors m and m′ in Nd and any i, j ∈ N, the
set R′ ⊆ Nd × Nd of all (x, y) with (i, m, x, j, m′, y) ∈ RCM is Presburger-definable. This is
because there are only finitely many choices for i, j, m, m′. However, for given i, j, m, m′, it
is easy to construct a reversal-bounded counter machine CM′ with d counters and states s, t

such that in CM′, we have s(x) can reach t(y) if and only if (x, y) is Presburger-definable. To
this end, CM′ simulates transitions consistent with the mode m in CM, and then it simulates
one more transition consistent with mode m′ (which is not consistent with m). Since the
reachability relation in every reversal-bounded counter machine is Presburger-definable [24],
R′ is Presburger-definable and the result follows. ◀

With Lemmas 3.5 and 3.7 in hand, we are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Suppose CM is an f -reversal-bounded counter machine that is
not reversal bounded. Without loss of generality, we assume that CM has one counter that is
incremented in every step; this counter thus always holds the length of the run.

We consider the following function: L : N → N ∪ {∞}, where for each k, L(k) is the
length of the shortest run that contains (at least) k reversals. If there is no such run, we set
L(k) := ∞. Since CM is not reversal-bounded, we have L(k) ∈ N for every k ∈ N.

Note that any run of CM starts in the mode 1d, because initially, no counter can be
decremented. Moreover, all counters are zero initially, and we start in q0. This motivates the
following definition. Let S ⊆ Z1+2d × Z1+2d be the set S = {(0, 1d, 0d)} × Z1+2d of vectors.
In other words, S contains those vectors where the first entry is 0, the next d entries contain
1, and the next d entries contain 0 (and the last 1 + 2d entries are unrestricted). Then clearly,
a configuration (qj , y) can be reached using exactly k reversals if and only if

(0, 1d, 0d, j, m′, y) ∈ Rk
CM

for some mode vector m′. Thus, by our assumption that CM is not reversal-bounded, we
have Rk

CM ∩ S ̸= ∅ for every k ∈ N. Now let c be the constant provided by Lemma 3.5 for
RCM and S. Then for every k ∈ N, there is a vector zk ∈ Rk

CM ∩ S with ∥zk∥ ≤ ck. Since
the length of each run is encoded in a counter, the length of the corresponding run is thus
≤ ∥zk∥ ≤ ck. In particular:

L(k) ≤ ck ∀k ∈ N

Now observe that for every k ∈ N, we have f(L(k)) ≥ k, because CM is f -reversal-bounded
and there exists a run of length L(k) with at least k reversals. Since f is monotone and
L(k) ≤ ck, we have k ≤ f(L(k)) ≤ f(ck) for every k ∈ N. Again by monotonicity of f , this
implies that for every n, we have f(n) ≥ log(n)/ log(c). Thus f belongs to Ω(log(n)). ◀
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4 Counter machines: Undecidable case

In this section, we prove Proposition 3.2. That is, given any monotone function f : N → N
such that f belongs to Ω(log(n)), we show that Reach(f) is undecidable. To this end, we
show that any counter machine can be simulated by an f -reversal bounded counter machine.

Making f concrete. Instead of working with an arbitrary function f in Ω(log(n)), it will be
convenient to work with a concrete function of the form c · log. Let us now see why it suffices
to show undecidability of Reach(c · log). The fact that f belongs to Ω(log n) means that there
exist c, k ∈ N such that f(n) ≥ c · log(n) for all n ≥ k. This implies that Reach(c · log) reduces
to Reach(f): Given a c · log-reversal-bounded machine, we modify it to begin with k fresh
steps that do not reverse any counter. Then clearly, the new machine is f -reversal-bounded.
Hence, to show Reach(f) is undecidable it suffices to show that Reach(c · log) is undecidable.

Making the constant concrete. It will be even more convenient to show undecidability in
the case c = 11. Our next lemma argues that this suffices.

▶ Lemma 4.1. For every monotone function g : N → N and every constant c ∈ N, Reach(g)
is decidable if and only if Reach(c · g) is decidable

Proof. Since every g-reversal-bounded counter machine is also a c · g-reversal-bounded
machine, Reach(g) trivially reduces to Reach(c · g). For the converse, we will prove that
Reach(c · g) reduces to Reach(g). Given any c · g-reversal bounded counter machine CM =
(d, Q, ∆, q0) construct CMc = (d, Qc, ∆c, (q0, 0)) such that it adds c dummy transitions
between any two consecutive steps of CM. Formally, Qc = Q × {0, . . . c}, and ∆c is the
smallest set containing transitions, ((q, i), 0d, (q, i + 1)) (where i ∈ {0, . . . , c − 1}), and
((q, c), inst, (q′, 0)) where (q, inst, q′) ∈ ∆. Then, c · g-reversal-boundedness of the input
machine clearly implies g-reversal-boundedness of the resulting machine. Moreover, (q, w) is
reachable from (q0, 0) in CM if and only if ((q, 0), w) is reachable from ((q0, 0), 0). ◀

Now Lemma 4.1 indeed implies that, decidability of Reach(11·log) is equivalent to decidability
of Reach(c · log). Hence, we just need to show that Reach(11 · log) is undecidable.

Proving Reach(11 · log) is undecidable – Main Step. In this step, we show that any
counter machine CM = (d, Q, ∆, q0) can be simulated by an 11 · log-reversal bounded counter
machine CM′ = (d′, Q′, ∆′, q′

0). Like Lemma 4.1, we will add dummy steps between any
two steps simulating CM. But unlike Lemma 4.1, we need to add more and more dummy
steps after simulating every step of CM. More precisely, between the simulation of the N th

and (N + 1)th step of CM, we need to add exponentially many (in N) dummy steps, using
reversals which are polynomial in N . To do this, we construct a gadget for every state q ∈ Q,
which does the above, before simulating any outgoing transition from q using 4 additional
auxiliary counters. We now give the formal construction followed by the proof of correctness.

Formal construction of CM′. Given CM = (d, Q, ∆, q0), we construct a counter machine
CM′ = (Q′, d′, ∆′, (q0, 0)) where Q′ = Q × {0, . . . 10}, d′ = d + 4, and ∆′ is defined a little
later. For the sake of simplicity, we assume d = 2. Hence, counters C3, C4, C5, C6 are the
auxiliary counters used to add the required dummy steps.

Transitions simulating steps of CM. For any state q ∈ Q, transitions exiting q in CM are
simulated by transitions exiting (q, 10) ∈ Q′. More precisely, (q, [a1, a2], q′) ∈ ∆ iff
((q, 10), [a1, a2, 0, 0, 0], (q′, 0)) ∈ ∆′.
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q, 0 q, 1 q, 2 q, 3 q, 4

q, 5 q, 6 q, 7

q, 8 q, 9 q, 10

q′, 0

C3−− C6++ C4−− C5++

C5++

C4
?= 0

C5−− C4++

C4++

C5
?= 0

C3
?= 0

C3++

C6−−

C6
?= 0

Inst

GC5:=2C4

GC4:=2C5

GC3:=C6+1 Gq

Figure 2 Diagram showing simulation of transition q
Inst−−−→ q′. Gq is the gadget for state q. For

the sake of readability, for all 1 ≤ i ≤ 6, we write Ci − − (Ci + +) for vector z such that for all
1 ≤ j ≤ i, z[j] = −1 (z[j] = +1) if j = i and z[j] = 0, otherwise.

Transitions adding dummy steps. The rest of the transitions are those appearing within
the gadgets. For every state q ∈ Q, we construct a gadget Gq, as shown in Figure 2,
such that before imitating any outgoing transition from state q, Gq induces the required
number of dummy steps.

Enforcing long runs with less reversals, G-Invariant Property. We say that our gadget sat-
isfies the G-Invariant property iff on entering the gadget with counter values [a, b, s, t, 0, 0]
we exit the gadget with the values of these counters as [a, b, s + 1, 4s · t, 0, 0]. Moreover,
the number of reversals made within this gadget (including the transition outgoing from
the gadget) is at most 4s + 5.
Observe the gadget in Figure 2. The gadget adds dummy transitions before it simulates
any transition of CM outgoing from p as follows: It performs an identical transition from
(q, 10), namely, (q, 10) Inst−−−→ (q′, 0). The transitions from (q, 0) to (q, 10) enforces the runs
to be long enough to make sure that CM′ is a c · log-reversal bounded counter machine.
The analysis of CM′ being 11 log-reversal bounded is shown a little later. More specifically,
the run from (q, 0) to (q, 10) satisfies the G-Invariant property. Let the initial values of
these auxiliary counters be C3 = s, C4 = t, C5 = 0, C6 = 0. Notice the following:

When the control enters (q, 2) it remains in the part of the gadget GC5:=2C4 and exits
this part by entering into (q, 5) with the new value of C4 as 0 and C5 incremented by
double of what the value of C4 was when the control first entered the GC5:=2C4 part.
By symmetry, part GC4:=2C5 increments C4 by the double of the old value of C5.
For every decrement of C3, C6 is incremented, and the control enters GC5:=2C4 followed
by entering GC4:=2C5 . After this the control again comes back to (q, 0).
Hence, for each decrement of C3, C4 := 4C4, C6 is incremented and C5 := 0.
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The above continues till C3 = 0 (i.e. s times) after which C6 = s, C3 = 0, C5 = 0,
C4 = 4s · t and the control enters (q, 8).
From (q, 8), for every increment of C3, C6 is decremented, and this continues until
C6 = 0 at (q, 9) after which C3 = s + 1 and the control enters (q, 10). This is followed
by simulating instructions from q as in the original machine CM.
Hence the values of the auxiliary counters at (q, 10) will be C3 = s + 1, C4 = 4s · t, C5 =
0, C6 = 0, implying the satisfaction of the G-Invariant property for the given gadget.
Finally notice the number of reversals made within this gadget. There are 2 reversals
between entering and exiting the part GC5:=2C4 of the gadget (the very first time
C5 is incremented and the very first time C4 is decremented). Similarly, there are 2
reversals between entering and exiting the part GC4:=2C5 and GC3:=C6+1. The total
number of times the control passes through the parts GC5:=2C4 and GC5:=2C4 is s each.
Similarly, the control passes exactly once from the part GC3:=C6+1 causing 4s + 2
reversals. Moreover, there is exactly one reversal when transitions (q, 0) → (q, 1) and
(q, 1) → (q, 2) are taken the very first time within the gadget. Finally, there can be at
most one reversal while simulating Inst. Hence, there are at the most 4s + 5 reversals.

This technique of moving tokens between different auxiliary counters and doubling was
also used in [23] to show that VASS with 3 or more dimensions can have non-semilinear
reachable sets. As they were interested in reach sets, they did not require all the runs
to be large. On the other hand, we need long runs to show undecidability and with
infrequent reversals. Hence, unlike [23], we need zero tests.
It is interesting to note that a VASS gadget satisfying the G-Invariant property cannot
exist. If it did, it would imply that there is a log(n)-reversal bounded VASS that does
not have a constant number of reversals, which contradicts our Theorem 1.2.

Proving CM′ is 11 · log-reversal bounded. Assume that we start with [a, b, 1, 1, 0, 0] as our
initial configuration. Consider any run ρ = (q0, v0) . . . (qn, vn) of CM′, where v0 = 0.

Lower bounding the length of the run. Suppose ρ enters the gadget during the (N+1)th

time (i.e., it has simulated N instructions of the CM and is about to simulate the
(N + 1)th instruction). Let (q0, v0) . . . (qℓ, vℓ) be the prefix of ρ such that, at the
ℓth step, the N th instruction of the CM was simulated. As our gadget preserves the
G-Invariant property, we can inductively show that the value of C4 in vℓ i.e. vℓ[4] is

tN = 4 · 42 · 43 · · · · · 4N = 2N2+N .

Since in the initial configuration, C4 equals 1 and in each step of CM′, C4 is increased
by at most 1, this means ℓN ≥ tN .1

Upper bounding the number of reversals. The number of reversals k in ρ is at most
the maximum possible number of reversals kN+1 at the time when the control exits
the N + 1th gadget. That is,

kN+1 =
N+1∑
i=1

(4i + 5) = 4 · (N + 1)(N + 2)
2 + 5(N + 1)

= 2N2 + 6N + 4 + 5N + 5 ≤ 11N2 + 11N (3)

for any N ≥ 1.2 See Figure 3 for intuition.

1 Note that the value of ℓN is much larger than tN for higher values of N . In fact the number of dummy
steps added within the N th entry of the gadget itself is at least tN . This is because C4 becomes 0 at
least once, within the gadget. Hence, to again reach the value tN , it needs to execute at least tN steps.
Hence, the number of steps performed within the gadget itself is at least tN .

2 For N ≤ 1, any counter machine will have zero reversals. Hence, the value of the function bounding the
frequency of the reversal is important only for N ≥ 1
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Gq1 Gq2
. . . GqN

GqN+1

[1, 1] [2, 41] [3, 41 · 42] [N−1, 41 . . . 4N−1] [N, 41 . . . 4N ]

revs≤4·1+5

steps≥41·1

revs≤4·2+5

steps≥42·41·1

revs≤4·N+5

steps≥4N · · ·40

revs≤4·(N+1)+5

steps≥4N+1· · ·1

...

Figure 3 Figure showing the evaluation of counter values of auxiliary counters C3 and C4, which
are used to estimate a lower bound on the length of the runs. The lower bounds on the steps, and
the upper bound on the number of reversals performed within a gadget is mentioned below the
corresponding gadget.

Hence, k ≤ kN+1 ≤ 11 · log(tN ) ≤ 11 · log(ℓ) ≤ 11 · log(n). Hence, CM′ is 11 · log-reversal
bounded.

We have thus shown that Reach(11 · log) is undecidable and therefore, by Lemma 4.1,
Reach(log) is undecidable.

5 Vector addition systems

In this section, we prove Theorem 1.2. Let V = (d, Q, ∆, q0) be a d-dimensional vector
addition system. A step is a triple ((p, u), a, (q, v)) ∈ (Q × Nd) × ∆ × (Q × Nd) with
v = u + a. A run is a sequence

((q0, u1), a1, (q1, v1))((q1, u2), a2, (q2, v2)) · · · ((qn−1, un), an, (qn, vn))

of steps such that vi = ui+1 for each 1 ≤ i < n and u1 = 0.
We now define the notion of Well-Quasi Ordering (WQO), which is useful for the proof.

Well-Quasi Ordering and Higman’s Lemma. We fix a set X and a relation ≤ over X.
≤ is said to be a preorder/quasi order if it is reflexive (∀u ∈ X : u ≤ u), and transitive
(∀u, v, w ∈ X : u ≤ v and v ≤ w implies u ≤ w). A preorder is a well-quasi order
(WQO) iff for every infinite sequence u1u2 . . . over X, there exists a pair i < j such that
ui ≤ uj . Let ⪯ be an order relation over sequences of X (that is, over X∗) defined as
follows. We write u1u2 . . . um ⪯ u′

1u′
2 . . . u′

n if there exists a strictly increasing function from
κ : {1, . . . m} 7→ {1, . . . n} such that for all i ∈ {1, . . . , m}, ui ≤ u′

κ(i). With this notation, we
can phrase Higman’s lemma as follows.

▶ Lemma 5.1 (Higman’s Lemma [22]). If ≤ is a WQO over X, then ⪯ is a WQO over X∗.

Run embeddings. The proof of Theorem 1.2 will employ the concept of run embeddings,
which was introduced by Jančar [27] and Leroux [30]. Towards its definition, we first define
an ordering on steps. Given steps s = ((p, u), a, (q, v)) and s′ = ((p′, u′), a′, (q′, v′)), we
write s ≤ s′ if p′ = p, q′ = q, a′ = a, and u ≤ u′. Here, u ≤ u′ means that u(i) ≤ u′(i) for
every i ∈ {1, . . . , d}. Note that s ≤ s′ implies v ≤ v′.

The ordering on steps now induces an embedding ordering on runs. Suppose ρ =
s1 · · · sm and ρ′ = s′

1 · · · s′
n are runs. An embedding of ρ in ρ′ is a strictly monotone map

σ : {1, . . . , m} → {1, . . . , n} such that (i) σ(1) = 1 and (ii) si ≤ s′
σ(i) for every i ∈ {1, . . . , m}.
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Run amalgamation. A key property of the run embedding is the amalgamation property as
observed by Leroux and Schmitz [34]. Aside from our paper, amalgamation of runs has been
used in several other works for constructing runs in VASS and related models [2,10,12,33]. If
c = (p, u) ∈ Q × Nd is a configuration of a VASS and w ∈ Nd is a vector, then by c + w we
denote the configuration (p, u + w). If σ is an embedding of ρ in ρ′, then we can define a new
run as follows. First, we write ρ as c0

t1−→ c1
t2−→ · · · tn−→ cn with configurations c0, . . . , cn

and transitions t1, . . . , tn. Then since σ is an embedding, we can write ρ′ as

c0 + w0
τ0−→ c0 + w1

t1−→ c1 + w1
τ1−→ c1 + w2

t2−→ c2 + w2
τ2−→

· · · τn−1−−−→ cn−1 + wk
tn−→ cn + wn

τn−→ cn + wn+1

where τ0, . . . , τn are transition sequences and w0, . . . , wn+1 are vectors in Nd with w0 = 0.
Now we define a new run ρ′σ as

c0 + w0
τ0−→ c0 + w1

τ0−→ c0 + w1 + w1
t1−→ c1 + w1 + w1

τ1−→ c1 + w1 + w2
τ1−→ c1 + w2 + w2

t2−→ c2 + w2 + w2

...
τn−1−−−→ cn−1 + wn−1 + wn

τn−1−−−→ cn−1 + wn + wn
tn−→ cn + wn + wn

τn−→ cn + wn+1 + wn
τn−→ cn + wn+1 + wn+1.

Thus, the action sequence of this run is τ0τ0t1τ1τ1 · · · tnτnτn. Of course, this process can be
repeated. If we do this m times, we obtain a run with the action sequence τm

0 t1τm
1 · · · tnτm

n .
If there exists an embedding of a run ρ into ρ′, then we write ρ ⊴ ρ′. Since the ordering

≤ on steps is a well-quasi ordering and ⊴ is just the embedding relation induced by ≤, the
following is a direct consequence of Higman’s Lemma (Lemma 5.1):

▶ Lemma 5.2. On the set of runs of V, the ordering ⊴ is a well-quasi ordering.

Reversal increasing embeddings. If ρ and ρ′ are as above and σ is an embedding of ρ into
ρ′, then we say that σ is reversal increasing if for some i ∈ [0, n], the action sequence τi

contains at least one reversal. We use this notion to prove the first step of Theorem 1.2.

▶ Lemma 5.3. Let f : N → N be a monotone function that is not essentially bounded for
VASS. Then there is a constant c ∈ N such that f(n) ≥ (n − c)/c for every n ∈ N, n ≥ c.

Proof. Let f : N → N be any monotone function which is not essentially bounded for VASS.
Then there exists a VASS V that is f -reversal bounded, but not reversal bounded.

We first claim that then there exist two runs ρ and ρ′ such that ρ embeds into ρ′ via
a reversal increasing embedding. Towards a contradiction, suppose there is no reversal
increasing embedding between runs. Since ⊴ is a well-quasi ordering, the set of runs has a
finite set {ρ1, . . . , ρr} of minimal runs. Let R ∈ N be the maximal number of reversals within
the runs ρ1, . . . , ρr. Since every run of V embeds at least one of the minimal runs ρ1, . . . , ρr

and every embedding is not reversal increasing, every run of V has at most r reversals. Thus,
f is essentially bounded, against our assumption. This proves our claim. Thus, we have runs
ρ and ρ′ such that ρ embeds into ρ′ via some reversal increasing embedding σ.

Let us now show that f belongs to Ω(n). Suppose ρ and ρ′ are our constructed runs
such that ρ has action sequence t1 · · · tN . Moreover, for each m ∈ N, let τm

0 t1τm
1 · · · tN τm

N

be the action sequences resulting from amalgamating ρ and ρ′ exactly m times. Since σ is
reversal increasing, observe that τm

0 t1τm
1 · · · tN τm

N has at least m reversals. Moreover, if we
set e := |τ0| + · · · + |τN |, then the length of τm

0 t1τm
1 · · · tN τm

N is N + m · e.
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We have thus constructed, for every m ∈ N, a run of length N + m · e with at least m

reversals. We now claim that with c := e + N , we have indeed f(n) ≥ (n − c)/c for every
n ∈ N, n ≥ c. Our constructed runs yield f(N + me) ≥ m for every m ≥ 1. Therefore, if
n > N and n ≡ N (mod e), then f(n) ≥ (n − N)/e. Now for every n ∈ N, n ≥ c, we can
pick i ∈ [1, e] such that n − i ≡ N (mod e) and thus f(n − i) ≥ (n − i − N)/e. Since f is
monotone, this implies f(n) ≥ f(n − i) ≥ (n − i − N)/e ≥ (n − c)/c, as claimed. ◀

Proof of Theorem 1.2. Suppose f : N → N is a monotone function that is not essentially
bounded for VASS. According to Lemma 5.3, there is a constant c ∈ N such that f(n) ≥
(n − c)/c for every n ∈ N, n ≥ c. This already implies that f belongs to Ω(n). It remains to
argue that ReachVASS(f) is Ackermann-hard. This is simple: Given a VASS V0, we turn it
into a VASS V1 that begins by taking c empty steps, and afterwards, it simulates each step
of V0 by first taking c empty steps (i.e. steps that do not change any counters). Then V1 is
clearly f -reversal-bounded, because in any run of length n, there are at most (n − c)/c steps
that add a non-zero vector. Since reachability in VASS is Ackermann-complete [11,32,35],
this shows that reachability in f -reversal-bounded VASS is also Ackermann-complete. ◀
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