
Towards Identity Testing for Sums of Products of
Read-Once and Multilinear Bounded-Read
Formulae
Pranav Bisht #

Computer Science Department, Boston College, Chestnut Hill, MA, USA
Department of Computer Science and Engineering, IIT(ISM) Dhanbad, India

Nikhil Gupta #Ñ

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Ilya Volkovich #

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Abstract
An arithmetic formula is an arithmetic circuit where each gate has fan-out one. An arithmetic
read-once formula (ROF in short) is an arithmetic formula where each input variable labels at
most one leaf. In this paper we present several efficient blackbox polynomial identity testing (PIT)
algorithms for some classes of polynomials related to read-once formulas. Namely, for polynomial of
the form:

f = Φ1 · . . . · Φm + Ψ1 · . . . · Ψr, where Φi, Ψj are ROFs for every i ∈ [m], j ∈ [r].
f = Φe1

1 + Φe2
2 + Φe3

3 , where each Φi is an ROF and ei-s are arbitrary positive integers.

Earlier, only a whitebox polynomial-time algorithm was known for the former class by Mahajan,
Rao and Sreenivasaiah (Algorithmica 2016).

In the same paper, they also posed an open problem to come up with an efficient PIT algorithm
for the class of polynomials of the form f = Φe1

1 + Φe2
2 + . . . + Φek

k , where each Φi is an ROF and k

is some constant. Our second result answers this partially by giving a polynomial-time algorithm
when k = 3. More generally, when each Φ1, Φ2, Φ3 is a multilinear bounded-read formulae, we also
give a quasi-polynomial-time blackbox PIT algorithm.

Our main technique relies on the hardness of representation approach introduced in Shpilka and
Volkovich (Computational Complexity 2015). Specifically, we show hardness of representation for
the resultant polynomial of two ROFs in our first result. For our second result, we lift hardness of
representation for a sum of three ROFs to sum of their powers.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Pseudorandomness and derandomization

Keywords and phrases Identity Testing, Derandomization, Bounded-Read Formulae, Arithmetic
Formulas

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2023.9

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/109/

Acknowledgements The authors would like to thank the anonymous referees for their detailed
comments and suggestions on the previous version of the paper.

1 Introduction

Polynomial Identity Testing (PIT) is a central problem in the area of algebraic complexity
theory. Given a multivariate polynomial in the form of an arithmetic circuit or a formula
Φ, one is asked to decide whether Φ computes the identically zero polynomial, i.e. every
coefficient in the monomial expansion of the polynomial computed by Φ is zero. There are

© Pranav Bisht, Nikhil Gupta, and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2023).
Editors: Patricia Bouyer and Srikanth Srinivasan; Article No. 9; pp. 9:1–9:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pranav@iitism.ac.in
https://orcid.org/0000-0002-9138-3339
mailto:guptanq@bc.edu
https://sites.google.com/view/nikhilgupta1/home?authuser=0
https://orcid.org/0009-0008-3206-4961
mailto:ilya.volkovich@bc.edu
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.9
https://eccc.weizmann.ac.il/report/2023/109/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 PIT for Sums of Products of Read-Once Formulae

two types of PIT algorithms – whitebox and blackbox. In the former, one can look inside
the circuit or formula while in the latter one can only access evaluations of the formula on
field points of their choice.

PIT is one of the important problems in the class BPP (actually in co-RP) for which
a polynomial-time deterministic algorithm is yet to be found. The blackbox randomized
algorithm for PIT is extremely simple: given an input polynomial f ∈ F[x1, x2, . . . , xn] of
degree d, pick any set S ⊆ F of size greater than d and evaluate f on a random point sampled
from Sn. Declare the polynomial to be an identity if the evaluation is zero and a non-identity
otherwise. If the polynomial was actually zero then this algorithm cannot err, otherwise for
a non-zero input, this random evaluation can be zero with probability at most d/|S| by the
Schwartz-Zippel-Demillo-Lipton Lemma [50, 57, 16].

Derandomizing PIT is intimately tied to proving circuit lower bounds. A deterministic
sub-exponential-time PIT algorithm yields either a super-polynomial Boolean or a super-
polynomial arithmetic circuit lower bound [29, 28, 1]. Conversely, a super-polynomial
arithmetic circuit lower bound implies a deterministic sub-exponential time PIT algorithm [29].
We refer the reader to the excellent survey [36] for a detailed exposition on this hardness vs
randomness trade-off in the algebraic setting. PIT also finds applications in the problems of
primality testing [2] and finding perfect matchings in graphs [38].

An arithmetic formula is an arithmetic circuit whose underlying graph is a tree. While
derandomizing PIT for arithmetic formulae is still open, various interesting restricted classes
have found efficient deterministic PIT algorithms. One such natural restriction is to bound
the number of times a variable can appear in a formula. An arithmetic read-once formula
(ROF in short) is a formula where each variable appears at most once. Shpilka and Volkovich
considered the more general class of sum of k ROFs, where k is some constant. They devised a
quasi-polynomial-time deterministic algorithm for this class in [53], which was later improved
to polynomial time in [41]. An even more generalized model is a read-k formula, where every
variable can appear at most k times, for some constant k. For the class of multilinear read-k
formulas, [5] give a deterministic quasi-polynomial-time PIT algorithm. Note that the class
of sum of k ROFs forms a strict subclass of multilinear read-k formulas.

From a single ROF to a sum of ROFs, the next model to consider is sum-of-products of
ROFs. More generally, let C be any natural circuit class like ROFs, then one can define the
class

∑[k] ∏
C which consists of polynomials of the form f =

∑k
i=1

∏m
j=1 fij , where each fij

belongs to the class C. One can also define its sub-class
∑[k] ∧

C where each product gate
takes the same input. Namely, the class consists of polynomials of the form f =

∑k
i=1 fei

i ,
where each fi ∈ C. The work of [44] proved lower bounds against the class

∑[k] ∏
ROF,

when k is constant and the product gates have certain fan-in restriction. For PIT, [39]
designed a polynomial-time whitebox algorithm for the sub-class

∑[2] ∏
ROF. In this work,

we give a polynomial-time blackbox PIT algorithm for this model. For a constant k, PIT for
the class

∑[k] ∧
ROF was left as an open problem by [39]. Here, we give a polynomial-time

(quasi-polynomial-time) blackbox PIT algorithm for
∑[k] ∧

C, when k = 3 and C is the class
of read-once (multilinear constant-read) formulas.

1.1 Motivations and Related Works

PIT for
∑[k] ∏

C. One of the important results in the PIT literature is an efficient
deterministic PIT algorithm for the class

∑[k] ∏ ∑
, both in blackbox and whitebox setting,

where k is a constant. The first subexponential PIT algorithm was given in [18]. The
algorithm was in the whitebox setting and had quasi-polynomial run-time. Later, in [34], the

P. Bisht, N. Gupta, and I. Volkovich 9:3

result was improved by presenting a polynomial-time whitebox algorithm. This was followed
by a long line of work [32, 33, 47, 48, 49] which culminated in a polynomial-time blackbox
algorithm.

A
∑[k] ∏ ∑

circuit over a field F computes polynomials of the kind
∑k

i=1
∏di

j=1 ℓi,j ,
where di ∈ N for every i ∈ [k] and ℓi,j ∈ F[x1, x2, . . . , xn] are linear polynomials for every
i ∈ [k], j ∈ [di]. One natural way to extend this result is to replace ℓi,j ’s with more
general arithmetic circuits, for which efficient deterministic PIT algorithms are known. Some
interesting candidates for such circuits are sparse polynomials (or

∑ ∏
circuits), ROFs,

multilinear bounded-read formulae, etc. Clearly, each of these circuit classes subsume the
class of linear polynomials over F. Polynomial-time deterministic blackbox PIT algorithms
are known for the classes of sparse polynomials [35] and ROFs [41], and the class of multilinear
bounded-read formulae admits a quasi-polynomial-time blackbox PIT algorithm [5].

PIT for the class
∑[k] ∏ ∑ ∏

is well-studied: Polynomial-time deterministic blackbox
PIT algorithms are known for (syntactically) multilinear

∑[k] ∏ ∑ ∏
circuits [46], for

constant-read
∑ ∏ ∑ ∏

circuits [3, 7], and for the class
∑[3] ∏ ∑ ∏[2] [43]; and a quasi-

polynomial-time PIT algorithm for
∑[k] ∏ ∑ ∏[δ] was given in [17], where δ is also a constant.

A deterministic sub-exponential PIT was given for the class
∑ ∏ ∑ ∏

in the breakthrough
result of [37] 1. Note that there is no top fan-in restriction in their result. However a
polynomial-time PIT algorithm continues to be elusive.

In this work, we explore the other route, i.e., in the direction of
∑[k] ∏

ROF, which
consists of circuits of the kind

∑k
i=1

∏di

j=1 Φi,j , where every Φi,j is an ROF over F. The class
of ROFs has been studied extensively in the Boolean as well as algebraic worlds. The results
in the Boolean world include learning algorithms for Boolean ROFs and some structural
properties of Boolean read-once functions [6, 30, 13, 14]. In the arithmetic world, we have
the following results for the class of ROFs: A deterministic polynomial-time blackbox PIT
algorithm [53, 41], efficient reconstruction algorithms [27, 12, 11, 10, 52, 41], quasi-polynomial-
time deterministic blackbox PIT algorithms for the orbit2 of ROFs [40, 45], a randomized
polynomial-time reconstruction algorithm for orbits of ROFs [24], and characterization of
read-once polynomials [56]. The investigation of PIT for

∑[k] ∏
ROF might lead to the

discovery of new ideas and techniques, which may be helpful in approaching PIT for general
arithmetic circuits and formulae.

A polynomial-time deterministic whitebox PIT algorithm for
∑[2] ∏

ROF was given
in [39]. In this work, we give a polynomial-time deterministic blackbox PIT algorithm for∑[2] ∏

ROF (see Theorem 1). Our algorithm works over any field satisfying some mild
condition on its size. The blackbox nature makes the problem quite non-trivial and we
introduce a new tool for handling this: 0-irreducibility (for more details, see Definition 5 and
Observation 7). This tool could also be crucial to obtain PIT algorithms for

∑[k] ∏
ROF,

where k ≥ 3 is a constant and for other interesting circuit classes.

PIT for
∑[k] ∧

C. The circuit class
∑[k] ∧

C consists of arithmetic circuits of the type
Φe1

1 + · · · + Φek

k , where Φ1, . . . , Φk ∈ C and e1, . . . , ek ∈ N are arbitrary. Apart from being a
natural and interesting problem in itself, developing efficient PIT algorithm for this class is
also important from the viewpoint of PIT for the class

∑[k] ∏
C, which subsumes

∑[k] ∧
C.

1 [37] gave a much more general result, which solves PIT for any bounded-depth arithmetic circuit in
sub-exponential time.

2 Let f ∈ F[x1, x2, . . . , xn]. Then, the orbit of f is the set of polynomials f(Ax), where A varies over all
n × n invertible matrices over F.

FSTTCS 2023

9:4 PIT for Sums of Products of Read-Once Formulae

Another reason for studying PIT algorithms for
∑[k] ∧

C is that it generalizes the PIT for∑[k] C, which is comprised of the circuits Φ1 + · · · + Φk, where Φ1, . . . , Φk ∈ C. In this work,
we instantiate C with the classes of ROFs and multilinear bounded-read arithmetic formulae,
and take k to be equal to 3 (see Theorems 2 and 3). For the sake of discussion, let Ck be the
class of read-k arithmetic formulae over a field F. Although,

∑[3] ∧
ROF is contained in∑[3] ∧

Ck, the reason for mentioning them separately is that in the case of ROFs, we obtain
a deterministic polynomial-time blackbox PIT, whereas the time complexity of the blackbox
PIT in the case of multilinear bounded-read formulae is quasi-polynomial.

A deterministic polynomial-time PIT algorithm is known for the class
∑[k] ROF [53, 41],

which was built over the efficient PIT algorithm for the class of (single) ROFs [41]. This is a
non-trivial generalization because the class of ROFs is not closed with respect to addition of
ROFs. Now, the next level of generalization is to allow arbitrary powers of ROFs in the sum
of k ROFs. This brings us to the class

∑[k] ∧
ROF, for which obtaining efficient PIT has

been mentioned as an open problem in [39]. PIT for the “bounded-depth variant” of this
class has been studied: A polynomial-time blackbox PIT algorithm is given in [3] for the
class of sum of powers of constantly many bounded-depth ROFs 3. This algorithm is based
on carefully exploiting the Jacobian of such circuits and the polynomial running time of their
PIT crucially depends on the “bounded-depth nature” of the underlying formulae. The story
of the class

∑[k] ∧
Ck is also similar. [3] gives a polynomial-time deterministic blackbox PIT

for the “bounded-depth” variant of this class. However, it is not clear to us how to extend
their techniques to obtain a polynomial-time PIT for the classes

∑[k] ∧
ROF and

∑[k] ∧
Ck

in the arbitrary-depth setting.

1.2 Our Results
Now we start with our main results. Let f ∈ F[x1, x2, . . . , xn] be an input polynomial of
degree d. Our results below hold over any field F satisfying |F| > n · d. Otherwise, we assume
to have access to a sufficiently large extension field. We note that the requirement for large
enough field size is intrinsically necessary for any blackbox PIT algorithm.

Our first result is a blackbox PIT algorithm for
∑[2] ∏

ROF. It improves a previous
result of [39], which gave a polynomial-time whitebox PIT for the same model.

▶ Theorem 1 (Blackbox PIT for
∑[2] ∏

ROF). Let f ∈ F[x1, x2, . . . , xn] be a polynomial of
degree at most d computed as f = Φ1 · · · Φm + Ψ1 · · · Ψr, where Φ1, . . . , Φm, Ψ1, . . . , Ψr are
ROFs. Then there exists a deterministic algorithm that given blackbox access to f decides
whether f is identically zero, in time poly(n, d).

▶ Remark 1. The parameters m and r used in the above theorem can be arbitrary as long as
the degree of the polynomial computed by Φ1 · · · · Φm + Ψ1 · · · Ψr is at most d.

Due to limitations of space, the proof of this theorem is given in Appendix A. It is based on
the high-level proof overview given in Section 1.3.

In the following two theorems we give blackbox PIT algorithms for the classes
∑[3] ∧

ROF
and

∑[3] ∧
Ck, where Ck is the class of multilinear read-k arithmetic formulae (Definition 40).

Although ROFs are subsumed by multilinear bounded-read formulae, we are stating different
results for them since we obtain a polynomial-time PIT for

∑[3] ∧
ROF, whereas the runtime

3 In terminology of [3], such formulae are called as sum of constantly many bounded-depth occur-once
formulae. In fact, a more general result along with other results was given in [3] - a polynomial-time
deterministic blackbox PIT algorithm for the class of bounded-depth bounded-occur arithmetic formulae.

P. Bisht, N. Gupta, and I. Volkovich 9:5

for the PIT algorithm for
∑[3] ∧

Ck is quasi-polynomial. An interesting common thread in
these results is that the time complexity of the blackbox PIT algorithm for

∑[3] ∧
ROF

(similarly,
∑[3] ∧

Ck) is same as the blackbox PIT algorithm for
∑[3] ROF (respectively,∑[3] Ck), which is strictly weaker than

∑[3] ∧
ROF (respectively,

∑[3] ∧
Ck).

▶ Theorem 2 (Blackbox PIT for
∑[3] ∧

ROF). Let f ∈ F[x1, x2, . . . , xn] be a polynomial
of degree at most d computed as f = Φe1

1 + Φe2
2 + Φe3

3 where Φ1, Φ2, Φ3 are ROFs and
e1, e2, e3 ∈ N. Then there exists a deterministic algorithm that given blackbox access to f

decides whether f ≡ 0, in time poly(n, d).

▶ Theorem 3 (Blackbox PIT for
∑[3] ∧

Ck). Let k ∈ N be a constant and let f ∈
F[x1, x2, . . . , xn] be a polynomial of degree at most d computed as f = Φe1

1 + Φe2
2 + Φe3

3 ,
where Φ1, Φ2, Φ3 are multilinear read-k arithmetic formulae and e1, e2, e3 ∈ N. Then there
exists a deterministic algorithm that given blackbox access to f decides whether f ≡ 0, in
time (n · d)O(log n).

Due to limitations of space, the proofs of these two theorems are given in Appendix B.
In fact, we prove a more general result in Appendix B (see Theorem 58), which subsumes
Theorems 2 and 3. For simplicity of exposition, we give a high-level proof overview of
Theorem 2 in Section 1.3.2. The proof overview of Theorem 3 is exactly on the same line as
that of Theorem 2.

1.3 Proof Overview and Techniques
In this section, we give the high level overviews of the proofs of Theorems 1, 2, and 3. The
underlying theme of these proofs is the hardness of representation approach, which was first
introduced in [53], where PIT algorithms for sums of constantly many ROFs were given.
In its initial avatar, hardness of representation was given for sum of constantly many read-
once polynomials (ROPs)4 satisfying some technical conditions referred to as “0-justified”
(Definition 2). Formally, let F be an arbitrary field and A1, . . . , Ak ∈ F[x1, x2, . . . , xn] be
0-justified ROPs. Set A

∆= A1 + · · · + Ak ̸≡ 0. Then for n ≥ 3k the monomial x1 · · · xn does
not divide A. Hardness of representation approach also sits at the core of the PIT algorithm
for the class of multilinear bounded-read arithmetic formulae given in [5]. In this paper, we
work with a more general form of this approach. See Definition 25 and Fact 27 in this regard.

There is also an alternate way to view hardness of representation, which is popularly called
low-support concentration in literature [4, 21, 20, 19, 26, 25, 54]. The idea is to choose a “nice”
point (a1, . . . , an) ∈ Fn for an input polynomial f ∈ F[x1, x2, . . . , xn] such that the shifted
polynomial f(x1 + a1, . . . , xn + an) has a non-zero monomial of low support-size (number of
variables appearing in the monomial). For a polynomial with such a low-support monomial,
efficient blackbox PIT is known (Fact 22). In this work, we shift by a justifying assignment
or an irreducibility-preserving assignment (see Definitions 2, 5) in order to achieve hardness
of representation, which in turn proves existence of a low-support monomial (Fact 27).

1.3.1 Proof Overview of Theorem 1
In Theorem 1, we give a polynomial-time blackbox PIT for

∑[2] ∏
ROF, which consists of

polynomials of the kind f = A1 · · · Am + B1 · · · Br, where every Aℓ, Bt ∈ F[x1, . . . , xn] are
read-once polynomials (ROPs), i.e., the polynomials computed by ROFs (Definition 28).

4 A read-once polynomial is a polynomial that is computable by a read-once formula

FSTTCS 2023

9:6 PIT for Sums of Products of Read-Once Formulae

We are given blackbox access to such an f = A1 · · · Am + B1 · · · Br, where deg(f) ≤ d and
we want to determine whether f ≡ 0 or not. To accomplish this, we design a hitting-set
generator, that is a polynomial map G = (G1, . . . , Gn) : Fw → Fn which preserves non-
zeroness, formally f(x1, . . . , xn) ≡ 0 if and only if f(G1, . . . , Gn) ≡ 0, where w is a constant
and max{deg(Gi) : i ∈ [n]} ≤ δ. Then, f(G) becomes a w-variate polynomial, which has
degree at most d · δ. Since w is a constant, it is easy to test the zeroness of f(G) in time
(ndδ)O(w). The map G in our case is the generator Gn,4 given in Definition 20, with w = 8.

Now, let us see why Gn,4 is a correct generator for the class
∑[2] ∏

ROF. Recall
f = A1 · · · Am + B1 · · · Br. As every Aℓ, Bt are ROPs, we can assume without loss of
generality that they are irreducible (see Fact 29). We now apply the standard trick of
simplifying the polynomial. Formally, let g

∆= gcd(A1 · · · Am, B1 · · · Br) and f ′ ∆= f
g . Then,

we can write f = g ·f ′, where g is called the simple part of f . Since g is a product of non-zero
ROPs (see Fact 29), it follows from a result of [41] (see Fact 38) and the multiplicative property
of a generator that f(Gn,4) ≡ 0 if and only if f ′(Gn,4) ≡ 0. So, we can assume without loss
of generality that f ′ = f = A1 · · · Am + B1 · · · Br. Then, there are two possibilities: Either
f ∈ F or for every ℓ ∈ [m], t ∈ [r], Aℓ and Bt are co-prime. The first case is trivial. Now, we
talk about the second case.

Fix A = Aℓ and B = Bt arbitrarily. Since gcd(A, B) = 1, if x appears in A then the
resultant of A and B with respect to x, denoted Resx(A, B), is a non-zero polynomial (see
Definition 9 and Fact 10). As A, B are ROPs, they are multilinear, and can be written as
A = A′

1x + A′
0 and B = B′

1x + B′
0, where A′

1, A′
0, B′

1, B′
0 ∈ F[x \ {x}]. Then, it follows from

Definition 9 that Resx(A, B) = A′
1B′

0 − A′
0B′

1. Since A and B are co-prime polynomials,
Resx(A, B) ̸≡ 0. If we have a generator G that hits this resultant, then we are done as
A(G) will be co-prime to every B(G), which certifies that f(G) ̸≡ 0. This approach has been
utilized earlier also and is formally stated in Fact 24. In order to argue that f(Gn,4) ̸≡ 0, it
suffices to prove that Gn,3 hits the resultant Resx(A, B), i.e. (Resx(A, B))(Gn,3) ̸≡ 0.

Now, we argue that (Resx(A, B))(Gn,3) ̸≡ 0. For this, we introduce the notion of zero-
irreducibility. We say that a polynomial g ∈ F[x1, . . . , xn] is 0-irreducible, if for every proper
subset I ⊊ [n], the restricted polynomial g|xI =0I

is irreducible and g(0) ̸= 0 (Definition 5).
Let us first see why 0-irreducible ROPs are interesting in this scenario. Let Ã and B̃

be two 0-irreducible ROPs and x ∈ var(Ã). We show that there exists a monomial in
Resx(Ã, B̃), which has at most two variables (see Corollary 46). This along with Fact 22
implies that (Resx(Ã, B̃))(Gn,2) ̸≡ 0. To show that a monomial of support at most two
exists in Resx(Ã, B̃), we prove a hardness of representation theorem for the resultant of
two 0-irreducible ROPs. In particular, we show that if Ã, B̃ are 0-irreducible ROPs then
there do not exist three distinct variables x1, x2, x3 such that x1x2x3 divides Resx(Ã, B̃) (see
Lemma 45). This result is the heart of the proof of Theorem 1.

Now let us see how to transform the original irreducible ROPs A, B to 0-irreducible
ROPs Ã, B̃. We show that there exists an assignment a in the image of Gn,1 such that
Ã

∆= A(x + a) and B̃
∆= B(x + a) are 0-irreducible ROPs. For this, we need a tool called

the commutator of a polynomial g ∈ F[x1, x2, . . . , xn] (Definition 13), denoted ∆i,jg, where
i, j ∈ [n]. Since A, B are irreducible multilinear polynomials, all the commutators of A and B

are non-zero (Corollary 17). We show that if we have an a ∈ Fn such that A(a) ̸= 0, B(a) ̸= 0
and for every i ̸= j ∈ [n], (∆i,jA)(a) ̸= 0, (∆i,jB)(a) ̸= 0, then A(x + a) and B(x + a) are
0-irreducible ROPs. The nice structure of a commutator of an ROP given in Corollary 34
turns out to be extremely helpful in showing that the desired tuple a is in the image of Gn,1.

On putting the things together, we get that (Resx(A, B))(Gn,2 + Gn,1) ̸≡ 0. Since
Gn,3 = Gn,2 + Gn,1 (see Fact 21), we have Resx(A, B)(Gn,3) ̸≡ 0.

P. Bisht, N. Gupta, and I. Volkovich 9:7

1.3.2 Proof Overview of Theorems 2 and 3
In Section B, we prove a result (see Theorem 58) which captures both Theorems 2 and 3.
However, for the sake of keeping the discussion simple and yet deliver the main ideas, we
restrict ourselves to ROFs. In particular, we give a high-level proof overview of Theorem 2.

We are given blackbox access to an f computed by a circuit in
∑[3] ∧

ROF and we want to
determine whether f is zero or not. Then, there exist three ROPs A, B, R ∈ F[x1, x2, . . . , xn]
and e1, e2, e3 ∈ N such that f = Ae1 + Be2 + Re3 . We prove that f ≡ 0 if and only if
f(Gn,10) ≡ 0, where Gn,10 is given in Definition 20. The main crux of this result is the
hardness of representation for f . We show that if an assignment a ∈ Fn is a common
justifying assignment (Definition 2) of A, B, R then f(x + a) is either zero or for every set
J ⊆ [n] of size 10, f ′ ∆= f(x + a) is not divisible by the monomial

∏
j∈J xj . This hardness

of representation then implies existence of a monomial of support-size at most 9 in f ′ and
therefore Gn,9 hits f ′ (see Fact 27). Formally, f ′ ≡ 0 if and only if f ′(Gn,9) ≡ 0. We know
from [53] that such an a is in the image of Gn,1 (see Fact 30). Since Gn,10 = Gn,9 + Gn,1
(see Fact 21), we get that Gn,10 is a generator for f . Now, it is not difficult to argue that
given blackbox access to f , we can test whether f is zero or not in poly(n, d)-time, where
d = deg(f).

The hardness of representation theorem mentioned above crucially uses the fact that f is
a sum of powers of three ROFs. The proof proceeds by analyzing various cases originating
from the comparison of the parameters e1, e2, and e3 mentioned above. Here, we assume
without loss of generality that e1 ≥ e2 ≥ e3. If e1 > e2 then it is easy to show the required
hardness of representation result. A major chunk of the proof is devoted to analyze the case
when e1 = e2 = e. In this part, the following factorization becomes pivotal.

Ae − Be =
∏

ℓ∈[e]

(A − ωℓB),

where ω is a primitive e-th root of unity. It may seem from here that our result only holds
over fields that contain ω. However, it is not the case. We show that it is possible to “massage”
e in such a way that a primitive e-th root of unity is always present in the underlying field
(or an appropriate extension). Our proof crucially exploits the following two properties of
ROFs: 1) the class of ROFs is closed under product of variable disjoint ROFs, and 2) the
hardness of representation result for the sum of any three 0-justified ROFs given in [53] (see
Fact 35).

2 Preliminaries

For a field F, its algebraic closure is denoted as F. N represents the set of natural numbers.
For n ∈ N, [n] ∆= {1, . . . , n}. Unless otherwise specified, x ∆= {x1, . . . , xn}. We denote the
sets of variables by x, y, z; polynomials by f, g, h, u, v, A, B, F, R; elements of F by α, β, a, b;
vectors over F by a, b; circuit classes by upper case calligraphic letters like C; and sets by
I, J, K, L. For a polynomial f ∈ F[x], we denote a monomial xe1

1 · · · xen
n in f by xe and

for some i ∈ [n], degxi
(f) denotes the degree of variable xi in f when it is viewed as a

polynomial in xi over F[x \ {xi}]. The individual degree of f is defined as maxi∈[n]{degxi
(f)}.

A polynomial f is called multilinear if its individual degree is at most one. We define support
of a monomial by supp(xe) ∆= {i ∈ [n] | ei > 0} and denote support-size by |supp(xe)|.

We call f, g ∈ F[x] are similar, denoted f ∼ g, if there exists a non-zero α ∈ F such
that f = α · g. For a polynomial f ∈ F[x] and a vector a = (a1, . . . , an) ∈ Fn, the shifted
polynomial is f(x + a) ∆= f(x1 + a1, . . . , xn + an). We say that f ∈ F[x] depends on xi

FSTTCS 2023

9:8 PIT for Sums of Products of Read-Once Formulae

if there exist a = (a1, . . . , an) ∈ Fn and b ∈ F such that f(a1, . . . , ai−1, ai, ai+1, . . . , an) ̸=
f(a1, . . . , ai−1, b, ai+1, . . . , an). Further, var(f) ∆= {i ∈ [n] : f depends on xi}. Let f ∈
F[x], I ⊆ [n], and a ∈ Fn. Then, f |xI =aI

is obtained by substituting xi = ai in f for every
i ∈ I. Clearly, var(f |xI =aI

) ⊆ var(f) \ I. Observe that this containment can be strict. For
example, let f = x1x2 +1, a = (0, 0), and I = {1}. Then, var(f |xI =aI

) ⊊ var(f)\{1} as after
setting x1 = 0 in f , it no longer depends on x2. We are interested in those assignments where
such undesirable losses do not happen. Such assignments, known as justifying assignments,
have been earlier considered in [27, 12, 53]. Consider the following definition, which has been
obtained by adding Property 2 to the definition of a justifying assignment given in [53, 52].
This modification has been made to suit our purpose.

▶ Definition 2 (Justifying assignment). Let f ∈ F[x1, x2, . . . , xn] and a ∈ Fn. Then, a is
called a justifying assignment of f (equivalently, f is said to be a-justified) if
1. for every I ⊆ var(f), var(f |xI =aI

) = var(f) \ I and
2. f(a) ̸= 0.

▶ Remark 3. By convention, the identically zero polynomial is a-justified for every a ∈ Fn.

The following nice property of a justifying assignment is implied by Proposition 2.3 of [53].

▶ Fact 4. An assignment a ∈ Fn is a justifying assignment of a polynomial f ∈
F[x1, x2, . . . , xn] if and only if the condition given in Property 1 of Definition 2 holds for
every I ⊆ var(f) of size |var(f)| − 1 and f(a) ̸= 0.

An f ∈ F[x] \ F is irreducible if it can not be written as a product of two non-constant
polynomials in F[x]. Otherwise, f is reducible. By convention, every element of F is reducible.

▶ Definition 5 (Irreducibility preserving assignment). Let f ∈ F[x1, x2, . . . , xn] and a ∈ Fn.
Then, a is called an irreducibility preserving assignment of f if for every proper subset
I ⊊ var(f), the restricted polynomial f |xI =aI

is irreducible and f(a) ̸= 0. Equivalently, we
say that f is a-irreducible.

For example, let f = x1 + x2 + x3 and a = (0, 0, 1). Then, f is a-irreducible over every
field. Observe that if f ∈ F[x1, x2, . . . , xn] is a-irreducible for any a ∈ Fn then f is irreducible
over F. Claim 6 below shows that irreducibility preserving assignments capture justifying
assignments of irreducible polynomials. Note that the converse of this claim is not true. For
example, let f = (x1 + 1)(x2 + 1) + x3 and a = (0, 0, 0). Then, f is irreducible, a-justified but
is not a-irreducible. Thus, for irreducible polynomials, the notion of irreducible preserving
assignment is strictly stronger than that of justifying assignment.

▷ Claim 6 ([8]). Let f ∈ F[x] and a ∈ Fn. If f is a-irreducible then f is a-justified.

▶ Observation 7. Let f ∈ F[x1, x2, . . . , xn] and a ∈ Fn. Then, f is a-irreducible if and only
if f(x + a) is 0-irreducible.

2.1 Basic Mathematical Facts

▶ Fact 8 (Gauss Lemma). Let F be a field, f ̸≡ 0 ∈ F[x, y], and g ∈ F[x]. Suppose
f |y=g(x) ≡ 0. Then, y − g(x) is an irreducible factor of f .

P. Bisht, N. Gupta, and I. Volkovich 9:9

Resultant
The polynomial ring F[x1, . . . , xn] is a unique factorization domain (UFD) and therefore the
gcd of two polynomials is well defined. One can also define gcd w.r.t. a single variable, say
xi, by viewing the polynomials as univariates in xi, with coefficients in F[x \ {xi}]. Then,
gcdxi

(f, g) is well defined up to multiplication by a rational function in F(x \ {xi}). In this
case, we work with the normalized gcd. For example, let f = x3y + xy3 and g = xy2, then
gcd(f, g) = xy and gcdy(f, g) = y. The former is gcd in F[x, y], while the latter is normalized
gcd in F(x)[y]. See [22] for details.

Let f, g ∈ F[x1, . . . , xn, y] be two non-zero polynomials of y-degree d and e, respectively.
Suppose f(y) =

∑d
i=0 ai · yi and g(y) =

∑e
j=0 bj · yj , where each ai, bj ∈ F[x1, x2, . . . , xn].

The Sylvester matrix M is the following (d + e) × (d + e) matrix

M =

ad ad−1 . . . a1 a0
ad ad−1 . . . a1 a0

.

ad ad−1 . . . a1 a0
be be−1 . . . b1 b0

be be−1 . . . b1 b0
.

be be−1 . . . b1 b0

.

▶ Definition 9 (Resultant). For f, g ∈ F[y, x1, . . . , xn], the resultant Resy(f, g) ∈
F[x1, x2, . . . , xn] is defined as determinant of the Sylvester matrix. That is, Resy(f, g) =
det(M).

We use the following properties of the Resultant:

▶ Fact 10 (See [23, 22, 15]). Let f, g ∈ F[y, x1, . . . , xn]. Then,
1. gcdy(f, g) ̸= 1 if and only if Resy(f, g) ≡ 0. That is, f and g have a non-trivial factor

that depends on the variable y (i.e., degy(gcd(f, g)) > 0) if and only if the y-resultant of
f, g is the identically zero polynomial.

2. Let a ∈ Fn. If degy(f) = degy(f |x=a) and degy(g) = degy(g|x=a), then Resy(f, g)|x=a =
Resy(f |x=a, g|x=a).

2.2 Partial Derivatives
The following definition of discrete partial derivatives is taken from [53].

▶ Definition 11 (Discrete Partial Derivative). Let f ∈ F[x1, x2, . . . , xn] and x ∈ {x1, . . . , xn}.
Then, the discrete partial derivative of f with respect to x is defined as: ∂f

∂x

∆= f |x=1 − f |x=0.

Further, let I = {i1, . . . , ir} ⊆ [n] be a non-empty set of size. We denote by ∂If the
iterated partial derivative of f with respect to I.

The following fact relates partial derivatives and justifying assignments of multilinear
polynomials. A polynomial f ∈ F[x1, x2, . . . , xn] is multilinear if the individual degree of
every variable in f is at most one.

▶ Fact 12 (Lemma 2.6 [53]). Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and a ∈ Fn.
Then, a is a justifying assignment of f if and only if f(a) ̸= 0 and for every xi ∈ var(f) we
have that ∂f

∂xi
(a) ̸= 0.

FSTTCS 2023

9:10 PIT for Sums of Products of Read-Once Formulae

2.3 Commutator
This section is devoted to commutators of polynomials. This tool was defined in [51], where
it was used in the context of polynomial factorization. It also played a crucial role in the
deterministic reconstruction algorithm for read-once formulas (Definition 28) given in [52].
The following definition of a commutator of a polynomial is taken from [52]. This can be
seen as a determinant of a special case Nisan’s partial derivative matrix.

▶ Definition 13 (Commutator). Let f ∈ F[x1, x2, . . . , xn] and i ̸= j ∈ [n]. Then, the
commutator of f with respect to xi and xj, denoted ∆i,jf , is defined as

∆i,jf = f |xi=1,xj=1 · f |xi=0,xj=0 − f |xi=1,xj=0 · f |xi=0,xj=1.

We note that this definition of a commutator of a polynomial is different from the
definition given in [51]. However, it is not difficult to show that both these definitions
have same properties for multilinear polynomials. We now note some useful properties of
commutators of multilinear polynomials.

▶ Observation 14. Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and i, j ∈ [n]. Then,
f can be written as f = fi,jxixj + fixi + fjxj + f0, where fi,j , fi, fj , f0 ∈ F[x \ {xi, xj}].
Then ∆i,j = fi,j · f0 − fi · fj.

Using this, we can easily prove the following observation, which would be used in Section 3.

▶ Observation 15. Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and i ̸= j ∈ [n] such
that ∂2f

∂xi∂xj
≡ 0. Then, ∆i,jf = − ∂f

∂xi
· ∂f

∂xj
.

▶ Fact 16 (Lemma 4.6 of [51]). Let f ∈ F[x1, x2, . . . , xn] be a non-constant multilinear
polynomial and i ≠ j ∈ [n]. There exist g, h ∈ F[x] where i /∈ var(h) and j /∈ var(g) such that
f = g · h if and only if ∆i,jf ≡ 0.

The fact above implies the following result.

▶ Corollary 17. Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial, where n ≥ 2. Then, f

is reducible if and only if there exist i, j ∈ var(f) such that ∆i,jf ≡ 0.

The following property of a commutator immediately follows from Definition 13.

▶ Observation 18. Let f ∈ F[x1, x2, . . . , xn] be a multilinear polynomial, a ∈ Fn, i ≠ j ∈
var(f), and I ⊆ var(f) \ {i, j}. Then, ∆i,j(f |xI =aI

) = (∆i,jf)|xI =aI
.

The following useful claim relates commutators and irreducibility preserving assignments,
which would play an important role in Section 3.1.4.

▷ Claim 19 (Commutators and irreducibility preserving assignments). Let f ∈ F[x1, x2, . . . , xn]
be a multilinear polynomial and a ∈ Fn s.t. f(a) ̸= 0. Suppose that for every i ̸= j ∈ var(f) :
(∆i,jf)(a) ̸= 0. Then, f is a-irreducible.

Proof. Suppose f is not a-irreducible. Then, either f(a) = 0 or there exists a proper
subset I ⊊ var(f) such that f |xI =aI

is reducible. In the former case, we immediately get a
contradiction. Now, suppose the latter holds. Then, there exist non-constant multilinear
polynomials g, h ∈ F[x] such that f |xI =aI

= g · h. Let i ∈ var(g) and j ∈ var(h). As
f |xI =aI

is multilinear, g and h are variable disjoint. Then, it follows from Corollary 17
that ∆i,j(f |xI =aI

) ≡ 0, which implies (∆i,j(f |xI =aI
))(a) = 0. Observation 18 implies that

(∆i,j(f |xI =aI
))(a) = (∆i,jf)(a). Since (∆i,j(f |xI =aI

))(a) = 0, we get (∆i,jf)(a) = 0, which
is a contradiction. Hence, f is a-irreducible. ◁

P. Bisht, N. Gupta, and I. Volkovich 9:11

2.4 The Generator Gn,k of [53]
Due to limitations of space, see [8] for formal definitions of a hitting set and a generator.
Here, we discuss the specific generator Gn,k, which was defined in [53] for the class of ROFs.
It has been a crucial ingredient in PIT algorithms of various other interesting classes also
[31, 20, 5, 41]. We will also be using this generator in our results. We borrow the definition
and properties of this generator as presented in [5, 55].

▶ Definition 20. Let α1, . . . , αn ∈ F be n distinct elements and for i ∈ [n], let Li(x) ∆=∏
j∈[n]\{i}

x−αj

αi−αj
denote the corresponding Lagrange interpolant. For every k ∈ [n], let

Gn,k : F2k → Fn be defined as

Gn,k(y1, . . . , yk, z1, . . . , zk) ∆=

 k∑
j=1

L1(yj)zj ,

k∑
j=1

L2(yj)zj , . . . ,

k∑
j=1

Ln(yj)zj

Let (Gn,k)i denote the ith component of Gn,k and we call αi as the Lagrange constant
associated with this ith component. We can also define Gk to be the class of generators
{Gn,k}n∈N for all output lengths.

For two generators G1, G2 with the same output length, we define their sum G1 + G2 as their
component-wise addition, where the seed variables of both generators are implicitly relabelled
so as to be disjoint. With this terminology, we can note various useful properties of the
generator Gn,k from its definition.

▶ Fact 21 ([53, 31, 55]). Let k, k′ be positive integers.
1. Gn,k(y, 0) ≡ 0.
2. Gn,k(y1, . . . , yk, z1, . . . , zk)|yk=αi

= Gn,k−1(y1, . . . , yk−1, z1, . . . , zk−1) + zk · ei, where e
is the 0-1 vector with a single 1 in coordinate i and αi the ith Lagrange constant and
Gn,0

∆= 0.
3. Gn,k(y1, . . . , yk, z1, . . . , zk) + Gn,k′(yk+1, . . . , yk+k′ , zk+1, . . . , zk+k′)

= Gn,k+k′(y1, . . . , yk+k′ , z1, . . . , zk+k′).
4. For every b ∈ Fn with at most k non-zero components, b ∈ Im(Gn,k).
It follows that Gn,k hits any polynomial containing a low-support monomial.

▶ Fact 22 ([53, 20]). Let f ∈ F[x1, x2, . . . , xn] be a polynomial that contains a non-zero
monomial of support-size at most k, for some k ∈ N. Then f(Gn,k) ̸≡ 0.

The next property follows from Definition 20 and Fact 21 and states that Gn,k forms a chain.

▶ Observation 23. Let f ∈ F[x1, . . . , xn] be a non-zero polynomial and k ∈ N such that
f(Gn,k) ̸≡ 0. Then, for every ℓ ≥ k, f(Gn,ℓ) ̸≡ 0.

Let C be a circuit class over a field F. Then we define the class,

Res(C) ∆= {Resxi
(A, B) | A, B ∈ C are irreducible and i ∈ var(A) ∪ var(B)}.

We note that C ⊆ Res(C) as for any polynomial f ∈ C, we can write f as f = Resy(P, Q),
where P

∆= (f + 1) · y + 1 and Q
∆= y + 1 and y /∈ var(P).5 The following fact is implicit

in [55] and [9]. See a proof in [8].

▶ Fact 24 (Generator for
∑[2] ∏

C). Let C be a class of arithmetic circuits over a field F
and G be a generator for the class Res(C). Then, H = G + G1 is a generator for

∑[2] ∏
C.

5 We are assuming that both the polynomials (f + 1) · y + 1 and y + 1 are also in C, which is true for all
natural classes of polynomials.

FSTTCS 2023

9:12 PIT for Sums of Products of Read-Once Formulae

2.5 Hardness of Representation
▶ Definition 25. Let k, n, m ∈ N and let A1 . . . , Ak ∈ F[x1, x2, . . . , xn] be polynomials.
Define A

∆= A1 + · · · + Ak. We say that the set {A1, . . . , Ak} is m-hard, if and only if either
A ≡ 0 or for every set J ⊆ [n] of size |J | = m, the monomial

∏
j∈J

xj does not divide A.

▶ Remark 26. Defining the identically zero polynomial m-hard may seem unnatural or
counter-intuitive. However, it is required for technical reasons. In addition, it follows from
the definition that if n < m then any set {A1, . . . , Ak} is m-hard.

The following fact has been used in many works like [53, 5] etc. See a proof in [8].

▶ Fact 27 (Hardness of representation implies PIT). Let m, n, k ∈ N and A1, . . . , Ak ∈
F[x1, x2, . . . , xn] such that A

∆= A1+· · ·+Ak ̸≡ 0. Suppose further that for every subset I ⊆ [n],
the set of restricted polynomials {A1|xI =0I

, . . . , Ak|xI =0I
} is m-hard. Then A contains a

non-zero monomial of support-size at most (m − 1) and in particular A(Gn,m−1) ̸≡ 0. Here
Gn,m−1 is the generator given in Definition 20.

3 ROFs and Multilinear Bounded-Read Arithmetic Formulae

3.1 ROFs and ROPs
▶ Definition 28 (Read-once formulas, [53]). Let F be a field and x = {x1, . . . , xn}. A read-
once formula (in short, ROF) Φ over F in x-variables is a binary tree whose leaves are
labelled with variables in x and non-leaf nodes are labelled with + and ×. Every variable
in x labels at most one leaf of Φ and every node of Φ is associated with a pair (α, β) ∈ F2.
The computation in Φ proceeds as follows: A leaf node of Φ labelled with x ∈ x and (α, β)
computes αx + β. A node v labelled with ◦ ∈ {+, ×} and (α, β), and having children v1 and
v2 computes α(Φv1 ◦ Φv2) + β, where Φvi

is the sub-formula of Φ rooted at vi.

We say that a polynomial A ∈ F[x] is a read-once polynomial (in short, ROP) if it is
computed by an ROF. Note that every ROP is multilinear.

3.1.1 Some Useful Properties of ROFs and ROPs
The following fact shows that the class of read-once formulas is closed under factorization
and partial derivatives.

▶ Fact 29 (Lemmas 3.6 and 3.12 of [53]). Let A ∈ F[x] be an ROP, i ∈ [n], I ⊆ [n], and
a ∈ Fn. Then, A|xI =aI

, ∂A
∂xi

, and factors of A are ROPs.

Below fact shows that we can make ROPs 0-justified by shifting.

▶ Fact 30 ([53, 41]). Let n, k ∈ N,F be a field, and A1, . . . , Ak ∈ F[x1, x2, . . . , xn] be ROPs.
Then, we there exists an a ∈ Im(Gn,1) in such that for every t ∈ [k], At(x + a) is 0-justified.

The fact below follows from Theorem 3.10 of [52].

▶ Fact 31. A partial derivative of a 0-justified ROP is also 0-justified.

The next observation follows from Definition 28.

▶ Observation 32. Let A, B ∈ F[x] be two variable disjoint ROPs. Then, A · B is an ROP.

P. Bisht, N. Gupta, and I. Volkovich 9:13

3.1.2 Commutator of an ROP
▶ Fact 33 (Lemma 3.14 of [52]). Let A ∈ F[x1, x2, . . . , xn] be an ROP and i ̸= j ∈ [n]
such that ∂2A

∂xi∂xj
̸≡ 0. Then, there exist variable disjoint ROPs B(x), R(x, y) such that

A = R(x, B(x)) and ∆i,jA = R(x, 0) · ∂2A
∂xi∂xj

.

Facts 29, Observation 15, and Fact 33 imply the following useful result.

▶ Corollary 34 (Structure of a commutator of an ROP). Let A ∈ F[x1, x2, . . . , xn] be an ROP
and i ̸= j ∈ [n]. Then, ∆i,jA is a product of ROPs in F[x1, x2, . . . , xn].

3.1.3 The Hardness of Representation Theorem for Sum of ROPs
▶ Fact 35 (Hardness of representation for sum of k 0-justified ROPs, Theorem 6.1 of [53]). Let
n, k ∈ N and A1, . . . , Ak ∈ F[x1, x2, . . . , xn] be 0-justified ROPs. Suppose n ≥ 3k. Then, for
every collection of sets J1, . . . , Jk ⊆ [n] and every collection of field elements α1, . . . , αk ∈ F,
the set {α1 · A1|xJ1 =0J1

, . . . , αk · Ak|xJk
=0Jk

} is 3k-hard.

When k = 2, we can, in fact, show that the polynomials are 3-hard rather than 6-hard.
See a formal proof in [8].

▶ Fact 36 (Hardness of representation for sum of two 0-justified ROPs). Let F be a field and
A, B ∈ F[x1, x2, . . . , xn] be two 0-justified ROPs. Then the set {A, B} is 3-hard.

Using this fact, we give the following useful result used in Section A.

▷ Claim 37. Let n ≥ 3 be a natural number and A, B ∈ F[x1, x2, . . . , xn] be two 0-justified
ROPs. Suppose there exists a J ⊆ [n], |J | = 3 such that for every j ∈ J, A|xj=0 = αj · B|xj=0
for some αj ∈ F. Then, A ∼ B.

Proof. Let j, k ∈ J be distinct. As A, B are 0-justified, it follows from Definition 2 that

A|xj=0,xk=0 = αj · B|xj=0,xk=0 ̸≡ 0, A|xj=0,xk=0 = αk · B|xj=0,xk=0 ̸≡ 0.

These two equations immediately imply that there exists a non-zero α ∈ F such that for
every j ∈ J, αj = α. Hence, for every j ∈ J, A|xj=0 = α · B|xj=0. Now, suppose A − α · B ̸≡ 0.
As for every j ∈ J, A|xj=0 − α · B|xj=0 ≡ 0, Fact 8 implies that for every j ∈ J, xj divides
A − α · B. Since B is a 0-justified ROP, α · B is also a 0-justified ROP. Hence,

∏
j∈J xj

divides A − α · B, which can not happen because of Fact 36. Thus, A = α · B. ◁

3.1.4 Obtaining 0-Irreducible ROPs
In this section, we give a procedure to convert an irreducible ROP to a 0-irreducible ROP
(Definition 5). In particular, if A ∈ F[x] is an irreducible n-variate ROP then we compute an
assignment a ∈ Fn such that A is a-irreducible. Observation 7 implies that A(x + a) is a
0-irreducible ROP.

It follows from Claim 19 that if all the commutators of a multilinear polynomial f ∈ F[x]
are non-zero and if we can efficiently hit all these commutators, i.e., we can efficiently compute
an a ∈ Fn such that for every i ≠ j ∈ var(f), (∆i,jf)(a) ̸= 0, then using Observation 7,
we transform f to a 0-irreducible polynomial. It follows from Corollary 17 that for every
i ̸= j ∈ var(f), ∆i,jf ̸≡ 0 if and only if f is irreducible. Thus, only irreducible multilinear
polynomials are eligible to be transformed into 0-irreducible polynomials. The following fact
from [41] would be used in Claim 39.

FSTTCS 2023

9:14 PIT for Sums of Products of Read-Once Formulae

▶ Fact 38 (Theorem 4.2 of [41]). Let A ∈ F[x1, x2, . . . , xn] be a non-zero ROP and Gn,1 be
the generator given in Definition 20. Then, A(Gn,1) ̸≡ 0.

▷ Claim 39 (Converting a set of irreducible ROPs to 0-irreducible ROPs). Let n, m ∈ N and
A1, . . . , Am ∈ F[x1, x2, . . . , xn] be irreducible ROPs. Then, there exists an assignment a ∈ Fn

in the image of Gn,1 (see Definition 20) such that Aℓ(x + a) is a 0-irreducible ROP for every
ℓ ∈ [m].

Proof. As A1, . . . , Am are irreducible, Corollary 17 implies that for every ℓ ∈ [m], i ̸= j ∈
var(Aℓ), ∆i,jAℓ ̸≡ 0. It follows from Claim 19 that it is sufficient to show that Gn,1 hits
Aℓ, ∆i,jAℓ for every ℓ ∈ [m], i ̸= j ∈ var(Aℓ). Let

Φ(x) ∆=
∏

ℓ∈[m]

Aℓ

∏
i,j∈var(Aℓ),i̸=j

∆i,jAℓ.

As every Aℓ is irreducible, it is non-zero (recall that every element of F is reducible). Then,
it follows from Corollary 34 that Φ(x) is a product of non-zero ROPs in F[x]. Now, Fact 38
and the multiplicative property of generators together imply that Φ(Gn,1) ̸≡ 0. Hence, by
definition there exists an a in the image of Gn,1 such that Φ(a) ̸= 0. Now, Claim 19 and
Observation 7 imply that Aℓ(x + a) is a 0-irreducible ROP for every ℓ ∈ [m]. ◁

3.2 Multilinear Bounded-Read Arithmetic Formulae
▶ Definition 40 (Read-k formula). Let F be a field and k ∈ N. An arithmetic read-k formula
F is a binary tree where every leaf node is labelled either by a variable or an element of
F; every other node (or internal node) is labelled by either + or ×; every edge is labelled
by an element of F; and every variable labels at most k leaves of F . Every leaf node of F

computes its label. Suppose v is an internal node of F labelled by ◦ ∈ {+, ×} such that v1, v2
are the children of v, for every i ∈ [2], vi computes Fvi

∈ F[x] and the edge between v and
vi is labelled by αi ∈ F. Then, v computes the following polynomial Fv

∆= α1Fv1 ◦ α2Fv2 .

Further, if every node of F computes a multilinear polynomial then F is called a multilinear
read-k formula.

An ROF is a special case of a multilinear bounded-read formula. One of the reasons for
studying multilinear bounded-read arithmetic formulae is that developing deep understanding
of such formulae might give us good insights about the class of multilinear formulae, which is
an important class of arithmetic circuits. Deterministic algorithms for blackbox and whitebox
PIT for multilinear bounded-read arithmetic formulae were given in [5]. For the rest of this
section, let k ∈ N be a fixed constant and Ck be the class of multilinear read-k formulae over
a field F. The following result would be used in the proof of Theorem 3.

▶ Observation 41. Let k ∈ N, and A, B ∈ Ck be variable-disjoint. Then, A · B ∈ Ck.

The following fact would play a crucial role in the proof of Theorem 3.

▶ Fact 42 (Implicit in [5]). Let k ∈ N, m
∆= (8k · (k + 1)2)k, and Ã, B̃, R̃ ∈ Ck compute

n-variate polynomials over a field F. Let ℓ
∆= m+3k⌈log n⌉. Then, there exists an assignment

a ∈ Im(Gn,ℓ) such that the polynomials A
∆= Ã(x + a), B

∆= B̃(x + a), and R
∆= R̃(x + a)

satisfy Properties 1, 2, and 3 given in Theorem 57.

Due to space constraint, we have shifted the remaining content to the Appendix. Since
the appendix is also space bound, we refer to the full version of this paper given in [8] for
the proofs of some results used in the appendix. We direct the reader to Sections A and B of
the Appendix. These sections contain the proofs of Theorems 1, 2, and 3.

P. Bisht, N. Gupta, and I. Volkovich 9:15

4 Discussion and Future Work

In this work, we give a polynomial-time blackbox PIT algorithm for the class
∑[2] ∏

ROF.
We improve upon a result of [39], which gave a whitebox PIT algorithm for the same class.
We also took a step forward in solving an open question in [39]. An efficient deterministic
PIT algorithm for the class

∑[k] ∧
ROF was listed as an open problem in [39]. We give a

polynomial-time deterministic blackbox PIT algorithm for
∑[3] ∧

ROF. In addition to these
two results, we also give a quasi-polynomial-time deterministic blackbox PIT for

∑[3] ∧
Ck,

where Ck is the class of multilinear read-k arithmetic formulae over a field F. All our results
work over any field. The common thread between these three results is the hardness of
representation approach (see Section 2.5). Now we list some open questions.

PIT for
∑[3] ∏

ROF: Our PIT algorithm for
∑[2] ∏

ROF crucially depends on the fact
that the fan-in of the topmost + gate in the circuits of this class is exactly two. In
particular, the resultant based approach used in our algorithm only works in the top
fan-in equal to two regime. It is not clear how to lift the resultant-based approach to∑[3] ∏

ROF. Can we come up with some technique that not only yields efficient PIT
algorithm for

∑[3] ∏
ROF, but also has the potential to extend to PIT for

∑[k] ∏
ROF,

where k is a constant?
PIT for

∑[k] ∧
ROF: An efficient PIT algorithm for this class would solve an open

question given in [39]. Our PIT algorithm for
∑[3] ∧

ROF is based on a hardness of
representation theorem, which we prove for this class. Can we prove the hardness of
representation for

∑[k] ∧
ROF? In this direction, we note the following conjecture.

▶ Conjecture 43. Let k, n ∈ N, and A1, . . . , Ak ∈ F[x1, x2, . . . , xn] be 0-justified ROPs.
Then, there exists a monotone function φ : N → N such that for any e1, . . . , ek ∈ N, the
set {Ae1

1 , . . . , Aek

k } is φ(k)-hard (see Definition 25).

We remark that this conjecture is true when every ei = 1. In particular, [53] showed
that for any constant k, the set {A1, . . . , Ak} is 3k-hard (see Fact 35). In addition, for
the special case when the Ai-s are products of linear forms over the reals, it was shown
in [53], based on a result of [47], that set {Ae1

1 , . . . , Aek

k } is RR(k)-hard (for arbitrary ei-s)
where RR(k) is the so-called “Rank Bound over the reals”. Finally, in [33] it was shown
that RR(k) = kO(k) and improved to RR(k) = O(k2) in [49].
PIT for

∑[2] ∏
Ck: The approach used in the proof of Theorem 1 would immediately

solve this problem, provided we are able to efficiently compute a common irreducibility
preserving assignment (see Definition 5) of a set of multilinear read-k arithmetic formulae.
We know that if we could efficiently hit all the commutators of these formulae then such
an assignment can be computed efficiently (see Claim 19). In case of ROFs, it turns out
that a commutator of an ROF is a product of ROF (see Corollary 34). What can we say
about the structure of commutators of multilinear bounded-read arithmetic formulae?

References
1 M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the 25th

FSTTCS, volume 3821 of LNCS, pages 92–105, 2005.
2 M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160(2):781–793,

2004.
3 M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting sets,

lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-k circuits. SIAM
J. Comput., 45(4):1533–1562, 2016.

FSTTCS 2023

9:16 PIT for Sums of Products of Read-Once Formulae

4 M. Agrawal, C. Saha, and N. Saxena. Quasi-polynomial hitting-set for set-depth-delta formulas.
In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pages
321–330, 2013.

5 M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial identity testing
for multilinear constant-read formulae. Computational Complexity, 24(4):695–776, 2015.

6 D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. J.
ACM, 40(1):185–210, January 1993.

7 V. Bhargava, S. Saraf, and I. Volkovich. Linear independence, alternants and applications.
In STOC ’23: 55th Annual ACM SIGACT Symposium on Theory of Computing, Orlando,
Florida, June 20-23, 2023. ACM, 2023.

8 P. Bisht, N. Gupta, and I. Volkovich. Towards identity testing for sums of products of
read-once and multilinear bounded-read formulae. In Electronic Colloquium on Computational
Complexity, 2023. URL: https://eccc.weizmann.ac.il/report/2023/109/.

9 P. Bisht and I. Volkovich. On solving sparse polynomial factorization related problems. In
42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India, volume
250 of LIPIcs, pages 10:1–10:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.FSTTCS.2022.10.

10 D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with exponen-
tiation. JCSS, 56(1):112–124, 1998.

11 N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM J.
on Computing, 27(2):401–413, 1998.

12 N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas.
SIAM J. on Computing, 24(4):706–735, 1995.

13 N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning boolean read-once formulas with
arbitrary symmetric and constant fan-in gates. JCSS, 50:521–542, 1995.

14 N.H. Bshouty, T.R. Hancock, and L. Hellerstein. Learning boolean read-once formulas over
generalized bases. J. Comput. Syst. Sci., 50(3):521–542, June 1995.

15 D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms – An introduction to
computational algebraic geometry and commutative algebra (4. ed.). Undergraduate texts in
mathematics. Springer, 2015.

16 R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7(4):193–195, 1978.

17 P. Dutta, P. Dwivedi, and N. Saxena. Deterministic identity testing paradigms for bounded
top-fanin depth-4 circuits. In Valentine Kabanets, editor, 36th Computational Complexity
Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 11:1–11:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

18 Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity testing
for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2007.

19 M. A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In FOCS, 2015.
20 M. A. Forbes, R. Saptharishi, and A. Shpilka. Pseudorandomness for multilinear read-

once algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), pages 867–875, 2014. Full version at https:
//eccc.weizmann.ac.il/report/2013/132. doi:10.1145/2591796.2591816.

21 M. A. Forbes and A. Shpilka. Explicit noether normalization for simultaneous conjugation via
polynomial identity testing. In APPROX-RANDOM, pages 527–542, 2013.

22 J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,
1999.

23 K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer, 1992.
24 N. Gupta, C. Saha, and B. Thankey. Equivalence test for read-once arithmetic formulas.

In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
4205–4272. SIAM, 2023.

https://eccc.weizmann.ac.il/report/2023/109/
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.10
https://eccc.weizmann.ac.il/report/2013/132
https://eccc.weizmann.ac.il/report/2013/132
https://doi.org/10.1145/2591796.2591816

P. Bisht, N. Gupta, and I. Volkovich 9:17

25 R. Gurjar, A. Korwar, and N. Saxena. Identity testing for constant-width, and commutative,
read-once oblivious abps. In 31st Conference on Computational Complexity, CCC, pages
29:1–29:16, 2016. doi:10.4230/LIPIcs.CCC.2016.29.

26 R. Gurjar, A. Korwar, N. Saxena, and N. Thierauf. Deterministic identity testing for sum of
read-once oblivious arithmetic branching programs. In 30th Conference on Computational
Complexity, CCC, pages 323–346, 2015. doi:10.4230/LIPIcs.CCC.2015.323.

27 T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended bases.
In Proceedings of the 4th Annual Workshop on Computational Learning Theory (COLT), pages
326–336, 1991.

28 J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing
(STOC), pages 262–272, 1980.

29 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC), pages 355–364, 2003.

30 M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson. Combinatorial characteriza-
tion of read-once formulae. Discrete Math., 114(1–3):275–282, April 1993.

31 Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity testing of
depth 4 multilinear circuits with bounded top fan-in. SIAM J. on Computing, 42(6):2114–2131,
2013.

32 Z. S. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of depth-
3 arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual IEEE
Conference on Computational Complexity (CCC), pages 280–291, 2008.

33 N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
198–207, 2009. Full version at https://eccc.weizmann.ac.il/report/2009/032.

34 N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational
Complexity, 16(2):115–138, 2007.

35 A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials.
In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pages
216–223, 2001.

36 M. Kumar and R. Saptharishi. Hardness-randomness tradeoffs for algebraic computation.
Bulletin of EATCS, 3(129), 2019.

37 N. Limaye, S. Srinivasan, and S. Tavenas. Superpolynomial lower bounds against low-depth
algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE, 2021.

38 L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computing Theory. Akademia-Verlag, 1979.

39 M. Mahajan, B.V.R. Rao, and K. Sreenivasaiah. Building above read-once polynomials:
Identity testing and hardness of representation. Algorithmica, 76:890–909, 2016.

40 D. Medini and A. Shpilka. Hitting sets and reconstruction for dense orbits in vp_{e} and
ΣΠΣ circuits. In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of
LIPIcs, pages 19:1–19:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

41 D. Minahan and I. Volkovich. Complete derandomization of identity testing and reconstruction
of read-once formulas. TOCT, 10(3):10:1–10:11, 2018. doi:10.1145/3196836.

42 M. Neunhöffer, 2007. Lecture notes on finite fields - Module MT 5826, Chapter 4, Link -
http://www.math.rwth-aachen.de/homes/Max.Neunhoeffer/Teaching/ff/ffchap4.pdf.

43 S. Peleg and A. Shpilka. Polynomial time deterministic identity testing algorithm for
Σ[3]ΠΣΠ[2] circuits via edelstein-kelly type theorem for quadratic polynomials. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 259–271.
ACM, 2021.

FSTTCS 2023

https://doi.org/10.4230/LIPIcs.CCC.2016.29
https://doi.org/10.4230/LIPIcs.CCC.2015.323
https://eccc.weizmann.ac.il/report/2009/032
https://doi.org/10.1145/3196836
http://www.math.rwth-aachen.de/homes/Max.Neunhoeffer/Teaching/ff/ffchap4.pdf

9:18 PIT for Sums of Products of Read-Once Formulae

44 C. Ramya and B.V.R. Rao. Lower bounds for sum and sum of products of read-once formulas.
ACM Transactions on Computation Theory (TOCT), 11(2):1–27, 2019.

45 C. Saha and B. Thankey. Hitting sets for orbits of circuit classes and polynomial families. In
Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021,
University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of
LIPIcs, pages 50:1–50:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

46 S. Saraf and I. Volkovich. Blackbox identity testing for depth-4 multilinear circuits. Combin-
atorica, 38(5):1205–1238, 2018.

47 N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. SIAM J.
Comput., 40(1):200–224, 2011.

48 N. Saxena and C. Seshadhri. Blackbox identity testing for bounded top-fanin depth-3 circuits:
The field doesn’t matter. SIAM J. Comput., 41(5):1285–1298, 2012.

49 N. Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds: Improved
blackbox identity test for depth-3 circuits. J. ACM, 60(5):33, 2013.

50 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

51 A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and finding
variable disjoint factors. In Automata, Languages and Programming, 37th International
Colloquium (ICALP), pages 408–419, 2010. Full version at https://eccc.weizmann.ac.il/
report/2010/036.

52 A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas. Theory of
Computing, 10:465–514, 2014.

53 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational Complexity,
24(3):477–532, 2015.

54 A. Sinhababu and T. Thierauf. Factorization of polynomials given by arithmetic branching
programs. computational complexity, 30(2):1–47, 2021.

55 I. Volkovich. Deterministically factoring sparse polynomials into multilinear factors and sums
of univariate polynomials. In APPROX-RANDOM, pages 943–958, 2015.

56 I. Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions on Computation
Theory (ToCT), 8(1):2, 2016. doi:10.1145/2858783.

57 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, pages 216–226, 1979.

A PIT for ∑[2] ∏ ROF

This section is devoted to the proof of Theorem 1, which is based on the proof overview
given in Section 1.3.1. We first present some results related to the resultant of two co-prime
and 0-irreducible ROPs in Section A.1. These results are required for proving Theorem 48.
Then, using Theorem 48, we give a proof of Theorem 1 in Section A.2.

A.1 Properties of the Resultant of two 0-Irreducible ROPs

We note some important results related to the resultant of two n-variate, co-prime, and
0-irreducible ROPs A, B. The most important result that we prove is a hardness of rep-
resentation theorem for Resx(A, B) (Lemma 45). A key consequence of this result is that
there exists a monomial of support (at most) two in Resx(A, B) (Corollary 46). Using this,
we show in Lemma 47 that Resx(A, B)(Gn,3) ̸≡ 0, where A, B are any co-prime ROPs (not
necessarily 0-irreducible). We start with the following claim. Its proof is given in [8].

https://eccc.weizmann.ac.il/report/2010/036
https://eccc.weizmann.ac.il/report/2010/036
https://doi.org/10.1145/2858783

P. Bisht, N. Gupta, and I. Volkovich 9:19

▷ Claim 44. Let f, g ∈ F[x1, x2, . . . , xn] be multilinear polynomials, where f is 0-irreducible
and i ̸= j ∈ [n] such that var(f) \ {i, j} ≠ ∅. Suppose xj divide Resxi

(f, g). Then, f |xj=0
divides g|xj=0.

The following lemma lies at the heart of the proof of Theorem 1. We show that the
resultant of two 0-irreducible ROPs is 3-hard (see Definition 25).

▶ Lemma 45 (Hardness of representation for the resultant of two 0-irreducible ROPs). Let
n ≥ 3 be a natural number and A, B ∈ F[x1, x2, . . . , xn] be 0-irreducible ROPs. Let i ∈ [n]
be such that Resxi(A, B) ̸≡ 0. Then Resxi(A, B) is 3-hard.

Proof. Suppose for contradiction that Resxi
(A, B) is not 3-hard, i.e., Resxi

(A, B) ̸≡ 0 and
∃J ⊆ [n], |J | = 3 such that for every j ∈ J, xj divides Resxi(A, B). We claim that this implies
either J ⊆ var(A) or J ⊆ var(B). As xj divides Resxi

(A, B) for every j ∈ J , we get that
j ∈ var(A) ∪ var(B). Observe that this implies either |var(A) ∩ J | ≥ 2 or |var(B) ∩ J | ≥ 2.
Suppose the former is true and j ̸= k ∈ var(A)∩J . As A is 0-irreducible, it follows from Claim
44 that A|xj=0 divides B|xj=0 and A|xk=0 divides B|xk=0. This implies that j, k ∈ var(B).
Let ℓ ∈ J \ {j, k}. Since ℓ ∈ var(A) ∪ var(B), we get that either J ⊆ var(A) or J ⊆ var(B).

By using the fact that B is also 0-irreducible and by using a similar argument as above,
it follows that J ⊆ var(A) ∩ var(B). This implies that for every j ∈ J , there exists a non-zero
αj ∈ F such that A|xj=0 = αj · B|xj=0. Since B is 0-irreducible, |var(B)| ≥ 3, and αj ̸= 0
we get that αj · B|xj=0 ̸≡ 0. Since A and B are 0-irreducible ROPs, Claim 6 implies that
these are also 0-justified. Then, it follows from Claim 37 that there exists an α ̸= 0 ∈ F
such that A = α · B. But this means that A, B are not co-prime, thus Fact 10 implies that
Resxi(A, B) ≡ 0, which is a contradiction. Hence, Resxi(A, B) is 3-hard. ◀

Using Lemma 45, we can now show that Resxi
(A, B) has a monomial of support-size at

most 2 and hence we can hit Resxi(A, B) using Gn,2. Note that Resxi(A, B) by definition
does not depend on xi but we can still consider it as a polynomial in F[x1, . . . , xn]. Henceforth,
we follow this convention for any (n − 1)-variate polynomial.

▶ Corollary 46. Let A, B ∈ F[x1, x2, . . . , xn] be 0-irreducible ROPs such that Resxi
(A, B) ̸≡ 0

for some i ∈ [n]. Then, Resxi(A, B) contains a monomial of support-size at most 2. In
particular, (Resxi

(A, B))(Gn,2) ̸≡ 0.

Proof. Let R
∆= Resxi(A, B) ̸≡ 0. Let J be any subset of var(R). Note that i /∈ J . Since

A, B are 0-irreducible and multilinear, we have that degxi
(P) = degxi

(P |xJ =0J
) = 1 for

both P = A, B. Then by Fact 10,

R|xJ =0J
= Resxi

(A, B)|xJ =0J
= Resxi

(A|xJ =0J
, B|xJ =0J

). (1)

Since A, B are 0-irreducible, both A|xJ =0J
, B|xJ =0J

are also 0-irreducible. Then by
Lemma 45 we deduce that R|xJ =0J

is also 3-hard for any J ⊆ var(R). Now, we can use
Fact 27 to show that R has a monomial of support-size at most 2 and thus R(Gn,2) ̸≡ 0. ◀

In Corollary 46 we showed how to hit the resultant of two 0-irreducible ROPs. In the
lemma below, we show how to hit resultant of two general ROPs. A proof of this lemma is
given in [8]. Recall the definition of the class Res(C) and Fact 24 from Section 2.

▶ Lemma 47. G3 is a generator for the class Res(ROF).

FSTTCS 2023

9:20 PIT for Sums of Products of Read-Once Formulae

A.2 Proof of Theorem 1: PIT for ∑[2] ∏ ROF
In Section 1.3, we outlined why it suffices to hit the resultants of two ROFs in order to
hit the class

∑[2] ∏
ROF. For a general class C, it is implicitly shown in previous works

like [55, 9] that it suffices to hit the class Res(C), which we formally stated in Fact 24. In
Lemma 47, we have shown that G3 is a generator for Res(ROF). As a consequence, we get
that Gn,4 = Gn,3 + Gn,1 is a generator for any n-variate polynomial in the class

∑[2] ∏
ROF.

▶ Theorem 48 (G4 hits
∑[2] ∏

ROF). Let f ∈
∑[2] ∏

ROF be an n-variate polynomial and
Gn,4 be the generator given in Definition 20. Then, f ≡ 0 if and only if f(Gn,4) ≡ 0.

Proof. In Lemma 47, we showed that G3 is a generator for the class Res(ROF). Then by
Fact 24, G4 = G3 + G1 is a generator for the class

∑[2] ∏
ROF, that is, given an n-variate

polynomial f ∈
∑[2] ∏

ROF, f ≡ 0 if and only if f(Gn,4) ≡ 0. ◀

Proof of Theorem 1. We are given an n-variate polynomial f ∈
∑[2] ∏

ROF such that
deg(f) ≤ d. Then, Theorem 48 implies that f(Gn,4) ≡ 0 if and only if f ≡ 0. Since f(Gn,4)
is an eight-variate polynomial and has degree at most n · d, it is not difficult to show that
the zeroness of f(Gn,4) can be tested in poly(n, d) time. ◀

B PIT for ∑[3] ∧ C

This section is devoted to the proofs of Theorems 2 and 3. Here, we prove a more general
result which subsumes these two theorems (see Theorem 58). Its proof goes via a hardness of
representation result given in Theorem 57. We first discuss some useful definitions and facts.

Let Iℓ be the ideal in F[x1, x2, . . . , xn] generated by ⟨x1x2 · · · xℓ⟩ for some ℓ ≤ n.

▶ Definition 49 (polynomial-hat). For any polynomial f ∈ F[x1, x2, . . . , xn] and monomial
ideal Iℓ, we can write f as f = f̃ + f̂ , where f̃ ∈ Iℓ and f̂ = f (mod Iℓ) is the unique
polynomial obtained from f after going modulo Iℓ.

▶ Remark 50. Note that the polynomial f̂ may not be unique for general ideals but here for
the monomial ideal Iℓ, we define it uniquely by removing all the monomials in f which are
divisible by x1 · · · xℓ.

The fact below gives a necessary and sufficient condition on the existence of an r-th
primitive root of unity in the algebraic closure of a field. See Theorem 8.2 of [42] for a proof.

▶ Fact 51. Let F be the algebraic closure of a field F and r ∈ N. Then F contains an r-th
primitive root of unity if and only if r ̸ | char(F).

▶ Observation 52. Let e ∈ N, F be a field containing an e-th primitive root of unity ω, and
x, y be two variables. Then, xe − ye =

∏
ℓ∈[e](x − ωℓy).

B.1 Some Useful Results
In this section, we give a set of results required for the proofs of Theorems 2 and 3. The
following result generalizes Claim 37. A proof of Claim 53 is given in [8].

▷ Claim 53. Let n, m ∈ N, n ≥ m ≥ 2 and A, B ∈ F[x1, x2, . . . , xn] be two 0-justified
polynomials such that for every β ∈ F, the set {A, β · B} is m-hard. Suppose there
exists a set J ⊆ [n], |J | = m such that for every j ∈ J , there exists an αj ∈ F satisfying
A|xj=0 = αj · B|xj=0. Then, A ∼ B.

P. Bisht, N. Gupta, and I. Volkovich 9:21

The proofs of the Claims 54, 56, and Lemma 55 are given in the full version [8].

▷ Claim 54. Let F be a field, n, e, d ∈ N, such that 2 ≤ d ≤ e and char(F) does not divide
e. Let f, g, h ∈ F[x1, x2, . . . , xn] be multilinear polynomials such that h is non-constant.
Suppose fe − ge = hd. Then, we get the following.
1. If d ≥ 2 then d = e and f ∼ g ∼ h.
2. If d = 1 then e = 2.

Let n, r ∈ N, r ≤ n, Pr be the monomial x1 . . . xr, and Ir
∆= ⟨Pr⟩ be the monomial ideal in

F[x1, x2, . . . , xn]. For the lemma below, recall Definition 49. Here we consider a polynomial
f w.r.t. ideal Ir and write f = f̃ + f̂ , where f̂ = f (mod Ir).

▶ Lemma 55. Let f ∈ F[x1, x2, . . . , xn] be a non-constant 0-justified multilinear polynomial
such that f = g · h + v · Pr, where 3 ≤ r ≤ n and v, g, h ∈ F[x1, x2, . . . , xn] are arbitrary
polynomials (possibly non-multilinear). Then ĝ and ĥ are variable disjoint.

We shall now use Lemma 55 to prove the following claim that will be used inside the
proof of Theorem 57. In this claim, for a polynomial f , we work with the ideal Im+1 and
express f as f = f̃ + f̂ , where f̂ = f (mod Im+1).

▷ Claim 56. Let n ≥ 3 be a natural number and let A, B, R ∈ F[x1, x2, . . . , xn] be multilinear
polynomials that satisfy properties 1, 2 in Theorem 57. Let H1

∆= A − B, H2
∆= A + B and

F = H1 · H2 − R = v · Pm+1. For each i ∈ {1, 2}, let Ji = var(Ĥi) and Ii = [n] \ Ji. Then
J1 ∩ J2 = ϕ, H1 ∼ R|xI1 =0I1

and H2 ∼ R|xI2 =0I2
.

B.2 The Hardness of Representation Theorem and PIT
The theorem below is the main technical result of this section.

▶ Theorem 57 (Hardness of representation for Ae1 − Be2 − Re3). Let m ≥ 2. Suppose
A, B, R ∈ F[x1, x2, . . . , xn] are multilinear polynomials which satisfy the following properties:
1. A, B, and R are 0-justified.
2. For every J1, J2, J3 ⊆ [n] and α1, α2, α3 ∈ F, the set of polynomials {α1 · A|xJ1 =0J1

, α2 ·
B|xJ2 =0J2

, α3 · R|xJ3 =0J3
} is m-hard.

3. For any disjoint sets J1, J2 ⊆ [n] and for every α, β ∈ F, the set of polynomials {α ·
R|xI1 =0I1

· R|xI2 =0I2
, β · R} is m-hard, where I1 = [n] \ J1 and I2 = [n] \ J2.

Let e1, e2, e3 ∈ N such that e1 ≥ e2 ≥ e3. Then, the set {Ae1 , −Be2 , −Re3} is (m + 1)-hard.

Proof. Let F
∆= Ae1 − Be2 − Re3 . To prove that {Ae1 , −Be2 , −Re3} is (m + 1)-hard, either

we have to show that F ≡ 0 or for every subset J ⊆ [n], |J | = m + 1, the monomial∏
j∈J xj does not divide F . If F ≡ 0, there is nothing to prove. If n < m + 1 then F ≡ 0.

Therefore, we can assume without loss of generality that n ≥ m + 1 and F ̸≡ 0. Assume
for the sake of contradiction that there exists a set J ⊆ [n], |J | = m + 1 such that

∏
j∈J xj

divides F . Without loss of generality, let J = [m + 1], which implies that the monomial
Pm+1

∆= x1 · · · xm+1 divides F . In other words, F ∈ Im+1, where Im+1 is the ideal in
F[x1, x2, . . . , xn] generated by Pm+1. For this proof, we can assume without loss of generality
that F = F. This is so because if the monomial Pm+1 divides F over the field F then it also
divides it over F. As F ∈ Im+1, there exists a non-zero v ∈ F[x1, x2, . . . , xn] such that

F = v · Pm+1. (2)

If A, B, R ∈ F then we immediately get a contradiction. So, we assume without loss of
generality that A is non-constant (otherwise, B and R are also constants). Now, we analyze
the situation in the following cases.

FSTTCS 2023

9:22 PIT for Sums of Products of Read-Once Formulae

Case 1. e1 > e2: Let j ∈ [m+1] be such that var(A)\{j} ≠ ∅. Since m+1 ≥ 2, such a j

always exists. Then, Equation (2) implies F |xj=0 = (A|xj=0)e1 −(B|xj=0)e2 −(R|xj=0)e3 ≡
0. As A is 0-justified, non-constant, and var(A) \ {j} ̸= ∅, we get that A|xj=0 is a non-
constant polynomial. Since A|xj=0, B|xj=0, R|xj=0 are multilinear, A|xj=0 is non-constant,
and e1 > e2, F |xj=0 ̸≡ 0 . This means that F is not divisible by xj , which contradicts
the assumption that F ∈ Im+1.
Case 2. e1 = e2 ≥ e3: Fix e = e1, d = e3. Then,

F = Ae − Be − Rd. (3)

For the further discussion, we need an e-th primitive root of unity ω in F. As F is
algebraically closed, Fact 51 tells us that if p

∆= char(F) does not divide e then ω is always
present in F. If p = 0 then ω exists. Suppose p is a prime number and p divides e. Then,
there exists an e′ ∈ N such that e = e′ · p. As p = char(F), Equations (2) and (3) imply

(Ae′
− Be′

)p − Rd = v · Pm+1. (4)

First, suppose that R is non-constant. Clearly, there exists a j ∈ [m + 1] such that
var(R)\{j} ≠ ∅. It follows from Equation (4) that ((A|xj=0)e′ −(B|xj=0)e′)p = (R|xj=0)d.

As var(R) \ {j} ≠ ∅, R|xj=0 is a non-constant multilinear polynomial. Then, p|d.
Now, suppose that R ∈ F. As F is algebraically closed, we know that α

∆= R
1
p is present

in F. Then, Rd = (α)d·p. In this case, without loss of generality, we can replace R with
α. This is so because observe that Properties 1, 2, and 3 of A, B, R remain intact if R is
constant and we replace it with any other constant. This implies that {Ae, −Be, −Rd} is
(m + 1)-hard if and only if {Ae, −Be, −αd·p} is (m + 1)-hard.
Thus, in both the cases discussed above i.e., R ∈ F and R is non-constant, there exists a
d′ ∈ N such that d = d′ · p. Then, again using the fact that p = char(F), it follows from
Equation (2) that F = (F ′)p = v · Pm+1. As F ∈ Im+1, observe that F ′ ∈ Im+1. Thus,
we can work with F ′ instead of F . This argument allows us to assume without loss of
generality that p does not divide e. Hence, by Fact 51, we get that an e-th primitive
root of unity ω is present in F. Then, on substituting x = A and y = B in xe − ye in
Observation 52, we get the following useful factorization of Ae − Be.

Ae − Be =
∏

ℓ∈[e]

(A − ωℓB). (5)

This factorization would be immensely helpful for further analysis. We first assume that
e = 1. As d ≤ e = 1, Equation (3) implies that F = A − B − βR, where β ∈ {0, 1}.
It follows from Property 2 that the set {A, −B, −βR} is m-hard. Then Definition 25
implies that F can not be divisible by any multilinear monomial having support m. This
contradicts our assumption that F ∈ Im+1. Henceforth, we assume that e ≥ 2.

Sub-case 2.a. R is a field constant: Suppose R ≡ 0. It follows from Equations (3)
and (5) that for every j ∈ [n], there exists an ℓj ∈ [e] such that A|xj=0 = ωℓj B|xj=0.
As A is 0-justified and n ≥ m + 1, there exists a J ⊆ [n], |J | = m such that for every
j ∈ J, A|xj=0 ̸≡ 0. Since m ≥ 2, Claim 53 implies A ∼ B. Thus, there exists an α ∈ F
such that F = α · Ae. Observe that A ∈ Im+1. As n ≥ m + 1, we get from Definition 25
that {A} is not (m + 1)-hard. On the other hand, as {A} is m-hard by assumption (see
Property 2), observe that it is also (m + 1)-hard. This is a contradiction.

P. Bisht, N. Gupta, and I. Volkovich 9:23

Now, suppose R ∈ F \ {0}. Let j ∈ [m + 1] be such that var(A) \ {j} ≠ ∅. It follows from
Equations (2) and (3) that (A|xj=0)e − (B|xj=0)e = (R|xj=0)d. Since R ∈ F\ {0}, it is not
difficult to show that A|xj=0, B|xj=0 ∈ F. But this can not happen as var(A) \ {j} ≠ ∅, A

is non-constant and 0-justified. Thus, F |xj=0 ̸≡ 0, which means that xj does not divide
F and hence F is not in Im+1. This is a contradiction.
Sub-case 2.b. d ≥ 2: Let J ⊆ [m + 1] such that |J | = m and for every j ∈
J, var(R) \ {j} ≠ ∅. Let j ∈ J . Since R is 0-justified and non-constant, R|xj=0 is non-
constant. Then, Equations (2) and (3) imply (A|xj=0)e −(B|xj=0)e = (R|xj=0)d. It follows
from Point 1 of Claim 54 that d = e and for every j ∈ J , A|xj=0 ∼ B|xj=0 ∼ R|xj=0.
Since |J | = m ≥ 2, it is not difficult to see from Claim 53 that A ∼ B ∼ R. Thus, there
exists an α ∈ F such that F = α · Ae. Since, by assumption, F ∈ Im+1, observe that
A ∈ Im+1. But this can not happen as A is m-hard, which implies that A can not be
divisible by any multilinear monomial of support m. Thus, we get a contradiction.
Sub-case 2.c. d = 1: From point 2, we get e = 2. Then from Equations (2), (3), and
(5), we have F = (A − B)(A + B) − R = v · Pm+1. Let H1 = A − B and H2 = A + B.
Then, we can write R = H1 · H2 + v′ · Pm+1, where v′ = −v. Since n ≥ m + 1 ≥ 3,
by Lemma 55, Ĥ1, Ĥ2 are variable disjoint. Moreover Claim 56 shows that for disjoint
sets J1 = var(Ĥ1), J2 = var(Ĥ2), we have H1 ∼ R|xI1 =0I1

and H2 ∼ R|xI2 =0I2
, where

I1 = [n]\J1 and I2 = [n]\J2. By Point 3, we deduce that the set {H1H2, −R} is m-hard
and hence also (m + 1)-hard. This contradicts that F = H1H2 − R ∈ Im+1. ◀

This result above plays a pivotal role in proving the following theorem. It is not difficult
to argue that Theorems 2 and 3 are special details of the following theorem. See [8] for a
proof of this theorem and for more details. Recall Definition 20 for this theorem.

▶ Theorem 58. Let n ∈ N and let Ã, B̃, R̃ ∈ F[x1, x2, . . . , xn] be multilinear polynomials.
Suppose F

∆= Ãe1 + B̃e2 + R̃e3 , where e1, e2, e3 ∈ N, e1 ≥ e2 ≥ e3. Let m be the parameter
mentioned in Theorem 57. Let H : Ft → Fn be a generator such that there exist an assignment
a ∈ Im(H) for which the polynomials A

∆= Ã(x + a), B
∆= B̃(x + a), and R

∆= R̃(x + a) satisfy
Properties 1, 2, and 3 given in Theorem 57. Then, F ≡ 0 if and only if F (H + Gn,m) ≡ 0.

FSTTCS 2023

	1 Introduction
	1.1 Motivations and Related Works
	1.2 Our Results
	1.3 Proof Overview and Techniques
	1.3.1 Proof Overview of Theorem 1
	1.3.2 Proof Overview of Theorems 2 and 3

	2 Preliminaries
	2.1 Basic Mathematical Facts
	2.2 Partial Derivatives
	2.3 Commutator
	2.4 The Generator G_{n,k} of [53]
	2.5 Hardness of Representation

	3 ROFs and Multilinear Bounded-Read Arithmetic Formulae
	3.1 ROFs and ROPs
	3.1.1 Some Useful Properties of ROFs and ROPs
	3.1.2 Commutator of an ROP
	3.1.3 The Hardness of Representation Theorem for Sum of ROPs
	3.1.4 Obtaining 0-Irreducible ROPs

	3.2 Multilinear Bounded-Read Arithmetic Formulae

	4 Discussion and Future Work
	A PIT for sum^{[2]} prod ROF
	A.1 Properties of the Resultant of two 0-Irreducible ROPs
	A.2 Proof of Theorem 1: PIT for sum^{[2]} prod ROF

	B PIT for sum^{[3]} bigwedge C
	B.1 Some Useful Results
	B.2 The Hardness of Representation Theorem and PIT

