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Abstract
A bipartite graph is called a biclique if it is a complete bipartite graph and a biclique is called a
balanced biclique if it has equal number of vertices in both parts of its bipartition. In this work, we
initiate the complexity study of Biclique Contraction and Balanced Biclique Contraction.
In these problems, given as input a graph G and an integer k, the objective is to determine whether
one can contract at most k edges in G to obtain a biclique and a balanced biclique, respectively. We
first prove that these problems are NP-complete even when the input graph is bipartite. Next, we
study the parameterized complexity of these problems and show that they admit single exponential-
time FPT algorithms when parameterized by the number k of edge contractions. Then, we show that
Balanced Biclique Contraction admits a quadratic vertex kernel while Biclique Contraction
does not admit any polynomial compression (or kernel) unless NP ⊆ coNP/poly.
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1 Introduction

Graph modification problems have been extensively studied in theoretical computer science for
their expressive power. The input of a typical graph modification problem consists of a graph
G and a positive integer k, and the objective is to make at most k modifications to G so that
the resulting graph belongs to some specific family F of graphs. F-Contraction problems
refer to the variant where the only permitted modifications are edge contractions. Watanabe
et al. [39] and Asano and Hirata [1] proved that if F is closed under edge contractions and
satisfies certain specific properties, then F-Contraction is NP-complete. Brouwer and
Veldman [4] proved that F-Contraction is NP-complete even when F is a singleton set
consisting of a small graph like a cycle or a path on four vertices. Note that F-Vertex
Deletion and F-Edge Deletion (the variants of the modification problems where the
only allowed edits are vertex deletions and edge deletions) are trivially solvable when F is a
fixed singleton set. This is one of the many examples that suggests that F-Contraction
problems are harder than the analogous vertex and edge deletion counterparts.

The study of graph modification problems in parameterized complexity led to the discovery
of several important techniques in the field and one may argue that it played a central role in
the growth of the area [2, 3, 7, 8, 9, 10, 12, 16, 17, 18, 20, 23]. The contrast in the apparent
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difficulty of contraction problems when compared to their vertex/edge deletion variants is
evident even in this realm. A natural parameter for graph modification problems is the
number k of allowed modifications. For a family H of graphs, we say that G is H-free if for
every graph H ∈ H, G does not contain H as an induced subgraph. A graph family F admits
a forbidden set characterization if there exists a collection H of graphs such that G ∈ F if
and only G is H-free. A result by Cai [5] states that if F is hereditary and admits a finite
forbidden set characterization, then the problem of modification to F using any combination
of vertex deletions, edge deletions and edge additions, admits a single exponential-time FPT
algorithm. However, Cai and Guo [6] and Lokshtanov et al. [35] proved that F -Contraction
is W[2]-hard even when F admits a finite forbidden set characterization. One of the intuitive
reasons for this intractability is that the classical branching technique that works for vertex
deletion and edge deletion/addition variants does not straightaway work for contractions.
Recently, Chakraborty and Sandeep [11] studied the problem of contracting to a H-free
graph where H is a singleton set and showed tractability and intractability results for various
choices of H.

In spite of the inherent difficulty, FPT algorithms for F -Contraction for several graph
classes F are known. If every graph in F has bounded treewidth as in the case of F being
paths, trees, or cactus graphs, one may use Courcelle’s theorem to show the existence of FPT
algorithms for F -Contraction (see [13, Chapter 7] for related definitions and arguments).
For other cases of F-Contraction, FPT algorithms have been obtained using problem-
specific techniques and arguments that typically involve deep insights into the structure of F .
The first FPT algorithm for Bipartite Contraction involves an interesting combination
of techniques like iterative compression, important separators, and irrelevant vertices [28]
and the improved algorithm for the problem involves non-trivial applications of important
separators [26]. Planar Contraction was shown to be FPT [25] using the irrelevant vertex
technique combined with an application of Courcelle’s theorem.

On the other hand, Clique Contraction admits a relatively simpler FPT algorithm
running in O∗(2O(k log k)) †† time [6]. This algorithm relies on the observation that if one can
obtain a clique from a graph G by contracting k edges, then one can obtain a clique from
G by deleting at most 2k vertices (that are endpoints of the contracted edges). That is, if
(G, k) is a Yes-instance of Clique Contraction, then V (G) can be partitioned into sets
X and Y such that the cardinality of X is at most 2k and Y induces a clique. One can find
such a partition (if it exists) in FPT time. Then the algorithm guesses the solution edges in
E(X) ∪ E(X,Y ) and proceeds with branching. It is surprising that this simple algorithm is
optimal under the Exponential-time Hypothesis (ETH) [21]. This made us wonder if such
results hold for the closely related problem of Biclique Contraction.

Biclique Contraction
Input: A graph G and an integer k.
Question: Can we contract at most k edges in G to obtain a biclique?

We call the variant of Biclique Contraction where we require the resultant graph to be a
balanced biclique as Balanced Biclique Contraction. To our pleasant surprise, we are
able to show that both the problems admit simple single exponential-time FPT algorithms
and that neither of the problems admit subexponential-time FPT algorithms.

†† O∗(·) notation suppresses the factors that are polynomial in the input size.
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To the best of our knowledge, even the classical complexity of Biclique Contraction
and Balanced Biclique Contraction is not known in the literature. As bicliques and
balanced bicliques are not closed under edge contractions, one cannot use the results by Asano
and Hirata [1] to show the NP-hardness of these problems. Ito et al. [30, Theorem 2] showed
that for each p, q ≥ 2, {Kp,q}-Contraction is NP-complete where Kp,q denotes the biclique
with p vertices in one part of the bipartition and q vertices in the other. This does not imply
the NP-hardness of Biclique Contraction and Balanced Biclique Contraction.
Indeed, if G is a Yes-instance of {Kp,q}-Contraction, then for k = |V (G)| − (p+ q), (G, k)
is a Yes-instance of Biclique Contraction, however, the converse is not necessarily true.
A similar argument holds for Balanced Biclique Contraction.

The vertex-deletion variant of the problems of deleting k vertices to get a biclique or a
balanced biclique have received considerable attention in the literature. To be consistent with
our terminology, we call these problems as Biclique Vertex Deletion and Balanced
Biclique Vertex Deletion. Biclique Vertex Deletion is polynomial-time solvable
on bipartite graphs but NP-complete in general [24, Problem GT24]. However, Balanced
Biclique Vertex Deletion is NP-complete even on bipartite graphs [24, Problem GT24].
Our first result is that the analogous contraction problems are NP-complete and they remain
so even on bipartite graphs.

▶ Theorem 1. Biclique Contraction and Balanced Biclique Contraction are
NP-complete even when the input graph is bipartite.

We reduce Red-Blue Dominating Set to Biclique Contraction and Hypergraph
2-Coloring to Balanced Biclique Contraction to show Theorem 1. It is well-known
that there are linear size-preserving reductions from 3-SAT to Red-Blue Dominating
Set and from 3-SAT to Hypergraph 2-Coloring [13, 31, 38]. As the reductions used to
prove Theorem 1 are also linear size-preserving, it follows that Biclique Contraction and
Balanced Biclique Contraction do not admit algorithms running in O∗(2o(n)) time
(and hence do not admit O∗(2o(k)) time algorithms) assuming ETH. However, as mentioned
earlier, we show that both problems admit single exponential-time FPT algorithms.

▶ Theorem 2. Biclique Contraction and Balanced Biclique Contraction can be
solved in O∗(25.904k) time.

The only other known cases when F-Contraction admits a single exponential-time
FPT algorithm is when F is the collection of paths [27], trees [27], cactus [32] or grids [37].
Among these results, the algorithm for paths is relatively simple, the one for trees is obtained
using non-trivial application of the color coding technique and the last two use relatively
more technical problem-specific arguments. The techniques used in our algorithms include
an FPT algorithm for 2-Cluster Vertex Deletion as a subroutine, rephrasing the
contraction problem as a partition problem with some properties, guessing certain vertices
to be in appropriate parts of this partition, preprocessing the graph based on the guess and
a branching rule.

F-Contraction for most choices of F mentioned here (except paths and grids) do not
admit polynomial kernels. While we show Balanced Biclique Contraction to be an
exception, it turns out that Biclique Contraction is not.

▶ Theorem 3. Balanced Biclique Contraction admits a kernel with O(k2) vertices.
However, Biclique Contraction does not admit any polynomial compression or kernel
unless NP ⊆ coNP/poly.

FSTTCS 2023
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2 Preliminaries

For details on parameterized algorithms, we refer to standard books in the area [13, 22]. For
a positive integer q, we denote the set {1, 2, . . . , q} by [q]. A partition of a set S into disjoint
sets S1, . . . , Sℓ is denoted as ⟨S1, . . . , Sℓ⟩. An ordered partition is one where the parts are
ordered.

For an undirected graph G, V (G) and E(G) denote its set of vertices and edges, respect-
ively. The size of a graph is the number of edges in it. A graph is non-trivial if it has at
least one edge. We denote an edge with endpoints u and v as uv. Two vertices u and v in
V (G) are adjacent if uv is an edge in G. The neighborhood of a vertex v, denoted by NG(v),
is the set of vertices adjacent to v. The degree of a vertex is the size of its neighborhood. A
vertex u is a pendant vertex if its degree is one. We omit the subscript in the notation for
neighborhood if the graph under consideration is clear. Subdividing an edge uv results in its
deletion followed by the addition of a new vertex adjacent to u and v. For a subset S ⊆ V (G)
of vertices, N [S] =

⋃
v∈S N(v) ∪ {v} and N(S) = N [S] \ S. We denote the subgraph of G

induced on the set S by G[S]. A subset S ⊆ V (G) is said to be a connected set if G[S] is
connected. For two subsets S1, S2 ⊆ V (G), EG(S1, S2) denotes the set of edges with one
endpoint in S1 and the other endpoint in S2. With a slight abuse of notation, for a set
S ⊆ V (G), we use EG(S) to denote EG(S, S). We say that S1, S2 are adjacent (or that the
graphs G[S1] and G[S2] are adjacent) if EG(S1, S2) ̸= ∅. We omit the subscript in these
notations if the graph under consideration is clear. The disjoint union of graphs G and H,
denoted by G+H, is the graph with vertex set V (H) ∪ V (G) and edge set E(H) ∪ E(G)
where V (G) and V (H) are renamed (if necessary) such that V (G) ∩ V (H) = ∅. For a graph
G, G denotes its complement.

A path is a sequence of distinct vertices in which any two consecutive vertices are adjacent.
A cycle is a path in which the first and last vertices are adjacent. A graph is connected if
there is a path between every pair of distinct vertices. A component is a maximal connected
subgraph of a graph. A spanning tree of a connected graph is a connected acyclic subgraph
which has all the vertices of the graph. A spanning forest of a graph is a collection of
spanning trees of its components. A set of vertices is called a clique if any two vertices in it
are adjacent. A complete graph is one whose vertex set is a clique and a complete graph on
n vertices is denoted by Kn. A set of vertices S is said to be an independent set if no two
vertices in S are adjacent. Throughout this paper, the input graph will be assumed to be
connected.

A graph G is bipartite if its vertex set can be partitioned into two independent sets X, Y
and ⟨X,Y ⟩ is called a bipartition of G. It it well-known that a graph G is bipartite if and
only if G has no odd cycles. A bipartite graph G is a biclique if it has a bipartition ⟨X,Y ⟩
such that every vertex in X is adjacent to every vertex in Y . Observe that an edgeless graph
is also a biclique. A biclique G with bipartition ⟨X,Y ⟩ is a balanced biclique if |X| = |Y |.
Observe that if a biclique is non-trivial, then it is connected. The following characterization
of bicliques is easy to verify.

▶ Lemma 4. A graph G is a biclique if and only if G is {K3,K1 +K2}-free.

Proof. (⇒) If G contains K3 as an induced subgraph then G is not bipartite and hence
not a biclique as well. Suppose G is a biclique with bipartition ⟨X,Y ⟩ and has K1 + K2
as an induced subgraph. Let u, v1, v2 be three vertices in G such that v1v2 ∈ E(G) and
uv1, uv2 /∈ E(G). Without loss of generality, let X be the part that contains v1. Then, it
follows that v2 ∈ Y . However, u ∈ X leads to a contradiction as uv2 /∈ E(G) and u ∈ Y also
leads to a contradiction as uv1 /∈ E(G).
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(⇐) Conversely, suppose G is {K3,K1 +K2}-free. If G is not bipartite, then G has an
odd cycle and let C = (u1, u2, . . . , ur) denote the shortest odd cycle. Observe that no two
non-consecutive vertices are adjacent as C is a shortest odd cycle. Then C has at least 5
vertices (as G is K3-free) and the subgraph induced on {u1, u2, u4} is K1 +K2. Therefore,
we conclude that G has no odd cycle and is hence a bipartite graph. Let ⟨X,Y ⟩ denote
a bipartition of G. If G is edgeless, then G is vacuously a biclique. Subsequently, let us
assume that G is non-trivial. If G is disconnected, then it has at least two components, one
of which is non-trivial. Then, the endpoints of an edge in such a non-trivial component and a
vertex from another component induce a K1 +K2. Therefore, it follows that G is connected.
Suppose there exist a pair of vertices x ∈ X, y ∈ Y such that xy /∈ E(G). Let z ∈ Y be a
neighbour of x. Such a vertex z ∈ Y exists as G is connected. Then, the subgraph induced
on {x, y, z} is K1 +K2 which leads to a contradiction. ◀

2.1 Edge Contractions and Graph Contractability
The contraction of an edge uv in G results in the addition of a new vertex that is adjacent to
the vertices that are adjacent to either u or v and the subsequent deletion of the vertices u
and v. The resulting graph is denoted by G/e. For a graph G and an edge e = uv, we formally
define G/e as V (G/e) = (V (G) ∪ {w})\{u, v} and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈
E(G)}∪{wx | x ∈ NG(u)∪NG(v)} where w is a new vertex. This process does not introduce
any self-loops or parallel edges. For a subset F ⊆ E(G), the graph G/F denotes the graph
obtained from G by contracting (in an arbitrary order) all the edges in F .

A graph G is said to be contractible to a graph H if there is a function ψ : V (G) → V (H)
(and we say that G is contractible to H via ψ) such that the following properties hold.

For any vertex h ∈ V (H), ψ−1(h) is non-empty and connected.
For any two vertices h, h′ ∈ V (H), hh′ ∈ E(H) if and only if E(ψ−1(h), ψ−1(h′)) ̸= ∅.

For a vertex h in H, the set ψ−1(h) is called a witness set associated with or corresponding
to h. For a fixed ψ, we define the H-witness structure of G, denoted by W , as the collection
of all witness sets. Formally, W = {ψ−1(h) | h ∈ V (H)}. Note that a witness structure
W partitions V (G). If a witness set contains more than one vertex, then we call it a big
witness set, otherwise we call it a small witness set or singleton witness set. Let F ⊆ E(G)
be the collection of edges of some spanning tree of G[W ] for each witness set W ∈ W . Note
that any spanning tree of the graph induced on a singleton witness set is edgeless. Now,
it is sufficient to contract edges in F to obtain H from G, i.e., G/F = H. Hence, we say
that F is a solution associated with the function ψ and the witness structure W. We say G
is k-contractible to H if there exists a subset F ⊆ E(G) such that |F | ≤ k and G/F = H.
Observe that in the H-witness structure of G corresponding to F , there are at most |F | big
witness sets and the total number of vertices in big witness sets is upper bounded by 2|F |.

We view a biclique witness structure of G as a partition of V (G) into two parts with
certain properties. For a subset X ⊆ V (G), let sfG(X) denote the number of edges in a
spanning forest of G[X]. We drop the subscript in the notation for sfG(X) if the graph under
consideration is unambigously clear.

▶ Definition 5 (k-Constrained Valid Partition). For a graph G, a partition ⟨L,R⟩ of V (G)
into two parts is called a k-constrained valid partition if the following properties hold.
1. sf(L) + sf(R) ≤ k.
2. Every component of G[L] is adjacent to every component of G[R].
We have the following observation on Yes-instances of Biclique Contraction.

FSTTCS 2023
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▶ Lemma 6. (G, k) is a Yes-instance of Biclique Contraction if and only if V (G) has
a k-constrained valid partition.

Proof. (⇒) Suppose G is k-contractible to the biclique H with bipartiton ⟨X,Y ⟩ via ψ.
Let W denote the H-witness structure of G. Define subsets WL and WR of W as follows:
WL = {ψ−1(h) | h ∈ V (X)} and WR = {ψ−1(h) | h ∈ V (Y )}. Let L denote the collection
of vertices in the witness sets in WL and R denote the collection of vertices in the witness
sets in WR. It is clear that ⟨L,R⟩ is a partition of V (G). Let E1 be the collection of edges
that are in some spanning forest of G[L] and E2 be the collection of edges that are in some
spanning forest of G[R]. Then, contracting E1 in G[L] results in X and contracting E2 in
G[R] results in Y . Also, E1 ∪ E2 = E is a solution corresponding to W. Then, as |E| ≤ k,
the first condition holds. As H is a biclique, every vertex of X is adjacent to every vertex of
Y . Therefore, for every vertex h ∈ X and every vertex h′ ∈ Y , E(ψ−1(h), ψ−1(h′)) is not
empty. In other words, for every component CL of G[L] and every component CR of G[R],
there exists vertices x ∈ V (CL) and y ∈ V (CR) such that xy ∈ E(G). Hence, the second
condition holds.

(⇐) Suppose ⟨L,R⟩ is a k-constrained valid partition of V (G). Let E1 be the collection
of edges of some spanning forest of G[L] and E2 be the collection of edges of some spanning
forest of G[R]. Observe that G[L]/E1 = X and G[L]/E2 = Y are independent sets. Further,
every vertex in X is adjacent to every vertex in Y due to the second property. Therefore
G/(E1 ∪E2) = H is a biclique with bipartiton ⟨X,Y ⟩. Further, as |E1| = kℓ and |E2| = kr

with kℓ + kr ≤ k due to the first property, it follows that G is k-contractible to H. ◀

Suppose G is k-contractible to the biclique H with W being the H-witness structure
of G and ⟨L,R⟩ is a k-constrained valid partition of V (G) obtained from W as described
in the proof of Lemma 6. Then, observe that the singleton witness sets in W correspond
to the trivial components of G[L] and G[R] and vice-versa. We use this equivalence and
the interchangeability of witness structures and constrained valid partitions throughout the
paper.

In order to prove a result on Yes-instances of Balanced Biclique Contraction
analogous to Lemma 6, we introduce the following definition.

▶ Definition 7 (k-Constrained Valid Balanced Partition). For a graph G, a partition ⟨L,R⟩
of V (G) into two parts is called a k-constrained valid balanced partition if ⟨L,R⟩ is a k-
constrained valid partition where the number of components of G[L] is equal to the number
of components of G[R].

Now, we have the following property on Yes-instances of Balanced Biclique Con-
traction.

▶ Lemma 8. (G, k) is a Yes-instance of Balanced Biclique Contraction if and only
if V (G) has a k-constrained valid balanced partition.

A set Z ⊆ V (G) is called a biclique modulator if G−Z is a biclique. If G is k-contractible
to a (balanced) biclique H, then there are at most 2k vertices that are in big witness sets of
a H-witness structure. This leads to the following observation.

▶ Observation 9. If G is k-contractible to a (balanced) biclique, then G has a biclique
modulator of size at most 2k.



R. Krithika, V. K. K. Malu, R. Sharma, and P. Tale 8:7

Figure 1 The graph H in the reduction from Red Blue Dominating Set to Biclique Con-
traction where edges between R and B are the same as in G. The vertex x is adjacent to every
vertex in R ∪ C and each vertex in B is adjacent to exactly one vertex in B′.

3 NP-Completeness Results

In this section, we prove that Biclique Contraction and Balanced Biclique Con-
traction are NP-complete even when restricted to bipartite graphs.

3.1 Biclique Contraction
A set X is said to dominate a set Y if Y ⊆ N(X). We show the NP-hardness of Biclique
Contraction by giving a polynomial-time reduction from Red-Blue Dominating Set.
In the Red-Blue Dominating Set problem, given a bipartite graph G with bipartition
⟨R,B⟩ and an integer κ, the objective is to find a set S ⊆ R of size at most κ that dominates
B. It is well-known and easy to verify that Red-Blue Dominating Set is equivalent to
Set Cover [24, Problem SP5] and is therefore NP-hard [15].

▶ Lemma 10. There is a polynomial-time reduction that takes as input an instance
(G,R,B, κ) of Red Blue Dominating Set and returns an equivalent instance (H, k)
of Biclique Contraction such that H is bipartite, |V (H)| = O(|V (G)|) and k = |B| + κ.

Proof. Consider an instance (G,R,B, κ) of Red-Blue Dominating Set. Without loss
of generality, assume |R|, |B| > κ and that every vertex b ∈ B is adjacent to at least two
vertices in R. We construct an instance (H, k) of Biclique Contraction where k = κ+ |B|
and H is obtained from G as follows.

For every vertex b ∈ B, add a new vertex b′ adjacent to b. Let B′ denote the set
{b′ | b ∈ B}.
Add a new vertex x adjacent to every vertex in R and add κ + |B| + 1 new vertices
v1, . . . , vκ+|B|+1 adjacent to x. Let C denote the set {v1, . . . , vκ+|B|+1}.

See Figure 1 for an illustration.
It is easy to verify that the reduction takes polynomial time. Further, H is connected

and bipartite with bipartition ⟨B ∪ {x}, R ∪ C ∪ B′⟩. We show that (G,R,B, κ) is a Yes-
instance of Red-Blue Dominating Set if and only if (H, k) is a Yes-instance of Biclique
Contraction where k = κ+ |B|.

(⇒) Let (G,R,B, κ) is a Yes-instance of Red-Blue Dominating Set with set S ⊆ R

and |S| ≤ κ such that S dominates B. Then, consider the partition of V (H) into sets
X = S ∪B ∪ {x} and Y = C ∪B′ ∪ (R \S). Observe that H[X] is connected as S dominates
B and S ⊆ N(x). Therefore, any spanning forest, which is also a spanning tree, of H[X] has
at most κ + |B| edges. Further, Y is an independent set and since H is connected, every
vertex in Y has a neighbour in X. Therefore, H/F is a biclique where F is the set of edges
of some spanning tree of H[X].

FSTTCS 2023
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(⇐) Conversely, suppose H is k-contractible to a biclique. Let ⟨X,Y ⟩ be a k-constrained
valid partition of V (H) given by Lemma 6. Without loss of generality let x ∈ X. We first
claim that at least one vertex from C is in Y . If C ⊆ X, then as C ⊆ N(x) and |C| = k + 1,
any spanning forest of H[X] has at least k + 1 edges leading to a contradiction. Let c ∈ C

be a vertex in Y . Next, we claim that H[X] is connected. Suppose H[X] has a component
Ĥ not containing x. Then, Ĥ has no vertex from C as C ⊆ N(x) and no vertex from R

as R ⊆ N(x). It follows that V (Ĥ) ⊆ B ∪ B′. Then, the component of H[Y ] containing
c has no other vertex since N(c) = {x}. This implies that no vertex in the component of
H[Y ] containing c is adjacent to a vertex in Ĥ leading to a contradiction. Now, we argue
that ⟨X,Y ⟩ can be transformed into another k-constrained valid partition of V (H) with
C ⊆ Y . If there is a vertex d ∈ X ∩ C, then as N(d) = {x}, H[X \ {d}] is connected and
every component of H[Y ∪ {d}] (including the trivial component in which d is in) is adjacent
to H[X \ {d}], ⟨X \ C, Y ∪ C⟩ is the required k-constrained valid partition of V (H).

Now, we transform ⟨X,Y ⟩ into another k-constrained valid partition of V (H) such that
B ⊆ X and B′ ⊆ Y . Suppose there is a vertex b ∈ B ∩ Y . Let Ĥ be the component of H[Y ]
containing b. Then, as the only neighbour of b′ is b and x ∈ X, it follows that b′ ∈ V (Ĥ).
As H[X] is adjacent to Ĥ, there is a vertex r ∈ R that is adjacent to b such that r ∈ V (Ĥ)
or r ∈ X. In the former case, we move B ∩ V (Ĥ) and R ∩ V (Ĥ) to X and in the latter case,
we move B ∩ V (Ĥ) to X. In both the cases, X remains connected and it is easy to verify
that the resulting partition is a k-constrained valid partition of V (H). Subsequently, we may
assume B ⊆ X. As H[X] \ B′ is also connected and N(B′) ⊆ B, by moving vertices from
X ∩B′ to Y , we get another partition of V (H) that is a k-constrained valid partition. Once
we achieve B ⊆ X, we may safely move vertices of B′ from X (if any) to Y . Hence, we may
now assume B ⊆ X and B′ ⊆ Y .

At this point, we have B ∪ {x} ⊆ X and B′ ∩X = ∅. Also, as N(x) ∩B = ∅, it follows
that for each vertex b ∈ B, there is a vertex r ∈ R∩X in order for H[X] to be connected. As
any spanning tree of H[X] has at most k = κ+ |B| edges, it follows that the set R ∩X has
at most κ vertices. Equivalently, R ∩X is a set of at most κ vertices that dominates B. ◀

It is easy to verify that Biclique Contraction is in NP. This fact along with Lemma 10
establishes the first part of Theorem 1.

3.2 Balanced Biclique Contraction
We show the NP-hardness of Balanced Biclique Contraction by a reduction from
Hypergraph 2-Coloring. A hypergraph G is a pair (V,S) where V is a finite set of vertices
(denoted as V (G)) and S ⊆ 2V is a finite collection of subsets of V called hyperedges. In the
Hypergraph 2-Coloring problem, the input is a hypergraph G and the objective is to
determine if there is a 2-coloring ϕ : V (G) 7→ {1, 2} such that no hyperedge is monochromatic,
i.e., a 2-coloring in which every hyperedge has a vertex with color 1 and a vertex with color
2. Hypergraph 2-Coloring is known to be NP-complete [24, Problem SP4] and is one of
the natural choices picked to show the NP-hardness of contraction problems in the literature
[4, 14, 19, 33].
▶ Lemma 11. There is a polynomial reduction that takes as input an instance (G) of
Hypergraph 2-Coloring and returns an equivalent instance (G, κ) of Balanced Biclique
Contraction such that G is bipartite, |V (G)| = O(|V (G)|) and κ is a function of the number
of vertices and the number of hyperedges in G.
Proof. Consider an instance (G = (V,S)) of Hypergraph 2-Coloring where V (G) =
{v1, v2, . . . , vN } for some N ≥ 1 and S = {S1, S2, . . . , SM } for some M ≥ 1. Without loss of
generality, assume that ∅ ̸∈ S, every hyperedge contains at least two vertices and there exists
an hyperedge, say SM , that contains all the vertices in V (G). The reduction first constructs
an intermediate non-bipartite graph H using the following procedure.
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Figure 2 Construction of graph H in the reduction from Hypergraph 2-Coloring to Balanced
Biclique Contraction where thick lines between two sets indicate bicliques.

For every vertex v in V (G), add a vertex v in H.
For every hyperedge Sj in S, add two vertices sℓ

j and sr
j . Let Sℓ = {sℓ

j | j ∈ [M ]} and
Sr = {sr

j | j ∈ [M ]}.
For every i ∈ [N ] and j ∈ [M ] such that vi ∈ Sj add edges vis

ℓ
j and vis

r
j .

Add vertices L = {ℓ1, . . . , ℓ6M+3N−5} and R = {r1, . . . , r6M+3N−5} such that every vertex
in L is adjacent to every vertex in R.
Make every vertex in L adjacent to every vertex in Sr and every vertex in R adjacent to
every vertex in Sℓ.

This completes the construction of H. See Figure 2 for an illustration. We show that (G)
is a Yes-instance of Hypergraph 2-Coloring if and only if (H, k = 2M + N − 2) is a
Yes-instance of Balanced Biclique Contraction. The key idea behind the reduction is
as follows. First, the number of vertices in L and R are so large that no edge in EH(L,R)
can be contracted without exceeding the budget k. Hence, H[L ∪R] acts as a representative
subgraph of the final balanced biclique. Second, any contraction solution needs to partition
V (G) into two parts V1 and V2 such that both H[Sℓ ∪ V1] and H[Sr ∪ V2] are connected.
This is equivalent to finding a 2-coloring of G such that no hyperedge is monochromatic.

(⇒) Suppose ϕ : V (G) 7→ {1, 2} is a 2-coloring such that for no hyperedge in S is
monochromatic. Using this coloring, we define a partition ⟨X,Y ⟩ of V (H) with X = L∪Sℓ∪V1
and Y = R∪Sr ∪V2 where V1 = {v | v ∈ V (G), ϕ(v) = 1} and V2 = {v | v ∈ V (G), ϕ(v) = 2}.
As ∅ ̸∈ S, SM = V (G), and no edge in S is monochromatic, H[Sℓ ∪ V1] and H[Sr ∪ V2] are
connected. Moreover, H[Sℓ ∪ V1] has a vertex adjacent to a vertex in H[Sr ∪ V2]. Further,
as L ∪ Sℓ, L ∪ V (G), R ∪ Sr and R ∪ V (G) are independent sets in H, it follows that
H[X] has a spanning forest of size M + |V1| − 1 and H[Y ] has a spanning forest of size
M + |V2| − 1. Therefore, ⟨X,Y ⟩ is a k-constrained valid balanced partition of V (H) where
k = 2M +N − 2. From Lemma 8, we conclude that (H, k) is a Yes-instance of Balanced
Biclique Contraction.

(⇐) Conversely, suppose H is k-contractible to a balanced biclique. Recall that an edge
contraction reduces the number of vertices by exactly one. Then, H is k-contractible to the
balanced biclique Kq,q with q ≥ 6M + 3N − 4 = 3k + 2. As in any Kq,q-witness structure
of H there are at most 2k vertices in big witness sets and |L| = |R| = 3k + 1, there exist
subsets L′ ⊆ L, R′ ⊆ R with |L′|, |R′| ≥ k + 1 such that every vertex of L′ ∪R′ are in small
witness sets. Now let ⟨L∗, R∗⟩ be a k-constrained valid balanced partition of V (H) given by
Lemma 8 corresponding to this witness structure. Then, H[L∗] and H[R∗] each have atleast
3k + 2 components. Further, every vertex in L′ is in a trivial component of H[L∗] and every
vertex in R′ is in a trivial component of H[R∗].

FSTTCS 2023



8:10 Biclique Contraction and Balanced Biclique Contraction

Next, we claim that R ⊂ R∗ and L ⊂ L∗. If there exist a vertex r ∈ R ∩ L∗, then any
spanning tree of H[L′ ∪ {r}] has at least k + 1 edges leading to a contradiction. A similar
argument shows that L ⊂ L∗. Now we argue that every vertex of L is in a trivial component
of H[L∗] and every vertex of R is in a trivial component of H[R∗]. Suppose there are two
vertices ℓi, ℓj ∈ L that are in the same component X of H[L∗]. As ℓi and ℓj are not adjacent,
there is at least one more vertex x in X that is adjacent to ℓi or ℓj . By the construction
of H, x ∈ R ∪ Sr. However, as R ⊂ R∗, we have x ∈ Sr. Then, any spanning tree of
H[{x} ∪ L′] has at least k + 1 edges leading to a contradiction. Therefore every vertex of L
is a trivial component of H[L∗]. A similar argument shows that every vertex of R is in a
trivial component of H[R∗]. This shows that vertices of L form 3k + 1 components of H[L∗]
and vertices of R form 3k + 1 components of H[R∗].

Further, as every vertex in Sr is adjacent to every vertex in L and every vertex in Sℓ

is adjacent to every vertex in R, we have Sr ⊂ R∗ and Sl ⊂ L∗. Moreover, as L ∪ V (G)
and R ∪ V (G) are independent sets, we conclude that no vertex from V (G) is in a trivial
component of H[L∗] or H[R∗]. Observe that Sℓ is contained in one component of H[L∗] if
and only if Sr is contained in one component of H[R∗] due to Lemma 8. Let ⟨V1, V2⟩ be the
partition of V (G) such that V1 = L∗ ∩ V (G) and V2 = R∗ ∩ V (G). Without loss of generality,
let V1 ̸= ∅. Suppose there are two components of H[L∗] that contain vertices from Sℓ. Let
C ′ be one of these components that contain sℓ

M . Then, V1 is contained in C ′. Let C denote
a component of H[L∗] different from C ′ that contains vertices from Sℓ. As ∅ /∈ S, it follows
that C has a vertex that is adjacent to a vertex in C ′ leading to a contradiction. Thus, H[L∗]
and H[R∗] each have exactly 3k + 2 components implying that H[Sℓ ∪ V1] and H[Sr ∪ V2]
are connected. Then, ⟨V1, V2⟩ gives a 2-Coloring for G such that no edge is monochromatic.
Hence, (G) is a Yes-instance of Hypergraph 2-Coloring.

Now, let G be the graph obtained from H by subdividing every edge in EH(Sℓ, V (G)).
Clearly, G is bipartite with bipartition ⟨L ∪ Sℓ ∪ V (G), R ∪ Sr ∪ Z⟩ where Z is the set of
new vertices added during the subdivision. Observe that |Z| =

∑
v∈V (G) d(v) ≥ 2M where

d(v) denotes the number of hyperedges that contain v. Then, (H, k) is a Yes-instance
of Balanced Biclique Contraction if and only if (G, k + |Z|) is a Yes-instance of
Balanced Biclique Contraction.

Suppose H is k-contractible to the balanced biclique Kq,q. Then, from earlier arguments,
we know that q = 3k + 2. Let ⟨L∗, R∗⟩ be a k-constrained valid balanced partition of V (H)
given by Lemma 8. Then, ⟨L∗ ∪ Z,R∗⟩ is a (k + |Z|)-constrained valid balanced partition of
V (G). By Lemma 8, G is (k + |Z|)-contractible to a balanced biclique. Conversely, suppose
G is (k + |Z|)-contractible to the balanced biclique Kp,p. Let F ⊆ E(G) be the set of edges
of G such that G/F = Kp,p. Then, as |V (G)| = 14M + 7N − 10 + |Z|, it follows that
2p ≥ 12M + 6N − 8 and so p ≥ 5. As every vertex in Z has degree 2 in G, it follows that no
vertex of Z is in a singleton witness set of a Kp,p-witness structure of G. In other words, each
vertex of Z has at least one edge incident on it in F . For every z ∈ Z, add one such edge
to F ′. Then, |F ′| = |Z| as no edge in F has both endpoints in Z since Z is an independent
set. Now, we have G/F ′ = H and H/(F \ F ′) = Kp,p. Since |F ′| = |Z|, it follows that
|F \ F ′| ≤ k and thus H is k-contractible to a balanced biclique. ◀

It is easy to verify that Balanced Biclique Contraction is in NP. This fact along
with Lemma 11 establishes the second part of Theorem 1.
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4 FPT Algorithms

In this section, we show that Biclique Contraction and Balanced Biclique Con-
traction can be solved in O∗(25.904k) time. For the sake of convenience and to avoid
unnecessary repetition, we first describe the algorithm for Biclique Contraction and
later mention the (minor) changes required in order to solve the balanced variant.

Hüffner et al. [29] gave an O(1.4k · kd + n3) time algorithm for the d-Cluster Vertex
Deletion problem in which given a graph G and integer k, the goal is to determine whether
one can delete at most k vertices such that the resultant graph is the disjoint union of at
most d complete graphs. As G− Z is a biclique if and only if G− Z is the disjoint union of
at most two complete graphs, we have the following result.

▶ Proposition 12 ([29]). Given a graph G and an integer k, there is an algorithm that
either computes a biclique modulator Z of size at most k or correctly determines that no such
modulator exists in O∗(1.4|Z|) time.

Consider an instance (G, k) of Biclique Contraction. We first determine if G has a
biclique modulator Z of size at most 2k in O∗(1.4|Z|) time using Proposition 12. If no such
set exists, then by Observation 9, we can declare that G is not k-contractible to a biclique.
Otherwise, let ⟨X,Y ⟩ denote a bipartition of G−Z, and ⟨L,R⟩ denote a k-constrained valid
partition of V (G) (if one exists). We begin by guessing the “nature of the intersection”
(see below for the exhaustive cases) between X,Y and L,R, and then proceed to finding a
k-constrained valid partition that respects this guess. Note that if X ∪ Y is an empty set,
then we can solve the problem by guessing the partition of Z in time O∗(2|Z|). Hence, we
consider the case when X ∪ Y ̸= ∅. Without loss of generality, we can assume that Y ≠ ∅.
Consider the following cases.
1. X ∩ L = ∅ and X ∩R = ∅. The two sub-cases are as follows.

a. Either Y ∩ L ̸= ∅ or Y ∩R ̸= ∅ but not both.
b. Y ∩ L ̸= ∅ and Y ∩R ̸= ∅.

2. Either X ∩ L ̸= ∅ or X ∩R ̸= ∅ but not both. The two sub-cases are as follows.
a. Either Y ∩ L ̸= ∅ or Y ∩R ̸= ∅ but not both.
b. Y ∩ L ̸= ∅ and Y ∩R ̸= ∅.

3. X ∩ L ̸= ∅ and X ∩R ̸= ∅. The two sub-cases are as follows.
a. Either Y ∩ L ̸= ∅ or Y ∩R ̸= ∅ but not both.
b. Y ∩ L ̸= ∅ and Y ∩R ̸= ∅.

Solving Case (1a): Without loss of generality let Y ∩L = ∅. Then, for each ordered partition
⟨ZL, ZR⟩ of Z where L ∩ Z = ZL and R ∩ Z = ZR, we determine if ⟨ZL, ZR ∪ Y ⟩ is a
k-constrained valid partition. We declare that G is k-contractible to a biclique if and only
if some choice of ⟨ZL, ZR⟩ leads to a k-constrained valid partition. The total running
time of the algorithm in this case is O∗(2|Z|).

Solving Case (1b): Consider an ordered partition ⟨ZL, ZR⟩ of Z where L ∩ Z = ZL and
R ∩ Z = ZR. Observe that as X = ∅, G is connected and Y is an independent set,
every vertex in Y is adjacent to some vertex in ZL or ZR. Next, we apply the following
branching rule repeatedly to vertices in Y as long as possible.

▶ Branching Rule 1. If there is a vertex v ∈ Y such that N(v) ∩ ZL ̸= ∅, N(v) ∩ ZR ̸= ∅
and |N(v) ∩ (ZL ∪ ZR)| > 2, then branch into the following.

Contract all edges in E(v, ZL) and decrease k by the number of contractions.
Contract all edges in E(v, ZR) and decrease k by the number of contractions.
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The exhaustiveness (and hence the correctness) of Branching Rule 1 is easy to verify.
Also, observe that the branching factor leading to worst-case running time on applying this
rule is (1, 2). After an exhaustive application of Branching Rule 1, any vertex in Y that is
adjacent to both ZL and ZR has degree 2. Then, we apply the following reduction rule.
▶ Preprocessing Rule 1. If there is a vertex v ∈ Y of degree 2 such that N(v) ∩ZL ̸= ∅ and
N(v)∩ZR ̸= ∅, then contract edges in E(v, ZL) and decrease k by the number of contractions.

To argue correctness of this rule, it suffices to show that if v /∈ L, then ⟨L ∪ {v}, R \ {v}⟩
is also a k-constrained valid partition. Let a ∈ ZL and b ∈ ZR be the neighbours of v. Let Ca

and Cb denote the components of G[L] and G[R] containing a and b, respectively. Note that
v is a pendant vertex in Cb. The only pair of components of G[L] and G[R] that are adjacent
possibly because of v being in R are Ca and Cb. Moving v from Cb to Ca does not affect this
adjacency or the connectedness of these components since v has exactly 1 neighbour in both
V (Cb) and V (Ca). The sizes of the spanning forests of G[L] and G[R] before and after the
movement of v are equal. Hence, ⟨L ∪ {v}, R \ {v}⟩ is also a k-constrained valid partition.

When neither Branching Rule 1 nor Preprocessing Rule 1 are applicable, we have the
partition ⟨Y L, Y R⟩ of Y where Y L = {y ∈ Y | N(y) ⊆ ZL} and Y R = {y ∈ Y | N(y) ⊆ ZR}.
Let us first consider the case when no vertex in YL ∪YR is a trivial component of G[L] or G[R].
Then, observe that every vertex in YL has to be in the same part as ZL since N(YL) ⊆ ZL.
Similarly, every vertex in YR has to be in the same part as ZR since N(YR) ⊆ ZR. In this
case, we simply check if (ZL ∪ YL, ZR ∪ YR) is a k-constrained valid partition. The total
running time of the algorithm is O∗(2|Z|}). Subsequently, we assume that there is a vertex in
Y L or Y R that is a trivial component of G[L] or G[R]. Without loss of generality let there be
a vertex in Y L that is a trivial component of G[L] or G[R]. A vertex y of Y L that is a trivial
component of G[L] or G[R] has to be in the same part as ZR since y has neighbours in ZL.
Further, no vertex y′ in Y R can be a trivial component of G[L] or G[R] and such a vertex y′

has to be in the same part as ZR. This is because if y′ is in L, then the component of G[L]
containing y′ is not adjacent to the component of G[R] that contains y. On the other hand
if y′ is in R, then as y′ is adjacent to ZR, it cannot be a trivial component of G[R]. Now, it
follows that every vertex in Y R is in the same part as ZR as no vertex in Y R has neighbours
in ZL. Therefore, we contract all edges in E(Y R, ZR) and decrease k by the number of
contractions. Next, we guess a subset Z ′ ⊆ ZL that will be in a component of G[L] that has
no other vertices from ZL. There are O(2|Z|) such subsets. Note that if Z ′ is empty, then no
two vertices of ZL are in the same component of G[L] or G[R]. Consider the partition of Y L

into three parts Y 1, Y 2, Y 3 where Y 1 = {y ∈ Y | N(y) ⊆ Z ′}, Y 2 = {y ∈ Y | N(y) ∩Z ′ = ∅}
and Y 3 = Y \ (Y 1 ∪ Y 2). Then, Y 1 ⊆ L as no vertex in Y 1 is a trivial component and
N(Y 1) ⊆ Z ′. Also, Y 2 ⊆ L as no vertex in Y 2 has a neighbour in ZR or a neighbour in Z ′.
Similarly, Y 3 ⊆ R as every vertex in Y 3 has a neighbour in Z ′ and a neighbour outside Z ′.
Therefore, we simply check if (ZL ∪Y 1 ∪Y 2, ZR ∪Y 3) is a k-constrained valid partition. The
total running time of the algorithm in this case is O∗(1.619k22|Z|).
Solving Case (2a): Without loss of generality let X ∩ R = ∅. Suppose Y ∩ L = ∅. Then,

for each ordered partition ⟨ZL, ZR⟩ of Z where L ∩ Z = ZL and R ∩ Z = ZR, we simply
determine if ⟨ZL ∪X,ZR ∪Y ⟩ is a k-constrained valid partition. The total running time in
this case is O∗(2|Z|). Now, suppose Y ∩R = ∅. Then, for each ordered partition ⟨ZL, ZR⟩
of Z where L ∩ Z = ZL and R ∩ Z = ZR, we simply determine if ⟨ZL ∪X ∪ Y,ZR⟩ is a
k-constrained valid partition. The total running time in this case is O∗(2|Z|).

Solving Case (2b): Without loss of generality let X ∩R = ∅. Consider an ordered partition
⟨ZL, ZR⟩ of Z where L ∩Z = ZL and R ∩Z = ZR. Guess a vertex y ∈ Y ∩R. There are
at most n choices for y. Contract E(y,X) ∪ E(y, ZL) and decrease k by the number of
contractions. Observe that now we have |X| = 1. Then, this case is similar to Case 1(b)
after moving the vertex in X to Z. The total running time in this case is O∗(1.619k ·22|Z|).
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Solving Case (3a): This is similar to Case (2b).
Solving Case (3b): In this case, all edges in E(X,Y ) except one gets contracted. Hence, if

|X ∪Y | > k+ 2, we declare that (G, k) is a No-instance. Otherwise, |V (G)| ≤ |Z| +k+ 2.
Then, we go over each ordered partition of V (G) into two parts ⟨QL, QR⟩ and determine if
⟨QL, QR⟩ is a k-constrained valid partition. The running time in this case is O∗(2|Z|+k).

Now, we have the following result.

▶ Lemma 13. Given a graph G and a biclique modulator Z, there is an algorithm that
determines if G is k-contractible to a biclique or not in O∗(4|Z|1.619k) time.

As Z can be obtained in O∗(1.4|Z|) time where |Z| ≤ 2k, the claimed running time of
O∗(25.904k) to solve Biclique Contraction follows establishing part 1 of Theorem 2.

The only changes required in the algorithm for Balanced Biclique Contraction are
in the places where a partition of the graph into two parts is verified if it is a k-constrained
valid partition or not. This check has to modified such that the verification is made to
determine if the partition is a k-constrained valid balanced partition or not. The remaining
parts of the algorithm remain as such. This establishes part 2 of Theorem 2.

5 Kernelization Complexity

We begin by observing that the reduction from Red-Blue Dominating Set to Biclique
Contraction described in Section 3.1 is a polynomial parameter transformation as it maps
an instance (G,R,B, κ) to (H, k = |B| + κ) where |B| + κ is the parameter of the input
instance and k is the parameter of the output instance. Using the incompressibility and
infeasibility of polynomial-size kernels (with respect to |B| + κ as the parameter) result
known for Red-Blue Dominating Set [13, 15], we obtain part 2 of Theorem 3. In fact, we
can also conclude that Biclique Contraction does not even admit a polynomial lossy
kernel unless NP ⊆ coNP/poly [36].

We proceed to describing a quadratic vertex kernel for Balanced Biclique Contrac-
tion using a sequence of reduction rules. The reduction rules are ordered (in the sequence
stated) and a rule is applied on the instance only when none of the earlier reduction rules
are applicable. Consider an instance (G, k). Let C be a maximal collection of vertex-disjoint
K1 +K2 and K3 in G. Let Z =

⋃
C∈C V (C).

▶ Reduction Rule 1. If k ≤ 0 and G is not a balanced biclique or if |Z| > 6k, then return a
trivial No-instance.

The correctness of the first part of the rule is easy to verify. Consider the second part.
Suppose (G, k) is a Yes-instance. Then, from Observation 9, there is a set Ẑ of at most 2k
vertices such that G− Ẑ is a biclique. Further, from Lemma 4, G− Ẑ is {K1 +K2,K3}-free.
As Ẑ ∩ V (S) ̸= ∅ for each S ∈ C, it follows that |C| ≤ 2k. Then, this implies that |Z| ≤ 6k.

Let ⟨X,Y ⟩ be a bipartition of G − Z where |X| ≤ |Y |. Subsequently, we assume that
|Y | ≥ k + 3. Otherwise, we have a linear vertex kernel.

▶ Reduction Rule 2. If |Y | > |X| + |Z| + k, then return a trivial No-instance.

▶ Lemma 14. Reduction Rule 2 is safe.

Proof. We will show that if (G, k) is a Yes-instance, then |Y | ≤ |X| + |Z| + k. Suppose G is
k-contractible to the balanced biclique G/F and W is the G/F -witness structure of G. Let
WL and WR be the collection of witness sets corresponding to the bipartition ⟨L,R⟩ of G/F .
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Note that |WL| = |WR|. As |F | ≤ k and Y is an independent set in G, there are at most
k vertices in Y that are incident on some edges in F . Let Y ′ be the collection of all such
vertices. As |Y | ≥ k + 1, Y \ Y ′ is a non-empty set. Note that every vertex in Y \ Y ′ is in a
singleton witness set in W. As there is no edge between any of these singleton witness sets,
all of these vertices are either in WL or in WR. Without loss of generality, let every vertex
in Y \ Y ′ be in a witness set in WR. Then, |WR| ≥ |Y | − |Y ′| ≥ |Y | − k. Further, there is
no singleton witness set in WL that contains a vertex in Y since such a witness set cannot
be adjacent to a singleton witness set in WR that has a vertex in Y \ Y ′. This implies that
every witness set in WL contains at least one vertex from X ∪ Z. Hence, |X| + |Z| ≥ |WL|.
However, |WL| = |WR| ≥ |Y | − k which implies |X| + |Z| ≥ |Y | − k. ◀

Now, we have the following important property on G: if (G, k) is a Yes-instance then, in
any k-constrained valid balanced partition ⟨L,R⟩ of V (G) either X ⊆ L, Y ⊆ R or X ⊆ R,
Y ⊆ L. Suppose there are vertices x1, x2 ∈ X such that x1 ∈ L and x2 ∈ R. If Y ⊆ L, then
since |Y | ≥ k + 1 the size of a spanning forest of G[L] exceeds k. Similarly, if Y ⊆ R, then
the size of a spanning forest of G[R] exceeds k. Therefore, there are vertices y1, y2 ∈ Y such
that y1 ∈ L and y2 ∈ R. Let |X ∩ L| = αX , |X ∩R| = βX , |Y ∩ L| = αY and |Y ∩R| = βY .
Then, any spanning forest of G[L] has kℓ ≥ αX + αY − 1 edges and any spanning forest of
G[R] has kr ≥ βX + βY − 1 edges with kℓ + kr > k.

Let ZX = {z ∈ Z : |N(z) ∩ Y | ≥ k + 1}, ZY = {z ∈ Z : |N(z) ∩ X| ≥ k + 1} and
Z ′ = Z \ (ZX ∪ ZY ). Observe that if ZX ∩ ZY ̸= ∅, then (G, k) is a No-instance. Suppose
there is a vertex z ∈ ZX ∩ZY and (G, k) is a Yes-instance with ⟨L,R⟩ being a k-constrained
valid balanced partition of V (G). Without loss of generality let X ⊆ L, Y ⊆ R. However, as
z has at least k + 1 neighbours each in X and Y , z cannot be in the part containing X or
in the part containing Y leading to a contradiction. Hence, we may assume that the sets
Z ′, ZX and ZY partition Z. The next reduction rule is a simplification rule based on this
partition.

▶ Reduction Rule 3. If there is an edge in E(X,ZX) ∪ E(Y,ZY ) ∪ E(ZX) ∪ E(ZY ), then
contract it and decrease k by 1.

During the contraction of an edge incident on a vertex v in X ∪ Y in the application
of Reduction Rule 3, the new vertex added in the process is renamed as v and retained in
X ∪ Y . Observe that the resulting graph G[X ∪ Y ] is also a biclique.

▶ Lemma 15. Reduction Rule 3 is safe.

Proof. Suppose (G, k) is a Yes-instance and ⟨L,R⟩ is a k-constrained valid balanced partition
of V (G). Without loss of generality, X ⊆ L, Y ⊆ R. Since any z ∈ ZX has at least k + 1
neighbours in Y , if z ∈ R, then any spanning forest of G[R] has at least k+1 edges leading to a
contradiction. Similarly, any z ∈ ZY has at least k+1 neighbours in X and if z ∈ L, then any
spanning forest of G[L] has at least k+1 edges leading to a contradiction. Therefore, ZX ⊆ L

and ZY ⊆ R. This justifies contracting an edge in E(X,ZX)∪E(Y,ZY )∪E(ZX)∪E(ZY ). ◀

Now, we have the following property on G: if (G, k) is a Yes-instance then, in any
k-constrained valid balanced partition ⟨L,R⟩ of V (G), we have X ∪ZX ⊆ L and Y ∪ZY ⊆ R.
The final reduction rule marks certain essential vertices and deletes the non-essential ones.

▶ Reduction Rule 4. Mark all vertices in Z, N(Z ′) ∩X and N(Z ′) ∩ Y . Further, for each
vertex z ∈ Z, mark one of its non-neighbour (if it exists) each in X \N(Z ′) and Y \N(Z ′).
After performing this marking scheme, if there are at least two unmarked vertices in X and
at least two unmarked vertices in Y , then delete two unmarked vertices u ∈ X and v ∈ Y .
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The correctness of this rule is justified by the following lemma.

▶ Lemma 16. Reduction Rule 4 is safe.

Proof. Suppose G is k-contractible to a balanced biclique. Consider a k-constrained valid
balanced partition ⟨L,R⟩ of V (G). Then, we know that X ∪ ZX ⊆ L and Y ∪ ZY ⊆ R.
As N(u) ⊆ Y ∪ ZY and N(v) ⊆ X ∪ ZX , it follows that u and v are in trivial components
of G[L] and G[R], respectively. Then, ⟨L \ {u}, R \ {v}⟩ is a k-constrained valid balanced
partition of V (G) \ {u, v}.

Conversely, consider a k-constrained valid balanced partition ⟨L′, R′⟩ of V (G) \ {u, v}.
Let G′ denote G − {u, v}. Observe that X \ {u} ⊆ L′ and Y \ {v} ⊆ R′. We show that
⟨L′ ∪ {u}, R′ ∪ {v}⟩ is a k-constrained valid balanced partition of V (G). Suppose u is in a
trivial component of G[L′ ∪ {u}] and is not adjacent to some component H of G[R′ ∪ {v}].
Then, V (H) ⊆ Z ′ ∪ZY and let z ∈ V (H). Let u∗ be a non-neighbour of z in X \N(Z ′) that
was marked. Since N(u∗) ⊆ Y ∪ ZY , u∗ is in a trivial component of G′[L′]. In order for the
component of G′[R′] containing z to be adjacent to the component of G′[L′] containing u∗, z
must be in a component that contains some vertex in Y . Then, since Y ⊆ N(u), this leads to
a contradiction. A symmetric argument holds when v is in a trivial component of G[R′ ∪ {v}]
and is not adjacent to some component of G[L′ ∪ {u}]. Therefore, ⟨L′ ∪ {u}, R′ ∪ {v}⟩ is a
k-constrained valid balanced partition of V (G). ◀

Observe that after the application of Reduction Rule 4, there are O(k) unmarked vertices.
Further, the marking rule procedure marks O(k2) vertices. This establishes Theorem 3.

6 Concluding Remarks

In this work, we initiated the study of Biclique Contraction and Balanced Biclique
Contraction. We showed NP-completeness, fixed-parameter tractability and kernelization
results for the problems. A natural future direction is to study (Balanced) Biclique
Contraction with respect to the size ℓ of the target (balanced) biclique as the parameter.
Note that the parameterized complexity of Balanced Biclique Vertex Deletion with
respect to the number ℓ of vertices in the resultant balanced biclique was a long-standing
open problem until it was shown to be W[1]-hard in [34]. However, the simple reduction
that takes an instance (H, k) of Independent Set and constructs an instance (G, ℓ) of
Biclique Contraction where G is obtained by adding a universal vertex to H leads to
the following result.

▶ Theorem 17. Biclique Contraction parameterized by the lower bound ℓ = n− k on
the number of vertices in the resultant biclique is W[1]-hard.

Observe that if G is contractible to a biclique on 2 · ℓ vertices, then G is also contractible
to a biclique on ℓ vertices. Hence, we can guess ℓ0 ∈ {ℓ, ℓ+1, . . . , 2 ·ℓ} where ℓ0 is the smallest
integer greater than or equal to ℓ such that G is contractable to a biclique on ℓ0 vertices.
However, we could not obtain a simple algorithm running in nf(ℓ0) time for determining if G
can be contracted to a biclique on ℓ0 vertices. In contrast, if ℓ0 is the smallest integer greater
than or equal to ℓ such that G can be contracted into a balanced biclique on ℓ0 vertices, then
there is no such easy upper bound on ℓ0. Hence, we conjecture that Balanced Biclique
Contraction is para-NP-hard when parameterized by the lower bound ℓ = n− k on the
number of vertices in the resultant balanced biclique.

FSTTCS 2023
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