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Abstract
Sorting is a foundational problem in computer science that is typically employed on sequences or
total orders. More recently, a more general form of sorting on partially ordered sets (or posets),
where some pairs of elements are incomparable, has been studied. General poset sorting algorithms
have a lower-bound query complexity of Ω(wn + n log n), where w is the width of the poset.

We consider the problem of sorting in trees, a particular case of partial orders. This problem is
equivalent to the problem of reconstructing a rooted directed tree from path queries. We parametrize
the complexity with respect to d, the maximum degree of an element in the tree, as d is usually
much smaller than w in trees. For example, in complete binary trees, d = Θ(1), w = Θ(n). The
previous known upper bounds are O(dn log2 n) [19] and O(d2n log n) [1], and a recent paper proves
a lower bound of Ω(dn logd n) [17] for any Las Vegas randomized algorithm. In this paper, we settle
the complexity of the problem by presenting a randomized algorithm with worst-case expected
O(dn logd n) query and time complexity.
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1 Introduction

Sorting is a foundational problem in computer science that is typically employed on a set or
multi-set of elements. Given an input set S of n elements, typical sorting problems determine
the underlying total order or linear sequence of the elements. These algorithms assume that
the elements are drawn from an ordered domain (such as the domain of integers). Most
sorting algorithm use comparisons in which direct comparisons between pairs of elements
allows the algorithms to acquire information about the total order [7]. Some recent works
consider a restricted version of standard comparison sorting where only a subset of pairs are
allowed to be compared [3, 4, 12, 15].

More recently, a more general form of sorting on partially ordered sets (or posets), where
some pairs of elements are incomparable, has been studied [2, 5, 6, 8, 9]. Given a input
set P of n elements, poset sorting algorithms determine the underlying partial order of the
elements through queries to an oracle. The oracle’s response to a query involving elements x

and y is either the relation between x and y or a statement of their incomparability.
Sorting problems are inherently more challenging for partial orders compared to total

orders. Sorting algorithms are generally evaluated by two complexity measures: the query
complexity, the number of comparisons involved, and total complexity, the total number
of computational operations involved. As each individual query can potentially be quite
expensive (for example, requiring physical experiments), query complexity is equally important
as total complexity. Faigle and Turán were the first to consider the problem of sorting partial
orders [9], providing an algorithm with O(wn log n) query complexity, where n is the number
of elements and w is the width of the poset. Daskalakis et al. [8] improved on this result
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7:2 An Optimal Algorithm for Sorting in Trees

to present an algorithm with optimal query complexity O(wn + n log n), and provided a
separate algorithm with time complexity O(w2n log n

w ). A recent work in 2023 by Shaofeng
H.-C. Jiang et al. [14] studies a generalized version of the poset sorting problem where a
query graph G, defined on the same vertex set as the poset, is provided, and queries can
only be made between pairs of elements which correspond to edges in the query graph.

Our work considers sorting tree posets, a particular case of partial orders. In a tree, the
value of w is typically very high, leading to existing poset sorting algorithms performing
poorly. Therefore, it is important to design efficient customized algorithms for sorting in
tree posets with lower query and total complexity. We instead consider the parameter d, the
maximum degree of a node in the natural arborescence representation of the tree poset. In
contrast to width w, the degree d is typically much smaller; for example, d = Θ(1), w = Θ(n)
in complete binary trees. As with the poset sorting algorithms, our objective is to determine
the underlying structure of the tree.

Apart from the theoretical significance of the problem, there are many practical applic-
ations: for example, constructing the evolutionary tree of coronavirus strains or general
phylogenetic trees, or network mapping, among others. In addition, the final sorted tree
can be used as input for tree searching algorithms, such as [10, 16]. This may be considered
a tree analogue to the use of sorting to facilitate binary search in total orders. Onak and
Parys [16] considered extending the concept of binary search to trees, whereas Heeringa,
Iordan, and Lewis [10] considered searching in dynamic trees.

The problem we study is equivalent to the problem of reconstructing a rooted directed tree
(arborescence) with reachability or path queries, as a comparison between two elements
x and y of a tree poset can easily be simulated by asking two reachability queries (x, y)
and (y, x) in the underlying rooted directed tree structure and vice-versa. This problem
has received previous literature attention and there are currently two upper bounds with
differing dependency on n and d. Wang and Honorio [19] provide a randomized algorithm
with query complexity O(dn log2 n), while Afshar et al. [1] provide a randomized algorithm
with query complexity O(d2n log n).

Jagadish and Sen [13] considered the problem of reconstructing undirected trees using
separator queries: given three vertices x, y, z, does y lie on the path between x and z?
They give a deterministic algorithm with O(dn1.5 log n) query and time complexity. It should
be noted that path queries are weaker than separator queries because there is a directed
path from x to y in a rooted directed tree (or equivalently x is an ancestor of y) if and
only if x lies on the path between the root and y in the underlying undirected tree structure.
Nevertheless, their algorithm can be modified to work with path queries as well.

In a recent work, Bastide and Groenland [17] consider the problem of reconstructing
connected undirected graphs with distance queries. Here, given two nodes (x, y), a query
ℓ(x, y) returns the number of edges on the shortest path between them. They give a simple
deterministic algorithm in the case of trees with a query complexity of O(dn logd n). They
also give a matching lower bound of Ω(dn logd n) queries for any randomized algorithm. This
lower bound directly applies to our problem as well, as distance queries are stronger than
comparision queries: for a rooted directed tree with root r, one can find if x is an ancestor of
y by asking three distance queries ℓ(x, y), ℓ(r, x) and ℓ(r, y) in the undirected version of the
tree. Thus, the fact that one needs Ω(dn logd n) comparision queries to sort a tree is stated
as a corollary in their work (Corollary 4.10). Nevertheless, for the sake of simplicity and
completeness, we borrow ideas from [17] to provide a shorter and more direct proof of the
lower bound for path queries.
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Many other previous works (e.g., [11, 18, 20, 21] have also considered the problem of
reconstructing directed trees from distance queries. However, these works are limited by
the specificity of distance as a query object. For instance, in evolutionary trees, it is far
more natural to consider an ancestor relationship than a distance one. Our work provides an
optimal algorithm for this most natural query object in trees.

2 Our contribution

We provide an optimal randomized algorithm for sorting tree posets using comparision
queries, and equivalently reconstructing rooted directed trees using path queries:

▶ Theorem 1. There exists a randomized algorithm which sorts a tree of n elements and
maximum degree d in O(dn logd n) expected worst-case query and time complexity.

Table 1 The known bounds on the query complexity of randomized algorithms.

Work Lower bound Upper bound

[19] Ω(n log n) O(dn log2 n)
[1] Ω(dn + n log n) O(d2n log n)
[17] Ω(dn logd n) –

This work – O(dn logd n)

Both of the previous approaches ([1, 19]) for the upper bound rely on finding an even-
separator edge, an edge such that the two subtrees remaining after removing the edge both
have size at least n

d − 1, where n is the number of nodes in the original tree.
In contrast, our approach relies on finding a vertex such that the subtrees around the

vertex each have size at most three-quarters that of the original tree. The actual details of
finding such a vertex and then analysing the complexity are quite non-trivial. Another key
difference is that in both [19] and [1], a bound on degree d is assumed to be known to the
algorithm from the outset. In our problem formulation, the maximum degree d is not known
and is instead discovered by the algorithm itself. This flexibility significantly improves the
applicability of the solution. We only use d as a parameter in the complexity analysis.

3 Preliminaries

To precisely define the notions considered in this paper, we provide some formal definitions,
many of which are set-theoretic analogues of graph-theoretic concepts. A partially ordered
set, or poset, is a set of elements P together with a binary relation ≻ ⊂ P × P which is
irreflexive, transitive, and asymmetric. For a pair (a, b) ∈ ≻, we write a ≻ b and state that
a dominates b, or b is dominated by a. If neither a ≻ b nor b ≻ a, we say that a and b are
incomparable and write a||b. A maximal element, or root, is an element x for which the set
{y ∈ P : y ≻ x} is empty. Let the set of maximal elements of a poset P be M(P). An
antichain A ⊆ P is a subset of mutually incomparable elements. The width w(P) of poset P
is the maximum cardinality of an antichain of the poset.

A tree is a poset τ = (T,≻) where for all elements t ∈ T , the set of ancestors of t in the
tree, Anct = {s ∈ T : s ≻ t}, is well-ordered by the relation ≻. We will also sometimes refer
to the elements of the tree as the nodes of the tree. A child of an element x is an element y

such that x ≻ y and the set {z ∈ T : x ≻ z ≻ y} is empty. For an element t ∈ T , we define
cht to be the set of children of t. The parent of an element x, parx, is an element y such that

FSTTCS 2023



7:4 An Optimal Algorithm for Sorting in Trees

y ≻ x and the set {z ∈ T : y ≻ z ≻ x} is empty. Moreover, we define an edge as any pair
(a, b) such that b ∈ cha, and the degree of an element t, degt, as the number of edges incident
to t, i.e., degt = |cht| for a maximal element, and degt = |cht|+ 1 for all other elements. The
maximum degree of the tree is d(τ) = max(|Mτ |, maxt∈T degt). Note that d(τ) is dependent
on the degree of elements in the tree and the number of maximal elements. The subtree of
an element t is the set {t} ∪ {s ∈ T : t ≻ s}.

Trees in the set-theoretic sense may have multiple maximal elements (corresponding to
graph-theoretic forests). However, we can easily modify any arbitrary tree to have only
one maximal element. Suppose the elements of the tree are {t1, t2, . . . , tn}. We introduce a
new element tn+1, such that tn+1 ≻ ti for all i ∈ {1, . . . , n}, and sort the modified tree. In
addition, we never need to make a query involving tn+1, as it is known that tn+1 dominates
all other elements. Thus, we will only consider trees with one maximal element for the rest
of this paper.

Our algorithm finds the edges of the tree τ = (T,≻), which is sufficient to sort the tree.
Note that, after finding the edges, a standard O(n) depth-first search can be run from the
root, producing a data structure that stores the DFS pre-visit and post-visit times for all the
vertices. This data structure that can respond to comparison queries in O(1), as a vertex x

is an ancestor of vertex y (or equivalently x ≻ y) if and only if pre[y] ∈ (pre[x], post[x]], thus
fully mimicking the oracle.

4 Algorithm Outline

Our main algorithm, GET-EDGES (detailed pseudocode can be found in Appendix B), relies
on finding a good separating element in the tree and then dividing the tree into disjoint
sub-problems around this element, such that no sub-problem has a large size. An obvious
first choice for such a node is the centroid of the tree:

▶ Definition 2 (Centroid). The centroid of a tree T with n nodes is a node c, such that the
size of the subtree of c is ≥ n

2 , and for any of its children, the subtree size is < n
2 .

It is well known and easy to see that there exists a unique centroid for any tree. Nevertheless,
we include the proof in Appendix A (Lemma 8) for the sake of completeness.

To find the centroid c with probability at least 1
2 , we can select a random node x, and

find its set of ancestors. This set forms a total order, and can be sorted using a standard
comparision-based sorting algorithm. Now, we binary search on this list and return the lowest
ancestor with subtree size ≥ n

2 . If x lies in the subtree of c (which occurs with probability
at least 1

2 , as the subtree size of c is ≥ n
2 ), this process will return c. Since sorting takes

O(n log n) time and O(log n) subtree size computations during the binary search can be done
in O(n) each by iterating over all the nodes, this takes O(n log n) time.

To save a factor of log n, we will instead use a pseudo-centroid as the separating element:

▶ Definition 3 (Pseudo-Centroid). A pseudo-centroid of a tree T with n nodes is a node c,
such that the size of the subtree of c is ≥ n

4 , and for any of its children, the subtree size is
< n

2 . In particular, note that the centroid is also a pseudo-centroid.

With this definition in mind, GET-EDGES now proceeds in three steps:
1. Find a pseudo-centroid. To accomplish this, we will later describe a method (similar to

the above described method for finding a probable centroid) to find a probable (with
probability ≥ 1

8 ) pseudo-centroid c in O(n) expected time. Then, we test if c is a
pseudo-centroid, and if it is not, we repeat the whole process.
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2. Divide the elements of the tree (except c) into sub-problems around the element c. The
subtree of each child of c forms a subproblem and all the elements of the tree except
the subtree of c form an additional subproblem. We refer to the former as downward
subproblems and the latter as the upward subproblem for brevity.

3. Solve each subproblem recursively. Each subproblem is a tree which constitutes a (weakly)
connected subgraph of the original graph. By the definition of pseudo-centroids, each
sub-problem will have ≤ 3n

4 nodes.

We will design the algorithm to test whether a node c is a pseudo-centroid in such a way
that:
1. If c is not a pseudo-centroid, the test returns a negative result in O(n) expected time.
2. If c is a pseudo-centroid and divides the tree into subproblems x1, x2, . . . , xk with |x1| ≥
· · · ≥ |xk|, then the algorithm results a positive result, along with all the k subproblems,
in O(n +

∑k
i=1 i|xi|) expected time.

Then, the recursion for the expected time complexity becomes

Td(n) = O(n) +
k∑

i=1
(O(i|xi|) + Td(|xi|))

where k ≤ d,
∑k

i=1 |xi| = n− 1 and 1 ≤ |xi| ≤ 3n
4 ∀ 1 ≤ i ≤ k. We will prove via a charging

argument on the recursion tree that Td(n) = O(dn logd n).

5 Algorithm Details and Complexity Analysis

We first describe our algorithm GET-PROBABLE-PSEUDO-CENTROID for finding a probable
(with probability ≥ 1

8 ) pseudo-centroid in O(n) expected time. We assume sufficiently large
n (greater than some constant) in the discussion to follow to avoid minor details such as the
possibilities of log n = 0 or 1

log n > 1, and for some inequalities to be true.

Define the subtree size of a node i as Si. Also, let p = 1
log n . Now,

1. Randomly sample a subset V of nodes by adding each node to V with an independent
probability of p. Thus, E(|V |) = n

log n . We define the sampled subtree size, F ′
i to be the

number of elements in V that lie inside the subtree of i. Clearly, E(F ′
i ) = Sip. Also, we

define the estimated subtree size of i to be S′
i = F ′

i

p , so that E(S′
i) = Si.

2. Select a random node x. We will output the lowest ancestor y of x with S′
y ≥ n

2 −
1
p as

our (probable) pseudo-centroid. Let Y be the set of ancestors of x, along with x itself.
Note that, for any ancestor u of v, S′

u ≥ S′
v. One way to find this lowest ancestor y is

to first sort Y and then binary search on Y . But sorting Y can take n log n queries. To
fix this, we sample a subset Z of Y by adding each node in Y to Z with an independent
probability of p. Thus, E(|Z|) = E(|Y |)

log n .
3. Sort Z according to the order relation ≻. Then, use a modified binary search on Y to

find the pseudo-centroid. This modified binary search runs in two phases:
a. Binary search on Z to find an estimated pseudo-centroid within Z.
b. Find the position of the actual pseudo-centroid from the expected O(log n) elements

of Y that lie between the estimated pseudo-centroid and the immediate next element
in Z.

Note that binary searching is valid because for any ancestor u of v, S′
u ≥ S′

v. We now
prove bounds on the complexity of this algorithm and its probability of success.

FSTTCS 2023



7:6 An Optimal Algorithm for Sorting in Trees

Algorithm 1 GET-PROBABLE-PSEUDO-CENTROID.

Input : A set T of nodes that form a tree τ = (T,≻) with ≻ unknown, and an
oracle that answers for any pair of nodes a ∈ T, b ∈ T whether a ≻ b.

Output : A probable pseudo centroid of T

1 n← |T |
2 p← 1

log n

3 V ← {}
4 for i ∈ T do
5 Add i to V with probability p

6 end
7 Choose a random element x from T .
8 Y ← {x} ∪ {y ∈ T | y ≻ x}
9 Z ← {GET-ROOT(T )}

10 for i ∈ Y do
11 Add i to Z with probability p

12 end
13 Sort Z according to the order relation ≻
14 Let Z = {z1, z2, . . . zk} where z1 ≻ z2 ≻ . . . zk−1 ≻ zk

15 Define S′
j to be the estimated size of subtree of j, S′

j = |({j} ∪ {i ∈ T |j ≻ i}) ∩ V |
p

16 t← z1
17 if S′

z1
≥ n

2 −
1
p then

18 Binary search to find the largest i, such that S′
zi
≥ n

2 −
1
p

19 L← {zi}
20 for u ∈ Y do
21 if (i ̸= k and zi ≻ u and u ≻ zi+1) or (i = k and zi ≻ u) then
22 L← L ∪ {u}
23 end
24 end
25 Sort L according to the order relation ≻
26 Let L = {l1, l2, . . . , lr}, where l1 ≻ l2 . . . lr−1 ≻ lr
27 Binary search to find the largest i, such that S′

li
≥ n

2 −
1
p

28 t← li

29 end
30 return t

▶ Lemma 4. The algorithm GET-PROBABLE-PSEUDO-CENTROID finds a pseudo-centroid with
probability ≥ 1

8 in O(n) expected time.

Proof. It is simple to verify that the algorithm takes O(n) expected time by considering
each individual step. Specifically:
1. Sampling V takes O(n) time.
2. Selecting x, computing Y , and sampling Z takes O(n) time.
3. Sorting Z takes O(|Z| log |Z|) = O(|Z| log n) time. Since E(|Z|) = |Y |

log n ≤
n

log n , this takes
O(n) expected time. The modified binary search also takes O(n) time, as shown below:
a. Binary searching Z takes O(log n) rounds. In each round, we compute the estimated

subtree size for some element i, S′
i, which takes O( n

log n ) time since E(|V |) = n
log n .

Thus, this step takes O(n) expected time total.
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b. Finding the list L of elements that lie in-between takes O(n) time, as it requires only
two comparison queries per element in Y . Moreover, since E(L) = O(log n), sorting L

takes expected E(|L| log |L|) = O(E(|L| log n)) = O(log2 n) = O(n) time, and binary
searching L takes O(log n) rounds. In each round, we compute an estimated subtree
size in expected O( n

log n ), and thus the total expected time complexity is O(n).

We thus concentrate on the probability of success. Let the centroid be c (this is the
unique centroid, not just a pseudo-centroid). We first prove that, for sufficiently large n, if
all of the following three events occur, we get a pseudo-centroid.
1. x = c or c ≻ x

2. S′
c ≥ n

2 −
1
p

3. For all i ∈ T , S′
i ≤ Si + n

10
The algorithm returns the minimal ancestor y of x with S′

y ≥ n
2 −

1
p (let it be c′). If c′ = c,

we are done. Else, events 1 and 2 imply c ≻ c′. Now, S′
c′ ≥ n

2 −
1
p and Sc′ ≥ S′

c′ − n
10

(event 3). Adding these two gives Sc′ ≥ n
2 −

1
p −

n
10 = 2n

5 − log n ≥ n
4 for sufficiently large n.

Also, Sc′ < n
2 as c′ lies strictly inside the subtree of c, and all children of c have sizes < n

2 .
So, for every child r of c′, Sr < Sc′ < n

2 . Thus, c′ is a pseudo-centroid.
We now proceed to proving that the probability of these 3 events all occurring simultan-

eously is ≥ 1
8 for sufficiently large n. Let us try to get an upper bound on at least one of

these events not occurring. Let p1, p2, p3 be the probabilities of events 1, 2, 3 not occurring
respectively. We will establish bounds on all three of them. Firstly, p1 ≤ 1

2 as at least half
of the nodes lie inside the subtree of c.

To get an upper bound on p2, note that F ′
c follows a binomial distribution with parameters

Sc ≥ n
2 and p = 1

log n . As any median of a binomial distribution with parameters n and p

is ≥ ⌊np⌋, we have S′
c = F ′

c/p ≥ ⌊pn
2 ⌋/p ≥ n

2 −
1
p with probability at least 1

2 . Therefore,
p2 ≤ 1

2 .
Finally, we will prove that p3 ≤ 1

4 for sufficiently large n. Indeed, consider an element i,
with k elements in its subtree, u1, u2, . . . uk, where k = Si. Let Xj be an indicator variable
for whether uj was chosen in V . All Xj ’s are independent and identically distributed with
E(Xj) = p. Also, F ′

i = X1 + X2 + . . . Xk, and E(F ′
i ) = kp. Since we want a total error of

≤ np
10 in F ′

i , we use the Chernoff bound with µ = kp, δ = n
10k ≥

1
10 to get:

P
(

S′
i > Si + n

10

)
= P

(
F ′

i > kp + np

10

)
= P (F ′

i > µ(1 + δ))

≤ exp
(
−µ

3 δ min(1, δ)
)

≤ exp
(
−kp

3
n

10k

1
10

)
= exp

(
−np

300

)
(1)

Using the union bound, p3 ≤ n ·exp
(
−np

300

)
= n exp

(
−n

300 log n

)
≤ 1

4 for sufficiently large n.

Now, let us suppose we fail if at least one of the events 1, 2, 3 does not occur. The
probability of failure is the sum of the probability of event 1 not occurring and the probability
of event 1 occurring but at least one of the events 2 and 3 not occurring. Noticing that
event 1 is independent of both events 2 and 3, and applying the union bound, we get that
the probability of failure is at most:

FSTTCS 2023



7:8 An Optimal Algorithm for Sorting in Trees

p1 + (1− p1)(p2 + p3) ≤ p1 + 3
4(1− p1) = 3

4 + p1

4 ≤
7
8

Therefore, we find a pseudo-centroid with probability at least 1
8 . ◀

Algorithm 2 TEST-PSEUDO-CENTROID.

Input : A set T of nodes that form a tree τ = (T,≻) with ≻ unknown, and an
oracle that answers for any pair of nodes a ∈ T, b ∈ T whether a ≻ b. Also
a candidate pseudo-centroid c

Output : A pair (b, S), where b is a boolean denoting if c is a pseudo-centroid. If b is
true, S is the set of subproblems when T is divided into around c.

1 n← |T |
2 H ← T \ c

3 S ← []
4 R← {x ∈ H : x ≻ c}
5 if |R| > 3n

4 then
6 return (false,[])
7 end
8 Append R to S

9 H ← H \R

10 while H ̸= ∅ do
11 Let H = h1, h2, . . . , hm

12 Choose a random element x from H

13 for i = 1, . . . , m do
14 if hi ≻ x then
15 x← hi

16 end
17 end
18 X ← {x} ∪ {y ∈ H : x ≻ y}
19 if |X| ≥ n

2 then
20 return (false,[])
21 end
22 Append X to S

23 end
24 return (true,S)

We now describe our algorithm TEST-PSEUDO-CENTROID, which simultaneously tests if an
element c is a pseudo-centroid and divides the tree into subproblems around c if it is. The
algorithm first finds the upward subproblem in O(n), removes the elements from the list of
unaccounted elements, and tests if the subtree of c has size at least n

4 , returning false if
it does not. After this, we repeatedly find one of the downward subproblems, check if the
subproblem has size less than n

2 (returning false if it does not), and remove the subproblem
elements from the list of unaccounted elements until there are no unaccounted elements
remaining, at which point we return the list of subproblems. We can find a downward
subproblem in O(|H|), where H is the set of unaccounted elements, by doing the following.
First, set x to be a random element from H. Then, iterate through all elements in H. If hi

is the current element, set x← hi if hi ≻ x. Thus, the final value of x will be that of one of
the children of c. Then, we find all elements in the subtree of x by comparing each element
in H against x, and thus find a subproblem in O(|H|) time.
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The algorithm correctness is obvious and as such we prove its complexity.

▶ Lemma 5. Suppose c divides the tree into k subproblems x1, . . . , xk, such that |x1| ≥ · · · ≥
|xk|. Then:

If c is not a pseudo-centroid, TEST-PSEUDO-CENTROID runs in O(n) expected time.
If c is a pseudo-centroid, TEST-PSEUDO-CENTROID runs in O(n +

∑k
i=1 i|xi|) expected

time.

Proof. We first prove that TEST-PSEUDO-CENTROID runs in O(n) expected time when c is
not a pseudo-centroid. There are two cases. The first is when the size of the subtree of c

is less than n
4 . This is detected immediately after finding the upward subproblem, which

takes only O(n) time. The second case is that one of the downward subproblems xl has size
at least n

2 . In this case, note that we have a probability of at least 1
2 of finding xl in each

iteration, as the subproblem found contains the random element chosen at the beginning
of the iteration. Thus, we are expected to detect failure in a constant number of iterations.
Since each iteration runs in O(n), the expected complexity is O(n).

We now prove that TEST-PSEUDO-CENTROID runs in O(n +
∑k

i=1 i|xi|) expected time
when c is a pseudo-centroid. First, O(n) time is used to find the upward subproblem.

Let us analyse the expected number of comparisions between two downward subproblems
xi and xj with i ≠ j. The probability that xi is found before xj is |xi|

|xi|+|xj | . When this
happens, each element of subproblem xj is compared against twice, once when finding the
maximal element of xi and once when finding the list of elements of xi. Similarly, we can
account for the expected comparisions when xj is found before xi, and the total expected
number of comparisions between xi and xj is therefore 2|xj | |xi|

|xi|+|xj | +2|xi| |xj |
|xi|+|xj | = 4|xi||xj |

|xi|+|xj |
The cost of finding the upward subproblem xp has already been accounted for. Regardless,

we also charge a cost of 4 |xp||xj |
|xp|+|xj | for the number of comparisons between xp and xj for

simplicity, which is acceptable since we are proving an upper bound. In addition, there are
some comparisons made between two elements of the same subproblem xi. However, there
are only O(|xi|) such comparisons, and thus the total over all subproblems is O(n).

We observe that for any 1 ≤ j < i ≤ k, |xi||xj |
|xi|+|xj | ≤ min(|xi|, |xj |) = |xi|. The total number

of comparisions is therefore bounded by:

O(n) +
∑

1≤j<i≤k

O(|xi|) = O(n) +
k∑

i=1
O(i|xi|)

It is easy to see that in each iteration both the runtime and the number of comparisions
are Θ(|H|), so the runtime also follows the same bound of O(n) +

∑
O(i|xi|). ◀

We finally prove the main result of the paper by showing that GET-EDGES runs in expected
O(dn logd n) time.

▶ Theorem 6. GET-EDGES sorts a tree of n elements and maximum degree d in O(dn logd n)
expected worst-case query and time complexity.

Proof. Due to Lemmas 4 and 5, the recurrence relation for the time complexity of GET-EDGES
is

Td(n) = O(n) +
k∑

i=1
(O(i|xi|) + Td(|xi|))

where x1, . . . , xk are the subproblems divided around the pseudo-centroid, and |x1| ≥ · · · ≥
|xk|.
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7:10 An Optimal Algorithm for Sorting in Trees

We prove the complexity of this recurrence relation by considering the recursion tree of
the algorithm. The root of this recursion tree is the entire tree, and for any node, its children
are the subproblems divided around the pseudo-centroid. Note that this recursion tree has
exactly n nodes.

We immediately note that the sum of all O(n) terms is O(n log n), as the recursion tree
has O(log n) levels (since child subproblems have size at most 3

4 that of a parent subproblem),
and the sum of subproblem sizes at each level is at most n.

We now consider the sum of all
∑k

i=1 O(i|xi|) terms. For each node in the recursion
tree, we rank its children x1, . . . , xk in non-increasing order of subproblem size, such that
|x1| ≥ · · · ≥ |xk|. Then, the cost of a child node xi is O(i|xi|). Note that since this
subproblem has size |xi|, its subtree in the recursion tree also has |xi| nodes, including itself.
We can now distribute the cost of O(i|xi|) by charging a cost of i to each node in the subtree.

Let vz be the total cost charged to a node z. We now prove vz = O(d logd n) for all z.
Consider the path from node z to the root of the recursion tree. For each node b in the path
with parent a, if b had charged a cost of i to z, then at least i children of a have size at least
|sb|, where |sb| is the subtree size of b. However, we note then that the subtree size of a is at
least i|sb|. Moreover, the root has subtree size n.

Specifically, let a be an ancestor of node z, and let b be the unique node which is a child
of a and an ancestor of z (or z itself). If we let fz,a be the rank of b within the children of a

(according to the ranking scheme defined above), then we have:

vz =
∑

a∈Az

fz,a

where Az is the set of ancestors of node z in the recursion tree. We also know that∏
a∈Ancz

fz,a ≤ n, since if there are fz,a nodes with subtree size at least |sb|, the subtree size
of a is at least fz,a|sb|. In addition, we know that fz,a ≤ d for all (z, a) (as each node in the
recursion tree has at most d children), and that z has at most O(log n) ancestors. We use
this information to show in Lemma 9 in the Appendix that vz = O(d logd n).

Since the sum of all O(n) terms is O(n log n), and the sum of all
∑k

i=1 O(i|xi|) terms is
O(dn logd n), the total complexity is O(n log n + dn logd n) = O(dn logd n), as required. ◀

Note that the analysis of our algorithm is tight for complete d−ary trees. In the next
section, we prove a matching lower bound considering the case of almost complete d−ary
trees.

6 Lower bound

A lower bound of Ω(dn logd n) distance queries to reconstruct a tree of maximum degree d

is proved in [17], and as a corollary this bound is valid for our case (path queries) as well,
as each path query can be answered using 3 distance queries. Here, borrowing ideas from
[17], we give a simpler and more direct proof of this lower bound in the case of path queries.

Assume d ≥ 3. Consider a tree with k + 1 levels, where for each i = 0, 1, . . . k, the ith

level is defined as the set of nodes at a distance i from the root. All nodes on the level k are
leaves. Each node at a level 0 ≤ i < k − 1 has exactly d children, and each node on the level
k− 1 has exactly 1 child. In other words, the first k levels form a complete d−ary tree, where
for each i = 0, 1, . . . k − 1, the ith level contains di nodes, and there are dk−1 nodes on level
k. The number of nodes in the tree is therefore n = d0 + d1 + . . . dk−1 + dk−1. Suppose the
value of d and the whole subgraph consisting of the first k levels 0, 1, . . . k − 1 are provided
for free by the oracle, without any queries. Let the set of the nodes at level k − 1 be X and
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the set of the nodes at level k be Y . Let m = |X| = |Y | = dk−1 be the number of nodes on
the last level. Note that m ≥ n

3 . Let’s call such a tree a balanced tree and let B be the set of
all balanced trees. Note that the number of balanced trees is B = |B| = m!, as we need to
choose a distinct parent in X for each node in Y .

We want to apply Yao’s principle to prove a lower bound on the number of queries
required to reconstruct a balanced tree. Ideally, we would want to be able to consider each
node in Y independently and prove a lower bound on the number of queries required to find
its parent. But the fact that each node in X has exactly 1 child means that the parents
of the nodes in Y have some correlation. So, let’s first relax this condition, even though it
would mean that the maximum degree can now exceed d. Let’s define the set of relaxed trees,
T to be the set of all the trees where the first k levels are as provided, and the parent of any
node in Y can be any node in X. Note that |T | = mm, as for each node in Y , there are m

choices for its parent.
First, we prove that if the input tree was chosen at random from T , any deterministic

algorithm must make at least Ω(mdk) queries with a very high probability. Clearly, any
query that can give some useful information must be of this form: given a node y on the last
level and a node x from the first k levels, is x an ancestor of y?

▶ Lemma 7. Assume d ≥ 3 and k ≥ 10. Any deterministic algorithm that reconstructs a
tree chosen at random from T uses at least mdk

8 queries with a NO answer, with probability
≥ 1− e−m

Proof. Choosing the tree at random from T is equivalent to choosing the parent of each of
the m nodes in Y , independently and uniformly at random from X. Suppose we want to
find the parent (say p) of some node y ∈ Y .

Suppose the algorithm knows a node z at some level 0 ≤ i ≤ k − 1, such that, given the
set of queries asked in the past, p can be any of the nodes in the subtree of z at the level
k − 1, with equal probability. Initially, i = 0. When i equals k − 1, we are done. Given z, let
q1 be the first vertex queried by the algorithm, and for each u > 1, define qu to be the next
queried vertex if the answer to qu−1 was NO (meaning that qu−1 is not an ancestor of y).
Suppose that, out of the children z1, z2, . . . , zd of z, zr was the child which is an ancestor of
y. The variable r is distributed uniformly among [d]. Let qj be the first node in the sequence
q1, q2, . . . that lies in the subtree of zr (note that such a node must exist). Clearly, all of
q1, q2, . . . qj−1 must be queried by the algorithm, all resulting in an answer of NO. When
the algorithm queries qj , instead of a YES/NO answer, the oracle replies that y lies in the
subtree of zr, and that the current query (qj) doesn’t count towards the total number of
queries. This step only gives the algorithm extra information without any charge on the
number of queries, and the algorithm can choose to ignore this information and query qj

again (we give a formal proof justifying this step in the Appendix, in Lemma 10). For each
t ∈ [d], let ft be the smallest index h, such that qh lies in the subtree of zt. The number
(say Qy,i) of t ∈ [d] with ft < fr is a random integer in {0, 1, . . . d − 1}. Clearly at least
Qy,i queries must be made before the algorithm knows the child zr whose subtree contains
y. The total number of queries asked therefore is at least a sum of m · (k − 1) independent
random variables each in the range [0, d− 1] with mean d−1

2 . Applying Hoeffding’s inequality
yields that the probability that the number of queries asked is less than m(d− 1)(k− 1)/4 is

at most exp
(
−2(m(k − 1)(d− 1)/4)2

m(k − 1)(d− 1)2

)
= e−(m(k−1))/8, and using k ≥ 10, d ≥ 3 yields the

required result. ◀
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This means that, given d ≥ 3, k ≥ 10, for any deterministic algorithm, there are at most
L = e−m|T | = e−mmm trees for which it takes less than mdk

8 queries. Also, the number of
balanced trees is B = m! Therefore, L ≤ B

2 using n! ≥ nn

en−1 for all n ≥ 1 . We claim that,
any deterministic algorithm which is able to correctly reconstruct all balanced trees must ask
at least mdk

8 queries with a NO answer, for at least half of the balanced trees. Suppose this
were not the case for a deterministic algorithm D. Consider an algorithm D′ which is able
to correctly reconstruct all trees in T . D′ first runs the algorithm D. If the original tree was
balanced, the algorithm must already have the tree, and can verify it by querying for all the
edges (note that if the tree was balanced, all these queries result in a YES answer). If the
verification fails, D′ just asks all the

(
n
2
)

queries to reconstruct the tree from scratch. So, for
at least B/2 + 1 > L trees, D′ makes ≤ mdk

8 queries with a NO answer, a contradiction to
Lemma 7.

It then follows from Yao’s principle that the worst-case query complexity of any randomized
algorithm must be at least mdk

16 ≥ ndk
48 = Ω(nd logd(n)). We note that this result holds

even when k < 10 as there is a pre-existing bound of Ω(nd) which is only a constant off
Ω(nd logd(n)), since n = O(d10) for k < 10.

7 Concluding Remarks

In this paper, we have considered the problem of sorting in trees, a particular case of partial
orders. and presented an optimal randomized algorithm for sorting a tree poset in worst-case
expected O(dn logd n) query and time complexity, where d is the maximum degree of the tree.
An interesting direction for future work is resolving the deterministic query complexity
of tree sorting. Currently, to the best of our knowledge, the best known upper bound is
O(dn1.5 log n) [13], and the best known lower bound is Ω(nd logd n).
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A Omitted Proofs

▶ Lemma 8. For any tree, the centroid exists and is unique.

Proof. Consider the following algorithm. We start at the root, and keep recursing to the
child with subtree size ≥ n

2 until there is no such child. This maintains the invariant that
any centroid must be inside the subtree of the current element. This process must terminate
as the number of elements is finite, and it can only terminate on a centroid (let it be c). Any
other centroid must lie in the subtree of c, but all children of c have subtree sizes less than
n
2 , so c must be the only centroid. ◀

▶ Lemma 9. Given integers 1 ≤ d ≤ n, and k = O(log n). For any k real numbers
x1, x2, . . . xk, satisfying

∏k
i=1 xi ≤ n, and 1 ≤ xi ≤ d for every i,

∑k
i=1 xi = O(d logd(n))

Proof. Consider any valid tuple (x1, x2, . . . xk) which maximizes the sum. There can be at
most logd n values equal to d as the product is ≤ n, and all values are ≥ 1. If there were
two values p, q both in the range (

√
d, d), we could have replaced them by d, pq

d , getting a
strictly greater sum. So, there is at most one value in the range (

√
d, d). Thus, the sum is

≤ k
√

d + d + d logd n = O(
√

d log n) + d + d log n
log d = O(d logd n). ◀
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Let O be an oracle that answers path queries with YES or NO (given vertices x, y, is
x an ancestor of y in the rooted directed tree?). Say the root of the tree is already known.
For a deterministic algorithm D, let c(D, I) be the number of queries that D asks O to
reconstruct a rooted directed tree I.

We will now consider a different oracle that can (a finite number of times) refuse to
answer the path query and instead give some other information for free (without charging the
current query to the cost). We will prove that any lower bound that can be proved for such
an oracle can be extended to O as well. Formally, let O′ be an oracle that, given two vertices
x, y returns a pair (P, Q), where P is YES/NO/IGNORE, and Q is any node of the tree
that is an ancestor of y. Call such a response to a query charged if P equals YES/NO and
free otherwise. O′ can give at most n2 free responses, where n is the number of vertices in
the tree. For a deterministic algorithm D′, let c′(D′, I) be the number of charged responses
given by O′ while D′ recovers I.

▶ Lemma 10. For any deterministic algorithm D that queries O, there exists a deterministic
algorithm D′ that queries O′, such that for any tree I, c′(D′, I) = c(D, I).

Proof. Given D, let us construct an algorithm D′ such that c(D, I) = c′(D′, I) for all I.
Consider a query made by D to O, with a response P , that is either YES or NO. D′ simply
keeps on making that same query to O′ until it gets a charged response, say (P ′, Q′). Clearly
P ′ must be equal to P , and D′ can choose to ignore Q′. So, D′ gets one charged response
for every query made by D. ◀

This proof can also be extended to the case where the definitions of both c(D, I) and
c′(D′, I) are changed to the number of NO responses received by the algorithm.

B Algorithm Pseudocode

Algorithm 3 GET-EDGES.
Input : A set T of nodes that form a tree τ = (T,≻) with ≻ unknown, and an oracle that

answers for any pair of nodes a ∈ T, b ∈ T whether a ≻ b.
Output : The set of the |T | − 1 edges of τ

1 n← |T |
2 if n ≤ 1 then
3 return {}
4 end
5 while true do
6 c← GET-PROBABLE-PSEUDO-CENTROID(T )
7 (b, S)← TEST-PSEUDO-CENTROID(T, c)
8 if b = true then
9 E ← ∅

10 for X ∈ S do
11 E ← E ∪ GET-EDGES(X)
12 Let X = y1, . . . , ym

13 if c ≻ y1 then
14 E ← E ∪ {(c, maxy∈X y)}
15 end
16 else
17 E ← E ∪ {(miny∈Ancc y, c)}
18 end
19 end
20 return E

21 end
22 end
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