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Abstract
The classic online facility location problem deals with finding the optimal set of facilities in an online
fashion when demand requests arrive one at a time and facilities need to be opened to service these
requests. In this work, we study two variants of the online facility location problem; (1) weighted
requests and (2) congestion. Both of these variants are motivated by their applications to real life
scenarios and the previously known results on online facility location cannot be directly adapted to
analyse them.

Weighted requests: In this variant, each demand request is a pair (x, w) where x is the standard
location of the demand while w is the corresponding weight of the request. The cost of servicing
request (x, w) at facility F is w · d(x, F ). For this variant, given n requests, we present an online
algorithm attaining a competitive ratio of O(log n) in the secretarial model for the weighted
requests and show that it is optimal.

Congestion: The congestion variant considers the case when there is a congestion cost that grows
with the number of requests served by each facility. For this variant, when the congestion cost
is a monomial, we show that there exists an algorithm attaining a constant competitive ratio.
This constant is a function of the exponent of the monomial and the facility opening cost but
independent of the number of requests.
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1 Introduction

The facility location problem is one of the most well-studied problems in the field of algorithms
[14, 3, 17], where Meyerson [18] studied the online version of this problem where requests
arrive in a sequence and on arrival, the request must be allocated to a facility irrevocably
and a cost is incurred depending on the distance of the request from the allocated facility.
New facilities can also be opened on the arrival of a new request so that the current request
and future requests have a nearby facility to be allocated to. However opening facilities incur
a cost too and the goal is to minimize the total cost incurred.
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6:2 Online Facility Location with Weights and Congestion

To motivate the variants of online facility location we study, let us consider a plausible
real-life scenario where such an online facility location algorithm may be deployed. Suppose
the government is trying to set up vaccination centres in order to distribute vaccines depending
on incoming requests. While online facility location can model the problem, a few other
issues arise. For instance, one facility might not be able to satisfy a large number of requests
and depending on the number of requests, there may be congestion. Also, there may be
multiple vaccine doses resulting in weighted requests where each request needs to be satisfied
a certain number of times (for instance, some people might require 2 doses while others
require more1). There are numerous other real life applications of the facility location
problem. These additional variants involving congestion and weighted-requests have their
own costs which need to be taken into account when designing a solution and the classical
facility location problem may not be directly applicable in these cases. In this work, we
generalize the classical facility location problem to incorporate these extra variants and prove
matching upper and lower bounds. We study two variants of the classical facility location,
each incorporating one of these variants. We now define the classical online facility location
problem and these two variants formally.

1.1 Online Facility Location Problem

The facility location problem comprises of a set of requests {x1, x2, ..., xn} on a metric space
(M, d(· , ·)). The objective is to open a set of facilities F on this metric space. There is a
facility opening cost of f incurred for opening each such facility and a distance cost for each
request which is proportional to the distance of the request to its nearest facility. Naturally,
the objective is to open facilities such that the total cost incurred is minimum, where the
total cost incurred is given by

f · |F |+
n∑

i=1
d(xi, F )

where d(xi, F ) denotes the distance of xi to its nearest facility in F . This problem is known
to be NP-Hard [12].

The online variant of the facility location problem was first studied in detail by Meyerson
[18]. In this setting, a request, xi, needs to be allotted on its arrival to a facility, F , either
an existing facility or a newly-opened facility. The cost incurred on allotting the request
is the distance cost d(xi, F (i)) where F (i) refers to the set of facilities available at the time
of servicing request xi (including possibly the newly-opened facility). As in the offline
setting, opening new facilities costs f for every facility opened. Meyerson [18] constructed a
randomized algorithm, RFL (Randomized Facility Location), which attains a competitive
ratio of O(log n) in expectation. Later, Fotakis [9] proved that no online algorithm can attain
a competitive ratio better than Ω

(
log n

log log n

)
and also did an improved analysis proving that

RFL attains a competitive ratio of O
(

log n
log log n

)
in expectation.

Meyerson also showed that in the secretarial model (where the requests are adversarial
but the arrival order is uniformly at random), his algorithm attains a competitive ratio of 8.

1 We assume that these multiple requests must be served by the same facility else these multiple requests
may be treated as independent requests.
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1.2 The two variants and our results
Online facility location problem has many applications in real world. However, as observed
by the vaccination example, some of these applications may have additional constraints on
the classical online facility problem. In this paper, we study two variants incorporating these
additional constraints.

1.2.1 Variant I: Weighted Requests
In our first variant, we consider a setting of weighted requests, where each request xi arrives
with an additional weight wi. One may view this weight wi as the number of times the
request xi needs to be served or simply as a weight corresponding to a premium client.

Formally, a sequence of requests (xi, wi) arrive in an online fashion where xi is a point
in the metric space (M, d(· , ·)) while wi is a positive real number. On arrival, the request
(xi, wi) must be allocated to a facility, which could be one of the existing facilities or a
newly-opened facility. As before, the facility opening cost is f but the cost incurred on
allocating request (xi, wi) is d(xi, F (i)) · wi, instead of the usual d(xi, F (i)). If wi · d(xi, ·)
is also a metric, this can be handled by the classical case, but this may not always be the
case. As usual, the goal is to minimize the total cost incurred which is given by the following
expression:

f.|F |+
n∑

i=1
d(xi, F ) · wi.

Note, that while our motivating example suggested that the weights wi’s are positive
integers (corresponding to the number of times a request needs to be served), the above
formulation is more general and allows for any positive real number.

We first modify Fotakis’ lower bound to show that in the worst-case setting, no online
algorithm can attain a competitive ratio better than Ω(n) matching the naïve algorithm that
opens a new facility at every request. We then show that in the secretarial setting (when
the requests are adversarial, but the ordering is random), there is an online algorithm that
achieves a competitive ratio of O(log n), which we show is tight once again by adapting
Fotakis’ lower bound. Observe that these results prove that this variant is provably different
from the classical setting.

1.2.2 Variant II: Congestion
Our next variant incorporates the notion of congestion: if a facility is attending to multiple
requests, there is an additional cost that it has to pay, depending on the number of requests
it is attending to.

Formally, a sequence of requests xi arrives and on arrival, the request must be allocated
to a facility. Just as before, a facility may be opened in order to allocate xi. A distance cost
of d(xi, F (i)) is incurred and a facility opening cost of f is incurred every time a facility is
opened. As of yet, this is exactly same as the online facility location problem. However we
incorporate an additional congestion cost. If the facility to which xi is allocated to has k

requests allotted to it after xi is allotted, then a congestion cost of g(k)− g(k− 1) is incurred
in addition, where g is a convex non-decreasing function, satisfying g(0) = 0. We shall call g

as the congestion function. In this model, if a total of ℓ requests are allocated to a facility, a
total congestion cost of g(ℓ) is incurred and the goal is to minimize the total cost incurred.
Note that the total cost includes three components: facility-opening costs, allocation costs
and congestion costs.

FSTTCS 2023



6:4 Online Facility Location with Weights and Congestion

In this work, we prove results for the special case when g is a monomial. We show
that Meyerson’s algorihtm, RFL (Randomized Facility Location), can be modified to obtain
a O(log k∗/ log log k∗) competitive ratio, where k∗ = 2 · g−1

(
f

g(2)−2

)
. Note that this is

independent of n, the number of requests. We also show that this is tight up to a constant
by providing a matching lower bound.

A few words on the restriction of congestion function to monomials. Our results work for
any convex non-decreasing congestion function g that satisfies g(0) = 0 and g(a·b) = g(a)·g(b)
for all a, b. Hence, the assumption that g is a monomial. While the assumption that the
congestion function g is a monomial is restrictive, it is interesting that in this setting, we get
tight matching upper and lower bounds. It would be interesting to extend this proof to more
general convex functions.

1.2.3 Proof Techniques
While all the algorithms that we analyse are modifications of Meyerson’s algorithm RFL

and the lower bound analyses are inspired by Fotakis’ analysis, significant modifications are
needed to handle each variant.

For the weighted requests, as indicated earlier, we show that in the adversarial model, no
algorithm can attain a competitive ratio better than Ω(n), which is trivially achievable by
opening a facility for all the requests. Then we analyse this in the secretarial model, where
we are able to connect this problem to a problem on increasing sequences in a uniformly
random permutation. We obtain both the upper and lower bound of Θ(log n) by studying
properties of increasing sequences in random permutations. In particular, we reduce the
analysis of the algorithm to the analysis of a process related to permutations, which we refer
to as the Selection Process, which might be of independent interest. The Selection Process
has the property that if the input permutation is chosen adversarially, its cost can be as high
as Ω(n) while on a random permutation, the expected cost drops to Θ(log n).

For the model with congestion, we first show that the optimal offline algorithm (OPT )
will not allocate more than k∗ requests to a facility. Using this fact, we analyze any arbitrary
facility c∗ opened by OPT . We analyze the cost incurred by our online algorithm over the
requests allocated to c∗. We are able to split up this cost carefully into two components –
one component is simply the congestion cost while the other component has no congestion
cost involved. Using the fact that the facility c∗ has at most k∗ requests allotted to it, we
are able to attain a competitive ratio of O

(
log k∗

log log k∗

)
.

1.3 Related Work
Since many real-life problems are similar to facility location problems, it has received a lot
of attention. It has even been used as a tool to solve other online problems (like [13, 6]) .
The survey by Fotakis[10] gives a nice depiction of the problem and the general techniques
that one needs to be familiar with. Other modifications that have been studied, include a
setting where the facilities can themselves be moved with some cost [8], or the requests may
be deleted [7]. The latter paper also studies capacitated facility location, which assumes that
each facility can attend to at most a fixed number of requests. This is very similar to our
congestion model, but as the bounds suggest, these two problems seem to be different.

Similarly, there has been interest on making these algorithms deterministic. Anagnosto-
poulos, Bent, Upfal, and Hentenryck in their paper [2] show that there is an O(log n)-
competitive deterministic algorithm for online facility location. Later Fotakis in [10] showed
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a deterministic primal dual algorithm attaining O
(

log n
log log n

)
competitive ratio. More recently

Kaplan, Naori, and Raz in [16] show that when the requests arrive uniformly at random,
no online algorithm can achieve a competitive ratio better than 2 and a modification of
Meyerson’s algorithm achieves a competitive ratio of 3 in expectation.

Another interesting topic in online algorithms is to improve the performance based on
advice. This has been studied widely in [1, 4, 11, 15] and indeed one can have algorithms
with better competitive ratio if the advice is good.

One thing to note is that in all of these papers, the algorithms in most cases are
modifications of the original algorithm by Meyerson. The analysis is what makes these
problems interesting. This is true for our results as well where the algorithms are adaptations
of Meyerson’s algorithm however the analysis needs some novel ideas.

2 Facility Location with Weighted Requests

In this model, we assume that input requests are ordered pairs of the form (xi, wi) where xi

describes the position of the request while wi is the weight of the request. This could be the
model for how long the request stays in the system or the number of times the request has
to be serviced. The corresponding cost incurred is wi · d(xi, F ) (as opposed to just d(xi, F )).
Our results hold for arbitrary positive weight units, which need not be integers.

▶ Definition 2.1 (Weighted Online Facility Location). A sequence of n ordered pairs (xi, wi)
are given as input, where xi ∈M for some metric space M. Each such request needs to be
allocated to a facility in an online fashion. Opening a facility incurs a cost of f and allocating
a request (xi, wi) to a facility F incurs a cost of d(xi, F ) · wi. The goal is to open facilities
and allocate the requests in an online fashion such that the total cost incurred is minimized.

Here, the algorithm knows the metric space M but does not know n beforehand.
It is not hard to show that in the worst case setting, one can not expect to achieve

a competitive ratio better than Ω(n) (See Section 4.2 for more details), which is trivially
achievable by opening a facility on every request.

In light of the above, we study this setting in the secretarial model. Informally speaking,
the secretarial model is one where the requests may be adversarial but the order in which
they appear is uniformly at random. This ensures that the arrival order of the input requests
cannot be adversarial. In other words, while the n input requests may be arbitrary, the
secretarial model assumes that at each step all the remaining requests are equally likely to
arrive as the next request. For the secretarial model, we show the following matching upper
and lower bounds :

▶ Theorem 2.2. In the online facility location problem with weighted requests, no online
algorithm can obtain a competitive ratio better than Ω(log n) in the secretarial model.

▶ Theorem 2.3. For the online facility location problem with weighted requests, there exists
an algorithm attaining a competitive ratio of O(log n) in expectation under the secretarial
model.

The proof of lower bound is deferred to Section 4 and the upper bound is proved in
Section 5.

FSTTCS 2023



6:6 Online Facility Location with Weights and Congestion

3 Facility Location with Congestion

In this model, we consider a sequence of n requests x1, ..., xn from a metric space (M, d(·, ·))
endowed with a distance metric d. The goal is to open facilities when needed and assign
these incoming requests to the facilities. We assume we are given a congestion function g,
which is a convex non-decreasing function such that g(0) = 0. Opening a facility incurs a
cost of f , while assigning a request xi to a facility F containing k requests before xi was
assigned incurs a cost of d(xi, F ) + g(k + 1)− g(k). The additional g(k + 1)− g(k) is the
congestion cost at the facility due to the new request.

▶ Definition 3.1 (Online Facility Location with Congestion). A sequence of n requests, xi,
is given as input, where xi ∈ M for some metric space M. Each such request needs to be
allocated to a facility in an online fashion. Opening a facility incurs a cost of f and allocating
a request xi to a facility F containing k requests before xi was assigned incurs a cost of
d(xi, F ) + g(k + 1)− g(k). The goal is to open facilities and allocate the requests in an online
fashion such that the cost incurred is minimized.

In this paper, we consider congestion costs which satisfy g(a · b) = g(a) · g(b) (for example
a monomial). For this particular model, we prove the following :

▶ Theorem 3.2. In the online facility location problem with congestion,
1. There exists an online algorithm attaining a competitive ratio of O( log k∗

log log k∗ ) in expectation,

where k∗ := 2 · g−1
(

f
g(2)−2

)
, a constant independent of the number of requests.

2. Furthermore, no randomized online algorithm can achieve a competitive ratio better than
log k∗

log log k∗ .

For want of space, the proofs of these theorems is deferred to Appendix B.

4 Lower bounds for the weighted-request variants

In this section we shall first show that in the worst case setting, no online algorithm can attain
a competitive ratio better than Ω(n), which will be the motivation for us to consider the
secretarial setting where we shall then show that no online algorithm may have a competitive
ratio better than Ω(log n) in expectation. This will make our analysis of Theorem 2.2 tight.

For the worst case setting, we shall work with a particular sequence of input requests.
Then for the secretarial case, we shall use the same set of input requests assuming that the
order of arrival of these requests is uniformly at random. Hence, we will first describe this
set of requests.

4.1 The input for the lower bounds
The input requests will be constructed using a binary tree on a star metric. This is similar
to the lower bound presented by Fotakis [9].

There will be requests along the nodes of the tree2 in Figure 1, forming a path, starting
from the root node and all the way to a leaf node. In order to refer to this tree we shall use
the term “level”. The root node is at level 0, the children of the root node are level 1 and for
any node, its level is 1 added to the level of its parent node, all the way to the leaves being
level n− 1 nodes.

2 The metric used for this analysis is the shortest path metric on the binary tree. However this can be
embedded on the Euclidean Metric over R1. This was shown in [9].
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f/n

f/n3

f/n2

Figure 1 Tree of possible requests.

The tree will be such that the distance between consecutive nodes will keep decreasing
exponentially: the distance between a node at level i and a node at level i + 1 is f

ni+1 . We
shall have 1 request at each node: the request at the i-th level node will have weight ni.

For the worst case setting the requests will arrive in order of their levels - starting from
the root node all the way to the leaf node. For the secretarial setting, the requests will be as
mentioned but the arrival order will be uniformly at random.

4.2 Lower Bound in the Worst Case Setting
▶ Proposition 4.1. No online algorithm can attain a competitive ratio better than Ω(n).

Proof. For the mentioned input requests, an offline algorithm OFF may open 1 facility at
the leaf node and in which case the distance of the root node to facility is at most 2 f

n and
for a node in the i-th level, its distance will be at most 2 f

ni+1 from the leaf node. However
taking into account the weight, the cost for the i-th level node is at most 2 f

ni+1 .ni = 2 f
n

Hence the total cost paid by OFF is less than f +
∑n−1

i=0 2 f
n = f + 2f = 3f .

Let us now consider the performance of an online algorithm on this input. At every level
the algorithm must either

Open a new facility
Or pay a distance cost (taking into account the weight of the request) to its parent node
at the very least

This is because, when opening a new facility, the online algorithm may either open a facility
on the node of the current request (say vi) or try to guess future nodes and open a facility
somewhere in the subtree of the current level node request. Both of these will result in a
new facility nonetheless. Now if the algorithm tries to guess and open a future node in the
subtree (let us say left sub tree of vi) instead of opening a facility at the current node, the
adversary will select the next node for input request from the other subtree (right subtree of
vi) thus adversarially ensuring that guessing never gives the algorithm a correct future node.

This ensures that the algorithm does not have any available facility in the subtree of
the current request. Hence, if the algorithm decides to pay a distance cost, on an i-th level
request, instead of opening a facility anywhere, it must pay a distance cost at least to its
parent, f

ni with weight ni resulting in a cost of f . The other case consists of opening a
facility and in that case the algorithm incurs a cost of f anyway. Therefore the algorithm
incurs a cost of f for each level of the tree, resulting in a total cost of nf .

FSTTCS 2023



6:8 Online Facility Location with Weights and Congestion

One needs to also consider the case where the algorithm opens multiple facilities on a
requested node ensuring that both the subtrees have facilities in them. However in this case
the algorithm has already paid the facility opening cost multiple times. If the algorithm
opens k facilities on a requested i-th level node node (for k ≥ 2), the algorithm cannot ensure
that all the nodes in the i + (k− 1)-th level below have facilities in their subtrees (since there
are 2k−1 nodes at that level and 2k−1 ≥ k). This ensures that opening more than one facility
on one node request is not beneficial for the algorithm.

Now let us compare the cost of the optimal offline algorithm, OPT , to the cost of an
online algorithm. As we have already seen, the cost of any online algorithm is at least fn but
the cost of OPT is at most 3f ensuring that CA

COP T
≥ fn

3f = n
3 for any online algorithm A.

Notice that this proof works against deterministic algorithms only. In order to prove this
for randomized algorithms, we may use Yao’s principle where as input we select one path
among the 2n−1 paths uniformly at random. Alternatively, one can do this using the same
technique (Lemma 4.5, in particular) used in Theorem 2.2, hence we have skipped the proof
over here. ◀

A competitive ratio of n is trivially achievable by opening a facility on every request.
However now, the naturally interesting question is whether an online algorithm can perform
better if the input is secretarial.

4.3 Lower Bound in the Secretarial Setting
▶ Definition 4.2. In the secretarial model, we assume that the adversary decides the input
requests but not their arrival order. Instead after the adversary has decided the set of input
requests, the arrival order of the requests is uniformly at random.

Now, we shall give a proof for the lower bound in this setting.

Proof of Theorem 2.2. As mentioned earlier, we shall provide the same set of input requests
but now the arrival order will be uniformly at random.

Notice that this makes the problem easier for an online algorithm in the sense that if
an i-th level node is the first request to arrive, all the requests of level 0, 1, ..., i− 1 may be
deduced by the online algorithm from the i-th level node and hence it will not have to open
facilities for those requests when they arrive. Therefore we will not try to lower bound the
cost of the algorithm on a request at level i if another request of higher level had already
arrived earlier. However every time a node is requested such that no node below it has been
requested yet, we shall ensure that the online algorithm has to pay some cost.

First we shall look at online algorithms, A, such that if it opens a facility on a request, it
will open only at the location of the current request.

▷ Claim 4.3. Let A be an online algorithm such that on input requests, A would either
open a facility at the request location or not open a facility at all. Then A cannot have a
competitive ratio better than Ω(log n).

Proof of Claim. As discussed earlier, the input will be composed in the following fashion :
For an input of size n, we shall consider a binary tree on n levels : Tn.
Then we shall choose a leaf node uniformly at random among the 2n−1 leaf nodes.
There is a unique n length path connecting the root node to this leaf node.
The input will comprise of requests on these nodes such that a request on the i-th level
node will have weight of ni.
Also the distance between the i− 1-th level node and the i-th level node will be f

ni .
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Notice that since we are in the secretarial model, these requested nodes (with corresponding
weights) will arrive uniformly at random. Let us suppose that there are k requests v1, v2, ..., vk

such that on arrival of the request vi, it is the highest levelled node (or in other words, the
lowest placed node in the tree structure) that has arrived till then.

Then for each of those requests, vi, the online algorithm must either open a facility there
or pay a distance cost with weight. Also, we have the guarantee that the nearest open facility
available to the requested node is at least as far away as the distance to its parent node and
hence when multiplied by the weight, the cost is exactly f , which is the same cost incurred
for opening a facility. Therefore every time a request arrives such that no node of higher
level has arrived yet, the online algorithm has to pay a cost of f . To finish off our proof we
just need the following lemma:

▶ Lemma 4.4. Let S := [n] be the set containing the numbers 1 through n. Let π be a
uniformly at random permutation of the set S. Let kπ be the number of times that the i-th
element in the permutation π is the largest element observed till then. Then Eπ[kπ] = Θ(log n).

Proof. Let Xi be a random variable such that

Xi =
{

1 if πi > πj for all j < i

0 otherwise.

Notice that P[Xn = 1] = 1
n since Xn will be 1 if and only if πn = n which has probability

1
n . Also, conditioned on πi+1, πi+2, ..., πn, the probability that Xi = 1 is 1

i since no matter
what πi+1, ..., πn are, πi will be the largest among π1, π2, ...πi with probability 1

i . Hence
E[kπ] = E[

∑
Xi] =

∑
E[Xi] =

∑ 1
i = Θ(log n). ◀

This Lemma 4.4 gives us that in the secretarial input model, in expectation there will
be Θ(log n) requested nodes such that they were the highest levelled nodes on their arrival.
Hence cost of online algorithm A would be Ω(f · log n) compared to the offline optimal
algorithm whose cost is at most 3f as we had calculated earlier (Here we are using the fact
that the cost of the offline algorithm is the same for the secretarial input model as was for
the non-secretarial model). Therefore the competitive ratio of online algorithm A is Ω(log n).

◁

Now we consider the case that an online algorithm may not only open facilities at requested
nodes but it may also open a facility at a nearby location instead of opening the facility
exactly on the request. This potentially allows the online algorithm to guess future nodes
and maybe reduce the cost. We shall look at the same input that we worked with, in the
Claim 4.3, and observe that such a guessing algorithm cannot do much better in expectation.

▶ Lemma 4.5. Let Tn be a binary tree with a path chosen uniformly at random from the
root node to a leaf node. If a node, v, of this path is revealed, and an algorithm A opens a
facility in the subtree of v, the guess will match with the actual path on 2 nodes (apart from
v) in expectation.

Proof. Since the path was chosen uniformly at random, A can guess the next level node
with probability 1/2. Also, 2 nodes can be guessed correctly by A with probability 1/4 and
continuing in this fashion, the probability that A’s guess matches with the path on i nodes
is at most 1

2i .

FSTTCS 2023



6:10 Online Facility Location with Weights and Congestion

Therefore the expected number of nodes that A can guess correctly by opening a facility
is at most

S :=
∞∑

i=1

i

2i
.

Firstly, we can use Ratio Test to observe that this series is actually converging. Then we
notice that

2S =
∞∑

i=1

i

2i−1 =
∞∑

i=0

i + 1
2i

= 1 +
∞∑

i=1

i + 1
2i

= 1 +
∞∑

i=1

i

2i
+

∞∑
i=1

1
2i

= 1 + S + 1

=⇒ S = 2 . ◀

This means that every time the algorithm A receives a node which is the highest level till
then, it has the choice to pay a distance cost with weight, or open a facility at the request
itself or opening a facility in the subtree of the node, guessing future nodes. We have already
seen the competitive ratio for algorithms that do not guess future nodes. Let k be the number
of nodes observed such that they were the highest levelled nodes seen on their arrival. Then
we had seen that an algorithm that does not guess incurs a cost of f each time resulting in a
cost of k · f and then we had observed that the expected value of k is of the order of log n to
obtain the final competitive ratio.

Now however the algorithm may guess the future nodes and potentially incur a less cost.
Let k be the number of nodes observed such that they were the highest levelled nodes seen
on their arrival. Then we can show that A must incur a cost of f · k

3 at least, in expectation.
If A incurs a cost less than f · k

3 , then algorithm A has opened < k
3 facilities, and hence has

< k
3 guesses. Therefore the total number of nodes that A has guessed correctly is < 2 · k

3 in
expectation (Using Lemma 4.5). Note that on the arrival of node, say v, even if the algorithm
A might guess a node, say v1, correctly (Where v1 lies in the subtree of v), it may not reduce
the cost incurred by A. This is because the next highest levelled node to arrive might be
a child of v1 in which case A needs to pay a cost of f anyway. In other words, correctly
guessing a node might not reduce the number of highest levelled nodes observed, because the
nodes guessed correctly might not be the highest levelled nodes to arrive. Therefore, taking
into consideration the < k

3 nodes that A has paid for and the nodes that A has potentially
guessed correctly, A has satisfied < k

3 + 2k
3 = k nodes in expectation (even after considering

facilities opened, correctly guessed nodes and distance costs paid). This cannot be the case
since A has to satisfy all the k nodes which were the highest levelled nodes on arrival.

Therefore A must incur a cost of f · k
3 at least, in expectation. Since k = Θ(log n) in

expectation (Using Lemma 4.4), A must incur a cost of Ω(log n) in expectation. ◀

5 Upper Bound for Weighted-Requests in the Secretarial Setting

Now we shall focus our attention on the setting with weighted requests and present the proof
of Theorem 2.3.

In order to show this we will reduce the problem to a completely different problem, which
we shall call The Selection Process. This is a novel idea and connecting the Weighted Facility
Location Problem to the Selection Process is what allows us to get a tight upper bound of
O(log n).
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▶ Definition 5.1 (The Selection Process). Let S = [n]. A sequence of (pi, ji) arrive in an
online fashion where pi ∈ [0, 1]n is a vector of probabilities and ji ∈ S for i ∈ [n]. The first
pair to arrive is (p1, j1) and we shall select the element j1 with probability p1,j1 .

Similarly, on input (pi, ji), we shall select the element ji with probability pi,ji
but only if

the element ji is greater than the previously selected numbers.
Also, for all 1 ≤ i ≤ n − 1, and ji ∈ S, we shall assume that pi,ji

≥ pi+1,ji
. The final

quantity that we want to compute is the expected number of selected elements.

Let us first consider the case when the adversary selects both the pi’s and the ji’s. In
this setting one can see that in the worst case, there can be as many as n elements selected.
For this, consider the probability vectors pi’s to be all 1’s throughout and the element arrival
order be j1 = 1, j2 = 2, ..., jn = n. In this case, all the elements will be selected.

Hence, let us consider the case when the adversary decides the probability vectors pi’s
(satisfying the constraint of pi,ji ≥ pi+1,ji) however the arrival order of the requests is
uniformly at random. That is, we take a permutation, π of [n] uniformly at random and at
step i, the element appearing is πi. In this secretarial setting, one can show that no matter
what probabilities the adversary chooses, the number of selected elements is O(log n) in
expectation.

▷ Claim 5.2. The number of selected elements in The Selection Process is O(log n) in
expectation.

We shall prove Claim 5.2 later.

▶ Remark 5.3. Notice that the selection process does not necessarily choose the longest
increasing subsequence since the longest increasing subsequence in a uniformly permuted
array, is of the size of Θ(

√
n). It is actually enough to observe that this is Ω(n), which follows

from Erdős–Szekeres theorem [19].
On the other hand, Lemma 4.4 tells us that greedily selecting the largest element gives

us an increasing subsequence of size Θ(log n).
However the adversary may manipulate the probability vectors pi’s in a manner to make

the largest increasing subsequences to be more likely to be picked. Indeed, in Remark 5.4,
we show that if the probability vectors aren’t enforced to be non-increasing, the adversary
can make sure that there are Θ(

√
n) selections in expectation. This is why the Claim 5.2 is

of utmost importance.

▶ Remark 5.4. The fact that for all j ∈ S, and 1 ≤ i ≤ n − 1, we require pi,j ≥ pi+1,j is
necessary. One may look at the example where the first

√
n probability vectors are such

that they have 1 in their first
√

n terms and 0 everywhere else. The next
√

n probability
vectors have their first

√
n terms 0, next

√
n terms as 1 and all 0’s after that. This continues

for
√

n many blocks of probability vectors, each with their corresponding block of 1’s and
remaining 0’s. It is easy to see that given these probability vectors and a uniform arrival
order of elements, one can expect Θ(

√
n) elements to be selected in The Selection Process

and O(log n) would have been unachievable.

First, let us present our algorithm for facility location with weighted requests. Then we
shall analyse the competitive ratio and see where The Selection Process comes in.
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Algorithm 1 Weighted Randomized Facility Location (WRFL).

1: procedure WRFL(xi,wi) ▷ Input request is xi with weight wi

2: Fi ← Nearest facility to xi

3: pi ← min{1, d(xi,Fi)×wi

f }
4: With probability pi open a new facility at xi and allocate xi to it
5: With probability 1− pi, assign xi to Fi

6: end procedure

While algorithm WRFL is a simple modification of Algorithm 2 (Meyerson’s Algorithm
RFL, which we describe later), the analysis is completely different. The analysis of RFL

does not go through because of the weight component. This is also apparent from the fact
that the competitive ratios are of different order : log n for WRFL while log n

log log n for RFL.
Hence the entire structure of the analysis is different.

Now, we shall prove Theorem 2.3 for the Algorithm 1 in particular.

Proof of Theorem 2.3. In order to analyse the algorithm, we shall divide the run of the
algorithm into what we shall define as phases. However before that, we shall set up some
notations and observe a few properties.

Let c∗ be a facility opened by OPT and let Sc∗ be the set of requests that OPT assigns
to c∗. Also when we say that an algorithm incurs a cost of C over a subset of requests, say
T , we will look at each request in the subset T and note how much the algorithm paid for
that request when allocating it- be it distance cost or facility opening cost. For example,
if the algorithm allocates the request to a facility which was already opened on a previous
request, not from T , then we just take into account the distance cost without considering
the facility opening cost for that facility.

We may focus our attention on one facility c∗, opened by OPT and look at the set of
requests Sc∗ that OPT assigns to c∗. It is easy to see that analysing one such cluster is
sufficient for our analysis (an explanation is provided in the extended paper [5]). For the
sake of convenience, we shall refer to this set of requests as S, whenever we mean Sc∗ .

Now, in order to analyze this, we shall define the phases of the algorithm.

▶ Definition 5.5. Corresponding to the facility c∗, opened by OPT , the run of the algorithm
WRFL can be divided into phases as follows :

The algorithm is said to be in Phase 0 until WRFL opens a facility, say F1, on a request
in S, at which point phase 1 starts.
Phase 1 starts when WRFL opens its first facility on a request of S (which we called
F1) and continues until WRFL opens another facility, say F2 on a request of S and this
facility is closer to c∗ than F1.

...
Phase i starts when WRFL opens a facility Fi and continues until WRFL opens another
facility, say Fi+1, on a request of S and this facility, Fi+1, is closer to c∗ than Fi.

Observe that this definition of Phase is valid for the given cluster of requests S. With
respect to another cluster, the phases would be different. Also, the algorithm does not know
about the phases, it is only well defined during the analysis of the algorithm. Just to get
a clear idea, we can note that the number of phases depends not only on which requests
WRFL opens a facility on, but it also depends on the arrival order of the requests.
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c∗

Fi

Fi+1

Figure 2 Phase i starts when Facility Fi is opened and ends when Facility Fi+1 is opened where
by definition Fi+1 should be closer to c∗ than Fi. All the requests in Phase i are shown in red dots.
They may be closer or farther away from Fi with respect to c∗. The only guarantee that we have is
that the first request closer than Fi that results in a facility opening would change the phase to i + 1.

▶ Lemma 5.6. Consider a set of requests, S, assigned to the same facility by OPT . Assume
that the request arrivals and WRFL’s random choices are such that there are k phases. Then
the cost ratio, for the requests in S, of WRFL to OPT is O(k) in expectation.

Proof. Let us first compute the cost of OPT over the requests in S. We note first that OPT

has only opened one facility for these requests, at c∗. This constitutes a cost of f . Other
than this, OPT incurs a cost of C :=

∑
xi∈S d(xi, c∗) · wi .

To complete the proof, we shall use two properties in order to analyse the cost of WRFL.

▶ Property 5.7. Let X = {(x1, w1), (x2, w2), . . . , (xm, wm)} be a subsequence of m requests.
Then WRFL, in expectation, pays a cost ≤ f before it opens the first new facility in X.

(This holds even if there are several open facilities at the beginning and even if new
facilities are opened between two requests in the subsequence)

▶ Property 5.8. On input request (xi, wi), let F be the nearest facility to xi. Then the cost
that WRFL pays in expectation for the request (xi, wi) is at most 2d(xi, F ) · wi.

The proofs of these two Properties have been studied in earlier works (e.g. [9, 10]), but
for the sake of completion we have added them in Appendix C.

Using Property 5.7, algorithm WRFL would incur a cost of f in expectation before it
opens a facility on a request of S. This would result in phase changing from Phase 0 to
Phase 1. Now let us say that we are at Phase i and we want to estimate WRFL’s cost over
the requests in Phase i, where Phase i started when WRFL opened a facility Fi. Here Fi is
closer than Fi−1 to c∗, by construction.

Type 1 requests. Let S1 be the set of requests such that d(c∗, x) < d(c∗, Fi) for all x ∈ S1.
Then using Property 5.7, algorithm WRFL pays a cost of f in expectation over requests
in S1 before it opens a facility Fi+1 on a request with d(c∗, Fi+1) < d(c∗, Fi). This event of
opening a facility ends up changing the phase from i to i + 1. Hence for phase i, requests
closer to c∗ than Fi incur a cost of at most f in expectation.
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Type 2 requests. Let S2 be the set of requests such that d(c∗, x) ≥ d(c∗, Fi) for all x ∈ S2.
Now observe that OPT incurs a cost of d(c∗, x) · wx for the request x (Where wx denotes
the weight of the request x). Let us now try to estimate the cost incurred by WRFL for
this request x. Here, WRFL has an open facility Fi and d(Fi, x) ≤ d(x, c∗) + d(c∗, Fi)
using triangle inequality. Also, d(c∗, x) ≥ d(c∗, Fi) by assumption. So d(Fi, x) ≤ d(x, c∗) +
d(x, c∗) = 2d(x, c∗). Therefore the nearest facility to x for WRFL is at most at a distance of
2d(x, c∗). Hence by Property 5.8, the cost incurred by WRFL for the request x is at most
4d(x, c∗)× wx in expectation, which is 4 times the cost incurred by OPT itself.

Hence the total cost of Type 2 requests for WRFL is at most 4C in expectation (Where
OPT had incurred a cost of f + C for the requests in S). On the other hand, WRFL incurs
a cost of f for Type 1 requests in expectation, for each phase. Also WRFL incurs a facility
opening cost of f for each phase. Therefore the total cost incurred by WRFL is at most
2k ·f +4C in expectation. This results in an expected competitive ratio of 2k +4 = O(k). ◀

▶ Lemma 5.9. The expected number of phases is O(log n).

Proof. In order to view this we will reduce the problem to The Selection Process (Defini-
tion 5.1), which we had mentioned earlier.

We shall also assume the Claim 5.2 for now and finish the proof of Lemma 5.9, after which
we shall give a formal proof of Claim 5.2. Let the requests in S be ordered in decreasing
distance from c∗ and labelled accordingly. Thus x1 is the request farthest from c∗, x2 is the
second farthest request and so on till xn which is the request nearest to c∗.

Just before the first request from S arrives online, there may be open facilities due to
other requests. Given the configuration of the facilities (opened by WRFL) at this stage,
each request xi ∈ S has a certain probability of opening a facility if it were the first request
to arrive in S. This vector of probabilities will be our p1 with p1,i being the probability for
xi opening a facility, if it was the first request to arrive. Now one of the requests xπ1 , arrives
uniformly at random. The index of the request arriving corresponds to the element arriving
in The Selection Process. Note that the vector of probabilities thus generated, depends on
the previous requests and whether these requests have opened new facilities or not. However,
this still adheres to the Selection Process, as long as the requests arrive uniformly at random.

At any stage when the i-th request xπi
arrives, we can similarly compute the vector pi

and also this request would change the phase only if a facility is opened there and also if
it is nearer to c∗ than all the other opened facilities, which corresponds to the index of the
request being larger than the indices of all the opened facilities. So, any time the phase
changes, a facility is opened which is nearer to c∗ than all previously opened facilities. This
corresponds to the element being selected in the Selection Process.

Also while these probability vectors may be arbitrary, the probability of opening a facility
on a particular request can only decrease over time. This is because if the request arrives
later on, it can potentially have nearby facilities, reducing the probability of opening a facility
but this probability of opening a facility cannot increase with time, implying pi,j ≥ pi+1,j .

Therefore, if we can show that the number of selected elements in The Selection Process
is O(log n) in expectation, then we would have shown that the number of phases is O(log n)
in expectation, as was required. ◀

Using Lemmas 5.6 and 5.9, it follows that the competitive ratio of WRFL is O(log n). ◀
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Proof of Claim 5.2. In order to prove this, we shall reduce the problem one more time.
Notice that the i-th element to arrive is πi and is selected with probability pi,πi

, if no
larger element has yet been selected. We can view the selection probability of πi as

pi,πi
= p1,πi

× p2,πi

p1,πi

× p3,πi

p2,πi

× ...× pi,πi

pi−1,πi

.

Since pj,ℓ ≥ pj+1,ℓ for all j (by definition), each of the terms pj+1,πi

pj,πi
is less than or equal to

1. Hence we can view the terms, pj+1,πi

pj,πi
, as probabilities.

Now just before the first element π1 arrives, we can toss random coins for each i such
that the i-th coin is 1 with probability p1,i. Given that π1 is the first element to arrive, we
can look at the realization of p1,π1 and select it if it is 1.

Now just before the second element arrives, we can toss random coins for each i such that
the i-th coin is 1 with probability p2,i

p1,i
. Now, after observing π2, the second element to arrive,

we can look at the realizations of p1,π2 and p2,π2
p1,π2

and select the element π2 only if both the
entries are 1, and additionally if π2 > π1. Notice that π2 is selected with probability p2,π2 in
this manner, as needed.

Similarly this process continues for the i-th element arriving, πi, for all i ≥ 3. Here we toss
random coins for each element i that are 1 with probability pi,πi

pi−1,πi
and we take into account

the realizations of the previous coin tosses of probability pi′,πi

pi′−1,πi

(for all i′ < i). The element
πi is selected only if all of the realizations are 1 and πi is larger than all selected elements.
One can see that selecting the elements in this manner produces the same probability of an
element being selected.

However now we can state that an element πi that has not yet arrived will certainly
not be selected on its arrival if even one of the realizations pi′,πi

pi′−1,πi

or p1,πi happens to be 0
(where i′ < i, since πi has not yet arrived), also we can say that the element πi will certainly
not be selected on its arrival if an element larger than πi has already been selected.

Let us take one such array A[.][.] of realizations of the probabilities. Where A[i][j] is 1
with probability pi,j

pi−1,j
. On the arrival of an element, πi, we look at the πi-th column and

select the element πi only if all the first i entries of the column are 1. Hence once a 0 appears
in a column, that element will certainly not be selected and instead of tossing further coins
for the element, we shall set all the remaining entries in the column to be 0. This maneuver
does not alter the probability of any arriving element being selected. Also if a larger element
had already been selected, the corresponding element will certainly not be selected.

▷ Claim 5.10. Let i be the first index when selection happens and πi be the first element to
be selected. Then either E[πi] ≥ n

3 or the i-th row of A has at least n
3 entries as 0.

Proof. Let the i-th row of A have at least 2n
3 entries as 1. This means that the columns

corresponding to those 2n
3 entries have 1 throughout, for the first i entries. We shall then

conclude that E[πi] ≥ n
3 to complete this proof.

Let c1, c2, ..., ck be the columns of A with 1’s throughout till the i-th row. By our
assumption, k ≥ 2n

3 . Under the condition that the first element to be selected is the i-th
element, the expected value of the selected element equals

E[πi]
(1)= 1

k

k∑
j=1

cj

(2)
≥ 1

k

k∑
j=1

j = k + 1
2 ≥

2n
3 + 1

2 ≥ n

3 .
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Figure 3 Array A of probabilities.

Equality (1) follows from the fact that because of the secretarial model, all the elements
cj are equally likely to be the i-th element. Since the i-th element, πi, is the first selected
element, πi has to be one of the elements {c1, c2, ..., ck} only. Also none of the elements cj

have appeared earlier, else they would have been selected first. Hence all of those k elements
are equally likely to be πi.

Inequality (2) holds because all the k elements are distinct integers from [n]. Therefore
the sum will be the smallest when the k elements are 1, 2, ..., k.

Hence we have that if the i-th row of A has at least 2n
3 entries as 1 then E[πi] ≥ n

3 , which
proves our claim. ◁

Applying Claim 5.10 recursively completes the proof. When the first element is selected, in
expectation there will be n

3 elements that cannot be selected - either because they are smaller
than the element picked or because they already have 0’s in their columns in A. Therefore we
can discard all those elements that can no longer be selected - meaning, if element j can no
longer be selected we may remove the j-th row and the j-th column from the matrix A. Now
we will have a smaller matrix, A1[.][.], leaving apart the rows and columns of the discarded
elements. On this matrix, A1, we shall again apply the Claim 5.10 to discard 1

3 fraction of
its elements in expectation, when the next element is selected. This process continues and
Claim 5.10 states that each time an element is selected, 1

3 rd of the remaining elements are
discarded in expectation. Hence this process ends in O(log n) many steps in expectation. In
other words, the number of elements selected is O(log n). ◁
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A Randomized Algorithm for Online Facility Location

Here, we mention the algorithm, RFL, as suggested by Meyerson[18], to illustrate the
motivation behind our algorithms.

Algorithm 2 Randomized Facility Location (RFL).

1: procedure RFL(xi) ▷ Input request is xi

2: Fi ← Nearest facility to xi

3: pi ← min{1, d(xi,Fi)
f }

4: With probability pi open a new facility at xi and allocate xi to it
5: With probability 1− pi, assign xi to Fi

6: end procedure

B Facility Location with Congestion (with proofs)

In this section, we restate our results on congestion and provide the necessary proofs. First,
let us recall Definition 3.1, where we defined Online Facility Location with Congestion. Also,
note that in this paper, we consider congestion costs which satisfy g(a · b) = g(a) · g(b) (for
example a monomial). For this particular model, we prove the following :

▶ Theorem B.1. In the online facility location problem with congestion,
1. There exists an online algorithm attaining a competitive ratio of O( log k∗

log log k∗ ) in expectation,

where k∗ := 2 · g−1
(

f
g(2)−2

)
, a constant independent of the number of requests.

2. Furthermore, no randomized online algorithm can achieve a competitive ratio better than
log k∗

log log k∗ .
In the rest of this section, we first prove the Lower Bound for the Worst Case input in
Appendix B.1. Then we prove that the same bound is achieved, in expectation, by a
randomized algorithm in Appendix B.2. However before we do these, we shall make a key
observation that in the congestion model, an offline optimal algorithm will not allocate too
many requests to a single facility.

Let k′ be the smallest integer such that g(k′ + 1) − g(k′) ≥ f . If an online algorithm
allocates k′ + 1 requests to one facility then the congestion cost for the k′ + 1-th request
itself is g(k′ + 1)− g(k′) ≥ f . So no online algorithm needs to put more than k′ requests in
a facility as it might as well open a new facility and incur less cost.
The above reasoning holds for offline algorithms too and specifically for the offline optimal
algorithm, OPT . However we can give an even better bound when considering OPT. For
this we shall assume that the congestion function satisfies g(a · b) = g(a) · g(b).

▷ Claim B.2. Any facility opened by OPT has at most k∗ := 2 · g−1
(

f
g(2)−2

)
requests

allotted to it.

Proof. Let F be a facility opened by OPT with k requests in it. Since OPT did not split
the k requests into two facilities but kept them in a single facility, it must be the case that
splitting them into two facilities costs more. Notice that the cost paid if two facilities are
opened is ≥ 2f + g(a1) + g(a2) in addition to some distance cost, where a1 + a2 = k. Since g

is a convex non-decreasing function, we have g(a1) + g(a2) ≥ 2g
(

k
2
)

(Here we have assumed
that k is even, else we can look at k− 1 instead of k). Also opening two facilities means that
the total distance cost is lesser compared to opening only one facility. Hence we can conclude
2f + 2g

(
k
2
)
≥ f + g(k) . Since we are working under the assumption that g(a · b) = g(a) · g(b),

we can now write f ≥ (g(2) − 2)g
(

k
2
)

=⇒ k
2 ≤ g−1

(
f

g(2)−2

)
=⇒ k ≤ 2.g−1

(
f

g(2)−2

)
.

◁
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B.1 Lower Bound
Here we shall present a proof of Theorem B.1-Item 2. The proof will be along the same lines
as the previous lower bound proof.

Proof of Theorem B.1-Item 2. Consider a binary tree of depth h. The distance between
root node and its children is f

h but the distance keeps decreasing as we traverse down the
tree. The distance between any level i node and its child will be f

hi+1 , where we will decide
later what h to choose. The input will comprise of 1 request at root node, followed by h

requests at a node at level 1, and so on, with hi requests for some node at the ith level. The
requested nodes will form a path from the root node to a leaf node, say ℓ. Also there will be
a total of n = 1 + h + h2 + ... + hh−1 = hh−1

h−1 requests.
One may use this sequence of requests to obtain the required lower bound. Due to lack

of space, the proof has been skipped here. The full version of the paper [5] contains the
complete proof. ◀

B.2 Upper Bound
We have already seen a lower bound of the online facility location problem with congestion.
Now we will present an algorithm to solve the online facility location problem with congestion
and study the upper bound. We shall present an algorithm that asymptotically attains the
same competitive ratio as suggested by the lower bound, making our analysis tight.

We shall present this algorithm as a modified version of RFL. Then we shall study the
modified algorithm and try to compare the competitive ratio of the modified algorithm with
congestion to the competitive ratio of the original algorithm without congestion.

However notice that the lower bounds for the competitive ratio is different for the case
with congestion as compared to the original case without congestion. As we have seen earlier,
the lower bound for the competitive ratio is log k∗

log log k∗ , when we are looking at online facility
location with congestion. However in the original setting without congestion, the lower
bound was log n

log log n , which as we have seen is attained by RFL in expectation. Intuitively,
the reason why we will be able to go from n to k∗ is because in the congestion model we
have the guarantee that OPT will not have more than k∗ requests allocated to any facility
so if we take one facility opened by OPT and consider the requests allotted to it, we can
expect to somehow get a competitive ratio of log k∗

log log k∗ . After that we will just have to show
that the competitive ratio holds true even when there are multiple facilities opened by OPT .

We shall use the algorithm RFL as a black box in order to obtain this modified algorithm,
which we shall name MRFL.

Algorithm 3 Modified RFL (MRFL).

1: procedure MRFL(xi) ▷ Input request is xi

2: On input request xi, run algorithm RFL on the current state for the input xi and
perform the same action.

3: if Any facility, F , has k∗ requests allocated to it then
4: “Close” facility F

5: Open a new facility at the same location as F

6: end if
7: end procedure

We shall now prove Theorem B.1-Item 1, in particular for the Algorithm MRFL.

FSTTCS 2023
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Proof of Theorem B.1-Item 1. Firstly, by closing a facility, we mean that no more requests
will be allocated to the facility anymore by the algorithm. No change in the model is assumed
since the facility still exists: just that the algorithm will not allocate any more requests to
it. Since another facility is opened right after a facility closes, at the same exact location,
for future queries the algorithm will have this new facility available. Therefore the actions
taken by RFL in the model without congestion (For e.g., allocating a request to a facility
which has now become “closed”) can always be performed by MRFL in the model with
congestion (Since the “closed” facility has another facility open at the exact same location).
Also apart from the extra facilities opened by MRFL in step 5, the actions taken by RFL

and MRFL are identical. This means that the distance cost paid by the algorithm RFL on
a model without congestion is the same as the distance cost paid by the algorithm MRFL

on a model with congestion whenever the sequence of input requests is the same. We cannot
say the same for the facility opening cost though, since the algorithm MRFL opens excess
facilities in step 5. However if we separate the facilities opened by MRFL into two categories
: facilities opened by MRFL in step 2 and facilities opened by MRFL in step 5, we will
notice that the number of facilities opened by MRFL in step 2 is equal to the number of
facilities that RFL would have opened in the congestion free model for the same sequence of
input requests. Visually, the total number of points in the metric space where a facility is
opened is same for MRFL and RFL, just that MRFL might have multiple facilities opened
at a few points in the metric space. Also the congestion cost is something that only MRFL

has to pay and RFL does not need to pay since RFL runs on a congestion free model.
Based on this observation, we shall now try to divide the total cost paid by MRFL into

two parts. Let C be the total cost paid by MRFL over the entire sequence of input requests.
Let C1 be the total distance cost paid by MRFL plus the total facility opening cost paid by
MRFL for facilities opened in step 2 of the algorithm. Let C2 be the total congestion cost
paid by MRFL plus the total facility opening cost paid over all facilities opened in step 5 of
the algorithm.

Clearly C = C1 + C2 and hence we can write the competitive ratio of algorithm MRFL

as

µ = C

COP T
= C1 + C2

COP T
.

where COP T is the cost paid by an optimal offline algorithm on the same sequence of input
requests.

▷ Claim B.3. If the total number of input requests is n then the cost C2 incurred by
algorithm MRFL is at most n

k∗ f
(

1 + g(2)
g(2)−2

)
.

Due to lack of space, the proof of this claim has been omitted. It can be found in the
extended version of this paper [5].

At this point, using Claim B.2, we can say the OPT must open at least n
k∗ facilities and

hence COP T ≥ n
k∗ f . Also using Claim B.3, we know that C2 ≤ n

k∗ f
(

1 + g(2)
g(2)−2

)
. Therefore,

C2

COP T
≤ 1 + g(2)

g(2)− 2 . (1)

Hence we can focus our attention on C1
COP T

, since C2
COP T

is a constant. Let us first try
to understand what these terms represent. C1 represents the total distance cost paid by
the algorithm MRFL plus the facility opening cost for facilities opened in step 2 of the
Algorithm 3. We notice that the distance cost paid by MRFL over a sequence of input
requests is equal to the distance cost paid by RFL over the same sequence of input requests
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in the model without congestion. Also, the number of facilities opened by RFL is the
same as the number of facilities opened by MRFL in step 2 by construction. Hence C1, in
expectation, is the cost paid by RFL on the same sequence of input requests in the model
without congestion.

However the denominator COP T is the cost paid by OPT for the same sequence of input
requests in the model with congestion. One thing to note here is that if the denominator
was the cost paid by OPT without congestion, we would have been stuck because then this
ratio would have been µ(n) := log n

log log n , which is much larger than the competitive ratio of
log k∗

log log k∗ we are trying to achieve.
At this point we would have ideally liked to say that since OPT allocates at most k∗

requests to any facility, let us take any particular facility c∗ opened by OPT . If we looked
only at the requests allotted to c∗ by OPT , the cost paid by algorithm RFL is at most
µ(k∗) times the cost paid by OPT had the input been only these requests allotted to c∗ by
OPT . However the input actually comprises of several such clusters, where each cluster is
the set of requests that were allocated to the same facility by OPT . While it is true that
the competitive ratio would have been µ(k∗) if the input was only one such cluster, it is not
clear if that will be the case for the entire input sequence. This is because while OPT ’s cost
over the entire input sequence is exactly the sum of costs of the clusters, RFL might end up
paying more on the entire input when compared to RFL’s costs on the clusters individually
(had the input been just the cluster), summed up.

More formally, let us view the entire input sequence of length n as clusters of input
sequences where each such input sequence corresponds to the requests allotted to a given
facility. That is n =

∑
j aj , where aj is the number of requests allotted to the j-th facility.

Also, we know that aj ≤ k∗ for all j. Additionally had the input been just the aj requests,
C1

COP T
would have been less than µ(k∗). Now that the various clusters are given as input

together, the cost paid by OPT is exactly the sum of the costs of the clusters separately.
However for the online algorithm RFL the cost paid on the entire input might be more than
the sum of the costs over the clusters (assuming that the input was just the cluster). Our
initial guess was that this cost C1 over the entire sequence might still be less than some
constant times the sum of the costs of the clusters individually. However we have been unable
to prove this.

We observe that the denominator has OPT ’s cost in the model with congestion. So
OPT would have at most k∗ requests allotted to any facility (Using Claim B.2). Let us now
concentrate on any facility opened by OPT and look at the requests that are allocated to
the facility. So let us write S = S1 ∪ S2 ∪ ... ∪ Sk, where S is the entire collection of input
requests and Si is the set of input requests that were allotted to a particular facility and k is
the total number of facilities opened by OPT . Let CSi

represent the cost paid by OPT in
the model with congestion if the input was just Si instead of S and let C̃Si

represent the cost
paid by OPT if the input was Si in the model without congestion. Similarly let C1Si

be the
cost paid by RFL (recall that for this we are only looking at the model without congestion)
over the requests in Si but when the input is the entire input S.

C1

COP T
= C1∑

i CSi

≤ C1∑
i C̃Si

=
∑

i C1Si∑
i C̃Si

≤ max
i

{
C1Si

C̃Si

}
. (2)

Here the denominator, C̃Si
is the cost paid by OPT if the input was Si in the model without

congestion. However the numerator is C1Si
, which is the cost paid by RFL in the model

without congestion when the input is the entire input S. Had the numerator been the cost
paid by RFL in the model without congestion when the input is just Si, we would have
stated that this is exactly µ(|Si|). Also since |Si| ≤ k∗ for all i, we would have obtained

C1
COP T

≤ µ(k∗) = O
(

log k∗

log log k∗

)
for RFL.
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The only problem is that C1Si
is the cost paid by RFL, in the model without congestion

when the input is the entire input S. This means that RFL might have extra facilities already
open when the requests of Si start coming in. Also new facilities might open between any
two requests of Si since other requests from S might be interleaved in between requests from
Si. The analysis of RFL in [9] actually goes through if there were open facilities available
before the first request comes and also if new facilities appeared in between two requests
(Interestingly, any algorithm that satisfies this property, could have been used as a black box
instead of RFL). For the sake of completion, we add a thorough analysis of this in the full
version of the paper [5]. This completes the proof that the competitive ratio of MRFL is

log k∗

log log k∗ . ◀

C Missing Proofs

Proof of Property 5.7. Let Xi = {(xi, wi), (xi+1wi+1), . . . , (xm, wm)} .

Let Ci be the expected cost paid by WRFL before a facility opens at any request in
Xi, when the input is Xi. Note that now, we are interested in C1, which is the expected
cost paid by WRFL before a facility opens in X. From Algorithm 1, we recall that WRFL

opens a new facility at the request xi with probability pi and with the remaining probability
it assigns xi to the nearest open facility.

One can see that C1 = p1 · 0 + (1− p1)(p1 · f + C2) since with probability p1 a facility
is opened at x1 itself and no cost is incurred before the first facility is opened but with
probability (1 − p1), no facility is opened and a cost of p1 · f = d(x1, F ) · w1 is incurred.
However since we have not yet opened any facility, in expectation C2 additional cost will be
incurred before a facility is opened - because of how C2 is defined.

We can use the same argument for any Ci now. That is, when Xi is given as input, with
probability pi a facility is opened at xi itself and no cost is incurred before the first facility
is opened and with probability (1− pi), no facility is opened and a cost of pi · f is incurred

Ci = (1− pi)(pi · f + Ci+1).

Now notice that Cm is the expected cost paid by WRFL before a facility opens when
input is {(xm, wm)}. Therefore Cm = pm ·f · (1−pm) since with probability (1−pm), facility
is not opened and then the cost paid is pm · f . This means that Cm ≤ f .

Assuming Ci+1 ≤ f for some i, Ci ≤ (1−pi)(pi ·f +f) = f(1−pi)(1+pi) = f(1−p2
i ) ≤ f .

∴ C1 ≤ f . ◀

Proof of Property 5.8. Since the distance of xi to the nearest open facility is d(xi, F ),
WRFL would open a new facility with probability ≤ d(xi,F )·wi

f and pay a cost f and with
remaining probability (of at most 1) it would pay a cost of d(xi, F ) · wi. Therefore expected
cost paid for the request xi is at most

d(xi, F ) · wi

f
× f + 1× d(xi, F ) · wi = 2d(xi, F ) · wi . ◀
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